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Abstra
tA s
ene to be photographed, usually in
ludes obje
ts at varying distan
es from the
amera. Depth-of-�eld of a digital 
amera is the range of distan
e, all obje
ts withinwhi
h appear to be sharp in the image. Due to the low depth-of-�eld of the 
amera,images a
quired by them often su�er from degradation 
alled out-of-fo
us blur. Oneway to enhan
e the e�e
tive depth-of-�eld is to a
quire several images of a s
ene withfo
us on di�erent parts of it and then 
ombine these images into a single image insu
h a way that all regions of the s
ene are in fo
us. A
quired images are 
alledmulti-fo
us images and the pro
ess of 
ombination is known as multi-fo
us imagefusion. The te
hniques for multi-fo
us image fusion belong to the broad 
ategories,pixel-based, blo
k-based and region-based. They 
on
entrate respe
tively on singlepixels, small blo
ks of size m � n and arbitrarily shaped regions. Image registrationis a ne
essary pre-requisite for multi-fo
us image fusion. The thesis presents a newte
hnique for multi-fo
us image registration and three new te
hniques for multi-fo
usimage fusion. Among these te
hniques, the �rst one is pixel-based, the se
ond oneis blo
k-based and the third one is region-based. All of them use mathemati
almorphologi
al tools. The pixel-based method is a multi-resolution te
hnique thatemploys morphologi
al wavelet as a tool for signal de
omposition and re
onstru
tion.The blo
k-based method uses energy of morphologi
al gradients as a tool for fo
usmeasure. Finally the region-based method uses multi-s
ale morphologi
al tools forobtaining the fo
used regions from the input images. In this 
ontext, existing fusionte
hniques are studied and 
ategorized. The thesis in
ludes experimental resultsobtained by applying the proposed methods and other well-known methods on avariety of input data-set. It also in
ludes performan
e analysis of various methodsusing standard quantitative evaluation te
hniques. At the end it presents 
on
ludingremarks and a dis
ussion on related future work.
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Chapter 1
Introdu
tion
Advan
ements in digital imaging te
hnology have in
reased the popularity of 
on-sumer imaging produ
ts su
h as digital 
ameras and 
am
orders. However due to thephysi
al limitations of the imaging systems, images produ
ed by them often su�erfrom degradations. A s
ene to be photographed usually in
ludes obje
ts at varyingdistan
es from the 
amera. Sharpness distribution of an image of su
h a s
ene isa�e
ted by various fa
tors. The obje
t fo
used by the 
amera and the obje
ts at thesame distan
e from the 
amera as the fo
used obje
t appear to be the sharpest in theimage. Sharpness of the obje
ts in front of and behind the fo
used distan
e de
reasesgradually in the image. This sharpness-loss is not signi�
ant within a 
ertain range ofobje
t distan
es. This range is 
alled depth-of-�eld (DOF) of the 
amera [76℄. DOFas 
al
ulated by par-axial geometri
 opti
s model of image formation using a thin
onvex lens is given in Appendix A of the thesis. DOF depends on various fa
torssu
h as, the amount of sharpness-loss regarded as a

eptable, fo
al-length of the lens(longer the fo
al-length, shorter the DOF), distan
e of the fo
used obje
t (nearer theobje
t, shorter the DOF) and the aperture used (de
reasing the aperture will in
reasethe DOF). The extreme 
ase of de
reasing the aperture for maximizing the DOF hap-pens in a pin-hole 
amera. It has an in�nite DOF. Unfortunately, the opti
al powerin the image plane is redu
ed 
onsiderably due to very small aperture. So 
ameras1



CHAPTER 1. INTRODUCTION 2with �nite DOF are preferred. A �nite but large DOF means that obje
ts within alarge range (and hen
e possibly a large number of obje
ts) will appear to be sharp inthe photograph. On the other hand, a small DOF means that obje
ts within a smallrange (and hen
e possibly a small number of obje
ts) will appear to be sharp in thephotograph and all other obje
ts will appear to be out-of-fo
us in the photograph.Out-of-fo
us blur is one of the typi
al degradations whi
h o

ur in images a
quiredby digital 
ameras due to their low DOF [60, 76℄. The problem of low DOF is alsoen
ountered in mi
ros
opy due to in
rement in magni�
ation and aperture [61, 6, 36℄.
1.1 MotivationOne way to enhan
e the e�e
tive DOF is to a
quire several images of a s
ene fo
usedon obje
ts at di�erent distan
es and then integrate these images into a single imagein su
h a way that all regions of the s
ene are in fo
us. A
quired images are 
alledmulti-fo
us images and the pro
ess of 
ombination is known as multi-fo
us imagefusion (MFIF). The pro
ess produ
es an image whose total area-in-fo
us is more thanthat of any of the 
onstituent images. Multi-fo
us images of a s
ene are a
quired oneby one either by hand-held 
ameras or by 
ameras pla
ed on tripods, in identi
alenvironmental 
onditions in respe
t to sensor, light, view-dire
tion, orientation andobje
t-
ontents in the s
ene. They 
an be either grey-level or 
olor images. Sin
eea
h image in a set of multi-fo
us images has fo
us on obje
ts at di�erent distan
esin the s
ene, an obje
t whi
h is in-fo
us in the near-fo
used image may be out-of-fo
us in other images. Similarly an obje
t whi
h is out-of-fo
us in the near-fo
usedimage may be in-fo
us in the far-fo
used image. Hen
e partial defo
using/blurring isinevitable in this type of images. MFIF produ
es an image in whi
h blurred regionsare deblurred and every area is in fo
us. The fused image should be better for humanviewing as well as for subsequent pro
essing and analysis like segmentation, featureextra
tion, obje
t re
ognition et
. Figure 1.1 shows an example of multi-fo
us imageswith fo
us on 
omplementary regions and the fused image with fo
us on all regions.
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(a) Near fo
used image (b) Far fo
used image (
) Fused imageFigure 1.1: An example of multi-fo
us image fusionThe te
hniques for MFIF belong to the broad 
ategories, pixel-based, blo
k-basedand region-based. They 
on
entrate respe
tively on single pixels, small blo
ks of sizem � n and arbitrarily shaped regions. It is interesting to study and 
ompare MFIFte
hniques within a parti
ular 
ategory and the ones belonging to di�erent 
ategories.The ultimate goal of MFIF is to obtain all obje
ts in the �nal image in fo
usedand identi�able form. Mathemati
al morphologi
 operators have the 
apability ofhandling obje
ts in di�erent shapes and sizes. In this thesis, we explore mathemati
almorphology as a tool for MFIF and propose new te
hniques for the same employingthis tool. We provide a 
omparison of results obtained by various te
hniques andoutline some related future work. Image registration is a ne
essary pre-requisite forMFIF be
ause before fusion the 
onstituent images must be positioned properly withrespe
t to a 
ommon 
oordinate system so that 
orresponding obje
ts are overlaidproperly [41℄. We propose a new te
hnique for multi-fo
us image registration also. Inthis 
hapter, a brief review of previous work on MFIF is given in Se
tion 1.2, obje
tiveof the thesis is given in Se
tion 1.3, a brief a

ount of mathemati
al morphologi
operators is given in Se
tion 1.4, 
ontribution of the thesis is given in Se
tion 1.5,experimental set-up along with data used for experimentation are given in Se
tion 1.6,evaluation te
hniques used are given in Se
tion 1.7, and �nally organization of thethesis is given in Se
tion 1.8.



CHAPTER 1. INTRODUCTION 41.2 Review of previous workThe fundamental 
on
ept behind MFIF is to sele
t the sharply fo
used regions fromthe input images to form an image in whi
h all obje
ts are in fo
us. The basi
 stepsfor this are, to divide ea
h input image into overlapping or non-overlapping regions,then measure sharpness of fo
us for all regions, �nally sele
t the best-fo
used regionamong all 
orresponding regions to form the fused image. When all the regions ofinterest squeeze into single pixels, the approa
h is 
alled a pixel-based approa
h, whenthey are small blo
ks of size m � n, the approa
h is 
alled a blo
k-based approa
h;otherwise it is 
alled a region-based approa
h. Another 
ategorization is done onwhether the te
hnique is based on spatial domain or frequen
y domain. In spatialdomain te
hniques, input images are fused in spatial domain using physi
ally relevantspatial features. In frequen
y domain te
hniques, multi-s
ale de
omposition (MSD) ormulti-resolution de
omposition (MRD) by pyramid or wavelet transform is required.An early 
ategorization of frequen
y domain MRD fusion s
hemes was given by Zhangand Blum [89℄. Piella [65℄ provided a general framework for these s
hemes and alsoproposed a new method for the same. Pajares and Cruz [59℄ presented a 
omprehen-sive tutorial on wavelet-based fusion methods. Goshtasby and Nikolov [30℄ presentedan overview of various fusion te
hniques. Basi
 idea of MRD-based fusion s
hemesis the following. At �rst ea
h sour
e image is transformed/de
omposed up to a levelby an MRD s
heme. The de
omposition gives the s
aled image as low frequen
y
oeÆ
ients and the detail images as high frequen
y 
oeÆ
ients. Salien
ies of the
oeÆ
ients are measured by their a
tivity-levels. A sele
tion or de
ision map is 
re-ated from the a
tivity-levels of the 
oeÆ
ients from all transformed images. Themap is used as a guide to 
onstru
t the 
omposite representation of the transformedimages. Finally fused image is obtained by applying the inverse transform to the
omposite representation. An MRD fusion s
heme is 
ategorized depending on howthe a
tivity-levels of MRD-
oeÆ
ients are measured. If the a
tivity-level is measuredfor the 
oeÆ
ients related to individual pixels, the method is 
alled pixel-based, if itis measured depending on the 
oeÆ
ients of a small blo
k surrounding the 
on
erned
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oeÆ
ient, the method is 
alled blo
k-based and �nally; if it is measured dependingon all 
oeÆ
ients in a region 
ontaining the 
on
erned 
oeÆ
ient, then the methodis 
alled region-based. Images fused by frequen
y-domain MRD s
hemes may losesome information of the sour
e images be
ause of implementation of inverse multi-resolution transform.The idea of using MRD s
hemes for image fusion was �rst proposed by Burt [8℄ as amodel for bino
ular fusion for human stereo vision. He used Lapla
ian pyramid forMRD and 
hoose max rule for 
oeÆ
ient sele
tion. Burt and Adelson [10℄ later in-trodu
ed a new approa
h to image fusion based on hierar
hi
al image de
omposition.Adelson [2℄ then used the Lapla
ian pyramid te
hnique for MFIF. Toet [78℄ proposedthe use of ratio of low-pass pyramids at su

essive levels of Gaussian pyramids forfusion of visible and IR images. Burt [9℄ proposed that fusion within a gradientpyramid provides improved stability and noise immunity. Akerman [3℄ optimized theLapla
ian pyramid fusion in respe
t of multi-sensor fusion. Burt and Kol
zynski [11℄presented gradient pyramid fusion with a lo
al mat
h measure and a window-basedsalien
y measure. Li et al. [45℄ used similar method ex
ept that wavelet transformis used instead of pyramid transform and 
onsisten
y veri�
ation is done along withwindow-based a
tivity measure. Wavelet based fusion te
hniques are proposed laterby many other people in
luding Chipman et al. [16℄, Petrovi
 and Xydeas [63℄, S
he-unders [72℄, Hill et al. [37℄, Hamza et al. [34℄, De and Chanda [19℄, Qu and Yan[68℄ and Lewis et al. [44℄. Frequen
y domain te
hniques in various 
ategories will bedis
ussed in detail in related 
hapters.Sin
e multi-fo
us images of a s
ene are a
quired with fo
us on 
omplementary regions,fo
used regions in an image have more 
ontrast than their defo
used 
ounter-partsin other images. Fo
us-measure (FM) is a quantity for evaluating the 
ontrast orsharpness of a pixel, blo
k or region [39, 50℄. Image varian
e, image gradients, im-age Lapla
ians, energy of image gradients (EOG), energy of image Lapla
ian (EOL)are traditional FM's employed and validated for appli
ations like autofo
using [76℄.Modi�ed Lapla
ian (ML), Sum modi�ed Lapla
ian (SML) are modi�
ations of image



CHAPTER 1. INTRODUCTION 6Lapla
ian [58℄. Spatial frequen
y (SF) [25℄ and Tenengrad [36℄ were later introdu
edas fo
us measures. In spatial domain MFIF te
hniques, input images are fused inthe spatial domain using fo
us-measure as a physi
ally relevant spatial feature in lo-
alized area. Sin
e these te
hniques emphasize on a spe
i�
 or desired image area,very little/no 
hange o

urs in other areas. Pixel-level weighted averaging is a spa-tial domain te
hnique in whi
h fusion is done by taking the weighted average of thepixel intensities of the input images. Weights are determined by tools like prin
iple
omponent analysis [71℄ or adaptive methods [42℄. Other spatial domain pixel-levelimage fusion approa
hes in
lude, fusion using 
ontrollable 
amera [73℄, probabilisti
methods [5℄, image gradient method with majority �ltering [23℄.The basi
 idea in spatial domain blo
k based fusion methods is to divide the inputimages into a number of blo
ks, then measure fo
us on 
orresponding blo
ks and�nally sele
t and 
ombine the fo
used blo
ks to 
reate the fused image [39℄. Often
onsisten
y veri�
ation is done before 
reating the �nal fused image. Spatial domainblo
k based fusion methods are proposed in [47, 48, 55, 29, 27, 87, 21℄. Li et al. [47℄used spatial frequen
y (SF) as the fo
us measure. In a subsequent work they [48℄used neural network (NN) to sele
t better fo
used blo
ks using three features SF,visibility and edge feature. Miao and Wang [55℄ used energy of image gradients (EOG)to measure fo
us in image blo
ks in an MFIF algorithm based on Pulse CoupledNeural Networks. In the method of Goshtasby [29℄, fo
us is measured by the sumof the gradient values of all pixels in the blo
k. In the method of Fedorov et al.[27℄ ea
h image is tiled with overlapping neighborhoods. For ea
h region the tilethat 
orresponds to the best fo
us (whi
h is measured by ML) is 
hosen. Zhang andGe [87℄ proposed a te
hnique in whi
h fo
used blo
ks are dete
ted by measuring theirblurriness. De and Chanda [21℄ introdu
ed a new fo
us measure 
alled energy ofmorphologi
 gradients (EOMG) and used it for image fusion in a blo
k-based MFIFalgorithm.In region-based fusion te
hniques, among 
orresponding regions better fo
used onesare sele
ted and 
ombined to 
onstru
t the fused image. So blo
k-size is not of any
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on
ern in these methods. Spatial-domain region-based fusion methods are proposedin [53, 57, 22, 49℄. Methods des
ribed in [53, 57, 22℄ use multi-s
ale morphology.Matsopoulos et al. [53℄ used multi-s
ale morphologi
 pyramids. Mukhopadhyay andChanda [57℄ used morphologi
 towers instead of morphologi
 pyramids. De et al. [22℄proposed multi-fo
us image fusion te
hniques using multi-s
ale top-hat transforma-tion. Li and Yang's te
hnique [49℄ is a spatial-domain, region-based te
hnique whi
hdoes not depend on MRD. In this te
hnique, input images are segmented a

ordingto the segmentation results of a temporary fused image and better fo
used regions aresele
ted and stit
hed to their desired positions to get the �nal fused image. Spatialdomain te
hniques in various 
ategories will be dis
ussed in detail in related 
hapters.Obje
tive of the thesis is given now.
1.3 Obje
tive of the thesisA number of resear
hers have suggested methods for MFIF as a solution to the prob-lem of low depth-of-�eld. As dis
ussed before, the te
hniques belong to the broad
ategories, pixel-based, blo
k-based and region-based. It is interesting to study and
ompare MFIF te
hniques within a parti
ular 
ategory and the te
hniques belongingto di�erent 
ategories. A good algorithm for MFIF should possess some importantproperties. It should be independent of image 
ontent and robust against probablemisalignments of input images. It should not produ
e any unwanted visual e�e
tor artifa
t. Quality of the fused image should satisfy the requirement for intendedappli
ation and �nally 
omputational 
omplexity should also be a�ordable. In gen-eral, pixel-based te
hniques are intuitively straightforward, easy to implement and
omputationally eÆ
ient. But they are sensitive to mis-registration of input images.Blo
k-based and region-based te
hniques are more robust in respe
t of registrationproblems though they are more 
omplex in general. Despite the in
rease in 
omplex-ity, region-based methods have a number of advantages over pixel-based methods.These in
lude the ability to use more intelligent semanti
 fusion rules and the ability
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entuate 
ertain properties to the regions [30℄.Multi-fo
us images may 
ontain obje
ts of di�erent shapes and sizes. The ultimategoal of MFIF is to obtain all obje
ts in the �nal image in fo
used/deblurred form.Mathemati
al morphology is a subje
t whi
h treats an image as an ensemble of sets.Morphologi
 operators have the 
apability of handling obje
ts in di�erent shapes andsizes. They have some interesting 
omputational advantages as well. In this thesis weexplore morphologi
 te
hniques as a tool for MFIF. Algorithms for MFIF proposedin the thesis employ various 
ombinations of morphologi
 operations.Given this, the obje
tive of the thesis is to propose and analyze grey-level MFIFs
hemes employing morphologi
 operators and having the following desirable proper-ties,� ability to work on a variety of input images,� robustness against probable mis-registration of input images,� extensibility to fuse multi-fo
us 
olor images,� low 
omputational 
ost,� adaptability to hardware implementation.Sin
e all algorithms for MFIF proposed in this thesis use morphologi
 operators, abrief introdu
tion to them is given now.
1.4 Morphologi
 OperatorsMathemati
al morphology treats an image as a set of pixels [74, 75℄. Morphologi
operators work with two sets, the original image to be analyzed and a stru
turingelement (SE). Ea
h SE has a shape and a size and it 
an be thought of as a parameter



CHAPTER 1. INTRODUCTION 9to the operation. Fundamental morphologi
 operations are morphologi
 dilation andmorphologi
 erosion. At �rst we present these two operators for binary images. Atwo-dimensional binary image signal is a fun
tion/mapping from domain D (whi
his a subset of dis
rete two-dimensional Eu
lidean spa
e Z2) to a binary-set f0; 1g.Suppose A is the set of points representing the binary-1 pixels of the original binaryimage and B is the set of points representing binary-1 pixels of the SE. Then dilationand erosion of A by B, are denoted by A�B and A	B respe
tively and are de�nedas A� B = fb+ a j for b 2 B and a 2 Ag (1.1)A	 B = fp j b+ p 2 A for every b 2 Bg (1.2)where `+' denotes the binary-or operation. Pra
ti
ally, A � B is the lo
us of originof B su
h that B hits A. Similarly, A	B is the lo
us of origin of B su
h that B �tsin A.We now 
onsider the 
ase of grey-s
ale images. A two-dimensional grey-s
ale imagesignal X is a fun
tion/mapping from domain D (whi
h is a subset of dis
rete two-dimensional spa
e Z2) to the set of grey intensity values fg1; g2; : : : ; gng where ea
hgi is a nonnegative integer. A grey-s
ale SE h is a mapping from its domain to theabove set of grey values. In this thesis, we use 
at SE's that is SE's for whi
h thevalue of h is always zero. Let (r; 
) be a point in domain D, where r and 
 denote therow and 
olumn 
oordinates respe
tively. Dilation and erosion of X(r; 
) by h(r; 
)are denoted by (X � h)(r; 
) and (X 	 h)(r; 
) respe
tively and are de�ned as(X � h)(r; 
) = max(i;j)2Domain of h (X(r � i; 
� j) + h (i; j)) (1.3)(X 	 h)(r; 
) = min(i;j)2Domain of h (X(r + i; 
+ j)� h (i; j)) (1.4)where the maximum and minimum are taken over all (i; j) in the domain of h su
hthat (r� i; 
�j) and (r+ i; 
+j) are in the domain of X. So dilation simply repla
esthe value at ea
h point of X by the maximum value in the neighborhood de�ned bythe SE when the origin of SE is pla
ed at the point. Similarly erosion repla
es thevalue at ea
h point of X by the minimum value in the neighborhood de�ned by the



