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Abstract 

 
 

RC4 is the most widely deployed stream cipher in software applications, due 

to its simplicity and efficiency. It has a huge internal state but it has very 

light-weight key scheduling and output generation processes, which 

motivated our cryptanalytic efforts. 

 

    In this thesis we analyze the KSA (key scheduling algorithm) of RC4, and 

describe several weaknesses in it. We identify a large number of weak keys, 

in which knowledge of a small number of key bits suffices to determine 

many state and output bits with non-negligible probability. We use these 

weak keys to construct new distinguishers for RC4, and to mount related key 

attacks with practical complexities. 

 

    Another weakness of RC4 initialization mechanism is a major statistical 

bias in the distribution of the first output words. This bias makes it trivial to 

distinguish between several hundred short outputs of RC4 and random 

strings by analyzing their second word. This weakness can be used to mount 

a practical ciphertextonly attack on RC4 in some broadcast applications, in 

which the same plaintext is sent to multiple recipients under different keys. 

This unique statistical behavior is independent of the KSA, and remains 

applicable even when RC4 starts with a totally random permutation. 
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My first meeting with RC4 was due to a lecture as part of our course 

"Cryptology" in the 3
rd
 semester, delivered by Prof Subhamoy Maitra at the 

Indian Statistical Institute. I had no idea then that this cipher is one of the 

most popular in the world. The algorithm was unexpectedly short in size 

with a great simplicity. Later I came to know about its huge application 

power in the world of secure e-communication. The futile attacks mounted 

on it so far bears its class in the family of all the existing stream ciphers. By 

the middle of our course work I got the opportunity from Prof Subhomay 

Maitra to work on RC4 under his guidance. Later, after looking deeply at 

previous work on RC4 published by other researchers, I was amazed to 

figure out that most of it was quite rudimentary culminating in a paper by 

Fluhrer and Mcgrew that described a distinguishing algorithm which was 

based on simple counting of output pairs. I figured out that RC4 still had not 

received the attention it deserves. 

 

Since there was a lot of pressure due to the course works during the final 

semester, I had never been able to concentrate much on RC4. Still I have 

tried to understand its nature and existing cryptanalysis, applying them 

analytically and experimentally, failing most of the time but succeeding here 

and there, though finally unable to mount an attack of my own. Eventually, I 

managed to analyze and implement some of the existing techniques for 

analyzing this unique cipher, pointing out both its weaknesses and its 

strength. This is my modest contribution to the world of cryptography. 
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Chapter 1 
 

Introduction 
 

 

1.1 Introduction to Cryptography  

 
Cryptography is a remarkable field in computer science which deals with 

very human issues such as of privacy, authenticity, and trust. The word 

"cryptography" comes from the Latin crypt, meaning secret, and graphia, 

meaning writing. So "cryptography" is literally "secret writing": the study of 

how to obscure what you write so as to make it unintelligible to those who 

should not read it. 

 

    Mathematically to say, a cryptosystem is a five-touple (P,C,K,E,D), where 

the following conditions are satisfied: 

1. P is a finite set of possible plaintexts 

2. C is a finite set of possible ciphertext 

3. K, the keyspace, is a finite set of possible keys  

4. For each k ∈ K, there is an encryption rule ek ∈ E and a corresponding 

decryption rule dk ∈ D. Each ek : P→  C and dk : C→  P are functions such 

that dk(ek(x)) = x ∀ x ∈ P. 

 

    In the last few decades cryptographic algorithms, being mathematical by 

nature, have become sufficiently advanced that they can only be handled by 

computers. The encryption scheme that pioneered the modern age of 

cryptography was the Digital Encryption Standard (DES), which was 

designed in IBM laboratories at the early seventies. Although there were 

many ciphers which were designed and used before DES, the only similarity 

between ciphers like Caesar's code or Enigma on one side, and DES and 

Rijndeal on the other side, is that all of them are solutions to the same 

fundamental problem. 



 

 

 

 

 

1.1.1 Symmetric and Asymmetric Schemes 
 

Encryption schemes are divided into two main types, symmetric schemes 

(sometimes called secret-key schemes) and asymmetric schemes (sometimes 

called public-key schemes). The main difference between these types is the 

requirement for a shared piece of secret information (the key) between the 

encryptor and the decryptor in symmetric schemes. Symmetric and 

asymmetric encryption schemes have various advantages and disadvantages, 

some of which are common to both of them. 
 

