SOME ASPECTS OF UNIFIED SAMPLING THEORY

By T. V. HANURAV®
Indian Swtistical Inatitute -
SUMMARY. Stariing with the busic cuncopta in sampling thoory for fnite pepulation we pro-

cecsl to the fundamontal problem of optimum ostil r ¢s ta eatimate tha populatinn total {or
cquivalontly the mean) from a unified approach,

“The intrinsio proportion of sampling designs are deallwith and tho probinm of estimatinn is closrly
hility of ia function is dismod. A complole chamaterisation of dexigne
admitting bost satimalors, Ia given. Various criteria for the reduction of minimal comploto clam of eatima.
tars aro discussod incliding the Intost eriterion of *hypor admimibility' which fa due to the author. A
numbar of unsolvort probloms aro posad in tho asquel and some now Lerminelogy is introduced in the hops
of xtantlardising tho aame. The Bnal roiluction of the prohlem and somo open probloms are prossnted.

1. InTnoouorioN

Sampling theory for finite populations—often called sample surveys—has
acen somo signifioant dovelopments during tho last ten or twelve yoars. Whilo the
earlior development of tho subject had been guided by intuitive considerations (which
no doubt were quite powerful) to obtain unbinsed estimators, it is only duting the past
fow yeaes that attempts aro being mado to formaliso the theory and to consider the
purely mathematical aspoots of tho theory. Tho first attempts in this direotion can bo
found in the work df Horvitz and Thompson (1052) and the first formalisation ix due to
Godambo (1965) who generalised the concopts of sampling design and lincar estimators
and proved the important result that for no sampling design docs thero oxist a uni-
formly minimum varianco unbinsed estimator of the population total (or equivalontly,
tho menn). As will Lo seon in Scotion 4, this result hag somo exceptions. Barring

these ppy oxoeptions (completely oharacterised in Soction 4), this result pointed to
the inadequacy of tho thon existing mothod of nppl) ing tho famous Markov's thcorem
on lenst squares to dorive best lmonr biased of tho population total, and

mado olear the main differenco botweun the classioa) theory of oaumnlion for thooretioal
populutions and the theory for finito populationa. Wo onn briefly desoribo thia as the
identifinbility of wnits that oxists in tho Intter theory.

In this paper we appronch tho problum of estimation for finite popul
in an orderly fashion. Whilo inovitably dixcussing the dovolopmonta in this fiold to
dnto, wo shall also give some results that aro necessary to fill tho gaps existing now.
Tho paper ix neither a purely roview paper nor a purely otiginal paper but is n mixturo of
both. Howovor, thero ix no scupe for any eonfusion about the pointa of fusion botweon
the two, xincu tho works of othor authora nro oleatly annotated. While wo indulge
fully in tho hixtorieal aspocta of tho probloms cousidered hero no protenco iz made
to oluim that all tho probloms troated by earlier authors aro covored here, and wo oon-
fino oursclves only to spocifio lines of dovelupment of tho thoory.

* Tho papor was basod on n thosls submitted by tho nuthor to the Indinn Btatistical Institute.
Tha final tlraft of tha paper was prpared when lio was & Visiting Lecluroe at the Uslvemity of Shenield,
Esngland,
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A ‘simple finite population’ ¢¢ in a population of knviwen bor N of identifiable
units

Uy, U oo, Une e (LD

This dofinition excludes such known finite populations like the fixh in a lake for which
a priori neither N ia known nor the units are idontifiablo (in fact the problom of main
interest in theso cases is to estimate the unknown N); or a box of ‘unmarked’ boltx
produced by & hine b for this though XN is known, the units, i.e., the bolts,
are not identifinblo a priori. The reason for the exolurion of auch populations is that it
i3 not possible to draw probability samyples (as explained below) from auch populations.
Samples drawn from auch populations are assumed to be probability ramples by means
of & rensoning running like “*because thore is no rensan to believe that the samplo is not
a random sample...”. In theso cases thore is no way of testing (say with the holp of
tosted tablos of random numbers) the validity or othorwise of the nature of randomneea
of the sample.

A sample ¢ from ¢¢ iy an ordored finite ssquunce of units from ¢¢ :
o= (U, Uy Uy 3 mp < e (12)

where | 5, { Nfor 1 ¢ nfe). The s noed not nocessarily be distinot but the
intorchange of U¢' and U,', for i, 7 4,, reaults in a new sample. n(s) is the size of
¢, and ¥{8), the number of distinct units of s, Is tho effective rizo of a. While n{s) oan
even exceed NV (beeaure ropetitions are allowed), vs) < N.

While any specific samplo has to bo of finite size only, there is no renson,
a priori, to restriot ourselves to samplos of a fixed size only (i.e. n{s) = n) nor is it
obviously justified to restrict to samples of size less than a given numbor M esy.
Accordingly we define 3, the oollcotion of all possiblo aample a from £ as our baaic

samplo Apace :
3 =1{). e (13)
Evidontly g contains a countably Infinite number of namplea, and
sup n(a) = co.
"8
A simplo sarpling design D = D(¢¢, 8, P), bricfly oalled the design P, in &
probability measure P dofined on g,
P,>0 and £ P, = 1. e (14)
X

Tho abave definition oxcludes designs xuch as those abtained thus; vontinue
simplo rand pling with ropl until the sample varianco in loes than 10
por cont of the samplo mean’. The roaon for the exoluxion of auch not uninteresting
designa ia tho resulting simplification in the theory.

176



SOME ASPECTS OF UNIFIED SAMPLING THEORY

In practico, however, samples aro not drawn by listing the P,’s for all poesible
samples. Instend, thoy are drawn by what can be termed as ‘sampling methods.’
Any sampling method in which tho ples are all ordered ples a8 in {1.2) gives
riso to a uninquo design. Of partioulne intorest among these sampling mothods are
the unit drawing mechanisms which are methods of drawing tho sample by means of
sclecting tho units from ¢¢ one by one and with replacement. In its most general
form a unit drawing mechanium onn bo rig ly defined as an algorithm

A = Afg(U)); gele); ax(s, U} e (LB)

where
(1) ¢, is n probability measure on ¢¢ so that
WU)>0 for 1<igN and ‘_i'.l Uy =1, e (18
(2) 94(s) defined for any samploe 2¢8 is o number in (0, 1)
0K ) 1 for seg we (LT
and

(3) gile, U,), defined only for those & for which gys) 72 0, ia a probability
measure on ¢/ :

GOU)30 for 1IN if gofs) #0 and '£ e, U)=1. .. (18)
£31

The eampling method using the algorithm is as follows : Draw the firat unit
using the mensure ¢,.  If the snmplo thus obtained is denoted by a,,,, impute ) in q,.
If gy(e)) = 0 sampling is terminated. Otherwiso, a binomial trial with probability
of success 08 fyfs,),) is performed and sampling is terminated if the trial results in a
failure. If the trial results in a suceess, a socond unit s drawn using the probability
measure 48y, Uy) and the resulting anmple (which is 85y fullowed by the unit now
solected) is denoted by 8,5,  The oporations of imputing 8,4, in g, and using g5(8,, U)
eto., aro repented until a samplo 8y, of sizo k say, ia reached for which gy{s,,) = 0 and
8, i then aceopted as tho final samplo.

It is casy to seo that tho various cust -y methods of sampling are particular
cases of tho above general method. Where a method of sampling does not speoify
the order of the units in tho samples, for each method of ordering of the units in the

samplo, thero is an algorithm of the above type.

Tho advantages of the dofinition of the design as given by (1.4) is that it sup-
plies & unified framework within which to work for a seacch for optimum estimators
of a given p ie funoti It is not possible othorwise to disouss the apparently
divorso mothods of sampling all in a singlo framowork. Since samples are drawn,
in practico, by methods like unit drawing mechanisms and not from thae dosign, a ques-
tion of primary intorest thon ariscs—can overy design bo gencrated by a suitable
sampling mothod ? The nnswor to thia is given by tho following theorem.

