G-)__?J?%Q \j(
%"

M.Tech. (Computer Science) Dissertation Series

Parallel Architecture and Algorithms
for Fast Detection of
Basis Polygons

A dissertation submitted in partial fulfilment of the
requirements for the M. Tech. (Computer Science)
degree of the Indian Statistical Institute, Calcutta.

By
Arijit Laha
\ 2?7 0
Under the supervision of ’i Tl A

Prof. Bhabani Prasad Sinha *.

INDIAN STATISTICAL INSTITUTE
203, Barrackpore Trunk Road
Calcutta - 700 035

July 1997

Indian Statistical Institute

203, B.T. Road
Calcutta- 700 035

Certificate of approval

Thisisto certify that the thesis titled, Parallel Architectureand Algerithms
for Fast Detection of Basis Polygons submitted by Arijit Lahatowards
partial fulfillment of the requirements for the degree of M. Tech. in
Computer Science at the Indian Statistical Institute, Calcutta, embodies
the work done under our supervision.

Bhabani P. Sinha

Professor and Head

Advanced Computing and Microelectronics Unit
Indian Statistical Institute

Calcutta- 700 035

Abstract

Though a human brain is inherently slower than digital computer, in the computations
involving vision it usually has an edge over the later due toits massive parallelismand ability
to deal with analog data directly. However, with the advent of parallel processing it is
possible to devise algorithms following human reasoning closely. In this dissertation we
choose the problem of polygon detection which is actually a subclass of the general
problem problem of simple geometrical figure recognition. For such problems digital
computer is quite efficient because the description of a scene comprising of geometrical
figures can be represented with simple numerical data. Here we try to devise some efticient
algorithms for parallel processors that follows the sort of reasoning a human being makes
when trying to comprehend a visual scene. Here we develop two O(n) algorithms using
an architecture comprising of an n x n array of processors. This makes the cost of
computation O(n?), which 1s optimal.

Acknowledgement

I am deeply grateful to Prof. Bhabani P. Sinha for his guidance, advice and
encouragement in this project, without which this project could not have
been successful. I also thank Prof. Bhargab B. Bhattacharya for providing
constructive criticism that led to more generalized approach to the
problem.

Lastly, I would like to thank all my classmates, especially Mr. Debashish
Sarkar and Mr. Manoj Baruah who helped me to remain sane during two
maddening years of this M. Tech. course.

Calcutta,
July, 1997. (Anjit Laha)

Contents

1. Introduction /
2. Problem specification 3
3. A closer look at the problem 5
4. Algonthms &
4.1. About the data structures &
4.2. About the architecture 9
4.3. Procedures 9
4.4. Algorithm 1 //
4.4.1. Algonthm //
4.4.2. An example /4
4.4.3. Analysis /8
4.5. Algonthm 2 20
4.5.1. New hurdles towards generalization and their solution 20
4.5.2. An example 23
4.5.3. Algorithm 26
4.5.4. Analysis 36
S. About further improvement 37
6. Discussions on usefulness 39

Appendix 40

Chapter 1

Introduction

If we put aside the issue of actual mechanism, froma generalized viewpoint the human brain and
the digital computer both are in the business of computation (in fact, this supposition forms the
basis of the study of artificial intelligence). Hence, at the heart of every job performed by both
systems there are some algorithms.

However, as we try to examine and compare two systems more closely, numerous differences
and almost complementary naturein terms of handling thetype ofjobs efficiently becomes evident.
The human brain is an analog device, capable of interacting with the environment by means of
sensory organs. These sensory organs pick up analog stimuli from the environment and sends
appropriate electrochemical signal to the central nervous system (brain and spinal chord) through
the network of neurons making up the nervous system. The central nervous system (whichis again
an aggregation of billions of neurons) analyzes the received signal, performs necessary
computations and produces appropriate response. All these steps are performed using analog
electrochemical signals.

On the other hand, a digital computer is a "number cruncher”, whatever computation 1t does,
it does with numbers, When it works with some analog signal, before the actual computation starts
the analog signals must be transformed into some numerical representation.

Owing to the distinction mentioned above a digital computer is orders of magnitude faster than
human brain when it comes to numerical computation. However, when it comes to a "pattern
matching” problem, especially those involving natural stimuli that can be captured by human
sensory organ, human brain beats digital computer in most of the cases quite comfortably. To
emphasize the point let us inspect the problem of vision. Among all the sensory inputs a human
 being receives vision is the richest and most important. Usually vision comprises 60% of the
sensory input a person receives. The field of study "computer vision (CV)" deals with the problem
of perception, memorizing and comprehension of visual scenes by digital computers. Any CV
algorithm that comes nominally close to the human ability is bound to perform millions of
transformation operations, which when implemented with the fastest available sequential digital
computer today, will require several seconds, if not minutes to process a single scene. But though
human brain works with its basic building block neurons which are a few orders of magnitude
slower than electronic hardware, the job is done within a few milliseconds (& neuron need about
2 milliseconds to generate a response, but the perception and interpretation of a time-varying
complex scene takes between 70 to 200 milliseconds). For an illustration of the point , consider
the problem of recognizing a person whose face from frontal direction is known to a viewer and
an image of the same frontal view is stored in a computer running a face recognition algorithm.

1T t ! -
SRR
; ! 2 R 3 AVIM
o | Y I ? !l |
l L .—)] -
o« -{

. .- 3
Con =91

Now a side view of the person is presented to the viewer as well as the computer. Usually the
human viewer would come up with the correct identification within a few milliseconds, but for the

computer it is a formidable task with considerable possibility of fallure

The above observation gives us a sense of a paradox unless we remember that human brain
employs incredibly massive parallelism. Each neuron is a processing unit and there are billions of
them working together in a cohesive and unified fashion whose precise mechanism is still a great
(perhaps the Greatest!) mystery. With the advent of parallel architecture we can enhance the
performance of a digital computer greatly over that of a mere sequential machine, but even that
can not beat human brain in the sort of problems as described above.

There is also another snag. In a digital computer data are saved in memory locations and
retrieved by addressing the location. However, in human brain information is stored 1n form of
neural pathway , i.e. a collection of neurons connected by synaptic connections. A large collection
of such neural pathways forms a particular memory (say, of some object, some event etc.). The
stored information is retrieved using retrieval cue. The better the cue is the faster 1S the retrieval
(this resolves the paradox that the bigger the knowledge-base of a digital computer the slower
1s1ts performance while for human brain greater knowledge-base means swifter performance.) The
only thing in the realm of digital computer technology that can come nominally close to such
mechanism is "content-addressable memory”.

Nevertheless, there is atleast one case of visual scene recognition where the digital computer
works faster than human brain. This is when the scene contains geometrical figures and nothing
else. Upto amoderate level of complexity of the figures human brain works well. but as complexity
of the figures increases digital computer beats human brain hands down This is so due to the fact
that when low-level image processing is over, the scene can be represented by simple numerical

data.

Here, in this dissertation we shall try to develop some parallel algonthms to detect some simple
geometrical figures. In doing so we shall try to follow the sort of reasoning a human being seems
to follow, i.e., try to combine the best of two worlds. To illustrate the potnt, think of a child who
Can recognize a polygon drawn on a paper. Give him a paper with several polygons drawn on it
and tell him to show the polygons. He will almost invariably put his finger at the vertex of a polygon
and trace around the boundary of the polygon,, then do the same for another polygon and so on.

We specifically go for the problem of detection of the basis polygons formed by a set of straight-
lines in a two-dimensional plane whose endpoint co-ordinates are supplied as input data. We use
MIMD (Multiple Instruction Multi pleData) SM (Shared Memory) parallel processing architechture.
A small part of the shared memory is content-addressable memory.

Our goal is to develop some efficient algortthms for solving the problem and study the maximum
possible speed-up under the afore-described architecture and the bottlenecks arising in the attempt

for further speed-up.

-2

Chapter 2

Problem specification

 Problem: Given n straight lines in a two-dimensional plane in terms of their endpoints, detect
all the basis polygons formed by them.

