
A Survey on Some of the Existing

Attacks on RC4

a dissertation submitted in partial fulfillment of the requirements

for the Master of Technology in Computer Science degree

of the Indian Statistical Institute

by

Atanu Acharyya

(mtc0509)

under the supervision of

Prof Subhamoy Maitra

Indian Statistical Institute

203, Barrackpore Trunk Road

Kolkata, 700 108

CERTIFICATE OF APPROVAL

This is to certify that the thesis entitled “A Survey on some of the

Existing Attacks on RC4” is submitted by Atanu Acharyya towards partial

fulfillment of the requirement for the award of the degree of the Masters in

Technology in Computer Science at Indian Statistical Institute, Kolkata,

embodies the work done under my supervision.

Dated: July 20, 2007

Supervisor:

 Professor Subhamoy Maitra

.

Acknowledgements

With great pleasure and sense of obligation I express my heartfelt gratitude

to my guide and supervisor Prof Subhamoy Maitra of Applied Statistics

Unit, Indian Statistical Institute, Kolkata. I thank him for the guidance, for

the endless patience that was required for his precise revisions of my work,

for his support when things seemed not to work out.

I thank all Computer Science graduates of Indian Statistical Institute for

being enjoyable comrades. I thank them for making my time at ISI a most

pleasant one, and for the long and interesting discussions on academic and

non-academic issues. Special thanks to Kaushik Nath for his all-round

support.

Lastly I sincerely thank all my friends and well wishers who helped me

directly or indirectly towards the completion of this work.

I owe a lot to the Indian Statistical Institute for giving me the opportunity to

providing me with the best environment for doing that.

Atanu Acharyya

Abstract

RC4 is the most widely deployed stream cipher in software applications, due

to its simplicity and efficiency. It has a huge internal state but it has very

light-weight key scheduling and output generation processes, which

motivated our cryptanalytic efforts.

 In this thesis we analyze the KSA (key scheduling algorithm) of RC4, and

describe several weaknesses in it. We identify a large number of weak keys,

in which knowledge of a small number of key bits suffices to determine

many state and output bits with non-negligible probability. We use these

weak keys to construct new distinguishers for RC4, and to mount related key

attacks with practical complexities.

 Another weakness of RC4 initialization mechanism is a major statistical

bias in the distribution of the first output words. This bias makes it trivial to

distinguish between several hundred short outputs of RC4 and random

strings by analyzing their second word. This weakness can be used to mount

a practical ciphertextonly attack on RC4 in some broadcast applications, in

which the same plaintext is sent to multiple recipients under different keys.

This unique statistical behavior is independent of the KSA, and remains

applicable even when RC4 starts with a totally random permutation.

Preface

My first meeting with RC4 was due to a lecture as part of our course

"Cryptology" in the 3
rd
 semester, delivered by Prof Subhamoy Maitra at the

Indian Statistical Institute. I had no idea then that this cipher is one of the

most popular in the world. The algorithm was unexpectedly short in size

with a great simplicity. Later I came to know about its huge application

power in the world of secure e-communication. The futile attacks mounted

on it so far bears its class in the family of all the existing stream ciphers. By

the middle of our course work I got the opportunity from Prof Subhomay

Maitra to work on RC4 under his guidance. Later, after looking deeply at

previous work on RC4 published by other researchers, I was amazed to

figure out that most of it was quite rudimentary culminating in a paper by

Fluhrer and Mcgrew that described a distinguishing algorithm which was

based on simple counting of output pairs. I figured out that RC4 still had not

received the attention it deserves.

Since there was a lot of pressure due to the course works during the final

semester, I had never been able to concentrate much on RC4. Still I have

tried to understand its nature and existing cryptanalysis, applying them

analytically and experimentally, failing most of the time but succeeding here

and there, though finally unable to mount an attack of my own. Eventually, I

managed to analyze and implement some of the existing techniques for

analyzing this unique cipher, pointing out both its weaknesses and its

strength. This is my modest contribution to the world of cryptography.

List of Tables

 3.1 Important parameters(mod 2) of the first few rounds of RC4
*
,

 applied to a 2-conserving permutation………………………….. 33

 3.2 Data required for a reliable distinguisher, for different key sizes.. 38

List of Figures

 1.1 Typical Key Management in stream ciphers 7

 1.2 The Key-Scheduling Algorithm and the Pseudo-Random

 Generation Algorithm . ….. 9

 2.1 The first two rounds of RC4 when S0[2] = 0 and S0[1] ≠ 2 ………15

 3.1 KSA vs. KSA* ……………………………………………………24

 3.2 Schematic representation of Theorem 3.1.2 and Theorem 3.1.4…. 27

 3.3 This graph demonstrates the probabilities of special 2
q
-exact keys

 of RC48,16 to produce streams with long 2
q
-patterned prefixes…….35

 3.4 This graph demonstrates the output prefix that is 2-patterned with

 fixed probabilities (1/4, 1/32, 1/256 and 2
- 12

) when RC4n,16

 is applied to a 2-exact key, as a function of n…………………….. 36

Table of ContentsTable of ContentsTable of ContentsTable of Contents

1 Introduction.. 9

1.1 Introduction to Cryptography.. 9

1.1.1 Symmetric and Asymmetric Schemes .. 10

1.1.2 Stream Ciphers vs Block ciphers .. 11

1.1.3 Stream Ciphers... 12

1.2 The RC4 Stream Cipher .. 14

1.2.1 Description of RC4 .. 16

1.2.2 Related Work ... 17

1.3 General Notations and Conventions... 19

2 A Practical Attack on Broadcast RC4 ... 21

2.1 The Bias... 21

2.1.1 The Biased Second Output of RC4... 21

2.1.2 The Biased First and Second Output of RC4................................ 24

2.2 Cryptanalytic Applications.. 26

2.2.1 Distinguishing RC4 from Random Sources 26

2.2.2 A Ciphertext-Only Attack on Broadcast RC4 28

3 Weaknesses in the Key Scheduling Algorithm of RC4 30

3.1 The Invariance Weakness.. 30

3.1.1 The Weakness in KSA*.. 30

3.1.2. The Weakness in KSA .. 33

3.2 Key-Output Correlation... 37

3.3 Cryptanalytic Applications of the Invariance 44

Weakness... 44

4 Conclusion and Scope of Future... 49

Works.. 49

4.1 Conclusion... 49

4.2 Scope of Future Works.. 50

Bibliography .. 52

Chapter 1

Introduction

1.1 Introduction to Cryptography

Cryptography is a remarkable field in computer science which deals with

very human issues such as of privacy, authenticity, and trust. The word

"cryptography" comes from the Latin crypt, meaning secret, and graphia,

meaning writing. So "cryptography" is literally "secret writing": the study of

how to obscure what you write so as to make it unintelligible to those who

should not read it.

 Mathematically to say, a cryptosystem is a five-touple (P,C,K,E,D), where

the following conditions are satisfied:

1. P is a finite set of possible plaintexts

2. C is a finite set of possible ciphertext

3. K, the keyspace, is a finite set of possible keys

4. For each k ∈ K, there is an encryption rule ek ∈ E and a corresponding

decryption rule dk ∈ D. Each ek : P→ C and dk : C→ P are functions such

that dk(ek(x)) = x ∀ x ∈ P.

 In the last few decades cryptographic algorithms, being mathematical by

nature, have become sufficiently advanced that they can only be handled by

computers. The encryption scheme that pioneered the modern age of

cryptography was the Digital Encryption Standard (DES), which was

designed in IBM laboratories at the early seventies. Although there were

many ciphers which were designed and used before DES, the only similarity

between ciphers like Caesar's code or Enigma on one side, and DES and

Rijndeal on the other side, is that all of them are solutions to the same

fundamental problem.

1.1.1 Symmetric and Asymmetric Schemes

Encryption schemes are divided into two main types, symmetric schemes

(sometimes called secret-key schemes) and asymmetric schemes (sometimes

called public-key schemes). The main difference between these types is the

requirement for a shared piece of secret information (the key) between the

encryptor and the decryptor in symmetric schemes. Symmetric and

asymmetric encryption schemes have various advantages and disadvantages,

some of which are common to both of them.

Advantages of Symmetric-Key Cryptography

1. Throughput rates for the most popular asymmetric encryption methods are

several orders of magnitude slower than those of the best known symmetric

schemes.

2. Key sizes for asymmetric schemes are typically much longer than those

required for symmetric schemes.

3. Symmetric ciphers can be employed as primitives to construct various

cryptographic mechanisms including pseudorandom number generators,

hash functions, and computationally efficient digital signature schemes, to

name just a few.

