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Abstract

A scene to be photographed, usually includes objects at varying distances from the
camera. Depth-of-field of a digital camera is the range of distance, all objects within
which appear to be sharp in the image. Due to the low depth-of-field of the camera,
images acquired by them often suffer from degradation called out-of-focus blur. One
way to enhance the effective depth-of-field is to acquire several images of a scene with
focus on different parts of it and then combine these images into a single image in
such a way that all regions of the scene are in focus. Acquired images are called
multi-focus 1mages and the process of combination is known as multi-focus image
fusion. The techniques for multi-focus image fusion belong to the broad categories,
pixel-based, block-based and region-based. They concentrate respectively on single
pixels, small blocks of size m x n and arbitrarily shaped regions. Image registration
is a necessary pre-requisite for multi-focus image fusion. The thesis presents a new
technique for multi-focus image registration and three new techniques for multi-focus
image fusion. Among these techniques, the first one is pixel-based, the second one
is block-based and the third one is region-based. All of them use mathematical
morphological tools. The pixel-based method is a multi-resolution technique that
employs morphological wavelet as a tool for signal decomposition and reconstruction.
The block-based method uses energy of morphological gradients as a tool for focus
measure. Finally the region-based method uses multi-scale morphological tools for
obtaining the focused regions from the input images. In this context, existing fusion
techniques are studied and categorized. The thesis includes experimental results
obtained by applying the proposed methods and other well-known methods on a
variety of input data-set. It also includes performance analysis of various methods
using standard quantitative evaluation techniques. At the end it presents concluding

remarks and a discussion on related future work.
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Chapter 1

Introduction

Advancements in digital imaging technology have increased the popularity of con-
sumer imaging products such as digital cameras and camcorders. However due to the
physical limitations of the imaging systems, images produced by them often suffer
from degradations. A scene to be photographed usually includes objects at varying
distances from the camera. Sharpness distribution of an image of such a scene is
affected by various factors. The object focused by the camera and the objects at the
same distance from the camera as the focused object appear to be the sharpest in the
image. Sharpness of the objects in front of and behind the focused distance decreases
gradually in the image. This sharpness-loss is not significant within a certain range of
object distances. This range is called depth-of-field (DOF) of the camera [76]. DOF
as calculated by par-axial geometric optics model of image formation using a thin
convex lens is given in Appendix A of the thesis. DOF depends on various factors
such as, the amount of sharpness-loss regarded as acceptable, focal-length of the lens
(longer the focal-length, shorter the DOF), distance of the focused object (nearer the
object, shorter the DOF) and the aperture used (decreasing the aperture will increase
the DOF). The extreme case of decreasing the aperture for maximizing the DOF hap-
pens in a pin-hole camera. It has an infinite DOF. Unfortunately, the optical power

in the image plane is reduced considerably due to very small aperture. So cameras
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with finite DOF are preferred. A finite but large DOF means that objects within a
large range (and hence possibly a large number of objects) will appear to be sharp in
the photograph. On the other hand, a small DOF means that objects within a small
range (and hence possibly a small number of objects) will appear to be sharp in the
photograph and all other objects will appear to be out-of-focus in the photograph.
Out-of-focus blur is one of the typical degradations which occur in images acquired
by digital cameras due to their low DOF [60, 76]. The problem of low DOF is also

encountered in microscopy due to increment in magnification and aperture [61, 6, 36].

1.1 Motivation

One way to enhance the effective DOF is to acquire several images of a scene focused
on objects at different distances and then integrate these images into a single image
in such a way that all regions of the scene are in focus. Acquired images are called
multi-focus images and the process of combination is known as multi-focus image
fusion (MFIF). The process produces an image whose total area-in-focus is more than
that of any of the constituent images. Multi-focus images of a scene are acquired one
by one either by hand-held cameras or by cameras placed on tripods, in identical
environmental conditions in respect to sensor, light, view-direction, orientation and
object-contents in the scene. They can be either grey-level or color images. Since
each image in a set of multi-focus images has focus on objects at different distances
in the scene, an object which is in-focus in the near-focused image may be out-of-
focus in other images. Similarly an object which is out-of-focus in the near-focused
image may be in-focus in the far-focused image. Hence partial defocusing/blurring is
inevitable in this type of images. MFIF produces an image in which blurred regions
are deblurred and every area is in focus. The fused image should be better for human
viewing as well as for subsequent processing and analysis like segmentation, feature
extraction, object recognition etc. Figure 1.1 shows an example of multi-focus images

with focus on complementary regions and the fused image with focus on all regions.
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(a) Near focused image (b) Far focused image (¢) Fused image

Figure 1.1: An example of multi-focus image fusion

The techniques for MFIF belong to the broad categories, pixel-based, block-based
and region-based. They concentrate respectively on single pixels, small blocks of size
m x n and arbitrarily shaped regions. It is interesting to study and compare MFIF

techniques within a particular category and the ones belonging to different categories.

The ultimate goal of MFIF is to obtain all objects in the final image in focused
and identifiable form. Mathematical morphologic operators have the capability of
handling objects in different shapes and sizes. In this thesis, we explore mathematical
morphology as a tool for MFIF and propose new techniques for the same employing
this tool. We provide a comparison of results obtained by various techniques and
outline some related future work. Image registration is a necessary pre-requisite for
MFIF because before fusion the constituent images must be positioned properly with
respect to a common coordinate system so that corresponding objects are overlaid
properly [41]. We propose a new technique for multi-focus image registration also. In
this chapter, a brief review of previous work on MFIF is given in Section 1.2, objective
of the thesis is given in Section 1.3, a brief account of mathematical morphologic
operators is given in Section 1.4, contribution of the thesis is given in Section 1.5,
experimental set-up along with data used for experimentation are given in Section 1.6,
evaluation techniques used are given in Section 1.7, and finally organization of the

thesis is given in Section 1.8.
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1.2 Review of previous work

The fundamental concept behind MFIF is to select the sharply focused regions from
the input images to form an image in which all objects are in focus. The basic steps
for this are, to divide each input image into overlapping or non-overlapping regions,
then measure sharpness of focus for all regions, finally select the best-focused region
among all corresponding regions to form the fused image. When all the regions of
interest squeeze into single pixels, the approach is called a pixel-based approach, when
they are small blocks of size m x n, the approach is called a block-based approach;
otherwise it is called a region-based approach. Another categorization is done on
whether the technique is based on spatial domain or frequency domain. In spatial
domain techniques, input images are fused in spatial domain using physically relevant
spatial features. In frequency domain techniques, multi-scale decomposition (MSD) or

multi-resolution decomposition (MRD) by pyramid or wavelet transform is required.

An early categorization of frequency domain MRD fusion schemes was given by Zhang
and Blum [89]. Piella [65] provided a general framework for these schemes and also
proposed a new method for the same. Pajares and Cruz [59] presented a comprehen-
sive tutorial on wavelet-based fusion methods. Goshtasby and Nikolov [30] presented
an overview of various fusion techniques. Basic idea of MRD-based fusion schemes
is the following. At first each source image is transformed/decomposed up to a level
by an MRD scheme. The decomposition gives the scaled image as low frequency
coefficients and the detail images as high frequency coefficients. Saliencies of the
coefficients are measured by their activity-levels. A selection or decision map is cre-
ated from the activity-levels of the coefficients from all transformed images. The
map is used as a guide to construct the composite representation of the transformed
images. Finally fused image is obtained by applying the inverse transform to the
composite representation. An MRD fusion scheme is categorized depending on how
the activity-levels of MRD-coefficients are measured. If the activity-level is measured
for the coefficients related to individual pixels, the method is called pixel-based, if it

is measured depending on the coefficients of a small block surrounding the concerned
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coefficient, the method is called block-based and finally; if it is measured depending
on all coefficients in a region containing the concerned coefficient, then the method
is called region-based. Images fused by frequency-domain MRD schemes may lose
some information of the source images because of implementation of inverse multi-

resolution transform.

The idea of using MRD schemes for image fusion was first proposed by Burt [8] as a
model for binocular fusion for human stereo vision. He used Laplacian pyramid for
MRD and choose maz rule for coefficient selection. Burt and Adelson [10] later in-
troduced a new approach to image fusion based on hierarchical image decomposition.
Adelson [2] then used the Laplacian pyramid technique for MFIF. Toet [78] proposed
the use of ratio of low-pass pyramids at successive levels of Gaussian pyramids for
fusion of visible and IR images. Burt [9] proposed that fusion within a gradient
pyramid provides improved stability and noise immunity. Akerman [3] optimized the
Laplacian pyramid fusion in respect of multi-sensor fusion. Burt and Kolczynski [11]
presented gradient pyramid fusion with a local match measure and a window-based
saliency measure. Li et al. [45] used similar method except that wavelet transform
is used instead of pyramid transform and consistency verification is done along with
window-based activity measure. Wavelet based fusion techniques are proposed later
by many other people including Chipman et al. [16], Petrovic and Xydeas [63], Sche-
unders [72], Hill et al. [37], Hamza et al. [34], De and Chanda [19], Qu and Yan
[68] and Lewis et al. [44]. Frequency domain techniques in various categories will be

discussed in detail in related chapters.

Since multi-focus images of a scene are acquired with focus on complementary regions,
focused regions in an image have more contrast than their defocused counter-parts
in other images. Focus-measure (FM) is a quantity for evaluating the contrast or
sharpness of a pixel, block or region [39, 50]. Tmage variance, image gradients, im-
age Laplacians, energy of image gradients (EOG), energy of image Laplacian (EOL)
are traditional FM’s employed and validated for applications like autofocusing [76].

Modified Laplacian (ML), Sum modified Laplacian (SML) are modifications of image
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Laplacian [58]. Spatial frequency (SF) [25] and Tenengrad [36] were later introduced
as focus measures. In spatial domain MFIF techniques, input images are fused in
the spatial domain using focus-measure as a physically relevant spatial feature in lo-
calized area. Since these techniques emphasize on a specific or desired image area,
very little/no change occurs in other areas. Pixel-level weighted averaging is a spa-
tial domain technique in which fusion is done by taking the weighted average of the
pixel intensities of the input images. Weights are determined by tools like principle
component analysis [71] or adaptive methods [42]. Other spatial domain pixel-level
image fusion approaches include, fusion using controllable camera [73], probabilistic

methods [5], image gradient method with majority filtering [23].

The basic idea in spatial domain block based fusion methods is to divide the input
images into a number of blocks, then measure focus on corresponding blocks and
finally select and combine the focused blocks to create the fused image [39]. Often
consistency verification is done before creating the final fused image. Spatial domain
block based fusion methods are proposed in [47, 48, 55, 29, 27, 87, 21]. Li et al. [47]
used spatial frequency (SF) as the focus measure. In a subsequent work they [48]
used neural network (NN) to select better focused blocks using three features SF,
visibility and edge feature. Miao and Wang [55] used energy of image gradients (EOG)
to measure focus in image blocks in an MFIF algorithm based on Pulse Coupled
Neural Networks. In the method of Goshtasby [29], focus is measured by the sum
of the gradient values of all pixels in the block. In the method of Fedorov et al.
[27] each image is tiled with overlapping neighborhoods. For each region the tile
that corresponds to the best focus (which is measured by ML) is chosen. Zhang and
Ge [87] proposed a technique in which focused blocks are detected by measuring their
blurriness. De and Chanda [21] introduced a new focus measure called energy of
morphologic gradients (EOMG) and used it for image fusion in a block-based MFIF

algorithm.

In region-based fusion techniques, among corresponding regions better focused ones

are selected and combined to construct the fused image. So block-size is not of any
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concern in these methods. Spatial-domain region-based fusion methods are proposed
in [53, 57, 22, 49]. Methods described in [53, 57, 22] use multi-scale morphology.
Matsopoulos et al. [53] used multi-scale morphologic pyramids. Mukhopadhyay and
Chanda [57] used morphologic towers instead of morphologic pyramids. De et al. [22]
proposed multi-focus image fusion techniques using multi-scale top-hat transforma-
tion. Li and Yang’s technique [49] is a spatial-domain, region-based technique which
does not depend on MRD. In this technique, input images are segmented according
to the segmentation results of a temporary fused image and better focused regions are
selected and stitched to their desired positions to get the final fused image. Spatial
domain techniques in various categories will be discussed in detail in related chapters.

Objective of the thesis is given now.

1.3 Objective of the thesis

A number of researchers have suggested methods for MFIF as a solution to the prob-
lem of low depth-of-field. As discussed before, the techniques belong to the broad
categories, pixel-based, block-based and region-based. It is interesting to study and
compare MFIF techniques within a particular category and the techniques belonging
to different categories. A good algorithm for MFIF should possess some important
properties. It should be independent of image content and robust against probable
misalignments of input images. It should not produce any unwanted visual effect
or artifact. Quality of the fused image should satisfy the requirement for intended
application and finally computational complexity should also be affordable. In gen-
eral, pixel-based techniques are intuitively straightforward, easy to implement and
computationally efficient. But they are sensitive to mis-registration of input images.
Block-based and region-based techniques are more robust in respect of registration
problems though they are more complex in general. Despite the increase in complex-
ity, region-based methods have a number of advantages over pixel-based methods.

These include the ability to use more intelligent semantic fusion rules and the ability
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to attenuate or accentuate certain properties to the regions [30].

Multi-focus images may contain objects of different shapes and sizes. The ultimate
goal of MFIF is to obtain all objects in the final image in focused/deblurred form.
Mathematical morphology is a subject which treats an image as an ensemble of sets.
Morphologic operators have the capability of handling objects in different shapes and
sizes. They have some interesting computational advantages as well. In this thesis we
explore morphologic techniques as a tool for MFIF. Algorithms for MFIF proposed

in the thesis employ various combinations of morphologic operations.

Given this, the objective of the thesis is to propose and analyze grey-level MFIF
schemes employing morphologic operators and having the following desirable proper-

ties,

e ability to work on a variety of input images,

e robustness against probable mis-registration of input images,
e extensibility to fuse multi-focus color images,

e low computational cost,

e adaptability to hardware implementation.

Since all algorithms for MFIF proposed in this thesis use morphologic operators, a

brief introduction to them is given now.

1.4 Morphologic Operators

Mathematical morphology treats an image as a set of pixels [74, 75]. Morphologic
operators work with two sets, the original image to be analyzed and a structuring

element (SE). Each SE has a shape and a size and it can be thought of as a parameter



CHAPTER 1. INTRODUCTION 9

to the operation. Fundamental morphologic operations are morphologic dilation and
morphologic erosion. At first we present these two operators for binary images. A
two-dimensional binary image signal is a function/mapping from domain D (which
is a subset of discrete two-dimensional Euclidean space Z?) to a binary-set {0,1}.
Suppose A is the set of points representing the binary-1 pixels of the original binary
image and B is the set of points representing binary-1 pixels of the SE. Then dilation
and erosion of A by B, are denoted by A® B and AS B respectively and are defined

as

A®B = {b+a|forbe Bandac A} (1.1)

AeB = {p|b+pe Aforevery be B} (1.2)

where ‘4’ denotes the binary-or operation. Practically, A @ B is the locus of origin
of B such that B hits A. Similarly, A © B is the locus of origin of B such that B fits
in A.

We now consider the case of grey-scale images. A two-dimensional grey-scale image
signal X is a function/mapping from domain D (which is a subset of discrete two-
dimensional space Z?) to the set of grey intensity values {gi, ¢s, ..., gn} where each
g; is a nonnegative integer. A grey-scale SE h is a mapping from its domain to the
above set of grey values. In this thesis, we use flat SE’s that is SE’s for which the
value of h is always zero. Let (r,¢) be a point in domain D, where 7 and ¢ denote the
row and column coordinates respectively. Dilation and erosion of X (r,c) by h(r,c)

are denoted by (X @ h)(r,¢) and (X © h)(r, ¢) respectively and are defined as

Xonwd =  max (Xr-ie-)+hGi) (03
(X eh)(re) = min (X(r+i,c+37)—h(i7)) (1.4)

(i,j)€Domain of h

where the maximum and minimum are taken over all (i, 7) in the domain of h such
that (r—i,c—j) and (r+1i,c+7) are in the domain of X. So dilation simply replaces
the value at each point of X by the maximum value in the neighborhood defined by
the SE when the origin of SE is placed at the point. Similarly erosion replaces the
value at each point of X by the minimum value in the neighborhood defined by the
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SE when the origin of SE is placed at the point. Other morphologic operators are
constructed by combining dilation and erosion. For example, opening and closing of
X(r,c) by h(r,c) are denoted by (X o h)(r,c) and (X e h)(r,c) respectively and are
defined as

(Xoh)(r,e) = (Xeh)®h)(rc) (1.5)
(X eh)(r,e) = ((X®h)eh)(rc) (1.6)

Both opening and closing are increasing operations implying that opening (closing)
of an image contains openings (closings) of all its sub-images. Both opening and
closing are idempotent operations implying that successive applications of openings
(closings) do not further modify the image. Finally, opening is an anti-extensive
operation and closing is an extensive operation. In a grey-scale image X, an opening
removes all foreground structures in the image that are not large enough to contain
the SE. Similarly, a closing removes all background structures in the image that are
not large enough to contain the SE. Here foreground structure means an image region

of intensity value higher than the surrounding region.

1.4.1 Multi-scale morphologic operators

Extraction of features by mathematical morphology depends on effective use of SE’s.
Sizes and shapes of SE’s play crucial roles here. A morphologic operator with a
scalable SE can extract features of various shapes and sizes. A scheme of morphologic
operations with a scalable SE is termed as multi-scale morphology [15, 52]. For a
scalable SE h, size of its domain gets changed. Let B be a set representing the
domain of h. Assume that B has a definite shape. Let n be an integer representing
the scale-factor of B and let nB denote the scaled version of B at scale n. If B is

convex, then nB is obtained by n — 1 dilations of B by itself.

nB=B@B®B®---®B (1.7)
nffgimes

When n = 0, conventionally B is taken to be a disk of unit size so that nB = {(0,0)}.