CHAPTER 1. INTRODUCTION 10SE when the origin of SE is pla
ed at the point. Other morphologi
 operators are
onstru
ted by 
ombining dilation and erosion. For example, opening and 
losing ofX(r; 
) by h(r; 
) are denoted by (X Æ h)(r; 
) and (X � h)(r; 
) respe
tively and arede�ned as (X Æ h)(r; 
) = ((X 	 h)� h)(r; 
) (1.5)(X � h)(r; 
) = ((X � h)	 h)(r; 
) (1.6)Both opening and 
losing are in
reasing operations implying that opening (
losing)of an image 
ontains openings (
losings) of all its sub-images. Both opening and
losing are idempotent operations implying that su

essive appli
ations of openings(
losings) do not further modify the image. Finally, opening is an anti-extensiveoperation and 
losing is an extensive operation. In a grey-s
ale image X, an openingremoves all foreground stru
tures in the image that are not large enough to 
ontainthe SE. Similarly, a 
losing removes all ba
kground stru
tures in the image that arenot large enough to 
ontain the SE. Here foreground stru
ture means an image regionof intensity value higher than the surrounding region.1.4.1 Multi-s
ale morphologi
 operatorsExtra
tion of features by mathemati
al morphology depends on e�e
tive use of SE's.Sizes and shapes of SE's play 
ru
ial roles here. A morphologi
 operator with as
alable SE 
an extra
t features of various shapes and sizes. A s
heme of morphologi
operations with a s
alable SE is termed as multi-s
ale morphology [15, 52℄. For as
alable SE h, size of its domain gets 
hanged. Let B be a set representing thedomain of h. Assume that B has a de�nite shape. Let n be an integer representingthe s
ale-fa
tor of B and let nB denote the s
aled version of B at s
ale n. If B is
onvex, then nB is obtained by n� 1 dilations of B by itself.nB = B�B � B � � � � � B| {z }n�1 times (1.7)When n = 0, 
onventionally B is taken to be a disk of unit size so that nB = f(0; 0)g.Let h be a 
at-top SE su
h that its value at every point in its domain nB is zero. Then
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 operation by SE h redu
es to an operation by its domain nB. Thenmulti-s
ale opening and 
losing of X by s
alable domain nB are de�ned respe
tivelyas (X Æ nB)(r; 
) = ((X 	 nB)� nB)(r; 
) (1.8)(X � nB)(r; 
) = ((X � nB)	 nB)(r; 
) (1.9)The opening removes all bright/foreground stru
tures in the image X that are notlarge enough to 
ontain nB. Here foreground stru
ture means an image region ofintensity value higher than the surrounding region. Similarly, the 
losing removes alldark/ba
kground stru
tures in the image X that are not large enough to 
ontain nB.These operators are used e�e
tively to dete
t fo
used regions whi
h in general havemore 
ontrast than 
orresponding defo
used regions.Given the ba
kground and the obje
tive of the thesis and a short introdu
tion tomorphologi
 operators, 
ontribution of the thesis is presented now.
1.5 Contribution of the thesisIt is already dis
ussed that the obje
tive of the thesis is to propose and analyze grey-level MFIF s
hemes having 
ertain desirable properties. Mathemati
al morphologyis explored as a tool for MFIF and new te
hniques are presented employing this tool.In addition to a brief review of previous work, the obje
tive of the thesis and a shortintrodu
tion to morphologi
 operators, 
urrent 
hapter, viz. Chapter 1 in
ludes thedata-set used for experimentation purpose and the quantitative measures used forperforman
e evaluation.Sin
e registration is a ne
essary prerequisite for MFIF, a new algorithm for multi-fo
us image registration is presented in Chapter 2. It is an iterative algorithm forregistration of multi-fo
us images by 
ombining global and lo
al transformation mod-els. In the �rst step of the algorithm, a global translation is determined by maximizing



CHAPTER 1. INTRODUCTION 12the mutual information of the sour
e and the referen
e images and then it is appliedon the sour
e image. In the se
ond step, a blo
k-wise lo
al s
aling is applied on thetranslated sour
e image. The s
ale-fa
tors are determined by maximizing a similaritymeasure of two 
orresponding blo
ks of the translated sour
e image and the referen
eimage. The global and lo
al transformations 
onstitute a hybrid te
hnique whi
his iterated to obtain the optimal result. The proposed method is automati
, easyto implement and gives good results. Results obtained by applying the method ondi�erent sets of multi-fo
us images are provided with. Performan
e of the system isevaluated and is 
ompared with a widely used method.Chapter 3 presents a pixel-based algorithm for multi-fo
us image fusion using mor-phologi
 wavelets. A nonlinear morphologi
 wavelet transform whi
h preserves therange in the s
aled images and involves integer arithmeti
 only is introdu
ed at �rst.This transform is employed in a fusion algorithm to fuse a set of grey-s
ale multi-fo
us images. The method is 
omputationally eÆ
ient and produ
es good results.Integrated-
hip implementations of image pro
essing algorithms are going to be
omemore 
ommon in near future. Our method will be useful in this respe
t. The problemwith this algorithm is that being a pixel-based method, it is not robust to mis-registration problem.Chapter 4 presents a blo
k-based algorithm for multi-fo
us image fusion using amorphology-based fo
us measure in a quad-tree stru
ture. Fo
us-measure is a quan-tity for evaluating the 
ontrast or sharpness of a pixel, blo
k or region. A newfo
us-measure 
alled energy of morphologi
 gradients (EOMG) is introdu
ed. It isused for a novel algorithm for MFIF whi
h employs a quad-tree stru
ture for optimalsubdivision of input images while sele
ting the sharply fo
used blo
ks. Though thealgorithm starts with blo
ks, it ultimately identi�es sharply fo
used regions in inputimages. The fo
us measure EOMG is 
omparable with other fo
us measures viz. en-ergy of gradients (EOG) and varian
e. The algorithm is robust in the sense that itworks with any fo
us measure. It is also robust against pixel mis-registration. But asthe algorithm per
eives an image as a union of variable-sized blo
ks, blo
king e�e
ts



CHAPTER 1. INTRODUCTION 13may appear in the boundaries of arbitrary-shaped regions.Chapter 5 presents a region-based algorithm for multi-fo
us image fusion using multi-s
ale morphology. Sin
e multi-fo
us images of a s
ene are a
quired with fo
us on the
omplementary regions, fo
used regions in an image have more 
ontrast than their de-fo
used 
ounter-parts in other images. This implies that the fo
used regions 
ontainlarger number of physi
ally relevant features than that 
ontained in 
orrespondingdefo
used regions. Fo
used regions are dete
ted by extra
ting the bright and dark fea-tures at various s
ales by multi-s
ale top-hat transformation. Sin
e the best-fo
usedregions are dete
ted and 
opied from one image only, a slight error in registrationwill have no e�e
t in fusion ex
ept in the borders of the fo
used regions. Hen
ethis region-based method is robust to mis-registration. This method resembles themanual 
ut-and-paste method of image fusion whi
h is often used for 
omparisonpurposes. Thus the fused image obtained by the method is very similar to the idealfused image. Performan
e analysis reveals that our method is superior to fusion by astate-of-the-art method.Chapter 6 presents the 
on
lusion of the thesis in
luding a 
omparative study ofte
hniques presented in previous 
hapters. It also presents a dis
ussion on relatedfuture work.In brief, in this thesis� Chapter 1 presents a brief review on existing literature, the obje
tive and 
on-tribution of the thesis, data-set used for experimentation and the quantitativemeasures used for performan
e evaluation,� Chapter 2 presents an iterative algorithm for registration of multi-fo
us imagesby 
ombining global and lo
al transformation models,� Chapter 3 presents a pixel-based algorithm for multi-fo
us image fusion usingmorphologi
 wavelets,



CHAPTER 1. INTRODUCTION 14� Chapter 4 presents a blo
k-based algorithm for multi-fo
us image fusion usinga morphology-based fo
us measure in a quad-tree stru
ture,� Chapter 5 presents a region-based algorithm for multi-fo
us image fusion usingmulti-s
ale morphology,� Chapter 6 presents 
on
lusion of the thesis and gives an outline on related futurework.Experimental set-up and the data-set used for experiments are presented now.
1.6 Experimental set-upProposed algorithms are implemented using C language in Unix environment. Allprograms are exe
uted on a ma
hine with Intel Pentium pro
essor T4400 and 1 GBRAM. Standard algorithms proposed by others have also been implemented in thesame environment for 
omparison purpose.1.6.1 Data used in experimentationThe algorithms are applied on a large number of multi-fo
us image-sets whi
h varyin their obje
t-
ontents and imaging set-up. Obje
t-
ontents of image-sets vary innumber, shape and distan
e of obje
ts from the 
amera. Texture of image-sets variesin regularity, density and in 
ombination of mi
ro and ma
ro texture. Some of theimage-sets depi
t indoor s
enes whereas others depi
t outdoor s
enes. Images ofindoor s
enes generally 
ontain human beings, animals and man-made obje
ts. Man-made obje
ts with straight-line edges (for example, book, book-shelf, table, window,door et
.) are helpful to dete
t artifa
ts like step-e�e
ts generated after pro
essing.Images of outdoor s
enes generally 
ontain natural obje
ts like 
owers, plants, treesand also buildings. These images in general show irregularity in texture. Registration
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h images is diÆ
ult be
ause in addition to other di�eren
es temporal 
hangesbetween shots may o

ur due to wind. Hen
e slight mis-registration may be presentin this type of images. This may in turn reveal the robustness of the fusion pro
edureagainst mis-registration.Sin
e it is not possible to in
lude all experimental results in the thesis, we have 
ho-sen test image-sets in su
h a way that experiments are validated by di�erent typesof images. Twelve representative image-sets are used in the thesis and they are ob-tained from web-sites [32, 24, 26, 1, 28℄. The image-sets named as `Doll', `Toy', `Disk',`Lab', `Pepsi', `Clo
k', `Campus', `Hydrant', `Garden', `Rose', `News' and `OpenGL'are shown in Fig. 1.2. Among these, the multi-fo
us `Doll' images (Fig. 1.2A) aresyntheti
 images generated from the famous painting named `Las Meninas' by DiegoVel�azquez kept at `Museo del Prado' in Madrid. These images have been generatedarti�
ially by a modern painter 
um art-tea
her John Hagan [32℄. He has visuallyestimated the distan
es of various obje
ts present in the painting. A

ordingly di�er-ent portions of the original image of the painting have been arti�
ially defo
used byhim to illustrate the 
on
ept of `depth-of-�eld'. Though the blurring model and theparameters are not known to us, we have used this multi-fo
us image-set as an idealsyntheti
 data-set for evaluating the performan
e of fusion algorithms. Moreover, thisimage-set 
ontains three multi-fo
us images, hen
e it o�ers better illustration fa
ilitythan the sets of two images. Image-sets `Toy', `Disk', `Lab', `Pepsi' and `Clo
k' areobtained from web-site [24℄; `Campus' and `Hydrant' are obtained from web-site [26℄;`Garden' is obtained from web-site [1℄; `Rose', `News' and `OpenGL' are obtainedfrom web-site [28℄. The 
hara
teristi
s of test image-sets are given now.� Image-set `Doll' depi
ts an indoor s
ene with many obje
ts of arbitrary shapesand sizes and pla
ed at di�erent distan
es.� Image-set `Toy' depi
ts an indoor s
ene with many obje
ts of regular shapespla
ed before a large and mostly dark ba
kground.� Image-sets `Disk' and `Lab' 
ontain many obje
ts of di�erent sizes and mostly
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us images and their sizesFigure SizeDoll 384� 576Toy 512� 512Disk 448� 576Lab 448� 576Pepsi 512� 512Clo
k 256� 256Campus 480� 640Hydrant 480� 640Garden 320� 448Rose 512� 704News 224� 320OpenGL 512� 704of regular geometri
 shapes.� Image-set `Pepsi' and `Clo
k' 
ontain large obje
ts all of whi
h have regulargeometri
 shapes.� Image-sets `Campus' and `Hydrant' depi
t outdoor s
enes with obje
ts of mostlyirregular texture and at large distan
es among themselves.� Image-set `Garden' depi
ts an outdoor s
ene with dense irregular texture.� Image-set `Rose' has a large area of regular grid-like stru
ture as ba
kground.� Image-set `News' 
ontains dense but mostly regular texture.� Image-set `OpenGL' 
ontains both mi
ro and ma
ro textures.As mentioned in Se
tion 1.5, image registration is a ne
essary pre-requisite beforefusion. Among the above image-sets, �ve (viz. `Doll', `Disk', `Garden', `Rose' and
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A.(i) Doll: Near fo
used image

A.(ii) Doll: Middle fo
used image A.(iii) Doll: Far fo
used imageFigure 1.2: Multi-fo
us image data-sets used for experimentation`News') were not registered and we have registered them. Details of registration aregiven in Chapter 2. The rest of the images were already registered. Sizes of variousimage-sets after registration are given in Table 1.1.
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e EvaluationA good fusion algorithm should be able to work on a variety of input images, ro-bust enough to tolerate probable mis-registration of input images and should notprodu
e any unwanted visual e�e
t or artifa
t. Moreover quality of the fused imageshould satisfy the requirement for intended appli
ation and 
omputational 
omplexityshould also be a�ordable. Quality and time are inter-dependent and they are oftenrelated dire
tly, that is, better quality needs more time. So depending on the spe
i�
appli
ation, one has to 
ompromise/trade o� between these two.There are two types of assessment, subje
tive or qualitative and obje
tive or quantita-tive [62℄. In qualitative fusion quality assessment, subje
ts or observers are requestedto examine the input image-sets and the output images obtained by various fusionte
hniques and then rank the output images a

ording to their visual quality [64℄. Av-erage of the ranks given by di�erent observers indi
ates the subje
tive quality of thete
hniques under examination. The pro
ess is time 
onsuming, laborious and expen-sive. Moreover the assessment in this pro
ess is non-repetitive, that is, for the sameset of images the ranking given by an observer may 
hange from time to time. Quan-titative fusion quality evaluation over
omes these draw-ba
ks by employing a metri
that quanti�es the quality of the fused images. The metri
 should estimate how mu
hinformation is obtained from the input images be
ause goal of image fusion is to in-tegrate information from multiple sour
es. In 
onventional methods, the ideal fusedimage is used as the referen
e image and the metri
s like mean-square-error (MSE),peak-signal-to-noise-ratio (PSNR) are used to estimate the error between the refer-en
e image and the pro
essed image. Sin
e referen
e images are not available here,we need to use metri
s whi
h do not require them.In this thesis, quantitative evaluation of fusion algorithms is done by using two di�er-ent metri
s. They are based respe
tively on image gradients and stru
tural similarityindex. Ea
h of the metri
s yields a numeri
al value from the input image-set and thefused image. None of them requires any referen
e image. For both of them, greater
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B.(i) Toy: Near fo
used image

B.(ii) Toy: Middle fo
used image B.(iii) Toy: Far fo
used imageFigure 1.2: Continued
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C.(i) Disk: Near fo
used image C.(ii) Disk: Far fo
used image

D.(i) Lab: Near fo
used image D.(ii) Lab: Far fo
used imageFigure 1.2: Continued
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E.(i) Pepsi: Near fo
used image E.(ii) Pepsi: Far fo
used image

F.(i) Clo
k: Near fo
used image F.(ii) Clo
k: Far fo
used imageFigure 1.2: Continued
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G.(i) Campus: Near fo
used image G.(ii) Campus: Far fo
used image

H.(i) Hydrant: Near fo
used image H.(ii) Hydrant: Far fo
used imageFigure 1.2: Continued
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I.(i) Garden: Near fo
used image I.(ii) Garden: Far fo
used image

J.(i) Rose: Near fo
used image J.(ii) Rose: Far fo
used imageFigure 1.2: Continued
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K.(i) News: Near fo
used image K.(ii) News: Far fo
used image

L.(i) OpenGL: Near fo
used image L.(ii) OpenGL: Far fo
used imageFigure 1.2: Continued
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s are des
ribed below for two input images,however they 
an be extended easily to three or more input images.1.7.1 Gradient similarity indexGradients operators are useful tools to measure variations in intensity of a pixelwith respe
t to its immediate neighboring pixels [13℄. It is observed that a pixelpossesses high gradient value when it is sharply fo
used. So in a set of multi-fo
usimages, pixels of a sharply-fo
used region possess higher gradient values than pixelsof the 
orresponding out-of-fo
us region. This observation led to an image fusionperforman
e measure employing image gradients [57, 22℄. For two multi-fo
us inputimages X1 and X2, gradient images G1 and G2 are obtained �rst. Then G1 and G2are 
ombined into G by taking the maximum gradient value at ea
h pixel position(r; 
). Therefore G(r; 
) = max (G1(r; 
); G2(r; 
)) for all (r; 
) (1.10)Thus only the sharply fo
used pixels from the 
onstituent images have their 
ontri-bution in the maximum gradient image G. Let ~G denotes the gradient of the fusedor re
onstru
ted image F . It is referred to as the gradient of fused image. Then,more similar G and ~G are, better is the fusion algorithm. Now, following the usualde�nition of signal-to-noise ratio, a simple obje
tive measure of similarity betweentwo gradient images is 
al
ulated asS(G; ~G) = 1� qP(G(r; 
)� ~G(r; 
))2pPG2(r; 
) +qP ~G2(r; 
) (1.11)We 
all S the gradient similarity index (GSI). Here, qP(G(r; 
)� ~G(r; 
))2 deter-mines the error or dissimilarity between the images and it is normalized by the quan-tity pPG2(r; 
) +qP ~G2(r; 
) to make the measure unbiased to overall brightnessof the images. So for an ideal fused image S approa
hes the value 1. For our experi-mentation, we have 
al
ulated the gradients by Robert's gradient operator [70℄. For



CHAPTER 1. INTRODUCTION 26more than two input images, G(r; 
) is 
al
ulated as the maximum of the gradientsat (r; 
) taken over all input images.1.7.2 Fusion quality indexStru
tural similarity index (SSI) proposed by Wang and Bovik [83℄ is an e�e
tivemetri
 to measure the quality of an image. For two real-valued sequen
es X =(x1; x2; : : : ; xn; ) and Y = (y1; y2; : : : ; yn; ), the metri
 Q0(X; Y ) de�ned asQ0(X; Y ) = 4� �XY � �X � �Y(�2X + �2Y )� (�2X + �2Y ) (1.12)measures the stru
tural similarity of X and Y . Here �X and �Y are the mean valuesof X and Y ; �2X and �2Y are the varian
es of X and Y ; and �XY is the 
ovarian
e ofX and Y . Stru
tural similarity of two images is de�ned in a similar way. Sin
e imagesignals are generally non-stationary, it is more appropriate to measure Q0 over lo
alregions and then 
ombine the di�erent results into a single measure. The authors [83℄proposed to use a sliding window approa
h. Starting from the top-left 
orner of thetwo images X1; X2, a sliding window of �xed size (with n pixels) moves pixel by pixelover the entire image until the bottom-right 
orner is rea
hed. For ea
h window w,the lo
al quality index Q0(X1; X2 j w) is 
omputed. Finally, the stru
tural similarityindex (SSI) Q0 is 
omputed by averaging all lo
al quality indi
es.Piella and Heijmans [66℄ proposed variants of SSI to measure quality of image fusion.Fusion quality index (FQI) Q(X1; X2; F ) for input images X1; X2 and output imageF is de�ned by them asQ(X1; X2; F ) = 1jW j Xw2W(�1(w)Q0(X1; F jw) + �2(w)Q0(X2; F jw)) (1.13)where Q0(X1; F jw) is the stru
tural similarity index of X1 and F over the lo
alwindow w, W is the family of all lo
al windows, jW j is the 
ardinality of W and �1and �2 are weights obtained from lo
al salien
y measures. Lo
al salien
y measures(X1jw) of input image X1 should re
e
t the lo
al relevan
e of X1 within the window
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ontrast, sharpness or entropy. Given the lo
al salien
iess(X1jw) and s(X2jw), the lo
al weights �1(w) and �2(w) is 
omputed. It indi
ates therelative importan
e of image X1 
ompared to image X2. A typi
al 
hoi
e for �1(w) iss(X1jw)s(X1jw)+s(X2jw) . In our evaluation, we have taken the window-size to be of 8� 8 pixelsand the sum of gradient values in the lo
al window to be the lo
al salien
y measure.For more than two input images, Q is 
al
ulated as the average weighted sum of Q0's
al
ulated for all images. Here weight for a lo
al window in an image is 
al
ulatedas the salien
y of the window in that image divided by sum of lo
al salien
ies for all
orresponding windows in all other images.
1.8 Organization of the thesisOrganization of the thesis follows. A survey on multi-fo
us image registration andan iterative and hybrid method for the same are presented in Chapter 2. Chapter 3presents a 
omputationally eÆ
ient pixel-based algorithm for MFIF using wavelet.Before des
ribing the algorithm, the basi
 theory and new wavelet 
alled morphologi
wavelet is presented. Chapter 4 presents a blo
k-based method for MFIF. It employsa new fo
us-measure 
alled energy of morphologi
 gradients. Chapter 5 presentsa region-based method for MFIF using multi-s
ale morphologi
 operators. In ea
h
hapter, after des
ribing the new algorithm, experimental results on data-sets givenin Figure 1.2 are presented. Finally, Chapter 6 presents 
on
luding remarks andout-lines future work.



