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      Abstract 
 
 

Digitization of Continuous objects cause loss of information because we 
find limitation to represent infinite precession of information of actual object. This 
limitation ultimately results in a many to one map from a group of objects of the 
real world into a single object of the Digital World. So when we make some 
quantitative estimation of Original object from its digital version we inevitably 
invite some possibility of error. By estimating the error of a digital straight line 
segment and approximating an arbitrary figure by sequence of straight line 
segment, we ultimately find an approximate estimate of error in general 
estimation. 
 
 
 
Key Words: Digital Geometry, Corridor DSS, Digital Equivalence, Digital Straight 
line Segments, T-Corridor, W-Corridor, Error Estimation 
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Synopsis 

 “Finding the Corridor of a Straight Line Segment and its 
Application in Error Estimation in Area Computation” 

Koushik Bhattacharyya (MTC 0517) 

Under the supervision of 

Prof. Bhargab B. Bhattacharya 
 
 
Motivation: 
As the digital world is making its more and more place in several aspect of life, we are 
creating digital version of real life objects and playing more and more games with them.  
Digitization of continuous objects causes loss of information because we find limitation 
to represent infinite precession of information of actual object. This limitation ultimately 
results in a many to one map from a group of objects of the real world into a single object 
of the Digital World. So when we make some quantitative estimation of original object 
from its digital version we inevitably invite some possibility of error.  
 
By estimating the error of a digital straight line segment and approximating an arbitrary 
figure by sequence of straight line segment, we ultimately find an approximate estimate 
of error in area computation of a closed figure. The corridor of a Digital Line Segment 
will give such area where a straight line segment can move without changing its digital 
representation. 
 
Till date there is no algorithm that finds the corridor of a Digital Straight line segment. 
This is the initial motivation to find such algorithm with proof of correctness. Here we 
have presented an algorithm for finding corridor of a digital straight line segment. And 
the proof of correctness is also stated here. After getting such algorithm next step is to 
apply this in error estimation in area computation gradually from simple polygon to any 
closed figure. 
 
Problem definition: 
Assuming that a straight line segment is identified by its chain code and fixed boundaries 
(segment boundaries) of its end points, we define Translation-Corridor and Weak-
Corridor which are informally the areas where the original line segment of Euclidean 
Plane can Translate and Move without changing its chain code and end boundary 
segments (termed as Left and Right Wall in Literature). 
 
 
Our problem is: 
 Given a straight line segment in Euclidean Plane, devise an algorithm to find 
Translation-Corridor and Weak-Corridor of the Straight line segment. 
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Next problem, which is addressed after solving above, contains design of some technique 
or some algorithm that estimates error in area computation of area of the original figure 
from its digital representation, which is a typical job in Digital Geometry (extracting 
quantitative information from Digital Image). Initial algorithm is for a simple polygon. 
Then it is extended to handle any closed figure where no two portions of boundary curve 
intersect. 
 
Overview of Work: 
Our contribution can be described in terms of three interrelated tasks. The main task is to 
give algorithms for finding two types of corridors with proof of correctness. Second task 
contains development of Digital Straight Line Segment investigation Tool which along 
with several other important algorithms related to Digital Straight line segments, 
implements the above algorithm to find Corridors along with Display. Third part of the 
task is to propose some techniques in the form of algorithm to estimate error in area 
computation of simple polygon to more complex objects. 
 
 
We have described point set representation of Straight line segment, their boundary 
digitization scheme, tunnel (which play a very crucial role in the theoretical analysis) and 
digital equivalence of two line segments. Our main goal was to show that the set of all 
line segments which are digitally equivalent to the originally given straight line segment 
is same as the set of all line segments entirely contained in the Tunnel and sharing Left 
and Right Wall with the original  straight line segment. This fact plays the main role in 
proving the correctness of Weak-Corridor algorithm. To prove this main theorem we 
have used the result that each line itself belongs to its own Tunnel. 
After proving the uniformity of thickness of Translation Corridor, we have derived the 
expression for thickness. Also described the fact that a range of slopes in the R2  plane is 
mapped to an intermediate slope in the digital plane. That intermediate slope will be a 
rational number in the case of some typical pattern of chain code. Finally we have 
described a modified rotation in the algorithm for Weak-Corridor before stating and 
proving the algorithm. This algorithm actually finds the Weak-Corridor by rotation of a 
line segment but always keeping it within the tunnel. Whenever it touches the tunnel wall 
during rotation in a particular direction with respect to a fixed point on the line, called 
pivot, the touch-point on the wall of Tunnel becomes a boundary point of weak corridor. 
Collecting all those points we find a polygon that is in fact the weak corridor. 
 
The Digital Straight Line Segment (DSS) investigation tool automates the generation of 
several information related to DSS like grid points of digitization, chain code, corridor 
polygon and its (average in the case of non-uniform) width, and area. Ultimately we find 
the estimation of error using the proposed algorithm described later. 
 
For a simple polygon without hole, each side is digitized and the corridor of each side 
describes the area where line in Euclidean plane can move. If the actual line is in one end 
of that area but from digital representation we assume that the line was in the other end of 
the area, then error contributed by this line in computation of area of the polygon from its 
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digital representation is equal to the area of the Corridor in the case of Translation-
Corridor. Except for some cases same is true for Weak-Corridor. 
 
 
 

 
Lastly we approximate any curved boundary by a sequence of approximate straight line 
segments (ADSS) for which our above theory of corridor is also valid (since all 
assumption used in our theory was also maintained in ADSS).For each ADSS in the 
sequence we find corridor and get estimation of desired error. 
 
Conclusion: The algorithms are proved to be true finder of Translation and Weak 
Corridor which are finally used to find error in area computation and implemented with 
graphical display option for their applications. 
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Introduction 
 
 
 
 
1.1 Digital Geometry: 
 
Definition1.1: Subject dealing with GEOMETRY of DISCRETE SET (usually point set) 
which are considered to be DIGITIZED model / image of object. 
 
Definition1.2: Digital geometry is the study of geometric or topological properties of set 
of pixel or voxels. It is often an attempt to obtain quantitative information about object by 
analyzing Digitized pictures (2D or 3D) in which the objects are represented by such set. 
 
1.2 Main Aspect of Study: 
 
Simply put, digitizing is replacing an object by a discrete set of its points. The images we 
see on the TV screen, the raster display of a computer, or in newspapers are in fact digital 
images. 
 
Constructing digitized representations of objects, with the emphasis on precision and 
efficiency (either by means of synthesis, see, for example, Bresenham's line algorithm or 
digital disks, or by means of digitization and subsequent processing of digital images). 
 
Study of properties of digital sets; see, for example, Pick's theorem, digital convexity, 
digital straightness, or digital planarity. 
 
Transforming digitized representations of objects, for example (A) into simplified shapes 
such as (i) skeletons, by repeated removal of simple points such that the digital topology 
of an image does not change, or (ii) medial axis, by calculating local maxima in a 
distance transform of the given digitized object representation, or (B) into modified 
shapes using mathematical morphology. 
 
Reconstructing "real" objects or their properties (area, length, curvature, volume, surface 
area, and so forth) from digital images. 
 