 

Advantages of Symmetric-Key Cryptography 
 

1. Throughput rates for the most popular asymmetric encryption methods are 

several orders of magnitude slower than those of the best known symmetric 

schemes. 

 

2. Key sizes for asymmetric schemes are typically much longer than those 

required for symmetric schemes. 

 

3. Symmetric ciphers can be employed as primitives to construct various 

cryptographic mechanisms including pseudorandom number generators, 

hash functions, and computationally efficient digital signature schemes, to 

name just a few. 

 

4. Symmetric ciphers can be composed to produce stronger ciphers. Simple 

transformations, which are easy to analyze, but on their own weak, can be 

used to construct strong product ciphers. 

 

 

Advantages of Asymmetric-Key Cryptography 
 



1. In a two-party communication, there is only one secret key, and this key is 

generated and used by the same party. The key agreement stage can be 

carried out using regular channels, and requires no "out of band" interaction. 

 

2. In order to achieve pairwise privacy in a large network, a symmetric 

cipher would require a quadratic number of keys (one key per pair), while an 

asymmetric cipher would require a linear number of keys (one key per user). 

 

3. Depending on the mode of operation, the keys of an asymmetric scheme 

may remain unchanged for a considerable period of time. For symmetric 

schemes, it is common practice to change keys frequently, sometimes for 

each communication session. 

 

 

Summary of Comparison  
 

Symmetric and asymmetric encryption have a number of complementary 

advantages. The most significant disadvantage of asymmetric schemes is 

their low efficiency, while the most significant advantages are the ability to 

securely communicate without any previous interaction, and the relatively 

simple key management (a linear number of keys which are rarely changed). 

Current cryptographic systems exploit their strengths by integrating both 

types into protocols that run in two phases. During the handshaking phase, 

the parties use an asymmetric encryption technique to set up a connection 

and to establish a symmetric key. During the second phase, this key is used 

for an efficient interaction using a symmetric scheme. 

 

    If this two phase protocol is executed for every session, the parties take 

advantage of the long term nature of the keys of the asymmetric scheme and 

the efficiency of the symmetric scheme, since the asymmetric part of the 

protocol is a small fraction of the total encryption time. 

 

 

1.1.2 Stream Ciphers vs Block ciphers  
 

Stream ciphers are an important class of encryption algorithms. They 

encrypt individual characters (usually binary digits) of a plaintext message 

one at a time, using a simple time-dependent encryption transformation. 



Block ciphers simultaneously encrypt groups of characters of a plaintext 

message using a fixed encryption transformation. Stream ciphers are 

generally faster than block ciphers in hardware, and have less complex 

hardware circuitry. The Blum-Goldwasser probabilistic public-key 

encryption scheme described in [6] is an example of a asymmetric stream 

cipher. However, most stream ciphers are based on symmetric schemes. 

Block ciphers are memoryless whereas in stream ciphers the encryption 

function may vary as the plaintext is processed. Stream ciphers are 

sometimes called state ciphers since encryption depends not only on the key 

and plaintext, but also on the current state. This distinction between block 

and stream ciphers is not definitive; adding a small amount of memory to a 

block cipher (as in the CBC mode) results in a stream cipher with large 

blocks. 

 

    Stream ciphers are more appropriate, and in some cases mandatory (e.g., 

in some telecommunications applications), when buffering is limited or 

when characters must be individually processed as they are received. 

Because they have limited or no error propagation, stream ciphers may also 

be advantageous in situations where transmission errors are highly probable. 

There is a vast body of theoretical knowledge on stream ciphers, and various 

design principles for stream ciphers have been proposed and extensively 

analyzed. However, there are relatively few fully-specified stream cipher 

algorithms in the open literature. This unfortunate state of affairs can be 

partially explained by the fact that most stream ciphers used in practice tend 

to be proprietary and confidential. By contrast, numerous concrete block 

cipher proposals have been published, some of which have been 

standardized or placed in the public domain. Nevertheless, because of their 

significant advantages, stream ciphers are widely used today, and one can 

expect many more proposals in the coming years. 

