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Introduction

A central problem in many subjects like matrix analysis, perturbation theory, numerical analysis

and physics is to study the effect of small changes in a matrixA on a function f(A). Among much

studied functions on the space of matrices are trace, determinant, permanent, eigenvalues, norms.

These are real or complex valued functions. In addition, there are some interesting functions that

are matrix valued. For example, the (matrix) absolute value, tensor power, antisymmetric tensor

power, symmetric tensor power.

When a function is differentiable, one of the ways to study the above problem is by using the

derivative of f at A, denoted by Df(A). In order to obtain first order perturbation bounds, it

is helpful to have information about ‖Df(A)‖. In general, finding the exact value of the norm

of any operator is not an easy task. It might be easier and adequate to find good estimates on

‖Df(A)‖. Higher order perturbation bounds can be obtained using the norms of the higher order

derivatives.

Some interesting functions like norms are not differentiable at some points. But they possess

the useful property of being convex. In such a case, the notion of subderivative is used in place

of the derivative.

This thesis consists of two parts. In one of them, we study (higher order) derivatives of

the maps that take a matrix to its kth tensor power, kth antisymmetric tensor power and kth

symmetric tensor power. We obtain explicit formulas for these derivatives and compute their

norms. We also obtain expressions for the map that takes a matrix to its permanent. In the other

part, we study the subdifferentials of norm functions and use them to investigate Birkhoff-James

orthogonality in the space of matrices. These results are then applied to obtain some distance
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formulas. Such formulas have been of interest to many mathematicians.

Let M(n) denote the space of n×n complex matrices. LetA(i|j) denote the (n−1)×(n−1)

submatrix obtained from A by deleting its ith row and jth column. Let det : M(n)→ C be the

map that takes a matrix A to its determinant. This map is differentiable and the famous Jacobi

formula gives its derivative as

D det(A)(X) = tr(adj(A)X), (0.1)

where the symbol adj (A) , called the adjugate (or the classical adjoint) of A, stands for the

transpose of the matrix whose (i, j)-entry is (−1)i+j detA(i|j). The map D det(A) is a linear

operator from M(n) to C. Its norm is defined as

‖D det(A)‖ = sup
‖X‖=1

‖D det(A)(X)‖.

Let s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) ≥ 0 denote the singular values of A. Given any k-

tuple (x1, . . . , xk), let pm(x1, . . . , xk) denote the mth elementary symmetric polynomial in

x1, . . . , xk. From (0.1), one can derive the relation

‖D det(A)‖ = pn−1(s1(A), . . . , sn(A)). (0.2)

Let ∧k : M(n) → M
((
n
k

))
be the map that takes a matrix A to its kth antisymmetric tensor

power, ∧k(A). In the special case k = n, this is the det map. Bhatia and Friedland [12] obtained

a striking formula for the norm of D ∧k (A). They showed that

‖D ∧k (A)‖ = pk−1(s1(A), . . . , sk(A)). (0.3)

Likewise we can consider the map ∨k : M(n)→M
((

n+k−1
k

))
that takes a matrix A to its kth

symmetric tensor power, ∨k(A). Bhatia [8] proved that

‖D ∨k (A)‖ = k‖A‖k−1. (0.4)
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In [14], Bhatia and Jain extended Jacobi’s formula (0.1) to higher order derivatives of the

function det. Following this, Jain [31] derived an expression for higher order derivatives of ∧k.

In this thesis, we obtain another expression for higher order derivatives of ∧k. Then we compute

higher order derivatives of the maps ⊗k and ∨k. We obtain an analogue of Jacobi’s formula (0.1)

for the map per that takes a matrix to its permanent. Expressions for higher order derivatives of

the per map are also obtained. Two of the main results of this part of the thesis are the formulas

‖Dm ∧k (A)‖ = m! pk−m(s1(A), . . . , sk(A)) (0.5)

and

‖Dm ∨k (A)‖ =
k!

(k −m)!
‖A‖k−m (0.6)

for 1 ≤ m ≤ k. The expressions (0.3) and (0.4) are particular cases of these for m = 1. The

expression (0.5) for the norm of Dm∧k (A) was first found in Jain [31]. We give a different proof

for this. The main interest in this alternative approach is that we prove and use an analogue of a

famous theorem of Russo and Dye about the norm of a positive linear map between C∗-algebras.

We establish a multilinear version of this. We show that a positive m-linear map between

C∗-algebras attains its norm at the m-tuple (I, I, . . . , I). This result is of independent interest.

Another function of matrices that is of obvious interest is a norm function ‖A‖. This function

may or may not be differentiable at a point A. But it is a convex function and so it is possible

to compute its subdifferential ∂‖ · ‖. This can then be applied to study the problem of finding

best approximations to a matrix A from a given subspace W of M(n). Such problems are of

importance in approximation theory and have intrigued many authors in the past few years (see

[36, 42, 49, 50]). A particular case of this problem is when W is the subspace spanned by a

matrix B. One specific question here is when is the zero matrix a best approximation to A from

this subspace, that is, when does the following hold:

min
λ∈C
‖A− λB‖ = ‖A‖? (0.7)
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In other words, under what conditions do we have

‖A+ λB‖ ≥ ‖A‖ for all λ ∈ C? (0.8)

A matrix A is said to be Birkhoff-James orthogonal to B if (0.8) holds. A substantial part of this

thesis is devoted to the study of finding necessary and sufficient conditions for this to be the case.

Let f : C → R+ be the map defined as f(λ) = ‖A + λB‖. To say that A is Birkhoff-James

orthogonal toB is equivalent to saying that f attains its minimum at zero. If f were differentiable

at A, then a necessary and sufficient condition for this would have been Df(0) = 0. But our

norm may not be differentiable at A. In this case, we can invoke the corresponding condition for

the subdifferential: f attains its minimum at 0 if and only if 0 is in the subdifferential set ∂f(0).

One of the most important norms in matrix analysis is the operator norm (also known as the

spectral norm or the induced matrix 2-norm). Bhatia and Šemrl [15] obtained a very tractable

condition for A to be Birkhoff-James orthogonal to B with respect to this norm. They showed

that

‖A+ λB‖ ≥ ‖A‖ for all λ ∈ C

if and only if there exists a unit vector x such that

‖Ax‖ = ‖A‖

and

〈Ax,Bx〉 = 0.

The importance of this result is that it connects the more complicated Birkhoff-James orthogo-

nality in the space M(n) to the standard orthogonality in the space Cn. Different techniques for

proving the Bhatia-Šemrl theorem have been studied by Kečkic̀ [33] and Li and Schneider [35].

We introduce a new method to study such problems. Further, we use this method to investigate

this problem for a special class of norms, namely Ky Fan k-norms.

If A and B are linear operators on an infinite dimensional Hilbert space, then a characteriza-
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tion for A to be Birkhoff-James orthogonal to B has been obtained in [15]. Using this, we give a

necessary and sufficient condition for Birkhoff-James orthogonality in a C∗-algebra and more

generally, in a Hilbert C∗-module E over a C∗-algebra A. We show that for e1, e2 ∈ E,

‖e1 + λe2‖ ≥ ‖e1‖ for all λ ∈ C

if and only if there exists a state ϕ on A such that

ϕ(〈e1, e1〉) = ‖e1‖2 and ϕ(〈e1, e2〉) = 0.

The distance of a matrix A to a subspace W of M(n) is defined as

dist(A,W) = min
W∈W

‖A−W‖.

A useful consequence of the Bhatia-Šemrl theorem is a formula for dist(A,CI):

dist(A,CI)2 = max
‖x‖=1

(
‖Ax‖2 − |〈x,Ax〉|2

)
.

The expression ‖Ax‖2 − |〈x,Ax〉|2 is known as variance of A with respect to the state x.

We study this problem in a much more general setting. Instead of the very special CI , we

consider any subalgebra B of M(n) and obtain a formula for dist(A,B). Let CB denote the

orthogonal projection of M(n) onto B. Then we show that

dist(A,B)2 = max{tr(A∗AP − CB(AP )∗CB(AP )CB(P )−1) : P ≥ 0, trP = 1}, (0.9)

where CB(P )−1 denotes the Moore-Penrose inverse of CB(P ). As our work was in progress we

came across a paper by Rieffel [41] where he raised the question of obtaining such a distance

formula in any unital C∗-algebra. The formula (0.9) answers this question when the C∗-algebra

is finite dimensional.

This thesis is organized as follows. In Chapter 1, we collect some basic facts about differential
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and subdifferential calculus. The most important convex functions in our study are norm functions

on the space of matrices. We first describe the subdifferentials of some general classes of matrix

norms, namely unitarily invariant norms and induced norms. These have been computed by

Watson [45]. The most important norms for our study are the operator norm, the trace norm

and the Ky Fan k-norms. An expression for the subdifferential of the Ky Fan k-norms has been

given by Watson [47]. We obtain new formulas for this that can be used more easily in our

problem. In Chapter 2, we introduce our method for approaching the problem of Birkhoff-James

orthogonality of matrices. We then use this method to obtain similar results for the class of

Ky Fan k-norms. In Section 2.2, we use a modification of the Bhatia-Šemrl theorem to obtain

characterizations of Birkhoff-James orthogonality in L(H,K), the space of bounded linear

operators between infinite dimensional Hilbert spacesH,K. The space L(H,K) is a Hilbert C∗-

module over the C∗-algebra L(H). In Section 2.3, we obtain a necessary and sufficient condition

for Birkhoff-James orthogonality in any Hilbert C∗-module. In Chapter 3, we investigate the

notion of orthogonality to a subspace of M(n). We use the methods of subdifferential calculus

to provide a necessary and sufficient condition for a matrix A to be orthogonal to a subspace W

of M(n). This characterization is then used to obtain the expression (0.9) for the distance of A

to any C∗-subalgebra of M(n). In Chapter 4, we first obtain some formulas for the higher order

derivatives of the maps that take a matrix to its tensor power, antisymmetric tensor power, and

symmetric tensor power. Then we go on to compute the norms of these derivatives. In Section

4.4, we obtain some expressions for the derivatives of the permanent function.

Most of the work in this thesis has already been published, some of it with coauthors. Chapter

2 is from [18], with Tirthankar Bhattacharyya. The work in Chapter 3 has been published in [28].

A part of Chapter 4 has appeared in a survey article [27]. The rest of the work in Chapter 4 is

from [13], with Rajendra Bhatia and Tanvi Jain. I thank my coauthors for their permissions to

include the joint works in my thesis.



Chapter 1

Differential and subdifferential

calculus

In this chapter, we first recall some elementary facts about calculus on normed spaces. (For

more details, see [9, Chapter X], [25, Chapter VIII].) Some important functions in our study are

norm functions on the space of matrices. There are many norms of interest in matrix analysis,

some of which are not differentiable, but all of them are convex. We study subdifferentials of

these norms, and use them in latter chapters to characterize Birkhoff-James orthogonality. For

convenience, we first collect some facts about the directional derivatives of a convex function,

and then use them to define its subdifferential. More details on subdifferential calculus can be

found in [30, Chapter D], [48, Chapter 2]. After stating the basic rules, we list some known

results from [45, 47] on special norms of interest in matrix analysis. In Section 1.5, we draw

special attention to the subdifferentials of the Ky Fan k-norms, for which we obtain some new

expressions.

We first fix some notations. Let X be a real or complex Banach space and let X∗ denote the

real or complex dual of X, respectively. We note that every complex Banach space X is also a

real Banach space. There is a one to one correspondence between X∗ and the real dual of X (see

[23, Lemma 6.3]). We have ϕ ∈ X∗ if and only if Reϕ is a bounded real linear functional of X.

Similarly, ifH is a complex Hilbert space with inner product 〈·, ·〉, then it is also a real Hilbert

7



8 Chapter 1: Differential and subdifferential calculus

space with inner product Re〈·, ·〉. All inner products on complex Hilbert spaces are assumed to

be conjugate linear in the first component and linear in the second.

In this chapter, facts on differential calculus are stated without proofs, but for the convenience

of the reader, most of the results on subdifferential calculus are given with proofs. Watson [45, 47]

has computed the subdifferentials of norms on M(m,n;R), the space of m× n real matrices.

Our interest is in the analogues of these results for the space of square complex matrices. Let

M(n) denote the space of n× n complex matrices. We state the results on the subdifferentials

of norms on M(n), by treating it as a real space. The proofs of these are small modifications of

the real case.

1.1 The Fréchet derivative

Let X,Y and Z be real or complex Banach spaces. Let U be an open subset of X. Let a ∈ U. Let

U′ be an open neighbourhood of 0 such that a+ h ∈ U for all h ∈ U′.

Definition 1.1.1. Let f : U → Y be a continuous map. Then the map f is called Fréchet

differentiable at a if there exists a bounded real linear operator Df(a) : X→ Y such that

lim
h→0

‖f(a+ h)− f(a)−Df(a)(h)‖
‖h‖

= 0. (1.1.1)

For details, see [25, Chapter VIII], [9, Chapter X]. The map f is said to be Gâteaux

differentiable at a in the direction x ∈ X if limt→0
f(a+tx)−f(a)

t exists. The Gâteaux derivative

at a in the direction x, denoted by Dxf(a) or f ′(a, x), is given by

f ′(a, x) = lim
t→0

f(a+ tx)− f(a)

t
=

d

dt

∣∣∣∣
t=0

f(a+ tx).

The map f is said to be Gâteaux differentiable at a if f ′(a, x) exists for all x ∈ X. If f is Fréchet

differentiable at a, then the action of the map Df(a) at any x ∈ X is given by

Df(a)(x) = f ′(a, x). (1.1.2)
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We shall say f is differentiable to mean f is Fréchet differentiable at every point of U. Some

important rules of differentiation are stated below.

Proposition 1.1.2. Let f, g : U → Y be two continuous mappings and let α be any scalar. If

f and g are differentiable at a ∈ U, then f + g and αf are also differentiable at a, and the

derivatives obey the rules

D(f + g)(a) = Df(a) + Dg(a)

and

D(αf)(a) = αDf(a).

Proposition 1.1.3 (Chain Rule). Let f : U → Y be a continuous map. Let a ∈ U and let

b = f(a). Let V be an open subset of Y containing b. Let g : V→ Z be a continuous map. If f

is differentiable at a and g is differentiable at b, then the mapping h = g ◦ f is differentiable at

a, and

Dh(a) = Dg(b) ◦Df(a).

Proposition 1.1.4. Let f be a homeomorphism of an open subset U of X onto an open subset V of

Y and let g be the inverse homeomorphism. If f is differentiable at a ∈ U, and Df(a) : X→ Y

is a real linear homeomorphism, then g is differentiable at b = f(a) and Dg(b) = Df(a)−1.

Some examples of differentiable functions are given below.

Example 1.1.5. The derivative of a bounded linear map f : X→ Y exists at every point a of X

and Df(a) = f .

Example 1.1.6. Let f : X× Y→ Z be a bounded bilinear mapping. Then f is differentiable at

every point of X × Y and its derivative at (a, b) is given by

Df((a, b))((x, y)) = f((a, y)) + f((x, b)) for all (x, y) ∈ X× Y.

Example 1.1.7. Let X be a complex Hilbert space. Then the mapping f(a) = ‖a‖ is differen-
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tiable at every point a 6= 0 and the derivative is given by

Df(a)(x) =
Re〈a, x〉
‖a‖

for all x ∈ X.

We now give some interesting examples from matrix theory.

Example 1.1.8. Let f : M(n) → M(n) be the map defined by f(A) = Ak, where k is any

natural number. Then Df(A)(X) is the coefficient of t in (A + tX)k. The non-commutative

binomial theorem says that

(A+X)k =
∑

j1,...,jp≥0
j1+···+jp=k

Aj1Xj2Aj3 · · ·Xjp . (1.1.3)

Using this, we get

Df(A)(X) =
∑
i,j≥0

i+j=k−1

AiXAj . (1.1.4)

Example 1.1.9. Let f : M(n)→M(n) be the map defined by

f(A) = A∗A.

Then for each A ∈M(n), we have

Df(A)(X) = A∗X +X∗A for all X ∈M(n).

Example 1.1.10. Let f : M(n)→M(nk) be the map defined by f(A) = ⊗k(A), the kth tensor

power of A. Since tensor power is a multilinear map, we have that Df(A)(X) is the coefficient

of t in ⊗k(A+ tX). We have the following expression similar to the binomial theorem (1.1.3):

⊗k(A+X) =
∑

j1,...,jp≥0
j1+···+jp=k

(⊗j1A)⊗ (⊗j2X)⊗ (⊗j3A)⊗ · · · ⊗ (⊗jpX).
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Using this, we obtain

D⊗k (A)(X) = X ⊗A⊗ . . .⊗A+A⊗X ⊗ . . .⊗A+ . . .+A⊗A⊗ . . .⊗X.

Let GL(n) denote the subset of invertible matrices in M(n).

Example 1.1.11. Let f : GL(n)→ GL(n) be the map defined by

f(A) = A−1.

Then f is differentiable at each A ∈ GL(n) and

Df(A)(X) = −A−1XA−1 for all X ∈M(n).

For A ∈M(n), let s1(A) ≥ · · · ≥ sn(A) ≥ 0 denote the singular values of A.

Example 1.1.12. Let 1 ≤ p <∞. Let f : M(n)→ R be defined as

f(A) = ‖A‖pp =

n∑
i=1

si(A)p. (1.1.5)

The norm ‖A‖p is known as the Schatten p-norm of A. Abatzoglou [1] and Aiken, Erdos and

Goldstein [2] showed that for 1 < p <∞, f is Fréchet differentiable everywhere except at zero.

Let A = U |A| be a polar decomposition of A, where U is unitary and |A| = (A∗A)1/2. Then

Df(A)(X) = pRe tr |A|p−1U∗X for all X ∈M(n). (1.1.6)

For n ≥ 2 and p = 1, this map is nowhere Fréchet differentiable. However, it is Gâteaux

differentiable at A if and only if A is invertible. In this case, we have for each X ∈M(n),

f ′(A,X) = Re trU∗X. (1.1.7)

Let LR(X;Y) denote the Banach space of all bounded real linear operators from X into Y.
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Suppose f : X→ Y is a continuously differentiable mapping. Then the map Df is a continuous

map of X into LR(X;Y). If Df is differentiable at a ∈ X, then f is said to be twice differentiable

at a, and the second derivative of f at a, denoted by D2f(a), is the derivative of Df at a. This

is an element of LR(X; (LR(X;Y)) which is identified with LR2 (X;Y), the space of bounded

real bilinear mappings of X × X into Y. Similarly, for any m, if Dm−1f is differentiable at

a ∈ X, then f is said to be m-times differentiable at a. The mth derivative of f at a, denoted

by Dmf(a), is an element of LRm(X;Y), the space of bounded real multilinear mappings of

X× · · · × X into Y. If f is m-times differentiable at a, then for x1, . . . , xm ∈ X,

Dmf(a)(x1, . . . , xm) =
∂m

∂t1 · · · ∂tm

∣∣∣∣
t1=···=tm=0

f(a+ t1x
1 + · · ·+ tmx

m), (1.1.8)

and the multilinear mapping Dmf(a) is symmetric.

We give some examples of infinitely differentiable functions and of their higher order

derivatives.

Example 1.1.13. A bounded linear map f : X → Y is infinitely differentiable and for each

m ≥ 2, we have Dmf(a) = 0.

Example 1.1.14. Any bounded bilinear mapping f : X× Y→ Z is infinitely differentiable. Its

second derivative is given by

D2f((a, b))((x1, y1), (x2, y2)) = f(x1, y2) + f(x2, y1)

and the derivatives of order greater than or equal to 3 are 0.

Example 1.1.15. Let f(A) = Ak (see Example 1.1.8). Then for 1 ≤ m ≤ k,

Dmf(A)(X1, . . . , Xm) =
∑
σ∈Sm

∑
j1,...,jm+1≥0

j1+···+jm+1=k−m

Aj1Xσ(1)Aj2Xσ(2) · · ·AjmXσ(m)Ajm+1 ,

where Sm is the set of all permutations on {1, 2, . . . , m}. For m > k, we have Dmf(A) = 0.
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Example 1.1.16. Let f(A) = A∗A (see Example 1.1.9). Then

D2f(A)(X1, X2) = X1∗X2 +X2∗X1.

For m > 2, Dmf(A) = 0.

Example 1.1.17. Let f : GL(n)→ GL(n) be the map defined by f(A) = A−1 (see Example

1.1.11). Then for each m,

Dmf(A)(X1, . . . , Xm) = (−1)m
∑
σ∈Sm

A−1Xσ(1)A−1Xσ(2) · · ·A−1Xσ(m)A−1.