1.3 Applications of Digital Geometry:  

Digital Geometry is Finding its application I  the area of Computer graphics, 
Pattern recognition, Image analysis, Medical imaging, Industrial image analysis, 
Robot vision, and possibly many more in the coming days. For a precise and simple 
example Component labeling Algorithm has got good application in Image 
Segmentation. 
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Grids and Digitization 
 
 
 
2.0 : Digital Pictures 
A digital color picture can be thought as an array of triples (R,G,B) of integers ranging 
from 0 to GMax. An RGB picture is composed of three single-valued channels, each of 
which can be shown as gray-level pictures. 
 
 

 
 
2.1 : Grid  
A 2D Grid G is Z2 and in 3D Grid is Z3. All our further discussion will be based on  2D 
Image unless otherwise stated. 
 
A Grid Vertex is shifted by (0.5, 0.5) with respect to Grid Points (elements of Z2). 
Precisely Grid Vertices or 0-Cells are {(i + 0.5, j + 0.5) | (i , j)  ∈ Z2}. 
 
The Line Segment Joining a pair of adjacent Grid Vertices i.e. Grid Vertices whose 
Euclidian distance is 1 is called a Grid Edge or 1-Cell.  
 
The Square formed four Grid Edge is called Grid Square or 2-Cell. 
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Grid Resolution 

 
 
2.2 : Adjacency  
Definition 2.2.0 : Two 2-cells, c1 and c2, are called 1-adjacent iff c1 ≠  c2 and c1 ∩ c2 is a 
1-cell; two grid points p1 = (x1, y1) and p2 = (x2, y2) are called 4-adjacent iff |x1 − x2| + 
|y1 − y2| = 1. 
 
Definition 2.2.1 : Two 2-cells, c1 and c2, are called 0-adjacent iff c1 ≠  c2 and c1 ∩ c2 
contains a 0-cell; two grid points p1 = (x1, y1) and p2 = (x2, y2) are called 8-adjacent iff 
max{ |x1 − x2| , |y1 − y2| } = 1. 
 
 
Definition 2.2.2 : Adjacency sets A1(c) and A4(p)  of one 2-cell c or one grid point p are 
respectively the set of all the 2-cells that are 1-adjacent with c and the set of all the grid 
points  that are 4-adjacent with p the corresponding neighborhoods N1(c) and N4(p), 
also containing c or p itself in addition. 
 
A  2D grid of size m×n is defined by 
 
       Gm,n = {(i , j) ∈ Z2 : 1 ≤ i ≤ m and 1 ≤ j ≤ n } --------------------------------------- (1.1) 
 
Rectangular set of Grid Squares 
 
 Gm,n = { Grid Square c : (i , j) is center of c and 1 ≤ i ≤ m and 1 ≤ j ≤ n }- (1.2) 
 

• In the grid point model, a 2D grid G is either the infinite grid Z2 or an m×n 
rectangular sub array of Z2 ; on Gm,n . Similarly, a 3D grid is either Z3 or an 
l×m×n cuboidal sub array of Z3. 

• In the grid cell model, a 2D grid G  is either C2 or an m×n “block” of 2-cells 
whose union U G is a rectangular region of the Euclidian plane E2 ; on  Gm,n  
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in the Equation 1.2. Similarly, a 3D grid is either C3 or an l×m×n set of 3-cells 
whose union is a cuboid in Euclidian space E3. 

 
Following proposition is proved in [7.0.0] : The grid defined by m×n   2-cells and 
adjacency relation A1 (A0) is isomorphic to the grid defined by m×n grid points and 
adjacency relation A4 (A8). Either of these grids will be denoted by Gm,n. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Diss/07/01/196 

2D Straightness 
 
 

 
Basic Definition:- 
 

We consider the grid-intersection digitization of a ray 
  γα,β = {(x, αx + β) : 0 ≤ x < + ∞ } 
in the set N2 = {(i,j) : i,j ∈ N} of grid points with nonnegative integer coordinates 
or in the set of 2-cells that have centers in N2. Because of the symmetry of grid, 
we can assume that 0 ≤ α ≤ 1. 
 γα,β has  a sequence of intersection points p0, p1, p2,…. with the vertical 
grid lines at n ≥0. Let (n, In) ∈ Z2 be the grid point closest to pn, and let the 
following be true:  
   Iα,β = {(n, In): n≥0 ^ In = ⎣ αn + β + 0.5 ⎦ } 
If there are two closest grid points, we choose the upper one: Iα,β is the set of 
centers of a set of grid squares R(γα,β). The differences between successive In s 
define the following chain codes:    

 
 0     if In = In+1 

                                            iα,β(n) =   In+1 – In   =        1      if In = In+1 – 1  
   for n≥0  

In accordance with our assumption that 0 ≤ α ≤ 1, we need to use only the codes 0 
and 1. We recall that code 0 is a horizontal increment and code 1 is a diagonal 
increment; in the following figure… 

 
                     Figure 
 

Definition 3.0:  i α, β = i α, β(0), i α, β(1), i α, β(2)……. is a digital ray (in the grid 
point model) with slope α and intercept β. 

 
This definition can easily be adapted to handle straight lines instead of rays. The  
code sequence of a digital straight line (DSL) is infinite in both direction. 
 
 

 
Definition 3.1: Digital rays are infinite words over {0,1}. We recall a few basic 
definitions from the theory of words. A (finite) word defined on (or “over”) an alphabet 
A is a finite sequence of elements of A. The length |u| of the word u = a1, a2, 
a3,……….,an (where each ai ∈ A) is the number  n of letters ai in u. The empty word ε 
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has length zero. The set of all words defined on A is denoted by A*. A word v is a factor 
of a word u iff there exist words v1 and v2 such that u = v1vv2 . v is a subword of u iff v = 
a1, a2, a3,……….,an and there exist words v0, v1, v2,………,vn such that u = 
v0a1v1a2v2a3……….anvn. 
 
 Let X ⊂ A*. The set of all infinite words w = u0u1u2...... (where each ui ∈ X – 
{ε}) is denoted by Xw. If all of the uis are equal, for example to v, we write w= vw. For all 
v ∈ A* and w ∈ Aw, v is a prefix and w a suffix of the concatenation vw. 
 

An integer k ≥ 1 is a period of a word u = a1, a2, a3,……….,an if ai = ai+k (i = 1, 
2,…., n - k). The smallest period of u is called the period of u. An infinite word w ∈ Aw 
is called periodic if it is of the form w = vw  for some nonempty word v∈ A*. A word w ∈ 
Aw is eventually periodic if it is of the form w = uvw for some u ∈ A* and some 
nonempty v ∈ A*. A word w ∈ Aw is called is aperiodic if it is not eventually periodic. 

 
 The digitization of a ray γα,β in the grid point model is periodic if α is rational and 
aperiodic if it is irrational. 
 
We state the following theorem without proof. 
 
Theorem 3.0 : Rational digital rays are periodic, and irrational digital rays are aperiodic. 
 
Definition 3.2: A digital straight line segment (DSS for short) is a nonempty factor of a 
digital ray. 
 