Specification: Since a set of straight-lines can in general produce a lot of varied situations, before
proceeding further, we must state clearly what we consider as a polygon. Here we formalize two
specifications. The first one somewhat restricts the randomness of the input but allows the
development of a very easy-to-understand and elegant algorithm. The second one demands no
restriction on the input data but the algorithm developed to deal this case is a bit involved.

The specifications are given below.

(1) The polygons are simple (contains no nested structure), has no degenerate part (no line has
an endpoint inside a polygon. In addition, polygons are convex (this condition is not strictly
necessary, however this makes the algorithm simpter).

(2) The polygons may have internal structures, degenerate portions and may be non-convex.
Analysis: Givenn straight lines in a two-dimensional plane we can make following observations.

(a) An intersection point involves at least two straight lines. Thus nunber of maximum possible
intersection points is "C,=n(n - 1)/2 .

(b) Computing the maximum nunber of basis polygons goes as follows,

We consider an ensemble of straight lines initially empty, in each step we add a new straight line
to the ensemble and compute the maximum number of new basis polygons that may be created
due to nclusion of the new line.

As it is evident in i-th step the i-th line is added to an ensemble of (i - 1) lines, and the new line
canintersect at most (i - 1) already existing lines. Now, for creating a polygon a line must intersect
atleast two other lines. For (i - 1) already existing lines the i-th line can find at most (i - 2) such
line pairs. Therefore, the inclusion of i-th line to the ensemble can increase the number of basis
polygons by at most (i -2). Thus, by counting the number of new basis polygons generated until
n-th straight line is added to the ensemble, we have maximum number of polygons that can be
created by n straight lines is given by,

1+2+3+. +i+. .. +(n-2)=(n-1)(n-2)2="0C,

Again, a polygon may have at most n vertices (i.e. each of the n sraight lines is one side of the
polygon).

Thus, the optimal cost of detecting O(n?) polygons each having O(n) vertices is ¢(n) = O(n?) .

Chapter 3

A closer look at the problem

Before we proceed further with the development of the algorithms, we have shall describe here
the strategy employed and various conventions used in the later part of the discussion. We also
shall try to develop a deeper understanding of the problem.

Strategy: Here we recall the child in chapter (1) showing the polygons drawn on a paper. He puts
his finger at a vertex of a polygon, traces its boundary with his finger until his finger points to the
vertex from which he started. The strategy employed in the following algorithms 1s precisely the
same as that used by the child. |

Now we state a few observations .

(1) Each vertex { except a degenerate turning point) of a polygon is an intersection point of
atleast two lines (Fig.1).

(2) Each polygon can be described by a list of vertices, the first in the list being the same as
the last (Fig.1) .

(3) Any two consecutive vertices in the list are joined by a single line and there are no other
intersection point between these two, i.e. the consecutive vertices are closest neighbors on the line
joining them along the direction of traversal of the polygon.

C(x,,y,)

A(x,.y,) B(x,,y,)

b polygon: abcdedfa ©

degenerate portion: ded
Fig. 1 Fig. 2

To traverse each polygon systematically we have to define a sense of direction on the 2-D plane
and also impose some sense of ordering over the 2-D points.

The points are described by their (x,y) co-ordinates. We define a point P (x , y) 1s in left of
another point P(x,, y,) if either x <x, or x, =x, and y,<y, . We express thisas P. <P, . The sense
of rightness is expressed accordmgly However to allow some amount of approximation in the
computation, we define the equality of two points as the difference of their x-value and/or y-value
being less than |2|.

A line A(x,, y,)B(x,, y,) has a point C(x,, y,) at its left-hand side (upper half-plane) (Fig.2)1f
the vector cross-product of the vectors AB and AC is positive i.e. (x,- x)Y, -¥,) - (¥,- ¥,)%, -
X,) 1s greater than zero.

We also use the concept of vector dot product to compute the angle { between two lines. The
angle between two lines AB and AC is computed as AB ¢ AC / |ABHAC|

Now we are in a position to discuss the strategy of the traversal over a polygon in more concrete
terms. Consider Fig. 3. There we have five lines forming four basis polygons. The point a 1s the
intersection of lines 1 and 2. We start from a along line 1, i.e, ais the first vertex in the vertex list.
We make a convention of looking rightwards from the first vertex along the starting line (here line
1) to find the second vertex, i.e., we pick up the closest right neighbor of a on line 1 as second
vertex, in this case b. Here b is the intersection of three lines 1,3 and 4. To continue the traversal
of the basis polygon further we have to choose one of the lines between 3 and 4 to traverse along.
However for any one choice of line there are two possibility for next vertex, namely d and f'1f we
chooseline 3, cand e if we chooseline 4. Thisis where we have to adopt some conventions in order
to facilitate an unambiguous and systematic method of choosing the next line and next vertex to
be covered by the traversal.

First, we adopt a convention called "move-left strategy", which dictates that while choosing
among two closest neighbors on the line to turn into, choose the neighbor on the left-hand side
of the current line. Thus to choose between d and fon line 3 we compute the vector cross-product
of ab and ad and choose d if the result is positive, otherwise we choose f. If there are more than
one lines to turn into, choose the closest neighbor on each lines conforming with move-ieft
strategy. In our case we choose d on line 3 and c on line 4.

Now we know what will be the next vertex if the traversal chooses a particular hne. We choose
among all possible next lines invoking a strategy "move-leftmost". This chooses among all
prospective next lines the one that makes smallest angle with the current line on turning into. Thus
here the line 3 is chosen because the angle abd is less than angle abc.

Thus the traversal reaches d by line 3. The point d is the intersection point of lines 3 and 1. There
is only one line at d to turn into. So we invoke move-left strategy to choose between ¢ and a (on
line 1). Point a is chosen, which is the starting vertex. So the traversal terminates producing the
vertex list < abda >. |

o (4 o

Similarly, starting from d along line 3 we detect polygon < dbcd >, starting from b along line
3 we detect polygon < bfgb > and starting from b along line 4 we detect polygon < befb >.

The procedure described above is adequate to deal with all the cases arising out of specification
(1). The modification required for dealing with cases anising for specification (2) will be descnbed

before we develop the algorithm for it.

Chapter 4

Algorithms

4.1

About the data structures:
Following data structures are used in the algorithms.

(1) Point: (int x, int y) // the structure of integer co-ordinate of a pomnt.
(2) fPoint: (float x, float y) // the structure of floating point co-ordinate of a point.
(3) Line:(Point leftend, Point rightend) // the structure containing the description of a line

(4) Neighb:(Point leftN, Point rightN) // the structure containing neighborhood
information of a point on a line.

(4) Line lines[n] // an array of length n of structure Line. lines| i] contains the i-th input line.
(5) fPoint ipoints[n}{n] /annxn matrix of structure fPoints in shared memory and is content-
addressable memory (CAM) which can be searched one row at a time. ipoints[i][j] contains

the intersection point of i-th line and j-th line.

(6) Neighb inb[n]{n] //annx nmatnx of structure Neighb in the shared memory. inb[1]{] } contains
the closest neighbors of the intersection point of i-th line and j-th line (the point ipoints[1]{) 1)
on i-th line.

(7) fPoint a[n][n-1]// an nx n-1 matrix of structure fPoints
(8) int b[n][n-1] // an n x n-1 matrix of integers

(9) int llist // a list of integers

(10) Point vlist // a list of structure Point

Note: Following operations can be performed on both the lists.
(a) First(): retumns the first element of the list.

(b) Last(): returns the last element of the list.

(c) Next(): returns the element next to the one last accessed.

8

(d) Empty(): returns TRUE if the list is empty, otherwise returns FALSE.
(e) Islast(): returns TRUE if the last access was to the last element of the list, otherwise returns FALSE.

(d) Insert(): inserts an element at the head of the list (new element becomes the header).
(e) Append(): appends an element at the end of the list.

(f) InsertList(): inserts a list at the beginning of another list

(g) AppendList(): appends one list at the end of another list.

4.2
About the archilecture:
The architecture used employs n* processors organized as an n x n array. The processors are
identified by their array indices (P, is the processor at i-th row and j-th column). All the processors
can address a shared memory which includes a block of CAM. The shared memory is accessible in

CREW fashion.