We shall study higher order derivatives of some other matrix functions in Chapter 4. These

include determinant, permanent, tensor power, antisymmetric tensor power and symmetric tensor

power of matrices.

Let T : X→ Y be a bounded linear operator. The operator norm of T is defined as

‖T‖ = sup
‖x‖=1

‖Tx‖. (1.1.9)

Two of the most important theorems in differential calculus are the mean value theorem and

Taylor’s theorem.

Theorem 1.1.18 (Mean Value Theorem). Let U be an open convex subset of X and let f : U→ Y

be a differentiable map. Let a, b ∈ U and let L be the line segment joining them. Then

‖f(b)− f(a)‖ ≤ ‖b− a‖ sup
u∈L
‖Df(u)‖. (1.1.10)

Theorem 1.1.19 (Taylor’s Theorem). Let f : U→ Y be a (q + 1)-times differentiable function,

then for all a ∈ X and for small x ∈ X,

f(a+ x) =

q∑
m=1

1

m!
Dmf(a)(x, . . . , x) +O(‖x‖q+1). (1.1.11)
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1.2 The subdifferential of a convex function

Let U be a non-empty, convex and open subset of X, and let f : U→ R be a convex function.

Let a ∈ U and x ∈ X be fixed. Let t ∈ R be such that t 6= 0 and a+ tx ∈ U. Let

q(t) =
f(a+ tx)− f(a)

t
. (1.2.1)

Theorem 1.2.1. The map t 7→ q(t) is non-decreasing for t > 0 and for t < 0.

Proof. We first show that if 0 < s ≤ t, then q(s) ≤ q(t) . For such s, t, we have

s = (1− α)t for some 0 ≤ α ≤ 1. (1.2.2)

Therefore

a+ sx = a+ (1− α)tx = αa+ (1− α)(a+ tx).

Since f is convex, we have

f(a+ sx) ≤ αf(a) + (1− α)f(a+ tx).

Subtracting f(a) from both sides and then dividing by t, we obtain

f(a+ sx)− f(a)

t
≤ (1− α)

f(a+ tx)− f(a)

t
.

Using (1.2.2), we get

q(s) ≤ q(t). (1.2.3)

Now let s ≤ t < 0. Then 0 < −t ≤ −s. So −t = (1− α)(−s), that is, t = (1− α)s for some

0 ≤ α ≤ 1. As before, we have

f(a+ tx) ≤ αf(a) + (1− α)f(a+ sx).
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Subtracting f(a) from both sides and then dividing by t, we obtain

f(a+ tx)− f(a)

t
≥ (1− α)

f(a+ sx)− f(a)

s
.

This gives (1.2.3) in this case too.

Theorem 1.2.2. The map t 7→ q(t) is bounded near zero.

Proof. Consider the set Ia,x = {t ∈ R|a + tx ∈ U}. Since U is open and convex, Ia,x is an

open interval in R. Define ϕa,x : Ia,x → R as

ϕa,x(s) = f(a+ sx).

Then for t 6= 0, we have

f(a+ tx)− f(a)

t
=
ϕa,x(t)− ϕa,x(0)

t
.

The map t 7→ q(t) is bounded near zero if and only if the map t 7→ ϕa,x(t)−ϕa,x(0)
t is bounded

near zero. So it is enough to prove the theorem for X = R.

We show that f is locally Lipschitz continuous. Since U is an open convex subset of R, there

exist c, d ∈ R ∪ {−∞,∞} such that U = (c, d). Now a ∈ (c, d). So there exists δ > 0 such

that (a − 2δ, a + 2δ) ⊂ (c, d). Let y, y′ ∈ [a − δ, a + δ]. Without loss of generality, assume

that y ≤ y′. Choose t1, t2 such that c < t2 < a− δ and a+ δ < t1 < d. Since f is convex, it

follows that
f(a− δ)− f(t2)

a− δ − t2
≤ f(y′)− f(y)

y′ − y
≤ f(t1)− f(a+ δ)

t1 − a− δ
.

Let L = max
{∣∣∣f(a−δ)−f(t2)

a−δ−t2

∣∣∣ , ∣∣∣f(t1)−f(a+δ)
t1−a−δ

∣∣∣}. Hence

|f(y)− f(y′)| ≤ L|y − y′| for all y, y′ ∈ [a− δ, a+ δ]. (1.2.4)

Theorem 1.2.1 and Theorem 1.2.2 together tell us that q(t) has a limit as t decreases to 0 or
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increases to 0.

Definition 1.2.3. The right and left directional derivatives of f at a in the direction x are defined

as

f ′+(a, x) = lim
t↓0

f(a+ tx)− f(a)

t
= inf{q(t) : t > 0} (1.2.5)

and

f ′−(a, x) = lim
t↑0

f(a+ tx)− f(a)

t
= sup{q(t) : t < 0}. (1.2.6)

These are sometimes also denoted by D+f(a)(x) and D−f(a)(x), respectively. If f is

Gâteaux differentiable, then f ′+(a, x) = f ′−(a, x). In convex analysis, f ′+(a, x) is sometimes

also called as the directional derivative of f at a in the direction x, and is denoted by f ′(a, x).

We will not use this notation.

Let f : X→ R be a continuous convex function. It is easy to see that if f is differentiable at

a ∈ X, then

Df(a)(y − a) ≤ f(y)− f(a) for all y ∈ X.

So it is quite natural to consider the elements ϕR of the real dual of X which satisfy the condition

ϕR(y − a) ≤ f(y)− f(a) for all y ∈ X,

even when f is not differentiable at a. We know that if X is a complex Banach space, then there

exists a unique ϕ ∈ X∗ such that ϕR = Reϕ.

Definition 1.2.4. A subgradient of f at a ∈ X is an element ϕ of X∗ such that

f(y)− f(a) ≥ Reϕ(y − a) for all y ∈ X. (1.2.7)

The subdifferential is the set of bounded linear functionals ϕ ∈ X∗ satisfying (1.2.7) and

is denoted by ∂f(a). It is a non-empty weak* compact convex subset of X∗. For more details,

see [30, Chapter D], [48, Chapter 2]. The following proposition is a direct consequence of the

definition of the subdifferential. It is one of the most useful tools that we require in Chapter 2
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and Chapter 3.

Proposition 1.2.5. A continuous convex function f : X→ R attains its minimum value at a if

and only if 0 ∈ ∂f(a).

Proof. It can be readily seen from (1.2.7) that f(y) ≥ f(a) for all y ∈ X if and only if 0 is a

subgradient of f at a.

Definition 1.2.6. Let W be a non-empty subset of X. The support function of W is the function

σW : X∗ → R ∪ {+∞} defined as

σW(ϕ) = sup{Reϕ(w) : w ∈W}.

Let B be a non-empty subset of X∗, then the support function σB : X→ R∪ {+∞} is defined as

σB(x) = sup{Reϕ(x) : ϕ ∈ B}.

Recall that a function p : X→ R is said to be sublinear if it satisfies

(i) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,

(ii) p(ax) = a p(x) for a > 0, x ∈ X.

A support function is sublinear. Furthermore, the support function of W is finite everywhere if

and only if W is weakly bounded. If W1 and W2 are two non-empty subsets of X, then

σW1+W2 = σW1 + σW2 ,

and

σW1∪W2 = max{σW1 , σW2}.

If W1 ⊂ W2, then σW1(ϕ) ≤ σW2(ϕ) for all ϕ ∈ X∗. An important property of the support

functions is given by the following proposition.
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Proposition 1.2.7. Let T : X→ Y be a bounded linear map. Then for any non-empty subset B

of Y∗,

σT ∗(B)(x) = σB(T (x)) for all x ∈ X. (1.2.8)

Proof. By definition of the adjoint of the map T ,

ReT ∗(ϕ)(x) = Reϕ(T (x)).

Taking sup over ϕ ∈ B on both the sides, we get (1.2.8).

A function σ : X→ R ∪ {+∞} is said to be closed if, for each x ∈ X,

lim inf
x′→x

σ(x′) ≥ σ(x).

There is a close connection between closed convex sets and closed sublinear functions.

Proposition 1.2.8. Let B be a non-empty closed convex subset of X∗ and let σ be a closed

sublinear function on X. Then the following are equivalent.

(i) σ is the support function of B,

(ii) B = {ϕ ∈ X∗ : Reϕ(x) ≤ σ(x) for all x ∈ X}.

The next theorem gives an alternate definition of the subdifferential of a convex function.

We will use this later in sections 1.4 and 1.5 to compute subdifferentials of some matrix norms.

Theorem 1.2.9. Let f : X→ R be a continuous convex function. Then

∂f(a) = {ϕ ∈ X∗ : Re ϕ(x) ≤ f ′+(a, x) for all x ∈ X}. (1.2.9)

Moreover, for each x ∈ X,

f ′+(a, x) = max{Reϕ(x) : ϕ ∈ ∂f(a)}.
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Proof. First let ϕ ∈ X∗ be such that

Reϕ(x) ≤ f ′+(a, x) for all x ∈ X. (1.2.10)

By (1.2.5), we obtain

Reϕ(x) ≤ f(a+ tx)− f(a)

t
for all t > 0, x ∈ X. (1.2.11)

Let y = a+ tx. As t varies over (0,∞) and x varies over X, y = a+ tx varies over whole of X.

Using this in (1.2.11), we get

Reϕ(y − a) ≤ f(y)− f(a) for all y ∈ X.

Now suppose (1.2.7) holds. For t > 0, let x = y−a
t . As t varies over (0,∞) and y varies over X,

so does x. So we get (1.2.11). By using (1.2.5), we obtain (1.2.10).

We now show that for each x ∈ X, there exists ϕx ∈ ∂f(a) such that Reϕx(x) = f ′+(a, x).

Consider the one dimensional affine set Wx = a + Rx and the continuous affine function

hx : Wx → R defined as hx(a + tx) = f(a) + tf ′+(a, x). Then hx ≤ f on Wx. By a

consequence of the Hahn-Banach theorem, there exists a continuous affine extension ĥx : X→ R

of hx such that ĥx ≤ f . Since ĥx(a) = hx(a) = f(a), we obtain ĥx(y) = f(a) + Reϕx(y− a)

for some ϕx ∈ X∗. Thus Reϕx(x) = ĥx(a+ x)− f(a) = hx(a+ x)− f(a) = f ′+(a, x).

From the above theorem, we obtain

f ′+(a, x) = σ∂f(a)(x). (1.2.12)

Corollary 1.2.10. Let f : X → R be a continuous convex function. Then f is Gâteaux

differentiable at a ∈ X if and only if its only subgradient at a is its Gâteaux derivative f ′(a, ·).

Proof. By Theorem 1.2.9, we have that ϕ ∈ ∂f(a) if and only if

f ′−(a, x) ≤ ϕ(x) ≤ f ′+(a, x) for all x ∈ X.
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If f is Gâteaux differentiable at a, then f ′−(a, x) = f ′+(a, x) = f ′(a, x) for all x ∈ X. So

∂f(a) = {f ′(a, ·)}. If f is not Gâteaux differentiable at a, then there exists x ∈ X such that

f ′−(a, x) 6= f ′+(a, x). By Theorem 1.2.9, there exist ϕ1, ϕ2 ∈ ∂f(a) such that ϕ1(x) = f ′+(a, x)

and ϕ2(−x) = f ′+(a,−x) = −f ′−(a, x). Then ϕ1(x)− ϕ2(x) = f ′+(a, x)− f ′−(a, x) 6= 0 and

hence ∂f(a) is not a singleton.

We now provide some rules of subdifferential calculus, which will be helpful in our analysis

in Chapter 2 and Chapter 3.

Proposition 1.2.11. Let f1, f2 : X → R be two continuous convex functions and let t1, t2 be

positive numbers. Then

∂(t1f1 + t2f2)(a) = t1∂f1(a) + t2∂f2(a) for all a ∈ X. (1.2.13)

Proof. Note that t1∂f1(a) + t2∂f2(a) is a compact convex set whose support function is

t1f
′
1+(a, ·) + t2f

′
2+(a, ·). (1.2.14)

On the other hand, the support function of ∂(t1f1 + t2f2)(a) is (t1f1 + t2f2)′+(a, ·), which is

the same as (1.2.14).

Proposition 1.2.12. Let S : X → Y be a bounded linear map and let L : X → Y be the

continuous affine map defined by L(x) = S(x) + y0, for some y0 ∈ Y. Let g : Y → R be a

continuous convex function. Then

∂(g ◦ L)(a) = S∗∂g(L(a)) for all a ∈ X. (1.2.15)

Proof. By Theorem 1.2.9,

σ∂(g◦L)(a)(x) = (g ◦ L)′+(a, x).
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To compute (g ◦ L)′+(a, x), we note that

(g ◦ L)(a+ tx)− (g ◦ L)(a)

t

=
g(L(a+ tx))− g(L(a))

t

=
g(S(a+ tx) + y0)− g(L(a))

t

=
g(S(a) + y0 + tS(x))− g(L(a))

t

=
g(L(a) + tS(x))− g(L(a))

t
.

Taking infimum over {t : t > 0}, we get

(g ◦ L)′+(a, x) = g′+(L(a), S(x)),

that is,

σ∂(g◦L)(a)(x) = σ∂g(L(a))(S(x)).

By Proposition 1.2.7, this is equal to σS∗∂g(L(a))(x). Hence ∂(g ◦ L)(a) = S∗∂g(L(a)).

The following theorem provides a formula for the subdifferential of the supremum of convex

functions. A proof of this can be found in [48, p. 97]. We shall use this theorem to obtain an

expression for the subdifferential of Ky Fan k-norms in Section 1.5.

Proposition 1.2.13. Let J be a compact set in a metric space. Let {fj}j∈J be a collection of

continuous convex functions from X to R such that the maps j → fj(x) are upper semicontinuous

for each x ∈ X. Let f : X → R be defined as f(x) = sup{fj(x) : j ∈ J}, and let

J(x) = {j ∈ J : fj(x) = f(x)}. Assume that f(x) <∞ for all x ∈ X. Then for each a ∈ X,

∂f(a) = conv
{
∪j∈J(a)∂fj(a)

}
. (1.2.16)

We now give some examples of convex functions and their subdifferentials.
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Example 1.2.14. Let f : R→ R be defined as

f(x) = |x|.

This function is differentiable at all a 6= 0 and Df(a) = sgn(a). At zero, it is not differentiable.

Note that for v ∈ R,

f(y) = |y| ≥ f(0) + v.y = v.y

holds for all y ∈ R if and only if |v| ≤ 1. Hence

∂f(0) = [−1, 1]. (1.2.17)

We know that f attains its minimum at 0. This is also the assertion of Proposition 1.2.5, since

0 ∈ ∂f(0).

Example 1.2.15. Let f : R→ R be the map defined as

f(x) = max

{
0,
x2 − 1

2

}
.

Then f is differentiable everywhere except at x = −1, 1. We have

∂f(1) = [0, 1] and ∂f(−1) = [−1, 0].

It is easy to see that f attains the minimum value 0 at all points of the interval [−1, 1]. This is

also evident from Proposition 1.2.5.

Example 1.2.16. Let f : X→ R be defined as

f(a) = ‖a‖.

Then for a 6= 0,

∂f(a) = {ϕ ∈ X∗ : Reϕ(a) = ‖a‖, ‖ϕ‖ ≤ 1}, (1.2.18)
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and

∂f(0) = {ϕ ∈ X∗ : ‖ϕ‖ ≤ 1}. (1.2.19)

Proof. We prove the result for a 6= 0. The proof for the case a = 0 is similar. Let ϕ ∈ ∂f(a).

Then by definition of the subdifferential of f (1.2.7), we have

‖y‖ − ‖a‖ ≥ Reϕ(y − a) for all y ∈ X. (1.2.20)

By putting y = 0 and y = 2a, we obtain

‖a‖ = Reϕ(a). (1.2.21)

By (1.2.20) and (1.2.21), we get that for any y ∈ X with ‖y‖ ≤ 1,

Reϕ(y) ≤ 1.

Therefore ‖ϕ‖ ≤ 1. Now suppose that ϕ ∈ X∗ is such that Reϕ(a) = ‖a‖ and ‖ϕ‖ ≤ 1. Then

Reϕ(y − a) = Reϕ(y)− Reϕ(a) ≤ ‖y‖ − ‖a‖.

Hence ϕ ∈ ∂f(a).

Example 1.2.17. Let f : Rn → R be defined as f(a) = ‖a‖∞. Then for a 6= 0,

∂f(a) = conv{±ei : |ai| = ‖a‖∞}. (1.2.22)

This can be obtained either from Proposition 1.2.13, or from Example 1.2.16.

By (1.2.19),

∂f(0) = {v ∈ Rn :
n∑
i=1

|vi| ≤ 1}. (1.2.23)

Example 1.2.18. Let f : Rn → R be defined as f(a) = ‖a‖1. If a is a vector none of whose
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components are zero, then f is differentiable and

∂f(a) = {Df(a)} =




sgn(a1)

...

sgn(an)


 .

Now suppose s components of a are zero. Let the components of a be ordered as |a1| ≥ · · · ≥

|an−s| > |an−s+1| = · · · = |an| = 0. Then for a 6= 0,

∂f(a) = {v ∈ Rn : vi = sgn(ai), i = 1, . . . , n−s; |vi| ≤ 1, vi sgn(ai) ≥ 0, i = n−s+1, . . . , n}

and

∂f(0) = {v ∈ Rn : |vi| ≤ 1 for all 1 ≤ i ≤ n}.

Example 1.2.19. Let f : Rn → R be defined as

f(a) = ‖a‖(k),

the sum of k largest elements of |a1|, . . . , |an|. Let the components of a be ordered so that

|a1| ≥ · · · ≥ |an|. Let the multiplicity of |ak| be r + t, where r ≥ 0 and t ≥ 1, such that

|ak−t+1| = · · · = |ak+r|. If r = 0, that is, |ak| > |ak+1| (where an+1 is assigned value zero),

then f is differentiable and

∂f(a) = {Df(a)} =





sgn(a1)

...

sgn(ak)

0

...

0





.
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If r > 0, then Watson [46] showed that for a 6= 0,

∂f(a) = {v ∈ Rn : ‖v‖∞ ≤ 1; vi = sgn(ai), i = 1, . . . , k − t;

vi sgn(ai) ≥ 0, i = k − t+ 1, . . . , k + r;
k+r∑

i=k−t+1

|vi| = t if ak 6= 0, otherwise
k+r∑

i=k−t+1

|vi| ≤ t;

vi = 0, i = k + r + 1, . . . , n}. (1.2.24)

For a = 0, we have

∂f(0) = {v ∈ Rn : |vi| ≤ 1 for all 1 ≤ i ≤ n,
n∑
i=1

|vi| ≤ k}.

1.3 Norms on M(n)

Let H be an n-dimensional complex Hilbert space with inner product 〈·, ·〉. Let L(H) denote

the space of bounded linear operators from H to H. Fix an orthonormal basis for H. Then H

can be identified with Cn and L(H) can be identified with M(n). Let A ∈M(n) with singular

values s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) ≥ 0. Then the operator norm (1.1.9) can be expressed as

‖A‖ = sup
‖x‖=‖y‖=1

|〈y,Ax〉|.

We also have

‖A‖ = s1(A) = ‖A∗A‖1/2. (1.3.1)

There are other useful norms relevant to our study. The Schatten p-norms ‖.‖p, 1 ≤ p <∞,

are defined in (1.1.5). The norm ‖A‖∞ is defined as

‖A‖∞ = s1(A) = ‖A‖.

The Schatten p-norms for p = 1 and p = 2, are called the trace norm and the Hilbert-Schmidt
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norm of A, respectively. These can also be expressed as

‖A‖1 = tr(|A|) (1.3.2)

and

‖A‖2 = tr(A∗A)1/2. (1.3.3)

If A has entries aij , then

‖A‖2 =

∑
i,j

|aij |2
1/2

.

The dual of a matrix norm ‖ · ‖, denoted by ‖ · ‖∗, is defined as

‖A‖∗ = max
‖X‖=1

| tr(A∗X)| = max
‖X‖=1

Re tr(A∗X). (1.3.4)

For 1 < p <∞, the dual of ‖ · ‖p is ‖ · ‖q, where 1
p + 1

q = 1. The trace norm is the dual of the

operator norm and vice versa. Another useful class of norms is the Ky Fan k-norms, 1 ≤ k ≤ n.

They are denoted by ‖A‖(k), and are defined as

‖A‖(k) = s1(A) + s2(A) + · · ·+ sk(A). (1.3.5)

The particular cases k = 1 and k = n correspond to the operator norm and the trace norm,

respectively.