Let h be a flat-top SE such that its value at every point in its domain nB is zero. Then
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a morphologic operation by SE h reduces to an operation by its domain nB. Then
multi-scale opening and closing of X by scalable domain nB are defined respectively

as

(X onB)(r,c) = ((XenB)®nB)(r,c) (1.8)

(X enB)(r,c) = ((X@®nB)onB)(r,c) (1.9)

The opening removes all bright /foreground structures in the image X that are not
large enough to contain nB. Here foreground structure means an image region of
intensity value higher than the surrounding region. Similarly, the closing removes all
dark/background structures in the image X that are not large enough to contain nB.
These operators are used effectively to detect focused regions which in general have

more contrast than corresponding defocused regions.

Given the background and the objective of the thesis and a short introduction to

morphologic operators, contribution of the thesis is presented now.

1.5 Contribution of the thesis

It is already discussed that the objective of the thesis is to propose and analyze grey-
level MFIF schemes having certain desirable properties. Mathematical morphology
is explored as a tool for MFIF and new techniques are presented employing this tool.
In addition to a brief review of previous work, the objective of the thesis and a short
introduction to morphologic operators, current chapter, viz. Chapter 1 includes the
data-set used for experimentation purpose and the quantitative measures used for

performance evaluation.

Since registration is a necessary prerequisite for MFIF, a new algorithm for multi-
focus image registration is presented in Chapter 2. It is an iterative algorithm for
registration of multi-focus images by combining global and local transformation mod-

els. In the first step of the algorithm, a global translation is determined by maximizing
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the mutual information of the source and the reference images and then it is applied
on the source image. In the second step, a block-wise local scaling is applied on the
translated source image. The scale-factors are determined by maximizing a similarity
measure of two corresponding blocks of the translated source image and the reference
image. The global and local transformations constitute a hybrid technique which
is iterated to obtain the optimal result. The proposed method is automatic, easy
to implement and gives good results. Results obtained by applying the method on
different sets of multi-focus images are provided with. Performance of the system is

evaluated and is compared with a widely used method.

Chapter 3 presents a pixel-based algorithm for multi-focus image fusion using mor-
phologic wavelets. A nonlinear morphologic wavelet transform which preserves the
range in the scaled images and involves integer arithmetic only is introduced at first.
This transform is employed in a fusion algorithm to fuse a set of grey-scale multi-
focus images. The method is computationally efficient and produces good results.
Integrated-chip implementations of image processing algorithms are going to become
more common in near future. Our method will be useful in this respect. The problem
with this algorithm is that being a pixel-based method, it is not robust to mis-

registration problem.

Chapter 4 presents a block-based algorithm for multi-focus image fusion using a
morphology-based focus measure in a quad-tree structure. Focus-measure is a quan-
tity for evaluating the contrast or sharpness of a pixel, block or region. A new
focus-measure called energy of morphologic gradients (EOMG) is introduced. Tt is
used for a novel algorithm for MFIF which employs a quad-tree structure for optimal
subdivision of input images while selecting the sharply focused blocks. Though the
algorithm starts with blocks, it ultimately identifies sharply focused regions in input
images. The focus measure EOMG is comparable with other focus measures viz. en-
ergy of gradients (EOG) and variance. The algorithm is robust in the sense that it
works with any focus measure. It is also robust against pixel mis-registration. But as

the algorithm perceives an image as a union of variable-sized blocks, blocking effects
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may appear in the boundaries of arbitrary-shaped regions.

Chapter 5 presents a region-based algorithm for multi-focus image fusion using multi-
scale morphology. Since multi-focus images of a scene are acquired with focus on the
complementary regions, focused regions in an image have more contrast than their de-
focused counter-parts in other images. This implies that the focused regions contain
larger number of physically relevant features than that contained in corresponding
defocused regions. Focused regions are detected by extracting the bright and dark fea-
tures at various scales by multi-scale top-hat transformation. Since the best-focused
regions are detected and copied from one image only, a slight error in registration
will have no effect in fusion except in the borders of the focused regions. Hence
this region-based method is robust to mis-registration. This method resembles the
manual cut-and-paste method of image fusion which is often used for comparison
purposes. Thus the fused image obtained by the method is very similar to the ideal
fused image. Performance analysis reveals that our method is superior to fusion by a

state-of-the-art method.

Chapter 6 presents the conclusion of the thesis including a comparative study of
techniques presented in previous chapters. It also presents a discussion on related

future work.

In brief, in this thesis

e Chapter 1 presents a brief review on existing literature, the objective and con-
tribution of the thesis, data-set used for experimentation and the quantitative

measures used for performance evaluation,

e Chapter 2 presents an iterative algorithm for registration of multi-focus images

by combining global and local transformation models,

e Chapter 3 presents a pixel-based algorithm for multi-focus image fusion using

morphologic wavelets,
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e Chapter 4 presents a block-based algorithm for multi-focus image fusion using

a morphology-based focus measure in a quad-tree structure,

e Chapter 5 presents a region-based algorithm for multi-focus image fusion using

multi-scale morphology,

e Chapter 6 presents conclusion of the thesis and gives an outline on related future

work.

Experimental set-up and the data-set used for experiments are presented now.

1.6 Experimental set-up

Proposed algorithms are implemented using C' language in Uniz environment. All
programs are executed on a machine with Intel Pentium processor T4400 and 1 GB
RAM. Standard algorithms proposed by others have also been implemented in the

same environment for comparison purpose.

1.6.1 Data used in experimentation

The algorithms are applied on a large number of multi-focus image-sets which vary
in their object-contents and imaging set-up. Object-contents of image-sets vary in
number, shape and distance of objects from the camera. Texture of image-sets varies
in regularity, density and in combination of micro and macro texture. Some of the
image-sets depict indoor scenes whereas others depict outdoor scenes. Images of
indoor scenes generally contain human beings, animals and man-made objects. Man-
made objects with straight-line edges (for example, book, book-shelf, table, window,
door etc.) are helpful to detect artifacts like step-effects generated after processing.
Images of outdoor scenes generally contain natural objects like flowers, plants, trees

and also buildings. These images in general show irregularity in texture. Registration
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of such images is difficult because in addition to other differences temporal changes
between shots may occur due to wind. Hence slight mis-registration may be present
in this type of images. This may in turn reveal the robustness of the fusion procedure

against mis-registration.

Since it is not possible to include all experimental results in the thesis, we have cho-
sen test image-sets in such a way that experiments are validated by different types
of images. Twelve representative image-sets are used in the thesis and they are ob-
tained from web-sites [32, 24, 26, 1, 28]. The image-sets named as ‘Doll’, ‘Toy’, ‘Disk’,
‘Lab’, ‘Pepsi’, ‘Clock’, ‘Campus’, ‘Hydrant’, ‘Garden’, ‘Rose’, ‘News’ and ‘OpenGL’
are shown in Fig. 1.2. Among these, the multi-focus ‘Doll’ images (Fig. 1.2A) are
synthetic images generated from the famous painting named ‘Las Meninas’ by Diego
Velazquez kept at ‘Museo del Prado” in Madrid. These images have been generated
artificially by a modern painter cum art-teacher John Hagan [32]. He has visually
estimated the distances of various objects present in the painting. Accordingly differ-
ent portions of the original image of the painting have been artificially defocused by
him to illustrate the concept of ‘depth-of-field’. Though the blurring model and the
parameters are not known to us, we have used this multi-focus image-set as an ideal
synthetic data-set for evaluating the performance of fusion algorithms. Moreover, this
image-set contains three multi-focus images, hence it offers better illustration facility
than the sets of two images. Image-sets ‘Toy’, ‘Disk’, ‘Lab’, ‘Pepsi’ and ‘Clock’ are
obtained from web-site [24]; ‘Campus’ and ‘Hydrant’ are obtained from web-site [26];
‘Garden’ is obtained from web-site [1]; ‘Rose’, ‘News’ and ‘OpenGL’ are obtained

from web-site [28]. The characteristics of test image-sets are given now.

e Image-set ‘Doll’” depicts an indoor scene with many objects of arbitrary shapes

and sizes and placed at different distances.

e Image-set ‘“Toy’ depicts an indoor scene with many objects of regular shapes

placed before a large and mostly dark background.

e Image-sets ‘Disk’ and ‘Lab’ contain many objects of different sizes and mostly
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Table 1.1: Multi-focus images and their sizes

Figure Size

Doll 384 x 576
Toy 512 x 512
Disk 448 x 576
Lab 448 x 576
Pepsi 512 x 512
Clock 256 x 256
Campus | 480 x 640
Hydrant | 480 x 640
Garden | 320 x 448
Rose 512 x 704
News 224 x 320
OpenGL | 512 x 704
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of regular geometric shapes.

e Image-set ‘Pepsi’ and ‘Clock’ contain large objects all of which have regular

geometric shapes.

e Image-sets ‘Campus’ and ‘Hydrant’ depict outdoor scenes with objects of mostly

irregular texture and at large distances among themselves.
e Image-set ‘Garden’ depicts an outdoor scene with dense irregular texture.
e Image-set ‘Rose’ has a large area of regular grid-like structure as background.

e Image-set ‘News’ contains dense but mostly regular texture.

Image-set ‘OpenGL’ contains both micro and macro textures.

As mentioned in Section 1.5, image registration is a necessary pre-requisite before

fusion. Among the above image-sets, five (viz. ‘Doll’, ‘Disk’, ‘Garden’, ‘Rose’ and
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A.(ii) Doll: Middle focused image A.(iii) Doll: Far focused image

Figure 1.2: Multi-focus image data-sets used for experimentation

‘News’) were not registered and we have registered them. Details of registration are
given in Chapter 2. The rest of the images were already registered. Sizes of various

image-sets after registration are given in Table 1.1.
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1.7 Quantitative Performance Evaluation

A good fusion algorithm should be able to work on a variety of input images, ro-
bust enough to tolerate probable mis-registration of input images and should not
produce any unwanted visual effect or artifact. Moreover quality of the fused image
should satisfy the requirement for intended application and computational complexity
should also be affordable. Quality and time are inter-dependent and they are often
related directly, that is, better quality needs more time. So depending on the specific

application, one has to compromise/trade off between these two.

There are two types of assessment, subjective or qualitative and objective or quantita-
tive [62]. In qualitative fusion quality assessment, subjects or observers are requested
to examine the input image-sets and the output images obtained by various fusion
techniques and then rank the output images according to their visual quality [64]. Av-
erage of the ranks given by different observers indicates the subjective quality of the
techniques under examination. The process is time consuming, laborious and expen-
sive. Moreover the assessment in this process is non-repetitive, that is, for the same
set of images the ranking given by an observer may change from time to time. Quan-
titative fusion quality evaluation overcomes these draw-backs by employing a metric
that quantifies the quality of the fused images. The metric should estimate how much
information is obtained from the input images because goal of image fusion is to in-
tegrate information from multiple sources. In conventional methods, the ideal fused
image is used as the reference image and the metrics like mean-square-error (MSE),
peak-signal-to-noise-ratio (PSNR) are used to estimate the error between the refer-
ence image and the processed image. Since reference images are not available here,

we need to use metrics which do not require them.

In this thesis, quantitative evaluation of fusion algorithms is done by using two differ-
ent metrics. They are based respectively on image gradients and structural similarity
index. Each of the metrics yields a numerical value from the input image-set and the

fused image. None of them requires any reference image. For both of them, greater
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B.(i) Toy: Near focused image

B.(ii) Toy: Middle focused image B.(iii) Toy: Far focused image

Figure 1.2: Continued
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C.(ii) Disk: Far focused image

.

D.(i) Lab: Near focused image D.(ii) Lab: Far focused image

Figure 1.2: Continued
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E.(i) Pepsi: Near focused image E.(ii) Pepsi: Far focused image

F.(i) Clock: Near focused image F.(ii) Clock: Far focused image

Figure 1.2: Continued
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H.(i) Hydrant: Near focused image H.(ii) Hydrant: Far focused image

Figure 1.2: Continued
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J.(i) Rose: Near focused image J.(ii) Rose: Far focused image

Figure 1.2: Continued
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K.(ii) News: Far focused image

\, OpenGLNES

L.(i) OpenGL: Near focused image L.(ii) OpenGL: Far focused image

Figure 1.2: Continued
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value means better fusion. The metrics are described below for two input images,

however they can be extended easily to three or more input images.

1.7.1 Gradient similarity index

Gradients operators are useful tools to measure variations in intensity of a pixel
with respect to its immediate neighboring pixels [13]. It is observed that a pixel
possesses high gradient value when it is sharply focused. So in a set of multi-focus
images, pixels of a sharply-focused region possess higher gradient values than pixels
of the corresponding out-of-focus region. This observation led to an image fusion
performance measure employing image gradients [57, 22]. For two multi-focus input
images X; and X5, gradient images GG; and G5 are obtained first. Then G; and G4
are combined into G by taking the maximum gradient value at each pixel position

(r,c). Therefore
G(r,c) = max (G1(r, ¢), Ga(r, ¢)) for all (r,c) (1.10)

Thus only the sharply focused pixels from the constituent images have their contri-
bution in the mazimum gradient image G. Let G denotes the gradient of the fused
or reconstructed image F. It is referred to as the gradient of fused image. Then,
more similar G and G are, better is the fusion algorithm. Now, following the usual
definition of signal-to-noise ratio, a simple objective measure of similarity between

two gradient images is calculated as

S(G,G)=1— \/Z(G(T, c) — G(Tlc))Q
VS + /S G0

We call S the gradient similarity index (GSI). Here, \/Z(G(r, ¢) — G(r,c))? deter-

(1.11)

mines the error or dissimilarity between the images and it is normalized by the quan-

tity /3. G2(r,¢) + /3. G2(r, ¢) to make the measure unbiased to overall brightness

of the images. So for an ideal fused image S approaches the value 1. For our experi-

mentation, we have calculated the gradients by Robert’s gradient operator [70]. For
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more than two input images, G(r,c) is calculated as the maximum of the gradients

at (r,c) taken over all input images.

1.7.2 Fusion quality index

Structural similarity index (SSI) proposed by Wang and Bovik [83] is an effective
metric to measure the quality of an image. For two real-valued sequences X =
(x1, 29, ..., xp,) and Y = (y1,¥2, .. ., Yn, ), the metric Qy(X,Y") defined as

4 X oxy X px X jy
(W% +13) x (0% +07)

Qu(X.Y) = (1.12)

measures the structural similarity of X and Y. Here ux and py are the mean values
of X and Y; 0% and % are the variances of X and Y; and oy is the covariance of
X and Y. Structural similarity of two images is defined in a similar way. Since image
signals are generally non-stationary, it is more appropriate to measure )y over local
regions and then combine the different results into a single measure. The authors [83]
proposed to use a sliding window approach. Starting from the top-left corner of the
two images X1, X, a sliding window of fixed size (with n pixels) moves pixel by pixel
over the entire image until the bottom-right corner is reached. For each window w,
the local quality index Qy(X;, Xs | w) is computed. Finally, the structural similarity

index (SSI) Qo is computed by averaging all local quality indices.

Piella and Heijmans [66] proposed variants of SSI to measure quality of image fusion.
Fusion quality index (FQI) Q(X;, Xy, F') for input images X;, Xo and output image
F'is defined by them as

QX,, Xy, F —iz W) Qo(X1, F [w) + Ao(w) Qo(Xo F w))  (1.13)

ew

where Qo(Xq, F' |w) is the structural similarity index of X; and F' over the local
window w, W is the family of all local windows, |WW| is the cardinality of W and )\
and Ay are weights obtained from local saliency measures. Local saliency measure

s(Xi|w) of input image X; should reflect the local relevance of X; within the window
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w, and it may depend on contrast, sharpness or entropy. Given the local saliencies
s(X1|w) and s(Xs|w), the local weights A\;(w) and Ay(w) is computed. It indicates the
relative importance of image X; compared to image X5. A typical choice for A;(w) is
%. In our evaluation, we have taken the window-size to be of 8 x 8 pixels
and the sum of gradient values in the local window to be the local saliency measure.
For more than two input images, @ is calculated as the average weighted sum of QQy’s
calculated for all images. Here weight for a local window in an image is calculated

as the saliency of the window in that image divided by sum of local saliencies for all

corresponding windows in all other images.

1.8 Organization of the thesis

Organization of the thesis follows. A survey on multi-focus image registration and
an iterative and hybrid method for the same are presented in Chapter 2. Chapter 3
presents a computationally efficient pixel-based algorithm for MFIF using wavelet.
Before describing the algorithm, the basic theory and new wavelet called morphologic
wavelet is presented. Chapter 4 presents a block-based method for MFIF. It employs
a new focus-measure called energy of morphologic gradients. Chapter 5 presents
a region-based method for MFIF using multi-scale morphologic operators. In each
chapter, after describing the new algorithm, experimental results on data-sets given
in Figure 1.2 are presented. Finally, Chapter 6 presents concluding remarks and

out-lines future work.



Chapter 2

Multi-focus image registration

2.1 Introduction

Image registration is a necessary pre-requisite for multi-focus image fusion because
before fusion the constituent images must be positioned properly with respect to
a common coordinate system so that corresponding objects are overlaid properly
[41]. In general, the registration techniques may be classified according to two major
aspects: methodology and application-area. The methods can be categorized into two
types: (i) area-based and (ii) feature-based [92]. A third category has emerged which
is a hybrid of area-based and feature-based techniques. Registration techniques may
also be classified by their mapping models, that is by examining whether they apply
global and/or local mapping models. Global models use information from the entire
image to estimate the mapping function parameters. On the other hand, local models
treat the image as a composition of blocks/regions and the function parameters are

estimated separately for each block/region.