Chapter 2
Multi-fo
us image registration
2.1 Introdu
tionImage registration is a ne
essary pre-requisite for multi-fo
us image fusion be
ausebefore fusion the 
onstituent images must be positioned properly with respe
t toa 
ommon 
oordinate system so that 
orresponding obje
ts are overlaid properly[41℄. In general, the registration te
hniques may be 
lassi�ed a

ording to two majoraspe
ts: methodology and appli
ation-area. The methods 
an be 
ategorized into twotypes: (i) area-based and (ii) feature-based [92℄. A third 
ategory has emerged whi
his a hybrid of area-based and feature-based te
hniques. Registration te
hniques mayalso be 
lassi�ed by their mapping models, that is by examining whether they applyglobal and/or lo
al mapping models. Global models use information from the entireimage to estimate the mapping fun
tion parameters. On the other hand, lo
al modelstreat the image as a 
omposition of blo
ks/regions and the fun
tion parameters areestimated separately for ea
h blo
k/region.Registration te
hniques for multi-fo
us image have been proposed in [41, 90, 91, 18,22, 29, 27℄. Among these, the methods proposed in [41, 90, 91, 18, 22℄ use globalaÆne transformation models and the ones proposed in [29, 27℄ use global perspe
tive28
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hnique proposed by Kubota et al. [41℄ is an area-based multi-s
ale te
hnique. In this te
hnique, from the sour
e and the referen
eimages Gaussian pyramids are obtained at �rst. At the 
oarsest level of the pyramids,translation, rotation and magni�
ation parameters are estimated by the minimumMSE between the two images. The parameters are propagated to the next �nerlevel and are further re�ned. The re�nement pro
ess 
ontinues up to the originalresolution level and the parameters obtained there are used to register the sour
eimage. Zhang and Blum [90, 91℄ proposed a hybrid multi-s
ale s
heme using botharea-based and feature-based te
hniques. In this te
hnique also, from the sour
eand the referen
e images Gaussian pyramids are obtained at �rst. At the 
oarsestlevel of the pyramids, an initial estimation of transformation parameters (mainlyrotation and translation) is done by using the edge features. The parameters areupdated by iterative re�nement of the opti
al 
ow estimation. They are propagatedto the next �ner level and are further re�ned. The pro
ess 
ontinues up to the �nestlevel in whi
h the �nal parameters are obtained and are used to register the sour
eimage. De and Chanda [18, 22℄ des
ribed an area-based te
hnique in whi
h at �rstthe sour
e and referen
e images are divided into equal number of blo
ks. A sour
eblo
k is swiped over the 
orresponding referen
e blo
k to �nd out the best mat
hingposition in the blo
k. Corresponding point-pairs are taken from best-mat
hing blo
ks.Finally, aÆne transformation parameters are estimated by the best-mat
hing pairsof points by using the least-square method. These parameters are then used toregister the sour
e image. Goshtasby [29℄ proposed a hybrid registration s
hemein whi
h the edge-interse
tion points are used as unique landmarks. At �rst, thelandmarks in the sour
e image are found. Then 
orresponding landmarks in thereferen
e image are found by 
orrelation template mat
hing. From the 
orrespondinglandmark pairs, the best four satisfying the proje
tive 
onstraints are identi�ed. Theyare used to 
al
ulate the proje
tive transformation parameters. Sour
e image is thenregistered by using these parameters. Fedorov et al. [27℄ used a hybrid registrations
heme in whi
h a number of well-lo
ated 
ontrol-points are extra
ted globally at�rst. Preliminary mat
hes of the tie-points are established by identifying the pairswith minimum distan
e in the des
riptor spa
e. Afterwards, the inevitable outliers
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tive transformationparameters are estimated by the mat
hed tie-points using the Normalized Dire
tLinear Transformation (DLT) algorithm. Sour
e image is then registered by usingthese parameters.The methods des
ribed above use global transformation models and do not applyany lo
al model appropriate for registration of multi-fo
us images. In general, theseimages are a
quired one by one in su
h a way that ea
h image in the set has fo
uson obje
ts at a parti
ular distan
e from the 
amera. This results in global as wellas lo
al variations in the images. In this 
hapter we explore these variations andpresent an iterative algorithm for registration of multi-fo
us images whi
h 
ombinesboth global and lo
al mapping models [20℄. In the �rst step of the algorithm, a globaltranslation is determined by maximizing the mutual information of the sour
e andthe referen
e images and then it is applied on the sour
e image. In the se
ond step,a blo
k-wise lo
al s
aling is applied on the translated sour
e image. The s
ale-fa
torsare determined by maximizing a similarity measure of two 
orresponding blo
ks of thetranslated sour
e image and the referen
e image. The global and lo
al transformations
onstitute a hybrid te
hnique whi
h is iterated to obtain the optimal result. Theproposed method is automati
, easy to implement and gives good results. Resultsobtained by applying the method on di�erent sets of multi-fo
us images are providedwith. Performan
e of the system is also evaluated and is 
ompared with a widelyused method. The 
hapter is organized as follows. Se
tion 2.2 des
ribes the proposedalgorithm. Experimental results and dis
ussion in
luding performan
e analysis aregiven in Se
tion 2.3. Finally, 
on
luding remarks are pla
ed in Se
tion 2.4.
2.2 An iterative hybrid registration algorithmMulti-fo
us images of a s
ene are a
quired one by one either by hand-held 
amerasor by 
ameras pla
ed on tripods, in identi
al environmental 
onditions in respe
t tosensor, light, view dire
tion, orientation and obje
t-
ontent in the s
ene [22, 27℄. Ea
h
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us on obje
ts at di�erent distan
es in the s
ene. Previous re-sear
h indi
ates that when the distan
e between the s
ene and the 
amera is large, itis usually possible to approximate the motion of the s
ene using an aÆne transforma-tion [90℄. Note that an aÆne transformation is usually a 
ombination of translation,rotation and s
aling (see Appendix B). In reality, for su
h appli
ations, rotation of the
amera relative to the s
ene is insigni�
ant and hen
e is not 
onsidered here. Globals
ale-
hange between images may o

ur due to 
hanges in fo
al settings. However inmost pra
ti
al appli
ations, it is less than three per
ent [76℄ and hen
e is not 
on-sidered here. We 
onsider global (horizontal and/or verti
al) translation(s) betweenimages due to a

idental 
amera-pan between shots taken by hand-held 
ameras andthe 
hanges due to variations in fo
al settings during a
quisition.Fo
al variations are done intentionally to fo
us on obje
ts at a parti
ular distan
e.For example, obje
ts at the ba
kground of a s
ene are farther than those at theforeground and during a
quisition, fo
us at ba
kground generates a far-fo
used imagein whi
h the ba
kground obje
ts are in fo
us but the foreground obje
ts are out-of-fo
us. Similarly fo
us at foreground generates a near-fo
used image in whi
h theforeground obje
ts are in fo
us but the ba
kground obje
ts are out-of-fo
us. Hen
epartial defo
using/blurring is inevitable in multi-fo
us images. Partial defo
usinga�e
ts the images in two ways. Firstly, due to point-spreading, a blurred obje
tappears to be larger in an image when 
ompared to its fo
used 
ounterpart in someother image [40℄. In addition to that the radii-of-blur may vary in near-fo
used andfar-fo
used images. This results in lo
al s
ale-
hange between images. Se
ondly, theposition of an out-of-fo
us obje
t may be 
hanged when 
ompared to the position ofits fo
used 
ounterpart in some other image. This is shown in Figure 2.1 by a par-axial geometri
 opti
s model of image formation using a thin 
onvex lens. The fo
usedimage of a point-obje
t P is 
reated as a point-image P 0 on Plane-2 whi
h is thein-fo
us image-plane for P . All other image-planes nearer to or farther from the lensthan Plane-2 are out-of-fo
us image-planes for P . Plane-1 and Plane-3 are two su
hout-of-fo
us planes. The blurred images of point-obje
t P appear as blur-
ir
les withdiameters AB and CD on Plane-1 and Plane-3 respe
tively. Hen
e the sizes of the
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Figure 2.1: Geometri
 Opti
s Model of Lens Systemfo
used and blurred images of the point-obje
t do vary. In addition to that, blur-
ir
leis shifted verti
ally upwards in Plane-1 and the same is shifted verti
ally downwards inPlane-3. So the fo
used and blurred images of an obje
t do have position di�eren
esas well. Intensity or radiometri
 di�eren
es 
aused by partial defo
using are notdealt with in this work be
ause they are intrinsi
 to multi-fo
us images and we donot intend to 
hange them. We rather 
on
entrate on spatial transformations due to
amera pan and partial defo
using. A single global transformation is not adequate to
apture all these e�e
ts. Considering this fa
t, a registration te
hnique is presentedwhi
h works in two steps. To nullify the e�e
ts of global translation(s), the sour
eimage is translated globally in the dire
tion(s) reverse to that of the 
amera pan.On
e the translation is done, lo
al variations in size and position are 
orre
ted byblo
k-wise lo
al s
aling. Above two steps are iterated until a 
ertain error 
riterion isful�lled. A s
hemati
 diagram depi
ting the iterative steps is shown in Figure 2.2.In registration of a set of multi-fo
us images, every image is equally authenti
 withits 
oordinate system. One of them is 
hosen to represent the 
ommon 
oordinatesystem and is 
alled the referen
e/target/destination image. Other images are 
alledsour
e images. Sour
e images are then registered to the referen
e image. Registrationis a mapping between two images both spatially and with respe
t to intensity [7℄. Ifsour
e image Xs and referen
e/destination image Xd are de�ned as two-dimensionalarrays of intensity values on spatial 
oordinates (r; 
), then mapping between them
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Figure 2.2: S
hemati
 diagram for a hybrid and iterative registration method
an be expressed generally asX 0s(u; v) = Fi(Xs(Fg(r; 
))) (2.1)su
h that e = jjXd(u; v)�X 0s(u; v) jj2 (2.2)be minimum, where Fi is the mapping for intensity transformation and Fg is themapping for geometri
 transformation so that (u; v) = Fg(r; 
). The equation mayvary depending on the appli
ation. In this work, Fg is a spa
e-variant transformationwhi
h is a 
ombination of global and lo
al geometri
 transformations instead of asingle global transformation generally used for multi-fo
us image registration. Wedes
ribe below the method for registration of sour
e image Xs with referen
e imageXd.2.2.1 Global translationSin
e multi-fo
us images are a
quired one by one, a

idental 
amera pan duringa
quisition may happen and this results in global translation(s) of the image in smallamounts. This e�e
t 
an be nulli�ed by translating the image in reverse dire
tion(s).The amount of translation is determined by maximizing the mutual information of



CHAPTER 2. MULTI-FOCUS IMAGE REGISTRATION 34Xs and Xd. Mutual information (MI), originating from the information theory, isa measure of statisti
al dependen
y between two data-sets [33℄. MI between twooverlapping images Xs and Xd is given byMI(Xs; Xd) = H(Xs) +H(Xd)�H(Xs; Xd) (2.3)where H(Xs) is the Shannon entropy de�ned asH(Xs) = �Xk ps(k) log ps(k) (2.4)where ps(k) is the probability of o

urren
e of grey value k in the image Xs. Similaris the de�nition for Shannon entropy H(Xd) of image Xd. Joint entropy H(Xs; Xd)of two images Xs and Xd is given byH(Xs; Xd) = �X(k;l) p(k; l) log p(k; l) (2.5)where p(k; l) is the joint probability of o

urren
es of grey values k and l in images XsandXd respe
tively. Entropy of a probability distribution is low when the distributionhas a few sharply de�ned, dominant peaks and it is maximum when all out
omes havean equal 
han
e of o

urring that is, the distribution is uniform. The same is true forjoint entropy. It 
an be seen from Equation (2.3) that a small value of joint entropyleads to a large value of MI. The idea that MI 
an be used for image registrationwas pioneered by Collignon et al. [17℄ and Viola and Wells [80℄. Both groups usedthe idea for registration of multi-modal images. It is based on the assumption that iftwo multi-modal images are properly aligned, then 
orresponding obje
ts (and hen
etheir respe
tive range of grey values) from two images overlay on one another. Thisresults in a few sharply de�ned, dominant peaks or ridges in the joint probabilitydistribution of the images. Hen
e, their joint entropy is minimized and 
onsequentlyMI is maximized.The idea is extended to multi-fo
us image registration. Sour
e image Xs is swipedover referen
e image Xd in su
h a way that grids of both images mat
h properly.This is done by applying integral amount(s) of translation(s) along the axes. So nointerpolation is employed here. Then for ea
h translation, overlapping sub-images of
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e image and the referen
e image are found. MI of the overlappingsub-images is 
al
ulated. Varying the translation-amounts within a range and 
al
u-lating the MI of overlapping sub-images, the amount of translation whi
h maximizesMI is found. Suppose, the sour
e image Xs after optimum translation(s), is mappedto Xs(r + Tr; 
 + T
) where Tr and T
 are respe
tive translations along the row and
olumn axes. After mapping, only the overlapping portions of translated sour
e imageand referen
e image are retained and the rest are trun
ated. So essentially, trans-lated sour
e image and referen
e image be
ome of same size after trun
ation. This isimportant be
ause in next step we need the sour
e and referen
e images to be of thesame size. Hen
eforth, we shall refer to new sour
e image as Xs and new referen
eimage as Xd.The 
hoi
e for ranges within whi
h Tr and T
 are varied is an experimental issue.Greater range means better a

ura
y, but that also means greater time-requirement.We have experimented with various ranges of Tr and T
 and have seen in general thatthe shifts are within 5 pixels. So we have taken the range of Tr and T
 to be -5 to+5. Mis-alignments greater than 5 pixels are 
orre
ted during su

essive iterations.2.2.2 Lo
al s
alingVariations in fo
al settings during a
quisition of multi-fo
us images result in lo
al s
aleand position di�eren
es in fo
used and defo
used images of an obje
t, as explainedin the beginning of this se
tion by using Figure 2.1. The problem is addressed byblo
k-wise registration of Xs with Xd. At �rst, Xs and Xd are divided into n equal-sized non-overlapping blo
ks. Sin
e Xs and Xd are of same size, their blo
k-sizesare taken to be equal. We have experimented with di�erent values of n and foundthat n = 16 is a reasonably good 
hoi
e for pra
ti
al purposes. Ea
h blo
k of Xs iss
aled independently by appropriate fa
tors along the axes. Resultant image is thenobtained by stit
hing the s
aled blo
ks at their proper positions.
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ale-fa
tors for a blo
kThe best s
ale-fa
tors (along row and 
olumn axes) for the k-th sour
e blo
k is deter-mined by varying the s
ale-fa
tors and then �nding out the ones whi
h give the bestmat
hing with the k-th referen
e blo
k. The range and pre
ision for varying the s
alefa
tors are important. We have experimented with three di�erent ranges viz. 0.96-1.04, 0.97-1.03 and 0.98-1.02 with three di�erent in
rement-values in ea
h range, viz.0.02, 0.01 and 0.005. It is observed from our experiments that in general in
reasingthe range does not improve the results but �ner pre
ision gives better results. Therange 0.98-1.02 with pre
ision 0.005 is found to be suitable for our purpose and wehave used those values for varying the s
ale-fa
tors along the axes.Suppose that k-th sour
e blo
k is s
aled upon by the s
ale-fa
tors sr and s
 respe
-tively along r-axis and 
-axis. Depending on the s
ale-fa
tors, horizontal and verti
aldimensions of the s
aled blo
k are 
hanged independently. S
aled sour
e blo
k isswiped over k-th referen
e blo
k. Suppose Xks and Xkd respe
tively are overlappingsub-images of k-th sour
e blo
k (after s
aling) and k-th referen
e blo
k. To �nd outthe best mat
hing s
ale-fa
tors of k-th sour
e blo
k we need either a similarity or adissimilarity measure. Small blo
k-size redu
es the statisti
al power of the proba-bility distribution estimation [67℄. Hen
e instead of mutual information, area-baseddissimilarity measure sum of squared di�eren
es (SSD) is used. For ea
h swipingposition of the sour
e blo
k, SSD between the overlapping sub-images Xks and Xkd is
omputed by SSD(Xks ; Xkd ) =Xr X
 fXks (r; 
)�Xkd (r; 
)g2 (2.6)The best mat
h o

urs when the SSD is minimum. The SSD's for best mat
hingpositions for 9 di�erent values (in the range 0.98-1.02 with pre
ision 0.005) for ea
hof the s
ale-fa
tors sr and s
 are noted. This results in total 81 readings of SSD forthe blo
k. The minimum of them gives the best s
ale fa
tors for the blo
k. The rangeof s
ale-fa
tors as stated above is obtained from experiments with a large number ofimages and is found to satisfy the real-life problem.
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hing a s
aled blo
kStit
hing a s
aled blo
k in the resultant image requires additional 
are. Before s
alingall sour
e and referen
e blo
ks are of equal size. After s
aling, if the s
aled sour
eblo
k is smaller in size than the original sour
e blo
k and is stit
hed to the resultantimage, then some blank area will be 
reated. In that 
ase an appropriate largerblo
k surrounding the original sour
e blo
k is s
aled and positioned there. If theresized blo
k is larger than the referen
e blo
k, it is 
lipped after positioning properly.Essentially, the registered sour
e blo
k and the referen
e blo
k should be of same size.For 
larity, 
onsider the following example.Let us illustrate the situations whi
h may o

ur due to lo
al s
aling, with a sour
eblo
k of size, say 100�100 pixels. Suppose best s
ale-fa
tors for the blo
k is 0:98 alongboth axes. So after s
aling, size of the blo
k is 98� 98 pixels whi
h is smaller thanits target area. Hen
e a 102� 102 blo
k 
ontaining the original sour
e blo
k is s
aledto obtain a 100� 100 blo
k whi
h �ts the target area. Now 
onsider another 
ase inwhi
h the best s
ale-fa
tors for the blo
k is 1:02 along both axes. After s
aling itssize will be 102� 102 pixels whi
h is bigger than its target area. The best mat
hingposition of it is found by swiping it over the 
orresponding referen
e blo
k. Afterthat it is 
lipped to 100�100 pixels, and then stit
hed to its proper position. Finally
onsider the 
ase where the s
ale-fa
tors are 1.02 along r-axis and 0.98 along 
-axis.So the blo
k be
omes 102 � 98 pixels after s
aling. In this 
ase, a bigger blo
k ofsize 100 � 102 
ontaining the original blo
k is taken, so that it be
omes 102 � 100after s
aling. After �nding out the best mat
hing position, the blo
k is 
lipped to100� 100 pixels and is stit
hed to the target blo
k. Ea
h sour
e blo
k is registeredto the 
orresponding referen
e blo
k in this way.
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Figure 2.3: Average error between sour
e and referen
e images as the iteration stepnumber in
reases2.2.3 IterationAs stated above, the proposed registration te
hnique has two distin
t steps: (i) globaltranslation and (ii) lo
al s
aling. Optimum transformation parameters are determinedin these two transformations independently. But when they are 
ombined, indepen-dent parameters may not remain optimum any more. Hen
e we iterate these twosteps in the given order to a
hieve more a

eptable result. We expe
t and experi-mentally veri�ed to that the transformations F
 and Fi of Equation (2.1) are updatedand the error de�ned in Equation (2.2) is redu
ed. The iteration is stopped whenthere is no signi�
ant 
hange in error. Root-mean-square-error (RMSE) between thesour
e and referen
e images is taken as the measure of error for our implementationpurpose. Average RMSE between sour
e and referen
e images (used in Se
tion 2.3)are shown against iteration step number in Figure 2.3. Column-0 indi
ates RMSEbefore registration, and for i=1 to 4, Column-i indi
ates RMSE after i-th step ofiteration. It is seen from the Figure 2.3 that RMSE de
reases 
onsiderably in the�rst step of iteration, then as the iteration step number in
reases RMSE de
reases,but with gradually slower rate.
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e image is swiped over the referen
e imagein su
h a way that grids of both images mat
h properly. Hen
e no interpolationis required in this step. In the lo
al s
aling step, however, grids of the sour
e andthe referen
e blo
ks do not mat
h in general. Hen
e, interpolation is required. Bi-linear interpolation is a reasonable 
hoi
e in terms of ease-of-implementation andtime-
omplexity. But during su