  

 

1.1.3  Stream Ciphers  
 

The only encryption scheme that is information theoretically secure is the 

Vernam cipher, or in its more popular name, the One Time Pad scheme 

(OTP). Using this scheme requires a key that is as long as the message, and 

the ciphertext is produced by XORing the plaintext with the key. An obvious 

drawback of the OTP is that the huge key length increases the difficulty of 

key distribution and storage. This motivates the design of stream ciphers in 



which the keystream is pseudorandomly generated from a smaller secret key 

(seed), so that the keystream appears random to a computationally bounded 

adversary. 

     

    Stream ciphers are commonly classified as being synchronous or 

asynchronous. A synchronous stream cipher is one in which the keystream is 

generated independently of the plaintext message and of the ciphertext. An 

asynchronous stream cipher (denoted also as a self-synchronizing stream 

cipher) is one in which the keystream is generated as a function of the key 

and a fixed number of previous ciphertext digits. The main difference 

between these types is the ability of the self synchronizing stream ciphers to 

continue the decryption, even when some part of the ciphertext was lost. 

However most of the popular stream ciphers are of the synchronous type, 

and in particular RC4 is such. 

 

    An inherent property of stream ciphers is the absolute loss of security 

when encrypting more than one message with the same key. A single key k 

produces a single keystream Z, and knowing the encryptions e1 and e2 of the 

messages m1 and m2, makes it easy to calculate 

 

       e1 ⊕  e2 = (Z ⊕  m1) ⊕  (Z ⊕  m2) = (Z ⊕  Z) ⊕  (m1⊕  m2) = m1⊕  m2 

 

which contains significant information about the plaintexts. There are two 

main approaches to overcome this problem; the first one is to use a single 

stream, and the second is to change keys after every session. To implement 

the first approach, the parties must share the exact position in the stream, 

from which the next keystream words are going to be taken for the next 

session. However, communication problems may cause loss of data and loss 

of synchronization, and when this happens the parties cannot communicate 

until they re-synchronize. There are keystream generators that have the 

Random Access property, which means that it is possible to reach every 

point in the stream, within a logarithmic amount of time. For schemes of this 

type, it is possible to divide the stream into long finite intervals, and use one 

interval per session. An example to such a stream cipher is Leviathan, 

designed by Fluhrer and McGrew ([10]). 

 

    The second approach is more popular, and includes a mechanism that 

takes as its input the secret key and an additional piece of data, and derives a 

session-key from them. This piece of data is usually called as the 

Initialization Vector, and is usually transmitted in the clear (see Figure 1.1). 



 

 
 

 

    The complexity of the session-key derivation varies from simple methods 

such as concatenation and XORing, to complex methods which hash the two 

values. The hash function approach preserves the security of most ciphers, 

but the concatenation approach sometimes reduces their security. An 

example of this phenomenon is the IV attack on RC4. Even though there are 

no known practical attacks on this stream cipher, it becomes extremely weak 

when combined with a concatenation-based session-key derivation 

mechanism. 

 

 

1.2 The RC4 Stream Cipher 

  
A large number of stream ciphers were proposed and implemented over the 

last twenty years. Most of these ciphers were based on various combinations 



of linear feedback shift registers, which were easy to implement in hardware, 

but relatively slow in software. In 1987 Ron Rivest designed the RC4 stream 

cipher, which was based on a different and more software friendly paradigm. 

RC4 is most commonly used to protect Internet traffic using the SSL (Secure 

Sockets Layer) protocol. Moreover, it was integrated into Microsoft 

Windows, Lotus Notes, Apple AOCE, Oracle Secure SQL, and many other 

applications. In addition, it was chosen to be part of the Cellular Digital 

Packet Data specification. Indeed, these uses of RC4 may make RC4  

the most widely-used stream cipher in the world. Its design was kept a trade 

secret until 1994, when someone anonymously posted its source code to the 

Cypherpunks mailing list. The correctness of this unofficial description was 

confirmed by comparing its outputs to those produced by licensed 

implementations.  

 

    RC4 has a secret internal state which is a permutation S ∈ S[N] of all the 

N = 2
n
 possible n bits words, and two indices i, j ∈ [N ] in it. The initial state 

is derived from a variable-size key by a Key-Scheduling Algorithm (KSA), 

and then RC4 alternately modifies the state (by exchanging two out of the N 

values) and produces an output (by picking one of the N values). 