4. Symmetric ciphers can be composed to produce stronger ciphers. Simple

transformations, which are easy to analyze, but on their own weak, can be

used to construct strong product ciphers.

Advantages of Asymmetric-Key Cryptography

1. In a two-party communication, there is only one secret key, and this key is

generated and used by the same party. The key agreement stage can be

carried out using regular channels, and requires no "out of band" interaction.

2. In order to achieve pairwise privacy in a large network, a symmetric

cipher would require a quadratic number of keys (one key per pair), while an

asymmetric cipher would require a linear number of keys (one key per user).

3. Depending on the mode of operation, the keys of an asymmetric scheme

may remain unchanged for a considerable period of time. For symmetric

schemes, it is common practice to change keys frequently, sometimes for

each communication session.

Summary of Comparison

Symmetric and asymmetric encryption have a number of complementary

advantages. The most significant disadvantage of asymmetric schemes is

their low efficiency, while the most significant advantages are the ability to

securely communicate without any previous interaction, and the relatively

simple key management (a linear number of keys which are rarely changed).

Current cryptographic systems exploit their strengths by integrating both

types into protocols that run in two phases. During the handshaking phase,

the parties use an asymmetric encryption technique to set up a connection

and to establish a symmetric key. During the second phase, this key is used

for an efficient interaction using a symmetric scheme.

 If this two phase protocol is executed for every session, the parties take

advantage of the long term nature of the keys of the asymmetric scheme and

the efficiency of the symmetric scheme, since the asymmetric part of the

protocol is a small fraction of the total encryption time.

1.1.2 Stream Ciphers vs Block ciphers

Stream ciphers are an important class of encryption algorithms. They

encrypt individual characters (usually binary digits) of a plaintext message

one at a time, using a simple time-dependent encryption transformation.

Block ciphers simultaneously encrypt groups of characters of a plaintext

message using a fixed encryption transformation. Stream ciphers are

generally faster than block ciphers in hardware, and have less complex

hardware circuitry. The Blum-Goldwasser probabilistic public-key

encryption scheme described in [6] is an example of a asymmetric stream

cipher. However, most stream ciphers are based on symmetric schemes.

Block ciphers are memoryless whereas in stream ciphers the encryption

function may vary as the plaintext is processed. Stream ciphers are

sometimes called state ciphers since encryption depends not only on the key

and plaintext, but also on the current state. This distinction between block

and stream ciphers is not definitive; adding a small amount of memory to a

block cipher (as in the CBC mode) results in a stream cipher with large

blocks.

 Stream ciphers are more appropriate, and in some cases mandatory (e.g.,

in some telecommunications applications), when buffering is limited or

when characters must be individually processed as they are received.

Because they have limited or no error propagation, stream ciphers may also

be advantageous in situations where transmission errors are highly probable.

There is a vast body of theoretical knowledge on stream ciphers, and various

design principles for stream ciphers have been proposed and extensively

analyzed. However, there are relatively few fully-specified stream cipher

algorithms in the open literature. This unfortunate state of affairs can be

partially explained by the fact that most stream ciphers used in practice tend

to be proprietary and confidential. By contrast, numerous concrete block

cipher proposals have been published, some of which have been

standardized or placed in the public domain. Nevertheless, because of their

significant advantages, stream ciphers are widely used today, and one can

expect many more proposals in the coming years.

1.1.3 Stream Ciphers

The only encryption scheme that is information theoretically secure is the

Vernam cipher, or in its more popular name, the One Time Pad scheme

(OTP). Using this scheme requires a key that is as long as the message, and

the ciphertext is produced by XORing the plaintext with the key. An obvious

drawback of the OTP is that the huge key length increases the difficulty of

key distribution and storage. This motivates the design of stream ciphers in

which the keystream is pseudorandomly generated from a smaller secret key

(seed), so that the keystream appears random to a computationally bounded

adversary.

 Stream ciphers are commonly classified as being synchronous or

asynchronous. A synchronous stream cipher is one in which the keystream is

generated independently of the plaintext message and of the ciphertext. An

asynchronous stream cipher (denoted also as a self-synchronizing stream

cipher) is one in which the keystream is generated as a function of the key

and a fixed number of previous ciphertext digits. The main difference

between these types is the ability of the self synchronizing stream ciphers to

continue the decryption, even when some part of the ciphertext was lost.

However most of the popular stream ciphers are of the synchronous type,

and in particular RC4 is such.

 An inherent property of stream ciphers is the absolute loss of security

when encrypting more than one message with the same key. A single key k

produces a single keystream Z, and knowing the encryptions e1 and e2 of the

messages m1 and m2, makes it easy to calculate

 e1 ⊕ e2 = (Z ⊕ m1) ⊕ (Z ⊕ m2) = (Z ⊕ Z) ⊕ (m1⊕ m2) = m1⊕ m2

which contains significant information about the plaintexts. There are two

main approaches to overcome this problem; the first one is to use a single

stream, and the second is to change keys after every session. To implement

the first approach, the parties must share the exact position in the stream,

from which the next keystream words are going to be taken for the next

session. However, communication problems may cause loss of data and loss

of synchronization, and when this happens the parties cannot communicate

until they re-synchronize. There are keystream generators that have the

Random Access property, which means that it is possible to reach every

point in the stream, within a logarithmic amount of time. For schemes of this

type, it is possible to divide the stream into long finite intervals, and use one

interval per session. An example to such a stream cipher is Leviathan,

designed by Fluhrer and McGrew ([10]).

 The second approach is more popular, and includes a mechanism that

takes as its input the secret key and an additional piece of data, and derives a

session-key from them. This piece of data is usually called as the

Initialization Vector, and is usually transmitted in the clear (see Figure 1.1).

 The complexity of the session-key derivation varies from simple methods

such as concatenation and XORing, to complex methods which hash the two

values. The hash function approach preserves the security of most ciphers,

but the concatenation approach sometimes reduces their security. An

example of this phenomenon is the IV attack on RC4. Even though there are

no known practical attacks on this stream cipher, it becomes extremely weak

when combined with a concatenation-based session-key derivation

mechanism.

1.2 The RC4 Stream Cipher

A large number of stream ciphers were proposed and implemented over the

last twenty years. Most of these ciphers were based on various combinations

of linear feedback shift registers, which were easy to implement in hardware,

but relatively slow in software. In 1987 Ron Rivest designed the RC4 stream

cipher, which was based on a different and more software friendly paradigm.

RC4 is most commonly used to protect Internet traffic using the SSL (Secure

Sockets Layer) protocol. Moreover, it was integrated into Microsoft

Windows, Lotus Notes, Apple AOCE, Oracle Secure SQL, and many other

applications. In addition, it was chosen to be part of the Cellular Digital

Packet Data specification. Indeed, these uses of RC4 may make RC4

the most widely-used stream cipher in the world. Its design was kept a trade

secret until 1994, when someone anonymously posted its source code to the

Cypherpunks mailing list. The correctness of this unofficial description was

confirmed by comparing its outputs to those produced by licensed

implementations.

 RC4 has a secret internal state which is a permutation S ∈ S[N] of all the

N = 2
n
 possible n bits words, and two indices i, j ∈ [N] in it. The initial state

is derived from a variable-size key by a Key-Scheduling Algorithm (KSA),

and then RC4 alternately modifies the state (by exchanging two out of the N

values) and produces an output (by picking one of the N values).

 In practical applications n is typically chosen as 8, and thus RC4 has a

huge state of

log2 (|[256]|
2
. |S256|) = log2 (2

16
.256!) ≈ 1700

bits. It is thus impractical to guess even a small part of this state, or to use

standard time/memory/data tradeoff attacks. In addition, the state evolves in

a complex nonlinear way, and thus it is difficult to combine partial

information about states that are far away in time. Consequently, all the

techniques developed to attack stream ciphers based on linear feedback shift

registers seem to be inapplicable to RC4.

 Since RC4 is such a widely used stream cipher, it had attracted

considerable attention in the research community, but so far no one had

found an attack on RC4 which is even close to being practical: For n = 8 and

sufficiently long keys, the best known attack requires more than 2700 time

to find its initial state.

1.2.1 Description of RC4

RC4 consists of two parts (described in Figure 1.2): A Key-Scheduling

Algorithm KSA which turns a random key (whose typical size is 40-256

bits) of ℓ words into an initial permutation S ∈ SN, and a pseudo-random

generation part PRGA which uses this permutation to generate a pseudo-

random output sequence.