essive iterations it may redu
e the 
ontrast of theimages. A higher-order interpolation like bi-
ubi
 interpolation is a better 
hoi
e inthat respe
t although it takes more time [13℄. To redu
e the time-requirement, bilin-ear interpolation is used while estimating the s
ale-fa
tors for a blo
k, and on
e thebest s
ale-fa
tors are obtained, the blo
k is re
onstru
ted �nally to be a part of theresultant registered image, using bi-
ubi
 interpolation.
2.3 Experimental results and dis
ussionThe proposed algorithm for image registration has been implemented in C languagein Unix environment. The global translation step has been implemented by varyingthe translation-amount from -5 to +5 with unit in
rement along ea
h axis. In thelo
al s
aling step, sour
e and referen
e images are divided into 16 blo
ks and forea
h blo
k the s
ale-fa
tors along the axes are varied from 0.98 to 1.02 with anin
rement-value of 0.005. At most three iterations were seen to be enough in ea
h 
ase.Experimental results for �ve sets of multi-fo
us images (`Doll', `Disk', `Garden', `Rose'and `News') are shown in �gures 2.4-2.8. In ea
h result, original multi-fo
us imagesare followed by registered images by the proposed method. The �rst image is taken asthe referen
e image in ea
h 
ase. To show the e�e
tiveness of the method, di�eren
eimages (between the sour
e and the referen
e image) before and after registration arealso provided.In Fig. 2.4, A.(i), B.(i) and C.(i) respe
tively are near-fo
used, middle-fo
used and
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used images before registration; A.(i) is taken as the referen
e image and B.(i)and C.(i) are taken as sour
e images. After trun
ation of A.(i); A.(ii) is the newreferen
e image; B.(ii) and C.(ii) are registered versions of B.(i) and C.(i) respe
-tively. In Fig. 2.4, the images D. and E. are di�eren
e images between A.(i) andB.(i) and between A.(i) and C.(i) respe
tively. So they are di�eren
e images (be-tween the sour
e and the referen
e image) before registration. Finally, the images F.and G. are di�eren
e images between A.(ii) and B.(ii) and between A.(ii) and C.(ii)respe
tively. So they are di�eren
e images (between the sour
e and the referen
eimage) after registration. As stated in Se
tion 2.2, this work 
on
entrates on positionand s
ale di�eren
es due to partial defo
using and does not aim to 
hange the in-tensity/radiometri
 di�eren
es 
aused by it. This is eviden
ed by di�eren
e images.In both images A.(i) and B.(i), the ba
kground region is out-of-fo
us and very lit-tle or no intensity di�eren
es do exist there. Di�eren
es in that region are mainlydue to position and s
ale di�eren
es. Comparison of the di�eren
e images D. and F.shows that the position and s
ale di�eren
es in the ba
kground region are redu
ed
onsiderably in the latter. The di�eren
es in other regions (
aused by position ands
ale di�eren
es as well as intensity variations due to fo
using and defo
using) are noteliminated 
ompletely but are redu
ed whi
h is shown by less bright edges in theseregions. Similar is the 
ase for the middle region of di�eren
e images E. and G.Figure 2.5 shows registration of a widely-used set of multi-fo
us images whi
h de-pi
ts an indoor s
ene 
ontaining many obje
ts of di�erent geometri
 shapes and ofdi�erent sizes. In this �gure, A.(i) and B.(i) are near-fo
used and far-fo
used imagesrespe
tively; A.(i) is taken as the referen
e image and B.(i) is taken as sour
e image;A.(ii) is the new referen
e image after trun
ation of A.(i), and B.(ii) is the registeredversion of B.(i); �nally C. and D. are the di�eren
e images between A.(i) and B.(i)and between A.(ii) and B.(ii) respe
tively. Inspe
tion of di�eren
e images inside the
lo
k region reveals thinner and less bright edges in image 2.5.D. whi
h in turn indi-
ate that the proposed registration te
hnique 
orre
ts the mis-alignments and lo
als
ale variations in the input images.
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us images of an outdoor s
ene.In general, registration of images of su
h s
enes is diÆ
ult be
ause in addition toother di�eren
es temporal 
hanges between shots may o

ur due to wind. Here thetask was more 
hallenging be
ause of the dense and irregular texture of the images.In �gure 2.6, A.(i) and B.(i) are near-fo
used and far-fo
used images respe
tively;A.(i) is taken as the referen
e image and B.(i) is taken as sour
e image; A.(ii) is thenew referen
e image after trun
ation of A.(i), B.(ii) is the registered version of B.(i);�nally C. and D. are the di�eren
e images between A.(i) and B.(i), and between A.(ii)and B.(ii) respe
tively. Comparison of di�eren
e images 2.6.C. and 2.6.D. reveals thatdi�eren
es have redu
ed 
onsiderably after registration.Images of Figure 2.7 have a large area of regular grid-like stru
ture as ba
kground.Any mis-alignment 
an be dete
ted easily in this type of images. The results ofregistration do not show any su
h e�e
t. In �gure 2.7, A.(i) and B.(i) are near-fo
usedand far-fo
used images respe
tively; A.(i) is taken as the referen
e image and B.(i)is taken as sour
e image; A.(ii) is the new referen
e image after trun
ation of A.(i),and B.(ii) is the registered version of B.(i); �nally C. and D. are the di�eren
e imagesbetween A.(i) and B.(i) and between A.(ii) and B.(ii) respe
tively. Comparison ofimages 2.7.C. and 2.7.D. shows that edges are less bright in the latter whi
h meansmis-alignments have been 
orre
ted after registration.Finally, Figure 2.8 shows the results of registration of images of dense but mostlyregular texture. In this �gure, A.(i) and B.(i) are near-fo
used and far-fo
used imagesrespe
tively; A.(i) is taken as the referen
e image and B.(i) is taken as sour
e image;A.(ii) is the new referen
e image after trun
ation of A.(i), and B.(ii) is the registeredversion of B.(i); �nally C. and D. are the di�eren
e images between A.(i) and B.(i)and between A.(ii) and B.(ii) respe
tively. Comparison of images 2.8.C. and 2.8.D.shows that dark areas have in
reased in the latter whi
h means after registration thedi�eren
e between sour
e and referen
e images have been redu
ed.Careful manual inspe
tion of the results also shows that the proposed registrationmethod does not produ
e any unwanted visual artifa
t or aliasing. To show that there
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k stit
hing artifa
t in the registered images, we have provided Figure 2.9whi
h shows magni�
ation of a portion (where 
orners of four blo
ks 
oin
ide) ofmiddle-fo
used image Fig. 2.4.B.(i) and 
orresponding registered image Fig. 2.4.B.(ii).
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A.(i) A.(ii)

B.(i) B.(ii)

C.(i) C.(ii)Figure 2.4: `Doll': Original, Registered and Di�eren
e images. A.(i) Near-fo
usedimage (referen
e-image), A.(ii) Trun
ated near-fo
used image (new referen
e-image),B.(i) Middle-fo
used image, B.(ii) Registered middle-fo
used image, C.(i) Far-fo
usedimage, C.(ii) Registered far-fo
used image, D. Di�eren
e between A.(i) & B.(i), E. Dif-feren
e between A.(i) & C.(i), F. Di�eren
e between A.(ii) & B.(ii), G. Di�eren
ebetween A.(ii) & C.(ii)
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D. E.

F. G.Figure 2.4: Continued2.3.1 Quantitative performan
e evaluationComparative study of the proposed registration method with the most widely used oneviz. global aÆne transformation [22℄ have been done. Sin
e subje
tive evaluations maynot be universally a

eptable, we 
ompare the methods by three quantitative measuresviz. root-mean-square-error (RMSE), mutual-information (MI) and normalized-
ross-
orrelation (NCC) [13℄. Good registration de
reases the value of RMSE betweensour
e and referen
e images and in
reases the value of MI and NCC between thetwo images. Quantitative results are presented in Tables 2.1-2.3. In ea
h table, the�rst 
olumn gives serial-number of the sour
e and referen
e image-pairs as shownin �gures 2.4-2.8; the se
ond 
olumn presents the quantitative-metri
 values before
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A.(i) A.(ii)

B.(i) B.(ii)

C. D.Figure 2.5: `Disk': Original, Registered and Di�eren
e images. A.(i) Near-fo
usedimage (referen
e-image), A.(ii) Trun
ated near-fo
used image (new referen
e-image),B.(i) Far-fo
used image, B.(ii) Registered far-fo
used image, C. Di�eren
e betweenA.(i) & B.(i), D. Di�eren
e between A.(ii) & B.(ii)
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A.(i) A.(ii)

B.(i) B.(ii)

C. D.Figure 2.6: `Garden': Original, Registered and Di�eren
e images. A.(i) Near-fo
usedimage (referen
e-image), A.(ii) Trun
ated near-fo
used image (new referen
e-image),B.(i) Far-fo
used image, B.(ii) Registered far-fo
used image, C. Di�eren
e betweenA.(i) & B.(i), D. Di�eren
e between A.(ii) & B.(ii)
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A.(i) A.(ii)

B.(i) B.(ii)

C. D.Figure 2.7: `Rose': Original, Registered and Di�eren
e images. A.(i) Near-fo
usedimage (referen
e-image), A.(ii) Trun
ated near-fo
used image (new referen
e-image),B.(i) Far-fo
used image, B.(ii) Registered far-fo
used image, C. Di�eren
e betweenA.(i) & B.(i), D. Di�eren
e between A.(ii) & B.(ii)
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A.(i) A.(ii)

B.(i) B.(ii)

C. D.Figure 2.8: `News': Original, Registered and Di�eren
e images. A.(i) Near-fo
usedimage (referen
e-image), A.(ii) Trun
ated near-fo
used image (new referen
e-image),B.(i) Far-fo
used image, B.(ii) Registered far-fo
used image, C. Di�eren
e betweenA.(i) & B.(i), D. Di�eren
e between A.(ii) & B.(ii)
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A. B.

C. D.Figure 2.9: Magni�
ation of sele
ted areas before and after registration. The blo
ksused for s
aling during registration and those used formagni�
ation are shown in singleand double lines respe
tively. A. Fig. 2.4 B.(i) shown in blo
ks, B. Fig. 2.4 B.(ii) shownin blo
ks, C.-D. Corresponding areas bounded by double-lines are shown magni�edregistration; the third and fourth 
olumns give the quantitative-metri
-values afterregistration, respe
tively by global aÆne transformation method and by the proposedmethod; and the �fth and sixth 
olumns give per
entages of redu
tion or in
rementof the metri
-values after registration.It is seen from the Tables 2.1-2.3 that RMSE is de
reased and MI and NCC arein
reased in all 
ases. It is also seen that per
entage of de
rement in RMSE andper
entages of in
rements in MI and NCC by the proposed method are higher thanthose by global aÆne transformation method in all 
ases ex
ept for Figure 2.8 inTable 2.2. In general, there are notable improvements in the results by the proposedmethod however time-requirement is slightly more in this method.
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Table 2.1: Comparison of RMSE (less is better) between sour
e and referen
e imagesbefore and after registration by (i) Global AÆne Transformation method and (ii)Proposed MethodSour
e and referen
e RMSE before RMSE after Registration %-redu
tion in RMSEimages Registration by (i) by (ii) by (i) by (ii)2.4.B with 2.4.A 21:746 17:815 16:883 18:07 22:362.4.C with 2.4.A 22:970 22:047 17:534 4:01 23:662.5.B with 2.5.A 18:469 17:313 15:753 6:25 14:702.6.B with 2.6.A 46:793 40:599 33:203 13:23 29:042.7.B with 2.7.A 25:722 18:673 14:840 27:40 42:302.8.B with 2.8.A 46:519 39:084 37:800 15:98 18:74
Table 2.2: Comparison of MI (more is better) between sour
e and referen
e imagesbefore and after registration by (i) Global AÆne Transformation method and (ii)Proposed MethodSour
e and referen
e MI before MI after Registration %-in
rement in MIimages Registration by (i) by (ii) by (i) by (ii)2.4.B with 2.4.A 1:285 1:447 1:487 12:60 15:712.4.C with 2.4.A 0:999 1:150 1:329 15:11 33:032.5.B with 2.5.A 1:463 1:550 1:594 5:94 8:952.6.B with 2.6.A 0:398 0:593 0:708 48:99 77:882.7.B with 2.7.A 0:866 1:078 1:311 24:48 51:382.8.B with 2.8.A 0:393 0:509 0:469 29:51 19:33



CHAPTER 2. MULTI-FOCUS IMAGE REGISTRATION 51Table 2.3: Comparison of NCC (more is better) between sour
e and referen
e imagesbefore and after registration by (i) Global AÆne Transformation method and (ii)Proposed MethodSour
e and referen
e NCC before NCC after Registration %-in
rement in NCCimages Registration by (i) by (ii) by (i) by (ii)2.4.B with 2.4.A 0:903 0:934 0:941 3:43 4:202.4.C with 2.4.A 0:892 0:899 0:936 0:78 4:932.5.B with 2.5.A 0:918 0:918 0:940 0:00 2:392.6.B with 2.6.A 0:588 0:704 0:800 19:72 36:052.7.B with 2.7.A 0:790 0:886 0:935 12:15 18:352.8.B with 2.8.A 0:402 0:575 0:586 43:03 45:772.4 SummaryIn this 
hapter we have proposed an iterative method for registration of multi-fo
usimages by 
ombining global and lo
al transformation models. It is automati
, easyto implement and gives good results. It does not require any manual intervention forfeature or ground 
ontrol point (GCP) sele
tion. Di�erent sets of multi-fo
us imagesare registered by the proposed method. We have 
ompared the performan
e of themethod with global aÆne transformation method in respe
t of quantitative measuresRMSE, MI, NCC and time-requirement. The proposed method is found better thanthe other method in respe
t of RMSE, MI, NCC although the time-requirement ismore in the proposed method. Generally, registration te
hniques require interpola-tion and use of a parti
ular interpolation method a�e
ts the results in various ways[92, 67℄. In the �rst step of the proposed algorithm, no interpolation is required sin
ethe grids of sour
e and referen
e images overlay perfe
tly. In the se
ond step of thealgorithm, interpolation is required. Bilinear interpolation is a reasonable 
hoi
e interms of ease-of-implementation and time-
omplexity. But during su

essive itera-
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e the 
ontrast of the images. A higher-order interpolation likebi-
ubi
 interpolation is a better 
hoi
e in that respe
t although it takes more time[13℄. To redu
e the time-requirement, bilinear interpolation is used while estimatingthe s
ale-fa
tor for a blo
k, and at the end of the lo
al-s
aling step, when a blo
k isre
onstru
ted to be a part of the resultant registered image, bi-
ubi
 interpolation isapplied. The proposed image registration te
hnique 
an be extended for registrationof multi-fo
us 
olor images in RGB format. For this, at �rst ea
h 
olor image is to be
onverted to grey-level image by 
omputing the grey-level intensity at ea
h pixel byas (R+G+B)=3. Then the global and lo
al transformations are to be determined byapplying the proposed te
hnique on the grey-level images. Then the transformationsare to be applied on the 
orresponding 
olor images.



Chapter 3
Pixel-based fusion
3.1 Introdu
tionPixel-based multi-fo
us image fusion te
hniques 
on
entrate on individual pixels ofthe images and work either in spatial domain or in frequen
y/transform domain.In spatial domain te
hniques, input images are fused in the spatial domain usingphysi
ally relevant spatial features in lo
alized area. Sin
e they emphasize on aspe
i�
 or desired image area, very little/no 
hange o

urs in other areas. Pixel-level weighted averaging is a spatial domain te
hnique in whi
h fusion is done bytaking the weighted average of the pixel intensities of the sour
e images. Weights aredetermined by tools like prin
iple 
omponent analysis [71℄ or adaptive methods [42℄.Weighted averaging often has serious side e�e
ts like redu
tion in the 
ontrast of thefused image. Other spatial domain pixel-level image fusion approa
hes in
lude, fusionusing 
ontrollable 
amera [73℄, probabilisti
 methods [5℄, image gradient method withmajority �ltering [23℄. The method des
ribed in [73℄ depends on 
ontrolled 
ameramotion and does not work for arbitrary sets of images. Probabilisti
 te
hniques [5℄involve huge 
omputation using 
oating point arithmeti
 and thus requires a lot oftime and memory-spa
e. Image gradient method with majority �ltering [23℄ has thedrawba
k that the defo
used zone of one image is enhan
ed at the expense of fo
used53
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ontains physi
ally relevant features at many di�erent s
ales or res-olutions. Multi-resolution (MR) te
hniques for image fusion explore and use thatfa
t. They work either in spatial domain or in frequen
y/transform domain. A. A.Goshtasby and S. Nikolov [30℄ pointed out that although pixel-level fusion is a lo
aloperation, transform domain algorithms 
reate the fused image globally. By 
hanginga single 
oeÆ
ient in the transformed fused image, all (or a whole neighborhood of)image values in the spatial domain will 
hange. An early 
ategorization of frequen
ydomain MR fusion te
hniques is found in [89℄. The basi
 idea of these methods isto de
ompose ea
h sour
e image by an MR transform, then to 
onstru
t a 
ompositerepresentation from the transformed images and �nally to obtain the fused imageby applying the inverse transform. The te
hniques vary in their 
hoi
e for MR de-
omposition s
heme and in their 
hoi
e for 
oeÆ
ient-sele
tion rule for making the
omposite representation. Popular MR de
omposition s
hemes are pyramid trans-form and wavelet transform. The idea of using MR s
hemes for image fusion was �rstproposed by Burt [8℄ as a model for bino
ular fusion for human stereo vision. He usedLapla
ian pyramid for MR de
omposition and 
hoose max rule for 
oeÆ
ient sele
-tion. Burt and Adelson [10℄ later introdu
ed a new approa
h to image fusion basedon hierar
hi
al image de
omposition. Adelson [2℄ then used the Lapla
ian pyramidte
hnique for multi-fo
us image fusion. Toet [78℄ proposed the use of ratio of low-passpyramids at su

essive levels of Gaussian pyramids for fusion of visible and IR images.Burt [9℄ proposed that fusion within a gradient pyramid provide improved stabilityand noise immunity. Akerman [3℄ optimized the Lapla
ian pyramid fusion in respe
tof multi-sensor fusion. Burt and Kol
zynski [11℄ presented gradient pyramid fusionwith a lo
al mat
h measure and a window-based salien
y measure. Ran
hin andWald [69℄ presented one of the �rst fusion s
hemes using wavelet transform. In theirmu
h-referred work, Li et al. [45℄ presented fusion s
hemes using wavelet transform.In their implementation, the preliminary de
ision map is generated by window-baseda
tivity measure whi
h is then �nalized by 
onsisten
y veri�
ation with majority�lter. Wavelet transform is also 
onsidered by Chipman et al. [16℄, Petrovi
 and Xy-
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heunders [72℄, Yang et al. [86℄ and Hill et al. [37℄. Piella [65℄ provideda general framework for MR image fusion and also proposed a new method for thesame. A 
omprehensive tutorial on wavelet-based fusion methods is found in [59℄.Re
ently, wavelets are 
onsidered for image fusion by Wang [81℄, Wang et al. [82℄,Hamza et al. [34℄, Qu and Yan [68℄, Lewis et al. [44℄, Tsai and Lee [79℄ and Yangand Li [85℄. Wang [81℄ presented a pixel-based algorithm employing a multi-wavelet(whi
h is an extension of s
alar wavelet) transform with two wavelet fun
tions and twos
aling fun
tions. A feature-based fusion rule is used to 
ombine original sub-images.Mutual information is employed for obje
tive evaluation of fusion performan
e. Inthe method proposed by Wang et al. [82℄, after de
omposition of input images bywavelet transform, images at the lowest resolution are segmented into regions bywatershed algorithm. Wavelet-
oeÆ
ients are tested region-wise for a
tivity-levelmeasurement and mat
h-degree measure. S
aled and detail 
oeÆ
ients are 
ombinedrespe
tively by 
hoose-max and weighted average rule. Combined 
oeÆ
ients areinversely transformed to get the �nal fused image. In the method of Hamza et al. [34℄,input images are de
omposed by a bi-orthogonal wavelet transform. Sele
tion-mapis 
reated by measuring the a
tivity-level of ea
h wavelet 
oeÆ
ient by Jensen-Renyidivergen
e. The map is re�ned into two de
ision regions a