Registration techniques for multi-focus image have been proposed in [41, 90, 91, 18,
22, 29, 27]. Among these, the methods proposed in [41, 90, 91, 18, 22] use global

affine transformation models and the ones proposed in [29, 27] use global perspective

28
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transformation models. The technique proposed by Kubota et al. [41] is an area-
based multi-scale technique. In this technique, from the source and the reference
images Gaussian pyramids are obtained at first. At the coarsest level of the pyramids,
translation, rotation and magnification parameters are estimated by the minimum
MSE between the two images. The parameters are propagated to the next finer
level and are further refined. The refinement process continues up to the original
resolution level and the parameters obtained there are used to register the source
image. Zhang and Blum [90, 91] proposed a hybrid multi-scale scheme using both
area-based and feature-based techniques. In this technique also, from the source
and the reference images Gaussian pyramids are obtained at first. At the coarsest
level of the pyramids, an initial estimation of transformation parameters (mainly
rotation and translation) is done by using the edge features. The parameters are
updated by iterative refinement of the optical flow estimation. They are propagated
to the next finer level and are further refined. The process continues up to the finest
level in which the final parameters are obtained and are used to register the source
image. De and Chanda [18, 22] described an area-based technique in which at first
the source and reference images are divided into equal number of blocks. A source
block is swiped over the corresponding reference block to find out the best matching
position in the block. Corresponding point-pairs are taken from best-matching blocks.
Finally, affine transformation parameters are estimated by the best-matching pairs
of points by using the least-square method. These parameters are then used to
register the source image. Goshtasby [29] proposed a hybrid registration scheme
in which the edge-intersection points are used as unique landmarks. At first, the
landmarks in the source image are found. Then corresponding landmarks in the
reference image are found by correlation template matching. From the corresponding
landmark pairs, the best four satisfying the projective constraints are identified. They
are used to calculate the projective transformation parameters. Source image is then
registered by using these parameters. Fedorov et al. [27] used a hybrid registration
scheme in which a number of well-located control-points are extracted globally at
first. Preliminary matches of the tie-points are established by identifying the pairs

with minimum distance in the descriptor space. Afterwards, the inevitable outliers
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are pruned off using RANSAC-like algorithm. Finally perspective transformation
parameters are estimated by the matched tie-points using the Normalized Direct
Linear Transformation (DLT) algorithm. Source image is then registered by using

these parameters.

The methods described above use global transformation models and do not apply
any local model appropriate for registration of multi-focus images. In general, these
images are acquired one by one in such a way that each image in the set has focus
on objects at a particular distance from the camera. This results in global as well
as local variations in the images. In this chapter we explore these variations and
present an iterative algorithm for registration of multi-focus images which combines
both global and local mapping models [20]. In the first step of the algorithm, a global
translation is determined by maximizing the mutual information of the source and
the reference images and then it is applied on the source image. In the second step,
a block-wise local scaling is applied on the translated source image. The scale-factors
are determined by maximizing a similarity measure of two corresponding blocks of the
translated source image and the reference image. The global and local transformations
constitute a hybrid technique which is iterated to obtain the optimal result. The
proposed method is automatic, easy to implement and gives good results. Results
obtained by applying the method on different sets of multi-focus images are provided
with. Performance of the system is also evaluated and is compared with a widely
used method. The chapter is organized as follows. Section 2.2 describes the proposed
algorithm. FExperimental results and discussion including performance analysis are

given in Section 2.3. Finally, concluding remarks are placed in Section 2.4.

2.2 An iterative hybrid registration algorithm

Multi-focus images of a scene are acquired one by one either by hand-held cameras
or by cameras placed on tripods, in identical environmental conditions in respect to

sensor, light, view direction, orientation and object-content in the scene [22, 27]. Each
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image in the set has focus on objects at different distances in the scene. Previous re-
search indicates that when the distance between the scene and the camera is large, it
is usually possible to approximate the motion of the scene using an affine transforma-
tion [90]. Note that an affine transformation is usually a combination of translation,
rotation and scaling (see Appendix B). In reality, for such applications, rotation of the
camera relative to the scene is insignificant and hence is not considered here. Global
scale-change between images may occur due to changes in focal settings. However in
most practical applications, it is less than three percent [76] and hence is not con-
sidered here. We consider global (horizontal and/or vertical) translation(s) between
images due to accidental camera-pan between shots taken by hand-held cameras and

the changes due to variations in focal settings during acquisition.

Focal variations are done intentionally to focus on objects at a particular distance.
For example, objects at the background of a scene are farther than those at the
foreground and during acquisition, focus at background generates a far-focused image
in which the background objects are in focus but the foreground objects are out-of-
focus. Similarly focus at foreground generates a near-focused image in which the
foreground objects are in focus but the background objects are out-of-focus. Hence
partial defocusing/blurring is inevitable in multi-focus images. Partial defocusing
affects the images in two ways. Firstly, due to point-spreading, a blurred object
appears to be larger in an image when compared to its focused counterpart in some
other image [40]. In addition to that the radii-of-blur may vary in near-focused and
far-focused images. This results in local scale-change between images. Secondly, the
position of an out-of-focus object may be changed when compared to the position of
its focused counterpart in some other image. This is shown in Figure 2.1 by a par-
azial geometric optics model of image formation using a thin convex lens. The focused
image of a point-object P is created as a point-image P’ on Plane-2 which is the
in-focus image-plane for P. All other image-planes nearer to or farther from the lens
than Plane-2 are out-of-focus image-planes for P. Plane-1 and Plane-3 are two such
out-of-focus planes. The blurred images of point-object P appear as blur-circles with

diameters AB and CD on Plane-1 and Plane-3 respectively. Hence the sizes of the
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Object Plane Plane 1Plane 2 Plane 3
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Figure 2.1: Geometric Optics Model of Lens System

focused and blurred images of the point-object do vary. In addition to that, blur-circle
is shifted vertically upwards in Plane-1 and the same is shifted vertically downwards in
Plane-3. So the focused and blurred images of an object do have position differences
as well. Intensity or radiometric differences caused by partial defocusing are not
dealt with in this work because they are intrinsic to multi-focus images and we do
not intend to change them. We rather concentrate on spatial transformations due to
camera pan and partial defocusing. A single global transformation is not adequate to
capture all these effects. Considering this fact, a registration technique is presented
which works in two steps. To nullify the effects of global translation(s), the source
image is translated globally in the direction(s) reverse to that of the camera pan.
Once the translation is done, local variations in size and position are corrected by
block-wise local scaling. Above two steps are iterated until a certain error criterion is

fulfilled. A schematic diagram depicting the iterative steps is shown in Figure 2.2.

In registration of a set of multi-focus images, every image is equally authentic with
its coordinate system. One of them is chosen to represent the common coordinate
system and is called the reference/target/destination image. Other images are called
source images. Source images are then registered to the reference image. Registration
is a mapping between two images both spatially and with respect to intensity [7]. If
source image X, and reference/destination image X, are defined as two-dimensional

arrays of intensity values on spatial coordinates (r,c¢), then mapping between them
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Figure 2.2: Schematic diagram for a hybrid and iterative registration method

can be expressed generally as

Xi(u,v) = Fi(Xs(Fy(r,c))) (2.1)

such that

e = || Xa(u, v) = X;(u,v) || (2.2)

be minimum, where F; is the mapping for intensity transformation and Fj is the
mapping for geometric transformation so that (u,v) = Fy(r,c¢). The equation may
vary depending on the application. In this work, F} is a space-variant transformation
which is a combination of global and local geometric transformations instead of a
single global transformation generally used for multi-focus image registration. We

describe below the method for registration of source image X, with reference image

Xg.

2.2.1 Global translation

Since multi-focus images are acquired one by one, accidental camera pan during
acquisition may happen and this results in global translation(s) of the image in small

amounts. This effect can be nullified by translating the image in reverse direction(s).

The amount of translation is determined by maximizing the mutual information of
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X and X,;. Mutual information (MI), originating from the information theory, is
a measure of statistical dependency between two data-sets [33]. MI between two

overlapping images X, and X, is given by
MI(X, Xy) = H(X,) + H(Xy) — H(Xs, Xy) (2.3)
where H(X,) is the Shannon entropy defined as

H(X,) == ps(k)logps(k) (2.4)

where p, (k) is the probability of occurrence of grey value k in the image X,. Similar
is the definition for Shannon entropy H(X,) of image X,4. Joint entropy H (X, Xg)
of two images X and X is given by

H(X,, Xq) == p(k,1)logp(k,1) (2.5)

(k1)

where p(k, 1) is the joint probability of occurrences of grey values & and [ in images X
and X, respectively. Entropy of a probability distribution is low when the distribution
has a few sharply defined, dominant peaks and it is maximum when all outcomes have
an equal chance of occurring that is, the distribution is uniform. The same is true for
joint entropy. It can be seen from Equation (2.3) that a small value of joint entropy
leads to a large value of MI. The idea that MI can be used for image registration
was pioneered by Collignon et al. [17] and Viola and Wells [80]. Both groups used
the idea for registration of multi-modal images. It is based on the assumption that if
two multi-modal images are properly aligned, then corresponding objects (and hence
their respective range of grey values) from two images overlay on one another. This
results in a few sharply defined, dominant peaks or ridges in the joint probability
distribution of the images. Hence, their joint entropy is minimized and consequently

MI is maximized.

The idea is extended to multi-focus image registration. Source image X, is swiped
over reference image X, in such a way that grids of both images match properly.
This is done by applying integral amount(s) of translation(s) along the axes. So no

interpolation is employed here. Then for each translation, overlapping sub-images of
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the translated source image and the reference image are found. MI of the overlapping
sub-images is calculated. Varying the translation-amounts within a range and calcu-
lating the MI of overlapping sub-images, the amount of translation which maximizes
MT is found. Suppose, the source image X after optimum translation(s), is mapped
to Xs(r + T,,c+ T.) where T, and T, are respective translations along the row and
column axes. After mapping, only the overlapping portions of translated source image
and reference image are retained and the rest are truncated. So essentially, trans-
lated source image and reference image become of same size after truncation. This is
important because in next step we need the source and reference images to be of the
same size. Henceforth, we shall refer to new source image as X, and new reference

image as X.

The choice for ranges within which 7, and 7, are varied is an experimental issue.
Greater range means better accuracy, but that also means greater time-requirement.
We have experimented with various ranges of 7, and T, and have seen in general that
the shifts are within 5 pixels. So we have taken the range of T, and T, to be -5 to

+5. Mis-alignments greater than 5 pixels are corrected during successive iterations.

2.2.2 Local scaling

Variations in focal settings during acquisition of multi-focus images result in local scale
and position differences in focused and defocused images of an object, as explained
in the beginning of this section by using Figure 2.1. The problem is addressed by
block-wise registration of X, with X,. At first, X, and X, are divided into n equal-
sized non-overlapping blocks. Since X, and X, are of same size, their block-sizes
are taken to be equal. We have experimented with different values of n and found
that n = 16 is a reasonably good choice for practical purposes. Each block of X is
scaled independently by appropriate factors along the axes. Resultant image is then

obtained by stitching the scaled blocks at their proper positions.
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Best scale-factors for a block

The best scale-factors (along row and column axes) for the k-th source block is deter-
mined by varying the scale-factors and then finding out the ones which give the best
matching with the k-th reference block. The range and precision for varying the scale
factors are important. We have experimented with three different ranges viz. 0.96-
1.04, 0.97-1.03 and 0.98-1.02 with three different increment-values in each range, viz.
0.02, 0.01 and 0.005. It is observed from our experiments that in general increasing
the range does not improve the results but finer precision gives better results. The
range 0.98-1.02 with precision 0.005 is found to be suitable for our purpose and we

have used those values for varying the scale-factors along the axes.

Suppose that k-th source block is scaled upon by the scale-factors s, and s. respec-
tively along r-axis and c-axis. Depending on the scale-factors, horizontal and vertical
dimensions of the scaled block are changed independently. Scaled source block is
swiped over k-th reference block. Suppose XF and X% respectively are overlapping
sub-images of k-th source block (after scaling) and k-th reference block. To find out
the best matching scale-factors of k-th source block we need either a similarity or a
dissimilarity measure. Small block-size reduces the statistical power of the proba-
bility distribution estimation [67]. Hence instead of mutual information, area-based
dissimilarity measure sum of squared differences (SSD) is used. For each swiping
position of the source block, SSD between the overlapping sub-images Xf and Xf; is

computed by

The best match occurs when the SSD is minimum. The SSD’s for best matching
positions for 9 different values (in the range 0.98-1.02 with precision 0.005) for each
of the scale-factors s, and s, are noted. This results in total 81 readings of SSD for
the block. The minimum of them gives the best scale factors for the block. The range
of scale-factors as stated above is obtained from experiments with a large number of

images and is found to satisfy the real-life problem.
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Stitching a scaled block

Stitching a scaled block in the resultant image requires additional care. Before scaling
all source and reference blocks are of equal size. After scaling, if the scaled source
block is smaller in size than the original source block and is stitched to the resultant
image, then some blank area will be created. In that case an appropriate larger
block surrounding the original source block is scaled and positioned there. If the
resized block is larger than the reference block, it is clipped after positioning properly.
Essentially, the registered source block and the reference block should be of same size.

For clarity, consider the following example.

Let us illustrate the situations which may occur due to local scaling, with a source
block of size, say 100 x 100 pixels. Suppose best scale-factors for the block is 0.98 along
both axes. So after scaling, size of the block is 98 x 98 pixels which is smaller than
its target area. Hence a 102 x 102 block containing the original source block is scaled
to obtain a 100 x 100 block which fits the target area. Now consider another case in
which the best scale-factors for the block is 1.02 along both axes. After scaling its
size will be 102 x 102 pixels which is bigger than its target area. The best matching
position of it is found by swiping it over the corresponding reference block. After
that it is clipped to 100 x 100 pixels, and then stitched to its proper position. Finally
consider the case where the scale-factors are 1.02 along r-axis and 0.98 along c-axis.
So the block becomes 102 x 98 pixels after scaling. In this case, a bigger block of
size 100 x 102 containing the original block is taken, so that it becomes 102 x 100
after scaling. After finding out the best matching position, the block is clipped to
100 x 100 pixels and is stitched to the target block. Each source block is registered

to the corresponding reference block in this way.
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Figure 2.3: Average error between source and reference images as the iteration step

number increases

2.2.3 Iteration

As stated above, the proposed registration technique has two distinct steps: (i) global
translation and (ii) local scaling. Optimum transformation parameters are determined
in these two transformations independently. But when they are combined, indepen-
dent parameters may not remain optimum any more. Hence we iterate these two
steps in the given order to achieve more acceptable result. We expect and experi-
mentally verified to that the transformations F, and F; of Equation (2.1) are updated
and the error defined in Equation (2.2) is reduced. The iteration is stopped when
there is no significant change in error. Root-mean-square-error (RMSE) between the
source and reference images is taken as the measure of error for our implementation
purpose. Average RMSE between source and reference images (used in Section 2.3)
are shown against iteration step number in Figure 2.3. Column-0 indicates RMSE
before registration, and for i=1 to 4, Column-; indicates RMSE after i-th step of
iteration. It is seen from the Figure 2.3 that RMSE decreases considerably in the
first step of iteration, then as the iteration step number increases RMSE decreases,

but with gradually slower rate.
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Interpolation

In the global translation step, the source image is swiped over the reference image
in such a way that grids of both images match properly. Hence no interpolation
is required in this step. In the local scaling step, however, grids of the source and
the reference blocks do not match in general. Hence, interpolation is required. Bi-
linear interpolation is a reasonable choice in terms of ease-of-implementation and
time-complexity. But during successive iterations it may reduce the contrast of the
images. A higher-order interpolation like bi-cubic interpolation is a better choice in
that respect although it takes more time [13]. To reduce the time-requirement, bilin-
ear interpolation is used while estimating the scale-factors for a block, and once the
best scale-factors are obtained, the block is reconstructed finally to be a part of the

resultant registered image, using bi-cubic interpolation.

2.3 Experimental results and discussion

The proposed algorithm for image registration has been implemented in C' language
in Unix environment. The global translation step has been implemented by varying
the translation-amount from -5 to +5 with unit increment along each axis. In the
local scaling step, source and reference images are divided into 16 blocks and for
each block the scale-factors along the axes are varied from 0.98 to 1.02 with an
increment-value of 0.005. At most three iterations were seen to be enough in each case.
Experimental results for five sets of multi-focus images (‘Doll’, ‘Disk’, ‘Garden’, ‘Rose’
and ‘News’) are shown in figures 2.4-2.8. In each result, original multi-focus images
are followed by registered images by the proposed method. The first image is taken as
the reference image in each case. To show the effectiveness of the method, difference
images (between the source and the reference image) before and after registration are

also provided.

In Fig. 2.4, A.(i), B.(i) and C.(i) respectively are near-focused, middle-focused and
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far-focused images before registration; A.(i) is taken as the reference image and B.(i)
and C.(i) are taken as source images. After truncation of A.(i); A.(ii) is the new
reference image; B.(ii) and C.(ii) are registered versions of B.(i) and C.(i) respec-
tively. In Fig. 2.4, the images D. and E. are difference images between A.(i) and
B.(i) and between A.(i) and C.(i) respectively. So they are difference images (be-
tween the source and the reference image) before registration. Finally, the images F.
and G. are difference images between A.(ii) and B.(ii) and between A.(ii) and C.(ii)
respectively. So they are difference images (between the source and the reference
image) after registration. As stated in Section 2.2, this work concentrates on position
and scale differences due to partial defocusing and does not aim to change the in-
tensity /radiometric differences caused by it. This is evidenced by difference images.
In both images A.(i) and B.(i), the background region is out-of-focus and very lit-
tle or no intensity differences do exist there. Differences in that region are mainly
due to position and scale differences. Comparison of the difference images D. and F.
shows that the position and scale differences in the background region are reduced
considerably in the latter. The differences in other regions (caused by position and
scale differences as well as intensity variations due to focusing and defocusing) are not
eliminated completely but are reduced which is shown by less bright edges in these

regions. Similar is the case for the middle region of difference images E. and G.