Theorom 1.1: To any given design D{g¢, 8, P) there corresponds a unique unit

drawing mechanism A{qy, qu q3), such that sampling according to A resulls in the design
P, and conversely.
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Tho result assures us that wo oan work within tho unified framowork of designs,
for a search for opti cstimation | d and can thon g to suitablo sampl-
ing methods as unit drawing mechanisms, to achiove theso optimum designs. Tho
proof of this result (whioh was given in a less goneral form earlicr (Hanurav, 1082a))

runs thus :
The sccond part of the theorem is evident. For, if A = A(gy, g, ¢,) be the

aigorithm, then for any samplo
8= (U«l. Ui s U‘-m’ = 88y, By, ooy Sagy) BAY,

wo have for tho final probability of the sample, tho uniquo valuo

Q0= Prte| )= 0U) " 04V Uiy s U

wla}=1
X .I_ll 7:{Us, - Ugh Uy, M1—a:l{U,, U,’...:, U,_m])]. e (19)
It is easy to verify that = @, = 1.
s

To prove the first part, for 1 € 4y, iy ... < N, lot

Si={o:iy=1) Sy={o:iy=1, iy=3) ote.
a ="Zs‘ r, ay ="§UP, ote.
o) = (U}, 8(i,§) = {U, U} ote.,
and Pi= Py, Py = Puy oto.

Clearly we have

¥
g$=Us

=1
N I
Se=U) 8yUsti)
g i o
Sy = U SulJeti,j) eto.,
that Yo, =1
T 4
/31+lzdu =a
ﬂu+§ ay = ay eto.
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Dofining A(g), ¢x. 75) by tho oquations
o) =a

Qalelis, by s ) = gty el e (L10)

0 otherwise

and aaloliy, cens i3), U = i gyleliy . ) £ O

It is easy to cheok that A satisfics all the conditions (1.8), (1.7) and (1.8) of o unit draw-
ing mechanism. Further, from (1.9) (1.10) we have, for any samplo a, tho probability
Pr{s] A) given to # by tho algorithm A is given by

Y
% iy,
rer-a {12 2t {12}

% a'\'z‘: __.{l_ﬂ‘l red } . e b . ﬂ‘x by by
l‘l‘i—ﬁll‘l iy Ctpot ey Pyt T ate
= p'l R 5%
=D,

This proves that sampling according to 4 given by (1.10) generates tho given design.
That in fact A is uniquo can bo proved by retracing tho above argument and using
(1.9). This complotes the proof of the thoorom.

The proof of the above theorem is constructive and enables ono to dorive A
from P. In sovoral situations we have tho design P, only partinlly speoified. In
suoh cases, corresponding to any further oonsistent speoifioations that completely
spccu‘y the design, we have a unit drawing mechanism gcncrnlmg a design with tho

given. Tho simplicity of tho resulting ism depends on a olover
choloe of theso furthor specifioations. An oxamplo will mako this point clear.

In tho theory of ratio-ostimators, we have tho values X, and U, (1 < § < N)
of an auxiliaty variate 2, pletely beforchand. A probl idored and solved,
indopondontly, by Midzuno (1952) and Sen (1052) is ns follows Given a positive integor
n and givon that the design P entiafios,

P, = 0 if n(s) # v(s) or n(s) = v(s) #n, v (L1D)
what should bo the sampling mothod to onsure the estimator

P =Lg'x o (L12)

179



SANKHYA : THE INDIAN JOURNAL OF STATISTICS : Serres A
Is unbiased for ¥ ¢ In the above, #, and g, are tho sample means of 42 and %, and
X= ‘:": X;. It oan bo scon that a sob of nocossary and sufficiont conditions is that P
unlhﬁ:m, in addition to (1.11)

1
T P = —r=iv "3, (1.13)
SR

for any samplo 8, and whore tho sum on the Lh.a. is over all snmples & that aro permuta-
tione of 4,. (1.13) remning unaltered if 8, is replaced by any samplo which is a permu-
tation of s,. Theso sonditions do not completely pin down tho design P and we need
further apecifientions to allocato tho total probability on the r.h.s. of (1.13) to all the
individval anmples that are permutations of 8, Considering the simplo allocation of
equal probabilitivs to all samples that are permutations of ono another, we have a fully
speoified design P given by

L ' nl,. e (L14)

i)

However, this results is an inconveniently complicated algorithm A’ = A‘(q;.q;. )
85 0an bo casily scen oven for the simplo casv of N = 3,5 = 2. Following the proof of
Theorem (1.1) it can bo verified that

qi(U«)=%'£‘. i=123
ade(i)) = 1 and ge(s, §)) = 0
X+X I
X—J FFE v (1.18)
qiteti), Up = { 2+
0 if j=+.

Thus not only tho initial probabilitics g;’s but also the conditional probabilities g;'s
have to bo caloulated afrosh from the X,'s for each draw. For larger values of ¥ and
# this will bocome more laborious,

Considering now an salternative allosation proportional to the “-value of the
firat unit in the Mmplo we got another dosxgn P* ulso satisfying (1.11) and (1.13) given by

o T h o, 1
P= nz, X (N—l 2,
n=1

(1.16)
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It can bo vorified that the corresponding algorithm A”(f, g1, ¢3) Is given by

Gy =3
gelels,)) = 91‘('("1‘:)) @ .= gl e fey)) = )

1
<= M FE e,
Qileliy i), Up=4 N B

0 otherwise -
Hlelin by oy d0)) = 0
for 1 K fyigioenyfpy S N oand for 1 Kk n—1.
The algorithm thus gives & simple unit drawi hanism described thus,

‘seloct tho first unit with probabilitics proportional to !.ho original sizo measurca Xj'a.
Omitting tho sclected unit, from tho remaining (N—1) unita draw a simplo random
samplo of size (n—1) without roplacement’. This is in faot the solution obtained
by Midzuno and Sen though by other methods.

Wa sco thus that the above theorem onables us to systematioally investigato
the possible unit drawi hanism that g tho design with the required
proporties viz (1.13) and to i inoidentally the simplest soluti

P

2. THE DESION
We roturn to the unified framework of the basio simple space & and a probabi-
lity measurs P on §.
Given & design P, let
m =n{P) s.E‘P,, 1IN o (20

and my=mP)= % P, 1<i#i<Y . (29

where in (2.1) the sum on tho r.h.s. is over all samples that contain U, and in (2.2) the
sum is over all samplea that contain U; and Uj. , is the probability that a xandom
sample contains U, and m gives the probability that a random sample contains U,
and U,. The m/s and ;' can be called tho first and sceond ordor inclusion probabi-
litics respootively. Higher order inolusion probabilities ean bo defined similarly
but aro not of irmediato intcroat to us. Theso alruciure constants n/s and ny's
play an important rolo in our thoory.

It follows from the dofinitions that
ogmgl e (2.30)
and 0 7y  min (m, m)) o (2.3b)
for 1 & § 3 j & N, whore min (a, #) donotes a8 usual tho sraller of « and 2.

181
)



SANKHYA : THE INDIAN JOURNAL OF STATISTICS : Semizs A
Lot v bo tho expoctod offootive samplo sizo of a design P
v=vP)= I wo)P, (24
"3
Threo important formulao conncot tho m's and my's and v,’s.

Thoorem 2.1 (Godambo, 1055) : For any design P

g: a3
= m=v. o (28)

Theorem 2.2 (Hanurav, 19620) : For any design P
iﬁ 1y = v(v=1)+V(ve)). e (2.09)

Observing that for any dosign
1)< N
if v = [v]40 where 0 < 0 < | Le. 0 is the fractional part of v ono can show that
0(1—0) < V(o) < (N—v)v—1)
and from (2.6a) follows that

A= +001—0) < S my < No—1). . (26b)
2
Theorem 2.3 (Yatcs and Grundy, 1053): For a design P for which
P,>0-5s)=v forall se g . (27
we have, for any
l;‘.‘.‘ my = (v=1)m; o (2.80)
and hence or otherwise from (2.8a)
‘2:"[. my = v(v=1), ..o {2.8b)
Some i ing questions of Intornal istency now arise. Tho answers

to theso have a dircot bearing on problems of estimation, as will be scen in Scetion 7.

(a) Given a sot of numbers {m}, 1 i < N satisfying (2.3u) does there
oxist a design P such that m(P) = n, for all i1 The anawer is ‘yea’, as i3 cusily scen
from the design obtained thus: Conduct N independent binomial trinls with pro-
bability of success for the i-th trial being oqual to m. If and only if tho i-th trial
results in o succoss do we include U, in tho samplo which is now made to consist of the
unita sclected, arranged in tho increasing ordor of their indices . Evidently for this
design m(P) = m; for all i. Somo moro solutions wore givon earlior (Hanurav, 1962b).