ording to a threshold.S
aled and detail 
oeÆ
ients are 
ombined either by 
hoose-max and or by weightedaverage rule depending on the region they belong to. Finally 
ombined 
oeÆ
ientsare inversely transformed to get the �nal fused image. In Qu and Yan's [68℄ method,after de
omposition of input images by a dis
rete wavelet transform, a pulse-
oupledneural network is employed to extra
t features of the input images in the waveletdomain. Regional �ring intensity 
hara
teristi
 is 
omputed and used to 
ombine the
oeÆ
ients. Finally 
ombined 
oeÆ
ients are inversely transformed to get the �nalfused image. Lewis et al. [44℄ 
onsidered a dual-tree 
omplex wavelet transform (DT-CWT) for segmenting of the features of the input images either jointly or separately toprodu
e a region map. The images are then fused region-wise in the wavelet domain.Tsai and Lee [79℄ presented a method in whi
h after segmentation of input images intoregions, quality of a region is measured from low frequen
y wavelet bands by adaptive
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omposition algorithm. Then regions with better quality are sele
ted to produ
ethe fused image. Yang and Li [85℄ proposed a method in whi
h the sour
e imagesare represented at �rst by sparse 
oeÆ
ients using an over-
omplete di
tionary. The
oeÆ
ients are then 
ombined by 
hoose-max fusion rule. Finally the fused image isre
onstru
ted from the 
ombined sparse 
oeÆ
ients and the di
tionary.Wavelet transform 
an be 
onsidered as a spe
ial 
ase of pyramid transform but it hasmore 
omplete theoreti
al support [51℄. One major advantage of wavelet transformis that spatial as well as frequen
y domain lo
alization of an image is obtained simul-taneously. Another advantage is that it 
an provide information on sharp 
ontrast
hanges, and human visual system is espe
ially sensitive to these 
hanges. Wavelettransform is a linear tool in its original form [51℄. But non-linear extensions of dis-
rete wavelet transform are possible by methods like lifting s
heme [77℄ ormorphologi
operators [31, 35℄. The problem with linear wavelets like Haar wavelet is that duringsignal de
omposition or analysis the range of the original data is not preserved [35℄.Se
ondly, linear wavelets a
t as low-pass �lters and thus smooth-out the edges. Thisresults in redu
tion in the 
ontrast in fused images. The nonlinear wavelet intro-du
ed by Heijmans and Goutsias [35℄ over
omes this drawba
k by using morphologi
operators. But it involves division operation and thus either requires 
oating pointarithmeti
 or introdu
es trun
ation error by using integer arithmeti
.In this 
hapter we present a nonlinear morphologi
 wavelet transform [18, 19℄ whi
hpreserves the range in the s
aled images and involves integer arithmeti
 only. Wethen use this transform to present a fusion algorithm to fuse a set of grey-s
ale multi-fo
us images. The method is 
omputationally eÆ
ient and produ
es good results.Integrated-
hip implementations of image pro
essing algorithms are going to be
omemore 
ommon in near future. Our method will be useful in this respe
t. The resultsobtained by it have been 
ompared with those obtained by using Haar wavelet and themorphologi
 wavelet suggested by Heijmans and Goutsias [35℄. The 
hapter is orga-nized as follows. Se
tion 3.2 gives the basi
 theory (without proof) of multi-resolutionanalysis using wavelets and a brief dis
ussion on morphologi
 operators. This se
tion
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es the proposed wavelet transform based on these operators. Se
tion3.3 des
ribes the image-fusion algorithm using the new morphologi
 wavelet. Exper-imental results and dis
ussion are given in Se
tion 3.4 and the 
on
luding remarksare presented in Se
tion 3.5.
3.2 Basi
 theory and a new morphologi
 waveletA brief overview of multi-resolution signal de
omposition theory using wavelets isgiven �rst, followed by the dis
ussion on morphologi
 operators, and �nally a newwavelet transform based on these operators is presented.3.2.1 Multi-resolution AnalysisThe theory of multi-resolution signal de
omposition s
heme using wavelets 
an beapplied to a wide variety of signals. We are restri
ted here to two-dimensional grey-s
ale image signals only. A two-dimensional grey-s
ale image signal X is a mappingfrom domain D (whi
h is a subset of dis
rete two-dimensional spa
e Z2) to the set ofgrey values fg1; g2; : : : ; gng where ea
h gi is a nonnegative integer. Let us 
onsider aset V0 of su
h image signals. A multi-resolution signal de
omposition s
heme on V0uses two types of operators, namely, signal analysis and signal synthesis operators;whi
h are also known as s
aling fun
tion and the wavelet fun
tion respe
tively. Signalanalysis operators  "j : Vj ! Vj+1; map the signal spa
e Vj at level j, to a 
oarsersignal spa
e Vj+1 and the detail analysis operators !"j : Vj ! Wj+1 , map Vj to a
oarser detail spa
e Wj+1. All V 0j s and W 0js have the same stru
ture as V0. Signalanalysis operation pro
eeds by mapping a signal to a level higher in the pyramidstru
ture, thereby redu
ing information. Details are stored at ea
h level to restorethis information loss. If analysis operators are applied j times re
ursively on an imagesignal X 2 V0, s
aled and detail signals at level j are denoted by Xj and Y j, where



CHAPTER 3. PIXEL-BASED FUSION 58Xj 2 Vj and Y j 2 Wj. Then we have "j (Xj) = Xj+1; Xj+1 2 Vj+1 (3.1)!"j (Xj) = Y j+1; Y j+1 2 Wj+1 (3.2)Signal synthesis or re
onstru
tion is done by synthesis operator  #j : Vj+1�Wj+1 ! Vj,whi
h map a signal to a level lower in the pyramid. To ensure loss-less or perfe
tre
onstru
tion, the following 
ondition must be satis�ed. #j ( "j (Xj); !"j (Xj)) = Xj; Xj 2 Vj (3.3)There are two more 
onditions, namely, "j ( #j (Xj+1; Y j+1)) = Xj+1 (3.4)!"j ( #j (Xj+1; Y j+1)) = Y j+1 (3.5)where Xj+1 2 Vj+1 and Y j+1 2 Wj+1. They ensure that the de
omposition is non-redundant in the sense that repeated appli
ations of these s
hemes produ
e the sameresult. A spe
ial 
ase 
alled un
oupled wavelet de
omposition o

urs when there existsa binary operation _+ on Vj and operators  #j : Vj+1 ! Vj and !#j : Wj+1 ! Vj su
hthat  #j (Xj+1; Y j+1) =  #j (Xj+1) _+ !#j (Y j+1); Xj+1 2 Vj+1; Y j+1 2 Wj+1 (3.6)Then perfe
t re
onstru
tion and non-redundan
y 
onditions be
ome #j "j (Xj) _+ !#j!"j (Xj) = Xj; Xj 2 Vj (3.7) "j ( #j (Xj+1) _+ !#j (Y j+1)) = Xj+1; Xj+1 2 Vj+1; Y j+1 2 Wj+1 (3.8)!"j ( #j (Xj+1) _+ !#j (Y j+1)) = Y j+1; Xj+1 2 Vj+1; Y j+1 2 Wj+1 (3.9)If a one-dimensional wavelet de
omposition s
heme 
an be applied to two and higherdimensions, by applying it to other dimensions sequentially, then this de
omposi-tion is 
alled separable. A new wavelet transform based on morphologi
 operators ispresented now.
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 WaveletHeijmans and Goutsias introdu
ed a morphologi
 variant of the Haar wavelet byusing the morphologi
 operation dilation (erosion) [35℄. It is an one-dimensionals
heme and the multidimensional implementation 
an be obtained by applying it toother dimensions sequentially. However, a two-dimensional non-separable version ofthe morphologi
 Haar wavelet transform has also been de�ned in [35℄, whi
h will beused in our experiments for 
omparison purpose. We, now propose a non-separabletwo-dimensional un
oupled morphologi
 wavelet de
omposition s
heme, whi
h will beused for our image-fusion algorithm. Unique analysis operators ( "; !") are used at alllevels of the multi-resolution s
heme. Similarly, unique synthesis operators ( #; !#)are used at all levels. These operators are explained for the lowermost levels 0 and 1.Let us 
onsider the signal spa
e V0 of Se
tion 3.2.1. It is our original signal spa
e.Then V1 and W1 are the signal and detail spa
es at level 1 having the same stru
tureas V0. Consider an image signal X 2 V0. Then X is a mapping of (a subset of) Z2to the set of grey-values G and it 
an be represented by an M � N matrix, whereM;N 2 Z. Let us assume that M and N both are even. Then X 
an be divided into
onse
utive and disjoint 2� 2 sub-matri
es or blo
ks, whi
h are total MN4 in number.Four positions of su
h a blo
k B may be denoted by (r; 
), (r; 
 + 1), (r + 1; 
) and(r + 1; 
+ 1) (see Figure 3.1) where r and 
 denote row and 
olumn positions of theimage-matrixX. Using quadrati
 downsampling, the analysis operators  " : V0 ! V1and !" : V0 !W1 are de�ned as "(X)(B) = maxfX(r; 
); X(r; 
+ 1); X(r + 1; 
); X(r + 1; 
+ 1)g (3.10)!"(X)(B) = ( yv; yh; yd ) (3.11)where yv; yh; yd represent the verti
al, horizontal and diagonal detail signals respe
-
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Transform

WaveletX(r,c)

X(r+1,c)

X(r,c+1)

X(r+1,c+1)

Y (r,c+1)1

= y
v

X (r,c)1

= M

Y (r+1,c)1

= yh

Y (r+1,c+1)1

= ydFigure 3.1: Wavelet transform on a 2� 2 blo
ktively. Let  "(X)(B) be denoted by M . Then yv; yh; yd is de�ned asyv = 8<: M �X(r; 
+ 1); if M �X(r; 
+ 1) � 0X(r; 
+ 1)�M; otherwise (3.12)yh = 8<: M �X(r + 1; 
); if M �X(r + 1; 
) � 0X(r + 1; 
)�M; otherwise (3.13)yd = 8<: M �X(r + 1; 
+ 1); if M �X(r + 1; 
+ 1) � 0X(r + 1; 
+ 1)�M; otherwise (3.14)The se
ond 
ondition in the last three equations is required to maintain the informa-tion on position of the maximum value M as eviden
ed in the su

essive example.S
aled signal and detail values obtained above belong to X1 and Y 1 respe
tively andthey 
an be stored 
onveniently in similar positions of another matrix.The original signal at level 0 is re
onstru
ted by the synthesis operation. Usingquadrati
 upsampling, synthesized signals bX are given bybX(r; 
) = bX(r; 
+ 1) = bX(r + 1; 
) = bX(r + 1; 
+ 1) = M (3.15)and synthesized details bY are given bybY (r; 
) = min (yv; yh; yd; 0) (3.16)bY (r; 
+ 1) = min (�yv; 0) (3.17)bY (r + 1; 
) = min (�yh; 0) (3.18)bY (r + 1; 
+ 1) = min (�yd; 0) (3.19)where M = X1(r; 
) is the s
aled signal at (r; 
) and yv; yh; yd are verti
al, horizontaland diagonal details respe
tively. This is an un
oupled de
omposition s
heme and



CHAPTER 3. PIXEL-BASED FUSION 61the binary operation _+ is the ordinary addition of numbers. Hen
e the re
onstru
tedsignal X 0 at any point (u; v) 2 f(r; 
); (r; 
+ 1); (r + 1; 
); (r + 1; 
+ 1)g is given byX 0(u; v) = bX(u; v) + bY (u; v) (3.20)Example: Let us 
onsider the 2� 2 blo
k B of X with X(r; 
) = T0; X(r; 
+ 1) =T1; X(r + 1; 
) = T2 and X(r + 1; 
 + 1) = T3. Let Tm = max fT0; T1; T2; T3g. Then "(X)(B) = Tm and the details are given by !"(X)(B) = (Tv; Th; Td) whereTv = 8<: Tm � T1; if Tm � T1 > 0T0 � Tm; otherwiseTh = 8<: Tm � T2; if Tm � T2 > 0T0 � Tm; otherwiseTd = 8<: Tm � T3; if Tm � T3 > 0T0 � Tm; otherwiseNow Tm may o

ur at any of the four positions of the blo
k 2 � 2 submatrix. Thesituations of Tm o

urring at (r; 
) and (r + 1; 
) are illustrated in the �gure 3.2. Inthe �rst 
ase Tm o

urs at position (r; 
) and all the detail values are positive. Inthe se
ond 
ase Tm o

urs at position (r + 1; 
) and the information is preserved bypla
ing the negative value T0 � Tm as the horizontal detail.The analysis operator-pair ( "j ; !"j ) 
an be used re
ursively to de
ompose a signal upto a desired level k � 1. Similarly the synthesis operator-pair ( #j ; !#j ) 
an be usedre
ursively to re
onstru
t a signal from any level to the lowest level 0. It is easy tosee that the analysis and synthesis operators satisfy the perfe
t re
onstru
tion andnon-redundan
y 
onditions 3.7 - 3.9 given in Se
tion 3.2.1. The operators  " and !"involve elementary arithmeti
 operations and one interesting point to note is that theinteger values are mapped to integer values only. Another point to note is that, if allvalues of X belong to the range [0; R℄, then analyzed signal-values will belong to therange [0; R℄ and analyzed detail-values will belong to the range [�R;R℄, irrespe
tiveof the number of times the operators are applied [see �gure 3.3℄.
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Case 2: Transform when T2 is maximumFigure 3.2: Illustration of proposed wavelet transform on a 2� 2 blo
k3.3 Multi-fo
us image fusionWe now present the image fusion algorithm proposed by us using the morphologi
wavelet transform given in Se
tion 3.2.2. Consider n two-dimensional multi-fo
usimages X1; X2; : : : ; Xn. These images must be registered and of the same size. Theproposed analysis operators  " and !", are applied on the n individual images k timesre
ursively. If Xi; i = 1; 2; :::; n are M � N images, the analysis operators 
an beapplied at most kmax times where kmax = min(blog2M
; blog2N
). After 
ompletionof the analysis operation, at the topmost level k, a set of n s
aled images are obtained.They are denoted by Xki ; i = 1; 2; :::n. A set of detail images Y ji ; i = 1; 2; :::nare also obtained at ea
h level j, j = 1 to k. As mentioned in the last se
tion, ifthe range of greylevels in image Xi is [0; R℄, then that of the s
aled images Xki is[0; R℄ and that of the detail images Y ji ; j = 1; 2; :::k is [�R;R℄. While 
omparingXki ; i = 1; 2; :::n position-wise, a higher absolute value 
orresponds to a brighter pixeland while 
omparing Y ji ; j = 1; 2; :::k; i = 1; 2; :::n position-wise, a higher absolutevalue 
orresponds to sharp-
ontrast features su
h as edge, line and region boundaries.
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(a) (b) (
)Figure 3.3: (a) Original signal X, (b) S
aled signal X1 and details Y 1 = fy1v ; y1h; y1dgat level 1, (
) S
aled signal X2 and details Y 2 = fy2v; y2h; y2dg at level 2Based on this observation, s
aled images Xki ; i = 1; 2; :::n are 
ombined by 
omparingthe values at ea
h position (r; 
) and 
hoosing the one with the greatest absolute value.Similar operation is applied on 
orresponding detail images at ea
h level. Thus a singlefused image at level k and a detail image at ea
h level j, j = 1; :::; k are obtained.Then the re
onstru
tion phase begins. The image at level k � 1 is re
onstru
ted byapplying the synthesis operators  # and !# (as proposed by us in the previous se
tion)followed by addition. Synthesis operators are applied k times re
ursively to obtainthe image at original domain i.e. at level 0. The algorithm 
an be summarized asbelow.3.3.1 Algorithm1. Analysis step: Apply the analysis operators  " and !"; k times re
ursively, onimage Xi; i = 1; : : : ; n and get Xi = fXki ; Y 1i ; Y 2i ; : : : ; Y ki g, where Xki is thes
aled image at level k and Y ji ; j = 1; : : : ; k are the details at levels 1; 2; : : : ; krespe
tively.2. Fusion step: Compare fXi; i = 1; 2; : : : ; n g and 
ombine them intoX = fXk; Y 1; Y 2; : : : ; Y kg, where Xk and Y j are respe
tively given byXk(r; 
) = max fjXk1 (r; 
)j; jXk2 (r; 
)j; : : : ; jXkn(r; 
)j g andY j(r; 
) = max fjY j1 (r; 
)j; jY j2 (r; 
)j; : : : ; jY jn (r; 
)j g
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onstru
t the fused image Xj at level j; j = k � 1; : : : ; 0,by applying the synthesis operators  # and !# respe
tively on Xj+1 and Y j+1following by addition, i.e.Xj(r; 
) =  #(Xj+1(r; 
)) + !#(Y j+1(r; 
))3.3.2 IllustrationThe algorithm is illustrated by using 2 � 2 sample data A and B taken from themulti-fo
us images X1 and X2 respe
tively.Let A = 24 a0 a1a2 a3 35 and B = 24 b0 b1b2 b3 35 where ai and bi; i = 0; 1; 2; 3 are non-negative integers. Applying the analysis operators  " and !" on
e, A be
omes,A1 = 24 a10 a11a12 a13 35where a10 = amax = max fai; i = 0; 1; 2; 3g anda1i = 8<: amax � ai if amax > ai�(amax � a0) otherwiseHere a10 is the s
aled signal-data and a1i ; i = 1; 2; 3 are the detail-data at level 1.Similarly, after the analysis operation, B be
omes,B1 = 24 b10 b11b12 b13 35A1 and B1 are fused in C1, by the fusion step, whereC1 = 24 
10 
11
12 
13 35 and 
1i = 8<: a1i if ja1i j � jb1i jb1i otherwise for i = 0; 1; 2; 3The fused data C at level 0 is obtained by applying the synthesis operators  # and!# followed by addition. ThereforeC = 24 
0 
1
2 
3 35
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0 = 
10 +min(0; 
11; 
12; 
13) and 
i = 8<: 
10 if 
1i < 0
10 � 
1i otherwise for i = 1; 2; 3We now, 
laim that, 
i is always less or equal to R, where R is the greatest value ofai and bi; i = 0; 1; 2; 3. This happens be
ause 
i is obtained by subtra
ting a non-negative value from 
10 = max(a10; b10). However the lower bound of 
i may not remainwithin the lower bounds of A and B. The method 
an be applied to the 
ompleteimages X1 and X2 by taking as many 2� 2 samples as required.
3.4 Experimental results and dis
ussionThe proposed fusion algorithm was tested on a large number of input images. For
omparison purpose, fusion with Haar wavelet and with two-dimensional morphologi
wavelet introdu
ed by Heijmans and Goutsias [35℄ were also implemented. Fusion re-sults for multi-fo
us image-sets shown in Fig. 1.2 are given in Fig. 3.4. For ea
h inputimage-set three fused images are shown; the �rst one is obtained by the proposedwavelet, the se
ond one is obtained by Haar wavelet and the third one is obtainedby morphologi
 wavelet introdu
ed by Heijmans and Goutsias. The fusion is done byde
omposing the 
onstituent images up to the third level, in all the 
ases. Quanti-tative evaluations by gradient-similarity-index (GSI) and fusion-quality-index (FQI)as explained in Se
tion 1.7 are given respe
tively in tables 3.1 and 3.2. Note that forboth quantitative metri
s GSI and FQI, higher the value better is the fusion. Timerequired in se
onds for pixel-based algorithms using di�erent wavelets are given inTable 3.3.
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A.(i) A.(ii) A.(iii)

B.(i) B.(ii) B.(iii)

C.(i) C.(ii) C.(iii)Figure 3.4: Results of multi-fo
us image fusion by pixel-based methods. In ea
h row,images shown are obtained by applying the proposed algorithm respe
tively with (i)morphologi
 wavelet proposed by us, (ii) Haar wavelet and (iii) non-linear waveletproposed by Heijmans and Goutsias
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e evaluation of pixel-based methods by GSIFigure Proposed wavelet Haar wavelet Heijmans' waveletDoll 0:855 0:839 0:847Toy 0:819 0:830 0:819Disk 0:873 0:789 0:870Lab 0:865 0:832 0:864Pepsi 0:927 0:923 0:928Clo
k 0:865 0:890 0:866Campus 0:794 0:808 0:790Hydrant 0:869 0:833 0:864Garden 0:786 0:763 0:778Rose 0:848 0:847 0:846News 0:906 0:924 0:902OpenGL 0:902 0:841 0:902Average 0:859 0:843 0:856
3.4.1 Dis
ussionCareful manual inspe
tion of fused images in �gure 3.4 reveals that the results ob-tained by the proposed wavelet are better than that of Haar wavelet and are 
om-parable to that of Heijmans and Goutsias' wavelet [35℄. However, artifa
ts su
h asblo
king e�e
ts are noti
ed in some of the fused images. But this is a 
ommon phe-nomena in all pixel-based image fusion using multi-resolution approa
h and happensdue to the fa
t that error introdu
ed at the topmost level is ampli�ed during re
on-stru
tion [45℄. In our 
ase, these e�e
ts are found in border regions and in in regionswhere the data is out of fo
us in all the sour
e images. For example, one 
an �nd su
he�e
ts along the edges of the 
lo
k in Figure 3.4:C and in the middle-right portion inFigure 3.4:A. However, these e�e
ts are present in the fused images obtained by the
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D.(i) D.(ii) D.(iii)

E.(i) E.(ii) E.(iii)

F.(i) F.(ii) F.(iii)Figure 3.4: Continued
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G.(i) G.(ii) G.(iii)