Figure 2.5 shows registration of a widely-used set of multi-focus images which de-
picts an indoor scene containing many objects of different geometric shapes and of
different sizes. In this figure, A.(i) and B.(i) are near-focused and far-focused images
respectively; A.(i) is taken as the reference image and B.(i) is taken as source image;
A.(ii) is the new reference image after truncation of A.(i), and B.(ii) is the registered
version of B.(i); finally C. and D. are the difference images between A.(i) and B.(i)
and between A.(ii) and B.(ii) respectively. Inspection of difference images inside the
clock region reveals thinner and less bright edges in image 2.5.D. which in turn indi-
cate that the proposed registration technique corrects the mis-alignments and local

scale variations in the input images.
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Figure 2.6 shows the results of registration of multi-focus images of an outdoor scene.
In general, registration of images of such scenes is difficult because in addition to
other differences temporal changes between shots may occur due to wind. Here the
task was more challenging because of the dense and irregular texture of the images.
In figure 2.6, A.(i) and B.(i) are near-focused and far-focused images respectively;
A.(i) is taken as the reference image and B.(i) is taken as source image; A.(ii) is the
new reference image after truncation of A.(i), B.(ii) is the registered version of B.(i);
finally C. and D. are the difference images between A.(i) and B.(i), and between A.(ii)
and B.(ii) respectively. Comparison of difference images 2.6.C. and 2.6.D. reveals that

differences have reduced considerably after registration.

Images of Figure 2.7 have a large area of regular grid-like structure as background.
Any mis-alignment can be detected easily in this type of images. The results of
registration do not show any such effect. In figure 2.7, A.(i) and B.(i) are near-focused
and far-focused images respectively; A.(i) is taken as the reference image and B.(i)
is taken as source image; A.(ii) is the new reference image after truncation of A.(i),
and B.(ii) is the registered version of B.(i); finally C. and D. are the difference images
between A.(i) and B.(i) and between A.(ii) and B.(ii) respectively. Comparison of
images 2.7.C. and 2.7.D. shows that edges are less bright in the latter which means

mis-alignments have been corrected after registration.

Finally, Figure 2.8 shows the results of registration of images of dense but mostly
regular texture. In this figure, A.(i) and B.(i) are near-focused and far-focused images
respectively; A.(i) is taken as the reference image and B.(i) is taken as source image;
A.(ii) is the new reference image after truncation of A.(i), and B.(ii) is the registered
version of B.(i); finally C. and D. are the difference images between A.(i) and B.(i)
and between A.(ii) and B.(ii) respectively. Comparison of images 2.8.C. and 2.8.D.
shows that dark areas have increased in the latter which means after registration the

difference between source and reference images have been reduced.

Careful manual inspection of the results also shows that the proposed registration

method does not produce any unwanted visual artifact or aliasing. To show that there
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is no block stitching artifact in the registered images, we have provided Figure 2.9
which shows magnification of a portion (where corners of four blocks coincide) of

middle-focused image Fig. 2.4.B.(i) and corresponding registered image Fig. 2.4.B.(ii).
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Figure 2.4: ‘Doll’: Original, Registered and Difference images. A.(i) Near-focused
image (reference-image), A.(ii) Truncated near-focused image (new reference-image),
B.(i) Middle-focused image, B.(ii) Registered middle-focused image, C.(i) Far-focused
image, C.(ii) Registered far-focused image, D. Difference between A.(i) & B.(i), E. Dif-
ference between A.(i) & C.(i), F. Difference between A.(ii) & B.(ii), G. Difference
between A.(ii) & C.(ii)
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Figure 2.4: Continued

2.3.1 Quantitative performance evaluation

Comparative study of the proposed registration method with the most widely used one
viz. global affine transformation [22] have been done. Since subjective evaluations may
not be universally acceptable, we compare the methods by three quantitative measures
viz. root-mean-square-error (RMSE), mutual-information (MI) and normalized-cross-
correlation (NCC) [13]. Good registration decreases the value of RMSE between
source and reference images and increases the value of MI and NCC between the
two images. Quantitative results are presented in Tables 2.1-2.3. In each table, the
first column gives serial-number of the source and reference image-pairs as shown

in figures 2.4-2.8; the second column presents the quantitative-metric values before
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Figure 2.5: ‘Disk’ Original, Registered and Difference images. A.(i) Near-focused
image (reference-image), A.(ii) Truncated near-focused image (new reference-image),
B.(i) Far-focused image, B.(ii) Registered far-focused image, C. Difference between

A.(i) & B.(i), D. Difference between A.(ii) & B.(ii)
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C. D.

Figure 2.6: ‘Garden’: Original, Registered and Difference images. A.(i) Near-focused
image (reference-image), A.(ii) Truncated near-focused image (new reference-image),

B.(i) Far-focused image, B.(ii) Registered far-focused image, C. Difference between

A.(i) & B.(i), D. Difference between A.(ii) & B.(ii)
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C. D.

Figure 2.7: ‘Rose’: Original, Registered and Difference images. A.(i) Near-focused
image (reference-image), A.(ii) Truncated near-focused image (new reference-image),
B.(i) Far-focused image, B.(ii) Registered far-focused image, C. Difference between

A.(i) & B.(i), D. Difference between A.(ii) & B.(ii)
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Figure 2.8: ‘News’: Original, Registered and Difference images. A.(i) Near-focused
image (reference-image), A.(ii) Truncated near-focused image (new reference-image),

B.(i) Far-focused image, B.(ii) Registered far-focused image, C. Difference between

A.(i) & B.(i), D. Difference between A.(ii) & B.(ii)
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Figure 2.9: Magnification of selected areas before and after registration. The blocks
used for scaling during registration and those used for magnification are shown in single
and double lines respectively. A. Fig. 2.4 B.(i) shown in blocks, B. Fig. 2.4 B.(ii) shown

in blocks, C.-D. Corresponding areas bounded by double-lines are shown magnified

registration; the third and fourth columns give the quantitative-metric-values after
registration, respectively by global affine transformation method and by the proposed
method; and the fifth and sixth columns give percentages of reduction or increment

of the metric-values after registration.

It is seen from the Tables 2.1-2.3 that RMSE is decreased and MI and NCC are
increased in all cases. It is also seen that percentage of decrement in RMSE and
percentages of increments in MI and NCC by the proposed method are higher than
those by global affine transformation method in all cases except for Figure 2.8 in
Table 2.2. In general, there are notable improvements in the results by the proposed

method however time-requirement is slightly more in this method.
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Table 2.1: Comparison of RMSE (less is better) between source and reference images

before and after registration by (i) Global Affine Transformation method and (ii)

Proposed Method

Source and reference

RMSE before

RMSE after Registration

%-reduction in RMSE

images Registration | by (i) by (ii) | by (i) by (ii)
2.4.B with 2.4.A 21.746 17.815 16.883 | 18.07 22.36
2.4.C with 2.4.A 22.970 22.047 17.534 4.01 23.66
2.5.B with 2.5.A 18.469 17.313 15.753 6.25 14.70
2.6.B with 2.6.A 46.793 40.599 33.203 | 13.23 29.04
2.7.B with 2.7.A 25.722 18.673 14.840 | 27.40 42.30
2.8.B with 2.8.A 46.519 39.084 37.800 | 15.98 18.74

Table 2.2: Comparison of MI (more is better) between source and reference images

before and after registration by (i) Global Affine Transformation method and (ii)

Proposed Method

Source and reference | MI before || MI after Registration | %-increment in MI
images Registration || by (i) by (ii) | by (i) by (ii)

2.4.B with 2.4.A 1.285 1.447 1.487 | 12.60 15.71
2.4.C with 2.4.A 0.999 1.150 1.329 | 15.11 33.03
2.5.B with 2.5.A 1.463 1.550 1.594 | 5.94 8.95
2.6.B with 2.6.A 0.398 0.593 0.708 | 48.99 77.88
2.7.B with 2.7.A 0.866 1.078 1.311 | 24.48 51.38
2.8.B with 2.8.A 0.393 0.509 0.469 | 29.51 19.33
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Table 2.3: Comparison of NCC (more is better) between source and reference images

before and after registration by (i) Global Affine Transformation method and (ii)

Proposed Method

Source and reference | NCC before || NCC after Registration | %-increment in NCC
images Registration || by (i) by (ii) | by (i) by (ii)

2.4.B with 2.4.A 0.903 0.934 0.941 | 3.43 4.20
2.4.C with 2.4.A 0.892 0.899 0.936 | 0.78 4.93
2.5.B with 2.5.A 0.918 0.918 0.940 | 0.00 2.39
2.6.B with 2.6.A 0.588 0.704 0.800 | 19.72 36.05
2.7.B with 2.7.A 0.790 0.886 0.935 | 12.15 18.35
2.8.B with 2.8.A 0.402 0.575 0.586 | 43.03 45.77

2.4 Summary

In this chapter we have proposed an iterative method for registration of multi-focus
images by combining global and local transformation models. It is automatic, easy
to implement and gives good results. It does not require any manual intervention for
feature or ground control point (GCP) selection. Different sets of multi-focus images
are registered by the proposed method. We have compared the performance of the
method with global affine transformation method in respect of quantitative measures
RMSE, MI, NCC and time-requirement. The proposed method is found better than
the other method in respect of RMSE, MI, NCC although the time-requirement is
more in the proposed method. Generally, registration techniques require interpola-
tion and use of a particular interpolation method affects the results in various ways
[92, 67]. In the first step of the proposed algorithm, no interpolation is required since
the grids of source and reference images overlay perfectly. In the second step of the
algorithm, interpolation is required. Bilinear interpolation is a reasonable choice in

terms of ease-of-implementation and time-complexity. But during successive itera-
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tions it may reduce the contrast of the images. A higher-order interpolation like
bi-cubic interpolation is a better choice in that respect although it takes more time
[13]. To reduce the time-requirement, bilinear interpolation is used while estimating
the scale-factor for a block, and at the end of the local-scaling step, when a block is
reconstructed to be a part of the resultant registered image, bi-cubic interpolation is
applied. The proposed image registration technique can be extended for registration
of multi-focus color images in RG B format. For this, at first each color image is to be
converted to grey-level image by computing the grey-level intensity at each pixel by
as (R+G+ B)/3. Then the global and local transformations are to be determined by
applying the proposed technique on the grey-level images. Then the transformations

are to be applied on the corresponding color images.



Chapter 3

Pixel-based fusion

3.1 Introduction

Pixel-based multi-focus image fusion techniques concentrate on individual pixels of
the images and work either in spatial domain or in frequency/transform domain.
In spatial domain techniques, input images are fused in the spatial domain using
physically relevant spatial features in localized area. Since they emphasize on a
specific or desired image area, very little/no change occurs in other areas. Pixel-
level weighted averaging is a spatial domain technique in which fusion is done by
taking the weighted average of the pixel intensities of the source images. Weights are
determined by tools like principle component analysis [71] or adaptive methods [42].
Weighted averaging often has serious side effects like reduction in the contrast of the
fused image. Other spatial domain pixel-level image fusion approaches include, fusion
using controllable camera [73], probabilistic methods [5], image gradient method with
majority filtering [23]. The method described in [73] depends on controlled camera
motion and does not work for arbitrary sets of images. Probabilistic techniques [5]
involve huge computation using floating point arithmetic and thus requires a lot of
time and memory-space. Image gradient method with majority filtering [23] has the

drawback that the defocused zone of one image is enhanced at the expense of focused

23
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zone of others.

An image often contains physically relevant features at many different scales or res-
olutions. Multi-resolution (MR) techniques for image fusion explore and use that
fact. They work either in spatial domain or in frequency/transform domain. A. A.
Goshtasby and S. Nikolov [30] pointed out that although pixel-level fusion is a local
operation, transform domain algorithms create the fused image globally. By changing
a single coefficient in the transformed fused image, all (or a whole neighborhood of)
image values in the spatial domain will change. An early categorization of frequency
domain MR fusion techniques is found in [89]. The basic idea of these methods is
to decompose each source image by an MR transform, then to construct a composite
representation from the transformed images and finally to obtain the fused image
by applying the inverse transform. The techniques vary in their choice for MR de-
composition scheme and in their choice for coefficient-selection rule for making the
composite representation. Popular MR decomposition schemes are pyramid trans-
form and wavelet transform. The idea of using MR schemes for image fusion was first
proposed by Burt [8] as a model for binocular fusion for human stereo vision. He used
Laplacian pyramid for MR decomposition and choose max rule for coefficient selec-
tion. Burt and Adelson [10] later introduced a new approach to image fusion based
on hierarchical image decomposition. Adelson [2] then used the Laplacian pyramid
technique for multi-focus image fusion. Toet [78] proposed the use of ratio of low-pass
pyramids at successive levels of Gaussian pyramids for fusion of visible and IR images.
Burt [9] proposed that fusion within a gradient pyramid provide improved stability
and noise immunity. Akerman [3] optimized the Laplacian pyramid fusion in respect
of multi-sensor fusion. Burt and Kolczynski [11] presented gradient pyramid fusion
with a local match measure and a window-based saliency measure. Ranchin and
Wald [69] presented one of the first fusion schemes using wavelet transform. In their
much-referred work, Li et al. [45] presented fusion schemes using wavelet transform.
In their implementation, the preliminary decision map is generated by window-based
activity measure which is then finalized by consistency verification with majority

filter. Wawelet transform is also considered by Chipman et al. [16], Petrovic and Xy-



CHAPTER 3. PIXEL-BASED FUSION 39

deas [63], Scheunders [72], Yang et al. [86] and Hill et al. [37]. Piella [65] provided
a general framework for MR image fusion and also proposed a new method for the

same. A comprehensive tutorial on wavelet-based fusion methods is found in [59].

Recently, wavelets are considered for image fusion by Wang [81], Wang et al. [82],
Hamvza et al. [34], Qu and Yan [68], Lewis et al. [44], Tsai and Lee [79] and Yang
and Li [85]. Wang [81] presented a pixel-based algorithm employing a multi-wavelet
(which is an extension of scalar wavelet) transform with two wavelet functions and two
scaling functions. A feature-based fusion rule is used to combine original sub-images.
Mutual information is employed for objective evaluation of fusion performance. In
the method proposed by Wang et al. [82], after decomposition of input images by
wavelet transform, images at the lowest resolution are segmented into regions by
watershed algorithm. Wavelet-coefficients are tested region-wise for activity-level
measurement and match-degree measure. Scaled and detail coefficients are combined
respectively by choose-max and weighted average rule. Combined coefficients are
inversely transformed to get the final fused image. In the method of Hamza et al. [34],
input images are decomposed by a bi-orthogonal wavelet transform. Selection-map
is created by measuring the activity-level of each wavelet coefficient by Jensen-Renyi
divergence. The map is refined into two decision regions according to a threshold.
Scaled and detail coefficients are combined either by choose-max and or by weighted
average rule depending on the region they belong to. Finally combined coefficients
are inversely transformed to get the final fused image. In Qu and Yan’s [68] method,
after decomposition of input images by a discrete wavelet transform, a pulse-coupled
neural network is employed to extract features of the input images in the wavelet
domain. Regional firing intensity characteristic is computed and used to combine the
coefficients. Finally combined coefficients are inversely transformed to get the final
fused image. Lewis et al. [44] considered a dual-tree complex wavelet transform (DT-
CWT) for segmenting of the features of the input images either jointly or separately to
produce a region map. The images are then fused region-wise in the wavelet domain.
Tsai and Lee [79] presented a method in which after segmentation of input images into

regions, quality of a region is measured from low frequency wavelet bands by adaptive
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decomposition algorithm. Then regions with better quality are selected to produce
the fused image. Yang and Li [85] proposed a method in which the source images
are represented at first by sparse coefficients using an over-complete dictionary. The
coefficients are then combined by choose-max fusion rule. Finally the fused image is

reconstructed from the combined sparse coefficients and the dictionary.

Wavelet transform can be considered as a special case of pyramid transform but it has
more complete theoretical support [51]. One major advantage of wavelet transform
is that spatial as well as frequency domain localization of an image is obtained simul-
taneously. Another advantage is that it can provide information on sharp contrast
changes, and human visual system is especially sensitive to these changes. Wavelet
transform is a linear tool in its original form [51]. But non-linear extensions of dis-
crete wavelet transform are possible by methods like lifting scheme [77] or morphologic
operators [31, 35]. The problem with linear wavelets like Haar wavelet is that during
signal decomposition or analysis the range of the original data is not preserved [35].
Secondly, linear wavelets act as low-pass filters and thus smooth-out the edges. This
results in reduction in the contrast in fused images. The nonlinear wavelet intro-
duced by Heijmans and Goutsias [35] overcomes this drawback by using morphologic
operators. But it involves division operation and thus either requires floating point

arithmetic or introduces truncation error by using integer arithmetic.