4.3

Procedures:
Now we describe some functions that will be used in our algorithms.

(1) fPoint Intersection(int i, int j) // computes the intersection point of i-th and j-th lines(the 1-th and
j-th element of input array lines []) and returns the floating point co-ordinates of the intersection point.
If the lines are non-intersecting it returns an invalid value.

(2) Sort(int i) // this is a standard O(n) parallel sorting procedure employing n processors to sort n
elements. Here the elements of ipoints| i] are sorted by the processors of i-th row in increasing order
of rightwardness. The sorted list output in the array a[i], while the b 1] j] contains the column no.
ofa[1][j] in ipoints[1]. |

(3) Compute neighbors(int i) // this procedure is executed by the processors P, . For each point

a[1][j] it computes the left neighbor of the point in row a[1] from columns preceding j-th column
such that the point chosen is closest to a[i][j] but not equal. For a[1][1] if the point is not equal to
the left endpoint of lines[i], the later is chosen as the left neighbor, otherwise the left neighbor is set
INVALID (this is the case when the left endpoint is also an intersection point). Similarly, the night
neighbor of a[1][j] is one from a{ i] ina column succeeding j-th column, closesttoa[1]{ 1 J and different
from it. For the rightmost point in a i], if it is different from the right endpoint of lines| 1] then the
later is chosen as the right neighbor otherwise the right neighbor is set INVALID (right endpoint 1s
also an intersection point). The neighborhood information of a[1][)] 1s stored atinb[1 }J[b[1]1[}])
The procedure takes O(n) time.

(4) SearchCAM(int i, fPoint P) // this function searches the i-th row of ipoints for the point P, returns
 thelist llist containing the no. of the columns containing P in increasing order. This is an O(1) operation.

) // this function computes the vector cross-product of

(5) int Isleft(fPoint A, fPoint B, fPont C
f the result is positive, returns 0 (FALSE) otherwise.

vectors AB and AC, returns 1 (TRUE) |

(6) int Find_Imost(tPoint A, fPoint B, fPoint C, tPoint D) // this function computes the angles
~ABC and ZABD, returns 1 if ZABC < LZABD, returns 2 otherwise.

1O

4.4

Algorithm 1
4.4.1

Algorithm:
Now we are in a position to write down the first algorithm.

Algorithm 1:

Each processor has the following local variables,
int 1 on, 1 with
fPoint position

Input: An array of structure Line of length n lines[n].
Output: If a processor succeeds to detect a polygon, it outputs a
list of vertices(points) vlist.

Step 1: Initialization.
for i, jJ = 1 to n all processors P, do in parallel
l on « i
1 with «
ipoints{l on])[1 with] « INVALID
inb(l on](1l with] « INVALID

Step 2: Computation of intersection points.

for i, j = 1 to n and i # j all processors P, do in
parallel

position « Intersection(lines{ i], lines{ j })
ipoints{1l on]([l with] <« position

Step 3: Sorting the intersection points on a line.

for i = 1 to n all processors in i-th row do in parallel
Sort (i)

Step 4: Computing the neighbors, only the diagonal processors
P. are at work.

for i = 1 to n all processors P. do 1in parallel
Compute neighbors (i)

Step 5: Detecting the polygons.

for i, j =1 ton and i# j all processors P, do in parallel
Detect polygon()

11

The procedure Detect polygon() is the heart of the whole algorithm
and given below.

Procedure Detect polygon()
{
if(position = INVALID } // checkpoint (1)
abort // no intersection point to start with
llist « SearchCAM(1l on, position)
if (First(llist) # 1 with) // checkpoint (2)
abort // avoid redundant computation
fPoint Startvertex « position
fPoint Current v ¢ Startvertex
Neighb nb « inb{l on](l_with]
fPoint Next v « rightN(nb) // choose the right neighbor
// of Startvertx as the next v

fPoints pNext v « Next v
int Current 1 « 1 on

while(Next v # Startvertex)
{
Append(vlist, Current v)
llist « SearchCAM(Current_l, Next v)

if(Empty(llist)) // checkpoint (3)
abort // the Next v is an endpolint of
a line

int pNext 1 « First(llist)
int notFound <« FALSE
while(notFound = FALSE)
[,
nb ¢« inb(pNext l]([curr_1]
if(leftN(nb) # INVALID)
{
if(Isleft(Current v, Next v, leftN(nb))
pNext v « leftN(nb)
break // break from while loop
else
if(rightN(nb) # INVALID)
pNextv « rightN({nb)
break // break from while loop

else

{
if(rightN(nb) # INVALID)
if(Isleft(Current v, Next v, rightN(nb))
pNext v <« rightN(nb)
break // break from while loop

12

1£¢ Islast(llist))
notFound <« TRUE

else
pNext 1 <« Next(llist)

}

// end of while loop. If the flag notFound is still FALSE then we
have found one possible left move from Next v. However, 1f Next v 1s
an intersection point of more than two lines then there may be other
possible left moves. We have to employ move left-most strateqy to resolve
the conflict.

if(Islast(llist))
notFound < TRUE

int ppNext 1 « Next(llist)

while(notFound = FALSE)
{
nb <« inb[ppNext 1l][Current 1]
if (leftN(nb) # INVALID)

{
if(Isleft(Current v, Next v, leftN(nb))

{
if (Find lmost (Current_v, Next v, leftN(nb),pNext v)=1)
Next v « leftN(nb)
pNext 1« ppNext 1
}

else
{
if{ rightN{nb) # INVALID)
if(Finddlmost(Current_v,Next_v,rightN(nb),pNext_v)=1)
Next v < rightN(nb}
pNext 1 <« ppNext 1
}

else
{
if(rightN{(nb)# INVALID)
if(Find_lmost(Current_v,Next_v,rightN(nb),pNext_v)=1)
Next v « rightN(nb)
pNext 1 <« ppNext 1
}
if(Islast(llist))
notFound < TRUE
else
ppNext 1 « Next(llist)

}

13

// end of second while loop. At this stage if a legitimate

left move from Next v exists then the vertex is pNext v and the
next line to turn into is pNext 1. Otherwise we have Next v =

pNext_v.

// checkpoint (4)
// no possible left move,
failure to detect polygon

if{ Next v = pNext v)
abort

else

{
Current v « Next v

Next v & pNext Vv
if(Next v = rightN(inb[pNext 1](Curxr_1]))

if(position < Next v) // checkpoint (5)
// avoid redundant

abort
computation

Curr 1 <« pNext 1l

}
}

// the main while loop ends. Now the Next_v 1s same as Startvertex,

i.e., the traversal of the polygon is complete. The list of vertex vlist

contains all the vertices of the polygon traversed in the order of
traversal. We only need to append Next_v to vlist to close the traversal.

Append(vlist, Current_v)
Append(vlist, Next v)

}

// end of procedure Detect_polygon.

4.4.2

An example:

To understand the working of the algorithm let us work out with a simple example (Fig. 4).

14

Fig. 4 has 4 lines, constituting two basis polygons. Let us now observe the performance of the
algorithm on this figure. Table 1 is the input array lines

(250, 300) (300, 300)
(239, 239)

(10, 100)

(78, 78)
N Jess s
(300, 39)

(10,39)
(39, 39)
17°(10, 10) 31(200, 10) 2 (300, 10)
Fig. 4

lines:
left endpoilnt right endpoint
1. (10, 10) (300, 300)
2. (10, 100) (300, 10)
3. (200, 10) (250, 300)
4. (10, 39) (300, 39)

Table 1

15

After the completion of step 2 (O(1) time) the matrix ipoints contains the intersection point
information. Table 2 below shows the ipoints.

ipoints:

1.
1. INVALID (239, 239) —
2. INVALID (205, (205, 39)

3. (239, 239)| (205, 39) | INVALID (205,39)

— —
4-

Table 2

(205, 39) INVALID

After the sorting in step 3 is over the matrices a and b contains the following data,

(239, 239)

(205, (239, 239)

(205,

Table 3

In step 4 the procedure Compute_neighbors uses the matrices a and b to produce the
neighborhood information in the matrix inb[}[]. Thisis an O(n) operation. The result of step 4 for
the given example is shown in the following table.