A DSS u connects two points p = (mp, np) and q = (mq, nq) of N2 (mp < mq) iff the 
geometric interpretation of u = u(1)……..u(mp - mq + 1) defines a sequence of horizontal 
and diagonal steps from p to q. Let u = u(1)u(2)……….u(n) be an 8-arc of  length n, and 
let G(u) = {p0, p1, ………., pn-1} be the assigned set of grid points such that p0 = (0,0) 
and u connects p0 with pn-1 via a sequence of horizontal and diagonal steps through p1, 
…., pn-2. 
 
We again state a Theorem without proof. 
Theorem 3.1 : A word u ∈ {0, 1}* is a DSS iff G(u) lies between or on two parallel lines 
with a distance apart (in the y direction) that is less than 1. 
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Corridor of DSS 
 
 
4.0 Point Set Representation of Straight Line Segment  
Definition 4.0.0:  Straight Line Segment l with end points P(x1,y1) and Q(x2,y2) 
is set of points in  R2 plane defined by l ={(x,y) | x = α.x1 + (1- α).x2

and y = α.y1 + (1- α).y2 and α ∈ [0,1]}. 
 
Definition 4.0.1  : A Straight Line Segment l1 is said to be obtained by translation  
    of Straight Line Segment l iff there exist a fixed (h,k) dependent on l1

    s.t (x1,y1) ∈ l1 iff ∃ (x,y) ∈ l  satisfying  
             x1 =  x + h 
             y1 =  y + k 
 
Definition 4.0.2  : Translational Area of Straight Line Segment l is denoted by T(l) and 

defined by T(l)  = U l1

                     l1is obtained by translation of l 
 
 
4.1 Boundary Digitization 
Definition 4.1 : Let l be a line segment in R2 has two end points at P(x1 ,y1), Q(x2 ,y2) , 
where x1 ,y1, x2 ,y2 are Real Numbers. Digitization of l in X-Direction is another St Line 
Segment say l1 which is defined by the end points P(h1 ,y1), Q(h2 ,y2) where hi is the 
Rounded value of xi (i=1,2).Similar definition can be given for Digitization of  l  in Y-
Direction and also for both Direction. 
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4.2 Tunnel of a Digital Straight Line Segment 
      Unless otherwise mentioned we assume that all the straight line segments discussed in 
the following discussion are Digitized in X-Direction and we would work with that 
digitized version. So all straight line segment appearing in our coming discussion are 
having integral X-Coordinates at both end points. 
 
Definition 4.2.1 :Let l be a straight line segment whose slope s lies in the closed interval 
[0,1].Then the end point with less value of X-Coordinate is called Left End and  the end 
point with Greater value of X-Coordinate is called Right End of the straight line segment. 
For lines l  with slope s lies in the open interval (1,∞) U (-∞, -1), Left End and Right End 
are respectively the end points of l with lesser and higher Y-Coordinates. 
Finally, For lines l  with slope s lies in the closed interval [0,1] Left End and Right End 
are respectively the end points of l with higher and lesser  value of X-
Coordinate.(Opposite to their physical locations). 
 
 
Definition 4.2.2 : Let fr(y) = Fractional Part of y =  [y] +1 –y,(where 
[y] is the box function denoting the greatest integer less than or equal to y).Then, given a 
point P(x,y), G(x) and G(y) denotes the abscissa and ordinate respectively of the grid 
point which represents the point P(x,y) in grid point i.e 
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   G(y)   = [y]         iff     fr(y) ∈ [0, 0.5) 
           = [y] +1     iff    fr(y) ∈ [ 0.5, 1) 
 
 

 
 
      
Definition 4.2.3 : Given a straight line segment l whose slope s lies in [0,1] U [-1,0], let 
P(x,y) be its left end (i.e x ∈ Z).Then Left Wall of  l is the straight line segment defined 
by end points LW1(x, G(y) – 0.5) and LW2(x, G(y) + 0.5). 
 
For the case of straight line segment l whose slope s ε (1,∞) U (-∞, -1) (i.e y ∈ Z), the 
Left Wall of  l is the straight line segment defined by end points LW1(G(x) - 0.5, y) and 
LW2(G(x) + 0.5, y). 
 
Definition 4.2.4 : Given a straight line segment l whose slope s lies in [0,1] U [-1,0], let 
Q(x,y) be its right end (i.e x ε Z).Then Right Wall of  l is the straight line segment 
defined by end points RW1(x, G(y) – 0.5) and RW2(x, G(y) + 0.5). 
For the case of straight line segment l whose slope s ε (1,∞) U (-∞, -1) (i.e y ε Z), the 
Right Wall of  l is the straight line segment defined by end points RW1(G(x) - 0.5, y) and 
RW2(G(x) + 0.5, y). 
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Definition 4.2.5 :Let S be the set of all Straight Line Segment in the plane R2.Let ρ ⊆ 
(S×S)  be a binary relation on S defined by :  
      For all l1 , l2 ∈ S  , l1 ρ l2 iff  all three of the following holds : 

(i) l1 , l2 have same Left Wall 
(ii) l1 , l2 have same Right Wall 
(iii) l1 , l2 have same Chain Code 

 
All proofs and discussions in the following text are based on the straight line segments 
with slope s ∈ [0,1] unless otherwise mentioned. All  the ideas can be readily extended 
to the case of all real slopes s ∉  [0,1] due to symmetry of axes. 
 
Lemma 4.2.1 : ρ defined above(in Definition 4.2.5) is Equivalence Relation. 
Proof : ∀ l1 , l2, l3 ∈ S, We observe the following, 

(a) Reflexivity: l1 ρ l1 since (i), (ii), (iii) are readily satisfied 
(b) Symmetricity : l1 ρ l2 ⇒ l1 , l2 have same Left Wall ⇒ l2 , l1 have same Left 

Wall  and  similarly other two conditions are satisfied .  
                      ∴ l1 ρ l2  ⇒ l2 ρ l1

(c) Transitivity : l1 ρ l2 And l2 ρ l3  ⇒  l1 , l2 have same Left Wall and l2 , l3 have 
same Left Wall ⇒  l1 , l3 have same Left Wall , other  two conditions are 
satisfied similarly. 

                       ∴ l1 ρ l2 And l2 ρ l3  ⇒ l1 ρ l3 

 
             Since, ρ is Reflexive, Symmetric and Transitive, hence from the definition of  
             Equivalence Relation, ρ is Equivalence Relation. We call this relation as Digital 
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             Equivalence. So two straight line segments l1 , l2 ∈ S  are Digitally Equivalent iff 
             l1 ρ l2
 
 
Definition 4.2.6 : Given a straight line segments l1 ∈ S, we define Equivalence class C(l1) 
Of l1 by C(l1) ={l ∈ S | l1 ρ l}. 
 
Since Equivalence relation determines partition on original set S  so  by ρ, S  is 
partitioned into subsets of straight line segment. 
 