H.(i) H.(ii) H.(iii)

I.(i) I.(ii) I.(iii)Figure 3.4: Continued
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J.(i) J.(ii) J.(iii)

K.(i) K.(ii) K.(iii)

L.(i) L.(ii) L.(iii)Figure 3.4: Continued
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e evaluation of pixel-based methods by FQIFigure Proposed wavelet Haar wavelet Heijmans' waveletDoll 0:805 0:779 0:791Toy 0:775 0:783 0:760Disk 0:853 0:851 0:847Lab 0:851 0:849 0:845Pepsi 0:869 0:877 0:863Clo
k 0:884 0:880 0:882Campus 0:895 0:875 0:880Hydrant 0:877 0:875 0:867Garden 0:791 0:783 0:781Rose 0:856 0:861 0:849News 0:867 0:872 0:857OpenGL 0:857 0:828 0:837Average 0:848 0:843 0:838other two wavelets as well. In addition to this, one 
an �nd small bla
k spots in fusedimages obtained by by Haar wavelet method (for example, along the edge of the 
lo
kin Figure 3.4:C.(ii)). This happens be
ause fusion by Haar wavelet method generatesnegative pixel values after re
onstru
tion whi
h are trun
ated at value zero. A gen-eral problem fa
ed by pixel-based methods is sensitivity to mis-registration. Inputimages `Garden' as shown in Fig. 1.2:J are dense in texture and diÆ
ult to registerbe
ause being images of outdoor s
enes, temporal 
hanges due to wind are presentin them along with fo
us 
hanges. Fused images as shown in Figure 3.4:J are notvery good and illustrate the fa
t that pixel-based methods are sensitive to even slightmis-registration. Table 3.3 shows that the time taken by various wavelets are moreor less same and are not signi�
ant.Apart from the quality of the results, the proposed algorithm has some 
omputational



CHAPTER 3. PIXEL-BASED FUSION 72Table 3.3: Time requirement in pixel-based methodsFigure Proposed 2D Haar Heijmans'morphologi
 wavelet wavelet morphologi
 wavelet(se
onds) (se
onds) (se
onds)Doll 10 8 10Toy 13 11 14Disk 7 6 9Lab 10 12 15Pepsi 11 9 16Clo
k 1 1 1Campus 12 11 16Hydrant 13 13 18Garden 7 8 12Rose 14 12 15News 1 1 1OpenGL 11 13 14Average 9 9 12advantages as well. Unlike two other wavelets experimented with, our method ensuresthat integer pixel values are mapped to integer values only during both analysis andsynthesis. This is an useful property for lossless data 
ompression [12℄. Se
ondly,irrespe
tive of the number of times the analysis operators are applied, the rangeof the values in the s
aled images will be same as that of the original multi-fo
usimages, say [0; R℄, and the range of the detail values will be [�R;R℄. Hen
e memory-spa
e required during de
omposition is �xed. Thirdly, arithmeti
 operations likeaddition, subtra
tion and 
omparison are the only operations used in the method.Other two methods involve division operation and thus they either requires 
oatingpoint arithmeti
 or introdu
es trun
ation error by using integer arithmeti
. Fourthly,due to the nonlinear nature of the proposed method, important geometri
 information



CHAPTER 3. PIXEL-BASED FUSION 73(e.g. edges) is well-preserved at lower resolutions. Finally, the method is very fastdue to its simpli
ity. For a set of n, M � N images, it takes only O(n �M � N)
omputational time. The simpli
ity of the method and the use of integer arithmeti
makes it suitable for 
hip-level implementation.Besides this, the nonlinear wavelet proposed by us possesses the following invarian
eproperties. Both analysis and synthesis operators are translation invariant in the spa-tial domain. In the frequen
y domain, they are grey shift (multipli
ation) invariant.That means adding (multiplying) a 
ertain value to all pixel values in the original datawill result in adding (multiplying) that value to the s
aled signal data during analysis[35℄. Also, details will not 
hange in 
ase of addition and will get multiplied by thatvalue in 
ase of multipli
ation. The wavelets possessing these invarian
e properties,o�er better option for image fusion than those whi
h do not possess them [89℄.
3.5 SummaryIn this 
hapter we have presented a non-linear wavelet 
onstru
ted by morphologi
operators and also presented a multi-fo
us image fusion algorithm based on thatwavelet. The results are good 
onsidering the fa
t that the 
omputational 
ost isvery low. The use of elementary arithmeti
 operations makes the method suitablefor hardware implementation. However the results may su�er from the problem ofblo
king e�e
ts around the edges and at regions where the data is out of fo
us inall the sour
e images. Registration error may aggravate the problem. But this is a
ommon problem for other methods experimented with in this 
hapter. Our method isde�nitely better than Haar wavelet method and is at par with Heijmans and Goutsias'wavelet method in this respe
t.



Chapter 4
Blo
k-based fusion
4.1 Introdu
tionIn this 
hapter we present a blo
k-based method for multi-fo
us image fusion. Sin
emulti-fo
us images of a s
ene are a
quired with fo
us on 
omplementary regions,fo
used regions in an image have more 
ontrast than their defo
used 
ounter-partsin other images. Fo
us-measure (FM) is a quantity for evaluating the 
ontrast orsharpness of a pixel, blo
k or region [76, 38, 50℄ and 
an be used e�e
tively for multi-fo
us image fusion. A fo
us-measure should possess 
ertain desirable properties [38℄.It should be independent of image 
ontent, monotoni
 with respe
t to blur, unimodal,robust to noise and it should have large variations in values with respe
t to thedegree of blur and should have minimal 
omputational 
omplexity. Image varian
e,image gradients, image Lapla
ians, energy of image gradients (EOG), energy of imageLapla
ian (EOL) are traditional FM's employed and validated for appli
ations likeautofo
using [76℄. Modi�ed Lapla
ian (ML), Sum modi�ed Lapla
ian (SML) aremodi�
ations of image Lapla
ian [58℄. Spatial frequen
y (SF) and Tenengrad werelater introdu
ed as fo
us measures [25, 36℄. Evaluation of various FM's in MFIF 
anbe found in [38℄. 74
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k-based fusion methods are available in the literature whi
h employdi�erent fo
us-measures to distinguish between fo
used and defo
used blo
ks. Li etal. [47℄ proposed a MFIF te
hnique in whi
h input images are divided into m � nblo
ks and better fo
used ones are sele
ted (by measuring their SF) to produ
e aninitial fused image and the �nal fused image is produ
ed by majority �ltering ofthe initial result. In a subsequent work [48℄ they proposed a neural network (NN)to sele
t better fo
used blo
ks using three features SF, visibility and edge feature.Miao and Wang used EOG to measure fo
us in image blo
ks in an MFIF algorithmbased on Pulse Coupled Neural Networks in [55℄. In Goshtasby's method [29℄ fo
usis measured by sum of gradient values of all pixels in the blo
k. Instead of just
utting and pasting the better-fo
used blo
ks, entire images are blended with weightsthat monotoni
ally de
rease from blo
k-
enters to smooth out the boundary betweenadja
ent blo
ks. In the method presented by Fedorov et al. [27℄ ea
h image is tiledwith overlapping neighborhoods. For ea
h region the tile that 
orresponds to the bestfo
us is 
hosen. Sele
ted tiles are seamlessly mosai
ked by multi-resolution splinete
hnique to 
onstru
t the fused image. Zhang and Ge proposed a te
hnique [87℄in whi
h fo
used blo
ks are dete
ted by measuring their blurriness. Blo
k-maps are
reated and small isolated blo
ks are removed. Finally fusion map is 
onstru
ted andfusion is done a

ordingly. Blo
k-based te
hniques presented in [47, 48, 55, 29, 27, 87℄are sensitive to blo
k-size. Li et al. mentioned that optimal blo
k-size 
ould be 
hosenby adaptive methods [48℄. Goshtasby proposed to determine the optimal blo
k-sizeby an iterative pro
edure whi
h is time-
onsuming [29℄. Fedorov et al. proposed to
onstrain the minimum tile-size by use of multi-resolution spline te
hnique [27℄.We present an eÆ
ient blo
k-based algorithm for MFIF whi
h is not sensitive toblo
k-size. Although it starts with identifying the fo
used blo
ks, �nally the fo
usedregions in ea
h input image are identi�ed. Hen
e the results are 
omparable with re-gion based methods. We also propose a new measure of fo
us energy of morphologi
gradients (EOMG) and use it for our purpose. The paper is organized as follows.In Se
tion 4.2, sub-se
tion 4.2.1 des
ribes the quad-tree based algorithm to dete
tfo
used blo
ks, 4.2.2 des
ribes the re
onstru
tion of 
onne
ted regions and 4.2.3 de-
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Images divided
into blocks

Verify
Consistency

Combine
Blocks

Measure
Focus

Image 1

Image 2

Multifocus Images

on
Block−pairs

  Fused ImageFigure 4.1: A generi
 s
hemati
 diagram for multi-fo
us image fusion by 
omputingthe fo
us measure on equal-sized blo
kss
ribes EOMG. Se
tion 4.3 
ontains experimental results and dis
ussion in
ludingperforman
e analysis and �nally 4.4 
ontains summary of the 
hapter and 
on
ludingremarks.
4.2 A new blo
k-based fusion algorithmA generi
 s
hemati
 diagram of blo
k-based approa
h for MFIF is shown in Fig. 4.1.The number of blo
ks n plays a 
ru
ial role in this approa
h [48℄. A small value of nmeans a large size for ea
h blo
k and a large blo
k is more likely to 
ontain portionsfrom both fo
used and defo
used regions. This may lead to sele
tion of 
onsiderableamount of defo
used regions. On the other hand, a large value of n means small sizefor ea
h blo
k. This too may lead to sele
tion of some defo
used blo
ks sin
e therelative 
ontrast do not vary mu
h on small and relatively smooth regions. Moreoversmall blo
ks are more a�e
ted by mis-registration problems. The problem of 
hoosingan ideal n is illustrated in Fig. 4.2. Suppose Image-1 and Image-2 are two multi-fo
usimages of a s
ene, fo
us being on 
omplementary regions. Fo
used regions are shownas shaded regions. If ea
h image is divided into four quadrants, four 
orrespondingblo
k-pairs are 
reated. From ea
h pair, the one with better fo
us is 
hosen and
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Image 1

Image 2

16 blocks will result
into 25% blurred
area in fused images

4 blocks will result
into 50% blurred
area in fused image

Multifocus Images
with focus on
shaded regionsFigure 4.2: Problem of multi-fo
us image fusion with equal-sized blo
ks
opied to the resultant image. But in ea
h pair both the blo
ks 
ontains �fty per
entout-of-fo
us area. So irrespe
tive of whi
h blo
ks are 
hosen, total �fty per
ent areain the fused image will be out of fo
us. In a similar way, if the images are dividedinto sixteen blo
ks ea
h, twenty-�ve per
ent of the fused image will be out of fo
us.A 
ommon way to �nd n that generates the best result is by experimentation andveri�
ation with various values of n [48, 29, 27℄. This requires a 
onsiderable amountof pre-pro
essing time. To over
ome these problems, we present an algorithm [21℄whi
h do not use �xed number of divisions in any portion of the multi-fo
us images.Rather it makes use of a quad-tree stru
ture to obtain the optimal subdivision whilemeasuring fo
us.4.2.1 Dete
tion of fo
used blo
ks in a quad-tree stru
tureThe method is des
ribed for two input images and it 
an be extended easily to threeor more input images. Hen
eforth the words blo
k and node are used inter
hangeably.Two input images represent the root-nodes at the zero-th level of two quad-trees. Ea
h



CHAPTER 4. BLOCK-BASED FUSION 78input image is divided into four quadrants to obtain a quadruple of nodes. Hen
efour pairs of 
orresponding blo
ks are obtained at level one of the quad-tree. Forsu
h a pair of blo
ks, any of the following situations may o

ur: one is fully fo
usedand the other is fully out-of-fo
us, both are partially fo
used or both are fully out-of-fo
us. To �nd out the situation, fo
us-measure is 
omputed on ea
h blo
k of thepair. Normalized di�eren
e in fo
us-measure (NDFM) between 
orresponding blo
ksis 
al
ulated as NDFM = Absolute di�eren
e in fo
us-measuresSum of fo
us-measures (4.1)NDFM is 
ompared with a threshold then. In �rst situation, fully fo
used blo
k hasa 
onsiderably greater FM and NDFM is greater than the 
hosen threshold. So theblo
ks in the pair are not subdivided and the blo
k with greater fo
us-measure (FM)is 
opied into the resultant image. In se
ond and third situations, FM's do not varymu
h on 
orresponding pair of blo
ks and NDFM between them is less than or equal tothe threshold. So both blo
ks in the pair are further subdivided into four quadrants.NDFM for 
orresponding smaller blo
k-pairs are 
al
ulated and 
ompared with athreshold again. They are further subdivided if required. The re
ursive subdivisionis stopped if either the blo
k-size be
omes very small or NDFM is greater than thethreshold at some level. The pro
ess is repeated for all four pairs of 
orrespondingblo
ks obtained after the initial subdivision.Generally images are 
ombinations of textured and smooth regions. It is seen thatvariations in fo
us and hen
e values of NDFM are greatly in
uen
ed by texture and/orgrains of the original images. In parti
ular, variations in fo
us are greater in texturedregions than in smooth regions. Values of NDFM obtained at the �rst two levels of thequad-trees give an initial idea about the distribution of texture/grains in the originalimages. It is also observed that NDFM between a pair of 
orresponding blo
ks at alevel are in
uen
ed by their immediate an
estor blo
ks. This is be
ause the formerblo
ks are parts of the later ones. To de
ide on whether the NDFM is small enoughto allow subdivision of a pair of blo
ks, a global threshold is not e�e
tive for blo
ksat all levels be
ause their size and an
estors are di�erent. The value of threshold for
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2 1Figure 4.3: Subdivision of images in blo
ks a

ording to a quad-tree stru
turea pair of 
orresponding blo
ks at a level is 
al
ulated as a 
onstant multiple of theNDFM at their immediate an
estor blo
ks. So it is dynami
ally updated for ea
hquadruple of 
orresponding nodes at a level. In this work the 
onstant multiplier Mis 
al
ulated asM = Mean of NDFM at level 1NDFM at level 0 � Standard-deviation of NDFM at level 1� 100(4.2)So it is 
onstant for a set of input images and is derived from them only.An example of subdivision of two input images in a quad-tree stru
ture is illustrated inFig. 4.3. Here X1 and X2 are input images at level zero. After initial subdivision, Xk1and Xk2 (k = 1; : : : ; 4) are 
orresponding pairs of blo
ks at level 1. NDFM betweenthe root nodes is jF (X1)�F (X2)jF (X1)+F (X2) . That between Xk1 and Xk2 is jF (Xk1 )�F (Xk2 )jF (Xk1 )+F (Xk2 ) and thethreshold for all of them is T = M � jF (X1)�F (X2)jF (X1)+F (X2) . At level 1, the se
ond pair ofblo
ks X21 and X22 are subdivided into smaller blo
ks to 
reate blo
k-pairs X2k1 andX2k2 ; k = 1; : : : ; 4 at level 2. A

ording to the theory developed, X21 and X22 aresubdivided be
ause jF (X21 )�F (X22 )jF (X21 )+F (X22 ) � T . X2k1 and X2k2 will be further subdivided ifjF (X2k1 )�F (X2k2 )jF (X2k1 )+F (X2k2 ) � M � jF (X21 )�F (X22 )jF (X21 )+F (X22 ) ). Fig. 4.4 illustrates the re
ursive subdivision oftop-left quadrant of Image 2 in Fig. 4.2. Other quadrants will be subdivided similarly.If the number of input images is m and m > 2, then four sets of m 
orrespondingblo
ks are 
reated after initial subdivision. For ea
h of the m blo
ks in the set,
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Focus is on shaded regions. After initial division
into four blocks, divide a block if necessary only.Figure 4.4: Re
ursive subdivision of upper-left quadrant of Image 2 in Fig. 4.2fo
us-measure is 
omputed. Di�eren
e of the maximum and the minimum of these mmeasures divided by sum of these m measures is used as the NDFM for the set. Thevalue of threshold for the set is 
al
ulated as a 
onstant multiple of the NDFM at theirimmediate an
estor blo
ks. The 
onstant multiplierM is given by the Equation 4.2.Dete
tion of fo
used blo
ks from m images is algorithmi
ally presented below.1. Read m input images Xi; i = 1 to m.2. Divide ea
h Xi into four quadrants to get four sets of 
orresponding blo
ksfXki ; i = 1 to mg; k = 1 to 4 at level 1.3. Cal
ulate 
onstant multiplier M .4. Repeat for ea
h set of 
orresponding blo
ks at level i(a) Compute threshold T for the set.(b) Compute FM on ea
h blo
k of the set.(
) Find out their maximum Fmax and minimum Fmin.(d) Cal
ulate NDFM for the set.(e) If NDFM greater than threshold thenCopy the blo
k with greatest FM to the resultant image.
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ks > minimum size permissible thenSubdivide all blo
ks in the set into four smaller quadrants andRepeat the steps in 4 for smaller blo
ks at level i = i+ 1else Copy the blo
k with greatest fo
us measure to the resultant image andstop.Dete
ted fo
used blo
ks of various sizes are merged naturally and fo
used regions areprodu
ed. Fig. 4.5 shows the gradual dete
tion of fo
used regions as the number oflevels in the quad-trees in
rease. It is seen that as blo
k-size be
ome smaller bordersof fo
used regions are dete
ted more a

urately but small spurious defo
used blo
ksappear inside the regions. This is due to noise or small unresolved blo
ks on whi
hrelative 
ontrast do not vary mu
h. So dete
ted regions require re
onstru
tion whi
his explained in the next subse
tion.4.2.2 Re
onstru
tionIt is evident that a fo
used region must be wider than the dimension of the spuriousblo
ks inside it. The largest 
onne
ted fo
used region is 
onstru
ted by a morpho-logi
al �lter 
onsisting of an alternating sequen
e of opening and 
losing with a diskstru
turing element (SE) of in
reasing radius [22℄. However, opening and 
losing witha disk SE trims some sharp 
onvex portions and appends some sharp 
on
ave por-tions respe
tively. In addition to this some unresolved pixels may still be present.As a result the regions obtained from di�erent input images are neither disjoint norexhaustive. The �nal fused image is generated as follows. If a pixel belongs to onlyone region then its value is 
opied from the 
orresponding image. If a pixel belongsto no region or more than one region then weighted average of all input-values at thatpixel is 
opied. Related weights are determined by gradient value at the pixel in the
orresponding input image divided by sum of the gradient values at the pixel in allinput images.
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(a) (d)

(b) (e)

(
) (f)Figure 4.5: Dete
tion of fo
used regions in a set of multi-fo
us images up to variouslevels in a quad-tree. Figures (a), (b) and (
) show input images; (a) Near fo
usedimage, (b) Middle fo
used image, (
) Far fo
used image. Figures (d), (e) and (f) showdete
ted fo
used regions respe
tively up to levels 6, 7 and 8 where white, grey andbla
k blo
ks are dete
ted from (a), (b) and (
) respe
tively.
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us in the next subse
tion to solve the 
riti
al problemof measuring the degree of fo
us on a blo
k.4.2.3 Energy of Morphologi
 Gradients: a new measure offo
usSu

ess of the proposed algorithm depends on how a

urately the fo
us-measure 
andistinguish between fo
used and defo
used blo
ks. Edge-strength 
an be used su

ess-fully to identify fo
used blo
ks, be
ause they have better 
ontrast and hen
e moreprominent edges than 
orresponding defo
used regions. Edge-strength, in turn ismeasured by image gradients. Energy of gradients (EOG) is a well-known fo
us mea-sure theoreti
ally explained and experimentally validated in dis
rimination of fo
usquality if the blur fun
tion is assumed to be Gaussian or trun
ated Bessel [76℄.A simple method of performing grey-s
ale edge dete
tion by mathemati
al morphologyis to take the di�eren
e between an image and its erosion/dilation by a SE [43, 14℄.The di�eren
e-image is the edge-strength image. In general, a grey-s
ale SE is givenby the mapping h : D ! f0; : : : ; 255g. Dilation and erosion of a grey-s
ale imageX(r; 
) by a grey-s
ale SE h(r; 
) are denoted by(X � h)(r; 
) = max(i;j)2Domain of h (X(r � i; 
� j) + h (i; j)) (4.3)(X 	 h)(r; 
) = min(i;j)2Domain of h (X(r + i; 
+ j)� h (i; j)) (4.4)where the maximum and minimum are taken over all (i; j) in the domain of h su
hthat (r� i; 
� j) and (r + i; 
+ j) are in the domain of X. Most popularly used SEfor edge dete
tion is 
alled rod. A rod is a grey-s
ale SE whi
h is 
at on top and hasa disk-shaped domain with 
enter at (0; 0) [43℄. Then the domain of rod SE of radius1 (using 
ity-blo
k distan
e) is denoted by Drod1 and is de�ned by the setDrod1 = f(0;�1); (0; 1); (0; 0); (�1; 0); (1; 0)g:
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) = max(i;j)2Drod1 (X(r � i; 
� j) + h (i; j)) (4.5)(X 	 h)(r; 
) = min(i;j)2Drod1 (X(r + i; 
+ j)� h (i; j)) (4.6)Sin
e a rod is 
at on top, values of h(i; j) for all (i; j) 2 Drod1 are taken to be zero.Then (X � h)(r; 
) = max(i;j)2Drod1 (X(r � i; 
� j)) (4.7)(X 	 h)(r; 
) = min(i;j)2Drod1 (X(r + i; 
+ j)) (4.8)Hen
eforth we denote (X�h)(r; 
) and (X	h)(r; 
) by d(r; 
) and e(r; 
) respe
tively.Dilation residue edge strength Gd and erosion residue edge strength Ge by rod SE areobtained as Gd(r; 
) = d(r; 
)�X(r; 
)= max(i;j)2Drod1 [X(r � i; 
� j)℄�X(r; 
)= max(i;j)2N4(r;
)[X(i; j)�X(r; 
)℄ (4.9)Ge(r; 
) = X(r; 
)� e(r; 
)= X(r; 
)� min(i;j)2Drod1 X(r + i; 
 + j)= max(i;j)2N4(r;
)[X(r; 
)�X(i; j)℄ (4.10)So morphologi
 edge operators are lo
al neighborhood operators whi
h take the maxi-mum among the four �rst di�eren
es in dire
tions 0Æ; 90Æ; 180Æ and 270Æ. Morphologi
image gradient G(r; 
) at a point (r; 
) is 
al
ulated as the sum of Gd(r; 
) and Ge(r; 
)G(r; 
) = Gd(r; 
) +Ge(r; 
) (4.11)We de�ne energy of morphologi
 gradients (EOMG) asEOMG =Xr X
 (G(r; 
))2 (4.12)A fo
used blo
k produ
es larger EOMG than its defo
used 
ounterpart be
ause pixelsin a fo
used blo
k are in sharp 
ontrast and hen
e have greater edge-strength. SoEOMG 
an be used as a measure of fo
us.