(b) Givon any sot of numbors 7, 1 < & < N satisfying (2.3a) and euch
N
that v = X 7, is & positive intogor, does thero oxist a dosign P which satisfics (2.7)
1
and for which w{P) = for all i1 Tho answer to this is also ‘yes' as oan bo
182
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scen by tho design obtained by the ‘ppa sy fo sampling’ method of Good and

Kish (1950). However, if in addition to (2.8) wo imposo the further conditiona
o<mygmm for 1<E#EFKN . (29)

which enaure the existence of non-negative unbinsed estimator of the vari of an

important estimator (cf. Scotion 7), then no answer fs known for v> 2. For v=2
tho nuthor solved this problom satisfactorily (Hanurav, 1065; 1066). Constructive
solntions for higher values of v are of importance in our estimation theory.®
Perhaps more complicated is the question of internal consistency of m,'s and
n/a. (2.3n) and (2.3b) givo a sct of necessary conditions. It can be casily rcen that
they are not sufficient. For oxample for N = 3 there cannot exist & design with
m=., my=.8, my=.8
my=4, my=.7 and m=.6
which clenrly satisfies (2.32) and (2.3b). It can be proved that for any design P
my(P) > n{P){-n(P)—1 . {2.10)
for 1 < i#j < N. To prove tho above we need considor probability of the event
that neither Uy nor U, aro included in & random samplo, and express the condition
that this quantity is nonnegative. However, even (2.3a), (2.3b) and (2.10) do not
constitute a set of sufficiont conditions for the existenco of a design P with
theso ag its m{P)’s and my(P)'s. For examplo there oannot oxist a design with
m=u4, m=.6 mn=4
My = .06, My =.06, 7,y =.05.
A compact set of sufficiont conditions on s and s aro of somo interest.
Of courso a comploto sct of necessary and sufliciont conditions are provided by consi-
doring all possiblo 2¥—1 events that speoify the units belonging to a samplo and express
tho conditions that their probabilitics ie between 0 and 1. Bus theso conditions in-
volvo the highor order inclusion probabilitics also.
Another problem that arises ia as follows. Given a design Py with a set of
m{P,)'s and m(P\)’s, docs thero oxist a design P, such that
n{Py) = nfPy) for 1IN

and . (211)
nf{Py) < mfPy) for 1 <i#FKN.
More important is the question of oxistenco of P, which further sntisfics
/ EEn(Py) = ve=1)+00-0) - (219)

where 0, as givon in (2.0b), Is tho fractional part of v. These questions play a crucial
rolo in tho choico of opti trategics, na will bo oxplained later in Sootion 7.

® Rocontly tho nuthor solved this problom fully for all intogml vahuca of v. Tho solution was read
at the 20th anounl maoting of tha TMS at Now Brunsmvick and will be published ehoetly.

183



SANKHYA : THE INDIAN JOURNAL OF STATISTICS : Szrizs A

3. ESTIMATION

Consider now a variable ¥ defined on tho unita (1.1) of ¢ taking the value ¥y
on U{l < § < N). Tho Y;'s can bo vectors but no essontial featuro fa lost by ros-
trioting as wo shall do in tho soquol, to the caso that & is & roal-valucd funotion. Tho
veotor

Y =(Yy, Yy, Yy) e (8)
is unknown a priori and is treated as a parameter and R¥, the N-dimonsional Eucledian
spaco is tho paramctor spaoe.  Any singlo-valued function f(¥) of Y is called a para-
melrie funoti Tho problom ix to esti cortain p trio functions that are of
intercst to us, Of partionlar interest is the population total

N
T=I¥ - (32)

and a number of other interesting problems can be boiled down to the problom of esti-
mation of Y, as wo shall sce, by a suitablo redefinition of the variablo or the popula-
tion or both. Kor oxample the estimation of any linear parametric function

). 4
L+ ? LY,

is tho same as the estimation of the population total Z = %Z, of & now variable X
dofined by Z; = % +4Y,. Similarly, to cstimato a quadratio

L+Z1,Y,+3q, i+ 2 Eun,Y,
we can estimate tho first two torms as explained above. Tho estimation of the third

N
term is tho samo as tho estimation of tho total @ = X Q; of the now variablo 2 defined
1

by @, = g ¥}. For the cstimation of tho Jast term wo considor tho new population
2¢' whoso elementa aro ordered pairs of units of ¢¢, and define a now variable .2’ which

takos tho valuo Q'(U,, Uy) = QU U,)=—;-qu,Y, ifi%; and QU U)=0.

Clearly the last term oquals the lotal Q" = SEQ/(U,, U)), and the estimation of the
lnst torm is tho samo as the catimation of @’ dofined over ¢£'. Now from eamplos &
of 22 we construct samples &’ of ¢, aa follows. If

o={v, 0,0, )
then "-{(U':'U‘:)'(U‘l' U‘.).....(ll ‘.m)

(U‘,. v‘.),...(u ._“ ( ot U‘-«.)) (v,_m. v‘_m)}.

184



SOME ASPECTS OF UNIFIED SAMPLING THEORY
Tho sot of all such #”*s is a subsct of the basic samplo space 8’ of ¢¢’. Erom the given
design D(8, P) over ¢¢ wo construot o design D'(8’, P’) on ¢¢' thus ;
{ P, if & {s ono gencrated a8 above, by a samplo s of &
Py =

0 otherwiso.
The problem of: estimation of %g: gyY¥,Y; now reduces to the problem of estimation
i

the totalof the varinblo .2’ defined over ¢¢’ from tho design D(¢¢’, &', P’). Estimation
of all polynomial parametrio functions of .Y on ¢¢' in D(S, P) can bo similarly reduced
to tho estimation of the totals of some variables on some populations. Thus it is the
cstimation of ¥ dofined by (3.2) that nced bo of contral interest to us.

A statistio T defined for 8 6 8, at any rato for thoso samples s for which P, > 0,
is & singlo-valued function of the %-values of the units belonging to s,

T,=T, (Y‘.’ Yoo Y‘.:»)' . (3.3)

Tautologically, T is said to bo an estimator of a given paramctria funotion
S(Y) if from a samplo 8 wo estimato f(Y) by 7. Recognising 7" as a random varinble
dofined for 468 with the given measure PP wo can talk of the expectation, mean square
error, variance etc., of 7', It is said to bo an unbiased estimator of f{Y) iff

E(T)= X T,P,={(Y), YeR". v (34)
s

A given p trio funotion f(Y) is estimable in a given design P ifT thero exists
a statistio 7' such that (3.4) holds. A sampling dosign P together with an estimator
T of /(Y) constitute & sampling strategy or simply strategy, and is denoted by
(8, P,T). Tho mean, varianco eto., of I/ are defined to be the comsponthng q\mn-
tities of 7' with rospect to tho P. Tho problem is to find ‘opti

strategics for tho estimation of a given pnrumo!.no function f (Y), optimality bcmg

dofined in a reasonablo way.

We first dofine somo classea of lincar cstimators. The concept of ‘lincar esti-
mator’ has been generalised by Godambo (1965) in this contoxt. A general homo-
gonoous linear estimator (g.h.l.o., for brevity) is of the form

T:(T,=Z faTi). . (35)
}{Jghar order polynomml ostimators can Lo dofined similarly. For examplo a genoral
tio cstimator (g.h.q.e.) ia of tho form
T, =3 g+ I £ o0 BTY . (3.6)
Aee Adxer

and & g.q.0. is of the form
T:{T,=a+ X faTat T mY!-i-m?\J,"r.u- PR AR - (37
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A g.hle. which is unbiased (w.r.t. a given design), say, for Y, is called a g.h.Lu.c.
of ¥, and similarly for tho other. Lot I{P), Q(P) and M{P) donote the olasscs of
glo.’s, g.q.0.'s and general polynomial estimatora of r-th degreo respectivoly and lot
L*(P), Q"(P), MyP) denoto the ponding olnsses of cstimat bissed for
Y; a(p) =0JI,(P), and MYP)= 0 JYP); and let Li(P) denoto the subolass
=y r=1

of L*(P) consisting only of homog linear  osti Corrosponding Qy(P)
and J}(P) can bo shown to bo empty.