16

1. 2l 3- 4.

(39, 39) LN: (78,78) l IN: (10, 10)

INVALID LN:
INVALID RN: (239, 239)| RN: (300, 300) RN: (78, 78) ‘
LN: INVALID LN: (78, 78) LN: (78, 78}
RN: INVALID RN: (300, 10) RN: (300, 10)
LN: (205, 39) |LN: (200, 10) LN: INVALID LN: (200, 10)1
: (250, 300)|RN: (239, 239) 1 RN: INVALID RN: (239, 239)
— - - R
ILN: (10, 39) ILN: (3%, 39) | LN: {39, 39) LN: INVALID
RN: (205, 39) |RN: (300,39) RN: (300, 39) RN: INVALID

_ N R _

:+ left nelghbor
: right neighbor

Table 4
Now all processors P (i # j) can invoke the procedure Detect _polygon() in step 3.
Let us review what each processor comes up with.

P, : Starts from point (78, 78) along line 1, goes to right neighbor (239, 239), turns left to (250,
300) along line 3. But (250, 300) is an endpoint of line 3 and no intersection occurs at it. So no
possible left move is possible from there on. The procedure terminates without success (at
checkpoint (3) in Detect_polygon).

P, : Starts from (239, 239) along line 1, goes to right neighbor (300, 300), which is an endpoint
of line 1 and no intersection. The procedure terminates without success (checkpoint (3)).

P, : Suffers same fate as P ,.

P, : Starts from (78, 78) along line 2, next is (205, 39). Therefrom it turns left to (239, 239)
along line 3. However, the point chosen is the right neighbor of (205, 39), which is the intersection
point ofline 2, 3 and 4. Hence, the processors P, and P, are entitled to start from (205, 39) along
line 3 towards (239, 239) and they will follow precisely the same path as the one to be taken by
P, afterwards. Thus we can see that if in a particular traversal, there are more than one (1.e., at
the start) instances of choosing the next vertex that is a right neighbor of an intersection point,
then there will be more than one processors traversing the same polygon (provided the traversal
closes), with different starting points. This amounts to redundant computation. To avoid this we
invoke a convention that, if there are several processors traversing the same polygon, only the one
with rightmost "position" value among them s allowed to complete the traversal. Now, position

17

of P, (78, 78) is left to (205, 39). Hence, P,, aborts computation (marked as checkpoint (5) 1n
Detect_polygon).

P, : Starts from (205, 39) along 2 towards (300, 10) and terminates (checkpomnt (3))

P :The searchCAM(2, (205, 39)) produces the list for which First(llist) = 3. Hence the
process terminates (checkpoint (2)). Otherwise it would have followed the same path as P,

P, Suffers the same fate as Pu.

P_,: Starts from (205, 39) along line 3 towards (239, 239) chooses successive two left move
at (239, 239)and (78, 78), reaches (205, 39) closing thetraversal. Henceit terminates with success,
the result being the vertex list of the polygon < (205, 39), (239, 239), (78, 78), (205, 39) >

P.,: Suffers the same fate as P, .

P, : Starts from (39, 39) along line 4 towards (205, 39). Here it has two option of left move,
t0 (239, 239) along line 3 and to (78, 78) along 2. According to move leftmost strategy it invokes
the procedure Find_Imost() to makea proper choice and chooses (78, 78). Therefromthe traversal
turns left to (39, 39) closing it. Hence the process terminates with success, the result < (39, 39),
(205, 39), (78, 78), (39, 39) > .

P,,: Suffers the same fate as P,
P,.: Suffers the same fate as P,,

As evident from above discussion all redundant computation is avoided and only the polygons
(as per specification (1)) are detected successfully by as many processor. Each of these processors
need as many no. of steps as the no of vertices in the polygon detected by it, which can be at most
n for n straight lines. Thus the procedure Detect ~polygon() takes atleast O(n) time.

There are two more checkpoints in Detect_polygon(), (1) and (4). (1) deals with the case when
the lines | onand I_with are non-intersecting, i e.. there is no vertex to start from. (4) deals with
the case when there is no possible left move, i.e., the intersection point is also the endpoint of some
line in the right half-plane of the current line.

4.4.3
Analysis:

Now it is time for an estimation of the space and time complexities of the algorithm developed.
The largest data structures used in the algorithms are the n x n matrices ipoints, inb, aand b. They
occupy O(n?) space and shared by all the processors.

The other data structures used (apart from local variables) are llist, vlist, and processor queue,
all takes O(n) space in worst case. However, since each processor maintains all these data
structures of its own, the total space consumed by them is O(n’).

18

Hence, the worst case space complexity is O(n’).
Let us turn our attention to the time complexity.
Step (1) (initialization) and step (2) (computation of intersection points) takes O(1) time.

Step (3) (sorting) involves sorting of parallel sorting of n elements using n processors. There
are several O(n) algorithms for it(one described in appendix). n set of n elements are sorted parallely
by n set of n processor. So it is an O(n) step.

Step (4) (computing neighborhood information) uses n processors in parallel, each processor
computing neighborhood information from a sorted array of O(n) elements. This requires O(n)
time{ a C++ implementation of the routine is given in the appendix).

In step (6) n(n-1) processors execute the procedure Detect_polygon in parallel.

If the procedure succeeds to detect a polygon with k sides it must traverse k vertices in k steps.
The largest number of sides that a polygon can have is the same as the no. of straight lines present
i.e., n. To detect a polygon with n sides the procedure must traverse n vertices. Hence the minimum
time required is O(n). Let us see whether the maximum time required is also the same.

When the traversal reaches a vertex that is intersection of only two vertices, it finds the next
vertex in 1 step. However, if the vertex is an intersection of more than two lines, say 1 lines, then
the process must choose one of (i-1) lines (the vertex is reached by along one of by the traversal,
hence the next line chosen is one of the rest) as the next line. This takes (i-1) steps. However, in
this process the line corresponding to leftmost move is chosen. Since the same strategy of leftmost
move will be followed subsequently (the polygon is convex) the (1-2) lines rejected at this vertex
can never be sides of the polygon. Thus the maximum possible number of lines that can be sides
of the polygon is reduced by (i-2) precisely the no. of extra step needed at the vertex to choose
the next line. Thus we can conclude that the worst-case run time of the procedure 1s O(n).

Therefore, the time complexity of algorithm (1) is O(n).

19

4.5
Algorithm 2

4.5.1

New hurdles towards generalization and their solution:

Now with full understanding of Algorithm I at our disposal we can venture into the
development of the more generalized algorithm to take care of the general situation as allowed by
specification (2).

First of all let us list the new situations we need to deal with.

(/) Non-convexity of the polygons (Fig. 5).

(ii) Lines with endpoints inside polygons (degenerate structures) (Fig. 6).

(iif) Nested polygons (Fig. 7).

(iv) Any combination of above three situations

To deal with non-convexity, we observe that our left move strategy in its original form ts not
adequate. At some point of the traversal of a non-convex polygon there will be no possible left
move (as at point ¢ of Fig. 5). Hence to continue the traversal we must allow the traversal to
seek a right move when no left move is possible.

To confront degeneracy we have to allow the traversal to turn around from an endpoint. As
shownin Fig.6, the polygon < abcdcecfcbgha > has a degenerate portion < bedcecfch >. To allow
the traversal to capture the degenerate portion it is imperative to modify our strategy to allow turn

around in case neither a left move nor a right move is possible.

In Fig. 7 the polygon < cdec > is nested within < abcfa > and we propose to detect it as one
polygon < abcdecfa > . As it turns out, the above-mentioned facilities are enough for the job.

We leave the job of detecting the degenerated part or the nested part from the vertex list, to some
postprocessing algorithm, which should be easy enoughto develop with the aid of the information
provided by this algorithm about thekind of move performed at each vertexto reachthe next vertex

So we can summarize the new strategy of choosing next vertex of a traversal. The options are
listed by priority. A particular move is executed after attempt to execute all moves preceding it

has failed.