In this chapter we present a nonlinear morphologic wavelet transform [18, 19] which
preserves the range in the scaled images and involves integer arithmetic only. We
then use this transform to present a fusion algorithm to fuse a set of grey-scale multi-
focus images. The method is computationally efficient and produces good results.
Integrated-chip implementations of image processing algorithms are going to become
more common in near future. Our method will be useful in this respect. The results
obtained by it have been compared with those obtained by using Haar wavelet and the
morphologic wavelet suggested by Heijmans and Goutsias [35]. The chapter is orga-
nized as follows. Section 3.2 gives the basic theory (without proof) of multi-resolution

analysis using wavelets and a brief discussion on morphologic operators. This section
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also introduces the proposed wavelet transform based on these operators. Section
3.3 describes the image-fusion algorithm using the new morphologic wavelet. Exper-
imental results and discussion are given in Section 3.4 and the concluding remarks

are presented in Section 3.5.

3.2 Basic theory and a new morphologic wavelet

A brief overview of multi-resolution signal decomposition theory using wavelets is
given first, followed by the discussion on morphologic operators, and finally a new

wavelet transform based on these operators is presented.

3.2.1 Multi-resolution Analysis

The theory of multi-resolution signal decomposition scheme using wavelets can be
applied to a wide variety of signals. We are restricted here to two-dimensional grey-
scale image signals only. A two-dimensional grey-scale image signal X is a mapping
from domain D (which is a subset of discrete two-dimensional space Z?) to the set of
grey values {g1,9s,...,9,} where each g; is a nonnegative integer. Let us consider a
set V4 of such image signals. A multi-resolution signal decomposition scheme on V}
uses two types of operators, namely, signal analysis and signal synthesis operators;
which are also known as scaling function and the wavelet function respectively. Signal

analysis operators %T : V; — Vji1, map the signal space V; at level j, to a coarser

/I\
J

signal space Vj,; and the detail analysis operators w; : V; — Wi, map V; to a
coarser detail space Wy ;. All Vs and Wjs have the same structure as Vj. Signal
analysis operation proceeds by mapping a signal to a level higher in the pyramid
structure, thereby reducing information. Details are stored at each level to restore
this information loss. If analysis operators are applied j times recursively on an image

signal X € Vj, scaled and detail signals at level j are denoted by X7 and Y7, where
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X7 € V; and Y7 € W;. Then we have

WlXT) = XL X e vy, (3.1)

u)JT(Xj) = Yt yitl ¢ Wi (3.2)

Signal synthesis or reconstruction is done by synthesis operator w; Vi x Wi =V,
which map a signal to a level lower in the pyramid. To ensure loss-less or perfect

reconstruction, the following condition must be satisfied.
v (0] (X7, wj(X7)) = X7, X7 eV, (3.3)
There are two more conditions, namely,

1/)}(1/)}()('”],3/'”])) —  Xit! (3.4)

w}(w]i-(XH],YH])) — Y+l (3‘5)

where X7t € V;,; and Y/*' € W,,,. They ensure that the decomposition is non-
redundant in the sense that repeated applications of these schemes produce the same
result. A special case called uncoupled wavelet decomposition occurs when there exists
a binary operation + on V; and operators 1/)7i : Vizn =V and wji- : Wigr — Vj such

that

z/)j(Xj“,Yj“) — wj(Xj“) i w]i.(yjH), X+ e Vi, VIt e Wiy (3.6)

Then perfect reconstruction and non-redundancy conditions become
Yl (X)) + wiwl(X7) = X9, X7 eV (3.7)

A had ; J .

w}(wﬂi(XH]) + wjg(yjH)) — X.7+1’ Xt ¢ Vi1, yit! ¢ Wi (3.8)
Wiy (X7 Wi (V) = YL X eV YT e W (3.9)
If a one-dimensional wavelet decomposition scheme can be applied to two and higher
dimensions, by applying it to other dimensions sequentially, then this decomposi-

tion is called separable. A new wavelet transform based on morphologic operators is

presented now.



CHAPTER 3. PIXEL-BASED FUSION 59

3.2.2 A new morphologic Wavelet

Heijmans and Goutsias introduced a morphologic variant of the Haar wavelet by
using the morphologic operation dilation (erosion) [35]. It is an one-dimensional
scheme and the multidimensional implementation can be obtained by applying it to
other dimensions sequentially. However, a two-dimensional non-separable version of
the morphologic Haar wavelet transform has also been defined in [35], which will be
used in our experiments for comparison purpose. We, now propose a non-separable
two-dimensional uncoupled morphologic wavelet decomposition scheme, which will be
used for our image-fusion algorithm. Unique analysis operators (7, w') are used at all
levels of the multi-resolution scheme. Similarly, unique synthesis operators (¢*, wt)

are used at all levels. These operators are explained for the lowermost levels 0 and 1.

Let us consider the signal space Vj of Section 3.2.1. It is our original signal space.
Then Vi and W are the signal and detail spaces at level 1 having the same structure
as Vj. Consider an image signal X € V5. Then X is a mapping of (a subset of) 72
to the set of grey-values G and it can be represented by an M x N matrix, where
M,N € Z. Let us assume that M and N both are even. Then X can be divided into
consecutive and disjoint 2 x 2 sub-matrices or blocks, which are total @ in number.
Four positions of such a block B may be denoted by (r,¢), (r,c+ 1), (r +1,¢) and
(r+1,¢+ 1) (see Figure 3.1) where 7 and ¢ denote row and column positions of the
image-matrix X. Using quadratic downsampling, the analysis operators ¢! : Vj — 1}

and w' : Vj — W, are defined as
VI(X)(B) = max{X(re), X(ret1), X(r+1,¢), X(r+1,c+ 1)} (3.10)

WH(X)B) = (Yo Yns Ya) (3.11)

where v, yn, yq represent the vertical, horizontal and diagonal detail signals respec-
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Xre) | Yirc+l)
X(r,c) X(r,c+1) Wavelet =M =y
>~ \%
=
X(r+1,0) | X(r+1,c+1)  1ransform Y](_r-;l,c) Y](ri-%/,c+1
— Jh -

Figure 3.1: Wavelet transform on a 2 x 2 block

tively. Let "(X)(B) be denoted by M. Then y,, yp, yq is defined as

M~ X(r,e+1),if M~ X(r.e+1)>0

Yy = (3.12)
X(r,e+1) — M, otherwise
M—-X(r+1,¢),if M—X(r+1,¢)>0

Yn = (3.13)
X(r+1,¢) = M, otherwise

M—-X(r+1,e+1),if M=X(r+1,¢c+1)>0
Ya = (3.14)
X(r+1,¢+1) — M, otherwise

The second condition in the last three equations is required to maintain the informa-
tion on position of the maximum value M as evidenced in the successive example.
Scaled signal and detail values obtained above belong to X! and Y'! respectively and

they can be stored conveniently in similar positions of another matrix.

The original signal at level 0 is reconstructed by the synthesis operation. Using

quadratic upsampling, synthesized signals X are given by

~ ~ ~

X(rie) = X(r,e+1) = X(r+1,¢) = X(r+1,c+1) = M (3.15)

and synthesized details Y are given by

Y(r.c) = min (g, n, Ya, 0) (3.16)
V(ret+1) = min(—y, 0) (3.17)
Y(r+1,¢) = min(—y,, 0) (3.18)

Y(r+1,c4+1) = min (—yg 0) (3.19)

where M = X'(r, ¢) is the scaled signal at (r,c) and y,, ys, ya are vertical, horizontal

and diagonal details respectively. This is an uncoupled decomposition scheme and
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the binary operation + is the ordinary addition of numbers. Hence the reconstructed

signal X" at any point (u,v) € {(r,¢), (r,c+1),(r+1,¢),(r+1,c¢+ 1)} is given by

~

X'(u,v) = X (u,v) + Y (u, v) (3.20)

Example: Let us consider the 2 x 2 block B of X with X (r,¢) =Ty, X(r,c+1) =
Ty, X(r+1,¢) =Ty and X(r + 1,¢+ 1) = T3. Let T,, = max {7y, T1,T»,T3}. Then

YN (X)(B) =T, and the details are given by w'(X)(B) = (T, T),, Ty) where

T T, 1Ty, if T,,—T; >0
Ty — T,,, otherwise
T, =Ty, if T, —T5>0
T, =
Ty — T,,, otherwise
T, — Ty, if T, —T3 >0
T, =
Ty — T,,, otherwise

Now 7,, may occur at any of the four positions of the block 2 x 2 submatrix. The
situations of T}, occurring at (r,¢) and (r + 1, ¢) are illustrated in the figure 3.2. In
the first case T, occurs at position (r,c¢) and all the detail values are positive. In
the second case T,, occurs at position (r + 1, ¢) and the information is preserved by

placing the negative value Ty — T, as the horizontal detail.

The analysis operator-pair (wj, w;) can be used recursively to decompose a signal up

to a desired level £ > 1. Similarly the synthesis operator-pair (wj,aﬁ

7) can be used

recursively to reconstruct a signal from any level to the lowest level 0. It is easy to
see that the analysis and synthesis operators satisfy the perfect reconstruction and
non-redundancy conditions 3.7 - 3.9 given in Section 3.2.1. The operators " and w’
involve elementary arithmetic operations and one interesting point to note is that the
integer values are mapped to integer values only. Another point to note is that, if all
values of X belong to the range [0, R], then analyzed signal-values will belong to the
range [0, R] and analyzed detail-values will belong to the range [— R, R], irrespective

of the number of times the operators are applied [see figure 3.3].
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TO Tl Tm Tm_Tl
Wavelet ~_
Transform’/
T, | T, T7To 17 T3

Case 1: Transform when 7Tj is maximum

To | T1 Tm |Ti Ty
Wavelet D
Transform’/
T, | T, T T T=Ts

Case 2: Transform when 75 is maximum

Figure 3.2: Illustration of proposed wavelet transform on a 2 x 2 block

3.3 Multi-focus image fusion

We now present the image fusion algorithm proposed by us using the morphologic
wavelet transform given in Section 3.2.2. Consider n two-dimensional multi-focus
images X, Xy, ..., X,,. These images must be registered and of the same size. The
proposed analysis operators 1T and w', are applied on the n individual images k& times
recursively. If X; ¢ = 1,2,...,m are M x N images, the analysis operators can be
applied at most k., times where k., = min(|log, M |, [log, N|). After completion
of the analysis operation, at the topmost level k, a set of n scaled images are obtained.
They are denoted by XF. i = 1,2,..n. A set of detail images Y;j,i =1,2,..n
are also obtained at each level j, 7 = 1 to k. As mentioned in the last section, if
the range of greylevels in image X; is [0, R], then that of the scaled images X[ is
[0, R] and that of the detail images Yij,j = 1,2,...k is [~ R, R]. While comparing
Xk

7,1 =1,2,..n position-wise, a higher absolute value corresponds to a brighter pixel
and while comparing Yz.j, jg=1,2,...k, i = 1,2,...n position-wise, a higher absolute

value corresponds to sharp-contrast features such as edge, line and region boundaries.
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1 2 2
Xl yV X[o, R]X[/—R,R v
Image X [0,R] | [-R, R] ¥ % |[-R, R]
[-R.R] [-R.,R
Range [0, R] yi y y %
[-R, R] | [-R, R] [-R, R] | [-R, R]

(a) (b) (c)
Figure 3.3: (a) Original signal X, (b) Scaled signal X' and details Y' = {y,), y;, v}}
at level 1, (c¢) Scaled signal X2 and details Y? = {32, 32, y2} at level 2

Based on this observation, scaled images X¥, i = 1,2, ...n are combined by comparing
the values at each position (r, ¢) and choosing the one with the greatest absolute value.
Similar operation is applied on corresponding detail images at each level. Thus a single
fused image at level £ and a detail image at each level 5, j = 1,...,k are obtained.
Then the reconstruction phase begins. The image at level £ — 1 is reconstructed by
applying the synthesis operators 1+ and w' (as proposed by us in the previous section)
followed by addition. Synthesis operators are applied & times recursively to obtain
the image at original domain i.e. at level 0. The algorithm can be summarized as

below.

3.3.1 Algorithm

1. Analysis step: Apply the analysis operators 1" and w', k times recursively, on
image X;, 7 =1,...,n and get X; = { XF, V', V2 ... Y} }, where X} is the

scaled image at level k£ and Yij, j =1,...,k are the details at levels 1,2,...,k

respectively.

2. Fusion step: Compare {X;, i =1,2,...,n} and combine them into

X ={X*k V1Y% . . . Yk} where X* and Y7 are respectively given by

XE(r,e) = max{|XT(r,0)], [X5(r,c)],....[X;(r.c)| } and

Vi(re) = max{[V{(r,0)], [¥§(r.c)l,....|Vi(r.c)|}
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3. Synthesis step: Reconstruct the fused image X7 at level j, 7 = k —1,...,0,
by applying the synthesis operators 1* and w respectively on X7+ and Y7+!

following by addition, i.e.

X(r.c) = ¢H (X (r, 0) + wH (YT (r, )

3.3.2 Illustration

The algorithm is illustrated by using 2 x 2 sample data A and B taken from the

multi-focus images X; and X, respectively.

’V ap ap -| ’V bo b -‘ .
Let A = and B = where a; and b;,7 = 0,1,2,3 are non-

\‘ a9 a3 J \‘ b? b3 J
negative integers. Applying the analysis operators ¢ and w' once, A becomes,
o |

1

her 1 _ _ -
where (g = Umax = max {a;, i =0,1,2,3} and
1 Omax — G4 if Amax > G
—(@max — ag) otherwise

Here af is the scaled signal-data and a}, i = 1,2,3 are the detail-data at level 1.

Similarly, after the analysis operation, B becomes,

S w o]

Lo

Al and B! are fused in C!, by the fusion step, where

11 1 ose 1 1
g C a; if |a;| > |b]]
0 1 ) il = 1Y .
Cl = and ¢} = fori=0,1,2,3
11 ‘ 1 :
cy C3 b; otherwise

The fused data C at level 0 is obtained by applying the synthesis operators ¢* and
w* followed by addition. Therefore

Co C
C =

Co C3
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where

. ) Lo & if ¢/ <0 ,
cp = ¢o +min(0, ¢, ¢y, ¢3) and ¢; = fori=1,2,3

c§ — ¢} otherwise

We now, claim that, ¢; is always less or equal to R, where R is the greatest value of
a; and b;, 1 = 0,1,2,3. This happens because ¢; is obtained by subtracting a non-
negative value from ¢} = max(a, b}). However the lower bound of ¢; may not remain
within the lower bounds of A and B. The method can be applied to the complete

images X; and X, by taking as many 2 x 2 samples as required.

3.4 Experimental results and discussion

The proposed fusion algorithm was tested on a large number of input images. For
comparison purpose, fusion with Haar wavelet and with two-dimensional morphologic
wavelet introduced by Heijmans and Goutsias [35] were also implemented. Fusion re-
sults for multi-focus image-sets shown in Fig. 1.2 are given in Fig. 3.4. For each input
image-set three fused images are shown; the first one is obtained by the proposed
wavelet, the second one is obtained by Haar wavelet and the third one is obtained
by morphologic wavelet introduced by Heijmans and Goutsias. The fusion is done by
decomposing the constituent images up to the third level, in all the cases. Quanti-
tative evaluations by gradient-similarity-index (GSI) and fusion-quality-index (FQI)
as explained in Section 1.7 are given respectively in tables 3.1 and 3.2. Note that for
both quantitative metrics GSI and FQI, higher the value better is the fusion. Time
required in seconds for pixel-based algorithms using different wavelets are given in

Table 3.3.
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C.(1) C.(ii) C.(iii)

Figure 3.4: Results of multi-focus image fusion by pixel-based methods. In each row,
images shown are obtained by applying the proposed algorithm respectively with (i)
morphologic wavelet proposed by us, (ii) Haar wavelet and (iii) non-linear wavelet

proposed by Heijmans and Goutsias
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Table 3.1: Performance evaluation of pixel-based methods by GSI

Figure Proposed wavelet | Haar wavelet | Heijmans’ wavelet
Doll 0.855 0.839 0.847
Toy 0.819 0.830 0.819
Disk 0.873 0.789 0.870
Lab 0.865 0.832 0.864
Pepsi 0.927 0.923 0.928
Clock 0.865 0.890 0.866
Campus 0.794 0.808 0.790
Hydrant 0.869 0.833 0.864
Garden 0.786 0.763 0.778
Rose 0.848 0.847 0.846
News 0.906 0.924 0.902
OpenGL 0.902 0.841 0.902
Average 0.859 0.843 0.856

3.4.1 Discussion

Careful manual inspection of fused images in figure 3.4 reveals that the results ob-
tained by the proposed wavelet are better than that of Haar wavelet and are com-
parable to that of Heijmans and Goutsias’ wavelet [35]. However, artifacts such as
blocking effects are noticed in some of the fused images. But this is a common phe-
nomena in all pixel-based image fusion using multi-resolution approach and happens
due to the fact that error introduced at the topmost level is amplified during recon-
struction [45]. In our case, these effects are found in border regions and in in regions
where the data is out of focus in all the source images. For example, one can find such
effects along the edges of the clock in Figure 3.4:C and in the middle-right portion in

Figure 3.4:A. However, these effects are present in the fused images obtained by the
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E.(ii) E.(iii)

F.(i) F. (i) F.(iii)

Figure 3.4: Continued
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Figure 3.4: Continued
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L.(i) L.(ii) L. (i)

Figure 3.4: Continued
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Table 3.2: Performance evaluation of pixel-based methods by FQI

Figure Proposed wavelet | Haar wavelet | Heijmans’ wavelet
Doll 0.805 0.779 0.791
Toy 0.775 0.783 0.760
Disk 0.853 0.851 0.847
Lab 0.851 0.849 0.845
Pepsi 0.869 0.877 0.863
Clock 0.884 0.880 0.882
Campus 0.895 0.875 0.880
Hydrant 0.877 0.875 0.867
Garden 0.791 0.783 0.781
Rose 0.856 0.861 0.849
News 0.867 0.872 0.857
OpenGL 0.857 0.828 0.837
Average 0.848 0.843 0.838

other two wavelets as well. In addition to this, one can find small black spots in fused
images obtained by by Haar wavelet method (for example, along the edge of the clock
in Figure 3.4:C.(ii)). This happens because fusion by Haar wavelet method generates
negative pixel values after reconstruction which are truncated at value zero. A gen-
eral problem faced by pixel-based methods is sensitivity to mis-registration. Input
images ‘Garden’ as shown in Fig. 1.2:] are dense in texture and difficult to register
because being images of outdoor scenes, temporal changes due to wind are present
in them along with focus changes. Fused images as shown in Figure 3.4:J are not
very good and illustrate the fact that pixel-based methods are sensitive to even slight
mis-registration. Table 3.3 shows that the time taken by various wavelets are more

or less same and are not significant.