Tho first question that is of intereat is regarding the estimability of o given
paramotrio function f(Y) in a given design P. Godambo (1055) proved the following
thoorom.

Theorem 3.1: A sel of necessary and sufficient conditions (n.s.c.'s, for brevity)
Jor the estimability of Y in a given design P is that

7{P)>0, 1<i<N. . (3.8)
Godambo proved this by restricting to Ly(P) but the proof can be easily carried
through for the clasa of all estimators, as in the proof of Thoorom 3.2.
An unbiased cstimator of Y, whon (3.8) hold good, s the Horvitz and
Thompson estimator of ¥ (Horvitz and Thomp-on, 1952),

Par=% D e (39)
e M

whoro tho sum on the r.h.e. is over all distinet units U, that belong to s.

x
As o simplo corollary we sco that a linear parametric function 1,42 LY,
ia estimablo in P il !
L#A0=m(P)>0, for 1<igN. e (3.10)
Tho abovoe theorem scoms intuitively truo becauso if for somoe § we have
#{P) =0 thon tho corresponding ¥, ia nover obscrvablo from tho design P and
henco any parametrio funotion that dopends on Y, cannot be estimated unbiasedly.
Howover, tho following thoorom though frequontly used in & special form in the
litorature is not oqually obvious—at any rate not to tho author—and wo shall givo s
diroot formal proof of tho samo.
Theorom 3.2: A set of n.n.o.'s for the estimability of the quadratic parametric
Junction
x
Q= I°+l§ I,Y,+.“: T+ 2;‘7' whi; e (301)

in a design P is given by
(8) m(P)>0 if Ntef>0 }
and (b) 7{P)>0 if gy+qu 0.
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Proof: It onn bo casily verificd that (3.2) constitutes a sot of sufficiunt condi-
tions, for, whon (3.12) holds good the estimator
Qur = byt 5 2B +Z wm B 5y iy e (313)
e M m ave Ty

is unbiased for @, To prove that the conditions (3.12) are nceesxary, lob G be a statixtia
unbiased ( tho design P w.r.t.) for Q 8o that

E G,P, _1,+>.1,r,+zqun+xzquy,y, . (314)

To prove that (a) ol' (3 12) aro necessary, lot thore e;uut n k(1 € k € V) for which
B+gh > 0 and m(P) = 0. Sinco (3.14) is an idontity in Y, setting ¥, = 0fors % k,
wo aco Lthat the r.h.s. of (3.14) equnls
hth Yy 4euYE

which deponds on Y,. But sincs my (P) = 0 thoro is no samplo s with I, > 0 and
oontaining U,. Sinco G,, being a statistic, oan depend only on the Z-values of the
units in the samplo, tho Lh.s. is independent of ¥,. This leads to a contradiction
and hoenco tho nocessity of (a) of (3.12).

To prove tho noocssity of (b) of (3.12) (which form the crucial sot in this
ocontoxt), a8 bofore lot thero oxist & and k(1 < k # & & ), such that my(P)=0and
gy 5 0. Tho sum on tho Lh.e. of (3.14) can bo written as

6P+ XLOP+X0P+ZIGP, e (3.18)
LA 3y 03y LA
whoro
=(a:Ups, Uy}
={2: Uyds, Upes)
Sy={s8: Uyds, Upés}
and S, ={8: Uses, Upes).
Since m,(P) = 0, S, carries zero probability and henco can bo omitted. Substituting
(3.15) in (3.14) and sotting ¥, = 0 for i % &, & wo have
= b}
'2:-’1 AP+ ,”‘U.P.+ .”'G.P.

= bt (e Nt g YD+ Yo+ Yo)Haur +00) Yy Yo . (310)
‘The Lh.s. of tho above can bo written as
a(Y))taYp)t+a,
whero @, is o funotion of Y, only, &, is & function of Yy only and @, is & constant,
s0 that (3.16) can bo rooast as

Y9 Vi) +6s = hw +ar) Vs Yy w317
whore ¢,, ¢, are functions of ¥, and Yy respectively and ¢, is & constant. A rolation
liko (3.17) is thon clearly impossible and honoo tho necessity of (b) of (3.12).

This complotes the proof of tha thoorom.
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For a given design P lot (3.8) hold good and lot TeL{I') be an unbiased estima-
tor of ¥. If my(P) =0 for somo integers k and & (1 < & # ¥  N), thon in the
expression

V()= 5 T} P,—1? w (3.18)
s

the coofficient of Y,Y, equals—2. Heonce the following corollary from the above
thoorem.
Corollary :  V(T') i no estimable in P, and the n.s.0.'s are given by
mP)> 0 for 1Kij N . (319)

Remark: 1f (a) of (3.12) hold good thon from Theorera 3.1 and the disoussion
given at the beginning of this section (regarding the change of the variable) it follows
that the first threo terms of (3.11) aro cstimable in DS, P). Hence if Q itsolf is
estimablo it follows that the last torm of (3.11) also is estimable. Referring again to
tho beginning of this section rogarding the estimnbility of @ = I I ¢,4¥,Y; it followa
from an application of Thoorem 3.1 that @ ia cstimablo in D'(2Z, §, P'}iff

n{(i,5), P’)> 0 for all i,j such that g,+q, 50

whero #(i, j), P’) ia the probability of including the unit (U, Uj) of ¢ e given by the
doaign D'(¥%¢, &', P’). From the dofinition of P’ it follows that
a((s, ) P)+n({, §), P') = my(P)
and from the abovo we sce that  is ostimablo in D'(¢¢’, S', P') iff
ny(P)> 0 for all 4, such that qutan #0.

Howover this argumont does not suffice to form a rigorous proof of Theorem 3.2 for
two roasons. Firatly it haa to bo eatablished that the neocssary conditions for the esti-
mability of @ in D’(¢Z, S’, P’) are tho samo as those for its estimability in D{gs, S, P),
and secondly the neoessity of (b) of (3.12) given (a) of (3.12) docs not mean the
noceseity of {a) and (b} put togothor. Bocause of those logical intricacics, which
howovor can bo scttled ensily, wo proferrod a diroct proof as given abovo.

Thooroms 3.1 and 3.2 oan obviously bo genoralised along tho lines of the proof
of Thoorom 3.2, to bo ostimability of any parametrio funotion whioh is a polynomial
in Yy, Yy ooy Yoo

\We can now pass on to the problem of ‘opti * stratogics for the estimati
of linohr paramotrio funotions. Sinco any such function con bo reduced to tho form
(3.2) by a chango of variable, wo shall hencoforth consider the population total as our
parametric function. We shall tako, aa usual, the squared error as our loss funotion,
and attompt to mininiso tho oxpeoted losa io. tho mean square orror (m.s.e.). Thus
the problom is to choose (S, P, T') such that

m.s.e. (I} = ':‘:‘(T,— Yp»P, o (3.20)

is minimum for all YeR¥, To avoid trivialities, as also to have a moaningful yractieal
intorprotation, wo have to restriot /I to o olnss 4 of stratogics membors of which are
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oqually proferablo in all respocts other than their m.s.o's. Tho conecopt of cost function
entors horo and if C(/1) donotes tho cost of the strategy (in sono units) and if Cy is &
given budgot, then wo restrict I/ to
H(Cy) = (I : C(I) = Cp} . (321)
&and procood to find tho ‘bost’ strategy My = I8, Lo, To) in MC,) for which
m.s.0.(/l,)  m.a.o.(ll), V UHe MCy) and ¥YeRY,
Wo assumo that C(//) depends on U only through P so that C(1) = C(P). At this
stago wo break up our problom into two stops. First, for & givon P wo shall chooso
tho P-optimum ostimator T'(P), if it oxists, for which
ma.c. (Ty(P) < ms.o.(Ty(P)) . (3.22)

for all YeR™ and for all Ty(P) Lelonging to o preseribed clnss of ostimators. Wo then
chooso the optimum P, say P, for which

m.a.0.(To(Py)) € m.e.0.(Ty(P)))
for all P, auch that C(P,) < C, and for all YeRY. Wo shall fiest tako up tho first
atop in Soctions 4 and 5.