 The PRGA initializes two indices i and j to 0, and then loops over four

simple operations which increment i as a counter, increment j pseudo

randomly, exchange the two values of S pointed to by i and j, and output the

value of S pointed to by S[i] + S[j]. Note that every entry of S is swapped at

least once (possibly with itself) within any N consecutive rounds, and thus

the permutation S evolves fairly rapidly during the output generation

process.

 The KSA consists of N loops which are similar to the PRGA round

operation. It initializes S to be the identity permutation and i and j to 0, and

applies a PRGA-like round operation N times, stepping i across S, and

updating j by adding S[i] and the next word of the key (in cyclic order).

1.2.2 Related Work

Attacks on the Keystream Generation

A branch and bound attack which is based on the "Guess on Demand"

paradigm is analyzed in [4] and [9]. The attack simulates the generation

process, and keeps track of all the known values in S that had been deduced

so far. Whenever an unknown entry in S is needed in order to continue the

simulation, the attacker tries all the possible values (or guesses a value).

Notice that the number of trials is typically smaller than N since known

values in the permutation S cannot be repeated. Actual outputs are used by

the simulation to either deduce additional values in S (if the pointed output

value is unknown) or to backtrack when the pointed value is known and

different from the actual output, thus contradicting this branch.

 The time complexity of this attack was analyzed analytically in [9], and

the analytic results were found compatible with experimental estimations.

 This tree search is simple to implement, and needs only N output words.

However, it is very inefficient in time, and its enormous running time, makes

it worse than exhaustive search for typical key sizes, and completely

impractical for RC4n > 4. For redundant regions of the stream, branches

representing incorrect guesses tend to shorten, and the time complexity

improves, threatening the security of RC45.

Distinguishers of RC4 Streams from Randomness

A different research direction was to analyze the statistical properties of RC4

outputs, and in particular to construct distinguishers between RC4 and truly

random bit generators. Goli'c described in [5] a linear statistical weakness of

RC4, caused by a positive correlation between the second binary derivative

of the LSB and 1. This weakness implies that RC4 outputs of length 2
6n – 7.8

(2
40.2

 for the typical n = 8) can be reliably distinguished from random strings.

This result was subsequently improved by Fluhrer and McGrew in [3]. They

analyzed the distribution of triplets consisting of the two outputs produced at

times t and t + 1 and the known value of i ª t (mod N), and found small

biases in the distribution of (7N - 8) of these N
3
 triplets: some of these

probabilities are positively biased (1/N
3
 .(1 + 1/N)), and some of these

probabilities are negatively biased (1/N
3
 .(1 - 1/N)). They used information

theoretic methods to prove that these biases can be used to distinguish

between RC4 and a truly random source by analyzing sequences of 2
30.6

output words. This number of output words was estimated rigorously,

considering a success probability of 90%.

Their analysis of this typical behavior of RC4 streams yielded a

classification of special RC4 states which they denoted as fortuitous states,

which are the source of most of these biases. They noted that these states can

be used to extract parts of the internal state with non-trivial probability, but

since RC4 states are huge this does not lead to practical attacks on RC4 for

n > 5.

Weaknesses of Initialization Mechanism of RC4

The major difference between the effective key size of RC4 and the real key,

with the simplicity of the key extension mechanism, stimulated considerable

research on the initialization mechanism of RC4.

 In particular, Andrew Roos noted in [11] that for keys which have K[0] +

K[1] ª 0 (mod N), the first output is equal to K[2] + 3 with probability

2
-2.85

. The cryptanalyst can use this fact to deduce two bytes of information

about the key (K[0] + K[1] and K[2]) with probability 2
-10:85

 instead of the

trivial 2
-16

, and thus reduce the effective key length in exhaustive search by

about five bits.

 Grosul and Wallach showed in [8] that for large keys whose size is close

to N bytes, similar keys produce similar initial states and similar streams.

This observation implies that for large keys, RC4 is vulnerable to a related

key attack. However, for typical short keys, every byte of the key is used

fairly early during the KSA execution, and consequently a change in one

byte, causes a difference in the index j from a relatively early stage. The

difference in the values of j implies that different entries are swapped in the

rounds that succeed this change. This causes significant difference in the

output of the KSA (which is the initial permutation) and in the generated

stream.

Other Results

Interesting properties of RC4 were described in several papers. Finney

specified in [7] a class of states that RC4 can never enter. This class contains

all the states for which i = a, j = a + 1 and S[a + 1] = 1 (a fraction of 1/N
2
 of

RC4 states are in this class). Analysis of states of this type indicates that this

class is closed under RC4 round operation. Given some arbitrary state in this

class, corresponding to the value a, the round operation will transfer this

state into another state in the class, corresponding to a
’
 = a + 1. The round

operation will give i
’
 = i + 1 = a + 1 = a

’
 , j

’
 = j + S[i

’
] = (a + 1) + S[a + 1] =

(a + 1) + 1 = a
’
 + 1 (satisfying the first condition), and the swap will transfer

the value 1 from a
’
 to a

’
 + 1, actually implying S[a

’
 + 1] = 1 and satisfying

the second condition. Thus these states are connected by short cycles of

length N(N - 1). Since the state transition in RC4 is invertible and the initial

state (i = j = 0) is not of this type, RC4 can never enter these states for any

key. However, if RC4 would have been initialized to such a state, it would

be totally insecure. The generated stream would have a very short period.

Given such an RC4 stream, Pudovkina noticed that the initial permutation

can be elegantly extracted, by looking at the outputs with indices that are

equivalent to (-1) mod N - 1 (z(N - 1) - 1, z2(N - 1) - 1,………., zN(N - 1) - 1). It

appears that these N output values are a shift of the initial permutation, and

since one of the permutation values is known (Si + 1 = 1), the exact shift can

be also isolated.

1.3 General Notations and Conventions

We denote the number of bits in a keystream word as n, and the size of the

permutation S by N � 2
n
. l stands for the number of key words and

whenever we discuss an RC4 version with a specified n and l , we add a

subscript indicating these parameters (e.g. RC48,16 is the commonly used 8-

bit version with a 128-bit key). Sometimes we omit l (typically when it is

irrelevant to the discussion) and write RC48, or even simply RC4.

 To denote the symmetric group of permutations of {0,……,N - 1} we use

the standard notation SN. The set of indices in S ∈ SN is denoted by [N].

 S ∈ SN , i ∈ [N] and j ∈ [N] are used to specify the components of RC4

states and r is usually used to indicate round numbers (the last four notations

are used for KSA and PRGA). We use the triplets (S, i, j) to indicate the

permutation and indices of specific states.

 The rounds of the KSA as well as those of the PRGA are numbered

according to the value of i, which means that the KSA has rounds

0 ,……, 1−N , whereas the PRGA has rounds 1, 2,…….. To indicate RC4

state after round r (which is the state after r + 1 KSA rounds or after r

PRGA rounds), we use the subscript r in Sr, ir and jr.

Chapter 2

A Practical Attack on Broadcast
RC4

In this chapter we describe a major statistical bias in the distribution of the

initial bytes of RC4 streams, and discuss its cryptanalytic applications.

2.1 The Bias

Our main observation is that the second output word of RC4 has a very

strong bias, viz. it takes on the value 0 with twice the expected probability

(2/N instead of 1/N). Other values of the second output and all the values of

other outputs have almost uniform distributions.

2.1.1 The Biased Second Output of RC4

Theorem 2.1.1 Assume that the initial permutation S is randomly chosen

from the set of all the possible permutations of SN. Then the probability that

the second output word of RC4 is 0 is approximately 2/N.

Proof: Notation: Denote the permutation S after it has been updated in round

t by St (S0 is the initial permutation) and the output of this round as zt.

Claim 2.1.2 When S0[2] = 0 and S0[1] ≠ 2, the second output(z2) is 0 with

probability 1.

Figure 2.1: The first two rounds of RC4 when S0[2] = 0 and S0[1] ≠ 2

Proof: When S0[1] ∫ 2 :

Round 0: i0 = 0 = j0.

 Denote S0[1] by X.

Round 1: i1 = 1

 j1 = j0 + S0[i1] = 0 + S0[1] = X

 S0[1] ↔ S0[X]

 ⇒ S1[1] = S0[X] = Y, say.

 S1[X] = S0[1] = X

 z1 = S1[S1[1] + S1[X]] = S1[Y + X]

Round 2: i2 = 2

 j2 = j1 + S1[i2] = X + S1[2] = X (since S1[2] = S0[2] = 0).