 
Definition 4.2.7 : Given a straight line segment l (y = s.x + β)whose slope s lies in [0,1] 
with Left and Right ends at P(x1,y1) and Q(x2,y2) respectively. Upper Wall of l  is the line 
obtained by sequentially joining the points each with the next P(x1,G(y1)  + 0.5) , P1(x1 + 
1, G(y1 + s) + 0.5 ), P2(x1 + 2, G(y1 + 2.s) + 0.5 ),  P1(x1 + 3, G(y1 + 3.s) +  0.5 ), …, 
Q(x2,G(y2) + 0.5). 
Alternatively, if {(n, In) | n = x1 to x2 and  In = ⎣s.n + β + 0.5⎦ } be the sequence of point  
which are closest straight line segment l then Upper Wall of l  is given by the sequence 
{(n, In + 0.5)}. 
 
 
Definition 4.2.7 : Given a straight line segment l (y = s.x + β)whose slope s lies in [0,1] 
with Left and Right ends at P(x1,y1) and Q(x2,y2) respectively. Lower Wall of l  is the 
line obtained by sequentially joining the points each with the next by a straight line 
segment P(x1,G(y1)  - 0.5) , P1(x1 + 1, G(y1 + s) - 0.5 ), P2(x1 + 2, G(y1 + 2.s) - 0.5 ),  
P1(x1 + 3, G(y1 + 3.s) -  0.5 ), …, Q(x2,G(y2) - 0.5). 
 
Alternatively, if {(n, In) | n = x1 to x2 and  In = ⎣s.n + β + 0.5⎦ } be the sequence of point  
which are closest straight line segment l then Upper Wall of l  is given by the sequence 
{(n, In - 0.5)}. 
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Lemma 4.2.2 : The vertical separation between Upper and Lower Wall is always 
constant and equal to 1. 
Proof : At the points of integral abscissa the proof is trivial since vertical separation  
Between the points (n, In + 0.5) and (n, In - 0.5) is always In + 0.5 – (In - 0.5) = 1 ∀ n= x1 
to x2.  

 
For other points, let us take nay point with non integral abscissa, say P(h,k)on the Upper 
Wall. Let P be within vertical lines x = xi and x = xi+1.  
Then ∃ α ∈ (0,1) s.t   
                                              h = α .xi + (1- α ). xi+1 
since P(h,k) lies inside the segment joining (xi, Ixi + 0.5) and (xi+1, Ixi+1 + 0.5) , hence 
                                              k = α .(Ixi +0.5) + (1- α ).(I xi+1+0.5) 
 
Now if Q(h,k1) be the corresponding point on the Lower Wall with same abscissa then 
Q(h,k1) lies inside the segment joining (xi, Ixi - 0.5) and (xi+1, Ixi+1 - 0.5) , hence 
                                              k1 = α .(Ixi -0.5) + (1- α ).(I xi+1-0.5) 
 

 
∴ k - k1 = α.1 +  (1- α ).1 = 1. Hence Provrd. 
 
 

Definition 4.2.6 : Tunnel of a straight line segment l is the area enclosed by the four wall 
Viz. Left, Upper, Lower and Right Wall and is denoted by Tunnel(l). 
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Definition 4.2.7 : T-Corridor  of a straight line segment l is denoted by T-Cor(l) and  
defined by T-Cor(l) = { l1 ∈ S | l1 ∈ C(l) ∩ T(l)} 
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Lemma 4.2.3 : Let P1(x1,y1) and P2(x2,y2) respectively be the Left and Right End of a 
straight line segment l and P1

’(x1, y1
’) and P2

’ (x2, y2
’) be that of l’. Then yi  ≥  yi

’

( i = 1,2) ⇒ k ≥ k’ ∀ (h,k) ∈ l and (h’, k’) ∈ l’. 

Proof : Since (h,k) ∈ l ∃ α ∈ [0,1] s.t. 
                               h =  α. x1 + (1 - α). x2  
                               k =  α. y1 + (1 - α). y2                                     ------------------------------------(1), 
but in l’ for the point  (h, k’), we again have  
                               h =  α. x1 + (1 - α). x2 
hence                      k’ =  α. y1

’
 + (1 - α). y2

’
                                   -----------------------------------(2), 

 
Since,  α  ≥ 0 hence α. y1

 ≥  α. y1
’ 

                                                       -----------------------------------(3), 
Again  α ∈ [0,1] hence (1 - α) ≥ 0,  
∴                   (1 - α). y2  ≥ (1 - α). y2

’ 
                                               -----------------------------------(4), 

 
Adding (3) and (4), 
  α. y1 + (1 - α). y2

  ≥ α. y1
’
 + (1 - α). y2

’ 

 ⇒       k  ≥ k’ 

Hence Proved. 
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Left End Above

Right End Above

At every Other 
Abscissa 
Same Fact Repeated  

 
Lemma 4.2.4 : l is entirely contained within Tunnel(l) 

Left End Below

Right End Below

Proof : Let P(x,y) ∈ l . Let P1(x1,y1) and P2(x2,y2) be the respectively the Left and Right 
End of l . Hence, x = (1 - α). x2 + α. x1 for some α ∈ [0,1]. 
Now, x = (1 - α). x2 + α. x1  ≥ (1 - α). x1 + α. x1   [Since x2  > x1] 

                                                                  =  x1.  
 ∴ x1 ≤ x  
Similarly, x ≤ x2. 
 ∴x ∈ [x1, x2]. 
∴ l is contained within vertical lines x = x1 and x =  x2. 
Now it is sufficient to prove that l is below Upper Wall and above Lower Wall. 
 
Case I : In P(x,y) , x ∈ Z, say x =n. Using the definition and notation given in the 
Definition 4.2.7, G(y) = In ( where G(y) is defined in the Definition 4.2.2). Now from the 
definition of G(y) , fr(y) ∈ [0, 0.5) ⇔ G(y) = [y]          ------------------------------------(1),  
 
Now  y =  [y] + fr(y) = G(y) + fr(y) = In+ fr(y)  < In + 0.5 [ from (1)]. 
 
Again, G(y) = [y] +1     ⇔    fr(y) ∈ [ 0.5, 1)          ---------------------------------------(2) 
            y = [y] + fr(y) = [y] + 1 + fr(y) – 1 = In + fr(y) – 1 [Since, G(y) = In and from (2) 
]  ≥ In - 0.5 [ from (2)]. 
 
But Upper and Lower Wall are defined by the sequences {(n, In + 0.5)} and {(n, In - 0.5)} 
where n =  x1 to  x2. 
 ∴for the Case  when x ∈ Z part of straight line segment l is Within Upper and Lower 
Wall. 
Case II : In P(x,y) , x ∉ Z, then say x ∈ (xi, xi + 1), open interval where xi, xi + 1 ∈ Z 
and xi, xi + 1 ∈ [x1, x2]. Then Case I has already proved that part of l is within Upper and 
Lower Wall at the points corresponding to the vertical lines x = xi and x =  xi + 1. 
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Now, using Lemma 4.2.4, part of l at x = x is also below Upper Wall and above Lower 
Wall. 
 
So, combining the Case I and case II we complete the proof.   
 
    
Theorem 4.2.0: C(l) is entirely contained in Tunnel(l) ∀ l ∈ S. 
Proof : We first Prove that l1 ∈ C(l) ⇒ l1 and l have Identical Tunnel i.e. 
                  Tunnel(l1) = Tunnel(l). 
 