4. UX]]L\.S!DNESS, LINEARITY AND UNICLUSTER DESIGNS

If in (3.22) wo allow T, to vary ovor tho class ZUP) of all statistics then it is
evidont that thero does not oxist a 7, which is optimum in & This is ovident by
loring tho estimator 7'y which is identically equal to o constant @ say. (3.22

then requires that
I TLP,—1
g
vanish for all Y such that ¥ = a. If T’y is tho best in & this should hold good for all
such 7T,’s obtained by varying @ and this is cloarly impossiblo.
Tor any class &{P) of estimators wo define 74¢@(P) to bo admissiblo iff
(TyC@P), Ty # T} == {AY® = YT, T,)eR¥
3 MA.0(TY)| yor < n.8.0{73)| yior} e (40)

whoro tho m.s.0.’s aro ovahiated at the partionlar point ¥, A subclass @(P) C &(P)
i8 said to bo complote in A(P) iff
Ty @—C = {AT\c@,, sm.a.0(Ty) € ma.ofTy), VYeR™. e (4:2)

The intersection of all comploto classes in @(P), if it oxists, is ealled the minimal
completa class in &(P) and coincides then with the clnss &,(P) of all admixsiblo estimators
in &(P). TFor an investigation of P-optimum ostimators in @(F’) wo nood restrict ouc-
solvos only to a comploto class in G(P). Sineo n ‘bost’ ostimator dtocs not oxistin the
olass Z{(P) of all ostimators, wo should proceod to ilder somo blo subol
of J(P) and eco if o bost oxista in that subolass.
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As o first but a big jump, wo shall reatrict to the eclass Ly(P) of gh.lu.e’s
of Y. Tt ahould bo notod here that tho critorion of unbinsednoss is taken for its well
known statistical intorprotability and mathematienl simplioity nnd that tho oxclusion
of tho olaxs B of binsod ostimators in preforonce to Li(P) is not s consoquonco of the
complotonoss of LyP) in B \J LyP). On the othor hand wo have tho following
lomma,

Lomma 4.1: The class LyP) is complete in B Ly({P) if and only if for the
design P we have m{P)=1for 1 i N.

Proof : If possible let Ly(P) be complete in BU LyP). Consider TyeB,

given by
T, = &, a constant not oqual to zoro.

From hypothesis, thero exists a T,6 Ly(P) such that
V(To) € muse. (T)) = (0—Y)
for all YsRY.
1 To=Xf. 1,
Aea

N N
then V(T =% { I pLP—1 }Y§+s T { s fa ﬂ,\.P,—l}Y,Yx-.
A=14UD2A A#EA Lo’

For YW =(0,...,0, 3, 0,..., 0) whero Y, = 4, wo have m.s.e. (T))] yun =10 80 that
V(T3)| ys should also vanish. Minimising P(T') given abovo for variations of ¥ wo
obtain the minimising oquations to bo

N
£b,Y,=0 fork=1..,N
A=l

whore
I APr—1 U k=2
4D

ba= _
I faBubPi—1 0f kA
s
Sinco the above set of minimising equations has to ho aatisfied for ¥ = Y it. follows
that
by= S prP,—1=0.
i
But from the conditions of unbinsedness of T it can be scen that
1
x 3
. ':‘ﬂdpl> 71P)
80 that wo havo n(P) == 1. Considcring tho voctors Y for i=1, 2 ..., N (sinco at all
theso voctora m.s.o. (T} = 0 and honco V(T\,) = #) wo have
m{Py=1 for 1 i N.
If theso conditions hold, clearly LYP) has s momber with F(Ty) = 0. Henco tho
lomma.
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1t eufficos only to add that tho above situation i.e. 7(P) =1 (i.e. a completo
oconsus) is uttorly unintorosting from tho point of viow of samypling theory and wo
conclude that Ly(P) is not complote in B |J L§(P) in situations of any intcrest to us.
Thus the restriction to Lg(P) is purcly arbitrary. Though the inclusion of the critorion
of unbiasednoss has some important statisticnl significance and interpretations, no such
defence can bo put forward for demanding the lincarity of tha estimators. Wo shall
commont moro on thoso aspeets, in Soction 5.

Godambo (1955) proved that ovon when wy rostrict ourselves to Ly(P) there
does not exist a bost, whatever may bo the design P. Later (1985) ho oxcludes tho
‘trivinl dosign’ P for which overy samplo of positive probability contains tho wholo
popalation, from this rosult. Howoveor, this is not all tho truth and wo give a complota
charactevisation of all sampling designs P that admit a best in Lg{P).

Theorom 4.1: A gel of n.s.o’e for ¢ design P lo admit of a best member in
Ly(P) is that

(1) n{P)>0, 1<i<¥N
v (43)
(2) P >0, P, >0=3"\s=gor s~z
schere @ denotes the null sel and 8 ~ 3, (in words 2, and 8, are effectively equivalent)
implies that every unil belonging 1o 8, also belongs to 8y and vice versa.

The best estimator in LY(P) for P satisfying (4.3) is the corresponding Horvitz and
Thompson estimator defined by (3.9).

Proof : Trom Theorem 3.1 it follows that (1) of (4.3) aro n.s.c.'s for LYP)
to bo nonempty. We need vorify (2) of (4.3).

Lot T {7', =,:2§ﬂ,x Y,} )

bo any member of L3(P). Tho conditions for unbiasedness of T, s can bo easily verified,
aro given by
I fnP,=1 1€AEN ce (4.8)
[

wheoro tho sum on tho Lh.s. of (4.5) is ovor all samples that contain Uy, For tho vari-
anca of T wo have
V()= I T'P,—Y% e (10)
es

If there exists a bost in Ly(P), say
Ty {To.n = ‘{:lﬁu Yx}-

it is obtained by minimising ($.8) for variations of 5,,’a subject only to (4.5). Intro-
ducing tho Lagrangian multipliors a,, ..., ay, wo scok to minimiso

4= S TIP—P— & a( X paP1) . )
8 A=l [E1S
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with rospect to £,,'e and «,’s. Tho minimising oquations aro given by (4.6) and

3
Br (T}P.H,_,o-ﬂxl’. =0

for 1 A< N and for ovory s DA, From (4.4) this gives
2T P,Y,— P, =0, 1A N, DU,
and if P, %0

This implics that for any two samplos 8, and 8y that havo & unit in common

i.o. ¢ ¢, # & ond for which P, > 0 and P, > 0, we should havo

T, =7, VYeR". oo (4.8)
At this point Godambo closes his argument_saying that this is clearly impossiblo.
Howover, wo shall carry tho argumont further.

To prove that (2) of (4.3) aro necessary we need observo (sco below) that 7,
has to take into account all tho Z-values of all the units that bolong to o. If
then for two samples 4, and 8, (2) of (4.3) is violated but (4.8) is satisfied,
we have P,‘ >-0, I’,' >0, 8, ()8 7 ¢ and s, is not offectively oquivalent to s, so
that thero is a Us, belonging to, 8, say, but not belonging to s, In this caso T,
docs depend on Yy, while T4, cannot dopond on Yy, which contradicts (4.8). Thus
(2) of (4.3) are nccessary.

To provo tho suflicioncy part wo uso tho fact (cf. Theorem 5.1) that every

admissible estimator in Lg (and in fact in the cless Z* of all unbinsed ostimators of Y)
must satisfy tho condition

7,=T,
for all 8 and &' for which P,>0, P.>0 and s~¢'. e (49)
Thus in Ly(P), T given by (4.4) is admissiblo only if
Box= Pex
for all 4 and o’ for which P,>0, P,>0 and s~4¢' o (410)

If T is an admissiblo mombor of L), we then havo from (4.5)
1 =o§x PP, =‘§’np,°\ P, forany s, DA

(becauss, from (2) of (4.3), sinco 4, X and 8 X, s~ 2)
=p I P, from (4.10)
o

O Wer

=ﬁ.,x ™
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80 that for any 8,0 A, wo have

ﬂ,ox = ”—lx e (411)

This shows that the only possiblo admissible estimator in Ly(P) is givon by

Y,
Prp=5 =2,
MG

But it is known (Godambo, 1960 ; Roy and Chakravorty, 1960) that f’m-
is admissiblo in Ly(P) for any P satisfying (1) of (4.3). Henco Pgr is tho bost, i.e.
uniformly minimum variance estimator, in Ly(P). This proves that (2) of (4.3) are
also sufficiont. Honco tho thooron:.