Apart from the quality of the results, the proposed algorithm has some computational
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Table 3.3: Time requirement in pixel-based methods

Figure Proposed 2D Haar Heijmans’
morphologic wavelet | wavelet | morphologic wavelet
(seconds) (seconds) (seconds)
Doll 10 8 10
Toy 13 11 14
Disk 7 6 9
Lab 10 12 15
Pepsi 11 9 16
Clock 1 1 1
Campus 12 11 16
Hydrant 13 13 18
Garden 7 8 12
Rose 14 12 15
News 1 1 1
OpenGL 11 13 14
Average 9 9 12

advantages as well. Unlike two other wavelets experimented with, our method ensures
that integer pixel values are mapped to integer values only during both analysis and
synthesis. This is an useful property for lossless data compression [12]. Secondly,
irrespective of the number of times the analysis operators are applied, the range
of the values in the scaled images will be same as that of the original multi-focus
images, say [0, R], and the range of the detail values will be [-R, R]. Hence memory-
space required during decomposition is fixed. Thirdly, arithmetic operations like
addition, subtraction and comparison are the only operations used in the method.
Other two methods involve division operation and thus they either requires floating
point arithmetic or introduces truncation error by using integer arithmetic. Fourthly,

due to the nonlinear nature of the proposed method, important geometric information
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(e.g. edges) is well-preserved at lower resolutions. Finally, the method is very fast
due to its simplicity. For a set of n, M x N images, it takes only O(n x M x N)
computational time. The simplicity of the method and the use of integer arithmetic

makes it suitable for chip-level implementation.

Besides this, the nonlinear wavelet proposed by us possesses the following invariance
properties. Both analysis and synthesis operators are translation invariant in the spa-
tial domain. In the frequency domain, they are grey shift (multiplication) invariant.
That means adding (multiplying) a certain value to all pixel values in the original data
will result in adding (multiplying) that value to the scaled signal data during analysis
[35]. Also, details will not change in case of addition and will get multiplied by that
value in case of multiplication. The wavelets possessing these invariance properties,

offer better option for image fusion than those which do not possess them [89].

3.5 Summary

In this chapter we have presented a non-linear wavelet constructed by morphologic
operators and also presented a multi-focus image fusion algorithm based on that
wavelet. The results are good considering the fact that the computational cost is
very low. The use of elementary arithmetic operations makes the method suitable
for hardware implementation. However the results may suffer from the problem of
blocking effects around the edges and at regions where the data is out of focus in
all the source images. Registration error may aggravate the problem. But this is a
common problem for other methods experimented with in this chapter. Our method is
definitely better than Haar wavelet method and is at par with Heijmans and Goutsias’

wavelet method in this respect.



Chapter 4

Block-based fusion

4.1 Introduction

In this chapter we present a block-based method for multi-focus image fusion. Since
multi-focus images of a scene are acquired with focus on complementary regions,
focused regions in an image have more contrast than their defocused counter-parts
in other images. Focus-measure (FM) is a quantity for evaluating the contrast or
sharpness of a pixel, block or region [76, 38, 50] and can be used effectively for multi-
focus image fusion. A focus-measure should possess certain desirable properties [38].
It should be independent of image content, monotonic with respect to blur, unimodal,
robust to noise and it should have large variations in values with respect to the
degree of blur and should have minimal computational complexity. Image variance,
image gradients, image Laplacians, energy of image gradients (EOG), energy of image
Laplacian (EOL) are traditional FM’s employed and validated for applications like
autofocusing [76]. Modified Laplacian (ML), Sum modified Laplacian (SML) are
modifications of image Laplacian [58]. Spatial frequency (SF) and Tenengrad were
later introduced as focus measures [25, 36]. Evaluation of various FM’s in MFIF can

be found in [38].

74
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A number of block-based fusion methods are available in the literature which employ
different focus-measures to distinguish between focused and defocused blocks. Li et
al. [47] proposed a MFIF technique in which input images are divided into m x n
blocks and better focused ones are selected (by measuring their SF) to produce an
initial fused image and the final fused image is produced by majority filtering of
the initial result. In a subsequent work [48] they proposed a neural network (NN)
to select better focused blocks using three features SF, wvisibility and edge feature.
Miao and Wang used EOG to measure focus in image blocks in an MFIF algorithm
based on Pulse Coupled Neural Networks in [55]. In Goshtasby’s method [29] focus
is measured by sum of gradient values of all pixels in the block. Instead of just
cutting and pasting the better-focused blocks, entire images are blended with weights
that monotonically decrease from block-centers to smooth out the boundary between
adjacent blocks. In the method presented by Fedorov et al. [27] each image is tiled
with overlapping neighborhoods. For each region the tile that corresponds to the best
focus is chosen. Selected tiles are seamlessly mosaicked by multi-resolution spline
technique to construct the fused image. Zhang and Ge proposed a technique [87]
in which focused blocks are detected by measuring their blurriness. Block-maps are
created and small isolated blocks are removed. Finally fusion map is constructed and
fusion is done accordingly. Block-based techniques presented in [47, 48, 55, 29, 27, 87]
are sensitive to block-size. Li ef al. mentioned that optimal block-size could be chosen
by adaptive methods [48]. Goshtasby proposed to determine the optimal block-size
by an iterative procedure which is time-consuming [29]. Fedorov et al. proposed to

constrain the minimum tile-size by use of multi-resolution spline technique [27].

We present an efficient block-based algorithm for MFIF which is not sensitive to
block-size. Although it starts with identifying the focused blocks, finally the focused
regions in each input image are identified. Hence the results are comparable with re-
gion based methods. We also propose a new measure of focus energy of morphologic
gradients (EOMG) and use it for our purpose. The paper is organized as follows.
In Section 4.2, sub-section 4.2.1 describes the quad-tree based algorithm to detect

focused blocks, 4.2.2 describes the reconstruction of connected regions and 4.2.3 de-
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Image 1 I:> x
Measure Combine Verify
Focus o ——> | Blocks — > Consistency:>
Block—paits
Image 2 — > ﬁ
Multifocus Images Images divided Fused Imag
into blocks

Figure 4.1: A generic schematic diagram for multi-focus image fusion by computing

the focus measure on equal-sized blocks

scribes EOMG. Section 4.3 contains experimental results and discussion including
performance analysis and finally 4.4 contains summary of the chapter and concluding

remarks.

4.2 A new block-based fusion algorithm

A generic schematic diagram of block-based approach for MFIF is shown in Fig. 4.1.
The number of blocks n plays a crucial role in this approach [48]. A small value of n
means a large size for each block and a large block is more likely to contain portions
from both focused and defocused regions. This may lead to selection of considerable
amount of defocused regions. On the other hand, a large value of n means small size
for each block. This too may lead to selection of some defocused blocks since the
relative contrast do not vary much on small and relatively smooth regions. Moreover
small blocks are more affected by mis-registration problems. The problem of choosing
an ideal n is illustrated in Fig. 4.2. Suppose Image-1 and Image-2 are two multi-focus
images of a scene, focus being on complementary regions. Focused regions are shown
as shaded regions. If each image is divided into four quadrants, four corresponding

block-pairs are created. From each pair, the one with better focus is chosen and
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Image 1

Image 2
Multifocus Images 4 blocks will result 16 blocks will result
with focus on into 50% blurred into 25% blurred
shaded regions area in fused image  area in fused image

Figure 4.2: Problem of multi-focus image fusion with equal-sized blocks

copied to the resultant image. But in each pair both the blocks contains fifty percent
out-of-focus area. So irrespective of which blocks are chosen, total fifty percent area
in the fused image will be out of focus. In a similar way, if the images are divided
into sixteen blocks each, twenty-five percent of the fused image will be out of focus.
A common way to find n that generates the best result is by experimentation and
verification with various values of n [48, 29, 27]. This requires a considerable amount
of pre-processing time. To overcome these problems, we present an algorithm [21]
which do not use fixed number of divisions in any portion of the multi-focus images.
Rather it makes use of a quad-tree structure to obtain the optimal subdivision while

measuring focus.

4.2.1 Detection of focused blocks in a quad-tree structure

The method is described for two input images and it can be extended easily to three
or more input images. Henceforth the words block and node are used interchangeably.

Two input images represent the root-nodes at the zero-th level of two quad-trees. Each
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input image is divided into four quadrants to obtain a quadruple of nodes. Hence
four pairs of corresponding blocks are obtained at level one of the quad-tree. For
such a pair of blocks, any of the following situations may occur: one is fully focused
and the other is fully out-of-focus, both are partially focused or both are fully out-
of-focus. To find out the situation, focus-measure is computed on each block of the
pair. Normalized difference in focus-measure (NDFM) between corresponding blocks

is calculated as

NDFM — Absolute difference in focus-measures (4.1)
Sum of focus-measures

NDFM is compared with a threshold then. In first situation, fully focused block has
a considerably greater FM and NDFM is greater than the chosen threshold. So the
blocks in the pair are not subdivided and the block with greater focus-measure (FM)
is copied into the resultant image. In second and third situations, FM’s do not vary
much on corresponding pair of blocks and NDFM between them is less than or equal to
the threshold. So both blocks in the pair are further subdivided into four quadrants.
NDFM for corresponding smaller block-pairs are calculated and compared with a
threshold again. They are further subdivided if required. The recursive subdivision
is stopped if either the block-size becomes very small or NDFM is greater than the
threshold at some level. The process is repeated for all four pairs of corresponding

blocks obtained after the initial subdivision.

Generally images are combinations of textured and smooth regions. It is seen that
variations in focus and hence values of NDFM are greatly influenced by texture and/or
grains of the original images. In particular, variations in focus are greater in textured
regions than in smooth regions. Values of NDFM obtained at the first two levels of the
quad-trees give an initial idea about the distribution of texture/grains in the original
images. It is also observed that NDFM between a pair of corresponding blocks at a
level are influenced by their immediate ancestor blocks. This is because the former
blocks are parts of the later ones. To decide on whether the NDFM is small enough
to allow subdivision of a pair of blocks, a global threshold is not effective for blocks

at all levels because their size and ancestors are different. The value of threshold for
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X Level 0 X,
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Figure 4.3: Subdivision of images in blocks according to a quad-tree structure

a pair of corresponding blocks at a level is calculated as a constant multiple of the
NDFM at their immediate ancestor blocks. So it is dynamically updated for each
quadruple of corresponding nodes at a level. In this work the constant multiplier M

is calculated as

B Mean of NDFM at level 1

NDEM at Tovel 0 x Standard-deviation of NDFM at level 1 x 100

(4.2)

So it is constant for a set of input images and is derived from them only.

An example of subdivision of two input images in a quad-tree structure is illustrated in
Fig. 4.3. Here X; and X, are input images at level zero. After initial subdivision, X¥
and X¥ (k =1,...,4) are corresponding pairs of blocks at level 1. NDFM between

the root nodes is % That between X¥ and X7 is % and the

threshold for all of them is 7" = M x W At level 1, the second pair of

blocks X2 and X2 are subdivided into smaller blocks to create block-pairs X?* and
X2k k = 1,...,4 at level 2. According to the theory developed, X? and X2 are

[FOXP) - F(X5)] < T. X?¢ and X2* will be further subdivided if

subdivided because TR

W < M x %) Fig. 4.4 illustrates the recursive subdivision of

top-left quadrant of Image 2in Fig. 4.2. Other quadrants will be subdivided similarly.

If the number of input images is m and m > 2, then four sets of m corresponding

blocks are created after initial subdivision. For each of the m blocks in the set,
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Focus is on shaded regions. After initial division
into four blocks, divide a block if necessary only.

Figure 4.4: Recursive subdivision of upper-left quadrant of Image 2 in Fig. 4.2

focus-measure is computed. Difference of the maximum and the minimum of these m
measures divided by sum of these m measures is used as the NDFM for the set. The
value of threshold for the set is calculated as a constant multiple of the NDFM at their
immediate ancestor blocks. The constant multiplier M is given by the Equation 4.2.

Detection of focused blocks from m images is algorithmically presented below.

1. Read m input images X;, + = 1 to m.

2. Divide each X; into four quadrants to get four sets of corresponding blocks

[x

70

i=1tom}, k=1to4 at level 1.
3. Calculate constant multiplier M.
4. Repeat for each set of corresponding blocks at level i

(a) Compute threshold T for the set.

(b) Compute FM on each block of the set.

(c) Find out their maximum Fp,,, and minimum F;,.
(d) Calculate NDFM for the set.

e greater than threshold then
If NDFM h hreshold th
Copy the block with greatest FM to the resultant image.
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else if size of blocks > minimum size permissible then
Subdivide all blocks in the set into four smaller quadrants and

Repeat the steps in 4 for smaller blocks at level 1 =7+ 1

else Copy the block with greatest focus measure to the resultant image and

stop.

Detected focused blocks of various sizes are merged naturally and focused regions are
produced. Fig. 4.5 shows the gradual detection of focused regions as the number of
levels in the quad-trees increase. It is seen that as block-size become smaller borders
of focused regions are detected more accurately but small spurious defocused blocks
appear inside the regions. This is due to noise or small unresolved blocks on which
relative contrast do not vary much. So detected regions require reconstruction which

is explained in the next subsection.

4.2.2 Reconstruction

It is evident that a focused region must be wider than the dimension of the spurious
blocks inside it. The largest connected focused region is constructed by a morpho-
logical filter consisting of an alternating sequence of opening and closing with a disk
structuring element (SE) of increasing radius [22]. However, opening and closing with
a disk SE trims some sharp convex portions and appends some sharp concave por-
tions respectively. In addition to this some unresolved pixels may still be present.
As a result the regions obtained from different input images are neither disjoint nor
exhaustive. The final fused image is generated as follows. If a pixel belongs to only
one region then its value is copied from the corresponding image. If a pixel belongs
to no region or more than one region then weighted average of all input-values at that
pixel is copied. Related weights are determined by gradient value at the pixel in the
corresponding input image divided by sum of the gradient values at the pixel in all

input images.
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Figure 4.5: Detection of focused regions in a set of multi-focus images up to various
levels in a quad-tree. Figures (a), (b) and (c¢) show input images; (a) Near focused
image, (b) Middle focused image, (¢) Far focused image. Figures (d), (e) and (f) show
detected focused regions respectively up to levels 6, 7 and 8 where white, grey and

black blocks are detected from (a), (b) and (c) respectively.
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We now present a measure of focus in the next subsection to solve the critical problem

of measuring the degree of focus on a block.

4.2.3 Energy of Morphologic Gradients: a new measure of

focus

Success of the proposed algorithm depends on how accurately the focus-measure can
distinguish between focused and defocused blocks. Edge-strength can be used success-
fully to identify focused blocks, because they have better contrast and hence more
prominent edges than corresponding defocused regions. Edge-strength, in turn is
measured by image gradients. Energy of gradients (EOG) is a well-known focus mea-
sure theoretically explained and experimentally validated in discrimination of focus

quality if the blur function is assumed to be Gaussian or truncated Bessel [76].

A simple method of performing grey-scale edge detection by mathematical morphology
is to take the difference between an image and its erosion/dilation by a SE [43, 14].
The difference-image is the edge-strength image. In general, a grey-scale SE is given
by the mapping h : D — {0,...,255}. Dilation and erosion of a grey-scale image
X (r,¢) by a grey-scale SE h(r, ¢) are denoted by

(X@®h)(r,c) = max (X(r—i,c—j)+h(ij)) (4.3)

(i,j)€EDomain of h

(X eh)(re) = min (X(r+i,c+37)—h(i7)) (4.4)

(i,7)€EDomain of h

where the maximum and minimum are taken over all (i, j) in the domain of h such
that (r —i,¢— j) and (r 4+ i,¢+ j) are in the domain of X. Most popularly used SE
for edge detection is called rod. A rod is a grey-scale SE which is flat on top and has
a disk-shaped domain with center at (0,0) [43]. Then the domain of rod SE of radius
1 (using city-block distance) is denoted by D,.,4 and is defined by the set

D, oq1 = {(0: _1): (07 1)7 (07 0)7 (_17 0)7 (17 0)}
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Therefore
(X@h)(rc) = max (X(r—ic—j)+h(ij) (4.5)
(17.7)6Dr0d1
(Xeh)(r,e) = min (X(r+i,c+7j)—h(ij)) (4.6)
(iz.j)EDrmﬂ

Since a rod is flat on top, values of h(i, 7) for all (i,7) € D,.q are taken to be zero.

Then
(X®h)(r,c) = (i,_jr)ré%)fm (X(r—i,c—j)) (4.7)
(Xeh)(r,c) = min (X(r+i,c+j)) (4.8)

(ivj)eDrodl

Henceforth we denote (X @ h)(r, ¢) and (X ©h)(r, ¢) by d(r, ¢) and e(r, ¢) respectively.