Let l1 ∈ C(l). Then from the definition of C(l), we have l ρ l1 hence l and l1 have identical 
Left and Right Wall ( (i) and (ii)).It remains to prove that  l and l1 have identical Upper 
and Lower Wall. Let {(n, In )} and {(n, In

‘)} be the grid points  where l and l1  are 
digitized(n varying from abscissa of Left Wall to that of Right Wall say x1 and x2 
respectively).  
Since, l ρ l1 therefore they have same chain code 

∴   In+1 - In = In+1
‘
 - In

‘      ∀ n = x1, x1+1, …, x2 – 1 ------------(1) 
Due to identical Left Wall, 
                                           Ix1 = Ix1

‘ 

Now successive application of fact (1) we sequentially conclude that 
          Ix1+1 = Ix1+1

 ‘ 

         Ix1+2 = Ix1+2
 ‘

    . 
    . 
    . 
 
         Ix2-1 = Ix2-1

 ‘

         Ix2 = Ix2
 ‘

 
∴  In = In

 ‘  ∀ n = x1, x1+1, …, x2 
 
So, Upper Wall of l given by {(n, In + 0.5)} is same as {(n, In

‘+ 0.5)} which is the Upper 
Wall of l ‘ and similarly for the Lower Wall. 
Hence, Tunnel(l1) = Tunnel(l). 
 
Now,  l1 is entirely contained in Tunnel(l1) from Lemma 4.2.4 and Tunnel(l1) = 
Tunnel(l) hence l1 is entirely contained in Tunnel(l). 
But l1 was chosen arbitrarily in C(l) hence every line of C(l) are entirely in Tunnel(l). 
Ultimately, C(l) is entirely in Tunnel(l). (Proved). 
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.

 
 
 
Corollary 4.2.0: : T-Cor(l) is entirely contained in Tunnel(l). 
Proof : From Theorem 4.2.0, we have C(l) is entirely contained in Tunnel(l) ∀ l ∈ S. 
Let l1 ∈ T-Cor(l), then from Definition 4.2.7, l1 ∈ C(l) ∩ T(l)  ⇒ l1 ∈ C(l) ; but from 
Theorem 4.2.0, we have C(l) is entirely contained in Tunnel(l) ∀ l ∈ S. 
∴ l1 is also entirely contained in Tunnel(l).  
 
 
Theorem 4.2.0: Any straight line segment l1 ∈ S having same Left and Right Wall with l  
and entirely lying within Tunnel(l) must be ∈ C(l) [i.e  l1 ∈ C(l)].  
Proof : Let l1 be such a straight line segment. For the shake of contradiction let us assume 
that l1 ∉ C(l). Left Wall of both l and l1  are same hence Ix1 = Ix1

‘ in {(n, In )} and {(n, 
In

‘)}. Since Left and Right Wall of both l and l1 are identical, so only possibility is that 
they differ in the chain code (since l and l1 are NOT related by ρ ).Let the first difference 
in the chain code occurs at the abscissa x = xi. Since all the chain code before (if exist )  
x = xi are identical so  In = In

‘ ∀ n = x1
 to xi -1 but Ixi ≠ Ixi

‘. Since Ixi , Ixi
‘ are both 

integers, so, | Ixi - Ixi
‘| ≥ 1.Without loss of generality let Ixi

‘=Ixi +1(minimum possible 
distance is 1). Then l1  cuts x = xi with ordinate value within [Ixi

‘ - 0.5, Ixi
‘ + 0.5) =  

[Ixi +1 - 0.5, Ixi +1 + 0.5) =  [Ixi + 0.5, Ixi +1.5) which is above the corresponding Upper 
Bound of Tunnel(l) because upper bound of Tunnel(l) at that abscissa is Ixi + 0.5. 
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Algorithm to Find T-Corridoor(l) :  
 
 
Input  :    Straight Line segment l by its end points 
Output :  T-Corridor as an Enclosing Polygon 
 
Step1. Find Tunnel(l) 
 
Step2. For Each point p(i) in the Upper Wall with integral abscissa 
    2.1) Find the Vertical Distance of point p(i) from line l 
Step3. Find Minnimum among them say dUp   say at p(U) 
 
Step4. For Each point q(i) in the Lower Wall with integral abscissa 
    2.1) Find the Vertical Distance of point q(i) from line l 
Step5. Find Minimum among them say dDown  say at q(D)   
 
Step6. Find LU RU, the points of intersection of the line parallel to l 
            but dUp distance apart in upward direction from l ( passing 
through 
            p(U) ), to the left and right wall of  l respectively. 
    
Step7. Find LL RL, the points of intersection of the line parallel to l 
           but dDown distance apart in Downward direction from l ( 
passing  
           through q(D) )to the left and right wall of  l respectively. 
 
Step8. Then (LL,LU,RU,RL) gives the polygon which exatly encloses 
the  
    T-Corridoor(l). Return (LL,LU,RU,RL). 
 
Step9. End 
 
Theorem 4.2.0: Any straight line segment l1 ∈ S having same Left and Right Wall with l  
and entirely lying within Tunnel(l) must be ∈ C(l) [i.e  l1 ∈ C(l)].  
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Proof : Let l1 be such a straight line segment. For the shake of contradiction let us assume 
that l1 ∉ C(l). Left Wall of both l and l1  are same hence Ix1 = Ix1

‘ in {(n, In )} and {(n, 
In

‘)}. Since Left and Right Wall of both l and l1 are identical, so only possibility is that 
they differ in the chain code (since l and l1 are NOT related by ρ ).Let the first difference 
in the chain code occurs at the abscissa x = xi. Since all the chain code before (if exist )  
x = xi are identical so  In = In

‘ ∀ n = x1
 to xi -1 but Ixi ≠ Ixi

‘. Since Ixi , Ixi
‘ are both 

integers, so, | Ixi - Ixi
‘| ≥ 1.Without loss of generality let Ixi

‘=Ixi +1(minimum possible 
distance is 1). Then l1  cuts x = xi with ordinate value within [Ixi

‘ - 0.5, Ixi
‘ + 0.5) =  

[Ixi +1 - 0.5, Ixi +1 + 0.5) =  [Ixi + 0.5, Ixi +1.5) which is above the corresponding Upper 
Bound of Tunnel(l) because upper bound of Tunnel(l) at that abscissa is Ixi + 0.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All the Slopes in this interval 
are mapped to This Slope in 

the digital Plane 

Highest Slope 

Corridor

Lowest Slope 

Real Line
Lowest Slope    0 Slope                   Digital Slope                    Highest Slope 
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All slopes in the interval Rational/Irrational are mapped to Digital slope. In the case of 
W-Corridor it is readily clear that Lowest and Highest Slopes both are rational. But for T-
Corridor we can realize it considering the segment of infinite length when the initial line 
have rational slope. If the initial line has irrational slope then digital slope will be 
irrational since upper and lower boundaries of T-Corridor are both parallel to the original 
line and their slope is the Digital slope. 
 