Wo shall term sampling designs  satisfying (4.3) as unicluster designs. Tho
torm is derived from tho analogy of thoso designs to designs obtained by cluster sampl-
ing with one cluster being chosen. With a gencral definition of cluster as & subsot
of the population a design satisfying (2) of (4.3) can be looked upon as ono obtained by
sampling ono cluster from ¢¢, if ono treats all samples that are effectively equivalent,
a8 A singlo samplo.

It can bo easily verified that, oxcept for trivial designs for which m{P)=1 for
all 4, there oxist paira § and j such that my = 0.

h fol

For unicluster designs we can in fact provo o ger result fully
tho clasa of all admissiblo cstimators in tho class M*(P) of all polynomial unbmsod
estimators of Y, which is much wider than L(P). Wo have the following theorem.

Thoorom 4.2: For any unicluster design any estimator Ty in M*(P) is admis-
sible in M*(P) iff

Ty = K+ Tpe(P) . (402)

where K,'a are constante (i.0. independent of ¥) satisfyi
£ K,P,=0.
"8

Proof; From Theorom 5.1 of Soction 6§ wo know that overy admissiblo
ostimator 7' is of tho form (4.9).

*This romult Is also obtained Indopendontly by Vijoya Hogo {1065).
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Lot T bo any admissiblo estimator in M*(P). Since thero are only (27—1)

possible equivalonce classes of samplos (i.e. 8 ~ &’ for # and &’ belonging to the samo
oquivalonco class) T, which is o polynominl in Yoon Y,_m for every 4, has a finite
upper bound for the degreo of T,. Lot this upper bound bo r and let

T:T,=To+Ty=...+T, o (413)
where T, is & constant (indepondont of ¥) and T, is a homogencous polynomial of
degree k in the %-valuos of the units bolonging to the sample. From the unbiasedness
(for ¥} of T follows that

ET)=7Y
and ET)=0 for k1 o (414)
we shall prove that
Ty=0 for E#0,1.

Considering the caso * = 2, lot

Ty = E' Y ¥+ ZHEX,YN' Yy
and if possible let Ty ¢ 0 80 that there exists a sample & with P, > 0 for which
Yo, # 0 for some U,ou v (4.140)
or Your 70 for some Uy, Uy ea. o (4.14b)

Sinco the design Pis assumed to bo a unicluster design satisfying (1) and (2) of (4.3)
any other samplo & (with Py > 0) for which s{)s’ 7 0 is such that s ~ &’. Howovor,
T boing admissible, from (4.0) we have

T,=T,
so that
Tyy=Ty forogkgr,
and in patticular Tu="Ty
80 that Yoo = Ting, forany &2, if (4.14a) holds
and Yar = Yo forany & A, X" if (4.14b) holds.

The term containing Y3 in E(T,) is
Yoghe Y},"x, *0
or that for 7,Y) is
Yan Yy Yymye # 0.

In cither caso this contradiota (4.14). Thus Ty == 0 and similatly it can bo
proved that

Ty=0 for k0,1,
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As already contained in tho proof of Theorem 4.1, it follows that

Ty= ¥t =3 D,
re M

This shows that the only possible admiseiblo estimators of Y in M*(P) ata of
tho form (4.12).  That overy such estimator is dmissible in J*(P) can casily bo proved
by comparing, without loss of goncrality, any two mombers of the form (4.12).  Henco
tho thoorom.

Even though restriction to unicluster designs solves our first step mentioned
at the ond of Section 3, at any rate when wo rostrict ourselves to Ly(P), these designs
havo a sorious draw-back. In practico we not only nim to estimate ¥ by means of an

estimator ¥ say, in an optimum way if wo can help it, but would also like to have an

estimato of ¥(¥) to ba ablo to know tho precision of our estimato ¥, Eram corollary
of Theorem 3.2 and from Theorom 4.1 wo see that thiv is not possiblo for unicluster
dosigns. This boing a serious limitation, wo turn our attontion to designd for which

() m>0 for 1IN

and
(2) my>0 for 1&i#i <N, e (415)

to sco what wo can do in these designs.

5. SUFFIOIENOY OF THE EFFECTIVE SAMPLE

Sinco wo noted from Thoorem 4.1 that for designs satisfying (4.15) there is no
best ovon in tho restricted class L3(P) nttention should now bo fuoussed on finding
the minimal complota class in Li(P) to aco if a ‘best’ exista in somo of theso subelusscs.
Apart from the tural (from math ical point of viow) such attempts did not
yield fruitful results. In fact restricting oursolves to such a narrow class as Li(P)
itsolf ia not a justifiablo courso and is an unnatural mathomatical restriction, but we
shall resorvo our comments on this aspect for a lattor section. Another altemative is
to lay down aomo new criteria of optimality othor than that of uniform (in ¥') mini-
misation of varianco, which are both rensonablo and fruitful. This nspect wo shall

diseuss in Soction 6.

Steps towards characterising inadmissiblo ostimators wero started by various
authors at mors or less tho samo timo. Murthy (1967) proved that when tho
design is one gencrnted by the customary ‘probability proportional to sizo (pps)’

pling without ropl t, ostimators that take into account tho order in which
tho units occur in tho samplo are inadmissiblo. Ho also furnished a mothodl of gotting
uniformly botter estimators in auch cases. Somotimo aboub that time Raja Rao
noticed, first through empirical ovidencos, that for designs goneratod by simple
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random aamypling with replacement, tho snmplo mean is inndinissiblo as an eatimator
of tho pupulation mean and that it is inforior to tho moan over the distinet units of tho
sample. Later, in collaboration with Basu (1968), ho proved tho result and oxtended
it to provo that for designs generated by the cust 'y P8 pling with repl
tho conventional estimator of tha population total (which takes into account the numbor
of repotitiona of the unita in the samyplo) is inndmixsible.  For the ease of simple random
sampling this result is also proved by Des Raj and Khamis (1958). Roy and Chakra-
vorty (1960) proved that for any sampling design in which Y is estimablo, admissible
mombers in Lg(1*) must eatisfy (4.9). Busu (1958) gavo tho first clues to the generality
when ho introduced tho fruitful notion of a sufficiont statistio, in this ficld and proved
that the ‘eflective samplo’ by which we mean tho unordered sot of distinet units contained
in tho samplo, togother with tho corresponding #/-values, forms a sufliciont statistio.
(Basu terms this as the ‘order—statistio’ but sinco this confuses with another popular
moaning that tho term has in statistics, wo shall avoid it. Moroover tho ‘order’ in
Basu's ‘order-statistio’ is not really relovant), Tho main ideas behind this important
result can be briofly explained thus. The variable ¥ operating on a samplo

o= (U Uy s Up)

gives rise to the samploy
(8, Y)= ((U,l, Y,x); (U,g. U,‘); ...;(ll,_m. Y'.(.;)}' e (8)

Godambo (1966) uses tho term ‘obscrvable’ to denote this, but wo shall avoid that
torminology becauso of its much deeper meaning in theoretieal physics. Tho above
terminology is simple and being now docs not confuse with any existing oncs. 3lore-
over it scoms conveniont whon we consider more than one variable. For example
with tho variables 2 and & we can have ‘samplex’ and ‘samplez’ respectively).

The basic samplo spaco givos riso to the basio samploy space
(8, %) = {(a, Y) 1 6c8, YeR™), e (52)
From the given probability measuro P on S i.0. the given design D(S, P) is now gene-
rated the family 2, of probability measures on the basic samploy spaco {8, %) with

paramoter ¥ bolonging to tho paramotor spaco R¥. For a point Y@ = (T, ..., ¥{)
in R¥ thia measuro assigns tho probabilities thus giving tho likelikood (Takeuohi, 1061):

P, i Y= ﬂ:’ for 1 Q k< nfs)
Py (0 ¥) = - (63)
0 othorwiso.
Dofining tho effective samploy corresponding to the samplay (5.1) by
6. Vo= [(Uy, Yp), (U ¥y hos (U0 F))  (B4)
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whero v(a) is the effective sizo of & (as defined in Scction 1 and Uppr o U, aro tho
distinct units in & arranged in any ordor, it can now Lo verificd, by the ua\ml'l!ncloriznn
tion criterion of Neyman that the statistic (s, Y)4 is a suflicicnt statistio for the family
of probability distributions Xy. Theso ideas aro transparent in Basu's work though
ho limiteul his exposition to pps designs. Tho generality of his results was quickly
pointed out by Takenchi (1961) and is also ovident from the work of Roy and
Chakravorti {(1060). Lowever, thero sccms to exist somo confusion among some regard-
ing theso concopts as when Pathak (1004) sct out to rigorise these concopts but is no
clenrer (Hajck, 1965).