(1) Left move

20

Fig. 5

Fig. 7

21

(2) Continue along the same line.
(3) Right move.
(4) Tum around.

To understand the situation leading to option (2) we look at Fig. 8.

Fig. 8

InFig. 8 the polygonis <abcda >. However at vertex b there is no possible left move. Totraverse
the polygon we must allow the algorithm to choose ¢ on the same line as next vertex.

Even with all the modifications discussed so far, there still remains some problems. Consider
Fig. 9 below.

Fig. 9

If we allow all the traversals to continue, then the traversals starting from points a (towards
b)and b (towards c) come up with the correct lists of vertices < abcbdea > and < bcbdeab >. But
the traversal starting from b towards d comes up with < bdeab >. The previous convention of
allowing the traversal with rightmost starting point 1s of no help, since it would produce < bdeab
>. So we have to adopt a new approach.

22

Our choice is dictated by demand for the correctness, irredundancy and efficiency of
computation. We can use the parallelism of the architecture to achieve this end. Since our original
strategy demands that each processor positioned at intersection points starts a traversal towards
its right neighbor, whenever in a process hasto choose a right neighbor, it can be sure that another
process has started computing from that point and since all processes use same strategy 1o choose
next vertex. the later process is traversing the same path as the one that the former process would
have followed if it continued further. Thus, if several processorsare positioned in a same traversal,
each of them computes a part of the traversal before encountering a vertex from which it has to
choose a right neighbor as the next vertex. If the processors stop further traversal then, we have
a chain of processors each having partial vertex list of the polygon. If these lists can be somehow
merged into asingle list then we can have the vertex list of the whole polygon. For example consider
Fig 9. There are three processors traversing the polygon abcbdea. The processor starting at a
towards b computes < ab >, processor starting at b towards ¢ computes < bcb > and processor
starting at b towards d computes < bdea >. If we could somehow merge these three vertex lists

we can obtain the complete vertex list of the polygon.

However, to do this we have to this first we have to set up some convention which dictates
unambiguously which one of the processors should be entrusted with the compilation of the final
vertex list and secondly we have to devise a mechanism by which the chosen one can know which

lists are to be merged.

The first problem can be solved by establishing the convention that only the rightmost (leftmost
will do as well) processor in the processor chain will compile the complete vertex hst.

Addressing the second problem is tricky one. We define a data structure Processor_info{ int,
int, fPoint} and each processor maintains a data structure Identity{ !_on,1_with, position } of this
type. Each processor also maintains a queue of Processor_info. Processors can read (but not
delete) from the front of their own queue and write at the rear of any other processor's queue.

As soon as a processor chooses aright move it abstains from further traversal since the processor
positioned at the next vertex is traversing the next part. Instead, it inserts its identity to the queue
of the next vertex. Then it reads its own queue and inserts the information read to the queue of
the next vertex, until it gets its own identity back from the queue. Since identity of each processors
in the traversal passes through the queue, it can compare the positions of all the processors in the
chain with its own position. If all processor positions in the chain are in left to its own position

it knows that it is responsible for compiling the complete list. The processors whose vertex lists
are to be used ase already in proper order in the queue. So all it has to do is to append the lists of

the processors in the queue to its own list in the reverse order of their appearance in the queue.

4.5.2

An example:

23

Fig. 10

In Fig. 10 there are 4 lines constituting the polygon ijgjkli. Three processors P ,, P, and P,
forms the chain of processors detecting the polygon. Let us examine the vertex lists computed by
the processors and their queues.

P, vertex list: <i>
queue: (1, 4,)
(4, 1,))

(1, 2,1)

P, : vertex list: <jg>
queue: (1, 2, 1)
(1, 4,))

(4, 1,))

P, : vertex list <)kl >
queue: (4, 1, j)
(1,2, 1)
(l‘l 41 j)

24

In the example the point j is the rightmost vertex and starting vertex ofboth P ,and P, . In such
case we resolve by choosing the processor having largest value of 1 on. This critenon allows P,
to produce the complete vertex list. As per entries of its queue it will take the vertex lists < jg >,
<jkl > and insert before<i > (in the given order) and produce the complete vertex list < jgjklip>.

Though the measures developed above enables us to detect all legitimate polygons, one
unwanted polygon, we call it the outer polygon is also detected. In Fig. 10 the outer polygon 1s
< ileldikbkfkjhjiciai > whose detection involves the processors P.,P,.P,.,P, and P, . However,
the computation of this polygon can be avoided by observing the fact that this polygon incudes
the leftmost intersection point and from this point it traverses along the line with largest gradient
value. The leftmost point can be detected by detecting the leftmost element of the first column of
matrix a[][] after the sorting step is over and the hine of largest gradient value can be detected using
corresponding entry of the matrix b[}[]. Then we can set the ipoints[][] entries in the row
corresponding to the line, with leftmost intersectionto INVALID. In that case the processors those
would have started traversal from the point along the line, can not start, also the other processors

in the chain will report failure.

25

4.5.3

Algorithm 2:

We need a few more data structures in addition to those used in Algorithm 1. They are as
follows,

(1) Vertex_info:(int line_from, int fine to, fPoint vertex,int Status)

// this structure contains informations about a vertex of a polygon. line_from contains the no.
of line along which the vertex is reached, line_to is the no. of the line along which the next vertex
15 to be reached, vertex is the co-ordinates of the vertex, Status contains the information abut the

type of the move made at the vertex (it may have values OK (left move or continuation along the
line}, RTURN (nght move) and TURNA (turn around)).

(2) Processor_info: (int |_on, int | with, fPoint position)
// this structure contains the information about a processor (its position in the processor array
and the co-ordinate of the intersection point to which it correspond {position).

(3) Vertex_info vlist

// a list of structure Vertex_info that will be produced as the vertex list of a polygon detected.
The informations stored in the structures can be used for postprocessing the list. All the operations
on a list as given before algorithm 1 are applicable to vlist, except the operation Append. Here
Append on viist is redefined as

Append(vlist, int a, int b, fPoint v, int flag)

This operation creates a Vertex_info structure withl_from=a, 1 to =b, vertex = v and Status
= flag. Then it 1s appended to the vlist.

(4) Processor _info Queue
// this 1s a queue of the structure Processor info. Each processor maintains its own queue.

Following operations can be performed on the queue.

(1) ReadQ(): each processor can read its own queue using this operation. It returns the element
next to the one last accessed. It does not perform remove the element.

(1) WriteQ(int i, int j, Processor_info info): a processor can insert the structure info at the rear of
the queue of processor P

() RearQ(): a processoruses it to know whether the last ReadQ() operation accessed the element
at the rear of its queue.

An additional procedure is used in this algorithm.

26

Invalidate_outerpolygon(): employs all P. processors to compute the lefimost mntersection
point and the line through the point with largest value of slope, then invalidates all the entries in
the row corresponding to the line having leftmost intersection.

Algonithm 2 is given below.

Algorithm 2:

Each processor has the following local variables,
int 1 on, 1 with

fPoint position

Processor info Identity

Input: An array of structure Line of length n lines(n].
Output: If a processor succeeds to detect a polygon, 1t outputs a
list of vertices(Vertex info) vlist.

Step 1: Initialization.
for 1, jJ = 1 to n all processors P, do in parallel
1 on « 1
1 with « j
ipoeints{l on](1l with] <« INVALID
inb[l on] (1 with] « INVALID
1 on(Identity) <« 1 on
1 with(Identity) « 1 with

Step 2: Computation of intersection points.
for i, j = 1 ton and 1 # jJ all processors P, do in
parallel
position « Intersection(lines[i], lines|[3])
ipoints{l on][l1 with] « position
position{Identity) <« position

Step 3: Sorting the intersection points on a line.
for 1 = 1 to n all processors in i-th row do in parallel
Sort (i)

Step 4: Computing the neighbors, only the diagonal processors
P. are in work.
for 1 = 1 to n all processors P do in paralléi
Compute neighbors (i)
Invalidate outerpolygon()

27

Step 5: Detecting the polygons.
for i, j =1 ton and i# j all processors P do 1n parallel
Detect polygon()

procedure Detect Polygon() (modified)

{
if(position = INVALID) // checkpoint (1) |
abort // no intersection point to start with

int passerOnly <« FALSE;
int makeList « TRUE;

llist « SearchCAM(1l on, position);

if (First(llist) = 1 with) // checkpoint (2}
{ ,

passerOnly <« TRUE;

1 with(Identity) <« First(llist);

position(Identity) <« ipoints[l on][First(llist)];

// the processor does not start traversal, however it acts as a
dumny transit point for the messages coming to its queue and transfer
the messages to the gqueue of the processor that starts the traversal
that it was to start. Its Identity 1is also changed.