All the norms listed above belong to a more general class of norms, namely the unitarily

invariant norms. A norm ||| · ||| is said to be unitarily invariant if

|||UAV ||| = |||A|||

for any unitary matrices U, V .

Definition 1.3.1. A symmetric gauge function Φ : Rn → R is a function with the following

properties.
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(i) Φ is a norm on Rn,

(ii) Φ(Πx) = Φ(x) for all x ∈ Rn and for all permutation matrices Π,

(iii) Φ(ε1x1, . . . , εnxn) = Φ(x1, . . . , xn), if εj = ±1,

(iv) Φ(1, 0, . . . , 0) = 1.

Let s(A) denote the n-tuple (s1(A), . . . , sn(A)). For x = (x1, . . . , xn) ∈ Rn, let diag(x)

denote the diagonal matrix with entries x1, . . . , xn on its diagonal. Then given a symmetric

gauge function Φ on Rn, the function given by |||A|||Φ = Φ(s(A)) defines a unitarily invariant

norm on M(n). Conversely, given any unitarily invariant norm ||| · ||| on M(n), the function on

Rn defined by Φ|||·|||(x) = |||diag(x)|||, is a symmetric gauge function.

Every norm on Cn induces a norm on M(n). Let ‖ · ‖ be a norm on Cn. Then the norm on

M(n) induced by ‖ · ‖ is the norm defined as

‖A‖′ = max
‖x‖=1

‖Ax‖. (1.3.6)

In particular, when the vector norm is taken to be the Euclidean norm, then the induced norm is

the operator norm.

1.4 Subdifferentials of matrix norms

Let ‖ · ‖ be any norm on the space M(n). The space M(n) is a complex Hilbert space with inner

product 〈A,B〉 = tr(A∗B). By Example 1.2.16, we have that for A 6= 0,

∂‖A‖ = {G ∈M(n) : ‖A‖ = Re tr(G∗A), ‖G‖∗ ≤ 1}. (1.4.1)

We study the subdifferentials of various norms described in Section 1.3. In this section, we

formulate analogues for M(n) of some known results on M(n;R) from [45] and [47]. Similar

results can be stated for M(m,n), the space of m× n complex matrices. Since we require these

results for square matrices in our analysis in subsequent chapters, we restrict ourselves to M(n).
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Unitarily invariant norms

Let ||| · ||| be a unitarily invariant norm and let Φ be the corresponding symmetric gauge function.

Theorem 1.4.1. Let g : M(n)→ R be defined as g(A) = |||A||| and let X ∈M(n). Then there

exist left and right singular vectors, ui, vi(1 ≤ i ≤ n) of A corresponding to si(A) such that

g′+(A,X) = max
z∈∂Φ(s(A))

n∑
i=1

zi Re〈ui, Xvi〉. (1.4.2)

From the proof of Theorem 1 in [47], we obtain the following.

Proposition 1.4.2. LetA be any matrix in M(n) with singular values s1(A) ≥ · · · ≥ sn(A) ≥ 0.

Let S =


s1(A)

. . .

sn(A)

. Consider the set

W(A) = {UDV ∗ : A = USV ∗ is a singular value decomposition of A,D = diag(d)

with d ∈ ∂Φ(s(A))} ,

that is, B ∈W(A) if and only if for any singular value decomposition USV ∗ of A, the matrix

U∗BV is a diagonal matrix D with the property that the vector d formed by the diagonal

elements of D is in ∂Φ(s(A)). Then W(A) is a convex set.

By Theorem 1 in [47], we get the following.

Theorem 1.4.3. For any A ∈M(n),

∂|||A||| = {UDV ∗ : A = USV ∗ is a singular value decomposition of A,D = diag(d) with

d ∈ ∂Φ(s(A))}. (1.4.3)

As corollaries, Watson [45] obtained characterizations of the subdifferential of the operator

norm and the trace norm. Let A = USV ∗ be any singular value decomposition of A. Let ‖ · ‖

be the operator norm on M(n).
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Corollary 1.4.4. Let the multiplicity of s1(A) be t. Let the matrices U, V be partitioned as

U = [U1 : U2] and V = [V1 : V2], where U1, V1 ∈ M(n, t) and U2, V2 ∈ M(n, n − t). Then

G ∈ ∂‖A‖ if and only there exists a positive semidefinite matrix T ∈M(t) with trT = 1 such

that G = U1TV
∗

1 .

Corollary 1.4.5. Let the number of zero singular values of A be `. Let the matrices U, V

be partitioned as U = [U1 : U2] and V = [V1 : V2], where U1, V1 ∈ M(n, n − `) and

U2, V2 ∈ M(n, `). Then G ∈ ∂‖A‖1 if and only if there exists T ∈ M(`) with s1(T ) ≤ 1 such

that G = U1V
∗

1 + U2TV
∗

2 .

Induced norms

Let ‖ · ‖ be a norm on Cn and let ‖ · ‖′ be the norm on M(n) induced by ‖ · ‖. Let K(A) be the

set

K(A) = {(v, w) : u, v, w ∈ Cn with ‖u‖ = ‖v‖ = 1, Av = ‖A‖′u,w ∈ ∂‖u‖}. (1.4.4)

Let v be a right singular vector of A, corresponding to its maximum singular value ‖A‖′ and let

u be the corresponding left singular vector. Then the set K(A) contains the tuples (v, w) where

w ∈ ∂‖u‖. Note that K(0) = {(v, w) : v, w ∈ Cn with ‖w‖∗ = ‖v‖ = 1}.

We state the next two theorems along with their proofs. We will use similar ideas in the

proofs of Theorem 1.5.3 and Theorem 1.5.6.

Theorem 1.4.6. Let g : M(n)→ R be the map defined as g(A) = ‖A‖′. Then

g′+(A,X) = max
(v,w)∈K(A)

Re〈w,Xv〉.

Proof. For any (v, w) ∈ K(A), we have

‖A+ tX‖′ ≥ ‖(A+ tX)v‖.
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By the Cauchy-Schwarz inequality, we get

‖A+ tX‖′ ≥ Re〈w, (A+ tX)v〉

= ‖A‖′Re〈w, u〉+ tRe〈w,Xv〉.

Since w ∈ ∂‖u‖, we get from Example 1.2.16 that Re〈w, u〉 = ‖u‖ = 1. Thus we obtain

‖A+ tX‖′ ≥ ‖A‖′ + tRe〈w,Xv〉.

This implies that for t > 0,

‖A+ tX‖′ − ‖A‖′

t
≥ max

(v,w)∈K(A)
Re〈w,Xv〉. (1.4.5)

Similarly for any (v(t), w(t)) ∈ K(A+ tX), we have

‖A‖′ ≥ ‖Av(t)‖

≥ Re〈w(t), Av(t)〉

= ‖A+ tX‖′Re〈w(t), u(t)〉 − tRe〈w(t), Xv(t)〉

= ‖A+ tX‖′ − tRe〈w(t), Xv(t)〉.

Thus we get that for t > 0,

‖A+ tX‖′ − ‖A‖′

t
≤ Re〈w(t), Xv(t)〉. (1.4.6)

Let {tn} be a sequence of positive real numbers such that tn → 0 as n→∞. Since the unit ball

in Cn is compact, there exists a subsequence {tnm} of {tn} and vectors u′, v′, w′ such that

v(tnm)→ v′, u(tnm)→ u′, w(tnm)→ w′ as m→∞.
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So

‖u′‖ = ‖v′‖ = ‖w′‖∗ = 1,

Av′ = ‖A‖′u′,

and

Re〈w′, u′〉 = ‖u′‖ = 1.

So w′ ∈ ∂‖u′‖. Thus (v′, w′) ∈ K(A). By (1.4.6), we get that

lim
t→0+

‖A+ tX‖′ − ‖A‖′

t
≤ Re〈w′, Xv′〉.

Combining this with (1.4.5), we obtain the required result.

Theorem 1.4.7. We have

∂‖A‖′ = conv{wv∗ : (v, w) ∈ K(A)}. (1.4.7)

Proof. First let G ∈ conv{wv∗ : (v, w) ∈ K(A)}. Then G =
∑

i αiwiv
∗
i , where 0 ≤ αi ≤ 1,∑

i αi = 1, (vi, wi) ∈ K(A). We get

Re tr(G∗A) =
∑
i

αi Re〈wi, Avi〉

= ‖A‖′
∑
i

αi Re〈wi, ui〉

= ‖A‖′

and

‖G‖′∗ = max
‖X‖′≤1

Re tr(G∗X)

≤
∑
i

αi max
‖X‖′≤1

Re〈wi, Xvi〉

≤ 1.
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By (1.4.1), we get that G ∈ ∂‖A‖′.

Now let G ∈ ∂‖A‖′. Suppose G /∈ conv{wv∗ : (v, w) ∈ K(A)}. By the Separating

Hyperplane Theorem, there exists X ∈M(n) such that

Re tr(X∗wv∗) < Re tr(X∗G) for all (v, w) ∈ K(A).

This gives

max
(v,w)∈K(A)

Re〈w,Xv〉 < max
G∈∂‖A‖′

Re tr(X∗G). (1.4.8)

By using Theorem 1.2.9, the right hand side of (1.4.8) is the right directional derivative of ‖ · ‖′

at A in the direction X . By Theorem 1.4.6, this must be equal to the left hand side of (1.4.8).

This gives a contradiction. Hence G ∈ conv{wv∗ : (v, w) ∈ K(A)}.

The most frequently used induced norm is the one induced by the Euclidean norm. By the

above theorem, we obtain a description for its subdifferential. In the following corollaries, ‖u‖

denotes the Euclidean norm of the vector u.

Corollary 1.4.8. We have

∂‖A‖ = conv{uv∗ : ‖u‖ = ‖v‖ = 1, Av = ‖A‖u}. (1.4.9)

We have noted in Corollary 1.4.4 that ∂‖A‖ = {U1TV
∗

1 : T ∈M(t), T positive semidefinite,

trT = 1}, where t is the multiplicity of s1(A). If T ∈M(t) is such that T is positive semidef-

inite and trT = 1, then the eigenvalues of T , λi(T ), 1 ≤ i ≤ t, satisfy λi(T ) ≥ 0 and∑t
i=1 λi(T ) = 1. By taking spectral decomposition of T , we get U1TV

∗
1 =

∑t
i=1 λi(T )uiv

∗
i ,

where Avi = ‖A‖ui, 1 ≤ i ≤ t. On the other hand, any matrix of the form uv∗, where ‖u‖ =

‖v‖ = 1, Av = ‖A‖u, can be written as U1



1

0

. . .

0


V ∗1 , where U1, V1 satisfy the con-

ditions in Corollary 1.4.4. Thus uv∗ ∈ {U1TV
∗

1 : T ∈M(t), T positive semidefinite, trT = 1}.

Since this set is convex, we have conv{uv∗ : ‖u‖ = ‖v‖ = 1, Av = ‖A‖u} ⊆ {U1TV
∗

1 : T ∈
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M(t), T positive semidefinite, trT = 1}.

Corollary 1.4.9. If A 6= 0 is positive semidefinite, then

∂‖A‖ = conv{uu∗ : ‖u‖ = 1, Au = ‖A‖u}. (1.4.10)

1.5 Subdifferentials of the Ky Fan k-norms

Let 1 ≤ k ≤ n. Let the the multiplicity of sk(A) be r + t, where r ≥ 0 and t ≥ 1, such that

sk−t+1(A) = · · · = sk+r(A).

By using the result in Example 1.2.19 and Theorem 1.4.3, Watson [47] gave the following

characterization of the subdifferential of the map that takes a matrix A to its Ky Fan k-norm

‖A‖(k).

Theorem 1.5.1. Let A = USV ∗ be a singular value decomposition of A and let the matrices

U, V be partitioned as U = [U1 : U2 : U3] and V = [V1 : V2 : V3] where U1, V1 ∈ M(n, k −

t);U2, V2 ∈ M(n, r + t);U3, V3 ∈ M(n, n − k − r). If sk(A) > 0, then G ∈ ∂‖A‖(k) if and

only if there exists T ∈M(r + t) with s1(T ) ≤ 1, T positive semidefinite and
∑r+t

j=1 sj(T ) = t

such that G = U1V
∗

1 + U2TV
∗

2 . If sk(A) = 0, then G ∈ ∂‖A‖(k) if and only if there exists

T ∈M(r + t) with s1(T ) ≤ 1 and
∑r+t

j=1 sj(T ) ≤ t such that G = U1V
∗

1 + U2TV
∗

2 .

We now obtain new expressions for the set ∂‖A‖(k). One of these expressions will be more

useful for us to obtain a characterization of Birkhoff-James orthogonality in M(n), with respect

to ‖ · ‖(k). The Ky Fan k-norm of a matrix A is also given by

‖A‖(k) = max
U,V ∈M(n,k)
U∗U=V ∗V=Ik

Re trU∗AV = max
U,V ∈M(n,k)
U∗U=V ∗V=Ik

| trU∗AV |. (1.5.1)

(See [37, p. 791].) If A is positive semidefinite, then

‖A‖(k) = max
U∈M(n,k)
U∗U=Ik

trU∗AU. (1.5.2)
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Theorem 1.5.2. For A ∈M(n),

∂‖A‖(k) = conv{UV ∗ : U, V ∈M(n, k), U∗U = V ∗V = Ik, ‖A‖(k) = Re trU∗AV }.

(1.5.3)

If A is positive semidefinite, then

∂‖A‖(k) = conv{UU∗ : U ∈M(n, k), U∗U = Ik, ‖A‖(k) = trU∗AU}. (1.5.4)

Proof. For any U, V ∈M(n, k) with U∗U = V ∗V = Ik, let h(U,V ) : M(n)→ R be defined as

h(U,V )(A) = Re trU∗AV = Re〈UV ∗, A〉.

Since each h(U,V ) is linear, it is differentiable and Dh(U,V )(A) = h(U,V ). Now ‖A‖(k) =

max{h(U,V )(A) : U∗U = V ∗V = Ik}. Let J be the set given by

J = {(U, V ) ∈M(n, k)×M(n, k) : U∗U = V ∗V = Ik}. (1.5.5)

Then J is compact. For each A ∈M(n), the map (U, V )→ h(U,V )(A) is continuous. Therefore

by Proposition 1.2.13, we get that

∂‖A‖(k) = conv{h(U,V ) : U, V ∈M(n, k), U∗U = V ∗V = Ik, ‖A‖(k) = Re trU∗AV }.

So we get

∂‖A‖(k) = conv{UV ∗ : U, V ∈M(n, k), U∗U = V ∗V = Ik, ‖A‖(k) = Re trU∗AV }.

When A is positive semidefinite, (1.5.4) follows from (1.5.2).

Let g : M(n)→ R be the function defined as g(A) = ‖A‖(k). We obtain another expression

for the subdifferential of the Ky Fan k-norms. To do so, we first calculate g′+(A, ·).



1.5 Subdifferentials of the Ky Fan k-norms 35

Theorem 1.5.3. For X ∈M(n),

g′+(A,X) = max
u1,...,uk o.n.
v1,...,vk o.n.
Avi=si(A)ui

k∑
i=1

Re〈ui, Xvi〉. (1.5.6)

Proof. From (1.5.1), we have

‖A‖(k) = max
u1,...,uk o.n.
v1,...,vk o.n.

k∑
i=1

Re〈ui, Xvi〉. (1.5.7)

For any sets of k orthonormal vectors u1, . . . , uk and v1, . . . , vk satisfying Avi = si(A)ui, 1 ≤

i ≤ k, we have

‖A+ tX‖(k) ≥
k∑
i=1

Re〈ui, (A+ tX)vi〉

=
k∑
i=1

si(A) + t
k∑
i=1

Re〈ui, Xvi〉

= ‖A‖(k) + t
k∑
i=1

Re〈ui, Xvi〉.

This gives for t > 0,

‖A+ tX‖(k) − ‖A‖(k)

t
≥ max

u1,...,uk o.n.
v1,...,vk o.n.
Avi=si(A)ui

k∑
i=1

Re〈ui, Xvi〉. (1.5.8)

Now for any sets of k orthonormal vectors u1(t), . . . , uk(t) and v1(t), . . . , vk(t) satisfying

(A+ tX)vi(t) = si(A+ tX)ui(t), 1 ≤ i ≤ k, (1.5.9)

we have

‖A‖(k) ≥
k∑
i=1

Re〈ui(t), Avi(t)〉
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=

k∑
i=1

si(A+ tX)− t
k∑
i=1

Re〈ui(t), Xvi(t)〉

= ‖A+ tX‖(k) − t
k∑
i=1

Re〈ui(t), Xvi(t)〉.

So for each t > 0 we obtain

‖A+ tX‖(k) − ‖A‖(k)

t
≤

k∑
i=1

Re〈ui(t), Xvi(t)〉. (1.5.10)

Consider a sequence {tn} of positive real numbers converging to zero as n→∞. Since the unit

ball in Cn is compact, there exists a subsequence {tnm} of {tn} such that for each 1 ≤ i ≤ k,

there exist u′i and v′i such that {ui(tnm)} and {vi(tnm)} converge to u′i and v′i, respectively, as

m→∞. Then the sets of vectors u′1, . . . , u
′
k and v′1, . . . , v

′
k are orthonormal. By continuity of

singular values, we also know that

si(A+ tnmB)→ si(A) as m→∞. (1.5.11)

Hence we obtain Av′i = si(A)u′i for all 1 ≤ i ≤ k. By (1.5.10), we get that

g′+(A,X) = lim
m→∞

‖A+ tnmX‖(k) − ‖A‖(k)

tnm

≤ max
u1,...,uk o.n.
v1,...,vk o.n.
Avi=si(A)ui

k∑
i=1

Re〈ui, Xvi〉. (1.5.12)

Combining this with (1.5.8), we obtain the required result.

Remark 1.5.4. The above proof works equally well if the maximum in (1.5.6) is taken over

the sets of orthonormal vectors u1, . . . , uk and v1, . . . , vk such that for each 1 ≤ i ≤ k, ui and

vi are left and right singular vectors of A, respectively, corresponding to the ith singular value

si(A) of A. We note here that for each t > 0, if along with (1.5.9), we also have

(A+ tX)∗ui(t) = si(A+ tX)vi(t),

then by passing onto a subsequence {tnm} as in the above proof, and taking limit as m→∞,
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we obtain

A∗u′i = si(A)v′i.

So for each X ∈M(n), we get

g′+(A,X) = max
u1,...,uk o.n.
v1,...,vk o.n.
Avi=si(A)ui
A∗ui=si(A)vi

k∑
i=1

Re〈ui, Xvi〉. (1.5.13)

Corollary 1.5.5. Let A be positive semidefinite. Let λ1(A) ≥ · · · ≥ λn(A) ≥ 0 be the

eigenvalues of A, with λk(A) > 0. Then

g′+(A,X) = max
u1,...,uk o.n.
Aui=λi(A)ui

k∑
i=1

Re〈ui, Xui〉. (1.5.14)

Proof. We know that that if Av = λu and Au = λv, where λ > 0, then u = v. Using this, the

required result follows from (1.5.13).

Theorem 1.5.6. We have

∂‖A‖(k) = conv{
k∑
i=1

uiv
∗
i : u1, . . . , uk, v1, . . . , vk ∈ Cn, u1, . . . , uk o.n., v1, . . . , vk o.n.,

Avi = si(A)ui for all 1 ≤ i ≤ k} (1.5.15)

= conv{
k∑
i=1

uiv
∗
i : u1, . . . , uk, v1, . . . , vk ∈ Cn, u1, . . . , uk o.n., v1, . . . , vk o.n.,

Avi = si(A)ui, A
∗ui = si(A)vi for all 1 ≤ i ≤ k}. (1.5.16)

Proof. Denote the set on the right hand side of (1.5.15) by H(A). Let G ∈ H(A). Then

G =
k∑
i=1

uiv
∗
i ,

where u1, . . . , uk and v1, . . . , vk are orthonormal sets of vectors such that Avi = si(A)ui for all
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1 ≤ i ≤ k . So

Re tr(G∗A) =

k∑
i=1

Re〈ui, Avi〉

=
k∑
i=1

si(A)

= ‖A‖(k),

and

Re tr(G∗X) =
k∑
i=1

Re〈ui, Xvi〉

≤ ‖X‖(k).

Thus

‖G‖∗ ≤ 1.

So we get by (1.4.1) that H(A) ⊆ ∂‖A‖(k), and therefore convH(A) ⊆ ∂‖A‖(k).