An application of Rao-Blackwoll theorom now yiclds Basu's theorom.

Theorem b.1.: Given a desiyn P and an estimable parametric function f(Y), sf
T is any unbiased estimalor (w.x.b. P) of f(Y'), which violates (4.9) then the estimator

T =E (T|(s Y))
s also unbiased for f(Y) and
V(T*) < W(T) YYeRY

with sirict inequality at lenst once, The vesulls of Murthy, Raja Rao, Des Raj and Khamis
and Roy and Chakravorly are special cases of the above result.

It may bo notod that Hajék (1959) scoms to have intuitivoly felt tho truth of
tho abovo theorem at about the same time but only niakes a passing mention of it and
at any rato docs not indicato any lines of proof. Somo of the essontial features of tho
above theorem are also tracoablo, though in a disguised form, in a much earlicr work
of Halmos (1948) for tho special case of pps designs.

It can bo scon that tho atatistio (s, ¥), is not only sufficiont for tho family Py
but is in fact tho minimal sufficient statistic. It scoms safo to conjecture from this
that any non-zoro function of tho minimal sufficicnt statistio (s, X'), is an admissiblo
estimator of its own oxpoctation. Tho validity or otherwiso of this result in a general
context scems to bo aninteresting question which docs not scem to have beon answered.
If this conjecture is truo—at any rate in our sotup—~then wo not only have the completo

h ) tion of all admissibl i rs but also iso that the class Ly(P)

does not enjoy any apecial privilego in tho wider class 3/°(P), as it is casy to construct
membors of 3/*(P)—L(P) that aro functions of (s, ¥), only and henco are admissiblo
in T°(P), tho class of all unbiasod estimatora of ¥. Further, if this conjoaturo is truo,
evon for tho class Ly(P), Theorom 5.1 gives us a big mininial completo class of ostima-
tors (thoso satisfying (4.0)). Wo note that thero aro (2¥—1) possible equivalonco
classes of samplos and for a sample with v(s) = r wo havo r cooflicionts f,'s to Lo

¥

dofined. Thoso give V.2¥-! oooﬂ.'noiunts( = ( 1:7 ) r) to bo dotormined subjoct to the
r=1

N conditions given by (4.5). Thus defining optimality as tho uniform minimisation
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of the varianco doos not lond us to a narrow completo olass of estimators. Restrio-
tion to a wuitablo subolasa of L3(P)is, as remarked ealicr, neithor desirablo nor
froitful. Tho alternative thoroforo is to exploro some other oritoria of optimality,

6. SOME ALTERNATIVE CRITERLA OF OPTIMALITY

(a) Bayesian approack. In a number of praction]l situations we are not
totally in the dark about the valuo of Y. The valuo of X = (X,, X,, ..., Xy)of &
positive character &2 on ¢, which is well correlated with Y is availablo beforchand
in theso cases. In euch situations one can look for stochastic model and assumo that
the aotual value of Y is tho realisation of & random variablo whose distribution
depends on X besides possibly on some unknown parameters. If this a priori
distribution is denoted by 0, instead of trying to minimise P(Z(S, P, T)) uniformly in
¥, for variations of I/ ovor the olass A{v,) dofined by (3.20), wo can try to minimise
tha ‘oxpected loss’

J V(e e (01)

over tho distribution 0.  If 1,(8, Py, To) is tho minimising member in (v,), uniformly
for all values of XeR™ and for all values of all tho unknown parametera that onter into
tho apriori distribution 0, then I/, is said to bo a optimun strategy in Mv).

From Godambo (1965) and Hajek (1059) wo have two important situations in
which such an optimum strategy oxists.

Let v, bo & positive integor and lot A*(v,) donoto the cluss of strategics for
which

WP) = v - (82)

Whon C(U) is o function of P, say C(P), and is a monotonic incroasing function of
v(P) this class A*(v,) coincides with Av,) dofined by (3.21) with suitable units
choson for the cost.

Lot ©, bo tho olass of & priori distributions 8, for which

() Ep(¥,|X)=aX;

(2) Vy(Yi|X) =o'X}
and (3) covg (Y, Y| X, X)) =0 o (63)

whilo O, is the wider class with (3) of (6.3) roplaced by

(3 eovp ¥y ¥y X, X)) = w{|j—i]) o (84)
where w g any convox function of [j—i|. In tho above, a und o* aro unknown
Paranictors.
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Godambo then proved (of. Hanurav, 1965) the following theorom.
Theorom 6.1:  In M*(v,) defined by (6.2), any strategy (S, Pq, To) sutiafying
i) w(Po) = v(Pg) = vy for all ‘&’ with P,> 0

B P =3 )
and (i)  To= Yl

i8 0,-optimum in K*(vy) for any 0,€0,.
Hdjek proved tho following theorem.

Thoorom 6.2 : There ia just one slrategy I8, Py, Ty) which is 0,-oplimum
iR K °(v) for any 0,¢0, and thal il is given, in addition to (0.5), by

(iv) the sampling is by means of the ppes syslematic sampling. .. (0.8)

Tho abovo sampling mothod was first given by Goodman and Kizh (1050) as a genora-
lisation of systematio sampling to the varying probability case.

Designs satisfying (ii) of (6.5) wo shall torm as ‘m ps’ designs, in analogy with
but distinct from ‘pps’ designs. The problem of constructing oasy sampling methods to
achiove (i) and (ii) of (6.5) and to satisfy somo other desirablo proportios like
admitting a stable nonnegative unbiasod estimator of V(T,) is an interosting combi-
natorial problom in itsclf. A solution to this problem, that has soveral other desirablo
properties, is givon for the caso v = 2 (Hanurav, 1965). The case of goneral integral
values of v has also been solved recently (cf. footnote on page 183).

There do not seom to bo further oxamples of roalistic familios of distributions,
0, and ©,, for which 0-optimum strategy oxists. It can bo ensily proved that if
(2) of (6.3) Is replaced by the moro general (and realistic) condition

Vo Y(X)=0tX), 1<igN v (67)
for some g > 0, thon O;-optimum stratogics do not exist for g 5% 2.

(b) Linear invariance. This concept, discussed by Roy and Chakravorty
(1960), roquiros that an cstimator should romain invariant under linoar transformations
on Y. However, this does not lead to an optimum estimator (i.0. minimum varianco
ostimator in tho clase of lincarly invariant estimators), nor to a narrow onough complote
olass of cstimators evon, in L§(P).

(¢} Regnlar estimalors. This olasa is also di d by Roy and Chakravorty,
and restricts to the class of estimatora T of ¥ for which

VD) = kot =k (3 £y ). . (08
1
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This seoms to ua to bo a vory 1 and costly d d. It isonly fora
narrow class of very spocialisod designs which thoy tormed as ‘balanced designs’
that thoy proved that a ‘best’ cstimator exists in tho class of regular estimators,

Othor criteria liko tho minimax principle or tho principle of maximum regret
ote., also fail to load us to our goal.

(d) Myper admissibility, While (b) and (¢) above try to restrict ua to aubelasses
of Ly(Y)in an attompt to get at optimum estimators, in this critorion (Hanurav, 1065)
wo weaken our critorion of uniform minimum varianco {which proved too strong
for us). Looking upon an unbinsod estimator 7 of Y as an unblased estimation proco-
duro that can bo usod to ostimate all linear parametrie functions EIY{cf. Thoorom
(3.1)) by replacing ¥/’s occurring in T by 1,Y s, we domand from T' that it should give
an admissiblo cstimntor not only of ¥ but of all linear paramotric functions. This
critorion is thus weakor than uniform minimisation of varinnco, but is strongor than
admissibility. We noto that whon 7' is used to estimato Y, by deriving from 7'
tho catimator 7'* obtained by replacing Y,'s in T by ;Y /s, tho paramoter spaco shrinks
to tho principal hyperplano containing the coordinate axes of those Y's for which
1 are non-2ero. Thus hypoeradmissibility roquires 7' to Lo admissiblo not only in
the whole of R¥ but also in each of its principal hyporplanes. Tho practical implica-
tion of this criterion is that sub-totals, moans of subpopulations, contrasta involving
such submeans (which all form an important class of parametric functions of intorost
in practice) should all bo admissibly estimablo, by menans of a singlo cstimator 7.