 
 
Comment on Width T-Corridor :  
 
Algorithm has found LL, LU, RU, RL. Each of LL-RL, LU-RU are parallel to the 
original input line l. Hence LL-RL || LU-RU. Again LL-LU || RL-RU since they are 
part of tow vertical lines viz. Left and Right Wall. Therefore LL, LU, RU, RL forms 
a parallelogram. 

 
 
 
With reference to above figure slope of original line s = tan α. Let p be the foot of 
perpendicular from LU on LL-RL. Let the angle( LU  LL P ) be β.  α + β = 90o. 
From this width of corridor = Length of LU-P = Length of LU-LL .Sin β 
 = Length of LU-LL .Cos α = Length of LU-LL/ (1+s2)½ 
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Proof of Algorithm : 
Let l1 be any line obtained by translation of l with translation amount (h,k).Since line has 
to be within Left and Right Wall so h = 0. If  k > 0  and goes beyond the minimum 
distance found in the step3 i.e. dUp then resulting line will cross the boundary point p(U) 
so will be outside the Tunnel(l) and from Corollary 4.2.0, is goes outside the T-Cor(l). 
If k ≤ dUp then it is within T-Cor(l) provided it is above the Lower Wall of  Tunnel(l). 
Similarly reasoning with dDown we conclude that l1 will be in T-Cor(l) if k ∈ [-dDown 
, dUp] (noting that dDown is a positive number so negative sigh is added before it). 
 
Only if part : Let l1 be any line obtained by translation of l with translation amount (0,k) 
s.t. k ∈ [-dDown , dUp], then due to parallelism every point of l1 is below the the every 
point of LU-RU and also above the every point of LL-RL each of which are within 
Tunnel(l) hence l1 is too. 
Above two parts leads to the conclusion that l1 is within T-Cor(l) iff k ∈ [-dDown , 
dUp], and from algorithm, iff l1 is within Polygon (LL,LU,RU,RL). 
This infers the correctness of the algorithm. 
Proof Complete. 
 
 
 
4.3 : Weak Corridor : 
 
 
 
 To solve the problem with T-Corridor we seek for some extended version of corridor  
that will contain all the straight line segment that has got same digital representation with 
Original line in the sense that digital version of both are identical i.e. in the sense of ρ. 
 
Definition 4.3.0 : Weak Corridor  of a straight line segment l is denoted by W-Cor(l) 
and defined simply by W-Cor(l) = C(l). 
 
 
Before presenting the Algorithm we want to state the meaning of Rotation in this 
Context, which is a little bit different from common concept of rotation. Whenever we 
Say that we are rotating a line we do trim or extension of line in either end at each stage 
of rotation so that the end points have same abscissa with the initial line.   
  
 
It can be shown that the rotating line discussed below meets Upper and Lower Wall will 
Always meet the Tunnel at some point(s) having integral abscissa, using the similar 
reasoning that is given in the proof of Lemma 4.3.9. 
 
 
We use the notational convention  that for a point P, P.x  and  P.y gives the abscissa and 
ordinates of point P. 
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Algorithm 4.3.0 
 
/* To Find Four Corners of W-Cor(l) */ 
 
Input  :    Straight Line segment l by its end points 
Output :  Left Lower, Left Up, Right Up, Right Lower end points 
W-Corridor as LL,LU,RU,RL. 
{we here only finds LL and RU, other two points LU and RL can be 
analogously found with similar steps} 
 
Step1. Find Tunnel(l) 
 
Step2. Rotate line l by pivoting at its left end in anticlockwise direction 

So that the line go upward towards Upper Wall and away from    
the Lower Wall, up to the position when it first meet the Upper   
Wall say at Uk. 
 

Step3. Now Pivot at Uk and Rotate line l from its new position in  



Diss/07/01/196 

           anticlockwise direction until it meet Lower or Upper Wall of  
           Tunnel(l). 
 
Step4. If ( Upper Wall is met before Lower Wall ) Then 
                  4.1) Uk  New meeting point of Upper Wall 
                  4.2) Goto Step3. 
            End If       
Step5. If (Lower Wall is met before Upper Wall ) OR  
               (Lower Wall and Upper Wall met simultaniously ) Then 
                  5.1) Call the Lower Wall meeting point as Lj     
                  5.2) call the furthest (from pivot) Upper Wall meeting  
                          Point as Uk. 
              
 
Step6. Call the Left and Right end points of current position of  

   rotating line as LL and RU. 
             
 
Step7. End 
 
Lemma 4.3.0: In the algorithm 4.3.0 Uk.x  > Lj.x  i.e. Uk is at right of Lj 
Proof : Consider at any Uk step before current line l1  touches Lj.Since we pivot at  
Uk and rotate l1  anticlockwise, so, the portion of l1  which is at right of Uk  is going 
Above i.e. away from the Lower Wall so cannot touch the Lower Wall before the portion 
of l1  which is at left of Uk  and  is going down towards the Lower Wall. This left portion, 
Therefore can touch the Lower wall first. Consequently the Point Lj  which is touched by 
the left portion of Uk  will be at left of Uk. 
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Lemma 4.3.1 : Line joining LL and RU will have greatest slope among all straight line 
segment in C(l) . 
 
Proof : From Algorithm1 LL-RU passes through Uk and Lj and Lj  is at right of Uk. Let 
l2 be any other line of C(l). To pass through the Tunnel it must pass through the segments 
Uk Lk and Uj Lj. 
 
Slope of the line Uk Lj = s0 = (Uk .y - Lj.y) / (Uk .x - Lj.x). 
If l2 intersect Uk Lk and Uj Lj  respectively at P and Q then ∃ α, β ∈ [0,1] s.t. 
                           P.y = Uk.y – α 
                           Q.y = Lj.y + β. 
 
Slope of the line l2 = (Uk.y – α - Lj.y – β) / (Uk .x - Lj.x)  
                              ≤ (Uk .y - Lj.y) / (Uk .x - Lj.x) 
                              = s0
 
 
Lemma 4.3.2 : Maximum slope is uniquely attained by the line joining LL and RU. 
Proof : Line passing through LL and RU also passing through Uk and Lj has Maximum 
slope. Any other line must not pass through at least one of Uk or Lj , as two points 
determines a straight line. Then Using the notation of Lemma 4.3.1, at least one of α or β 
is > 0, which results in strict inequality i.e. Slope of the line l2 < Slope of the line joining 
LL and RU. Hence any other line will have strictly lesser slope and therefore we 
conclude the required uniqueness. 
 
Lemma 4.3.4 : No point lower than LL and on the Left Wall is in C(l). 
Proof : If  LL is on the Lower Wall we are done. If not, let P be any point on Left Wall 
below LL above or on the Lower Wall. Then, 
                                   P.y = LL.y – γ for γ > 0 
Now, slope of LL-RU = Slope of  LL- Lj  
                                     = (Lj.y - LL.y) / (Lj.x -  LL.x) 
But slope of P- Lj = (P.y - Lj.y) / (P.x - Lj.x) = (Lj.y - LL.y + γ) / (Lj.x -  LL.x) 
which is greater than slope of slope of LL-RU due to same denominator but greater 
numerator. But this is the least possible slope of aline passing through P. Hence  all 
lines through P  that is within the Tunnel will have greater slope than slope of line 
through LL and RU. This leads to a contradiction to the Maximality of slope stated in the  
Lemma 4.3.1. 
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Similarly we can prove the following three Lemmas 
 
Lemma 4.3.5 : No point above LU and on the Left Wall is in C(l). 
Lemma 4.3.6 : No point above RU and on the Right Wall is in C(l). 
Lemma 4.3.6 : No point below RL and on the Right Wall is in C(l). 
 