Now let G ∈ ∂‖A‖(k). Suppose G /∈ convH(A). The set H(A) is compact, and so is its

convex hull. By the Separating Hyperplane Theorem, there exists X ∈M(n) such that for all

sets of k orthonormal vectors u1, . . . , uk and v1, . . . , vk satisfyingAvi = si(A)ui for 1 ≤ i ≤ k,

we have

Re tr

(
X∗

(
k∑
i=1

uiv
∗
i −G

))
< 0.

This implies

max
u1,...,uk o.n.
v1,...,vk o.n.
Avi=si(A)ui

k∑
i=1

Re〈ui, Xvi〉 < max
G∈∂‖A‖(k)

Re tr(X∗G).

By Theorem 1.2.9, the right hand side is g′+(A,X). By (1.5.6), this should be equal to the left

hand side. This gives a contradiction. Thus we obtain (1.5.15).

The expression (1.5.16) can be proved similarly by using (1.5.13), instead of (1.5.6).

Corollary 1.5.7. LetA be a positive semidefinite matrix, with eigenvalues λ1(A) ≥ · · ·λn(A) ≥
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0 such that λk(A) > 0. Then

∂‖A‖(k) = conv{
k∑
i=1

uiu
∗
i : u1, . . . , uk ∈ Cn, u1, . . . , uk o.n.,Aui = λi(A)ui for all 1 ≤ i ≤ k}.

(1.5.17)
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Chapter 2

Characterization of Birkhoff-James

orthogonality

Let X be a complex Banach space. An element x of X is said to be Birkhoff-James orthogonal to

another element y of X if

‖x+ λy‖ ≥ ‖x‖ for all complex numbers λ. (2.0.1)

Birkhoff-James orthogonality is equivalent to the usual orthogonality when X is a Hilbert space.

Henceforth, orthogonality will mean Birkhoff-James orthogonality.

We study orthogonality in the space M(n) equipped with various norms. The starting point

of this is the work of Bhatia and Šemrl [15] where they obtained an attractive characterization in

case of the operator norm. This was followed by Li and Schneider [35] in which they studied

the problem for other induced norms on M(n). We introduce a new approach to this problem

based on subdifferential calculus. Using this method, we first obtain new proofs of the results in

[15],[35]. Then we use this technique to obtain new results for the Ky Fan k-norms.

The results can be extended to a more general setting of a C∗-algebra and of a Hilbert

C∗-module. We obtain a characterization of orthogonality in Hilbert C∗-modules in terms of the

states of the underlying C∗-algebra. We first deal with the special module L(H,K), the space of

bounded linear operators from a Hilbert spaceH to another Hilbert space K, and then obtain a

41
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necessary and sufficient condition for orthogonality in a general Hilbert C∗-module.

2.1 Orthogonality in M(n)

The Bhatia-Šemrl theorem

An interesting characterization of orthogonality in the space M(n) with the operator norm ‖ · ‖,

was found by Bhatia and Šemrl in [15].

Theorem 2.1.1. Let A,B ∈M(n). Then ‖A+ λB‖ ≥ ‖A‖ for all λ ∈ C if and only if there is

a unit vector x such that ‖Ax‖ = ‖A‖ and 〈Ax,Bx〉 = 0.

Consider the function f(λ) = ‖A+ λB‖. The crux of our approach lies in the observation

that A is orthogonal to B is equivalent to saying f attains its minimum at λ = 0. Therefore, the

problem should be amenable to the subdifferential calculus, introduced in Chapter 1.

We shall first look at the real version of the Bhatia-Šemrl theorem.

Theorem 2.1.2. Let A,B ∈ M(n). Then ‖A + tB‖ ≥ ‖A‖ for all t ∈ R if and only if there

exists a unit vector x such that ‖Ax‖ = ‖A‖ and Re〈Ax,Bx〉 = 0.

Proof. If there exists a unit vector x such that ‖Ax‖ = ‖A‖ and Re〈Ax,Bx〉 = 0, then for

t ∈ R,

‖A+ tB‖2 ≥ ‖(A+ tB)x‖2

= ‖Ax‖2 + t2‖Bx‖2 + 2tRe〈Ax,Bx〉

= ‖Ax‖2 + t2‖Bx‖2

≥ ‖Ax‖2

= ‖A‖2.

Conversely let

‖A+ tB‖ ≥ ‖A‖ for all t ∈ R. (2.1.1)
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We first note that it is enough to show that if A is a positive semidefinite matrix and B ∈M(n)

such that (2.1.1) holds, then there exists a unit vector y such that

Ay = ‖A‖y and Re〈Ay,By〉 = 0. (2.1.2)

The general case may be reduced to this by using a singular value decomposition of A. Let

A = USV ∗ be a singular value decomposition of A. Then (2.1.1) implies

‖S + tU∗BV ‖ ≥ ‖S‖ for all t ∈ R. (2.1.3)

If there exists a unit vector y such that

Sy = ‖S‖y and Re〈Sy, U∗BV y〉 = 0,

then for x = V y, we have

‖Ax‖ = ‖A‖ and Re〈Ax,Bx〉 = 0.

Thus we can assume that A is a positive semidefinite matrix in (2.1.1). Let S : R→ M(n) be

the linear map defined as

S(t) = tB

and let L : R→M(n) be the affine map

L(t) = A+ S(t).

Let g : M(n)→ R be the convex map given by

g(T ) = ‖T‖.
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Then (2.1.1) can be rewritten as

(g ◦ L)(t) ≥ (g ◦ L)(0).

By Proposition 1.2.5 we get

0 ∈ ∂(g ◦ L)(0). (2.1.4)

Using Proposition 1.2.12, we get that

0 ∈ S∗∂‖A‖. (2.1.5)

The map S∗ : M(n)→ R is given by

S∗(T ) = Re tr(B∗T ).

By Corollary 1.4.9, we obtain

S∗∂‖A‖ = conv{Re〈u,Bu〉 : ‖u‖ = 1, Au = ‖A‖u}. (2.1.6)

Let M denote the eigenspace of A corresponding to the maximum eigenvalue ‖A‖. Let PM

be the orthogonal projection onto M and let iM be its adjoint. Then iM is the inclusion map

of M into Cn. Then the set {〈u,Bu〉 : ‖u‖ = 1, Au = ‖A‖u} is the numerical range of

PMBiM. By the Hausdorff-Toeplitz theorem [29, p. 113], this is a convex set. Therefore the set

{Re〈u,Bu〉 : ‖u‖ = 1, Au = ‖A‖u} is convex. By (2.1.5) and (2.1.6) we get that there exists a

unit vector y such that

Ay = ‖A‖y and Re〈y,By〉 = 0.

These together imply that

Re〈Ay,By〉 = 0. (2.1.7)
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Remark 2.1.3. Another necessary and sufficient condition for A to be orthogonal to B is given

in [35, Theorem 3.1(c)]. Suppose that A is positive semidefinite and r is the multiplicity of the

largest eigenvalue ‖A‖. Let U be an n×r matrix such that the columns of U form an orthonormal

basis for the eigenspace of A corresponding to ‖A‖. Then a corresponding result of [35] says

that A is orthogonal to B if and only if 0 belongs to the numerical range of U∗BAU . This is

equivalent to saying that 0 belongs to the numerical range of B, restricted to the eigenspace of

A corresponding to the largest eigenvalue ‖A‖. An analogous condition for ‖A+ tB‖ ≥ ‖A‖

for all t ∈ R is established through our proof. We have shown that if A is positive semidefinite

and ‖A+ tB‖ ≥ ‖A‖ for all t ∈ R then 0 belongs to the real part of the numerical range of B,

restricted to the eigenspace of A corresponding to ‖A‖. The result for the case when A is not

positive semidefinite can be obtained from this by using a singular value decomposition of A.

Proof of the Bhatia-Šemrl theorem. If there exists a unit vector x such that ‖Ax‖ = ‖A‖ and

〈Ax,Bx〉 = 0, then by an argument similar to the one in the proof of Theorem 2.1.2 we get that

‖A+ λB‖ ≥ ‖A‖ for all λ ∈ C. (2.1.8)

Now suppose (2.1.8) holds. This can also be written as

‖A+ reiθB‖ ≥ ‖A‖ for all r, θ ∈ R.

Fix θ and let Bθ = eiθB. Then we have

‖A+ rBθ‖ ≥ ‖A‖ for all r ∈ R.

We can assume A to be positive semidefinite as in the proof of Theorem 2.1.2. By (2.1.2), there

exists a unit vector yθ such that

Ayθ = ‖A‖yθ and Re eiθ〈Ayθ, Byθ〉 = 0. (2.1.9)

Consider the set {〈y,B∗Ay〉 : ‖y‖ = 1, Ay = ‖A‖y}. This is the numerical range of
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PMB
∗AiM, where M is the eigenspace of A corresponding to its maximum eigenvalue ‖A‖,

PM is the orthogonal projection onto M and iM is the adjoint of PM. By the Hausdorff-Toeplitz

theorem, this is a compact convex set in C. If 0 does not belong to this set, then by the Separating

Hyperplane Theorem, there exists λ0 ∈ C such that for all unit vectors y satisfying Ay = ‖A‖y,

we have

Reλ0〈y,B∗Ay〉 > 0. (2.1.10)

Let λ0 = |λ0|eiθ0 . Then by (2.1.10), we get

Re e−iθ0〈y,B∗Ay〉 > 0 for all y such that ‖y‖ = 1, Ay = ‖A‖y.

This is a contradiction to (2.1.9). Thus we get that

0 ∈ {〈y,B∗Ay〉 : ‖y‖ = 1, Ay = ‖A‖y}.

So there exists a unit vector y such that

Ay = ‖A‖y and 〈Ay,By〉 = 0.

The Schatten p-norms

A characterization for orthogonality in M(n) with the Schatten p-norms has been given in [15]

as well as [35]. We have seen in Example 1.1.12 that ‖ · ‖p is differentiable for 1 < p <∞ and

the derivative is given by (1.1.6). For p = 1, it is Gâteaux differentiable at A if and only if A is

invertible. In this case, the Gâteaux derivative is given by (1.1.7). So we can derive the following

characterization given in [15, 35].

Theorem 2.1.4. Let 1 < p <∞. IfA = U |A| is a polar decomposition ofA then ‖A+λB‖p ≥

‖A‖p for all λ ∈ C if and only if tr |A|p−1U∗B = 0. If p = 1, then trU∗B = 0 implies

‖A+ λB‖1 ≥ ‖A‖1 for all λ ∈ C. The converse is true when A is invertible.
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The trace norm

Theorem 2.1.4 gives a characterization of orthogonality in the norm ‖ · ‖1 in case A is invertible.

The general case was obtained by Li and Schneider in [35]. We shall prove their theorem using

our technique.

Theorem 2.1.5. Let the number of zero singular values of A be `. Let A = USV ∗ be a singular

value decomposition of A. Let

B = U

 B11 B12

B21 B22

V ∗, where B11 ∈M(n− `), B22 ∈M(`).

Then

‖A+ λB‖1 ≥ ‖A‖1 for all λ ∈ C

if and only if | trB11| ≤ ‖B22‖.

Proof. First note that | trB11| ≤ ‖B22‖ holds if and only if there exists T ∈M(`) with ‖T‖ ≤ 1

such that trB11 + tr(T ∗B22) = 0. Now by arguments similar to the one used in our proof of the

Bhatia-Šemrl theorem, it is enough to prove that ‖A+ tB‖1 ≥ ‖A‖1 for all t ∈ R if and only if

there exists T ∈ M(`) with s1(T ) ≤ 1 such that Re(trB11 + tr(T ∗B22)) = 0. Let S,L, g be

the maps

S(t) = tB,

L(t) = A+ tB

and

g(T ) = ‖T‖1.

Then

‖A+ tB‖1 ≥ ‖A‖1 for all t ∈ R

if and only if

(g ◦ L)(t) ≥ (g ◦ L)(0) for all t ∈ R.
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A necessary and sufficient condition for this to hold is 0 ∈ ∂(g ◦ L)(0). By Proposition 1.2.12,

∂(g ◦ L)(0) = S∗∂‖A‖1. Let the matrices U, V be partitioned as U = [U1 : U2] and V = [V1 :

V2], where U1, V1 ∈ M(n, n − `) and U2, V2 ∈ M(n, `). By Corollary 1.4.5, 0 ∈ S∗∂‖A‖1 if

and only if there exists T ∈M(`) with s1(T ) ≤ 1 such that 0 = Re trB∗(U1V
∗

1 + U2TV
∗

2 ). A

calculation shows that this is equivalent to Re(trB∗11 + tr(B∗22T )) = 0.

Remark 2.1.6. With the hypothesis of the above theorem, the result can be reformulated as

follows:

‖A+ λB‖1 ≥ ‖A‖1 for all λ ∈ C

if and only if there exists T ∈M(`) with s1(T ) ≤ 1 such that trB11 + tr(T ∗B22) = 0.

Remark 2.1.7. Another necessary and sufficient condition given in [35] for orthogonality in ‖·‖1

is that there exists a matrix G ∈M(n) such that ‖G‖∞ ≤ 1, tr(G∗A) = ‖A‖ and tr(G∗B) = 0.

Let S,L, g be the maps as defined above in the proof of Theorem 2.1.5. Then the condition

0 ∈ S∗∂‖A‖1 gives the required result by using (1.4.1).

The Ky Fan k-norms

In this section, we generalize the Bhatia-Šemrl theorem and the results for orthogonality in the

trace norm. The Bhatia-Šemrl theorem can also be stated as follows. If A = U |A| is a polar

decomposition of A, then A is orthogonal to B in ‖ · ‖ if and only if there exists a unit vector x

such that |A|x = ‖A‖x and 〈x, U∗Bx〉 = 0. We prove the following.

Theorem 2.1.8. Let A = U |A| be a polar decomposition of A. If there exist k orthonormal

vectors u1, u2, . . . , uk such that

|A| ui = si(A)ui for all 1 ≤ i ≤ k (2.1.11)

and
k∑
i=1

〈ui, U∗Bui〉 = 0, (2.1.12)
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then

‖A+ λB‖(k) ≥ ‖A‖(k) for all λ ∈ C. (2.1.13)

If sk(A) > 0, then the converse is also true.

We use ideas similar to those in the proof of the Bhatia-Šemrl theorem 2.1.1. We first prove

a lemma.

Lemma 2.1.9. Let X,Y ∈ M(n) and let Y be positive semidefinite. Let λ1(Y ) ≥ · · · ≥

λn(Y ) ≥ 0 be the eigenvalues of Y . For 1 ≤ r ≤ n, let

W(X,Y ) =

{
r∑
i=1

〈ui, Xui〉 : u1, . . . , ur ∈ Cn, u1, . . . , ur o.n., Y ui = λi(Y )ui for all 1 ≤ i ≤ r

}
.

ThenW(X,Y ) is convex.

Proof. Let the number of distinct eigenvalues of Y be ` and let H1, . . . ,H` be the respective

eigenspaces. Let m1, . . . ,m` be the dimensions of H1, . . . ,H`, respectively. Let 1 ≤ `′ ≤ `.

Suppose m1 + · · ·+m`′−1 < r ≤ m1 + · · ·+m`′ . Let m = r − (m1 + · · ·+m`′−1). Set

Wj(X) =

{mj∑
i=1

〈ui, Xui〉 : u1, . . . , umj ∈ Hj , u1, . . . , umj o.n.

}
for 1 ≤ j ≤ `′ − 1,

W`′(X) =

{
m∑
i=1

〈ui, Xui〉 : u1, . . . , um ∈ H`′ , u1, . . . , um o.n.

}
.

SinceH1, . . . ,H` are mutually orthogonal, we have

W(X,Y ) =
`′∑
j=1

Wj(X). (2.1.14)

Note thatWj(X) is a singleton set for 1 ≤ j ≤ `′−1. Hence it is sufficient to show thatW`′(X)

is convex. Let P`′ be the orthogonal projection from Cn ontoH`′ , and let i`′ denote its adjoint

(which is the inclusion map ofH`′ into Cn). ThenW`′(X) is the m-numerical range of P`′Xi`′ ,

which is convex (see [29, p. 315]).
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Theorem 2.1.10. Let A = U |A| be a polar decomposition of A. If there exist k orthonormal

vectors u1, u2, . . . , uk such that

|A| ui = si(A)ui for all 1 ≤ i ≤ k (2.1.15)

and
k∑
i=1

Re〈ui, U∗Bui〉 = 0, (2.1.16)

then

‖A+ tB‖(k) ≥ ‖A‖(k) for all t ∈ R. (2.1.17)

If sk(A) > 0, then the converse is also true.

Proof. First suppose that there exist k orthonormal vectors u1, u2, . . . , uk, such that |A| ui =

si(A) ui for all 1 ≤ i ≤ k and
∑k

i=1 Re〈ui, U∗Bui〉 = 0. We have

‖A+ tB‖(k) = ‖|A|+ tU∗B‖(k)

and by (1.5.1),

‖|A|+ tU∗B‖(k) ≥
k∑
i=1

Re〈ui, (|A|+ tU∗B)ui〉.

So

‖A+ tB‖(k) ≥
k∑
i=1

〈ui, |A|ui〉+
k∑
i=1

Re〈ui, U∗Bui〉

=

k∑
i=1

si(A)

= ‖A‖(k).

Now suppose that sk(A) > 0 and

‖A+ tB‖(k) ≥ ‖A‖(k) for all t ∈ R.
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This can also be written as

‖|A|+ tU∗B‖(k) ≥ ‖|A|‖(k) for all t ∈ R. (2.1.18)

Let S : R→ M(n) be the map given by S(t) = tU∗B, L : R→ M(n) be the map defined as

L(t) = |A|+ tU∗B and g : M(n)→ R+ be the map defined by g(X) = ‖X‖(k). So we have

that g ◦ L attains its minimum at zero. By Proposition 1.2.5, we obtain that 0 ∈ ∂(g ◦ L)(0).

Using Proposition 1.2.12, we obtain

0 ∈ S∗∂‖A‖(k). (2.1.19)

By Corollary 1.5.7, this is equivalent to saying that

0 ∈ conv(ReW(U∗B, |A|)).

By Lemma 2.1.9, ReW(U∗B, |A|) is a convex set. So there exist k orthonormal vectors

u1, . . . , uk such that

|A|ui = si(A)ui

and

Re
k∑
i=1

〈ui, U∗Bui〉 = 0.

Proof of Theorem 2.1.8. Suppose that there exist k orthonormal vectors satisfying (2.1.11) and

(2.1.12), then we can easily obtain (2.1.13), as done in the proof of Theorem 2.1.10.

Conversely, let sk(A) > 0 and (2.1.13) hold. Arguing as in our proof of the Bhatia-Šemrl

theorem 2.1.1, we get that for each fixed θ ∈ R,

‖|A|+ rU∗Bθ‖(k) ≥ ‖|A|‖(k) for all r ∈ R.
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By Theorem 2.1.10, there exist k orthonormal vectors u(θ)
1 , . . . , u

(θ)
k such that

|A|u(θ)
i = si(A)u

(θ)
i for all 1 ≤ i ≤ k

and

Re eiθ
k∑
j=1

〈u(θ)
j , U∗Bu

(θ)
j 〉 = 0. (2.1.20)

By Lemma 2.1.9, the set W(U∗B, |A|) is convex in C. It is also compact in C. If 0 /∈

W(U∗B, |A|), then by the Separating Hyperplane Theorem, there exists a θ0 such that

Re eiθ0
k∑
i=1

〈ui, U∗Bui〉 > 0 for all u1, . . . , uk o.n., |A|ui = si(A)ui for 1 ≤ i ≤ k.

This is a contradiction to (2.1.20). Thus 0 ∈ W(U∗B, |A|), and so there exist k orthonormal

vectors u1, . . . , uk such that

|A|ui = si(A)ui for all 1 ≤ i ≤ k

and
k∑
i=1

〈ui, U∗Bui〉 = 0.

We have seen in Remark 2.1.6 that if

B = U

 B11 B12

B21 B22

V ∗, where B11 ∈M(n− `), B22 ∈M(`),

then ‖A + λB‖1 ≥ ‖A‖1 for all λ ∈ C if and only if there exists T ∈ M(`) with s1(T ) ≤ 1

such that trB11 + tr(T ∗B22) = 0. We obtain analogous results for orthogonality in the Ky Fan

k-norms, which also follow as a special case of Theorem 4 in [47]. Let the multiplicity of sk(A)
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be r + t, where r ≥ 0 and t ≥ 1, such that

sk−t+1(A) = · · · = sk+r(A).

Theorem 2.1.11. Let A = USV ∗ be a singular value decomposition of A. Let

B = U


B11 B12 B13

B21 B22 B23

B31 B32 B33

V ∗, where B11 ∈M(k−t), B22 ∈M(r+t), B33 ∈M(n−k−r).