We now havo the following theorom.
Thoorom 6.3 (Hanurav, 1065) : For any design P which is nol a unicluster
7 his

deaign the class M*(P) of all pol I catimators of Y admils jusl one
estimaior which is hyperadmissible. This ‘oplimum’ estimalor is Horvilz-Thompson

estimator TelP).  For any unicluster design the class of all hyper-admissible eslimators
is given by (4.12).

As wo havo romarked oarlicr, tho rostriction to tho class L(P) of g.h.lu.o.'s,
for tho cstimation of Y, is an unnatural mathematical restriction especially sinco
Ly(P) is not comploto in tho widor clasa Jf°(P). Whilo tho critorion of unbinsedess
can bo rotaincd owing to tho simplo and meaningful interpretations that can be given
to it, no such renson can bo put forward for the criterion of homogenecous lincarity.
Ono reason (and perhaps tho only one carrying somo weight) that is ofton advanced in
favour of thia criterion i3 based on tho units of moasuremont. If for oxamplo % iz
variablo liko incomo monsurod in rupooes say, ft is oloarly difficult to intorprot a quadratic
ostimator to’estimato Y for the formor is a sum of a conatant, rupees and (rupecs)t
whilo Y fs in rupccs. Howovor, onco tho units aro chosen for tho measurement of
4 the problom should bo conaidored as a puroly mathematical problem. Morcover,
tho uso of tho woll-known ‘difforonce catimator®

Yae= N(g+kz—X)) . (00)
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in simplo random sampling, whoro z anad § aro tho eamplo means of 22and %, X is tho
population mean of 22and kis a constant, shows that this adhetonco to units of measuro-
ment i3 not na pious ns one makoes it to bo when restricting to Ly(P): Fer, in (6.9),
& and ¥ can bo variablea which are not measurabls in tho same units as for oxamplo
% is incomo and L2 is population size.

Theorem 0.3 not only eliminates through a purely mathomatical criterion
theso non-linear estimators, but in fact ping down the optimum estimator uniquely
for all designs which are of interest. Thus it completoly accomplishes tho first step
in tho choice of an optimum etrategy.

It is interesting to note that tho estimator ¥r{P) plays a crucial rolo through-
out our theory as is ovident from Theoroma 4.1, 4.2, 6.1, 6.2 and 6.3,

7. CHOICE OF OPTIMUM DESION

The second (and in fact last) stop in tho problem of tho choice of optimum stra-
tegy, is that of tho choice of optimum designs. VYith the criterin of unbiasedness and
minimum variance only, the only logical way of asserting that a design Dy(S, P,) is
better than another, Dy(S, P,) is to establish that

V(Ty) € V(T,)V YeRY e (1))

for any cstimators T) and 7T, that aro unbinsed (w.r.t. Py and P; respectively) for
¥, or by establishing a weakor but perhaps moro meaning(ul result like

V(T,) < V(T,)V YeR* v (12)

where 7T, and T, aro any admissible eatimators, This is tho correct formulation
03 wo cun always pick up bad estimators in any design. Ono oan perhaps restrict
T, and T, to somo classes liko, say, Ly(P,) and Li{Py). Wo are not awaro of any
result that is anywhero near such a logical method oven for simplo types of designs
P, and Py, but a numbor of authors frecly mako statementa liko ... it is evident that

ling without repl t is bettor than sampling with roplacoment ..."”. \Vhat
such authors normally do is to establish (7.1) for some estimators T, and Ty that are
porhaps commonly used {of which Ty is invariably an inadmissible cstimator in Ly(Py))
and then jump to atatemonts like theso mado above.

By far tho only criterion that gives optimum designs also is the ono discussed
in Section 6(n), throngh a Bayesian approach. But even this gives the optimum d csigns
in rather specialised situations which are given in Theoroma 6.1 and 6.2.

If inatoad of unbiased and mini i wo take unbinsodness

and hyporadmissibility, the problom ia considorably simplified. For, in this case we
nood not provo such atrong rosulta like (7.2) but nood only prove that

VT adP) < W(Fm{Py), V VeRY - (13)
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to establish tho superiority of Py over Py For tho variance of F'yr{P) wo have

V(Zr) _.§ .”,’T’ ssxidi, p . 1)

Y]
{7.3) thon gives tho required condition as

» 1 my(Py) mAPy)
EN(r - ﬂ((P.))+4f3: YT (SR ay ~ )P

J<ovy.
. (1.5)
A sot of necessnry conditions for (7.5) to hold good are given by
7Py » m(Py), 1<iCA. o (1.8
Thus it ia not sufficiont, as perhap is intuitively folt, that v, should be larger
than v,.

Howover, for a fair comparison botween Py and P, regarding tho variances of

Ppy's in theso designs, it is necossary to onsuro that Py and Py are equally preforrablo
in other roepocts and in particular thnt thoy are equally costly. If the cost C(P)
of a design is takon to bo a t g of (7, my, .., My), such a8
the expected effoctivo sizo v, then the condition

C(Py) = C(Py)

togothor with (7.6) yiclds
n(Py) = n{P)) =m say, for 1IN . (1)

A3 & 8et of necessary conditions for either Py to bo superior to Py or Py to bo suporior
to P,. From (7.5) and (7.7) wo then have

Tzoe (nU(P,)—ﬂa(P,))<0VY . (18)

23 8ot of nocessary and sufficient conditions for Py to be superior to Py.  If we restrict
1o Y » 0 —ofton roalistically—a set of sufficient conditions for (7.8) to hold good is

given by
mAPy) € m{Py), for 1K i#j<N. . (19)

Given tho dosign Dy(S, Py) if we can construet a Dy(S, Py) with the same m,'s but with
uniformly smaller (or oqual) 7's then such a Py is superior to Py Referring to (2.0a)
and (2.6b) wo sco that this is not possiblo if

X m (P

T2 Py
attains ita lower bound givon in (2.6b) viz., v(v—1)+0{1-0). \_\'hethor this ia posslblo

if %3 7(Py) exceeds its lowor bound is an open probl but a p }
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in that it is possible. If ko this provides a valid justification for reatricting to ‘without
roplacement’ designs in preference to the ‘with replacement’ designs, in a very gonoral
sonso. (Of courso tho 'without replacement’ designa possess tho practical advantago
of n rolativoly stablo cost of snmpling, in comparizon to tho with replacomont designs).

The above discussion as alxo Theorom 6.1 should now provido amplo proof of
tho importance of tho problems of existence and conatruction of designs that are consi-
dered at the end of Section 2.

From (7.6) we sco that a givon class 4 of strategics Jf for which
Cl)y=C, for HeHA o {1.10)

where C, is a given number and C(Jf) is a given cost function which in a monotonic
increasing function of (m,, m,, ..., ms), then wo can only break up ¥ into cquivalonco
classes with mombors in the same class having tho same valucs of m's which eatisfy
{7.10). No mombeor of a class is bottor than a momber of another clasa #o that no opti-
mum strategy oxists. If tho conjecture given in tho last para proves true then wo have
optimum strategics within each subclasa, Tho existence of an optimum strategy in
N a8 8 whole implics the existenco of an optimum sot of m’s. In absonco of any auxi-
liary information thoro doos not soom to oxist such a st under tho presont dofinitions
of optimality. In such cascs tho only possiblo optimum sot, with any reasonablo dofi-
nition of optimality, scems to bo the equal valuos of 7s. Coupled with tho earlior
conjocture this gives riso to the simplo solution of ‘simplo random sampling without
replacemont’ design with tho cstimator N, 7 being tho sample mean, as tho optimum
strategy. A third stop that now emorges in our investigation is to discovor various

listio @ priori distributions in terms of auxiliory informations which give riso to
optimun values of m,'u.
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