Dilation residue edge strength G4 and erosion residue edge strength G, by rod SE are

obtained as

Gd(?", C) = d(?", C) - X(T, C)
= max [X(r—i,c—j)]— X(rc)
(iz.j)EDrmﬂ
= max | X(z,5) — X(r, ¢ 4.9
Lmax [X(i,j) - X(r.0) (4.9)
Ge(r,c) = X(r,c)—e(r,c)
= X(r,¢)— min  X(r+i,c+j)
(ia.j)enrodl
= max | X(r,¢c) — X(7,7 4.10
L max [X(re) — X(.)] (4.10)
So morphologic edge operators are local neighborhood operators which take the maxi-
mum among the four first differences in directions 0°,90°, 180° and 270°. Morphologic

image gradient G(r, ¢) at a point (r, ¢) is calculated as the sum of Gy(r, ¢) and G,(r, ¢)
G(r,c) = Gy(r,c) + Ge(r, ¢) (4.11)
We define energy of morphologic gradients (EOMG) as
EOMG =) " (G(r,c))? (4.12)

A focused block produces larger EOMG than its defocused counterpart because pixels
in a focused block are in sharp contrast and hence have greater edge-strength. So

EOMG can be used as a measure of focus.
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4.3 Experimental results and discussion

The proposed algorithm have been tested on the input images given in Fig. 1.2 with
various focus measures, viz. EOMG, EOG, Variance, Tenengrad, EOL, SML, SF etc.
Since it is not possible to present all results obtained by various focus measures, we
provide the results obtained by EOMG, EOG and Variance in Figure 4.6. For each
input image-set three output images are shown; the first one is obtained by EOMG,
the second one is obtained by EOG and the third one is obtained by Variance. The
fusion is done by allowing the constituent images to be subdivided up to level seven,
although that may not be required for all cases. Quantitative evaluations by gradient-
similarity-index (GSI) and fusion-quality-index (FQI) as explained in Section 1.7 are
given respectively in tables 4.1 and 4.2. The actual run-time in seconds required
by the proposed block-based fusion method using three different focus measures viz.

EOMG, EOG and Variance are given in Table 4.3.
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C.(1) C.(ii) C.(iii)

Figure 4.6: Results of multi-focus image fusion by the proposed block-based method
with (i) EOMG, (ii) EOG and (iii) Variance



CHAPTER 4. BLOCK-BASED FUSION 87

Table 4.1: Performance evaluation of block-based methods by GSI

Figure EOMG | EOG | Variance

Doll 0.904 | 0.902 0.762
Toy 0.822 | 0.822 0.822
Disk 0.913 | 0.913 0.877
Lab 0.915 | 0.910 0.900
Pepsi 0.945 | 0.945 0.952
Clock 0.885 | 0.891 0.801

Campus | 0.776 | 0.776 0.760

Hydrant | 0.885 | 0.886 | 0.868
Garden 0.782 | 0.777 | 0.809
Rose 0.882 | 0.882 0.876

News 0.933 | 0.932 0.929
OpenGL | 0.919 |0.914 | 0.867

Average | 0.880 | 0.879 0.851

4.3.1 Discussion

Careful manual inspection of experimental results shows that the proposed focus
measure EOMG work equally well on input images which vary widely in their focusing,
object-content and in their texture. It also shows that the results obtained by various
focus measures are good and do not vary much in their quality. This shows robustness

of the algorithm.

Now discussion on quantitative evaluations are given. The tables 4.1 and 4.2 show
that for ‘Toy’ images all the three focus measures yield identical values. This implies
that fused images produced by the proposed algorithm with three different focus
measures are identical. This happens because quad-trees generated by EOMG, EOG

and variance are identical in that particular case. The tables also show that for
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E.(ii) E.(iii)

F.(i) F. (i) F.(iii)

Figure 4.6: Continued
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Figure 4.6: Continued
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OpenGLTNER

L.(i) L.(ii) L. (i)

Figure 4.6: Continued
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Table 4.2: Performance evaluation of block-based methods by FQI

Figure EOMG | EOG | Variance

Doll 0.836 | 0.837 0.795
Toy 0.838 | 0.838 0.838
Disk 0.877 | 0.877 0.870
Lab 0.875 | 0.875 0.873
Pepsi 0.884 | 0.886 0.894
Clock 0.903 | 0.903 0.893

Campus | 0.909 | 0.909 0.897

Hydrant 0.914 | 0.914 0.913
Garden 0.829 | 0.830 0.820
Rose 0.890 | 0.890 0.883

News 0.894 | 0.893 | 0.890
OpenGL | 0.882 | 0.882 0.871

Average | 0.877 | 0.877 | 0.869

some images like ‘Disk’, ‘Campus’ and ‘Rose’; EOMG and EOG produce identical
values. Following the argument just stated, it is concluded that quad-trees generated
by EOMG and EOG are identical for those images. On average, performance of
EOMG is slightly better than EOG and better than variance. Moreover as EOMG
works equally well with all input image-sets (which vary widely in content, texture
and focusing), we conclude that it fulfills the desirable properties of a focus measure
mentioned in section 4.1; viz. ability to measure focus irrespective of image content,
monotonicity with respect to blur, unimodality, robustness to noise and capability to
produce large variations in values with respect to degree of blur. Regarding the time
requirement, average time taken by the proposed algorithm is less than a minute for

all the three focus measures EOMG, EOG and variance.

Formal computational complexity of our method is described now. In detection step,
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Table 4.3: Time requirement of the block-based algorithm with three different FM’s

Figure EOMG EOG Variance
(seconds) | (seconds) | (seconds)
Doll 41 37 45
Toy 59 55 62
Disk 24 27 33
Lab 26 20 21
Pepsi 30 25 39
Clock 19 17 14
Campus 33 30 34
Hydrant 34 28 29
Garden 28 29 25
Rose 31 33 32
News 22 19 23
OpenGL 32 23 27
Average 32 29 32

each input image is subdivided according to a quad-tree structure. Suppose an input
image has M x N pixels and the quad-tree has [ levels. Maximum possible value of [
depends on the minimum block-size. For example, if the minimum block-size is taken
to be 2x2, then for a 512x512 image [ is equal to 8. More formally, maximum possible
value of [ is equal to min(log, M — 1,log, N — 1). If all levels of the quad-tree have
maximum possible nodes then it means all pixels in the image are to be calculated
upon up to level . So computational complexity is O(M x N x [) for a single image.
For a set of k input images the computational complexity becomes O(M x N x [ x k).
It is seen in practical cases that maximum possible level is not required always and
most of the levels do not have more than half of the maximum possible nodes. So
time-requirement in detection step is effectively in order of size of input images.

Reconstruction is done by iteratively applying the morphological operators opening
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and closing with a disk SE of increasing radius. So time requirement in this step also

is in order of size of input images.

4.4 Summary

In this work we have proposed an algorithm to enhance the effective DOF of camera by
multi-focus image fusion. It is a simple quad-tree based algorithm which recursively
divides and then compares and selects/rejects blocks. For effective subdivision of
blocks, NDFM of a set of corresponding blocks is calculated and compared with a
threshold. The process of recursive subdivision continues until either NDFM becomes
greater than the threshold or the block-size becomes very small. No threshold is
supplied manually, rather thresholds are calculated automatically from the input
images. Detected focused blocks are merged naturally to form focused regions which
are reconstructed then to remove any spurious blocks inside them. So although the
proposed method starts with blocks, it finally detects focused regions from each input
image. These regions are then copied to create the final fused image. The method is
fast and easy to implement. Its time complexity is of the order of size of the input
images. We have also proposed a new focus measure EOMG in this work. It satisfies
the desirable properties of a focus measure. The proposed algorithm is robust in
the sense that any focus measure can be used for its implementation. Since it is a
block-based method, it is robust against pixel mis-registration. Moreover, since the
algorithm is based on neighbourhood operators, it can be efficiently implemented in

machine vision systems having special hardware support for morphologic operations.



Chapter 5

Region based fusion

5.1 Introduction

In this chapter we present a region-based method for multi-focus image fusion (MFIF).
Generally regions convey more semantic information than single pixels and small
blocks. So region-based fusion approaches can avail more intelligent semantic fusion
rules than pixel-based and block-based methods. A number of region-based fusion
techniques are found in the literature. They are based either on spatial domain or on
frequency /transform domain. Spatial domain fusion methods may depend on multi-
resolution or multi-scale decomposition (MSD). Frequency domain fusion techniques
do depend on MSD. They use either pyramid or wavelet transform for MSD. Region-
based fusion techniques using pyramid or wavelet transform have been proposed by
many researchers [88, 86, 65, 64, 82, 34, 85]. Some key points of region-based MSD
image fusion approach [88] are each pixel is considered as part of object or region of
interest, image features such as edges and regions are used to guide the fusion, both
spatial and frequency information are retrieved from the coefficients. Basic steps of
MSD image fusion techniques are the following. At first each source image is trans-
formed/decomposed by an MSD scheme like pyramid transform or wavelet transform.

Low and high frequency coefficients forming respectively scaled and detail images are

94
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obtained from the transform. Regions representing image features are then extracted
from the transform coefficients by an image segmentation method. The regions are
then fused based on region characteristics. The final fused image is obtained by ap-
plying the inverse transform to the composite representation. Experimental results
of these methods are encouraging. However, the images fused in this way may still
lose some information of the source images because of the implementation of the in-
verse transform. There are region-based fusion methods using combination of wavelet
transform and artificial neural networks [55, 46, 68, 39, 84]. These methods are mo-
tivated by fusion of different sensor signals in biological systems and use multi-layer
perceptron neural networks or pulse-coupled neural networks. There are transform
domain methods which use Independent Component Analysis (ICA) and Topographic

Independent Component Analysis bases in image fusion [56].

Spatial-domain region-based fusion methods may or may not depend on multi-scale
decomposition (MSD). Methods for image fusion using multi-scale morphology are
described in [53, 57]. In method of Matsopoulos et al. morphological filters with
structuring elements of varying size are used to construct a morphological pyramid.
Such pyramids are constructed for each input image. Then morphological difference
pyramids are constructed for each of the above pyramids. After that, an intermedi-
ate pyramid is constructed by combining information at each level from the above
difference pyramids. Finally, reconstruction is done by using appropriate morpho-
logical operations on the intermediate pyramid to produce the final fused image.
This method can be used for multi-focus images as well, but it was not mentioned
whether the method can be applied to more than two input images. Since in the
third step the difference pyramids are combined by choosing the maximum at each
pixel, this method is sensitive to the problem of mis-registration as mentioned be-
fore. Mukhopadhyay and Chanda proposed a similar method in [57] except that they
have used morphological towers instead of morphological pyramids. They have used
their method for fusion of multi-focus images. But their method involves processing
and storing of scaled data at various levels which are of the same size as that of the

original images. This results in a huge amount of memory and time requirement.
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Li and Yang’s technique [49] is a spatial-domain, region-based technique which does
not depend on MSD. In this technique, a temporary fused image is obtained at first
by taking the average of all input images. The temporary image is segmented by
normalized-cut algorithm. Input images are segmented according to the segmenta-
tion results of the temporary image. Focus measure of corresponding regions are
measured by spatial frequency and better focused regions are selected and stitched to
their desired positions to get the final fused image. The technique is time-consuming

and depends greatly on the performance of the segmentation algorithm.

In this chapter a spatial domain, region-based fusion method is presented. Multi-scale
morphological filters are employed to identify focused regions from input images.
Focused regions from various images are then stitched at their proper positions to
create the final fused image. Since best-focused regions are selected and copied from
one image only, a slight error in registration will have no effect in fusion except in
the border of the regions. Prior segmentation is not required in the method. Manual
cut-and-paste of focused regions from multi-focus images is considered to be the best
and it is often used for comparison purposes [45]. The proposed method is a close
approximation to this and produces good results. The results have been compared
with those obtained by Li and Yang’s technique [49]. The chapter is organized as
follows. Section 5.2 describes the proposed method in detail. Subsections 5.2.1,
5.2.2 and 5.2.3 present the methods for multi-scale top-hat transformation, detection
of focused regions and image reconstruction respectively. Experimental results and
discussion including performance analysis are given in Section 5.3. Finally, summary

of the chapter and concluding remarks are placed in Section 5.4.

5.2 Fusion by multi-scale morphology

The objective of region-based fusion methods is to detect focused regions from every
input image, then to stitch detected focused regions to their proper positions in the

fused image. Since multi-focus images of a scene are acquired with focus on comple-
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mentary regions, focused regions in an image have more contrast than their defocused
counter-parts in other images. This implies that focused regions contain larger num-
ber of physically relevant features of different shapes and sizes. Extraction of features
by mathematical morphology depends on effective use of structuring elements. Sizes
and shapes of structuring elements play crucial roles here. A morphological operator
with a scalable structuring element can extract features of various shapes and sizes.
A scheme of morphological operations with a structuring element of varying scale is
termed as multi-scale morphology [15, 52]. We use such a scheme for our purpose.
The scheme is known as multi-scale top-hat transformation. We describe now the

transformation and detection of focused regions by using it.

5.2.1 Multi-scale top-hat transformation

A two-dimensional grey-scale image signal X is a function/mapping from domain D
(which is a subset of discrete two-dimensional space Z?) to the set of grey values
{91, 92, -..,9,} where each g; is a nonnegative integer. A grey-scale structuring el-
ement (SE) ‘A’ is a mapping from its domain to the above set of grey values. For
a scalable SE ‘h’, size of the domain get changed. Let B be a set representing the
domain of ‘A’. Assume that B has a definite shape. Let n be an integer representing
the scale-factor of B and let nB denote the scaled version of B at scale n. If B is

convex, then nB is obtained by n — 1 dilations of B by itself.

nB=B@B®B® ---®B (5.1)

n—1 times

When n = 0, conventionally B is taken to be a disk of unit size so that nB = {(0,0)}.

Let ‘A’ be a flat-top SE such that its value at every point in its domain nB is zero.
Then a morphologic operation by ‘A’ reduces to an operation by its domain nB. Then

multi-scale opening and closing of X by scalable domain nB are defined respectively
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as

(X onB)(r,c) = (XenB)®nB)(r,c) (5.2)

(X enB)(r,¢c) = (X®nB)&nB)(r,c) (5.3)

Opening removes all bright/foreground structures in the image X that are not large
enough to contain nB. Hence X o nB essentially contains all bright/foreground
structures of X having size greater than or equal to nB. Similarly, closing removes
all background structures in the image X that are not large enough to contain nB.
Hence, X e nB contains all dark/background structures of X having size greater than
or equal to nB. Here foreground structure means an image region of intensity value

higher than the surrounding region.

Top-hat transformation for opening and closing filters are defined respectively as:

d™(X(r,¢)) = (Xo(n—1)B)(r,¢)— (X onB)(rc) (5.4)
d"™(X(r,¢)) = (XenB)(r,c)— (X e(n—1)B)(rc) (5.5)
Thus, i (X) contains all the bright features that have size greater than or equal to

(n — 1)B but less than nB. Similarly, " (X) contains all the dark features within

the same range of size. Hence the feature image defined as
DO (X (1, ¢)) = max{d (X (r, ), d) (X (r, )} (5.6)

contains all the image features having size within the range [(n — 1)B,nB). Hence

image features are thus sieved out based on their size and stored in corresponding

DM (X).

5.2.2 Detection of focused regions

It is evident from the previous discussion that if a particular feature (bright or dark)
of an image is sharply focused it is sieved out in relatively lower scale. Let X, j =

1,2,...,k be a set of multi-focus images and let D_S-") denote the feature image of X;
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at scale n. Now if a pixel (r, ¢) is sharply focused in the image X;, then at lower scale,
D™ (r,¢) should be greater than D_(n)(r, ¢) for all j # i. Thus, the focused region of

j
each image can be identified and marked. Let F-(n)

;i denote the focused region at scale

n of image X; and let F™ denote the union of focused regions at scale n from all
(n)

images X;,j = 1,2,... k. Then detection of focused regions at various scales F;

can be algorithmically presented as

Step-1: Fj(o)(r, c)=0 forallj

Step-2: n=1
Step-3: Calculate D_S-n)(r, ¢) for all images X

Step-4: Fj(n)(r, c) =1, if D;")(r, ¢) > max{D\"(r,c)} for all i # j

Step-5: F(™(r,c) = Fl(n)(r, )V FQ(n)(r, c)V---V Fk(n)(r, c)

Step-6: If all pixels of F™ are not equal to 1, increase n by 1 and go to Step-3

Hence, the focused regions or, more specifically, the focused pixels in the image X; are
marked by 1 in Fj("). In practice, we terminate this algorithm when at least p-percent
pixels of F™ become 1 or no further change occurs in F(™. Rest unresolved pixels
where F(™)(r,¢) = 0 either belong to smooth regions or belong to boundary of focused
regions and are taken care of at the subsequent stage. Binary images corresponding to
focused regions detected at various scales for the near-focused ‘Doll” image in Fig. 1.2

are shown in Fig. 5.1.