 S1[2] ↔ S1[X]

 ⇒ S2[2] = S1[X] = X

 S2[X] = S1[2] = 0

 z2 = S2[S2[2] + S2[X]] = S2[X + 0] = 0

When S0[1]=2 :

Round 1: i1 = 1

 j1 = j0 + S0[i1] = 0 + S0[1] = 2

 S0[1] ↔ S0[2]

 ⇒ S1[1] = S0[2] = 0

 S1[2] = S0[1] = 2

 z1 = S1[S1[1] + S1[2]] = S1[0 + 2] = 0

Round 2: i2 = 2

 j2 = j1 + S1[i2] = 2 + S1[2] = 2 + 2 = 4

 S1[2] ↔ S1[4]

 ⇒ S2[2] = S1[4] = U ≠ 0 = , say (U ≠ 0 = S1[1])

 S2[4] = S1[2] = 2

 z2 = S2[S2[2] + S2[4]] = S2[U + 2] = 0, only when U = 255

 since then z2 = S2[1] = 0.

 Thus z2 = 0 with probability 1/N. á

Proof(of Theorem 2.1.1):

P[z2 = 0]

 = P[z2 = 0 | S0[2] = 0] . P[S0[2] = 0]

 + P[z2 = 0 | S0[2] ≠ 0] . P[S0[2] ≠ 0]

 ≈ 1 .1/N + 1/N .(1 – 1/N)

 = 1/N. (1 + 1 – 1/N)

 ≈ 2/N

which is twice its expected probability. á

An Interesting Observation Based On This Bias

By applying Bayes rule to the above result, we get

P[S0[2] = 0 | z2 = 0]

 = P[S0[2] = 0] . P[z2 = 0 | S0[2] = 0] / P[z2 = 0]

 ≈ ((1/N). 1) / (2/N)

 = 1/2

Consequently, whenever the second output byte is 0 we can extract an entry

of S with probability 1/2, which significantly exceeds the trivial probability

of 1/N. This fact can be used to accelerate most of the known attacks by a

factor of N/2, but this improvement does not suffice to mount a practical

attack on RC4n > 5.

2.1.2 The Biased First and Second Output of RC4

A similar phenomenon appears in the distribution of the first pair of values,

where the output pair (z1 = 0, z2 = 0) has probability that is three times the

expected 1/N
2
.This result is described in the form of the following theorem:

Theorem 2.1.3 Assume that the initial permutation S is randomly chosen

from the set of all the possible permutations of SN. Then the probability that

both the first and second output word of RC4 is 0 is approximately 3/N
2
.

Proof: The probability mass is distributed as per the following three cases:

Claim2.1.4 When S0[2] ≠ 0, P(z1 = 0, z2 = 0) = 1/N
2
.

Proof:

Round 0: i0 = 0 = j0.

 Let S0[1] = X, S0[2] = Y

Round 1: i1 = 1

 j1 = j0 + S0[i1] = 0 + S0[1] = X

 S0[1] ↔ S0[X]

 ⇒ S1[1] = S0[X] = Y, say

 S1[X] = S0[1] = X

 z1 = S1[S1[1] + S1[X]] = S1[Y + X] (= 0 with probability 1/N)

Round 2: i2 = 2

 j2 = j1 + S1[i2] = X + S1[2] = X + Y (since S1[2] = S0[2] = Y)

 S1[2] ↔ S1[X + Y]

 ⇒ S2[2] = S1[X + Y] = U, say

 S2[X] = S1[2] = Y

 z2 = S2[S2[2] + S2[X]] = S2[U + Y] (= 0 with probability 1/N)

Thus P(z1 = 0, z2 = 0) = 1/N . 1/N = 1/N
2
. á

Claim 2.1.5 When S0[2] = 0, S0[1] ≠ 1, P(z1=0, z2=0) = 1/N.

Proof:

Round 0: i0 = 0 = j0.

 Let S0[1] = X

Round 1: i1 = 1

 j1 = j0 + S0[i1] = 0 + S0[1] = X

 S0[1] ↔ S0[X]

 ⇒ S1[1] = S0[X] = Y, say

 S1[X] = S0[1] = X

 z1 = S1[S1[1] + S1[X]] = S1[Y + X] (= 0 with probability 1/N)

Round 2: i2 = 2

 j2 = j1 + S1[i2] = X + S1[2] = X (since S1[2] = S0[2] = 0)

 S1[2] ↔ S1[X]

 ⇒ S2[2] = S1[X] = X

 S2[X] = S1[2] = 0

 z2 = S2[S2[2] + S2[X]] = S2[X + 0] = 0

Thus P(z1=0, z2=0) = 1/N . 1 = 1/N. á

Case 3: S0[2] = 0, S0[1] = 1

Claim 2.1.6 S0[2] = 0, S0[1] = 1, P(z1=0, z2=0) = 1.

Proof:

Round 0: i0 = 0 = j0.

Round 1: i1 = 1

 j1 = j0 + S0[i1] = 0 + S0[1] = 1

 S0[1] ↔ S0[1]

 ⇒ S1[1] = S0[1] = 1

 z1 = S1[S1[1] + S1[1]] = S1[1 + 1] = 0 (since S1[2] = S0[2] = 0)

Round 2: i2 = 2

 j2 = j1 + S1[i2] = 1 + S1[2] = 1 (since S1[2] = 0)

 S1[2] ↔ S1[1]

 ⇒ S2[1] = S1[2] = 0

 S2[2] = S1[1] = 1

 z2 = S2[S2[1] + S2[2]] = S2[0 + 1] = 0

Thus P(z1 = 0, z2 = 0) = 1 á

Proof (of Theorem 2):

P[z1 = 0, z2 = 0]

 = P [z1=0, z2=0 | S0[2] ≠ 0] . P [S0[2] ≠ 0]

 + P [z1=0, z2=0 | S0[2] = 0, S0[1] ≠ 1] . P [S0[2] = 0, S0[1] ≠ 1]

 + P [z1=0, z2=0 | S0[2] = 0, S0[1] = 1] . P [S0[2] = 0, S0[1] = 1]

 ≈ 1/N
2
.(1 – 1/N) + 1/N .1/N . (1 – 1/N) + 1. 1/N. 1/N

 = 1/N
2
.(1 – 1/N + 1 – 1/N + 1)

 = 1/N
2
 .(3 – 2/N)

 ≈ 3/N
2

which is thrice its expected probability. á

An Interesting Observation Based On This Bias

By applying Bayes rule to the above result, we get

P[S0[2] = 0 | z1 = 0, z2 = 0]

 = P[S0[2] = 0] . P[z1 = 0, z2 = 0 | S0[2] = 0] / P[z1 = 0, z2 = 0]

 = ((1/N). (1/N + 1/N)) / (3/N
2
)

 = 2/3

Consequently, whenever the first and second output byte is 0 we can extract

two entries of S with probability 2/3, which significantly exceeds the trivial

probability of 1/N
2
.

2.2 Cryptanalytic Applications

The strong bias described so far has several practical cryptanalytic

applications.

2.2.1 Distinguishing RC4 from Random Sources

The following observation can be used to construct a strong distinguisher

for RC4 which requires only O(N) output words.

Theorem 2.2.1 Let X, Y be distributions, and suppose that the event e

happens in X with probability p and in Y with probability p(1 + q). Then for

small p and q, O(1/pq
2
) samples suffice to distinguish X from Y with a

constant probability of success.

Proof: Let Xe, Ye be the random variables specifying the number of

occurrences of e in t samples. Then Xe and Ye have binomial distributions

with parameters (t, p) and (t, p(1 + q)), and their expectations, variances and

standard deviations are:

E[Xe] = tp,

E[Ye] = tp(1 + q)

V(Xe) = tp(1 – p) ≈ tp

V(Ye) = tp(1 + q)(1 – p(1 + q))

 = tp(1 + q – p(1 + q)
2
)

 ≈ tp(1 + q)

SD(Xe) = tp

SD(Ye) =)1(qtp + ≈ tp

We'll analyze the size of t that implies a difference of at least one standard

deviation between the expectations of the two distributions:

 E[Xe] – E[Ye] ≥ SD(Xe)

⇔ tp(1 + q) – tp ≥ tp

⇔ tpq ≥ tp

⇔ t ≥ 1/pq
2

Consequently, O(1/pq
2
) samples (The constant depends on the desired

success probability) suffice for the distinguishing. á

Let X be the probability distribution of the second output in uniformly

distributed streams, and let Y be the probability distribution of the second

output in streams produced by RC4 for randomly chosen keys. The event e

denotes an output value of 0, which happens with probability of 1/N in X and

2/N in Y. By using the previous theorem with p = 1/N and q = 1, we can

conclude that we need about (1/pq
2
) = N outputs to reliably distinguish the

two distributions.