 

    In practical applications n is typically chosen as 8, and thus RC4 has a 

huge state of  

log2 ( |[256]|
2
. |S256| ) =  log2 ( 2

16
.256! ) ≈  1700  

bits. It is thus impractical to guess even a small part of this state, or to use 

standard time/memory/data tradeoff attacks. In addition, the state evolves in 

a complex nonlinear way, and thus it is difficult to combine partial 

information about states that are far away in time. Consequently, all the 

techniques developed to attack stream ciphers based on linear feedback shift 

registers seem to be inapplicable to RC4. 

 

    Since RC4 is such a widely used stream cipher, it had attracted 

considerable attention in the research community, but so far no one had 

found an attack on RC4 which is even close to being practical: For n = 8 and 

sufficiently long keys, the best known attack requires more than 2700 time 

to find its initial state. 

 

 



 

1.2.1  Description of RC4  
    

RC4 consists of two parts (described in Figure 1.2): A Key-Scheduling 

Algorithm KSA which turns a random key (whose typical size is 40-256 

bits) of ℓ words into an initial permutation S ∈ SN, and a pseudo-random 

generation part PRGA which uses this permutation to generate a pseudo-

random output sequence. 

 

    The PRGA initializes two indices i and j to 0, and then loops over four 

simple operations which increment i as a counter, increment j pseudo 

randomly, exchange the two values of S pointed to by i and j, and output the 

value of S pointed to by S[i] + S[j]. Note that every entry of S is swapped at 

least once (possibly with itself) within any N consecutive rounds, and thus 

the permutation S evolves fairly rapidly during the output generation 

process. 

 

    The KSA consists of N loops which are similar to the PRGA round 

operation. It initializes S to be the identity permutation and i and j to 0, and 

applies a PRGA-like round operation N times, stepping i across S, and 

updating j by adding S[i] and the next word of the key (in cyclic order). 

 

 
 

 

 



1.2.2  Related Work  
 

Attacks on the Keystream Generation  
 

A branch and bound attack which is based on the "Guess on Demand" 

paradigm is analyzed in [4] and [9]. The attack simulates the generation 

process, and keeps track of all the known values in S that had been deduced 

so far. Whenever an unknown entry in S is needed in order to continue the 

simulation, the attacker tries all the possible values (or guesses a value). 

Notice that the number of trials is typically smaller than N since known 

values in the permutation S cannot be repeated. Actual outputs are used by 

the simulation to either deduce additional values in S (if the pointed output 

value is unknown) or to backtrack when the pointed value is known and 

different from the actual output, thus contradicting this branch. 

 

    The time complexity of this attack was analyzed analytically in [9], and 

the analytic results were found compatible with experimental estimations. 

 

    This tree search is simple to implement, and needs only N output words. 

However, it is very inefficient in time, and its enormous running time, makes 

it worse than exhaustive search for typical key sizes, and completely 

impractical for RC4n > 4. For redundant regions of the stream, branches 

representing incorrect guesses tend to shorten, and the time complexity 

improves, threatening the security of RC45.  

  

    

Distinguishers of RC4 Streams from Randomness  
 

A different research direction was to analyze the statistical properties of RC4 

outputs, and in particular to construct distinguishers between RC4 and truly 

random bit generators. Goli'c described in [5] a linear statistical weakness of 

RC4, caused by a positive correlation between the second binary derivative 

of the LSB and 1. This weakness implies that RC4 outputs of length 2
6n – 7.8

 

(2
40.2

 for the typical n = 8) can be reliably distinguished from random strings. 

This result was subsequently improved by Fluhrer and McGrew in [3]. They 

analyzed the distribution of triplets consisting of the two outputs produced at 

times t and t + 1 and the known value of i ª t (mod N ), and found small 

biases in the distribution of (7N - 8) of these N
3
  triplets: some of these 

probabilities are positively biased (1/N
3
 .(1 + 1/N )), and some of these 



probabilities are negatively biased (1/N
3
 .(1 - 1/N )). They used information 

theoretic methods to prove that these biases can be used to distinguish 

between RC4 and a truly random source by analyzing sequences of 2
30.6

 

output words. This number of output words was estimated rigorously, 

considering a success probability of 90%. 