(a) Let sk(A) > 0. Then

‖A+ λB‖(k) ≥ ‖A‖(k) for all λ ∈ C

if and only if there exists positive semidefinite T ∈M(r+t) with s1(T ) ≤ 1 and
∑r+t

j=1 sj(T ) = t

such that

trB11 + tr(T ∗B22) = 0.

(b) Let sk(A) = 0. Then

‖A+ λB‖(k) ≥ ‖A‖(k) for all λ ∈ C

if and only if there exists T ∈M(r + t) with s1(T ) ≤ 1, and
∑r+t

j=1 sj(T ) ≤ t such that

trB11 + tr(T ∗B22) = 0.

Proof. By arguments similar to the ones used in our proof of the Bhatia-Šemrl theorem, it is

enough to prove that ‖A+tB‖(k) ≥ ‖A‖(k) for all t ∈ R if and only if Re tr(B11+T ∗B22) = 0.

Let S,L, g be the maps as defined in the proof of Theorem 2.1.10. Then ‖A + tB‖(k) ≥

‖A‖(k) for all t ∈ R if and only if 0 ∈ S∗∂‖A‖(k). Let the matrices U, V be partitioned

as U = [U1 : U2 : U3] and V = [V1 : V2 : V3], where U1, V1 ∈ M(n, k − t);U2, V2 ∈
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M(n, r + t);U3, V3 ∈ M(n, n − k − r). If sk(A) > 0, then by Theorem 1.5.1, we get that

0 ∈ S∗∂‖A‖(k) if and only if there exists T ∈M(r+ t) with s1(T ) ≤ 1, T positive semidefinite,

and
∑r+t

j=1 sj(T ) = t such that 0 = Re trB∗(U1V
∗

1 + U2TV
∗

2 ). Similarly, if sk(A) = 0,

0 ∈ S∗∂‖A‖(k) if and only if there exists T ∈ M(r + t) with s1(T ) ≤ 1 and
∑r+t

j=1 sj(T ) ≤ t

such that 0 = Re trB∗(U1V
∗

1 + U2TV
∗

2 ). A calculation shows that trB∗(U1V
∗

1 + U2TV
∗

2 ) =

trB∗11 + tr(B∗22T ). This gives the required result.

Induced norms

Theorem 2.1.12. Let ‖ · ‖′ be an induced norm as defined in (1.3.6). Let V(A) = {wv∗ :

‖w‖∗ = 1, ‖v‖ = 1, 〈w,Av〉 = ‖A‖′}. Then

‖A+ λB‖′ ≥ ‖A‖′ for all λ ∈ C (2.1.21)

if and only there exist vectors w1, . . . , w`, v1, . . . , v` and numbers α1, . . . , α` such that

w1v
∗
1, . . . , w`v

∗
` ∈ V(A), 0 ≤ αj ≤ 1 for all 1 ≤ j ≤ ` ,

∑`
j=1 αj = 1 such that

∑̀
j=1

αj〈wj , Bvj〉 = 0. (2.1.22)

Proof. Arguing as in our proof of the Bhatia-Šemrl theorem 2.1.1, it is sufficient to prove

that ‖A + tB‖′ ≥ ‖A‖′ for all t ∈ R if and only if there exist w1, . . . , w`, v1, . . . , v` with

w1v
∗
1, . . . , w`v

∗
` ∈ V(A), and numbers αj(1 ≤ j ≤ `) with 0 ≤ αj ≤ 1,

∑`
j=1 αj = 1 such

that ∑̀
j=1

αj Re〈wj , Bvj〉 = 0.

We obtain ‖A + tB‖′ ≥ ‖A‖′ for all t ∈ R if and only if 0 ∈ S∗∂‖A‖′, where S(t) = tB for

all t ∈ R. Let K(A) be the set defined in (1.4.4). By Theorem 1.4.7, 0 ∈ S∗∂‖A‖′ is the same

as saying that there exist matrices of the form w1v
∗
1, . . . , w`v

∗
` , where (vj , wj) ∈ K(A) for all
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1 ≤ j ≤ `, and numbers αj(1 ≤ j ≤ `) with 0 ≤ αj ≤ 1,
∑`

j=1 αj = 1 such that

∑̀
j=1

αj Re〈wj , Bvj〉 = 0. (2.1.23)

By Example 1.2.16, one can easily see that each wjv∗j ∈ V(A). Hence we get the required

result.

The above theorem is Proposition 4.2 in [35] where the authors obtain this result with ` ≤ 3

in the complex case and ` ≤ 2 in the real case, using a theorem of Singer [42, p. 170].

2.2 Orthogonality in L(H,K)

Bhatia and Šemrl made a remark in [15] on extending Theorem 2.1.1 to bounded linear operators

on an infinite dimensional Hilbert spaceH. We note this as a theorem.

Theorem 2.2.1. Let A,B ∈ L(H). Then ‖A + λB‖ ≥ ‖A‖ for all λ ∈ C if and only if there

exists a sequence {xn} of unit vectors such that

lim
n→∞

‖Axn‖ = ‖A‖ (2.2.1)

and

lim
n→∞

〈Axn, Bxn〉 = 0. (2.2.2)

Proof. See Remark 3.1 in [15].

Let K be another infinite dimensional Hilbert space.

Theorem 2.2.2. Let A,B ∈ L(H,K). Then ‖A+λB‖ ≥ ‖A‖ for all λ ∈ C if and only if there

exists a sequence {xn} of unit vectors inH such that

lim
n→∞

‖Axn‖ = ‖A‖
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and

lim
n→∞

〈Axn, Bxn〉 = 0.

Proof. First suppose that there exists a sequence {xn} of unit vectors in H such that

limn→∞ ‖Axn‖ = ‖A‖ and limn→∞ 〈Axn, Bxn〉 = 0. Then for every λ ∈ C,

‖A+ λB‖2 ≥ ‖(A+ λB)xn‖2

= ‖Axn‖2 + |λ|2‖Bxn‖2 + 2 Re λ 〈Axn, Bxn〉

≥ ‖Axn‖2 + 2 Re λ 〈Axn, Bxn〉 .

This holds for all n. Taking limit on both the sides as n→∞ we get

‖A+ λB‖ ≥ ‖A‖.

Conversely, let ‖A + λB‖ ≥ ‖A‖ for all λ ∈ C. For any T ∈ L(H,K), we denote by T̃ ,

the operator onH⊕K defined as

T̃ =

 0 0

T 0

 .
Note that ‖T̃‖ = ‖T‖. Therefore we have ‖Ã+ λB̃‖ ≥ ‖Ã‖ for all λ ∈ C. By Theorem 2.2.1,

we get a sequence {hn ⊕ kn} of unit vectors inH⊕K such that

‖Ã(hn ⊕ kn)‖ → ‖Ã‖ and
〈
Ã(hn ⊕ kn), B̃(hn ⊕ kn)

〉
→ 0 as n→∞. (2.2.3)

The first equation gives

‖Ahn‖ → ‖A‖ as n→∞. (2.2.4)

This gives that hn 6= 0 for all but finitely many n. So we assume hn 6= 0 for all n. Now

‖A‖ = lim
n→∞

‖Ahn‖ ≤ ‖A‖ lim inf
n→∞

‖hn‖.
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Therefore lim inf
n→∞

‖hn‖ ≥ 1. Since ‖hn‖ ≤ 1 for every n, we have lim sup
n→∞

‖hn‖ ≤ 1. So

lim
n→∞

‖hn‖ = 1.

Let xn = hn
‖hn‖ . Hence we get a sequence {xn} of unit vectors inH such that

‖Axn‖ → ‖A‖ and 〈Axn, Bxn〉 → 0 as n→∞.

Corollary 2.2.3. Let A,B ∈ L(H,K). Then ‖A + λB‖ ≥ ‖A‖ for all λ ∈ C if and only if

there exists a state ϕ on L(H) such that ϕ(A∗A) = ‖A‖2 and ϕ(A∗B) = 0. (Note that this

state ϕ may not be of the form ϕ(T ) = 〈x, Tx〉 for any x.)

Proof. First suppose that there exists a state ϕ on L(H) such that ϕ(A∗A) = ‖A‖2 and

ϕ(A∗B) = 0. For every λ ∈ C, we have

‖A+ λB‖2 ≥ ϕ((A+ λB)∗(A+ λB))

= ϕ(A∗A) + λϕ(B∗A) + λϕ(A∗B) + |λ|2 ϕ(B∗B)

≥ ‖A‖2. (2.2.5)

Conversely, let ‖A + λB‖ ≥ ‖A‖ for all λ ∈ C. Then by Theorem 2.2.2, there exists a

sequence {xn} of unit vectors inH such that ‖Axn‖ → ‖A‖ and 〈Axn, Bxn〉 → 0 as n→∞.

Define ϕn : L(H)→ C as

ϕn(T ) = 〈xn, Txn〉.

Then ϕn is a state on L(H). Note that ϕn(A∗A) = 〈Axn, Axn〉 → ‖A‖2 and ϕn(A∗B) =

〈Axn, Bxn〉 → 0 as n → ∞. Since the collection of all states on any C∗-algebra is weak*

compact, {ϕn} has a convergent subnet {ψα} converging to a state ψ in weak* topology. We

have

ψ(A∗A) = lim
α
ψα(A∗A) = ‖A‖2
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and

ψ(A∗B) = lim
α
ψα(A∗B) = 0.

Remark 2.2.4. Let A,B ∈M(m,n). Then ‖A+ λB‖ ≥ ‖A‖ for all λ ∈ C if and only if there

exists a unit vector x such that ‖Ax‖ = ‖A‖ and 〈Ax,Bx〉 = 0. This follows from Theorem

2.2.2. If ‖A+ λB‖ ≥ ‖A‖ for all λ ∈ C, then from Theorem 2.2.2 we obtain a sequence {xn}

of unit vectors such that ‖Axn‖ → ‖A‖ and 〈Axn, Bxn〉 → 0 as n → ∞. Since {xn} is a

bounded sequence, it has a convergent subsequence converging to a vector x. This x serves as

the required unit vector.

In the following three corollaries, we reformulate the result of the above remark 2.2.4 to

show what it looks like in three specific situations. In these corollaries, all the Hilbert spaces

considered are finite dimensional.

Corollary 2.2.5. Let Aj ∈ L(H,Kj) for j = 1, . . . , d. Consider the column operator
A1

...

Ad

 : H → K1 ⊕ · · · ⊕ Kd which takes x ∈ H to


A1x

...

Adx

. Then

∥∥∥∥∥∥∥∥∥∥


A1 + λB1

...

Ad + λBd


∥∥∥∥∥∥∥∥∥∥
≥

∥∥∥∥∥∥∥∥∥∥


A1

...

Ad


∥∥∥∥∥∥∥∥∥∥

for all λ ∈ C

if and only if there exists a unit vector x ∈ H such that

d∑
j=1

‖Ajx‖2 = ‖
d∑
j=1

A∗jAj‖ and
d∑
j=1

〈Ajx,Bjx〉 = 0.

Corollary 2.2.6. Let Aj ∈ L(Hj ,K) for j = 1, . . . , d. Consider the row operator
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(A1, . . . , Ad) : H1 ⊕ · · · ⊕ Hd → K which takes


x1

...

xd

 to A1x1 + · · ·+Adxd. Then

‖(A1 + λB1, . . . , Ad + λBd)‖ ≥ ‖(A1, . . . , Ad)‖ for all λ ∈ C

if and only if there exists a unit vector


x1

...

xd

 ∈ H1 ⊕ · · · ⊕ Hd such that

‖(A1, . . . , Ad)‖2 =

d∑
j=1

‖Ajxj‖2 +

d∑
i,j=1
i 6=j

〈Aixi, Ajxj〉 and
d∑

i,j=1

〈Aixi, Bjxj〉 = 0.

Corollary 2.2.7. Let Aj ∈ L(Hj ,Kj) for j = 1, . . . , d. Consider the “diagonal” operator


A1

. . .

Ad

 : H1 ⊕ · · · ⊕ Hd → K1 ⊕ · · · ⊕ Kd.

Then ∥∥∥∥∥∥∥∥∥∥


A1 + λB1

. . .

Ad + λBd


∥∥∥∥∥∥∥∥∥∥
≥

∥∥∥∥∥∥∥∥∥∥


A1

. . .

Ad


∥∥∥∥∥∥∥∥∥∥

for all λ ∈ C

if and only if there exists a unit vector


x1

...

xd

 ∈ H1 ⊕ · · · ⊕ Hd such that

max
1≤k≤d

‖Ak‖2 =

d∑
j=1

‖Ajxj‖2 and
d∑
j=1

〈Ajxj , Bjxj〉 = 0.
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As an interesting application of this, we have the following result.

Corollary 2.2.8. Let n1, . . . , nk be a partition of a positive integer n, that is,
∑k

j=1 nj = n. Let

A,B ∈M(m,n). Let A = [A1 : . . . : Ak] , where each Aj ∈M(m,nj). Define

‖A‖col = max
1≤j≤k

‖Aj‖.

Suppose this maximum is attained at d indices, say j1, . . . , jd. Then A is orthogonal to B in

‖ · ‖col if and only if [Aj1 : . . . : Ajd ] is orthogonal to [Bj1 : . . . : Bjd ] in ‖ · ‖col.

Proof. If [Aj1 : . . . : Ajd ] is orthogonal to [Bj1 : . . . : Bjd ] in ‖ · ‖col, then for all λ ∈ C,

‖A+ λB‖col = max
1≤j≤k

‖Aj + λBj‖

≥ max
1≤p≤d

‖Ajp + λBjp‖

= ‖[Aj1 : . . . : Ajd ] + λ[Bj1 : . . . : Bjd ]‖col

≥ ‖[Aj1 : . . . : Ajd ]‖col

= ‖Ajp‖ for all 1 ≤ p ≤ d

= ‖A‖col.

For the converse, first note that, by virtue of the norm on A being maximum of the norms

of Aj , the matrix [A1 : . . . : Ak] being orthogonal to the matrix [B1 : . . . : Bk] in ‖ · ‖col is the

same as saying that

∥∥∥∥∥∥∥∥∥∥


A1 + λB1

. . .

Ak + λBk


∥∥∥∥∥∥∥∥∥∥
≥

∥∥∥∥∥∥∥∥∥∥


A1

. . .

Ak


∥∥∥∥∥∥∥∥∥∥

for all λ ∈ C. (2.2.6)

Assume, without loss of generality, that jp = p for all 1 ≤ p ≤ d, that is,

‖A‖col = ‖A1‖ = · · · = ‖Ad‖.
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Thus we have to prove that

∥∥∥∥∥∥∥∥∥∥


A1 + λB1

. . .

Ad + λBd


∥∥∥∥∥∥∥∥∥∥
≥

∥∥∥∥∥∥∥∥∥∥


A1

. . .

Ad


∥∥∥∥∥∥∥∥∥∥

for all λ ∈ C.

Now we use equation (2.2.6) and Corollary 2.2.7 to conclude that there exist xj ∈ Cnj , j =

1, . . . , k, such that

k∑
j=1

‖xj‖2 = 1,
k∑
j=1

‖Ajxj‖2 = ‖A1‖2 = · · · = ‖Ad‖2 and
k∑
j=1

〈Ajxj , Bjxj〉 = 0.

Now

‖A1‖2 =
k∑
j=1

‖Ajxj‖2 ≤
k∑
j=1

‖Aj‖2‖xj‖2 ≤ ‖A1‖2.

This gives
k∑
j=1

‖Aj‖2‖xj‖2 = ‖A1‖2 = · · · = ‖Ad‖2.

Therefore we get xd+1 = · · · = xk = 0. So now we have x1, . . . , xd in Cn1 , . . . ,Cnd , respec-

tively, such that

d∑
j=1

‖xj‖2 = 1,
d∑
j=1

‖Ajxj‖2 = ‖A1‖2 = · · · = ‖Ad‖2 and
d∑
j=1

〈Ajxj , Bjxj〉 = 0.

Again by using Corollary 2.2.7, we get the required result.

2.3 Orthogonality in Hilbert C∗-modules

Motivated by the results in the previous sections, we explore orthogonality in the setting of

Hilbert C∗-modules. As our work was in progress, this problem was also studied by Arambašić

and Rajić [3]. Some of the results in this section overlap with theirs, but the proofs we present

are different and seem more natural. We start by an elementary Hilbert C∗-module, namely a

C∗-algebra.
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Theorem 2.3.1. Let A be a C∗-algebra. Let a, b ∈ A. Then ‖a + λb‖ ≥ ‖a‖ for all λ ∈ C if

and only if there exists a state ϕ on A such that

ϕ(a∗a) = ‖a‖2 and ϕ(a∗b) = 0.

Proof. If there exists a state on A such that ϕ(a∗a) = ‖a‖2 and ϕ(a∗b) = 0, then arguments

similar to the one in (2.2.5) show that ‖a + λb‖ ≥ ‖a‖ for all λ ∈ C. For the converse, let

π : A → L(H) be a faithful representation. Let A = π(a) and B = π(b). Then we have

‖A+ λB‖ ≥ ‖A‖ for all λ ∈ C. By Corollary 2.2.3, there exists a state ψ on L(H) such that

ψ(A∗A) = ‖A‖2 and ψ(A∗B) = 0. (2.3.1)

Let ϕ : A → C be defined as ϕ(a) = ψ(π(a)). Then ϕ is a state on A. Equation (2.3.1) implies

that

ϕ(a∗a) = ‖a‖2 and ϕ(a∗b) = 0.

For any given state ϕ on A and a ∈ A, let the variance of a with respect to ϕ, denoted by

varϕ(a), be defined as

varϕ(a) = ϕ(a∗a)− |ϕ(a)|2. (2.3.2)

Let dist(a,C1) = min{‖a − λ1‖ : λ ∈ C} be the distance of a from C1. In Audenaert [6,

Theorem 9], it has been shown that for any A ∈M(n),

dist(A,CI)2 = max{trA∗AP − | trAP |2 : P positive semidefinite, trP = 1}. (2.3.3)

The following corollary is a generalization of (2.3.3) and was first obtained by Rieffel [41,

Theorem 3.10]. We provide a proof of it using Theorem 2.3.1.
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Corollary 2.3.2. With the notations as above, we have for any a ∈ A,

dist(a,C1)2 = max{varϕ(a) : ϕ ∈ S(A)}, (2.3.4)

where S(A) denotes the state space of A.

Proof. First note that for any ϕ ∈ S(A),

ϕ(a∗a) ≤ ‖a‖2.

Therefore

varϕ(a) = ϕ(a∗a)− |ϕ(a)|2 ≤ ‖a‖2.

Let λ ∈ C. Changing a to a+ λ1 in the above equation, we see

varϕ(a+ λ1) = ϕ((a+ λ1)∗(a+ λ1))− |ϕ(a+ λ1)|2 ≤ ‖a+ λ1‖2.

The left hand side is invariant under the translation a→ a+ λ1, that is,

varϕ(a+ λ1) = varϕ(a).

This gives

max{varϕ(a) : ϕ ∈ S(A)} ≤ dist(a,C1)2. (2.3.5)

Now dist(a,C1) = ‖a− λ0‖, for some λ0 ∈ C. Denote a− λ0 by a0. Then ‖a0 + λ1‖ ≥

‖a0‖ for all λ ∈ C. By Theorem 2.3.1, there exists a state ψ on A such that

ψ(a∗0a0) = ‖a0‖2 and ψ(a∗0) = 0. (2.3.6)

By the first equation in (2.3.6), we get

dist(a,C1)2 = ‖a0‖2 = ψ(a∗0a0) = ψ(a∗a)− λ0ψ(a)− λ0ψ(a) + |λ0|2. (2.3.7)
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By the second equation in (2.3.6), we get ψ(a) = λ0. Using this in (2.3.7), we obtain

dist(a,C1)2 = ψ(a∗a)− |ψ(a)|2 = varψ(a) ≤ max{varϕ(a) : ϕ ∈ S(A)}.

This together with (2.3.5) gives the desired result.

We now obtain a characterization of orthogonality in HilbertC∗-modules. For this we require

the following lemma, which is a reinterpretation of Theorem 3.4 in [19].

Lemma 2.3.3. Let E be a Hilbert C∗-module over a C∗-algebraA. Then E can be isometrically

embedded in L(H,K) for some Hilbert spacesH,K. HereH is a Hilbert space such that there

exists a faithful representation π : A → L(H) and the isometric embedding L : E→ L(H,K)

satisfies

〈L(e1)h1, L(e2)h2〉 = 〈h1, π(〈e1, e2〉)h2〉 for all e1, e2 ∈ E and h1, h2 ∈ H.