2.2.2 A Ciphertext-Only Attack on Broadcast RC4

There are many broadcasting protocols which are used today in a variety of

applications. For example, many users send the same email message to

multiple recipients (encrypted under different keys), and many groupware

applications enable multiple users to synchronize their documents by

broadcasting encrypted modification lists to all the other group members. All

these applications are vulnerable to this attack.

Theorem 2.2.2 Let M be a plaintext, and let C1,C2,………,Ck be the RC4

encryptions of M under k uniformly distributed keys. Then if k = Ω(N),the

second byte of M can be reliably extracted from C1,C2,………,Ck.

Proof: Let Ki be the i
th
 key and the corresponding RC4 output stream is Zi,

where i = 1,……,k. Then

Ci[2] = M[2] ⊕ Zi[2]

Since, according to theorem 2.1.1, Zi[2] = 0 with probability 2/N with the

restriction that k = Ω(N), therefore

Ci[2] = M[2] with probability 2/N.

Thus, a fraction of 2/N of the second ciphertext bytes are expected to have

the same value as the second plaintext byte, and thus the most frequent

character in C1[2],……,Ck[2] is likely to be M[2] itself. á

An improvement can be done on the above attack if we use theorem 2.1.3

and the result is as follows

Theorem 2.2.3 Let M be a plaintext, and let C1,C2,………,Ck be the RC4

encryptions of M under k uniformly distributed keys. Then if k = Ω(N
2
),the

first and second byte of M can be reliably extracted from C1,C2,………,Ck.

Proof: Ci[1] = M[1] ⊕ Zi[1] and

 Ci[2] = M[2] ⊕ Zi[2]

Since, according to theorem 2.1.3, Zi[1] = 0 and Zi[2] = 0 with probability

3/N
2
 with the restriction that k = Ω(N

2
), therefore

Ci[1] = M[1] and Ci[2] = M[2] with probability 3/N
2
.

Thus, a fraction of 3/N
2
 of the second ciphertext bytes are expected to have

the same value as the second plaintext byte, and thus the most frequent

character in C1[1],……,Ck[1] is likely to be M[1] itself and that in

C1[2],……,Ck[2] is likely to be M[2] itself.

Chapter 3

Weaknesses in the Key Scheduling
Algorithm of RC4

Here we present a special kind of weakness, called invariance weakness in

the key scheduling algorithm of RC4. We identify a large number of weak

keys, in which knowledge of a small number of key bits suffices to

determine many state and output bits with non-negligible probability.

3.1 The Invariance Weakness

3.1.1 The Weakness in KSA*

We prove here the invariance weakness only for a simplified variant of the

KSA, which we denote as KSA* as described in Figure 1. The only

difference between them is that KSA* updates i at the beginning of the loop,

whereas KSA updates i at the end of the loop. After formulating and proving

the existence of this weakness in KSA*, we describe the modifications

required to apply this analysis to the real KSA.

 Figure 3.1. KSA vs. KSA*

Definition 3.1.1 Let S be a permutation of SN, t be an index in S and b be

some integer. Then if S[t]≡mod b t, the permutation S is said to b-conserve the

index t. Otherwise, the permutation S is said to b-unconserve the index t.

Denote the permutation S and the indices i and j after round t of KSA* as St,

it and jt respectively. Denote the number of indices that a permutation b-

conserves as Ib(S). For the sake of simplicity, we often write it instead of

Ib(St).

Definition 3.1.2 A permutation S of SN, is b-conserving if Ib(S) = N , and is

almost b-conserving if Ib(S) ≥ N - 2.

Definition 3.1.3 Let b,l be integers, and let K be an l words key. Then K is

called a b-exact key if for any index t K[t mod l] ≡mod b (1 - t). In case K[0]

= 1 and MSB(K[1]) = 1, K is called a special b-exact key.

Proposition 3.1.1 For a b-exact key, it is necessary (but not sufficient) that

b | ℓ.

Proof: K[i] ≡mod b (1 – i)

 K[i + ℓ] ≡mod b (1 – i)

 ≡mod b (1 – i – ℓ)

 => K[i+ℓ] = (1 – i) + λb

 = (1 – i – ℓ) + µb

 => ℓ = (µ – λ)b

 => b | ℓ.

Theorem 3.1.2 Let q ≤ n and ℓ be integers and b � 2
q
. Suppose that b | ℓ

and let K be a b-exact key of ℓ words. Then the permutation S = KSA*(K) is

b-conserving.

Before getting to the proof itself, we will prove an auxiliary lemma.

Lemma 3.1.3 If it + 1 ≡ jt + 1 (mod b), then it + 1 = it, i.e. Ib(St + 1) = Ib(St).

Proof: The only operation that might affect S (and maybe I) is the swapping

operation. However, when it + 1 and jt + 1 are equivalent (mod b), St + 1 b-

conserves it + 1 (jt + 1) if and only if St b-conserved jt (it). Thus the number of

indices St b-conserves remains the same.

 St(it + 1), and St(jt + 1) are swapped to get St + 1(jt + 1)and St + 1(it + 1)

respectively. Thus St + 1(it + 1) = St(jt + 1). Now the following two cases may

arise:

Case1: Let St b-conserves index jt + 1.

 => St(jt + 1) ≡mod b jt + 1

 ≡mod b it + 1 (since jt + 1 ≡mod b it + 1)

=> St + 1(it + 1) ≡mod b it + 1

=> St + 1 b-conserves index it + 1.

Case2: Let St does not b-conserve index jt + 1.

 => St(jt + 1) Tmod b jt + 1

 => St(jt + 1) Tmod b it + 1 (since jt + 1 ≡mod b it +1)

=> St+1(it + 1) Tmod b it + 1

=> St + 1 does not b-conserve index it + 1. á

Proof(of Theorem 3.1.2): We will prove by induction on t that for any 1≤ t

≤ N , it turns out that Ib(St) = N and it ≡ jt (mod b). This in particular implies

that IN = N, which makes the output permutation b-conserving.

For t = 0 (before the first round), the claim is trivial because i0 = j0 = 0 and

S0 is the identity permutation which is b-conserving for every b.

Suppose that jt ≡ it and St is b-conserving. Then

it + 1 = it + 1 and

jt + 1 = jt + St[it + 1] + K[it + 1 mod ℓ]

 ≡ mod b it + it + 1 + (1 - it + 1) = it + 1 = it + 1

Thus, it + 1 ≡ jt + 1 (mod b) and by applying Lemma 1 we get it + 1 = it = N and

therefore St+1 is b-conserving. á

KSA* thus transforms special patterns in the key into corresponding patterns

in the initial permutation.

3.1.2. The Weakness in KSA

The small difference between KSA* and KSA is essential in that KSA,

applied to a b-exact key, does not preserve the equivalence (mod b) of i and j

even after the first round. Analyzing its execution on a b-exact key gives

j1 = j0 + S0[i1] + K[i1] = 0 + S0[0] + K[0] = K[0] ≡mod b 1 Tmod b 0 = i1

and thus the structure described in Section 3.1.1 cannot be preserved by the

cyclic use of the words of K. However, the invariance weakness can be

adjusted to the real KSA, and the proper modifications are formulated in the

following theorem:

Theorem 3.1.4 Let q ≤ n and ℓ be integers and b � 2
q
. Suppose that b | ℓ

and let K be a special b-exact key of ℓ words. Then

P[KSA(K) is almost b-conserving] ≥ 2/5

when the probability is over the rest of the key bits.

Extensive experimentation indicates that this bound is not tight, and the

probability is actually very close to one half.

 First we prove the following lemma that indicates special properties of

RC4 round operation (for the KSA, as well as the PRGA).

Lemma 3.1.5 Let ir and jr be the indices of round r of PRGA (or KSA). Let X

be the value pointed to by j in this round before the swap (i.e., Sr-1[jr] = X).

Then X will not be involved in determining j during rounds r + 1,...,r + N-1.

Proof. We can consider the permutation S as a queue of elements used to

update j. Assuming a random behavior of the entries of S, this queue has the

following properties:

Random Entering A new value that enters the queue is entered into a

random position. When the value X is pointed to by i (before the swap), it is

used to forward j and afterwards it enters the permutation in the pseudo-

random position j (relative position j + 1 - i).