}
1f(NOT passeronly)

{
int notFound « FALSE;

int rightMove <« FALSE;
int turnAround <« FALSE;

fPoint start v <« position;
// starting vertex of the polygon to be traversed

fPoint curr v « start v;
// the vertex upto which traversal 1s over now

line no curr_1 « 1 on;
// the line along which traversal will proceed

// from curr v

line _no prev_1 « 0;
// the line leading to current vertex

line_no pnext 1;

28

// prospective next line on the traversal

fPoint next v « rightN(inb{l on]}[1l with});
// the next vertex to be traversed, initialized with
/] the right neighbor of start vertex

if (next v = INVALID)
abort;
// if the starting vertex has no right neighbor
// i.e. start v is the right end point of curr_l

fPoint pnext v <« next v;
// prospective next vertex, initialized with next vertex

do

{
if (turnAround)

{
Append(vlist,prev_1,curr 1l,curr_v,TURNA);
turnAround <« FALSE;

}
else if(rightMove)

{
Append(vlist,prev_1,curr 1l,curr v,RTURN) ;
rightMove <« FALSE;

}

else
Append(vlist,prev 1,curr 1l,curr_v,0K);
// build up vertex list

fPoint right v <« INVALID;
// possible next vertex in case of right move

line _no right 1;
// the line to turn to after right move

llist « SearchCAM(curr_1, next v};

if (Empty(llist)) /] checkpoint (3)
abort; // next v is the leftmost intersection

int 1 « First(llist);
int notFound <« FALSE ;
while(notFound = FALSE)
| {
Neighb nnb « inb[i][curr 1);
// nhearest neighbors of next vertex on the

29

// intersecting line

if (leftN(nnb) # INVALID)

if (Isleft(curr v,next v,leftN(nnb)))

// check whether left neighbor is on the left of

//

/]
/1]
/]

//
//

/]
/1

/1
/]

current line

{
pnext v « leftN(nnb) ;

pnext 1 « i;
rightMove ¢« FALSE;
break;

}

else

{
if (rightN(nnb) # INVALID)

if left neighbor is not on left side of current

line and right neighbour exists then it is on the
left side of current line

{
pnext v « rightN(nnb);

pnext 1 ¢« 1;
rightMove <« FALSE;
break;

}

else

right neighbour does not exist, hence possibility
of a right move is imminent

{
if (right v# INVALID)

there already exists a candidate for possible
right move

{

if (Find lmost(curr_v,next v,right_v,leftN(nnb))=1)

chcose between right v and leftN(nnb) as per
leftmost move strategy

{
right v « leftN(nnb};

right 1 « 1i;

30

}

else
// no previous candidate for right move
{
right v « leftN(nnb);
right 1 « 1i;

}
rightMove <« TRUE;
}
}
}
else
{

if(Isleft(curr v,next_v,rightN(nnb)))

// if there is no left neighbor, and right neighbor
// is on the left of current line

{
pnext v « rightN(nnb);

pnext 1 « 1;
rightMove < FALSE;
break;

}

else

/] left neighbour does not exist, right neighbour 1is not
// in on left of curr 1, hence possibility
// of a right move is imminent

{
if (right v# INVALID)

// there already exists a candidate for possible
/] right move

{
if (Find lmost(curr v,next v,right_v,rughtN(nnb})=1)

// choose between right v and nnb.RN as per ~leftmost
J]/ move' strategy

{
right v « rightN(nnb);
right 1 « i;

31

}

else

{
right v « rightN(nnb);

right 1 « 1;

}
rightMove <« TRUE;

}

}
if(Islast(llist))

notFound ¢« TRUE

else
pNext 1 « Next(llist)

}
J/ end ok while loop to detect first possible left move
if (nbtFound)
// no left move is possible

SN B O
i_@au;__ ifkrightMove)
CEECTU CTE -
L {
her b " // a right move is possible, however first try

y /] to avoid it by continuing straight along

. ')/ curr 1

Neilghb a ¢ inb{curr_l][right_1];
"]/ curr_v is one of the neighbors

it&(leftN(a) # INVALID) AND (rightN(a) # INVALID))

'~ // both neighbors exist, so continuation along the same

"~ // line is possible
1f(curr v = leftN(a))
// next vertex is right a right neighbour, so stop
/] traversal
break;
-}
¢lse
{
pnext v « leftN(a};
pnext 1 « curr_1l;
rightMove <« FALSE;

}

else

32

// next v is an endpoint of curr_l and a right
// move is to be done

pnext v « right v;
pnext 1 « right 1;
}

else

// next v is an endpoint of curr_l and not an
// intersection point, hence turn around
pnext v ¢« curr_v;
pnext 1 « curr_l;
turnAround <« TRUE;

}
}

// at this point the first possible left move or if no left move
is possible then possible continuation or right move or turn around 1s
detected. If a left move is detected and there are several other possible
left moves (intersection of more than two lines), the left most move
is detected in following step.

while(notFound = FALSE)
// finds other prospective next vertices and
// determine true prospective next vertex conforming

// with “leftmost move' strategy

{
i « Next(llist);

Neighb pnnb « inb(i](curr 1l];
if (leftN(pnnb) # INVALID)

{
if (Isleft(curr v,next v,leftN(pnnb)))
{
fPoint opnext v « leftN(pnnb);
int opnext 1 « i;
if(Find lmost(curr_v,next_v,pnext_v,opnext_v) = 2)
{
pnext v« opnext v;
pnext 1 « opnext_l;
}
}
else if(rightN(pnnb) # INVALID)
q .

fPoint opnext v <« rightN(pnnb);

33

int opnext_1l <« 1;
if(Find_lmost(curr_v,next_v,pnext_y,opnext_y) = 2)
{
phext v < opnext _V;
pnext 1 « opnext 1;
}
}
}
else if(Isleft(curr_y,next_y,rightn(pnnb)))
{
fPoint opnext_Vv € rightN (pnnb} ;
int opnext_ 1l « 1; *
1f (Find_lmost(curr_v,next_v,pnext_v,cpnext_v)
{
pnext Vv <« opnext Vv;
pnext 1 <« opnext 1;
}

}
if (Islast(llist))

notFound < TRUE;

2)

}

// end while. If a left move is possible, then the proper left move
is chosen at this point.

curr v <« next v;

next v < pnext_vj

prev 1 <« curr_l;

curr 1 <« pnext 1;

}while(next v # rightN(inb[curr_l][prev_l]));

// traversal of the part of the polygon designated to the processor
is over. Now it has to determine whether it should construct the complete

vertex list.
} // end 1if

if (passeronly)

{

do

« -
If (RearQ())

wait;

Processor info temp ¢« ReadQ();
¢ mritmQ(l_on,First(llist), temp);
i . ywindle(temp # Identity };

| B

else

34

{
WriteQ(curr_1,prev_1,Identity);

if (RearQ())
wait();
Procassor_info temp <« ReadQ();
while(temp # Identity)
{
if(position(temp) > position)
makeList <« FALSE;
if (position(temp) = position AND makeList)
if(1 on(temp) > 1 on)
makeList <« FALSE;
WriteQ(curr_1,prev_1,temp);
temp < ReadQ();
}
if (makeList)
- . Makelist(); // Compiling the complete vertex list
}
} // end Detect polygon

The procedure Detect polygon is fairly complex in detailed form. Let us summanze the essence
of it.

procedure Detect polygon

1 : Determine whether the processor is entitled to start a traversal

1.1 : If the position is INVALID abort.