5.2.3 Reconstruction

Image of focused region Fj(") for j-th input image may appear to contain spurious
white spots in sharply focused region (shown here as black colored) and black spots
in the out-of-focus region (shown here as white colored). This phenomenon can be

observed in Fig. 5.1. It is evident that a focused object or region must be wider
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(a) (b) (c)

Figure 5.1: Binary images corresponding to focused regions detected at various scales
for the near-focused ‘Doll’ image in Fig. 1.2. Focused regions obtained by using (a)

2 x 2 SE. (b) 4 x4 SE. (c) 8 x 8 SE.

than the dimension of these spurious spots. Then these spots can be treated as ad-
ditive and subtractive noise that are introduced due to salt-and-pepper noise present
in the out-of-focus regions and also due to pixels that remain unresolved after the
previous processing. It is well-known that opening and closing filter respectively can
remove additive and subtractive noise efficiently. Hence, an alternating sequential
filter formed by concatenating opening and closing with a small disk structuring ele-
ment is applied on each binary image Fj(r, c) to obtain R;(r, ¢) consisting solid black
blob(s). So the largest connected regions R; mark the final focused regions in X;.
Binary images corresponding to focused regions (of multi-focus ‘Doll” images Fig. 1.2)
detected at the third iteration and the corresponding largest connected regions are
shown in Fig. 5.2. Now the image where all regions are properly focused may be
reconstructed by putting together the pixels of X;’s corresponding to marked (black)
regions of I7;’s. However, it should be mentioned here that opening and closing with
a disk structuring element trims some sharp convex portions from the blob and ap-
pends some sharp concave portions to the blob respectively. In addition to this some
unresolved pixels may still be present. As a result R;’s are neither disjoint nor ex-
haustive. That means neither R; A R;,7 # j produces a blank (or white) image nor

V; R; produces a filled (or black) image. Hence, the resultant fused image X(r,e) is
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(d) (e) (f)

Figure 5.2: Detected focused regions and the corresponding largest connected regions

for multi-focus images

generated by non-linear superposition of X,(r, ¢) depending on R;(r,¢) as follows.

X;(r,¢), if Rj(r,c) =1 and R;(r,c) =0 for all i # j
X(r,c) =19 avg {X;(r,¢) | Rj(r,c) = 0 for all 5} (5.7)
avg {X;(r,c¢) | R;j(r,c) =1 for more than one j}
The function avg(.) stands for pixel-wise average from a set of images. Experimental

results and discussions are presented now.

5.3 Experimental results and Discussion

The proposed algorithm has been tested on the input images given in Fig. 1.2. It is
seen in the experiments that three iterations are sufficient to detect focused regions
in all images. So top-hat transformation is applied on input images at three different
scales. Disk structuring elements of three different sizes viz. (a) 2 x 2, (b) 4 x 4, (c)

8 x 8 are employed for this purpose. For comparison purpose, we have implemented
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the region-based fusion technique presented by Li and Yang [49]. Experimental results
by the proposed algorithm and by Li's method are shown in figure 5.3. In each row,
the fused images obtained by the proposed method are given first, followed by fused
images by Li and Yang’s method. Objective evaluations by gradient-similarity-index
(GST) and fusion-quality-index (FQI) as explained in Section 1.7 are given respectively
in tables 5.1 and 5.2. Actual time in seconds required by the proposed algorithm and

Li’s method are shown in table 5.3.

Table 5.1: Performance evaluation of region-based methods by GSI

Figure Proposed method | Li’s method
Doll 0.907 0.799
Toy 0.808 0.805
Disk 0.912 0.869
Lab 0.924 0.800
Pepsi 0.942 0.945
Clock 0.864 0.870
Campus 0.782 0.799
Hydrant 0.862 0.843
Garden 0.857 0.784
Rose 0.891 0.873
News 0.926 0.853
OpenGL 0.906 0.863
Average 0.882 0.840
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C.(1) C.(ii)

Figure 5.3: Results of multi-focus image fusion by region-based methods. In each
row, images shown are obtained by applying (i) proposed region-based algorithm (ii)

Li’ algorithm
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Table 5.2: Performance evaluation of region-based methods by FQI

Figure Proposed method | Li’s method
Doll 0.840 0.818
Toy 0.846 0.833
Disk 0.873 0.871
Lab 0.877 0.842
Pepsi 0.896 0.892
Clock 0.910 0.906
Campus 0.916 0.912
Hydrant 0.917 0.906
Garden 0.838 0.812
Rose 0.900 0.883
News 0.897 0.873
OpenGL 0.877 0.863
Average 0.882 0.867

5.3.1 Discussion

104

Careful manual inspection of images in figure 5.3 reveals that the results obtained

by the proposed fusion method is better than fusion by Li’s method. Inspection of

the crane in the fused image ‘Toy’, the edge of the table in the fused image ‘Pepsi’,

the rose in fused image ‘Rose’ and the letter ‘O’ in fused image ‘OpenGL’ show that

it produces better results than Li’s method.

In both the tables 5.1 and 5.2, the

average values produced by our method is better than that produced by Li’s method.

The average time taken by the proposed method is less than one and a half minute,

however the average time taken by Li’s method is more than six minutes. So also in

respect of time requirement, the proposed method is better.
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Figure 5.3: Continued



CHAPTER 5. REGION BASED FUSION 106

Figure 5.3: Continued
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Figure 5.3: Continued
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Table 5.3: Time requirement in region-based methods

Figure Proposed method | Li’s method
(seconds) (seconds)
Doll 71 221
Toy 89 505
Disk 78 339
Lab 76 342
Pepsi 80 490
Clock 37 119
Campus 96 479
Hydrant 89 470
Garden 78 214
Rose 81 628
News 38 102
OpenGL 82 587
Average 75 375

5.4 Summary

108

In this work we have proposed a region-based method for multi-focus image fusion.

In general, region-based methods do depend on prior segmentation of input images.

Therefore, performance of the segmentation algorithm, both in respect of time and

quality, affects the performance of the fusion algorithm. Generally, number of re-

gions produced by segmentation process is much larger than actual number of fo-

cused/defocused regions. It means more processing time is required during evalua-

tion of focus-quality of corresponding regions. Moreover, it is difficult to evaluate

the focus quality for small regions, which means distinction between corresponding

focused and defocused counterparts is difficult which ultimately may lead to selection

of a defocused region. The proposed method does not need any prior segmentation.
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Rather, it employs multi-scale morphological filters to detect features in focus at var-
ious scales from each input image. Union of them constitutes focused regions from
the image. Detected regions from all input images are put together to reconstruct the
fused image. Since the best-focused regions are detected and copied from one image
only, a slight error in registration will have no effect in fusion except in the borders
of the focused regions. Hence this region-based method is robust to mis-registration.
This method resembles the manual cut-and-paste method of image fusion which is
often used for comparison purposes. Thus the fused image obtained by the method is
very similar to the ideal fused image. Performance of the algorithm is compared with
a region-based algorithm proposed by Li and Yang. Performance analysis reveals that

our method is superior to fusion by Li and Yang’s method.



Chapter 6

Conclusion and future work

Multi-focus image fusion (MFIF) is a way to enhance effective depth-of-field of a dig-
ital camera. Techniques for MFIF can be divided into broad categories, pixel-based,
block-based and region-based. It is interesting to study and compare techniques
within a particular category and techniques belonging to different categories. The
thesis (i) surveys extensively on existing literature for MFIF methods and classifies
the methods according to the above categories, (ii) proposes a method for multi-focus
image registration, (iii) proposes new methods for MFIF, one in each of the categories
mentioned above, (iv) presents experimental results for proposed methods on a large
data-set, (v) compares the results with those obtained by other well-known methods
and (vi) does performance analysis using standard quantitative evaluation techniques.

All techniques for MFIF proposed in the thesis use mathematical morphologic tools.

Image registration is a necessary pre-requisite for image fusion. The thesis presents
a method for multi-focus image registration in Chapter 2. The method is compared
with a widely used registration technique and is found to produce better results than
the latter. Chapter 3 proposes a non-linear tool morphological wavelet and presents
a pixel-based algorithm for MFIF using the same. The algorithm is comparable with
other standard pixel-based techniques. Interesting mathematical properties of the

wavelet used makes the algorithm hardware implementable. Chapter 4 proposes a fo-
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Table 6.1: Performance summery of the (i) Pixel-based algorithm by the proposed 2D

morphologic wavelet, (ii) Block-based algorithm by proposed focus-measure EOMG

and (iii) Proposed region-based algorithm

Figure Pixel-based Block-based Region-based
Time FQI Time FQI Time FQI
(seconds) (seconds) (seconds)
Doll 10 0.805 41 0.836 71 0.840
Toy 13 0.775 59 0.838 89 0.846
Disk 7 0.853 24 0.877 78 0.873
Lab 10 0.851 26 0.875 76 0.877
Pepsi 11 0.869 30 0.884 80 0.896
Clock 1 0.884 19 0.903 37 0.910
Campus 12 0.895 33 0.909 96 0.916
Hydrant 13 0.877 34 0.914 89 0.917
Garden 7 0.791 28 0.829 78 0.838
Rose 14 0.856 31 0.890 81 0.900
News 1 0.867 22 0.894 38 0.897
OpenGL 11 0.857 32 0.882 82 0.877
Average 9 0.848 32 0.877 75 0.882

cus measure based on mathematical morphology and presents a block-based algorithm

for MFIF using the same. The algorithm is fast, easy-to-implement, and produces

good results. Finally, Chapter 5 presents a region-based algorithm for MFIF using

mathematical morphology. This algorithm properly selects the focused regions from

multi-focus input images and then copies and pastes them to form the final fused im-

age. It resembles the manual cut-and-paste method for MFIF often used to produce

image all-in-focus, for testing purposes [45|. Results produced by this algorithm are

the best amongst all the three proposed MFIF algorithms. For comprehensive as-

sessment of the proposed pixel-based, block-based and region-based methods, actual
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run-time in seconds and fusion quality index (FQI) for the test images are given in

Table 6.1.

After comparing the results of various techniques for MFIF, we find the following.

e Pixel-based and region-based methods are respectively the least and the most
time-consuming amongst the methods in the three categories mentioned above;
and block-based methods take more time than pixel-based methods but less

time than region-based methods.

e Performance-wise pixel-based and region-based methods are respectively the
worst and the best methods among the three categories, and block-based meth-

ods are mid-way between pixel-based and region-based methods.

e Pixel-based and region-based methods are respectively the least and the most ro-
bust in respect of mis-registration problem which means slight registration-error
results into severe performance degradation in pixel-based methods whereas that

error does not affect region-based methods so much.

e Finally, pixel-based and region-based methods are respectively the least and the

most difficult in respect of implementation and usage.

e Block-based methods maintain a good trade-off in terms of time-complexity
and performance; and they are moderate also in respect of implementation and
usage. Finally they are moderately affected by mis-registration problem. So

they are often chosen for practical purposes.

The proposed MFIF techniques can be used to integrate multi-focus color images.
For that, the input multi-focus colour images (in R,G,B format) may be represented
in intensity-chromaticity format. The proposed MFIF methods may then be applied
to the intensity images to get the fused intensity image. Input chromaticity images
are combined following the same steps as the ones used in case of intensity images.
Finally, the fused intensity and chromaticity images are combined to get the fused

color image. We now outline some future work as extension of the work done.
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6.1 Future work

6.1.1 Fusion by area morphology

Basic tools of morphologic filters are opening and closing. Morphologic (also called
structural) opening is an increasing, idempotent and anti-extensive operation defined
as an erosion by a SE followed by a dilation by the reflected SE. An operation having
the same properties, but that cannot be written as a unique erosion followed by a
dilation, is called an algebraic opening [75]. Area opening is an algebraic opening.
It preserves the connected sets in the foreground having areas greater than a given
threshold value and removes all other sets. Here foreground means an image region
of intensity value higher than the surrounding region and area is measured in number
of pixels. The dual operation of area opening is area closing. It is an algebraic
closing which preserves the connected sets in the background having areas greater
than a given threshold value and removes all other sets. This information can be

used successfully to extract focused regions in multi-focus images.

In multi-focus images, focused regions have more contrast and hence larger number of
small features or grains than their defocused counter-parts. This implies that when
compared with the corresponding defocused region, a focused region has (i) greater
range of grey values and (ii) greater number of pixels with very high and very low
intensity values in the range. These pixels can be extracted by using area opening
and area closing respectively. Subsequently, focused regions can be detected by using
these pixels. In general, region-based fusion methods are more complex and time-
consuming than pixel-based and block-based methods. We plan to work for a simple
region-based multi-focus image fusion method by using the operations, area opening
and closing. Use of efficient algorithms [54] for these operations may reduce the

time-requirement for the method.
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6.1.2 Extension to multi-modal images

The proposed MFIF techniques can be used to integrate multi-modal images. In a
multi-sensor data acquisition system, the image data of an object consists of informa-
tion acquired by different sensors from different perspectives and possibly at different
resolutions. The clarity of the object features may be different in different imaging
modalities. For example, in the area of biomedical imaging, two widely used modali-
ties, namely the Magnetic Resonance Imaging (MRI) and the Computer Tomographic
(CT) scan do not reveal all types of tissue structure with equal clarity. CT scan is
especially suitable for imaging bones or hard tissues, whereas the MR images are
much superior in depicting the soft tissues. These two imaging modalities are thus
complementary in many ways and no one alone is sufficient in terms of required infor-
mation content. The propsed methods may be extended for fusing such multi-modal

images.

6.1.3 Hardware embedding

Tomorrow’s computing and communication technology will rely on extensive use of
embedded software. There are previous work on special purpose hardware design for
mathematical morphologic algorithms [4]. Proposed algorithms can be embedded in
hardware using efficient gate-arrays. Embedded hardware design primarily depends
on use of parallel operations. Graph-theoretic design approaches like precedence
graph and interval graph may be applied on proposed algorithms to explore their
inherent parallelism and hence their potential for hardware embedding. Simpler of
the proposed algorithms can be efficiently implemented in machine vision systems

having special hardware support for morphologic operations.



Appendix A

Depth of field

Depth of field can be calculated by par-axial geometric optics model of image forma-
tion using a thin convex lens [76]. Figures A.1(a) and A.1(b) illustrate two different
situations using such a model. In both figures, P and () are two point-objects, L is
the lens, F is the focal point and D is the diameter of aperture of the lens (assumed
to be circular in this case). Point-object P on object plane at distance u from the
lens is perfectly focused as point-image P’ on sensor plane at distance v from the
lens. Well-known lens equation % = % + % relates the position of these two points, u
and v, with that of the focal length f of the lens. Point-object @ is taken in such a
way that it is further from the lens than P in fig. A.1(a) and nearer to the lens than
P in fig. A.1(b). The distance of () from the lens is u; and uy in figures A.1(a) and
A.1(b) respectively where u; > u and uy < u. Focused images Q' of () are formed at
distances v; and vy in respective figures where v; < v and vy > v. So focused images
of ) are formed in front of and behind the sensor plane in respective figures. In both
cases, blurred circular images of ) with diameter P'Q)"” is formed on the sensor-plane.
We can estimate the blur-circle radius r in fig. A.1(a) using similar triangles,

2r vV — U
D U1

D
ro= (v-— 7)1)5
1

115



UUl=UI=10CUS

Object Plane

1H1=10CuUs

Object Plane

(olvihbe104
Plane

A

Y

A

In-focus

Out-of-focus Sensor
Object Plane  Object Plane Plane
-l u -
T o b
~ N2r
-
oy, Q" Y
(b)
L Lens D Aperture Diameter

)

Y

F Focal Point

r Blur—circle radius

Figure A.1: Par-axial geometric optics model of image formation
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Similarly we can estimate the blur-circle radius r in fig. A.1(b),

2r Vg — U
D (%)

D
ro= (02—0)2—02

It is readily seen in both cases that, larger aperture generates larger blur circle.
Using the above relations for the blur circles, we can derive depth-of-field (DOF) for
a lens system, where r now becomes the radius of largest acceptable blur circle in the
resultant image, which can be chosen based upon sensor resolution and human visual
acuity limits. Note that the lens equation is also satisfied by wq,v; pair and us, v9

pair. We can estimate the DOF from fig. A.1 using similar triangles,

2r  v—w
D U1
CA L 2r
v D
1 1 2r
- Z(1+ =
1 7)( D)
1 1(1 N 2r)
w f W D
1 1 2r
- - (== 1+ =
7 (f )1+ 5)
L) a1 %)
uf(l— %)
Therefore,
f(1— 2+
U = wl—25) if 4r* << D? (A.1)
f—25u
Similarly from fig. A.1(b),
f(1+25
Uy = M if 4r* << D? (A.2)
And,
DOF = Uy — Ua (AB)

where uy, us are the distances to the nearest and the furthest object planes with blur

circles having radii less than or equal to the chosen r. As D tends to infinity, u; and
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uy tend to u and DOF tends to zero. This result agrees with the common knowledge

that reducing the aperture-size increases DOF and increasing the same reduces it.

In summary, DOF depends on the following factors, the amount of sharpness-loss
regarded as acceptable, the aperture used (decreasing the aperture will increase the
DOF), the focal length of the lens (longer the focal length, shorter the DOF) and
the distance of the focused object (nearer the object, shorter the DOF). An extreme
case of decreasing the aperture for maximizing the DOF happens in case of pin-hole
camera. It has an infinite DOF. Unfortunately, the optical power in the image plane is
reduced considerably due to infinite DOF. So cameras with finite DOF are preferred.
But the problem is that they cannot generate the images of all objects at various

distances from the camera with equal clarity.
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Appendix B

Affine transformation

Affine transformation is a common technique for image registration. It is based
on the assumption that only geometric transformations possible between a related
pair of images are translation, rotation, isotropic scaling and shear (non-uniform
scaling in some direction). Properties like parallelism, ratio of lengths of collinear
or parallel segments, ratio of areas, linear combination of vectors are invariant under

affine transformation [13]. The equation for affine transformation is given now.

Let (x,y) be a point in two-dimensional Cartesian coordinate system. In homogeneous
coordinate system the point is represented by (z,y,1). Let the point be represented
by (X,Y,1) in homogeneous coordinate system after transformation. Then affine

transformation of (x,y,1) to (X, Y, 1) is represented by the equation

X t11 tio ti3 x
Y

= | a1 tog tog | X | ¥y

1 0 0 1 1

where the 3 x 3 coefficient matrix is a composite form of the transformation functions

for translation, rotation, isotropic scaling and shear.
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