Turn Loss On every round, a randomly chosen element in the queue loses

its turn and is thrown to the end of the line. When the value X is pointed to

by j (before the swap), it is swapped to position i, which is the worst relative

position (N - 1). The choice of this deprived value is pseudo-random.

No Overpass The k
th

element in the queue must wait at least k rounds for its

turn. The only transfers in the queue are of the first two types, and

consequently no element can move forward.

The correctness of the lemma stems from these properties of RC4 round

operation. The value pointed to by j (before the swap) has a Turn Loss and

must wait at least N rounds before being used as S[i] (No Overpass). á

Figure 3.2 Schematic representation of Theorem 3.1.2 and Theorem 3.1.4

Recall that the swap operation of the first round caused the entries i0 and j0 to

be unconserved, and ruined the equivalence of i and j. However, the

additional constraints on the key ensure that in the second round j becomes

equivalent to i, and that the unconserved entries will not affect the

preservation of the structure during the rest of the KSA. The following

lemma summarizes this scenario.

Lemma 3.1.6 If K is a special 2-exact key for which K[1] = N-2, then the

indices i and j of rounds 1,...,N-1 are equivalent (mod 2).

Proof: K[0] = 1, which causes the corrupted indices after round 0 to be i0 =

0 and j0 = j-1 + S-1[0] + K[0] = 0 + 0 + 1 = 1. The discrepancy of S1[1] is used

to fix the non-equivalence of i and j during round 1:

 i1 = 1

 j1 = j0 + S0[1] + K[1] = 1 + 0 + (N - 2) = N - 1 ªmod 2 i1

Consequently, i1 ª j1, I1 = N - 2 and the unconserved indices in S1 are 0 and

N - 1. Lemma 3.1.5 ensures that these values (that are almost the last ones

in the queue at this point) are not involved in determining j during rounds

2,...........,N - 2, a fact that ensures that only conserved indices are involved

in determining j2,.........,jN - 2. This property, along with the exactness of K,

preserves the equivalence of j and i (just as in the proof of Theorem 3.1.2) at

least until after round N - 2. á

Lemma 3.1.7 Let K be a special 2-exact key of an even size. Suppose that

K[1] = N-2 (this constraint is compatible with the requirements of special 2-

exact keys). Then the outcome of the KSA applied to K is an almost 2-

conserving permutation, regardless of the other bits of the key.

Proof: I1 = N – 2. Thus according to lemma 3.1.3 we get IN - 2 = I1 = N - 2.

We analyze two possible scenarios for the last round (round N - 1). If SN - 1
conserves the index N - 1, j is updated appropriately and we can reuse

Lemma 3.1.4 to conclude that IN-1 = IN-2. Otherwise, the index N - 1 is

unconserved by SN - 2 causing j to be updated inappropriately, i.e., iN - 1 T jN - 1.

However, N - 1 is unconserved, and thus, swapping it with the non-

equivalent index jN - 1, causes the index jN - 1 (independently of its apriori

status) to become conserved (we use here the fact that b = 2, which implies

that if a T c and c T d then a T d). Thus, at most one of the indices iN - 1, jN - 1
was conserved by S before round N - 1 and at least one of them is conserved

after round N - 1. Consequently, the number of conserved indices cannot

decrease and iN - 1 ¥ iN - 2 = N - 2, implying that SN is almost 2-conserving. á

Lemma 3.1.8 Let K be a special 2-exact key and let S = KSA(K). Then

 P[KSA(K) is almost 2-conserving] ≥ 2/5

Proof: Recall that the conditions of this lemma include predetermining the

whole K[0], but only the MSB of K[1]. The eliminated condition (with

respect to Lemma 3.1.6) is that K[1] = N - 2, which sent the corrupted entry

to the last position, making it unlikely that it will affect the other entries.

Without this condition, the unconserved entries might interfere with the

updates of j, ruin its equivalence to i, and generate more unconserved

indices. However, with relatively high probability, this problematic scenario

will be prevented even under these weakened conditions. As in the previous

case, the corrupted entry in i0 = 0 is promised not to be touched by i during

the remaining N - 2 rounds. The second corrupted entry (j1) might be used

to update j in round j1, which would ruin the equivalence of the indices.

However, if this location is pointed to by j before round j1, the discrepancy

in moved to an entry which i will not visit (it is possible that this entry will

be pointed to by j on some intermediate round r, and the discrepancy will

move from j1 to ir = r, but the entry r will be untouchable by i, and thus the

discrepancy can move only between entries which i will never visit), and

will not interfere with the updates of j. Notice that j1 = 1 + K[1] > N/2 (recall

that MSB(K[1]) = 1), and thus j has many opportunities (at least N/2) to visit

position j1 before i does. The probability of N/2 pseudo random j's to reach

some specific value, is well approximated by 1 - 1/ e º 2/5. This gives a

lower bound on the probability that KSA(K) is almost 2-conserving.
á

Finally, we derive the proof of Theorem 3.1.4 from the proof of Lemma

3.1.8. The equivalence of the indices after the second round (round 1) is

independent of b, and the only part of the proof that might change is the

probability of the unconserved entries to corrupt this equivalence. However,

the corrupted entries are still 0 and j2 > N/2 and thus this probability can be

still bounded from below by 2/5. á

 KSA thus transforms special patterns in the key into corresponding

patterns in the initial permutation. For RC4n that uses a key of l = 2
p
. m

words (of n bits each), we found that for every q  p, there exists an

assignment of n + 1 + q(l - 1) bits (the first word, q LSBs of each of the

other l - 1 words, and the MSB of the second word) of K that determines

Θ (qN) bits of S0 with a significant probability of one half. For the

commonly used RC48 with a key of 6 bytes, 14 bits of K determine 238 bits

of S0, 19 bits of K determine 472 bits of S0, etc. This correlation implies that

the KSA of RC4 does not mix the bits of the key equally between the bits of

the permutation, and this phenomenon induces a weakness of the KSA.

3.2 Key-Output Correlation

Here we will analyze the propagation of the weak key patterns into the

generated outputs. First we prove Theorem 3.2.1 which deals with the highly

biased behavior of a weakened variant of the PRGA, applied to a b-

conserving permutation. Next, we will argue that the prefix of the output of

the original PRGA is highly correlated to the prefix of the swapless variant

(on the same initial permutation), which implies the existence of biases in

the PRGA distribution for these weak keys.

3.2.1 Correlation for PRGA*

Definition 3.2.1 Let PRGA* be a weakened variant of PRGA with no swap

operations. RC4* be a weakened variant of RC4 with that uses PRGA
*
.

Definition 3.2.2 Let q ∈ N, b � 2
q
. Let {xr}r=1 to ∞ be the stream of q-bit

words, produced by applying the q-bit PRGA
*
 to the identity permutation in

Sb. Then the stream {xr} is called a b-pattern, and every stream {Xr}r=1 to h of n

bit words (n ¥ q) that satisfies

∀ r ≤ h, Xr ª xr (mod b)

is called a b-patterned stream.

Claim 3.2.1 Any stream produced by PRGA
*
 from a b-conserving

permutation is b-patterned.

Proof: Let {Xr}r=1 to ∞ be this stream. Denote the state components sequences

induced by this stream by {Sr}r=1 to ∞, {Ir}r=1 to ∞ and {Jr}r=1 to ∞. Denote the

same sequences induced by the q-bit stream {xr}r=1 to ∞ by {sr}, {ir}, {jr}. We

first prove by induction on r that ∀ r Ir ª ir (mod b) and Jr ª jr (mod b). We

use the fact that there are no swap operations and thus the permutations S

and s do not change and remain b-conserving throughout the generation

process.

Base Case For r = 0 (before the first round), I0 = i0 = J0 = j0 = 0.

Inductive Step Suppose that Ir - 1 ª ir - 1 and Jr - 1 ª jr - 1. Then

Ir = Ir - 1 + 1 ª ir - 1 + 1 ª ir
Jr = Jr - 1 + Sr -1[Ir] ª jr - 1 + Ir ª jr - 1 + ir ª jr - 1 + s[ir] ª jr

Having these equivalences, we can easily derive the equivalence of the

streams

xr = sr[sr[ir] + sr[jr]] ª sr[ir] + sr[jr] ª ir + jr

Xr = Sr[Sr[Ir] + Sr[Jr]] ª Sr[Ir] + Sr[Jr] ª Ir + Jr = ir + jr = xr á

Analysis of this q-bit stream shows that it is periodic with period 2b.