1.2 : If there are several lines intersecting at the point 'position' and the processor
corresponds to a | with value that is not smallest of the column nos. in ipoints that
contains the value position, restrain from traversing, but act as a passer of the
information passed through the queue (pass the information to the processor that has

start traversing the path same as that to be traversed by it).
2 : Traverse
- 2.1 : Start from the vertex position along |_on towards the right closest neighbor on line
~1_on and make the latter the second vertex.
- 2.2 : Choose next vertex
2.2.1.: Try to turn left, if fail |
2.2.2 : Try to continue along the same line, if fail
2.2.3 ; Try to turn right, if fail
2.2.4 : Try to turn around, if fail
2.2.5 . Abort

'3 Senp travyrsal

- 3.1 : Stapitraversal as soon as the right vertex of the current vertex is chosen as the next

35

4 - Decide whether to compile the complete vertex list
4 1 -Circulate the identities of the processors computing the partial list through the
processor chain by means of the queues.
4.2 ‘Determine the relative position. _
4 2.1 -Determine whether the position is rightmost of the positions of the processors
in the chain, if so,
4 2.2 -If there are several rightmost processor, determine whether it has largest value
of 1 on among them.
4.3 ‘If both the tests (4.2.1) and (4.2.2) results positive, compile the complete vertex list
using the partial vertex lists computed by the processors listed in the queue (in the
reverse order of appearance in the queue).

4.5.4

Analysis:
Algorithm 2 differs from algorithm 1 mainly due to the modifications made in the procedure
Detect polygon. Let us examine whether the modifications causes any change of time complexity.

Since the procedure is allowed to detect degeneracy as well as non-convexity of polygons, it
can traverse same vertex (in case of *degeneracy) more than once, however not more than once
by coming along a particular line. Hence if a vertex is the intersection of i lines constituting a
degenerate part of the polygon, traversing the degenerate part takes O(i) time and this part will
not be traversed again. So degeneracy does not increase the run time beyond O(n).

Since non-convexity is allowed, when we choose one line out of (i-1) at an intersection of 1 lines,
we can not be sure that none of the lines rejected here will never appear in the traversal at a latter
stage. However to reach such a line again a traversal must take atleast one right move, thereby
exhausting the possibility of reappearance of another lineinthetraversal. Also, every reappearance
of a line in the traversal exhausts the possibility of reappearance in the traversal of atleast one other
line. This clearly shows that the run time of the procedure 1s O(n).

The algorithm uses one additional procedure Invalidate outerpolygon, which involves a
parallel procedure of choosing one leftmost element from a set of n elements using n processors.
So this can be accomplished in O(log,n) time. The possible difference of complexity of two
algorithms can arise only due to complexity of the modified Detect plygon procedure. Let us
concentrate on 1t.

So, the time complexity of algorithm (2) is also O(n).

Since we have used n? processors, the cost of the algorithms is c(n) = O(n®).

Therefore, the algorithms are optimal.

36

Chapter §

About further improvement

To investigate the scope of further improvement we shall examine each step of the algorithm
Step (1) and (2) takes O(1) time. So we need not worry about them.

Step (3) takes O(n) time. That is the time required by any known parallel sorting algonthm for
n elements employing n processors. Since in our architecture no spare processor is available to
apply an algorithm using more processors, no further speed-up is possible in this step.

Step (4) involves computing the neighborhood information of the intersection points. One
processor computes the neighborhood information of all (a maximum of (n-1)) intersection points
on a line in O(n) time. However we can employ (n-1) processors parallely for each line each one
computing the neighborhood information of one intersection point. In the best possible case when
all the intersection points on a line are distinct the computation is over in O(1) time, But in worst-
case when all the n lines intersect at the same point, each processor has to search through the whole
sorted list of intersection point. This will again take O(n) time. But one can expect some reasonable
speed-up of the step in average cases by employing the parallelism proposed above.

In step (5) the most important part of the algorithm, detecting the polygons comes into play.
Every off-diagonal processor that has a valid position value, seeks to find a polygon. At the
beginning each of them knows the lines whose intersection point it has caiculated and the
intersection point itself (the position). It can further access its four closest neighbors (but not the
lines intersecting at those points) on the two lines in O(1) time. This is due to distributed nature
of the computation. Though all the information needed to trace a polygon is out there in the shared
memory accessible to each processors, to make use of the information each processor hasto follow
some clue in each step. This leads to spending of O(n) time for detecting a polygon(as discussed
in the previous chapter). To speed-up the procedure we have to make more information accessible
at a time to a processor. That requires more organized representation of the information which
in turn requires more intensive preprocessing, that further adds up to the cost.

The Detect polygon procedure can be written in elegant recursive form, though the time
complexity remains same.

An outline of the recursive version is given below.

37

procedure Detect polygon() (Recursive)
{
Startvertex ¢« position
curr v <« Startvertex
next v « right neighbour of Startvertex

Traverse polygon{(curr v, next v)

Finish processing()

}

procedure Traverse_polygon(curr v,next v)
{
if (stop condition)
return
Append (vlist, curr v)
pnext v <« Next vertex()
curr v <« next v
next v ¢« pnext v
Traverse_ polygon(curr v,next v) . . . Recursive call

}

The stop_condition and the procedures Next vertex() and Finish processing() differs for
algonthm (1) and algorithm (2).

For algonthm (1),

stop_condition : next v = Startvertex

Next_vertex() searches for next vertex to be reached by leftmost move strategy. Ifit fails to find
one, terminates the procedure Detect polygon..

Finish_processing simply appends the curr_v and next_v to vlist to complete the vertex list of
the polygon detected.

For algorithm (2),
stop_condition : the next vertex chosen is a right neighbour.
Next_vertex() searches the next vertex to move to (i) by leftimost move, if fails (i) by
- continuation along the line, if fails (iii) by right move, if fails (iv) by turning around, if fails
terminates the procedure Detect polygon.
Finish_processing() determines whether the processor is the one to compile the complete vertex
list, if s0, compiles the complete vertex list.

38

Chapter 6

Discussions on usefulness

The algorithms can be used in some pattern recognition scheme involving the recognition of a
scene comprised of polygonal figures. Afier the low level image processing for detecting the lines
is over the end points of the lines can be supplied to these algorithms. Then these algornthms can
be utilized for intermediate level processing (teature extraction).

The algorithms developed here can be easily modified to extract information about the nature
of the polygons detected (whether a square OF rectangle or isosceles triangle etc.) and the
adjacency relation among them. Based on these data it is easy to design a grammar with the basis
polygons as primitives (terminals of the grammar) and the description of a scene can be
represented as a sentence in the language generated by the grammar. When trying to recognize
an unknown scene, the system requires to produce a description of the scene In terms of the
primitive polygons and their adjacency information recovered by the algorithm and parse it to see
whether it is a valid sentence of the language.

Such schemes are extremely useful for automated industrial inspection, robot vision etc.

Though the requirement of n* processors for detecting the polygons created by n straight lines
may look like a severe demand on the resource of the system, The architecture used for nlines can
easilybe used for multiples of nlines keeping the run time O(n). Hence, the scheme is entirely within

range of feasibility for fairly large number of lines.

Apart from practical uses, these are the sort of algorithms whose study may provide some clue
about working of human brain.

39

Appendix

The C++ implementation of several procedures used in the algorithms are presented below.
Also are provided the outline of a parallel algorithm for sorting n elements with n procwssors.

The header file containing the definitions of the data structures used and the operations allowed
on them.