 
Before tracing entire boundary of C(l) we establish that we have found boundaries on 
Left Wall and Right Wall. Following Lemma assures that. 
 
Lemma 4.3.7 : Every Point of LL-LU and every Point of RL-RU are in C(l). 
Proof: We only prove for LL-LU. Other part is similar. 
Let G be intersection point of LL- RU and LU –RL. We can rotate LL- RU in clockwise 
direction pivoting at G up to LU –RL continuously so that Left End Point of Rotating 
line continuously moves on Left Wall starting from LL to LU touching every point of the 
segment within LL-LU. Similarly Right End point of the Rotating line continuously 
moves on Right Wall starting from RL to RU touching every point of the segment within 
RL-RU. 
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Let P be any point on the segment LL-LU. In some intermediate position of  rotation the 
rotating line touches P. Let  the other end of rotating line at that time be denoted by Q. 
Now it only remains to prove that PQ is entirely within Tunnel .PG is enclosed within 
LU-G and LL-G each of which are within Tunnel(l). Hence PG is within Tunnel(l). 
Again GQ is enclosed within RU-G and RL-G each of which are within Tunnel(l). 
Hence GQ is within Tunnel(l). Combining we get entire PQ is within Tunnel(l). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q 

P 

LL
RL

RU
LU

G

Right WallLeft Wall 

 
Finally we observe that Algorithm4.0 terminates because only step4 has conditional loop 
and that condition can be true for finite times since Tunnel length is finite. 
 
Now we have found four points of C(l). To find the remaining boundaries 
of C(l) we propose the following Algorithm4.1 and present proof afterwards. 
 
 
Algorithm 4.1 
/*  To Find Entire W-Cor(l) */ 
 
Input  :    All inputs and outputs of  Algorithm1 
Output :  W-Corridor as an Enclosing Polygon 
 
 Initial points (LL,lj) = WL 

1. l = LL – RU  
2. Pivot  lj 
3. Rotate l, with respect to the Pivot  clockwise up to maximum 

extent so that Right part of  l from lj is always above Lower 
wall & Left part of  l from lj is always below Upper wall and 
also within boundaries of LL, LU at Left Wall and also RU, RL 
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at the Right Wall. Let  lˊ be the final position where l first 
touch Lower or Upper Wall. 

4. If     (  lˊ has touched Lower Wall at lj1 before touching Upper 
Wall )   Then 

A) Add the point lj1 at the end of Sequence WL.  
B)  Pivot  lj1  

C)  Set l  lˊ 
D)   go to 2.    

5. If     (  lˊ has touched Upper Wall before touching Lower Wall 
)   Then 
      Only possibility is that it will touch the point LU before   
      any other point of the Upper Wall. 

A) Add the point RL at the end of Sequence WL. 
B) Return WL  

6. If       ( lˊ meets Upper and Lower Wall together ) Then  
A) Add the point RL at the end of Sequence WL. 
B) Return WL  

7. Return WL  
 
 
Analogously we get WU as sequence of points giving the Upper Bound of Weak 
Corridor and finally properly combining WL and WU we get a polygn which we denote 
by W. 
 
Proof of Algorithm : 
    Initially we state and prove few Lemma which will be useful I the proof of the actual 
algorithm. 
 
Lemma 4.3.8 : No point of C(l) can be below the line segment L1- L2, where L1, L2 
are any two points on Lower Wall with integral abscissa and No point of C(l) can be 
above the line segment U1- U2, where U 1, U 2 are any two points on Upper Wall with 
integral abscissa. 
 
Proof: If L1, L2 both have same ordinate then L1- L2 defines a portion of the Lower Wall. 
Any point below that is readily outside Tunnel(l) hence outside C(l). 
If  L1.y ≠ L2.y then take any line l2 in C(l). It must intersect U1L1 and U2L2 respectively 
say at P,Q. 
Since,         
                                       P.y  ≥ L1.y 
                                       Q.y  ≥ L2.y 
 
∴using Lemma 4.2.3   PQ is entirely above L1- L2 hence all point of PQ. Second part 
can be proved similarly. 
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Lemma 4.3.9: In step5 of the Algorithm 4.1, if l1 has touched Upper Wall before 
touching Lower Wall then Only possibility is that it will touch the point LU before   any 
other point of the Upper Wall. 
Proof : Let U1, U2, …, Un be the points on the Upper Wall sequentially from the left to 
right. Also LU be the point on left Wall below or at equal height of U1.Rotating line is 
pivoted at lj which is at the right of U1, U2, …, Ur (say).Since the rotating line is coming 
upward from the bottom, among two points with same abscissa U1 and LU it will meet 
the lower point first. Hence among U1 and LU it will meet LU  first (since lesser angle 
has to be rotated). 
If Ui  is at left of Uj then rotating line will meet the point Ui first since lesser angle has to 
be rotated to meet be. 
 
So, among all possible meeting point { U1, U2, …, Ur }, U1  is met before all the other 
and before U1 , LU is met. 
 
Lemma 4.3.10:Algorithm  4.1 terminates after finite time. 
Proof :  The Algorithm terminates if the IF condition in Step4 is true for at most finite 
no. of times because all other steps are having no loop and each execute finite operation 
that is finished in the finite time.  
Since, for any initial pivot ∃ finite no of point on the Lower Wall with integral coefficient 
(due to finiteness of Tunnel), so rotating line can meet at most finite no of points on 
Lower Wall in different loop iteration. Hence Proved. 
 
Lemma 4.3.11: When Algorithm  4.1 terminates then l’ coincides with LU-RL . 
Proof: There are exactly two steps when the Algorithm  4.1 terminates viz Step5 and 
Step6.  
When Algorithm  4.1 terminates at Step6 using the same reasoning given in the proof of 
Lemma 4.3.1 we conclude that l’  has attained lowest slope and using the Lemma 4.3.2 , 
we conclude l’ coincides with LU-RL. 
 
When Algorithm  4.1 terminates at Step5, then l’ is now between LU  and some point viz  
Lj of the Lower wall each of which defines Upper and Lower bounds respectively in the 
corresponding abscissa. Hence using the same reasoning given in the proof of Lemma 
4.3.1 we conclude that l’  has attained lowest slope and using the Lemma 4.3.2 , we 
conclude l’ coincides with LU-RL.(Proved) 
 
Lemma 4.3.12: Let line segment PQ  is rotated with pivot at P to some non zero angle  
and let is final position be PR. Let G be any point within PQ and PR, then ∃ an inter 
mediate position of rotating line that passes through G. 
 