Theorem 3.2.2 Let q ≤ n, b � 2
q
 and S0 be a b-conserving permutation. Let

{Xt}t=1 to ∞ be the output sequence generated by applying PRGA* to S0, and xt

� Xt mod b. Then the sequence {xt}t=1 to ∞ is periodic with period 2b.

Proof: Since there is no swap operation, the permutation does not change

and remains b-conserving throughout the generation process. Notice that all

the values of S0 are known (mod b), as well as the initial indices i0 = j0 = 0 ≡

0 (mod b), and thus the round operation (and the output values) can be

simulated (mod b), independently of S0.

it = t

jt = jt - 1 + S[it] = jt-1 + S[t] ≡mod b jt - 1 + t

Thus we have

 jt ≡mod b jt-1 + t

 jt-1 ≡mod b jt-2 + t-1

 …………………

 j1 ≡mod b j0 + 1

By adding the above equations we have

 jt ≡mod b j0 + ∑ =

t

i
i

1
 = t (t + 1) / 2

Now xt = S[S[it] + S[jt]]

 = S[≡mod b it + jt]

 ≡mod b it + jt
 ≡mod b t + t (t + 1) / 2

 = t (t + 3) / 2

Thus x2b + 1 ≡mod b (2b + 1)(2b + 4)/2

 = (2b + 1)(b + 2)

 ≡mod b 2

Also x1 ≡mod b 1.(1 + 3)/2 = 2 ≡mod b x2b + 1

Hence proving the periodicity. á

The following figure illustrates the above theorem for b = 2.

 Table 3.1: Important parameters(mod 2) of the first few

 rounds of RC4
*
, applied to a 2-conserving permutation

3.2.2 Correlation for PRGA

After proving this biased behavior of PRGA

*
 on b-conserving permutations,

we analyze the expression of this phenomenon when using the original

PRGA. Recall that at each round of the PRGA S changes in at most two

locations. Thus we can expect a diminishing correlation between the

sequences of permutations produced by PRGA and PRGA
*
 from the same

initial permutation.

This correlation fades out when r is increased, since as more swaps that are

made by the PRGA, more entries are "spoiled" by these swaps. This

diminishing correlation is expressed also in the output words, which are

completely determined by the correlated permutations. Consequently special

exact keys are likely to be transformed by the KSA into almost b-conserving

permutations, which are likely to be transformed by the PRGA into

relatively long b-patterned streams. The correlation between special exact

keys and patterned stream prefixes is demonstrated in Figure 5.2, where the

function h → P[1 ≤ ∀ r ≤ h Zr ª xr mod 2
q
] (for special 2

q
-exact keys) is

empirically derived for n = 8, l = 16 and different q's. For example, a

special 2-exact key completely determines 20 output bits (the LSBs of the

first 20 outputs) with probability 2
- 4.2

 instead of 2
- 20

, and a special 16-exact

key completely determines 40 output bits (4 LSBs from each of the first 10

outputs) with probability 2
- 2.3

, instead of 2
- 40

.

We have thus demonstrated a strong probabilistic correlation between some

bits of the secret key and some bits of the output stream for a large class of

weak keys. An important observation about this correlation is its unexpected

dependency on n. Notice that the size of the correlated prefix depends on the

probability that all the entries that are used to produce the output (three

entries per round) are "virgin", that is were not swapped in an earlier round.

The probability that the three indices which are used to generate the h
th

output, were not swapped in the previous h - 1 rounds, has negative linear

dependence on the probability of a random entry to hit a specific entry,

which is proportional to 1/N . Thus the size of the correlated output depends

linearly on N (and exponentially in n). This is somewhat surprising since one

would expect that enlarging the array would strengthen the overall security.

However, the expression of the invariance weakness is amplified, which

counterbalances this expectation. Moreover, assuming a fixed-size key, the

fraction of 2
q
-exact keys for q > 1 "prefers" large n's. This is due to the fact

that the dependency on l = #key bits / n is stronger than the dependency on

n (recall that a 2
q
-exact key requires fixing n + 1 + q (l - 1) bits).

Consequently using a 128-bit key in RC48,16 is more immune to this

weakness than using this key in RC416,8. This phenomenon, where the

expression of the invariance weakness is amplified when n is increased, is

demonstrated in Figure 3.3.

Figure 3.3: This graph demonstrates the probabilities of special 2
q
-exact

keys of RC48,16 to produce streams with long 2
q
-patterned prefixes

Figure 3.4: This graph demonstrates the output prefix that is 2-patterned

with fixed probabilities (1/4, 1/32, 1/256 and 2
- 12

) when RC4n,16 is applied

to a 2-exact key, as a function of n.

3.3 Cryptanalytic Applications of the Invariance

 Weakness

3.3.1 Distinguishing RC4 Streams from
 Randomness

In [2] Mantin and Shamir described a significant statistical bias in the

second output word of RC4. They used this bias to construct an efficient

algorithm which distinguishes between RC4 outputs and truly random

sequences by analyzing only one word from O(N) different outputs streams.

This is an extremely efficient distinguisher, but it can be easily avoided by

discarding the first two words from each output stream. If these two words

are discarded, the best known distinguisher requires about 2
30
 output words

(see [3]). Our new observation yields a significantly better distinguisher for

most of the typical key sizes. The new distinguisher is based on the fact that

for a significant fraction of keys, a significant number of initial output words

contain an easily recognizable pattern. This bias is flattened when the keys

are chosen from a uniform distribution, but it does not completely disappear

and can be used to construct an efficient distinguisher even when the first

two words of each output sequence are discarded.

 Notice that the probability of a special 2
q
-exact key to be transformed into

a 2
q
-conserving permutation does not depend of the key length l (see

Theorem 3.1.4). However, the number of predetermined bits is linear in l ,

and consequently the size of this bias (and thus the number of required

outputs) also depends on l . In Table 3.2 we specify the quantity of data

required for a reliable distinguisher, for different key sizes. In particular, for

64 bit keys the new distinguisher requires only 2
21
 data instead of the

previously best number of 2
30
 output words.

 It is important to notice that the specified output patterns extend over

several dozen output words, and thus the quality of the distinguisher is

almost unaffected by discarding the first few words. For example, discarding

the first two words causes the data required for the distinguisher to grow by

a factor of between 2
0.5

 and 2
2
 (depending on l). Another important

observation is that the biases in the LSB's distribution can be combined in a

natural way with the biased distribution of the LSB 's of English texts into an

efficient distinguisher of RC4 streams from randomness in a ciphertext-only

attack in which the attacker does not know the actual English plaintext

which was encrypted by RC4. This type of distinguishers is discussed in the

next section.

 Table 3.2: Data required for a reliable distinguisher, for different key sizes

3.3.2 Ciphertext-Only Distinguishers based on the
 Invariance Weakness

The distinguishers we presented in Section 3.3.1, as well as most of the

distinguishers mentioned in the literature (for RC4 and other stream ciphers)

assume knowledge of the plaintext in order to isolate the XORed keystream.

 However, in practice the only information the attacker has is typically

some statistical knowledge about the plaintext, e.g., that it contains English

text. Combining the non-random behaviors of the plaintext and the

keystream is not always possible, and there are cases where XORing biased

streams result with a totally random stream (e.g. when one stream is biased

in its even positions and the other stream is biased in its odd positions). We

prove here that if the plaintexts are English texts, it is easy to construct a

ciphertext-only distinguisher from aforesaid biases. The intuition of this

construction is that the biases described in Section 3.3.1 are in the

distribution of the LSBs, and consequently they can be combined with the

non-random distribution of the LSBs of English texts.

There are many major biases in the distribution of the LSBs of English texts,

and they can be combined with biases of the keystream words in various

ways. In theorem 3.3.1 we estimate the bias caused by XORing two streams

which are biased in their LSBs distribution.

Theorem 3.3.1 Let {mt}, {zt} and {ct} be the plaintext, keystream and

ciphertext (mod 2) of a stream cipher respectively (we assume independence

between the plaintext and the keystream). Suppose that zt and mt have

positive biases bz > 0, bm > 0 towards the bits vz; vm respectively, i.e, Pr[zt =

vz] = 0.5 + bz and Pr[mt = vm] = 0.5 + bm. Then

Pr[ct = vm ⊕ vz] = 0.5 + 2bmbz

Proof:

Pr[ct = vm ⊕ vz] = Pr[mt = vm, zt = vz] + Pr[mt = vm , zt = vz]

 = Pr[mt = vm] ÿ Pr[zt = vz] + Pr[mt = vm] ÿ Pr[zt = vz]

 = (
2

1
 + bm) ÿ (

2

1
 + bz) + (

2

1
 - bm) ÿ (

2

1
 - bz)

 =
2

1
+ 2bmbz

 á

Next we exemplify constructions of ciphertext-only distinguishers, by

concentrating on specific biases of the LSBs distributions in English texts.