Proof. Let π : A → L(H) be a faithful representation. Consider the space E⊗H. Define a map

〈·, ·〉 : E⊗H → C as follows. For elementary tensors e1 ⊗ h1, e2 ⊗ h2 ∈ E⊗H

〈e1 ⊗ h1, e2 ⊗ h2〉 = 〈h1, π(〈e1, e2〉)h2〉 .

Extend this definition linearly to whole of E ⊗ H. We show that 〈·, ·〉 forms a semi-inner

product on the space E ⊗ H. Let x, y, z ∈ E ⊗ H and α, β ∈ C. Clearly 〈x, αy + βz〉 =

α 〈x, y〉+ β 〈x, z〉 and 〈x, y〉 = 〈y, x〉. Let x =
∑n

i=1 ei ⊗ hi. Then

〈x, x〉 =
n∑

i,j=1

〈hi, π(〈ei, ej〉)hj〉

=

〈
h1

...

hn

 ,


π(〈e1, e1〉) . . . π(〈e1, en〉)

...
. . .

...

π(〈en, e1〉) . . . π(〈en, en〉)




h1

...

hn


〉
.

Note that the matrix T = (〈ei, ej〉) is a positive semidefinite matrix in M(n;A). Let
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πn : M(n;A) → M(n;L(H)) be the map defined as πn((aij)) = (π(aij)). Since π is a

representation, so is πn. Hence πn is a positive map. In particular πn(T ) ≥ 0. Hence 〈x, x〉 ≥ 0.

Let N = {x ∈ E⊗H : 〈x, x〉 = 0}. Then N is a closed subspace of E⊗H. Consider the inner

product on the space E⊗H/N defined as

〈x+ N, y + N〉 = 〈x, y〉.

Let K be the completion of E⊗H/N with respect to the norm given by this inner product. For

e ∈ E, define Le : H → K as

Le(h) = e⊗ h+ N.

Note that each Le is linear. We show that Le is bounded. We have

‖Le(h)‖2 = 〈h, π(〈e, e〉)h〉 .

By Cauchy-Schwarz inequality, we get that

‖Le(h)‖2 ≤ ‖h‖2‖π(〈e, e〉)‖

= ‖h‖2‖〈e, e〉‖

= ‖h‖2‖e‖2.

Let L : E→ L(H,K) be defined as

L(e) = Le.

Then L is the required linear isometry.

Theorem 2.3.4. Let E be a Hilbert C∗-module over a C∗-algebra A. Let e1, e2 ∈ E. Then

‖e1 + λe2‖ ≥ ‖e1‖ for all λ ∈ C (2.3.8)
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if and only if there exists a state ϕ on A such that

ϕ(〈e1, e1〉) = ‖e1‖2 and ϕ(〈e1, e2〉) = 0.

Proof. First suppose that there exists a stateϕ onA such thatϕ(〈e1, e1〉) = ‖e1‖2 and ϕ(〈e1, e2〉) =

0. Then for every λ ∈ C,

‖e1 + λe2‖2 = ‖ 〈e1 + λe2, e1 + λe2〉 ‖

≥ |ϕ(〈e1, e1〉) + λϕ(〈e2, e1〉) + λϕ(〈e1, e2〉) + |λ|2ϕ(〈e2, e2〉)|

≥ ‖e1‖2.

Now suppose (2.3.8) holds. Let π : A → L(H) be a faithful representation and let

L : E → L(H,K) be the isometric embedding of E into L(H,K), as given in the previous

lemma. Then (2.3.8) gives

‖L(e1) + λL(e2)‖ ≥ ‖L(e1)‖ for all λ ∈ C.

By Theorem 2.2.2, there exists a sequence of unit vectors {xn} in H such that ‖L(e1)xn‖ →

‖L(e1)‖ and 〈L(e1)xn, L(e2)xn〉 → 0 as n→∞. Define ϕn : A → C as

ϕn(a) = 〈xn, π(a)xn〉.

Then ϕn is a state on A. Note that ϕn(〈e1, e1〉) = 〈L(e1)xn, L(e1)xn〉 → ‖L(e1)‖2 and

ϕn(〈e1, e2〉) = 〈L(e1)xn, L(e2)xn〉 → 0 as n→∞. Since the collection of all states on A is a

weak* compact subset of A∗, {ϕn} has a convergent subnet {ψα} which converges to some ψ

in weak* topology. We have

ψ(〈e1, e1〉) = lim
α
ψα(〈e1, e1〉) = ‖e1‖2
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and

ψ(〈e1, e2〉) = lim
α
ψα(〈e1, e2〉) = 0.

The above theorem first appeared in [3], while our work was in preparation. Our proofs are

different and perhaps simpler.
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Chapter 3

Orthogonality to matrix subspaces and

a distance formula

Let X be a real or complex Banach space and let W be a subset of X. Then an element x is said

to be orthogonal to W ([32]) if

‖x+ w‖ ≥ ‖x‖ for all w ∈W. (3.0.1)

This notion is a generalization of orthogonality, from vectors to subsets. In this chapter, our main

interest is to study this concept in the space M(n), when W is a subspace of M(n).

The space M(n) is a complex Hilbert space under the inner product 〈A,B〉 = tr(A∗B)

and a real Hilbert space under the inner product 〈A,B〉R = Re tr(A∗B). Let W⊥ denote the

orthogonal complement of W, where the orthogonal complement is taken with respect to the

usual Hilbert space orthogonality in M(n) with inner product 〈·, ·〉 or 〈·, ·〉R, depending upon

whether W is treated as a complex or a real subspace. With this notation, the Bhatia-Šemrl

theorem (Theorem 2.1.1) says that A is orthogonal to CB if and only if there exists a positive

semidefinite matrix P of rank one such that trP = 1, trA∗AP = ‖A‖2 and AP ∈ (CB)⊥.

Positive semidefinite matrices with trace 1 are also called density matrices.

In this chapter, we provide a generalization of the Bhatia-Šemrl theorem, and obtain a

characterization of orthogonality to a subspace of M(n). Some known results like the one by

69
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Andruchow, Larotonda, Recht, and Varela [5, Theorem 1] can be interpreted as special instances

of this. They showed that if A is Hermitian, then ‖A + D‖ ≥ ‖A‖ for all D ∈ D(n;R), the

subspace of real diagonal matrices, if and only if there exists a density matrix P such that

PA2 = ‖A‖2P and all diagonal entries of PA are zero. A Hermitian matrix A such that A is

orthogonal to D(n;R) is called minimal in [5].

Let dist(A,W) denote the distance of a matrix A from the subspace W. It is defined as

dist(A,W) = min {‖A−W‖ : W ∈W} .

For W = CI , an expression (2.3.3) for the distance has been given by Audenaert [6]. A natural

question that arises is whether we can find an analogous expression for the distance when CI is

replaced by any C∗-subalgebra of M(n). In this chapter, we provide an answer to this question.

3.1 Orthogonality to subspaces of M(n)

Theorem 3.1.1. Let A ∈M(n) and let m(A) be the multiplicity of the maximum singular value

‖A‖ of A. Let W be any (real or complex) subspace of M(n). Then A is orthogonal to W if and

only if there exists a density matrix P of rank at most m(A) such that A∗AP = ‖A‖2P and

AP ∈W⊥. (If rank P = `, then P has the form P =
∑̀
i=1

αiv(i)v
∗
(i) where v(i), 1 ≤ i ≤ `, are

unit vectors such that A∗Av(i) = ‖A‖2v(i) and αi, 1 ≤ i ≤ `, are such that 0 ≤ αi ≤ 1 and∑̀
i=1

αi = 1.)

Proof. First suppose that there exists a density matrix P such that A∗AP = ‖A‖2P and

AP ∈W⊥. Then for any W ∈W,

‖A+W‖2 = ‖(A+W )∗(A+W )‖

= ‖A∗A+W ∗A+A∗W +W ∗W‖.
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So by (1.3.4), we get

‖A+W‖2 ≥ | tr(A∗AP +W ∗AP +A∗WP +W ∗WP )|

≥ Re tr(A∗AP +W ∗AP +A∗WP +W ∗WP ). (3.1.1)

Since AP ∈W⊥, we have Re tr(A∗WP ) = Re tr(W ∗AP ) = 0. The matrices W ∗W and P

are positive semidefinite, therefore tr(W ∗WP ) ≥ 0 and by our assumption, tr(A∗AP ) = ‖A‖2.

Using these in (3.1.1) we get that ‖A+W‖2 ≥ ‖A‖2.

Conversely, suppose

‖A+W‖ ≥ ‖A‖ for all W ∈W. (3.1.2)

Let S : W→M(n) be the inclusion map. Then S∗ : M(n)→W is the orthogonal projection

onto the subspace W. Let L : W→M(n) be the map defined as

L(W ) = A+ S(W ).

Let g : M(n)→ R be the map taking an n× n matrix W to ‖W‖. Then (3.1.2) can be rewritten

as

(g ◦ L)(W ) ≥ (g ◦ L)(0),

that is, g ◦ L is minimized at 0. Therefore 0 ∈ ∂(g ◦ L)(0). Using Proposition 1.2.12, we get

0 ∈ S∗∂‖A‖. (3.1.3)

By Corollary 1.4.8,

S∗∂‖A‖ = conv {S∗(uv∗) : ‖u‖ = ‖v‖ = 1, Av = ‖A‖u} . (3.1.4)

From (3.1.3) and (3.1.4), it follows that there exist unit vectors u(i), v(i), 1 ≤ i ≤ `, and
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numbers αi, such that 0 ≤ αi ≤ 1,
∑`

i=1 αi = 1, Av(i) = ‖A‖u(i) and

S∗

(∑̀
i=1

αiu(i)v
∗
(i)

)
= 0. (3.1.5)

Let P =
∑`

i=1 αiv(i)v
∗
(i). Then P is a density matrix and

AP =
∑̀
i=1

αiAv(i)v
∗
(i)

= ‖A‖
∑̀
i=1

αiu(i)v
∗
(i).

By using (3.1.5), we get S∗(AP ) = 0, that is, AP ∈ W⊥. Since each v(i) is a right singular

vector for the singular value ‖A‖ of A, we have A∗Av(i) = ‖A‖2v(i). Using this we obtain

A∗AP =
∑̀
i=1

αiA
∗Av(i)v

∗
(i)

=
∑̀
i=1

αi‖A‖2v(i)v
∗
(i)

= ‖A‖2P. (3.1.6)

Now let m(A) = r. We show that if P satisfies (3.1.6), then rank P ≤ r. First note that

A∗A and P commute and therefore can be diagonalized simultaneously. So we can assume A∗A

and P in (3.1.6) to be diagonal matrices. By hypothesis, r of the diagonal entries of A∗A are

equal to ‖A‖2. Let A∗A =



‖A‖2

. . .

‖A‖2

s2
r+1

. . .

s2
n


, where sj < ‖A‖ for all
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r + 1 ≤ j ≤ n. If P =


p1

. . .

pn

 , then from (3.1.6) we obtain

(s2
j − ‖A‖2)pj = 0 for all r + 1 ≤ j ≤ n.

This gives pj = 0 for all r + 1 ≤ j ≤ n. Hence rank P ≤ r.

Remark 3.1.2. From the proof of Theorem 3.1.1, it is clear that the condition A∗AP = ‖A‖2P

can be replaced by the weaker condition tr(A∗AP ) = ‖A‖2 in the statement of Theorem 3.1.1.

Corollary 3.1.3 (The Bhatia-Šemrl theorem). We have ‖A+ λB‖ ≥ ‖A‖ for all λ ∈ C if and

only if there is a unit vector x such that ‖Ax‖ = ‖A‖ and 〈Ax,Bx〉 = 0.

Proof. By Theorem 3.1.1, A is orthogonal to CB if and only if there exist unit vectors

v(i) (1 ≤ i ≤ `) and numbers αi such that 0 ≤ αi ≤ 1,
∑̀
i=1

αi = 1, A∗Av(i) = ‖A‖2v(i)

and
∑̀
i=1

αi〈v(i), B
∗Av(i)〉 = 0. If this is the case, then by the Hausdorff-Toeplitz theorem,

we get a unit vector v such that A∗Av = ‖A‖2v and 〈v,B∗Av〉 = 0. The first condition

A∗Av = ‖A‖2v is stronger than what is required.

The next corollary shows that Theorem 1 in [5] is a special case of Theorem 3.1.1.

Corollary 3.1.4. A Hermitian matrix A ∈M(n) is minimal if and only if there exists a positive

semidefinite matrix P ∈M(n) such that PA2 = ‖A‖2P and all the diagonal elements of PA

are zero.

Proof. In our notation, to say that A is minimal is the same as saying that A is orthogonal to

the subspace D(n;R). If A is Hermitian, then A is orthogonal to D(n;R) if and only if A is

orthogonal to D(n), the subspace of complex diagonal matrices. By Theorem 3.1.1, there exists

a density matrix P such that A2P = ‖A‖2P and AP ∈ D(n)⊥. Now D(n)⊥ is the subspace of

all matrices such that their diagonal entries are zero. The condition PA2 = ‖A‖2P is the same
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as A2P = ‖A‖2P and the diagonal entries of PA are the same as the complex conjugates of the

diagonal entries of AP . Thus we get the required result.

The next corollary can also be seen by direct calculation (see Remark 3.1.6). A neater proof

follows using Theorem 3.1.1.

Corollary 3.1.5. Let W = {X : trX = 0}. Then {A : ‖A + W‖ ≥ ‖A‖ for all W ∈ W} =

W⊥ = CI .

Proof. By Theorem 3.1.1, we have that if A ∈ W⊥ is such that A∗A = ‖A‖2I, then A is

orthogonal to W. Therefore all the scalar matrices are orthogonal to W. Conversely, let A be

such that ‖A+W‖ ≥ ‖A‖ for all W ∈W. By Theorem 3.1.1, there exists a density matrix P

of complex rank at most m(A) such that

A∗AP = ‖A‖2P (3.1.7)

and

AP ∈ CI. (3.1.8)

Let AP = µI for some µ ∈ C. Substituting this in (3.1.7), we get

‖A‖2P = µA∗ = µA. (3.1.9)

This shows that µ 6= 0 and

A =
‖A‖2

µ
P. (3.1.10)

So AP = ‖A‖2
µ P 2. But AP = µI . Thus we obtain P 2 = |µ|2

‖A‖2 I, and hence P = |µ|
‖A‖I . By

substituting P in (3.1.10), we get A = µ‖A‖
|µ| I , which belongs to W⊥.

Remark 3.1.6. Let W = {X : trX = 0}. Then we can give a proof of Corollary 3.1.5,

independent of Theorem 3.1.1 . First suppose that A ∈ W⊥. This means A = µI for some
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µ ∈ C. Let W ∈W. Then for each X such that ‖X‖1 = 1, we have

‖µI +W‖ ≥ | tr(µI +W )X|.

In particular for X = I
n , we get

‖µI +W‖ ≥ 1

n
| tr(µI +W )|.

Since trW = 0, we obtain

‖µI +W‖ ≥ ‖µI‖.

Now we show that if A /∈ CI , then there exists a matrix W with trW = 0 such that

‖A + W‖ < ‖A‖. Let D(A) and O(A) denote the diagonal and off-diagonal parts of A,

respectively. Then O(A) ∈ W and A − O(A) = D(A). We know that ‖D(A)‖ ≤ ‖A‖.

So it is enough to find W ∈ W such that ‖D(A) + W‖ < ‖D(A)‖. Let D(A) =

diag (a1, . . . , a1, a2, . . . , a2, . . . , ak, . . . , ak) , where k ≥ 2, each aj (1 ≤ j ≤ k) occurs

on the diagonal nj times and n1 + · · · + nk = n. We can assume ‖D(A)‖ = 1. Take W =

diag
(
a2−a1
kn1

, . . . , a2−a1kn1
, a3−a2kn2

, . . . , a3−a2kn2
, . . . ,

ak−ak−1

knk−1
, . . . ,

ak−ak−1

knk−1
, a1−akknk

, . . . , a1−akknk

)
. Then

trW = 0 and D(A) + W = diag
(

(kn1−1)a1+a2
kn1

, . . . , (kn1−1)a1+a2
kn1

, (kn2−1)a2+a3
kn2

, . . . ,

(kn2−1)a2+a3
kn2

, . . . ,
(knk−1−1)ak−1+ak

knk−1
, . . . ,

(knk−1−1)ak−1+ak
knk−1

, (knk−1)ak+a1
knk

, . . . , (knk−1)ak+a1
knk

)
.

It is easy to check that each entry has modulus less than 1.

Remark 3.1.7. In Theorem 3.1.1, m(A) is the best possible upper bound on rank P . Consider

W = {X : trX = 0}. By Corollary 3.1.5, we get that if a matrix A is orthogonal to W, then

it has to be of the form A = λI , for some λ ∈ C. When A 6= 0 then m(A) = n. Let P be

any density matrix satisfying AP ∈ W⊥. Then AP = µI , for some µ ∈ C, µ 6= 0. If P also

satisfies A∗AP = ‖A‖2P , then we get P = µ
λI . Thus rank P = n = m(A).

Remark 3.1.8. As one would expect, the set {A : ‖A+W‖ ≥ ‖A‖ for all W ∈W} need not
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be a subspace. As an example consider the subspace W = CI of M(3). Let A1 =


0 1 0

1 0 1

0 1 0



and A2 =


0 0 1

0 0 0

1 0 0

. By Theorem 3.1.1, it can be checked that A1, A2 are orthogonal

to W. (Take P =


0 0 0

0 1 0

0 0 0

 for A1 and P =


1 0 0

0 0 0

0 0 0

 for A2, respectively.) Then

A1 + A2 =


0 1 1

1 0 1

1 1 0

, and ‖A1 + A2‖ = 2. But
∥∥A1 +A2 − 1

2I
∥∥ = 3

2 < ‖A1 + A2‖.

Hence A1 +A2 is not orthogonal to W.

3.2 A distance formula

Let dist(A,W) denote the distance of a matrix A from the subspace W, i.e.,

dist(A,W) = min {‖A−W‖ : W ∈W} .

It is interesting to have evaluation or estimation of distance to a subspace. It is a well known

result by Stampfli [43] that

dist(A,CI) =
1

2
max{‖AX −XA‖ : ‖X‖ = 1}.

In [15], Bhatia and Šemrl showed that

dist(A,CI) = max{|〈y,Ax〉| : ‖x‖ = ‖y‖ = 1, x ⊥ y}.
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They also showed that

dist(A,CI) =
1

2
max{‖A− UAU∗‖ : U unitary}.

In [16], Bhatia and Sharma obtained estimates on dist(A,CI). Another expression for the

distance has been given by Audenaert [6]:

dist(A,CI)2 = max{trA∗AP − | trAP |2 : P positive semidefinite, trP = 1}. (3.2.1)

He also showed that the maximum over P on the right hand side of (3.2.1) can be restricted to

density matrices of rank 1. This is an example of a distance formula.

If W = CB, the subspace spanned by a matrix B, then Arambašić and Rajić showed that

dist(A,CB) = max{MA,B(x) : ‖x‖ = 1},

where MA,B(x) =

 ‖Ax‖
2 − |〈Ax,Bx〉|

2

‖Bx‖2 if Bx 6= 0

‖Ax‖2 if Bx = 0
.

In [41], Rieffel obtained a formula (2.3.4), analogous to (3.2.1), for unital C∗-algebras

and raised the more general problem of obtaining a formula for the distance to any unital C∗-

subalgebra. We provide an answer to this problem in the case of a finite dimensional C∗-algebra.

This is essentially the case of M(n). Let B be any unital C∗-subalgebra of M(n). We know that

every finite dimensional C∗-algebra is ∗-isomorphic to a direct sum of matrix algebras, so there

exist n1, . . . , nk such that B 'M(n1)⊕ · · · ⊕M(nk) (see [24, p. 74].

Let CB : M(n) → B denote the orthogonal projection of M(n) onto B. Then CB is a

bimodule map:

CB(BX) = BCB(X) and CB(XB) = CB(X)B for all B ∈ B, X ∈M(n). (3.2.2)

In particular, when B is a subalgebra of block diagonal matrices, the matrix CB(X) is called a
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pinching of X and is denoted by C(X). If X =



X11 · · · X1k

X21 · · · X2k

...
...

...

Xk1 · · · Xkk


, then

C(X) =



X11

X22

. . .

Xkk


. (3.2.3)

Properties of pinchings are studied in detail in [9] and [10]. Our next result provides a general-

ization of (3.2.1) for the distance of A to any C∗-subalgebra of M(n).