Proof : Join G,P. ∠GPQ , ∠GPR  ≠ 0 (since G is intermediate and NOT on any line of 
PQ or PR). ∠GPQ  + ∠GPR = ∠RPQ = Θ. Hence, 0 < ∠GPQ < Θ. Hence when PQ 
start 
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G

 
 
 
 P
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Rotation an rotate up to an angle Θ  then its intermediate position makes all possible 
angles with PQ ranging from 0 to Θ. When rotating line makes ∠GPQ angle with PQ 
then its position coincides with PG.So  ∃ an inter mediate position of rotating line that 
passes through G. (Proved) 
 
 
Now, due to Lemma 4.3.8, no point of C(l) is out side the Polygon W obtained as output 
of Algorithm  4.1.(for the points LL,LU,RU,RL same reasoning can be applied).To 
complete the proof of correctness of the Algorithm  4.1 it remains to show that any point 
of W is also a point of  C(l). 
 
LL-RU is a diagonal of W, so divides W into two parts. We here presents the proof  for 
the points of W  that are below the diagonal LL-RU. Proof for the other half of W will 
be analogous. 
 

 
 
Let us denote the point LL by t0 and other points of WL sequentially from the left to 
right by t0, t1, …, tn  respectively. Let P be any point within Polygon W  that are below 



Diss/07/01/196 

the diagonal LL-RU. Let tk.x ≤  P.x  < tk+1.x. The trapezoid Δ enclosed by the lines tk- 
tk+1, LL-RU  and two vertical lines through tk and tk+1, encloses P. Let li be the position 
of rotating line when it passes through ti and ti+1. 
 
 
 

 
Claim : If li  is within Tunnel then all the points that rotating line segment pass through in 
traversal from li to li+1 (inclusive) is so. 
 
Proof of Claim : li is rotated with pivot at ti+1 unless it touch the Tunnel Wall for first 
time. Since li was in the Tunnel so it cannot go outside (by its any part) the Tunnel 
without touching the Tunnel wall for first time. Since before getting into the position 
Of li+1 neither Upper nor Lower Wall is touched hence in all intermediate position the 
rotating line is within Tunnel. 
Now at li+1 position rotating line has just touched the Tunnel is has not cross the Tunnel 
boundaries (Upper and Lower Wall are inclusive). Therefore li+1 is also with the Tunnel. 
(Claim Proved) 
 
We note that Left and Right End of each li are respectively on Left and Right Wall since 
that invariant is maintained during our rotation. So each li are in C(l) and all intermediate 
Position of rotating line while rotating from position li to li+1 will also be in C(l). 
 Now the trapezoid Δ is divided into several parts by the lines l1, l2, … , lk-1.When point P 
fall on any of the lines l0,l1, l2, … , lk then above claim establishes that P is in C(l). When 
point P fall between any of the lines say lf and lf+1, then Lemma 4.3.12 establish that ∃ an 
intermediate position of rotating line when rotating from lf to lf+1that passes through 
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P. At that position, rotating line again entirely within Tunnel and ends at Left and Right 
Wall implying rotating line at that position is within C(l). 
 
This completes the proof of correctness of the algorithm. 
 
Complexity of  Algorithms : 
 
Complexity of T-Corridor is O(n) where n is # vertical lines of the grid that the given 
straight line segment l intersect i.e. n is a measure of length of the given straight line 
segment. This is because each of the Steps 2,3,4,5 takes O(n)  time and O(n) + O(n) + 
O(n) + O(n) = O(n). 
All the other steps takes constant time. 
 
Both the Algorithm used for W-Corridor finding will have similar type of complexity 
analysis. 
In Algorithm 4.1 Step1 takes O(n)  time , rotation takes O(n)  time. And due to loop 
there are maximum O(n) no of rotation hence the total complexity is O(n2) in worst 
case.. 
 
Similar  analysis shows that Algorithm 4.1 has same worst case complexity. But 
Algorithm 4.1 is having output sensitive runtime since total number of rotation is exactly 
total no of edge found by this algorithm, each rotating line stops at some position where 
one edge is added in the output list. So more precise complexity would be O(h.n) where 
h is the # edge reported by this algorithm. 
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Simulation Tool and Experiments 

 

 
 
 
We have developed a version of DSS investigation tool which is used in our simulation 
of several algorithms described above and also for elementary tasks related to them like 
chain Code Generation. We here briefly  describe the tool’s functionalities. Some Report 
And Graphs Generated by the Tool is  also presented at the end as Experimental Results. 
   
Above is the Screenshot of the initial Screen called Main Menu. 
 
Following is the Screenshot of the Report Generator Which will tell us how Width varies 
With slope when Straight Line Segment have fixed Length. There are option for 
Graphical plotting. 
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Here we Show a Sample Repot Generated by above interface in the following page. The 
variation of slope is with 0.0 to 0.17 with Step 0.01.Y-intercept is 6.21 and Length of the 
Line is 23.Left and Right End indicates X- Coordinate of the Left and Right End 
Respectively. 
 
Then we present a graph generated by the system plotting the slope with T-Corridor  
Width.  
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Digital Geometry Report 
Slope vrs. Width Table 

     
       
 
 

Y-Intercept: 6.21 
Length of Line: 23 

Left End: 2 
Right End:25 

Slope T-Cor. Width T-Cor. Area Chain Code 
0 1 23 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0,  
0.01 1 23 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0,  
0.02 1.99960011995997E-

02 
0.459908027590793 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 

0, 0, 0, 0, 0, 0, 0, 0,  
0.03 2.99865091056713E-

02 
0.689689709430439 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0,  
0.04 3.99680383488716E-

02 
0.919264882024047 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0,  
0.05 4.99376169438921E-

02 
1.14856518970952 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0,  
0.06 3.99281938186312E-

02 
0.918348457828517 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 1, 0, 0,  
0.07 4.98779483570812E-

02 
1.14719281221287 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 1, 0, 0, 0, 0, 0,  
0.08 0.039872611141445 0.917070056253236 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

1, 0, 0, 0, 0, 0, 0, 0,  
0.09 7.96779551074584E-

02 
1.83259296747154 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 

0, 0, 0, 0, 0, 0, 0, 0,  
0.1 9.95037190209986E-

02 
2.28858553748297 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 1, 0,  
0.11 8.94603920341888E-

02 
2.05758901678634 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 

0, 0, 0, 0, 1, 0, 0, 0,  
0.12 3.97150735394769E-

02 
0.913446691407969 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 0,  
0.13 3.96662246937295E-

02 
0.91232316795578 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0,  
0.14 9.90341746674327E-

02 
2.27778601735095 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

1, 0, 0, 0, 0, 0, 0, 0,  
0.15 4.94468176434147E-

02 
1.13727680579854 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 0, 0, 1, 0, 0,  
0.16 3.94976252766682E-

02 
0.90844538136337 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 

0, 0, 0, 0, 1, 0, 0, 0,  
0.17 0.108444143133679 2.49421529207463 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 0,  
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Here is the Graph generated by the above system. 
 

Width To Slope
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Similar form for Reporting and Plotting Length of Segment with Width when Slope 
Is Fixed. 
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This is a form for Ordinate of Digitized Grid Point Finder and Chain Code generator. 
 
 

 
 
 
 
 
 
 
 
 
 
The Display button of the above displays the following graphical representation of  
Tunnel , T-Corridor and  W-Corridor.  
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