#ifndef

OBJ.HPP

#define OBJ.HPP

#include
#include
#include
#include

#ifndef
#define
#endif

#ifndef
#define
#endif

#ifndef
#define
#endif

#define

typedef

<jostream.h>
<stdio.h>
<math.h>
<graphics.h>

NULL O
NULL O

TRUE 1
TRUE 1

FALSE O
FALSE O

SOR(X) X*X

int line no;

struct Point({

int x,y;

Point () ;
Point(int,int);
Point (Point&) ;

Point operator+(Point&);
Point operator-(Point&);
Point operator*(float);
void operator=(Pointé&};
int operator<(Pointk) ;

40

// p<q means p is in left of ¢

int operator>(Pointé&);

int operator==(Point&);

int operator<=(Pointé&);

int operator>=(Pointé&);

float operator (); / /norm operator

int operator% (Pointé&); / /dot product operator

inline int wvalid();

void Setpoint(int,int);

void Shpoint () ;

void Drawpoint(int color) ({ putpixel (x,y,color); }

i

struct fPoint({
float x,y;

fPoint () ;
fPoint (float,float);
fPoint (fPoint&) ;

fPoint operator+(fPointé&);

fPoint operator-(fPointé&);

fPoint operator*(float);

void operator=(fPointé&);

int operator<(fPointé&); //p<qg means p is in left of g
int operator> (fPoint&);

int operator==(fPoint&);

int operator<=(fPoint&);

int operator>=(fPointé&);

float operator™ (); //horm operator
float operator% (fPointé&); //dot product operator

inline int wvalid();

vold Setfpoint(float,float);

void Shpoint();

void Drawpoint(int color) { putpixel(x,y,color); }

o
struct Line{
line no 1;
Point E1l,Er;
Line() {1=0;};
Line(line no,Point,Point);

Line(Line&) ;

void Setline(line no,Point,Point);

41

void Shline();

struct I nb{
fPoint LN,RN;
int start Flag;
int dup Flag;

I nb(}) { start Flag = dup Flag = FALSE; }

I nb(const fPointé&,const fPointé&,int,int);

I nb(I nb&);

int valid();

void Setnb(const fPoint&,const fPointé&,int, int);
void Set start(int F) { start_Flag = F; }

int Check start() { return start_Flag; }

}i

struct V_info{
line no 1 from,1 to;
Point vertex;
int status Flag;

V_ info();
V_info(line no,line no,Point,int);

V info(const V info&);

void Setvert(line no,line no,Point,int);
}i

#endif

42

The rouﬁlne for computing intersection of two lines.
void Find intersection(Line L1,Line L2,fPointé& q)

}/ intersection of two lines L1 and L2 is computed and assigned
// to g (INVALID in case of no intersection

{
float ml,m2,cl,c2;

int delxl,delx2,delyl,dely2;
fPoint p;
fPoint 11,r1,12,r2;

delxl1=L1.Er.x - L1.El.¥;
delyl=Ll.Er.y -~ L1.El.y;
delx2=12.Er.x - L2.El.X;
dely2=L2.Er.y - L2.El.y;

if((delxi*dely2 - delyl*delx2) == 0) return;
// lines are parallel
ll.Setfpoint(float(Ll1.El.x),float(L1.E1.Y}},
rl.Setfpoint(float(Ll1.Er.x),float(L1.Er.vy});
12.Setfpoint(float(L2.El.x),float(L2.E1.y));
r2.Setfpoint(float(L2.Er.x),float(L2.Er.vy));

1f (delx1==0)
J// L1 is vertical
{
m2 = float(dely2) /float(delx2);
c2 = float(L2.El.y) - m2*float(L2.El.X);
p.x = float(Ll.Er.x);
p.y = m2*float(L1.Er.x) + c2;
if((p >= 11) && (p >= 12) && (p <= rl) && (p <= r2))
{
q = Py
return;
}
else
return;

}
else if (delx2==0)
// L2 1is vertical
{
ml = float(delyl) /float(delxl);
¢l = float(L1l.El.y) - mi*float(L1l.El.x);
p.X = float(L2.Er.x);

43

p.y = ml*float(L2.Er.x}) + cCl;

if((p >= 11) && (p >= 12) && {(p <= rl) && (p <= r2))
{

qd = Py

return;

}

else
return;

}

// none 1is vertical

ml = float(delyl)/float(delxl);
cl float(L1.El.y) - mli*float(Ll.El.X);
m2 = float(dely2) /float(delx2);
c2 = float(L2.El.y) - m2*float(L2.El.Xx};
p.Xx = (¢2-cl)/(ml-m2);
p.Yy = nml*{c2-cl)/{(ml-m2) + cl;
if((p >= 11) && (p >= 12) && (p <= rl) && (p <= r2))

{

9 = Ps

return;

}
else

return;

H

} // end find intersection

Routine to compute whether the point p is in the left half-plane of
the line joining ¢ pt and n pt, returns TRUE if so, FALSE otherwise.

int Check left(fPoint c_pt,fPoint n_pt, fPoint p)
{

fPoint a

i

n pt - c_pt; // checks whether p is on 1hs of line c pt
// to n pt |
fPoint b = p - ¢ pt;
if((a.x*b.y - b.x*a.y) > 0.0)
return TRUE;
else
return FALSE;

The following routine checks which one of the points pl and p2
corresponds to more leftward move from point n _pt with respect to the
line joining points c pt and n_pt. It returns 1 if pl is selected,
otherwise returns 2.

44

int Find lmost(fPoint c_pt, fPoint n pt,fPoint pl,fPoint p2)

{

fPoint a = ¢ pt - n _pt; //decides which one of pl & p2 corre-
//sponds to leftmost

fPoint b = pl - n pt; //turn at n pt coming from c_pt

fPoint ¢ = p2 - n _pt;
float FACTOR = 180.0/(4*atan(1.0));
float thetal = float (FACTOR * acos(double((a % BY/{((Ta)* (" b}))));
float theta2 = float(FACTOR * acos(double((a % cy/(("a)y*(c)}))));
if (thetal < theta2)

return 1;
else

return 2;

The routine to compute the neighborhood information of the
intersection points on a line.

void Compute neighbor ()
// the sorted list of the intersection points on the line pline
// is in the array b from b{1] onwards, b[0] containing the
// left endpoint of pline. Here n 1s the no. of intersection
// points on pline. b[n+1] contains the right end point. The
// routine constructs an array nbs[] of neighborhood
// information and assigns the array to the row of matrix inb

// corresponding to the line pline

{

fPoint 1lnh,curr,rn;
fPoint INVALID;

I nb* nbs = new I nb[l count];

ln = b(0];
curr = b{1l};
if{(ln == curr)

In = INVALID;
// if left neighbour is an intersection
K = 2;
rn = bl[k];
while(rn == curr && k < n)
rn = b(++k];
// if leftmost intersection point 1is
// intersection of more than two lines

if(rn == curr)
rn = INVALID;
// if there is only one intersection point

// and that is at right end point
45 |

nbs[c{1] - 1}.Setnb(ln,rn, FALSE, FALSE) ;
for(int 1=2;1l<n;1l++)
{

if (!(curr == b[1]))}
// next intersection point is distinct

{

ln = curr;
curr = b(l}];
while(curr == rn && K < n)
rn = b[++Kk];
if (rn == curr)
rn = INVALID;
nbs[c[(l] - 1}.Setnb(1ln,rn,FALSE,FALSE);

}

else
nbs{c{l] - 1].Setnb(ln,rn,FALSE, TRUE);
// storing neighborhood information

} //end for

inb(pline.l - 1] = nbs;
// array of neighborhood info for pline

// is added to the table 1inb'

} | |

} // end select neighbors

Most popular of the parallel sorting algorithms using n processors
to sort n elements is odd-even transposition. The idea 1is as follows,
n prosessors are in a linear array, the n elements to be sorted are in

an array afl].

Step 1 : For i 1 to n all processors P; do in parallel
Read a[i]

Step 2 : For i 1 to n all processors P; do in parallel
For j 1 to n in step of 1
if j 1s odd
Every odd numbered processor compares 1ts
element with that of its right neighbor and
exchanges elements if the right one is smaller.

40

If 7 is even

Every even numbered processor compares its
element with that of its right neighbor and

exchanges elements if the right one is smaller.

Step 3 ¢ For i 1 to n all processors P, do in parallel

Write a(i]

This will produce the n elements sorted in ascending order in the
array a(].

T\CAL l’ "
< F'ﬂs '

... ! ‘) ; -‘_"'i'
i e . f"-'.i
- .: J%
(:

i- ..:;

I AUC ’:9 7 SN
oy

47 *