Theorem 3.2.1. Let B be any C∗-subalgebra of M(n). Then

dist(A,B)2 = max
{

tr
(
A∗AP − CB(AP )∗ CB(AP ) CB(P )−1

)
: P ≥ 0, trP = 1

}
,

(3.2.4)

where CB(P )−1 denotes the Moore-Penrose inverse of CB(P ). Further the maximum on the right

hand side of (3.2.4) can be restricted to density matrices P with rank P ≤ m(A).

Proof. We first show that it is sufficient to prove the result when B is a C∗-subalgebra of block

diagonal matrices in M(n). If B is any C∗-subalgebra of M(n), then there exist n1, n2, . . . , nk

such that B is ∗-isomorphic to⊕ki=1M(ni). Let ϕ : B→ ⊕ki=1M(ni) denote this ∗-isomorphism.

Then there exists a unitary matrix V ∈M(n) such that ϕ(X) = V ∗XV (see [23, p. 249], [24, p.

74]). By definition

dist(A,B) = min
W∈B

‖A−W‖.

Let Ã denote the matrix V ∗AV . Since ‖ · ‖ is unitarily invariant, we get

dist(A,B) = dist(Ã,⊕iM(ni)). (3.2.5)
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Next we show that for any density matrix P ,

max
{

tr
(
A∗AP − CB(AP )∗ CB(AP ) CB(P )−1

)
: P ≥ 0, trP = 1

}
= max

{
tr
(
Ã∗ÃP̃ − C(ÃP̃ )∗ C(ÃP̃ ) C(P̃ )−1

)
: P̃ ≥ 0, tr P̃ = 1

}
, (3.2.6)

where C is the pinching map as defined in (3.2.3). We have

tr
(
A∗AP − CB(AP )∗ CB(AP ) CB(P )−1

)
= tr

(
V ∗A∗APV − V ∗ CB(AP )∗ CB(AP ) CB(P )−1 V

)
.

From (3.2.2), we have that for any X ∈M(n), V ∗CB(X)V = C(V ∗XV ). Therefore the above

expression is the same as

tr
(
Ã∗ÃP̃ − C(ÃP̃ )∗ C(ÃP̃ ) C(P̃ )−1

)
. (3.2.7)

So it is enough to prove (3.2.4) when B is a subalgebra of block diagonal matrices and CB is

pinching C. We first show that

max
{

tr
(
A∗AP − C(AP )∗ C(AP ) C(P )−1

)
: P ≥ 0, trP = 1

}
≤ dist(A,B)2. (3.2.8)

Let P be any density matrix. Then tr(A∗AP ) ≤ ‖A‖2. Therefore

tr
(
A∗AP − C(AP )∗ C(AP ) C(P )−1

)
≤ ‖A‖2. (3.2.9)

Let B ∈ B. Applying the translation A 7→ A+B in (3.2.9), we get

tr
(
(A+B)∗(A+B)P − C((A+B)P )∗ C((A+B)P ) C(P )−1

)
≤ ‖A+B‖2. (3.2.10)

By expanding the expression on the left hand side of (3.2.10), we get that it is equal to

(
tr
(
A∗AP − C(AP )∗ C(AP ) C(P )−1

))
+
(
tr
(
B∗AP − C(BP )∗ C(AP ) C(P )−1

))
+
(
tr
(
A∗BP − C(AP )∗ C(BP ) C(P )−1

))
+
(
tr
(
B∗BP − C(BP )∗ C(BP ) C(P )−1

))
.(3.2.11)
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We show that all the terms in (3.2.11) are zero except the first one. We begin by proving that the

second term

tr
(
B∗AP − C(BP )∗ C(AP ) C(P )−1

)
(3.2.12)

is zero. The proof for the other two terms is similar.

By using (3.2.2), the expression in (3.2.12) is equal to

tr
(
B∗ C(AP )

(
I − C(P )−1C(P )

))
. (3.2.13)

Let Q = C(P )−1C(P ). We show that C(AP ) (I −Q) = 0. First note that the matrix ‖A‖2P 2−

PA∗AP is positive semidefinite. Since P is a density matrix, we have that P − P 2 is a

positive semidefinite matrix. This implies that ‖A‖2P − PA∗AP is positive semidefinite and

hence ‖A‖2C(P ) − C(PA∗AP ) is positive semidefinite. We also have that C(PA∗AP ) −

C(AP )∗C(AP ) is positive semidefinite. Combining these relations, we obtain that ‖A‖2C(P )−

C(AP )∗C(AP ) is a positive semidefinite matrix. So

tr(I −Q)C(AP )∗C(AP )(I −Q) ≤ ‖A‖2 tr(I −Q)C(P )(I −Q). (3.2.14)

Since C(P )(I −Q) = 0, we get by (3.2.14) that C(AP )(I −Q) = 0.

Thus from (3.2.10), we obtain

tr
(
A∗AP − C(AP )∗ C(AP ) C(P )−1

)
≤ ‖(A+B)‖2,

for all B ∈ B and for all density matrices P . The required inequality (3.2.8) now follows from

here.

To show equality in (3.2.8), let dist(A,B) = ‖A0‖, where A0 = A−B0 for some B0 ∈ B.

Then A0 is orthogonal to B. By Theorem 3.1.1, there exists a density matrix P such that

A∗0A0P = ‖A0‖2P (3.2.15)
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and

C(A0P ) = 0, that is, C(AP ) = C(B0P ). (3.2.16)

From (3.2.15) we get that

‖A0‖2 = tr ((A−B0)∗(A−B0)P )

= tr(A∗AP )− tr(B∗0AP )− tr(A∗B0P ) + tr(B∗0B0P ).

By using (3.2.2), we obtain

‖A0‖2 = tr(A∗AP )− tr(B∗0 C(AP ))− tr(B0 C(AP )∗) + tr(B∗0 C(B0P )). (3.2.17)

Substituting (3.2.16) in (3.2.17) we get

‖A0‖2 = tr(A∗AP )− tr(B∗0B0C(P )). (3.2.18)

Now tr (B∗0 B0 C(P )) = tr
(
B∗0B0 C(P )C(P )−1C(P )

)
, which by (3.2.16), is the same as

tr
(
C(AP )∗ C(AP ) C(P )−1

)
. Therefore by (3.2.18), we get

dist(A,B)2 = ‖A0‖2 = tr
(
A∗AP − C(AP )∗ C(AP ) C(P )−1

)
.

Remark 3.2.2 (The special case n = 2). We now examine Theorem 3.1.1 and Theorem 3.2.1 for

the particular case when n = 2 and when B is a C∗-subalgebra of M(2) containing the identity

matrix. We show that

{A : ‖A+W‖ ≥ ‖A‖ for all W ∈ B} = B⊥,

and that the maximum on the right hand side of (3.2.4) can be restricted to rank one density

matrices. By the same argument as in the proof of Theorem 3.2.1, it is sufficient to prove these
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results for D(2), the subalgebra of diagonal matrices with complex entries. We first show that

{A : ‖A+W‖ ≥ ‖A‖ for all W ∈ D(2)} = D(2)⊥.

If A is an off-diagonal 2 × 2 matrix, that is, A =

 0 b

c 0

 then by Theorem 2.1 in [11],

we obtain ‖A + W‖ ≥ ‖A‖ for all W ∈ D(2). Conversely, let A ∈ M(2) be such that

‖A + W‖ ≥ ‖A‖ for all W ∈ D(2). Then by taking W = −D(A), we get A + W = O(A).

Again by using Theorem 2.1 in [11], we obtain that ‖O(A)‖ = ‖A‖. So A is of the form a b

c d

, where ‖A‖ = max{|b|, |c|}. Since norm of each row and each column is less than

or equal to ‖A‖, we get that a = d = 0. Hence A ∈ D(2)⊥.

Now we show that

dist(A,D(2))2 = max
‖x‖=1

(
‖Ax‖2 − tr ∆(Axx∗)∗∆(Axx∗)∆(xx∗)−1

)
, (3.2.19)

where ∆ is the orthogonal projection of M(2) onto D(2). By Theorem 3.2.1, we have

max
‖x‖=1

(
‖Ax‖2 − tr ∆(Axx∗)∗∆(Axx∗)∆(xx∗)−1

)
≤ dist(A,D(2))2.

To prove the other side inequality, first note that

dist(A,D(2)) ≤ ‖O(A)‖. (3.2.20)

Let A =

 a b

c d

. Without loss of generality assume that |b| ≥ |c|. Then ‖O(A)‖ = |b|. For

x =

 0

1

 ,
‖Ax‖2 − tr ∆(Axx∗)∗∆(Axx∗)∆(xx∗)−1 = ‖O(A)‖2.
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Combining this with (3.2.20), we obtain

dist(A,D(2))2 ≤ max
‖x‖=1

(
‖Ax‖2 − tr ∆(Axx∗)∗∆(Axx∗)∆(xx∗)−1

)
.
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Chapter 4

Derivatives of some multilinear

functions and their norms

We now turn our attention to a different direction. In the previous chapters, our main results were

obtained by computing the subdifferential of the norm functions on M(n). In this chapter, we

study the higher order derivatives of some interesting multilinear operators and functions. The

famous Jacobi formula gives the derivative of the determinant function on M(n) as

D det(A)(X) = tr(adj(A)X), (4.0.1)

where the symbol adj (A) , stands for the adjugate (or the classical adjoint) of A. Formulas for

higher order derivatives of det were obtained in [14]. We obtain a formula analogous to (4.0.1)

for the derivative of the permanent function on M(n), and then obtain expressions for its higher

order derivatives.

Let ∧k : M(n)→M
((
n
k

))
be the map that takes a matrix A to its kth antisymmetric tensor

power, ∧k(A). The problem of evaluating higher order derivatives of the map ∧k was studied

in [31], and norms of these derivatives were obtained. We have another look at this problem

thinking of ∧k(A) as restriction of the tensor power ⊗k(A) to an invariant subspace. This has

several advantages. The proofs are more transparent, the formulas are seen to be valid for infinite

dimensional operators and the path to studying the same problem for other symmetry classes of

85
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tensors becomes clearer. We compute the norms of these derivatives by proving a multilinear

version of a famous theorem of Russo and Dye.

4.1 A Russo-Dye Theorem for multilinear maps

LetH,K be Hilbert spaces. A linear map Φ from L(H) into L(K) is said to be positive if Φ(A)

is a positive semidefinite operator whenever A is positive semidefinite. A famous theorem of

Russo and Dye [10, p.42] says that if Φ is a positive linear map, then ‖Φ‖ = ‖Φ(I)‖.

The norm of a multilinear map Φ from L(H)m into L(K) is defined as

‖Φ‖ = sup
‖X1‖=···=‖Xm‖=1

‖Φ(X1, . . . , Xm)‖. (4.1.1)

We say Φ is positive if Φ(X1, . . . , Xm) is a positive semidefinite operator wheneverX1, . . . , Xm

are positive semidefinite. We prove:

Theorem 4.1.1. Let Φ be a positive multilinear map. Then

‖Φ‖ = ‖Φ(I, I, . . . , I)‖. (4.1.2)

Proof. First let H and K be finite dimensional. We imitate the proof for positive linear maps

given in [10, p.41].

Let U1, U2, . . . , Um be unitary matrices and let

U i =

ri∑
j=1

λij P
i
j , 1 ≤ i ≤ m, (4.1.3)

be their spectral resolutions. Here λij are the distinct eigenvalues of U i, and P ij the corresponding

eigenprojections. In particular, |λij | = 1, P ij are positive semidefinite, and

ri∑
j=1

P ij = I, 1 ≤ i ≤ m. (4.1.4)
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Since Φ is multilinear, we have

Φ(U1, . . . , Um) =

r1∑
j1=1

r2∑
j2=1

· · ·
rm∑
jm=1

λ1
j1λ

2
j2 . . . λ

m
jm Φ

(
P 1
j1 , P

2
j2 , . . . , P

m
jm

)
,

and

Φ(I, . . . , I) =

r1∑
j1=1

r2∑
j2=1

· · ·
rm∑
jm=1

Φ
(
P 1
j1 , P

2
j2 , . . . , P

m
jm

)
.

Since Φ is positive, the operators Φ
(
P 1
j1
, P 2

j2
, . . . , Pmjm

)
are positive semidefinite.

Using these two relations, we see that

 Φ(I, . . . , I) Φ(U1, . . . , Um)

Φ(U1, . . . , Um)∗ Φ(I, . . . , I)


=

r1∑
j1=1

· · ·
rm∑
jm=1

 1 λ1
j1
· · ·λmjm

λ1
j1
· · ·λmjm 1

⊗ Φ(P 1
j1 , . . . , P

m
jm).

This is a sum of tensor products of positive semidefinite matrices, and is therefore, positive

semidefinite. It follows from Proposition 1.3.2 in [10] that

‖Φ(U1, . . . , Um)‖ ≤ ‖Φ(I, . . . , I)‖. (4.1.5)

Now let Xi, 1 ≤ i ≤ m, be matrices with ‖Xi‖ = 1. Then there exist unitary matrices U i and

V i such that Xi = 1
2(U i + V i) (see [10, p.42]).

By the multilinearity of Φ

Φ(X1, . . . , Xm) =
1

2m

∑
Φ(W 1, . . . ,Wm),

where the summation is over 2m terms obtained by choosing each of the W i to be either U i or

V i, 1 ≤ i ≤ m. It follows from (4.1.5) that

‖Φ(X1, . . . , Xm)‖ ≤ ‖Φ(I, . . . , I)‖.



88 Chapter 4: Derivatives of some multilinear functions and their norms

Hence ‖Φ‖ = ‖Φ(I, . . . , I)‖. This establishes Theorem 4.1.1 whenH and K are finite dimen-

sional.

Now letH and K be infinite dimensional Hilbert spaces. Our proof invokes the well-known

fact that if A and B are positive operators on a Hilbert space, then

 A X

X∗ B

 is positive if

and only if there exists a contraction K such that X = A1/2 K B1/2. (See Theorem I.1 in [4].)

To prove (4.1.2), we have to show that if X1, . . . , Xm are operators with ‖Xi‖ ≤ 1, then

‖Φ(X1, . . . , Xm)‖ ≤ ‖Φ(I, . . . , I)‖. (4.1.6)

Consider first the case when

Xi =

ri∑
j=1

λij P
i
j , 1 ≤ i ≤ m, (4.1.7)

where P ij are mutually orthogonal projection operators with
ri∑
j=1

P ij = I, and |λij | = 1. It can

be seen that ‖Xi‖ ≤ 1. (See [40, p.11].) Arguing as in the finite dimensional case, we see that

the inequality (4.1.6) holds in this case. Now if U i, 1 ≤ i ≤ m, are unitary operators, then by

the spectral theorem, each U i is a limit of a sequence of operators of the form (4.1.7). This

shows that the inequality (4.1.6) holds when Xi are unitary. From here one can see that the

inequality continues to hold if each Xi is a convex combination of unitary operators. Finally,

since the closed unit ball in L(H) is the closed convex hull of unitary operators (see [29, p.75])

the inequality is valid when Xi are any operators with ‖Xi‖ ≤ 1.

4.2 Formulas for Dm⊗k (A), Dm∧k (A), Dm∨k (A) and their norms

Let ⊗kH be the k-fold tensor powerH⊗H⊗ · · · ⊗ H. Let ∧kH and ∨kH be the subspaces of

⊗kH consisting of antisymmetric tensors and symmetric tensors, respectively. If dimH = n,

then dim∧kH =
(
n
k

)
for 1 ≤ k ≤ n, and dim∨kH =

(
n+k−1

k

)
for k ≥ 1. For k > n, the

space ∧kH is taken to be zero. For every A in L(H), we denote by ⊗kA its k-fold tensor power
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A⊗A⊗· · ·⊗A. This is an operator on⊗kH that leaves invariant the subspaces ∧kH and ∨kH.

The restriction of ⊗kA to these subspaces are denoted by ∧kA, the kth antisymmetric tensor

power of A and ∨kA, the kth symmetric tensor power of A, respectively.

Bhatia and Friedland [12] studied the problem of finding the norm of D∧k (A). They showed

that

‖D ∧k (A)‖ = pk−1(s1(A), . . . , sk(A)), (4.2.1)

where pk−1(s1(A), . . . , sk(A)) denotes the (k − 1)th elementary symmetric polynomial in

s1(A), . . . , sk(A).

Later, Bhatia [8] proved that

‖D ∨k (A)‖ = k‖A‖k−1. (4.2.2)

We describe the mth derivatives of the maps A 7→ ⊗kA, A 7→ ∧kA, and A 7→ ∨kA, from

L(H) into L(⊗kH), L(∧kH), and L(∨kH), respectively, and use them to compute their norms.

Given A1, . . . , Ak in L(H), we define their symmetrised tensor product as

A1⊗̃A2⊗̃ · · · ⊗̃Ak =
1

k!

∑
σ∈Sk

Aσ(1) ⊗Aσ(2) ⊗ · · · ⊗Aσ(k), (4.2.3)

where Sk is the set of all permutations on {1, . . . , k}. The operator (4.2.3) on ⊗kH leaves

invariant the subspaces ∧kH and ∨kH. The restriction of the symmetrised tensor product to

∧kH and ∨kH will be denoted by

A1 ∧A2 ∧ · · · ∧Ak and A1 ∨A2 ∨ · · · ∨Ak, (4.2.4)

respectively and called the symmetrised antisymmetric tensor product and the symmetrised

symmetric tensor product of A1, A2, . . . , Ak. The operator A1 ∧A2 ∧ · · · ∧Ak acts on product

vectors u1 ∧ u2 ∧ · · · ∧ uk as

(A1 ∧A2 ∧ · · · ∧Ak)(u1 ∧ u2 ∧ · · · ∧ uk)
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=
1

k!

∑
σ∈Sk

(Aσ(1)u1) ∧ (Aσ(2)u2) ∧ · · · ∧ (Aσ(k)uk). (4.2.5)

Similarly the operator A1 ∨A2 ∨ · · · ∨Ak acts on u1 ∨ u2 ∨ · · ·uk as

(A1 ∨A2 ∨ · · · ∨Ak)(u1 ∨ u2 ∨ · · · ∨ uk)

=
1

k!

∑
σ∈Sk

(Aσ(1)u1) ∨ (Aσ(2)u2) ∨ · · · ∨ (Aσ(k)uk). (4.2.6)

With the above notations we have:

Theorem 4.2.1. Let 1 ≤ m ≤ k. The mth derivatives of the maps ⊗k,∧k and ∨k are given by

the formulas

Dm ⊗k (A)(X1, . . . , Xm) =
k!

(k −m)!
A⊗̃ · · · ⊗̃A︸ ︷︷ ︸
k−m copies

⊗̃X1⊗̃X2⊗̃ · · · ⊗̃Xm, (4.2.7)

Dm ∧k (A)(X1, . . . , Xm) =
k!

(k −m)!
A ∧ · · · ∧A︸ ︷︷ ︸
k−m copies

∧X1 ∧X2 ∧ · · · ∧Xm, (4.2.8)

and

Dm ∨k (A)(X1, . . . , Xm) =
k!

(k −m)!
A ∨ · · · ∨A︸ ︷︷ ︸
k−m copies

∨X1 ∨X2 ∨ · · · ∨Xm. (4.2.9)

If m > k, then all the derivatives are zero.

Proof. By the formula (1.1.8),

Dm ⊗k (A)(X1, . . . , Xm)

=
∂m

∂t1 · · · ∂tm

∣∣∣∣
t1=···=tm=0

⊗k (A+ t1X
1 + · · ·+ tmX

m). (4.2.10)

To evaluate this we expand the k-fold tensor product on the right hand side. The resulting

expansion is a polynomial in the variables t1, . . . , tm. The derivative in (4.2.10) is evidently the

coefficient of the term t1t2 · · · tm in this polynomial. One can check that this is given by the

expression (4.2.7).
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Next we prove (4.2.8) using (4.2.7). The proof for (4.2.9) is similar. The chain rule of

differentiation for a composite function is given by Proposition 1.1.3. If L is a real linear map,

then its derivative is equal to L, and in this case

D(L ◦ f)(a)(x) = L(Df(a)(x)).

Repeating this argument one sees that if f is m times differentiable, then

Dm(L ◦ f)(a)(x1, . . . , xm) = L(Dmf(a)(x1, . . . , xm)). (4.2.11)

Now let Qk : ∧kH → ⊗kH be the inclusion map. Then Q∗k : ⊗kH → ∧kH is the projection

given by

Q∗k(x1 ⊗ · · · ⊗ xk) =
1

k!