CHAPTER 4. BLOCK-BASED FUSION 854.3 Experimental results and dis
ussionThe proposed algorithm have been tested on the input images given in Fig. 1.2 withvarious fo
us measures, viz. EOMG, EOG, Varian
e, Tenengrad, EOL, SML, SF et
.Sin
e it is not possible to present all results obtained by various fo
us measures, weprovide the results obtained by EOMG, EOG and Varian
e in Figure 4.6. For ea
hinput image-set three output images are shown; the �rst one is obtained by EOMG,the se
ond one is obtained by EOG and the third one is obtained by Varian
e. Thefusion is done by allowing the 
onstituent images to be subdivided up to level seven,although that may not be required for all 
ases. Quantitative evaluations by gradient-similarity-index (GSI) and fusion-quality-index (FQI) as explained in Se
tion 1.7 aregiven respe
tively in tables 4.1 and 4.2. The a
tual run-time in se
onds requiredby the proposed blo
k-based fusion method using three di�erent fo
us measures viz.EOMG, EOG and Varian
e are given in Table 4.3.
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A.(i) A.(ii) A.(iii)

B.(i) B.(ii) B.(iii)

C.(i) C.(ii) C.(iii)Figure 4.6: Results of multi-fo
us image fusion by the proposed blo
k-based methodwith (i) EOMG, (ii) EOG and (iii) Varian
e
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e evaluation of blo
k-based methods by GSIFigure EOMG EOG Varian
eDoll 0:904 0:902 0:762Toy 0:822 0:822 0:822Disk 0:913 0:913 0:877Lab 0:915 0:910 0:900Pepsi 0:945 0:945 0:952Clo
k 0:885 0:891 0:801Campus 0:776 0:776 0:760Hydrant 0:885 0:886 0:868Garden 0:782 0:777 0:809Rose 0:882 0:882 0:876News 0:933 0:932 0:929OpenGL 0:919 0:914 0:867Average 0:880 0:879 0:8514.3.1 Dis
ussionCareful manual inspe
tion of experimental results shows that the proposed fo
usmeasure EOMGwork equally well on input images whi
h vary widely in their fo
using,obje
t-
ontent and in their texture. It also shows that the results obtained by variousfo
us measures are good and do not vary mu
h in their quality. This shows robustnessof the algorithm.Now dis
ussion on quantitative evaluations are given. The tables 4.1 and 4.2 showthat for `Toy' images all the three fo
us measures yield identi
al values. This impliesthat fused images produ
ed by the proposed algorithm with three di�erent fo
usmeasures are identi
al. This happens be
ause quad-trees generated by EOMG, EOGand varian
e are identi
al in that parti
ular 
ase. The tables also show that for
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D.(i) D.(ii) D.(iii)

E.(i) E.(ii) E.(iii)

F.(i) F.(ii) F.(iii)Figure 4.6: Continued
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G.(i) G.(ii) G.(iii)

H.(i) H.(ii) H.(iii)

I.(i) I.(ii) I.(iii)Figure 4.6: Continued
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J.(i) J.(ii) J.(iii)

K.(i) K.(ii) K.(iii)

L.(i) L.(ii) L.(iii)Figure 4.6: Continued
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e evaluation of blo
k-based methods by FQIFigure EOMG EOG Varian
eDoll 0:836 0:837 0:795Toy 0:838 0:838 0:838Disk 0:877 0:877 0:870Lab 0:875 0:875 0:873Pepsi 0:884 0:886 0:894Clo
k 0:903 0:903 0:893Campus 0:909 0:909 0:897Hydrant 0:914 0:914 0:913Garden 0:829 0:830 0:820Rose 0:890 0:890 0:883News 0:894 0:893 0:890OpenGL 0:882 0:882 0:871Average 0:877 0:877 0:869some images like `Disk', `Campus' and `Rose'; EOMG and EOG produ
e identi
alvalues. Following the argument just stated, it is 
on
luded that quad-trees generatedby EOMG and EOG are identi
al for those images. On average, performan
e ofEOMG is slightly better than EOG and better than varian
e. Moreover as EOMGworks equally well with all input image-sets (whi
h vary widely in 
ontent, textureand fo
using), we 
on
lude that it ful�lls the desirable properties of a fo
us measurementioned in se
tion 4.1; viz. ability to measure fo
us irrespe
tive of image 
ontent,monotoni
ity with respe
t to blur, unimodality, robustness to noise and 
apability toprodu
e large variations in values with respe
t to degree of blur. Regarding the timerequirement, average time taken by the proposed algorithm is less than a minute forall the three fo
us measures EOMG, EOG and varian
e.Formal 
omputational 
omplexity of our method is des
ribed now. In dete
tion step,
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k-based algorithm with three di�erent FM'sFigure EOMG EOG Varian
e(se
onds) (se
onds) (se
onds)Doll 41 37 45Toy 59 55 62Disk 24 27 33Lab 26 20 21Pepsi 30 25 39Clo
k 19 17 14Campus 33 30 34Hydrant 34 28 29Garden 28 29 25Rose 31 33 32News 22 19 23OpenGL 32 23 27Average 32 29 32ea
h input image is subdivided a

ording to a quad-tree stru
ture. Suppose an inputimage has M �N pixels and the quad-tree has l levels. Maximum possible value of ldepends on the minimum blo
k-size. For example, if the minimum blo
k-size is takento be 2�2, then for a 512�512 image l is equal to 8. More formally, maximum possiblevalue of l is equal to min(log2M � 1; log2N � 1). If all levels of the quad-tree havemaximum possible nodes then it means all pixels in the image are to be 
al
ulatedupon up to level l. So 
omputational 
omplexity is O(M �N � l) for a single image.For a set of k input images the 
omputational 
omplexity be
omes O(M�N � l�k).It is seen in pra
ti
al 
ases that maximum possible level is not required always andmost of the levels do not have more than half of the maximum possible nodes. Sotime-requirement in dete
tion step is e�e
tively in order of size of input images.Re
onstru
tion is done by iteratively applying the morphologi
al operators opening
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losing with a disk SE of in
reasing radius. So time requirement in this step alsois in order of size of input images.
4.4 SummaryIn this work we have proposed an algorithm to enhan
e the e�e
tive DOF of 
amera bymulti-fo
us image fusion. It is a simple quad-tree based algorithm whi
h re
ursivelydivides and then 
ompares and sele
ts/reje
ts blo
ks. For e�e
tive subdivision ofblo
ks, NDFM of a set of 
orresponding blo
ks is 
al
ulated and 
ompared with athreshold. The pro
ess of re
ursive subdivision 
ontinues until either NDFM be
omesgreater than the threshold or the blo
k-size be
omes very small. No threshold issupplied manually, rather thresholds are 
al
ulated automati
ally from the inputimages. Dete
ted fo
used blo
ks are merged naturally to form fo
used regions whi
hare re
onstru
ted then to remove any spurious blo
ks inside them. So although theproposed method starts with blo
ks, it �nally dete
ts fo
used regions from ea
h inputimage. These regions are then 
opied to 
reate the �nal fused image. The method isfast and easy to implement. Its time 
omplexity is of the order of size of the inputimages. We have also proposed a new fo
us measure EOMG in this work. It satis�esthe desirable properties of a fo
us measure. The proposed algorithm is robust inthe sense that any fo
us measure 
an be used for its implementation. Sin
e it is ablo
k-based method, it is robust against pixel mis-registration. Moreover, sin
e thealgorithm is based on neighbourhood operators, it 
an be eÆ
iently implemented inma
hine vision systems having spe
ial hardware support for morphologi
 operations.



Chapter 5
Region based fusion
5.1 Introdu
tionIn this 
hapter we present a region-based method for multi-fo
us image fusion (MFIF).Generally regions 
onvey more semanti
 information than single pixels and smallblo
ks. So region-based fusion approa
hes 
an avail more intelligent semanti
 fusionrules than pixel-based and blo
k-based methods. A number of region-based fusionte
hniques are found in the literature. They are based either on spatial domain or onfrequen
y/transform domain. Spatial domain fusion methods may depend on multi-resolution or multi-s
ale de
omposition (MSD). Frequen
y domain fusion te
hniquesdo depend on MSD. They use either pyramid or wavelet transform for MSD. Region-based fusion te
hniques using pyramid or wavelet transform have been proposed bymany resear
hers [88, 86, 65, 64, 82, 34, 85℄. Some key points of region-based MSDimage fusion approa
h [88℄ are ea
h pixel is 
onsidered as part of obje
t or region ofinterest, image features su
h as edges and regions are used to guide the fusion, bothspatial and frequen
y information are retrieved from the 
oeÆ
ients. Basi
 steps ofMSD image fusion te
hniques are the following. At �rst ea
h sour
e image is trans-formed/de
omposed by an MSD s
heme like pyramid transform or wavelet transform.Low and high frequen
y 
oeÆ
ients forming respe
tively s
aled and detail images are94



CHAPTER 5. REGION BASED FUSION 95obtained from the transform. Regions representing image features are then extra
tedfrom the transform 
oeÆ
ients by an image segmentation method. The regions arethen fused based on region 
hara
teristi
s. The �nal fused image is obtained by ap-plying the inverse transform to the 
omposite representation. Experimental resultsof these methods are en
ouraging. However, the images fused in this way may stilllose some information of the sour
e images be
ause of the implementation of the in-verse transform. There are region-based fusion methods using 
ombination of wavelettransform and arti�
ial neural networks [55, 46, 68, 39, 84℄. These methods are mo-tivated by fusion of di�erent sensor signals in biologi
al systems and use multi-layerper
eptron neural networks or pulse-
oupled neural networks. There are transformdomain methods whi
h use Independent Component Analysis (ICA) and Topographi
Independent Component Analysis bases in image fusion [56℄.Spatial-domain region-based fusion methods may or may not depend on multi-s
alede
omposition (MSD). Methods for image fusion using multi-s
ale morphology aredes
ribed in [53, 57℄. In method of Matsopoulos et al. morphologi
al �lters withstru
turing elements of varying size are used to 
onstru
t a morphologi
al pyramid.Su
h pyramids are 
onstru
ted for ea
h input image. Then morphologi
al di�eren
epyramids are 
onstru
ted for ea
h of the above pyramids. After that, an intermedi-ate pyramid is 
onstru
ted by 
ombining information at ea
h level from the abovedi�eren
e pyramids. Finally, re
onstru
tion is done by using appropriate morpho-logi
al operations on the intermediate pyramid to produ
e the �nal fused image.This method 
an be used for multi-fo
us images as well, but it was not mentionedwhether the method 
an be applied to more than two input images. Sin
e in thethird step the di�eren
e pyramids are 
ombined by 
hoosing the maximum at ea
hpixel, this method is sensitive to the problem of mis-registration as mentioned be-fore. Mukhopadhyay and Chanda proposed a similar method in [57℄ ex
ept that theyhave used morphologi
al towers instead of morphologi
al pyramids. They have usedtheir method for fusion of multi-fo
us images. But their method involves pro
essingand storing of s
aled data at various levels whi
h are of the same size as that of theoriginal images. This results in a huge amount of memory and time requirement.
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hnique [49℄ is a spatial-domain, region-based te
hnique whi
h doesnot depend on MSD. In this te
hnique, a temporary fused image is obtained at �rstby taking the average of all input images. The temporary image is segmented bynormalized-
ut algorithm. Input images are segmented a

ording to the segmenta-tion results of the temporary image. Fo
us measure of 
orresponding regions aremeasured by spatial frequen
y and better fo
used regions are sele
ted and stit
hed totheir desired positions to get the �nal fused image. The te
hnique is time-
onsumingand depends greatly on the performan
e of the segmentation algorithm.In this 
hapter a spatial domain, region-based fusion method is presented. Multi-s
alemorphologi
al �lters are employed to identify fo
used regions from input images.Fo
used regions from various images are then stit
hed at their proper positions to
reate the �nal fused image. Sin
e best-fo
used regions are sele
ted and 
opied fromone image only, a slight error in registration will have no e�e
t in fusion ex
ept inthe border of the regions. Prior segmentation is not required in the method. Manual
ut-and-paste of fo
used regions from multi-fo
us images is 
onsidered to be the bestand it is often used for 
omparison purposes [45℄. The proposed method is a 
loseapproximation to this and produ
es good results. The results have been 
omparedwith those obtained by Li and Yang's te
hnique [49℄. The 
hapter is organized asfollows. Se
tion 5.2 des
ribes the proposed method in detail. Subse
tions 5.2.1,5.2.2 and 5.2.3 present the methods for multi-s
ale top-hat transformation, dete
tionof fo
used regions and image re
onstru
tion respe
tively. Experimental results anddis
ussion in
luding performan
e analysis are given in Se
tion 5.3. Finally, summaryof the 
hapter and 
on
luding remarks are pla
ed in Se
tion 5.4.
5.2 Fusion by multi-s
ale morphologyThe obje
tive of region-based fusion methods is to dete
t fo
used regions from everyinput image, then to stit
h dete
ted fo
used regions to their proper positions in thefused image. Sin
e multi-fo
us images of a s
ene are a
quired with fo
us on 
omple-
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used regions in an image have more 
ontrast than their defo
used
ounter-parts in other images. This implies that fo
used regions 
ontain larger num-ber of physi
ally relevant features of di�erent shapes and sizes. Extra
tion of featuresby mathemati
al morphology depends on e�e
tive use of stru
turing elements. Sizesand shapes of stru
turing elements play 
ru
ial roles here. A morphologi
al operatorwith a s
alable stru
turing element 
an extra
t features of various shapes and sizes.A s
heme of morphologi
al operations with a stru
turing element of varying s
ale istermed as multi-s
ale morphology [15, 52℄. We use su
h a s
heme for our purpose.The s
heme is known as multi-s
ale top-hat transformation. We des
ribe now thetransformation and dete
tion of fo
used regions by using it.5.2.1 Multi-s
ale top-hat transformationA two-dimensional grey-s
ale image signal X is a fun
tion/mapping from domain D(whi
h is a subset of dis
rete two-dimensional spa
e Z2) to the set of grey valuesfg1; g2; : : : ; gng where ea
h gi is a nonnegative integer. A grey-s
ale stru
turing el-ement (SE) `h' is a mapping from its domain to the above set of grey values. Fora s
alable SE `h', size of the domain get 
hanged. Let B be a set representing thedomain of `h'. Assume that B has a de�nite shape. Let n be an integer representingthe s
ale-fa
tor of B and let nB denote the s
aled version of B at s
ale n. If B is
onvex, then nB is obtained by n� 1 dilations of B by itself.nB = B�B � B � � � � � B| {z }n�1 times (5.1)When n = 0, 
onventionally B is taken to be a disk of unit size so that nB = f(0; 0)g.Let `h' be a 
at-top SE su
h that its value at every point in its domain nB is zero.Then a morphologi
 operation by `h' redu
es to an operation by its domain nB. Thenmulti-s
ale opening and 
losing of X by s
alable domain nB are de�ned respe
tively
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) = ((X 	 nB)� nB)(r; 
) (5.2)(X � nB)(r; 
) = ((X � nB)	 nB)(r; 
) (5.3)Opening removes all bright/foreground stru
tures in the image X that are not largeenough to 
ontain nB. Hen
e X Æ nB essentially 
ontains all bright/foregroundstru
tures of X having size greater than or equal to nB. Similarly, 
losing removesall ba
kground stru
tures in the image X that are not large enough to 
ontain nB.Hen
e, X � nB 
ontains all dark/ba
kground stru
tures of X having size greater thanor equal to nB. Here foreground stru
ture means an image region of intensity valuehigher than the surrounding region.Top-hat transformation for opening and 
losing �lters are de�ned respe
tively as:d(n)o (X(r; 
)) = (X Æ (n� 1)B) (r; 
)� (X Æ nB) (r; 
) (5.4)d(n)
 (X(r; 
)) = (X � nB) (r; 
)� (X � (n� 1)B) (r; 
) (5.5)Thus, d(n)o (X) 
ontains all the bright features that have size greater than or equal to(n � 1)B but less than nB. Similarly, d(n)
 (X) 
ontains all the dark features withinthe same range of size. Hen
e the feature image de�ned asD(n)(X(r; 
)) = maxfd(n)o (X(r; 
)); d(n)
 (X(r; 
))g (5.6)
ontains all the image features having size within the range [(n � 1)B; nB). Hen
eimage features are thus sieved out based on their size and stored in 
orrespondingD(n)(X).5.2.2 Dete
tion of fo
used regionsIt is evident from the previous dis
ussion that if a parti
ular feature (bright or dark)of an image is sharply fo
used it is sieved out in relatively lower s
ale. Let Xj; j =1; 2; : : : ; k be a set of multi-fo
us images and let D(n)j denote the feature image of Xj
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ale n. Now if a pixel (r; 
) is sharply fo
used in the image Xi, then at lower s
ale,D(n)i (r; 
) should be greater than D(n)j (r; 
) for all j 6= i. Thus, the fo
used region ofea
h image 
an be identi�ed and marked. Let F (n)j denote the fo
used region at s
alen of image Xj and let F (n) denote the union of fo
used regions at s
ale n from allimages Xj; j = 1; 2; : : : ; k. Then dete
tion of fo
used regions at various s
ales F (n)j
an be algorithmi
ally presented asStep-1: F (0)j (r; 
) = 0 for all jStep-2: n = 1Step-3: Cal
ulate D(n)j (r; 
) for all images XjStep-4: F (n)j (r; 
) = 1, if D(n)j (r; 
) > maxfD(n)i (r; 
)g for all i 6= jStep-5: F (n)(r; 
) = F (n)1 (r; 
) _ F (n)2 (r; 
) _ � � � _ F (n)k (r; 
)Step-6: If all pixels of F (n) are not equal to 1, in
rease n by 1 and go to Step-3Hen
e, the fo
used regions or, more spe
i�
ally, the fo
used pixels in the imageXj aremarked by 1 in F (n)j . In pra
ti
e, we terminate this algorithm when at least p-per
entpixels of F (n) be
ome 1 or no further 
hange o

urs in F (n). Rest unresolved pixelswhere F (n)(r; 
) = 0 either belong to smooth regions or belong to boundary of fo
usedregions and are taken 
are of at the subsequent stage. Binary images 
orresponding tofo
used regions dete
ted at various s
ales for the near-fo
used `Doll' image in Fig. 1.2are shown in Fig. 5.1.5.2.3 Re
onstru
tionImage of fo
used region F (n)j for j-th input image may appear to 
ontain spuriouswhite spots in sharply fo
used region (shown here as bla
k 
olored) and bla
k spotsin the out-of-fo
us region (shown here as white 
olored). This phenomenon 
an beobserved in Fig. 5.1. It is evident that a fo
used obje
t or region must be wider
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(a) (b) (
)Figure 5.1: Binary images 
orresponding to fo
used regions dete
ted at various s
alesfor the near-fo
used `Doll' image in Fig. 1.2. Fo
used regions obtained by using (a)2� 2 SE. (b) 4� 4 SE. (
) 8� 8 SE.than the dimension of these spurious spots. Then these spots 
an be treated as ad-ditive and subtra
tive noise that are introdu
ed due to salt-and-pepper noise presentin the out-of-fo
us regions and also due to pixels that remain unresolved after theprevious pro
essing. It is well-known that opening and 
losing �lter respe
tively 
anremove additive and subtra
tive noise eÆ
iently. Hen
e, an alternating sequential�lter formed by 
on
atenating opening and 
losing with a small disk stru
turing ele-ment is applied on ea
h binary image Fj(r; 
) to obtain Rj(r; 
) 
onsisting solid bla
kblob(s). So the largest 
onne
ted regions Rj mark the �nal fo
used regions in Xj.Binary images 
orresponding to fo
used regions (of multi-fo
us `Doll' images Fig. 1.2)dete
ted at the third iteration and the 
orresponding largest 
onne
ted regions areshown in Fig. 5.2. Now the image where all regions are properly fo
used may bere
onstru
ted by putting together the pixels of Xj's 
orresponding to marked (bla
k)regions of Rj's. However, it should be mentioned here that opening and 
losing witha disk stru
turing element trims some sharp 
onvex portions from the blob and ap-pends some sharp 
on
ave portions to the blob respe
tively. In addition to this someunresolved pixels may still be present. As a result Rj's are neither disjoint nor ex-haustive. That means neither Ri ^ Rj; i 6= j produ
es a blank (or white) image norWj Rj produ
es a �lled (or bla
k) image. Hen
e, the resultant fused image ~X(r; 
) is
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(a) (b) (
)
(d) (e) (f)Figure 5.2: Dete
ted fo
used regions and the 
orresponding largest 
onne
ted regionsfor multi-fo
us imagesgenerated by non-linear superposition of Xj(r; 
) depending on Rj(r; 
) as follows.~X(r; 
) = 8>>><>>>: Xj(r; 
); if Rj(r; 
) = 1 and Ri(r; 
) = 0 for all i 6= javg fXj(r; 
) jRj(r; 
) = 0 for all jgavg fXj(r; 
) jRj(r; 
) = 1 for more than one jg (5.7)The fun
tion avg(:) stands for pixel-wise average from a set of images. Experimentalresults and dis
ussions are presented now.