Corollary 3.3.2 Let C be the ciphertext generated by RC4 from a random

key and the ASCII representation of plaintexts, distributed according to the

first order statistics of English texts. Let p
l
 be the probability of a random

l -words key to be special 2- exact. Then C can be distinguished from a

random stream by analyzing the first few words of about
2

800

l
p
 different RC4

streams.

Proof: The first order statistics of English texts gives a 55% probability of a

character to have LSB 0, and thus bm º 0.05. Analyzing the results from

section 3.2 we get

bz = Pr[c1 = 0] - 0.5

 = Pr [c1 = 0 | key is special b-exact] +

 Pr [c1 = 0 | key is not special b-exact] . (1 - p
l
)

 - 0.5

 º 0.75 ÿ p
l
 + 0.5 ÿ (1 - p

l
) - 0.5

 = 0.25 ÿ p
l

Thus, Pr[c1 = 0] = 0.5 + 2 ÿ 0.05 ÿ 0.25 ÿ p
l
= 0.5 + 0.025 ÿ p

l
 = 0.5 ÿ (1 + 0.05

p
l
) and the data required for a reliable ciphertext-only distinguisher is (again

we use Theorem 2.2.1)

O(
2

1

pq
) = O(

()205.05.0

1

l
p⋅⋅

) = O (
2

800

l
p

)

 á

 For the typical RC48,8, p l
 = 2

-16
 and we get a 2

41.6
 ciphertext-only

distinguisher. A drawback of this approach is that our distinguisher works on

prefixes of messages that have distribution different from first order

statistics of English. For example, the space character is not likely to occur

at the beginning of a message, whereas in first order statistics of English, it

is the most probable character. Experiments we made imply that the 4th

character of English texts has probability of 60% for having an LSB of 0.

Thus we get bm = 0.1, and bz = Pr[z4 = 0] - 0.5 º 0.25 ÿ p
l
 (from the graph),

which gives Pr[c4 = 0] = 0.5 + 2 ÿ 0.1 ÿ 0.25 ÿ p
l
 = 0.5 ÿ (1 + 0.1 ÿ p

l
). Thus

the data required for the distinguisher is 2
39.6

 outputs.

It is important to note that we did not use all the statistical information that is

available in either the keystream or the plaintext distributions, and

consequently this analysis does not represent the best possible attack.

Chapter 4

Conclusion and Scope of Future

Works

4.1 Conclusion

In this thesis we have described several flaws in the initialization mechanism

of RC4, which are caused by its extreme simplicity. The complicated task of

the KSA, which is to extend relatively short random keys into large

pseudorandom permutations, is reasonably but only partially fulfilled. The

initialization of the pseudo-random index j to 0 seems to be the most

problematic operation, and the second byte bias could be avoided by using a

more complex initialization of j. Possible methods for initializing j are to use

j from the end of the KSA or to give it the value of one of the key words.

The invariance weakness is the inherent consequence of the structure of the

KSA.

 A perfect initialization mechanism is not easy to achieve. We would like

to avoid patterns that are independent of the key (like the second byte bias),

while on the other hand we do not want any trivial dependency between the

key and the first output bits (like the invariance weakness). A common mode

of operation to achieve these contradicting goals is to discard a prefix of

output bits. These mute rounds usually disconnect the generated stream from

the initialization process, and improve the "randomness" of the generated

stream. Discarding the first two bytes voids the practical attacks, but retains

the invariance weakness. Consequently, it is recommended to discard at least

complete sequence of N words.

 One can notice that when enlarging RC4 words into 16 bits (which is

sometimes recommended for faster encryption of large amount of data), the

discarded prefix should also grow in the same way (exponentially). The

expression of the invariance weakness spreads over several hundred words

in RC416 and eliminating only 256 words is not sufficient when N is larger.

 The final and a positive conclusion about the security of RC4 is that using

RC4 in this way seems to be secure, even when using a concatenation-based

session-key derivation. It is believed that no information leaks about either

the key or any part of the encrypted messages.

4.2 Scope of Future Works

Many new observations about the internal state, the output distribution and

the correlation between them in RC4 are there in the literature. Several

methods are being described to extract partial information about the internal

state, and we believe that these methods can be further improved.

 Excluding prefix distinguishers, the best known distinguisher for RC4

([3]) is based on counting the number of occurrences of output pairs in

periodic positions in the stream, which is an amazingly simple method. A

non-negligible portion of our thesis was dedicated to describing better

distinguishers.

 The most promising way to constructing a distinguisher is based on the

correlations of Jenkins. We know that whenever a value X is pointed to by j

before the swap, it will not be pointed to by i (before the swap) for at least N

rounds. However, the values that are pointed to by i can be guessed to be i -

z. Thus knowing S[j] = X can be used to predict that i - z will differ from X

during at least N rounds. Furthermore, the value that was used as S[j] has a

constant probability (1/e) to be used as S[i] after exactly N rounds, and a

doubled probability to be equal to i - z in this round. The lower bound to

success probability of guessing S[j] with success probability is
N

1
(1 +

N

c
)

(for a small constant c), but not strict and unfortunately a tighter bound is not

yet found.

 A promising research direction is to extend the analysis of the KSA in the

view of transfer function. Calculating (recursively or explicitly) the pairs

transfer function, i.e. the probability that the values in positions a and b to

reach positions c and d respectively within r rounds, might lead to new

observations. This function is at least as biased as the singles transfer

function, and might be more useful. It is possible that the pairs transfer

function can be easily derived from the singles transfer function. If this is the

case, it will provide new insights into the complete distribution of KSA

outputs, which might be surprisingly biased.

Bibliography

[1] Scott R. Fluhrer, Itsik Mantin, and Adi Shamir, Weaknesses in the key

 scheduling algorithm of RC4, SAC: Annual International Workshop on

 Selected Areas in Cryptography, SAC'2001, LNCS, 2001.

[2] Itsik Mantin and Adi Shamir, A practical attack on broadcast RC4, FSE:

 Fast Software Encryption, FSE'2001 (Yokohama, Japan), Springer-

 Verlag, April 2001.

[3] Scott R. Fluhrer and David A. McGrew, Statistical analysis of the alleged

 RC4 keystream generator, FSE: Fast Software Encryption, FSE'2000,

 Springer-Verlag, 2000, pp. 19-30.

[4] Serge Mister and Stafford E. Tavares, Cryptanalysis of RC4-like ciphers,

 SAC: Selected Areas in Cryptography, SAC'98 (Kingston, Ontario,

 Canada), LNCS, vol. 1556, Springer-Verlag, August 1999, pp. 131-143.

[5] Jovan Dj. Goli'c, Linear statistical weakness of alleged RC4 key-stream

 generator, EUROCRYPT: Advances in Cryptology - EUROCRYPT '97,

 International Conference on the Theory and Application of Cryptographic

 Techniques, EUROCRYPT'97 (Konstanz, Germany), LNCS, vol. 1233,

 Springer-Verlag, May 1997, pp. 226-238.

[6] Manuel Blum and Shafi Goldwasser, An efficient probabilistic public-

 key encryption scheme which hides all partial information, Advances in

 Cryptology: Proceedings of CRYPTO'84 (Santa Barbara, California,

 USA), Springer-Verlag, August 1985, pp. 289-302.

[7] Hal Finney, an RC4 cycle that can't happen, September 1994.

[8] Alexander L. Grosul and Dan S. Wallach, a related-key cryptanalysis of

 RC4, Technical Report TR-00-358, Department of Computer Science,

 Rice University, October 2000.

[9] Lars R. Knudsen, Willi Meier, Bart Preneel, Vincent Rijmen, and Sven

 Verdoolaege, Analysis methods for (alleged) RC4, ASIACRYPT:

 Advances in Cryptology, International Conference on the Theory and

 Applications of Cryptology and Information Security, ASIACRYPT'98

 (Beijing, China), LNCS, vol. 1514, Springer, October 1998, pp. 327-341.

[10] David A. McGrew and Scott R. Fluhrer, The stream cipher

 LEVIATHAN, https://www.cosic.esat.kuleuven.ac.be/nessie/,

 October 2000, NESSIE project submission.

[11] Andrew Roos, A class of weak keys in the RC4 stream cipher,

 sci.crypt posting, September 1995.

[12] Itsik Mantin, Analysis of the stream cipher RC4, November 2001