∑
σ∈Sk

εσxσ(1) ⊗ · · · ⊗ xσ(k),

where εσ = ±1, depending on whether σ is an even or an odd permutation. Define Q̃k :

L(⊗kH)→ L(∧kH) by

Q̃k(T ) = Q∗kTQk. (4.2.12)

Also ∧k : L(H)→ L(∧kH) factors through ⊗k : L(H)→ L(⊗kH) via Q̃k as

∧kA = Q̃k(⊗kA) ∀ A ∈ L(H).

Since Q̃k is linear, by (4.2.11) we have

Dm ∧k (A) = Q̃k ◦Dm ⊗k (A). (4.2.13)

Using this we obtain the expression (4.2.8).

From (4.2.7) we see that

Dk ⊗k (A)(X1, . . . , Xk) = k! X1⊗̃X2⊗̃ · · · ⊗̃Xk.
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This expression does not involve A. Hence Dm⊗k (A) = 0 if m > k. Similarly Dm ∧k (A) = 0

and Dm ∨k (A) = 0 if m > k.

Remark 4.2.2. By putting k = n in (4.2.8), we get

Dm det(A)(X1, . . . , Xm) =
n!

(n−m)!
A ∧ · · · ∧A︸ ︷︷ ︸
n−m copies

∧X1 ∧X2 ∧ · · · ∧Xm. (4.2.14)

Let T[i] denote the ith column of the matrix T . Then the mixed discriminant of n matrices

T 1, . . . , Tn is defined as

D(T 1, . . . , Tn) =
1

n!

∑
σ∈Sn

det[T
σ(1)
[1] , . . . , T

σ(n)
[n] ].

Equation (4.2.14) can also be written as

Dm det(A)(X1, . . . , Xm) =
n!

(n−m)!
D(A, . . . , A,X1, . . . , Xm).

This is the same as Theorem 1 in [14].

From these formulas we obtain the values of the norms of these derivatives. We separate

the cases of ‖Dm ⊗k (A)‖ and ‖Dm ∨k (A)‖. The evaluation of these norms is independent of

Theorem 4.1.1, whereas we make essential use of this theorem in calculating ‖Dm ∧k (A)‖.

Theorem 4.2.3. For 1 ≤ m ≤ k, we have

‖Dm ⊗k (A)‖ =
k!

(k −m)!
‖A‖k−m (4.2.15)

and

‖Dm ∨k (A)‖ =
k!

(k −m)!
‖A‖k−m. (4.2.16)

Proof. To compute the norm ‖Dm⊗k (A)‖, we first see that by the definition of the symmetrised
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tensor product (4.2.3) and by the triangle inequality, we get

‖A⊗̃ · · · ⊗̃A︸ ︷︷ ︸
k−m copies

⊗̃X1⊗̃X2⊗̃ · · · ⊗̃Xm‖ ≤ 1

k!

∑
σ∈Sk

‖Y σ(1) ⊗ Y σ(2) ⊗ · · · ⊗ Y σ(k)‖,

where k −m of the Y ’s are equal to A and the rest are X1, X2, . . . , Xm. Each of the terms

in the summation is equal to ‖A‖k−m‖X1‖‖X2‖ · · · ‖Xm‖. By the definition of the norm of a

multilinear map (4.1.1), we obtain

‖Dm ⊗k (A)‖ ≤ k!

(k −m)!
‖A‖k−m.

Also note that

∥∥∥∥Dm ⊗k (A)

(
A

‖A‖
,
A

‖A‖
, . . . ,

A

‖A‖

)∥∥∥∥ =
k!

(k −m)!
‖A‖k−m.

This shows that

‖Dm ⊗k (A)‖ ≥ k!

(k −m)!
‖A‖k−m.

Hence we obtain (4.2.15). This argument works equally well in infinite dimensions.

Let Rk : ∨kH → ⊗kH be the inclusion map. Define R̃k : L(⊗kH)→ L(∨kH) by

R̃k(T ) = R∗kTRk. (4.2.17)

Then ‖R̃k‖ ≤ 1. Arguments similar to those in the proof of Theorem 4.2.1 lead to an expression

similar to (4.2.13):

Dm ∨k (A) = R̃k ◦Dm ⊗k (A).

It follows that

‖Dm ∨k (A)‖ ≤ ‖R̃k‖‖Dm ⊗k (A)‖ ≤ k!

(k −m)!
‖A‖k−m. (4.2.18)

Let us now consider the case whenH is an n dimensional space. Let A = U |A| be a polar
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decomposition of A. Since UU∗ = I, we have

∨k(A+ t1X
1 + t2X

2 + · · ·+ tmX
m)

= ∨k
(
U(|A|+ t1U

∗X1 + t2U
∗X2 + · · ·+ tmU

∗Xm)
)

= (∨kU) ∨k
(
|A|+ t1U

∗X1 + t2U
∗X2 + · · ·+ tmU

∗Xm
)
.

So from (1.1.8) we obtain

Dm ∨k (A)(X1, . . . , Xm)

= (∨kU) Dm ∨k (|A|)(U∗X1, . . . , U∗Xm). (4.2.19)

Now ∨kU is unitary and the norm is unitarily invariant. So we have

‖Dm ∨k (A)(X1, . . . , Xm)‖

= ‖Dm ∨k (|A|)(U∗X1, . . . , U∗Xm)‖.

The condition ‖Xj‖ = 1 is equivalent to ‖U∗Xj‖ = 1 for 1 ≤ j ≤ m. So we have proved that

‖Dm ∨k (A)‖ = ‖Dm ∨k (|A|)‖. (4.2.20)

Now assume A is positive semidefinite and let u be an eigenvector corresponding to its

maximal eigenvalue ‖A‖. Consider the vector w = u ∨ u ∨ · · · ∨ u in ∨kH. If T = Y 1 ∨ Y 2 ∨

· · · ∨ Y k is an operator in which k −m of the Y ’s are equal to A and the rest of them are equal

to I, then Tw = ‖A‖k−mw. It then follows from (4.2.9) that

(Dm ∨k (A)(I, . . . , I))w =
k!

(k −m)!
‖A‖k−mw.

This shows that

‖Dm ∨k (A)‖ ≥ k!

(k −m)!
‖A‖k−m.
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We have already noted the reverse inequality in (4.2.18). So we have (4.2.16) in the case when

A is positive semidefinite. The relation (4.2.20) then shows that (4.2.16) is valid for all A.

We now indicate the modifications needed in this proof to handle the infinite dimensional

case. In this case A has a maximal polar representation A = U |A| in which U is either an

isometry (U∗U = I) or a coisometry (UU∗ = I) ([29, p.75]). When H is finite dimensional

these two conditions are equivalent and U is unitary. Our argument using the polar decomposition

for proving (4.2.20) can be modified. A very similar idea is used in [44] and we refer the reader

to that paper for details.

To prove (4.2.16) in the infinite dimensional case we may, therefore, again assume that A

is a positive operator. If A has pure point spectrum, then the arguments given for the finite

dimensional case serve equally well here. In particular, (4.2.16) is valid for compact operators.

Every positive operator is a limit of a sequence of positive operators with pure point spectrum.

Using this fact one can see that (4.2.16) is valid for all operators.

Note that for the above proof no use of Theorem 4.1.1 has been made. The formula (4.2.21)

for ‖Dm ∧k (A)‖ is more interesting, and to prove it we do need to invoke Theorem 4.1.1.

Theorem 4.2.4. We have

‖Dm ∧k (A)‖ = m! pk−m(s1(A), . . . , sk(A)), (4.2.21)

where pk−m is the (k −m)th elementary symmetric polynomial.

Proof. To compute ‖Dm ∧k (A)‖ we first note that the symmetrised antisymmetric product of

positive semidefinite operators is positive semidefinite. It follows from (4.2.8) that ifA is positive

semidefinite, then the map Dm ∧k (A) from L(H)m into L(∧kH) is a positive multilinear map.

So, we have from Theorem 4.1.1

‖Dm ∧k (A)‖ = ‖Dm ∧k (A)(I, . . . , I)‖. (4.2.22)
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Arguments similar to the ones used in the proof of Theorem 4.2.3 show that

‖Dm ∧k (A)‖ = ‖Dm ∧k (|A|)‖. (4.2.23)

So we assume A to be positive semidefinite. By (4.2.22), we have

‖Dm ∧k (A)‖ = ‖Dm ∧k (A)(I, . . . , I)‖

=

∥∥∥∥∥ ∂m

∂t1 · · · ∂tm

∣∣∣∣
t1=···=tm=0

∧k (A+ t1I + · · ·+ tmI)

∥∥∥∥∥ .
By the spectral theorem there exists a unitary W such that A = WDW ∗, where D is the

diagonal matrix whose diagonal entries are α1 ≥ · · · ≥ αn(≥ 0), the eigenvalues of A. The

matrix ∧kW is again unitary, and our norm is unitarily invariant. So in the right hand side of the

equation above we can replace A by D. Now

∂m

∂t1 · · · ∂tm

∣∣∣∣
t1=···=tm=0

∧k (D + t1I + · · ·+ tmI)

is a diagonal matrix of order

 n

k

 . Its norm is equal to its top diagonal entry, which is

∂m

∂t1 · · · ∂tm

∣∣∣∣
t1=···=tm=0

k∏
j=1

(αj + t1 + · · ·+ tm).

A calculation shows that this is equal to

m! pk−m (α1, . . . , αk).

This establishes (4.2.21) in the case when A is positive semidefinite. The general case follows

from (4.2.23).

Theorem 4.2.4 can be modified for infinite dimensional operators. The statement of this

theorem involves the sequence s1(A) ≥ s2(A) ≥ · · · . If we stretch the definitions and interpret a
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point of the essential spectrum of |A| as an eigenvalue of infinite multiplicity, then Theorem 4.2.4

is valid for infinite dimensional operators too. The proof is similar to the proof for symmetric

tensor powers.

4.3 Formulas for Dm per(A)

The permanent of A = (aij) ∈M(n), written as perA, is defined by

perA =
∑
σ∈Sn

a1σ(1)a2σ(2) · · · anσ(n). (4.3.1)

Since the definitions of per and det are similar, it is natural to expect a formula for D per(A)

similar to the Jacobi formula (4.0.1). By (1.1.2), we see that D per(A)(X) is the coefficient of

t in the polynomial per(A+ tX). For 1 ≤ j ≤ n, let A(j;X) be the matrix obtained from A

by replacing the jth column of A by the jth column of X and keeping the rest of the columns

unchanged. Since per is a linear function in each of the columns, we get

D per(A)(X) =
n∑
j=1

perA(j;X). (4.3.2)

To give a formula analogous to the Jacobi formula, define the permanental adjoint of A as the

n × n matrix whose (i, j)-entry is perA(i|j) (see [38, p.237]). Note that the adjugate of A,

adjA, is defined as the transpose of the matrix whose (i, j)-entry is (−1)i+j detA(i|j), whereas

in the definition of padj, the transpose is not taken. This is just a matter of convention. The

expression (4.3.2) can be rewritten as follows.

Theorem 4.3.1. For each X ∈M(n),

D per (A)(X) = tr(padj(A)tX). (4.3.3)

Our next aim is to obtain higher order derivatives of the permanent function. The expressions

obtained are analogous to the ones for the det function given in [14]. Applying (1.1.8) to the



98 Chapter 4: Derivatives of some multilinear functions and their norms

per function, we see that Dm perA(X1, . . . , Xm) is the coefficient of t1 · · · tm in the expansion

of per(A + t1X
1 + · · · + tmX

m). To write an explicit expression for this, we require some

notations.

Let Qm,n = {(i1, . . . , im)| i1, . . . , im ∈ N, 1 ≤ i1 < · · · < im ≤ n}. For m > n, Qm,n =

∅ by convention. Let Gm,n = {(i1, . . . , im)| i1, . . . , im ∈ N, 1 ≤ i1 ≤ · · · ≤ im ≤ n}.

Note that for m ≤ n, Qm,n is a subset of Gm,n. For J = (j1, . . . , jm) ∈ Qm,n, we denote by

A(J ;X1, . . . , Xm), the matrix obtained from A by replacing the jthp column of A by the jthp

column of Xp for 1 ≤ p ≤ m, and keeping the rest of the columns unchanged. Expanding

per(A + t1X
1 + · · · + tmX

m) by using the fact that per is a linear function in each of the

columns, we obtain an expression for Dm perA(X1, . . . , Xm). This is a generalisation of

(4.3.2).

Theorem 4.3.2. For 1 ≤ m ≤ n,

Dm per (A)(X1, . . . , Xm) =
∑
σ∈Sm

∑
J∈Qm,n

perA(J ;Xσ(1), Xσ(2), . . . , Xσ(m)). (4.3.4)

In particular,

Dm per (A)(X, . . . ,X) = m!
∑

J∈Qm,n

perA(J ;X, . . . ,X).

The Laplace expansion theorem for permanents [39, p.16] says that for any 1 ≤ m ≤ n, and

for any I ∈ Qm,n,

perA =
∑

J∈Qm,n

perA[I|J ] perA(I|J ), (4.3.5)

where A[I|J ] denotes the m×m submatrix obtained from A by picking rows I and columns

J and A(I|J ) denotes the (n−m)× (n−m) submatrix obtained from A by deleting rows I

and columns J . In particular, for any i, 1 ≤ i ≤ n,

perA =

n∑
j=1

aij perA(i|j). (4.3.6)
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Using this, equation (4.3.2) can be rewritten as

D per (A)(X) =

n∑
i=1

n∑
j=1

xij perA(i|j). (4.3.7)

We obtain a generalisation of this expression for higher order derivatives. Let σ be a permutation

on {1, . . . ,m}, then by Y σ
[J ], we mean the matrix in which Y σ

[jp] = X
σ(p)
[jp] for 1 ≤ p ≤ m and

Y σ
[`] = 0 if ` does not occur in J . By using the Laplace expansion (4.3.5) for each term in the

summation of (4.3.4), we obtain the following expression for Dm per (A)(X1, . . . , Xm).

Theorem 4.3.3. For 1 ≤ m ≤ n,

Dm per (A)(X1, . . . , Xm) =
∑
σ∈Sm

∑
I,J∈Qm,n

perA(I|J ) perY σ
[J ][I|J ]. (4.3.8)

In particular,

Dm per (A)(X, . . . ,X) = m!
∑

I,J∈Qm,n

perA(I|J ) perX[I|J ].

Note that

Dn per (A)(X, . . . ,X) = n! perX, (4.3.9)

and

Dm per (A)(X1, . . . , Xm) = 0 for all m > n. (4.3.10)

We now describe a generalisation of (4.3.3) for higher order derivatives of the per function.

Given an orthonormal basis {e1, e2, . . . , en} of an n dimensional Hibert space H, a useful

orthonormal basis for the space ∨mH is constructed as follows. For α = (α1, . . . , αm) ∈ Gm,n,

define

e(α) = eα1 ∨ · · · ∨ eαm .

If α consists of ` distinct indices α1, . . . , α` with multiplicities m1, . . . ,m` respectively, put

m(α) = m1! · · ·m`!. Then the set {m(α)−1/2 eα : α ∈ Gm,n} is an orthonormal basis of
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∨mH. (See [9, p.17] for details.) Let Pm be the canonical projection of ∨mH onto the subspace

spanned by {eα : α ∈ Qm,n}. Then there is a permutation of the above orthonormal basis of

∨mH in which Pm =

 I O

O O

 and the matrix Tm, defined by Tm = (perA[α|β])α,β∈Qm,n
,

is the upper left corner of ∨mA, that is,

Pm (∨mA)Pm =

 Tm O

O O

 .

LetU be the
(
n
m

)
×
(
n
m

)
unitary matrix given byU =



1

1
. .

.

1


. For α, β ∈ Qn−m,n,

the (α, β)-entry of U∗TmU is perA(α|β). Let Ũ be the
(
n+m−1

m

)
×
(
n+m−1

m

)
matrix given by

Ũ =

 U O

O I

 . Let ∨̃mA denotes the matrix Ũ∗ (∨mA)t Ũ . Then

Pm
(
∨̃mA

)
Pm =

 U∗T tmU O

O O

 . (4.3.11)

In particular for m = n− 1,

Pn−1

(
∨̃n−1

A
)
Pn−1 =

 (padjA)t O

O O

 .

Identifying an n× n matrix X with
(

2n−2
n−1

)
×
(

2n−2
n−1

)
matrix

 X O

O O

, equation (4.3.3) can

be rewritten as

D per (A)(X) = tr
(
Pn−1

(
∨̃n−1

A
)
Pn−1

)
X. (4.3.12)

Its generalisation for higher order derivatives is given as follows.
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Theorem 4.3.4. For 1 ≤ m ≤ n,

Dm per (A)(X1, . . . , Xm) = m! tr
[(
Pn−m

(
∨̃n−mA

)
Pn−m

) (
Pm
(
X1 ∨ · · · ∨Xm

)
Pm
)]
.

(4.3.13)

In particular,

Dm per (A)(X, . . . ,X) = m! tr
[(
Pn−m(∨̃n−mA)Pn−m

)
(Pm (∨mX)Pm)

]
.

Proof. To prove (4.3.13), we first describe the notion of the mixed permanent of m×m matrices

T 1, . . . , Tm. (This was first introduced by Bapat in [7].) It is denoted by ∆p(T
1, . . . , Tm), and

is defined as

∆p(T
1, . . . , Tm) =

1

m!

∑
σ∈Sm

per
[
T
σ(1)
[1] , . . . , T

σ(m)
[m]

]
.

When all T j = T , then ∆p(T, . . . , T ) = perT. Observe that for I,J ∈ Qm,n,

∑
σ∈Sm

perY σ
[J ][I|J ] = m! ∆p(X

1[I|J ], . . . , Xm[I|J ]). (4.3.14)

Using this, Theorem 4.3.3 can be rewritten as follows:

Dm per (A)(X1, . . . , Xm) (4.3.15)

= m!
∑

I,J∈Qm,n

perA(I|J ) ∆p(X
1[I|J ], . . . , Xm[I|J ]).

Next we note that for I,J ∈ Gm,n, the (I,J )-entry of X1 ∨ · · · ∨Xm is

(m(I)m(J ))−1/2∆p(X
1[I|J ], . . . , Xm[I|J ]). (4.3.16)

In particular, if I,J ∈ Qm,n, then the (I,J )-entry of X1 ∨ · · · ∨Xm is

∆p(X
1[I|J ], . . . , Xm[I|J ]). The (J , I)-entry of Pn−m(∨̃n−mA)Pn−m is perA(I|J ). The

expression (4.3.13) can now be easily seen as a reformulation of (4.3.15).

Remark 4.3.5. An alternative proof of Theorem 4.3.2 can be given using (4.2.9). We know that
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Dm per(A)(X1, . . . , Xm) is the (α, α)-entry of Dm ∨n A(X1, . . . , Xm) for α = (1, . . . , n),

which by (4.2.9) and (4.3.16) is n!
(n−m)!∆p(X

1, . . . , Xm, A, . . . , A). This is the same as

1

(n−m)!

∑
τ∈Sn

per
[
Y
τ(1)

[1] , . . . , Y
τ(n)

[n]

]
,

where k − m of the Y ’s are equal to A and the rest are X1, X2, . . . , Xm. For any given

J ∈ Qm,n and σ ∈ Sm, there are (n − m)! terms in this summation which are equal to

perA(J ;Xσ(1), Xσ(2), . . . , Xσ(m)). This gives Theorem 4.3.2.

Remark 4.3.6. An upper bound for norms of the derivatives of the permanent function can be

obtained by using (4.2.16). By using the fact that Dm per(A)(X1, . . . , Xm) is one of the entries

of the matrix Dm ∨n A(X1, . . . , Xm), we obtain

‖Dm per(A)‖ ≤ n!

(n−m)!
‖A‖n−m. (4.3.17)

While we have equality in (4.2.16), we may have strict inequality here. For example, let

A =

 1

0

. Then A is a positive semidefinite matrix. So D per(A) is a positive linear

functional. By the Russo-Dye Theorem, we have

‖D per(A)‖ = |D per(A)(I)|, (4.3.18)

which is equal to 1, by (4.3.7). But the right hand side of (4.3.17) is equal to 2.

Remark 4.3.7. We have limited ourselves to tensor powers, symmetric tensor powers and

antisymmetric tensor powers. There are other symmetry classes of tensors, and the corresponding

problems for these classes have been studied by Carvalho and Freitas in [21] and [22]. These

results can also be found in the doctoral dissertation of Carvalho [20]. Norms of first order

derivatives of the operators induced on the symmetry classes of tensors had been computed

earlier by Bhatia and Da Silva [17]. The work in [22] extends this to higher order derivatives.

The work of Carvalho and Frietas was done simultaneously with ours and supplements our work
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in this Chapter.
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