5.3 Experimental results and Dis
ussionThe proposed algorithm has been tested on the input images given in Fig. 1.2. It isseen in the experiments that three iterations are suÆ
ient to dete
t fo
used regionsin all images. So top-hat transformation is applied on input images at three di�erents
ales. Disk stru
turing elements of three di�erent sizes viz. (a) 2� 2, (b) 4� 4, (
)8� 8 are employed for this purpose. For 
omparison purpose, we have implemented
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hnique presented by Li and Yang [49℄. Experimental resultsby the proposed algorithm and by Li's method are shown in �gure 5.3. In ea
h row,the fused images obtained by the proposed method are given �rst, followed by fusedimages by Li and Yang's method. Obje
tive evaluations by gradient-similarity-index(GSI) and fusion-quality-index (FQI) as explained in Se
tion 1.7 are given respe
tivelyin tables 5.1 and 5.2. A
tual time in se
onds required by the proposed algorithm andLi's method are shown in table 5.3.Table 5.1: Performan
e evaluation of region-based methods by GSIFigure Proposed method Li's methodDoll 0:907 0:799Toy 0:808 0:805Disk 0:912 0:869Lab 0:924 0:800Pepsi 0:942 0:945Clo
k 0:864 0:870Campus 0:782 0:799Hydrant 0:862 0:843Garden 0:857 0:784Rose 0:891 0:873News 0:926 0:853OpenGL 0:906 0:863Average 0:882 0:840
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A.(i) A.(ii)

B.(i) B.(ii)

C.(i) C.(ii)Figure 5.3: Results of multi-fo
us image fusion by region-based methods. In ea
hrow, images shown are obtained by applying (i) proposed region-based algorithm (ii)Li' algorithm
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e evaluation of region-based methods by FQIFigure Proposed method Li's methodDoll 0:840 0:818Toy 0:846 0:833Disk 0:873 0:871Lab 0:877 0:842Pepsi 0:896 0:892Clo
k 0:910 0:906Campus 0:916 0:912Hydrant 0:917 0:906Garden 0:838 0:812Rose 0:900 0:883News 0:897 0:873OpenGL 0:877 0:863Average 0:882 0:8675.3.1 Dis
ussionCareful manual inspe
tion of images in �gure 5.3 reveals that the results obtainedby the proposed fusion method is better than fusion by Li's method. Inspe
tion ofthe 
rane in the fused image `Toy', the edge of the table in the fused image `Pepsi',the rose in fused image `Rose' and the letter `O' in fused image `OpenGL' show thatit produ
es better results than Li's method. In both the tables 5.1 and 5.2, theaverage values produ
ed by our method is better than that produ
ed by Li's method.The average time taken by the proposed method is less than one and a half minute,however the average time taken by Li's method is more than six minutes. So also inrespe
t of time requirement, the proposed method is better.
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D.(i) D.(ii)

E.(i) E.(ii)

F.(i) F.(ii)Figure 5.3: Continued
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G.(i) G.(ii)

H.(i) H.(ii)

I.(i) I.(ii)Figure 5.3: Continued
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J.(i) J.(ii)

K.(i) K.(ii)

L.(i) L.(ii)Figure 5.3: Continued



CHAPTER 5. REGION BASED FUSION 108Table 5.3: Time requirement in region-based methodsFigure Proposed method Li's method(se
onds) (se
onds)Doll 71 221Toy 89 505Disk 78 339Lab 76 342Pepsi 80 490Clo
k 37 119Campus 96 479Hydrant 89 470Garden 78 214Rose 81 628News 38 102OpenGL 82 587Average 75 3755.4 SummaryIn this work we have proposed a region-based method for multi-fo
us image fusion.In general, region-based methods do depend on prior segmentation of input images.Therefore, performan
e of the segmentation algorithm, both in respe
t of time andquality, a�e
ts the performan
e of the fusion algorithm. Generally, number of re-gions produ
ed by segmentation pro
ess is mu
h larger than a
tual number of fo-
used/defo
used regions. It means more pro
essing time is required during evalua-tion of fo
us-quality of 
orresponding regions. Moreover, it is diÆ
ult to evaluatethe fo
us quality for small regions, whi
h means distin
tion between 
orrespondingfo
used and defo
used 
ounterparts is diÆ
ult whi
h ultimately may lead to sele
tionof a defo
used region. The proposed method does not need any prior segmentation.
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ale morphologi
al �lters to dete
t features in fo
us at var-ious s
ales from ea
h input image. Union of them 
onstitutes fo
used regions fromthe image. Dete
ted regions from all input images are put together to re
onstru
t thefused image. Sin
e the best-fo
used regions are dete
ted and 
opied from one imageonly, a slight error in registration will have no e�e
t in fusion ex
ept in the bordersof the fo
used regions. Hen
e this region-based method is robust to mis-registration.This method resembles the manual 
ut-and-paste method of image fusion whi
h isoften used for 
omparison purposes. Thus the fused image obtained by the method isvery similar to the ideal fused image. Performan
e of the algorithm is 
ompared witha region-based algorithm proposed by Li and Yang. Performan
e analysis reveals thatour method is superior to fusion by Li and Yang's method.



Chapter 6
Con
lusion and future work
Multi-fo
us image fusion (MFIF) is a way to enhan
e e�e
tive depth-of-�eld of a dig-ital 
amera. Te
hniques for MFIF 
an be divided into broad 
ategories, pixel-based,blo
k-based and region-based. It is interesting to study and 
ompare te
hniqueswithin a parti
ular 
ategory and te
hniques belonging to di�erent 
ategories. Thethesis (i) surveys extensively on existing literature for MFIF methods and 
lassi�esthe methods a

ording to the above 
ategories, (ii) proposes a method for multi-fo
usimage registration, (iii) proposes new methods for MFIF, one in ea
h of the 
ategoriesmentioned above, (iv) presents experimental results for proposed methods on a largedata-set, (v) 
ompares the results with those obtained by other well-known methodsand (vi) does performan
e analysis using standard quantitative evaluation te
hniques.All te
hniques for MFIF proposed in the thesis use mathemati
al morphologi
 tools.Image registration is a ne
essary pre-requisite for image fusion. The thesis presentsa method for multi-fo
us image registration in Chapter 2. The method is 
omparedwith a widely used registration te
hnique and is found to produ
e better results thanthe latter. Chapter 3 proposes a non-linear tool morphologi
al wavelet and presentsa pixel-based algorithm for MFIF using the same. The algorithm is 
omparable withother standard pixel-based te
hniques. Interesting mathemati
al properties of thewavelet used makes the algorithm hardware implementable. Chapter 4 proposes a fo-110
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e summery of the (i) Pixel-based algorithm by the proposed 2Dmorphologi
 wavelet, (ii) Blo
k-based algorithm by proposed fo
us-measure EOMGand (iii) Proposed region-based algorithmFigure Pixel-based Blo
k-based Region-basedTime FQI Time FQI Time FQI(se
onds) (se
onds) (se
onds)Doll 10 0.805 41 0.836 71 0.840Toy 13 0.775 59 0.838 89 0.846Disk 7 0.853 24 0.877 78 0.873Lab 10 0.851 26 0.875 76 0.877Pepsi 11 0.869 30 0.884 80 0.896Clo
k 1 0.884 19 0.903 37 0.910Campus 12 0.895 33 0.909 96 0.916Hydrant 13 0.877 34 0.914 89 0.917Garden 7 0.791 28 0.829 78 0.838Rose 14 0.856 31 0.890 81 0.900News 1 0.867 22 0.894 38 0.897OpenGL 11 0.857 32 0.882 82 0.877Average 9 0.848 32 0.877 75 0.882
us measure based on mathemati
al morphology and presents a blo
k-based algorithmfor MFIF using the same. The algorithm is fast, easy-to-implement, and produ
esgood results. Finally, Chapter 5 presents a region-based algorithm for MFIF usingmathemati
al morphology. This algorithm properly sele
ts the fo
used regions frommulti-fo
us input images and then 
opies and pastes them to form the �nal fused im-age. It resembles the manual 
ut-and-paste method for MFIF often used to produ
eimage all-in-fo
us, for testing purposes [45℄. Results produ
ed by this algorithm arethe best amongst all the three proposed MFIF algorithms. For 
omprehensive as-sessment of the proposed pixel-based, blo
k-based and region-based methods, a
tual
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onds and fusion quality index (FQI) for the test images are given inTable 6.1.After 
omparing the results of various te
hniques for MFIF, we �nd the following.� Pixel-based and region-based methods are respe
tively the least and the mosttime-
onsuming amongst the methods in the three 
ategories mentioned above;and blo
k-based methods take more time than pixel-based methods but lesstime than region-based methods.� Performan
e-wise pixel-based and region-based methods are respe
tively theworst and the best methods among the three 
ategories, and blo
k-based meth-ods are mid-way between pixel-based and region-based methods.� Pixel-based and region-based methods are respe
tively the least and the most ro-bust in respe
t of mis-registration problem whi
h means slight registration-errorresults into severe performan
e degradation in pixel-based methods whereas thaterror does not a�e
t region-based methods so mu
h.� Finally, pixel-based and region-based methods are respe
tively the least and themost diÆ
ult in respe
t of implementation and usage.� Blo
k-based methods maintain a good trade-o� in terms of time-
omplexityand performan
e; and they are moderate also in respe
t of implementation andusage. Finally they are moderately a�e
ted by mis-registration problem. Sothey are often 
hosen for pra
ti
al purposes.The proposed MFIF te
hniques 
an be used to integrate multi-fo
us 
olor images.For that, the input multi-fo
us 
olour images (in R,G,B format) may be representedin intensity-
hromati
ity format. The proposed MFIF methods may then be appliedto the intensity images to get the fused intensity image. Input 
hromati
ity imagesare 
ombined following the same steps as the ones used in 
ase of intensity images.Finally, the fused intensity and 
hromati
ity images are 
ombined to get the fused
olor image. We now outline some future work as extension of the work done.



CHAPTER 6. CONCLUSION AND FUTURE WORK 1136.1 Future work6.1.1 Fusion by area morphologyBasi
 tools of morphologi
 �lters are opening and 
losing. Morphologi
 (also 
alledstru
tural) opening is an in
reasing, idempotent and anti-extensive operation de�nedas an erosion by a SE followed by a dilation by the re
e
ted SE. An operation havingthe same properties, but that 
annot be written as a unique erosion followed by adilation, is 
alled an algebrai
 opening [75℄. Area opening is an algebrai
 opening.It preserves the 
onne
ted sets in the foreground having areas greater than a giventhreshold value and removes all other sets. Here foreground means an image regionof intensity value higher than the surrounding region and area is measured in numberof pixels. The dual operation of area opening is area 
losing. It is an algebrai

losing whi
h preserves the 
onne
ted sets in the ba
kground having areas greaterthan a given threshold value and removes all other sets. This information 
an beused su

essfully to extra
t fo
used regions in multi-fo
us images.In multi-fo
us images, fo
used regions have more 
ontrast and hen
e larger number ofsmall features or grains than their defo
used 
ounter-parts. This implies that when
ompared with the 
orresponding defo
used region, a fo
used region has (i) greaterrange of grey values and (ii) greater number of pixels with very high and very lowintensity values in the range. These pixels 
an be extra
ted by using area openingand area 
losing respe
tively. Subsequently, fo
used regions 
an be dete
ted by usingthese pixels. In general, region-based fusion methods are more 
omplex and time-
onsuming than pixel-based and blo
k-based methods. We plan to work for a simpleregion-based multi-fo
us image fusion method by using the operations, area openingand 
losing. Use of eÆ
ient algorithms [54℄ for these operations may redu
e thetime-requirement for the method.



CHAPTER 6. CONCLUSION AND FUTURE WORK 1146.1.2 Extension to multi-modal imagesThe proposed MFIF te
hniques 
an be used to integrate multi-modal images. In amulti-sensor data a
quisition system, the image data of an obje
t 
onsists of informa-tion a
quired by di�erent sensors from di�erent perspe
tives and possibly at di�erentresolutions. The 
larity of the obje
t features may be di�erent in di�erent imagingmodalities. For example, in the area of biomedi
al imaging, two widely used modali-ties, namely the Magneti
 Resonan
e Imaging (MRI) and the Computer Tomographi
(CT) s
an do not reveal all types of tissue stru
ture with equal 
larity. CT s
an isespe
ially suitable for imaging bones or hard tissues, whereas the MR images aremu
h superior in depi
ting the soft tissues. These two imaging modalities are thus
omplementary in many ways and no one alone is suÆ
ient in terms of required infor-mation 
ontent. The propsed methods may be extended for fusing su
h multi-modalimages.6.1.3 Hardware embeddingTomorrow's 
omputing and 
ommuni
ation te
hnology will rely on extensive use ofembedded software. There are previous work on spe
ial purpose hardware design formathemati
al morphologi
 algorithms [4℄. Proposed algorithms 
an be embedded inhardware using eÆ
ient gate-arrays. Embedded hardware design primarily dependson use of parallel operations. Graph-theoreti
 design approa
hes like pre
eden
egraph and interval graph may be applied on proposed algorithms to explore theirinherent parallelism and hen
e their potential for hardware embedding. Simpler ofthe proposed algorithms 
an be eÆ
iently implemented in ma
hine vision systemshaving spe
ial hardware support for morphologi
 operations.



Appendix A
Depth of �eld
Depth of �eld 
an be 
al
ulated by par-axial geometri
 opti
s model of image forma-tion using a thin 
onvex lens [76℄. Figures A.1(a) and A.1(b) illustrate two di�erentsituations using su
h a model. In both �gures, P and Q are two point-obje
ts, L isthe lens, F is the fo
al point and D is the diameter of aperture of the lens (assumedto be 
ir
ular in this 
ase). Point-obje
t P on obje
t plane at distan
e u from thelens is perfe
tly fo
used as point-image P 0 on sensor plane at distan
e v from thelens. Well-known lens equation 1f = 1u + 1v relates the position of these two points, uand v, with that of the fo
al length f of the lens. Point-obje
t Q is taken in su
h away that it is further from the lens than P in �g. A.1(a) and nearer to the lens thanP in �g. A.1(b). The distan
e of Q from the lens is u1 and u2 in �gures A.1(a) andA.1(b) respe
tively where u1 > u and u2 < u. Fo
used images Q0 of Q are formed atdistan
es v1 and v2 in respe
tive �gures where v1 < v and v2 > v. So fo
used imagesof Q are formed in front of and behind the sensor plane in respe
tive �gures. In both
ases, blurred 
ir
ular images of Q with diameter P 0Q00 is formed on the sensor-plane.We 
an estimate the blur-
ir
le radius r in �g. A.1(a) using similar triangles,2rD = v � v1v1r = (v � v1) D2v1115
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Similarly we 
an estimate the blur-
ir
le radius r in �g. A.1(b),2rD = v2 � vv2r = (v2 � v) D2v2It is readily seen in both 
ases that, larger aperture generates larger blur 
ir
le.Using the above relations for the blur 
ir
les, we 
an derive depth-of-�eld (DOF) fora lens system, where r now be
omes the radius of largest a

eptable blur 
ir
le in theresultant image, whi
h 
an be 
hosen based upon sensor resolution and human visuala
uity limits. Note that the lens equation is also satis�ed by u1; v1 pair and u2; v2pair. We 
an estimate the DOF from �g. A.1 using similar triangles,2rD = v � v1v1vv1 = 1 + 2rD1v1 = 1v (1 + 2rD )1u1 = 1f � 1v (1 + 2rD )= 1f � ( 1f � 1u)(1 + 2rD )= (f � u)(1� 4r2D2 ) + u(1� 2rD )uf(1� 2rD )Therefore, u1 = uf(1� 2 rD )f � 2 rDu if 4r2 << D2 (A.1)Similarly from �g. A.1(b),u2 = uf(1 + 2 rD)f + 2 rDu if 4r2 << D2 (A.2)And, DOF = u1 � u2 (A.3)where u1; u2 are the distan
es to the nearest and the furthest obje
t planes with blur
ir
les having radii less than or equal to the 
hosen r. As D tends to in�nity, u1 and117



u2 tend to u and DOF tends to zero. This result agrees with the 
ommon knowledgethat redu
ing the aperture-size in
reases DOF and in
reasing the same redu
es it.In summary, DOF depends on the following fa
tors, the amount of sharpness-lossregarded as a

eptable, the aperture used (de
reasing the aperture will in
rease theDOF), the fo
al length of the lens (longer the fo
al length, shorter the DOF) andthe distan
e of the fo
used obje
t (nearer the obje
t, shorter the DOF). An extreme
ase of de
reasing the aperture for maximizing the DOF happens in 
ase of pin-hole
amera. It has an in�nite DOF. Unfortunately, the opti
al power in the image plane isredu
ed 
onsiderably due to in�nite DOF. So 
ameras with �nite DOF are preferred.But the problem is that they 
annot generate the images of all obje
ts at variousdistan
es from the 
amera with equal 
larity.
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Appendix B
AÆne transformation
AÆne transformation is a 
ommon te
hnique for image registration. It is basedon the assumption that only geometri
 transformations possible between a relatedpair of images are translation, rotation, isotropi
 s
aling and shear (non-uniforms
aling in some dire
tion). Properties like parallelism, ratio of lengths of 
ollinearor parallel segments, ratio of areas, linear 
ombination of ve
tors are invariant underaÆne transformation [13℄. The equation for aÆne transformation is given now.Let (x; y) be a point in two-dimensional Cartesian 
oordinate system. In homogeneous
oordinate system the point is represented by (x; y; 1). Let the point be representedby (X; Y; 1) in homogeneous 
oordinate system after transformation. Then aÆnetransformation of (x; y; 1) to (X; Y; 1) is represented by the equation26664 XY1 37775 = 26664 t11 t12 t13t21 t22 t230 0 1 37775� 26664 xy1 37775where the 3�3 
oeÆ
ient matrix is a 
omposite form of the transformation fun
tionsfor translation, rotation, isotropi
 s
aling and shear.
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