 

Their analysis of this typical behavior of RC4 streams yielded a 

classification of special RC4 states which they denoted as fortuitous states, 

which are the source of most of these biases. They noted that these states can 

be used to extract parts of the internal state with non-trivial probability, but 

since RC4 states are huge this does not lead to practical attacks on RC4 for  

n > 5.  

 

 

Weaknesses of Initialization Mechanism of RC4  
 

The major difference between the effective key size of RC4 and the real key, 

with the simplicity of the key extension mechanism, stimulated considerable 

research on the initialization mechanism of RC4. 

 

    In particular, Andrew Roos noted in [11] that for keys which have K[0] + 

K[1] ª 0 (mod N ), the first output is equal to K[2] + 3 with probability  

2
-2.85

. The cryptanalyst can use this fact to deduce two bytes of information 

about the key (K[0] + K[1] and K[2]) with probability 2
-10:85

 instead of the 

trivial 2
-16

, and thus reduce the effective key length in exhaustive search by 

about five bits. 

 

    Grosul and Wallach showed in [8] that for large keys whose size is close 

to N bytes, similar keys produce similar initial states and similar streams. 

This observation implies that for large keys, RC4 is vulnerable to a related 

key attack. However, for typical short keys, every byte of the key is used 

fairly early during the KSA execution, and consequently a change in one 

byte, causes a difference in the index j from a relatively early stage. The 

difference in the values of j implies that different entries are swapped in the 

rounds that succeed this change. This causes significant difference in the 

output of the KSA (which is the initial permutation) and in the generated 

stream. 

 

 



Other Results  
 

Interesting properties of RC4 were described in several papers. Finney 

specified in [7] a class of states that RC4 can never enter. This class contains 

all the states for which i = a, j = a + 1 and S[a + 1] = 1 (a fraction of 1/N
2
 of 

RC4 states are in this class). Analysis of states of this type indicates that this 

class is closed under RC4 round operation. Given some arbitrary state in this 

class, corresponding to the value a, the round operation will transfer this 

state into another state in the class, corresponding to a
’
 = a + 1. The round 

operation will give i
’
 = i + 1 = a + 1 = a

’
 , j

’
 = j + S[i

’
] = (a + 1) + S[a + 1] = 

(a + 1) + 1 = a
’
 + 1 (satisfying the first condition), and the swap will transfer 

the value 1 from a
’
 to a

’
 + 1, actually implying S[a

’
 + 1] = 1 and satisfying 

the second condition. Thus these states are connected by short cycles of 

length N(N - 1). Since the state transition in RC4 is invertible and the initial 

state (i = j = 0) is not of this type, RC4 can never enter these states for any 

key. However, if RC4 would have been initialized to such a state, it would 

be totally insecure. The generated stream would have a very short period. 

Given such an RC4 stream, Pudovkina noticed that the initial permutation 

can be elegantly extracted, by looking at the outputs with indices that are 

equivalent to (-1) mod N - 1 (z(N - 1) - 1, z2(N - 1) - 1,………., zN(N - 1) - 1). It 

appears that these N output values are a shift of the initial permutation, and 

since one of the permutation values is known (Si + 1 = 1), the exact shift can 

be also isolated.  

 

 

 

1.3  General Notations and Conventions  
 

We denote the number of bits in a keystream word as n, and the size of the 

permutation S by N  � 2
n
. l  stands for the number of key words and 

whenever we discuss an RC4 version with a specified n and l , we add a 

subscript indicating these parameters (e.g. RC48,16 is the commonly used 8-

bit version with a 128-bit key). Sometimes we omit l  (typically when it is 

irrelevant to the discussion) and write RC48, or even simply RC4. 

 

    To denote the symmetric group of permutations of {0,……,N - 1} we use 

the standard notation SN. The set of indices in S ∈ SN  is denoted by [N ]. 

 



    S ∈ SN  , i ∈ [N] and j ∈ [N] are used to specify the components of RC4 

states and r is usually used to indicate round numbers (the last four notations 

are used for KSA and PRGA). We use the triplets (S, i, j) to indicate the 

permutation and indices of specific states. 

 

    The rounds of the KSA as well as those of the PRGA are numbered 

according to the value of i, which means that the KSA has rounds 

0 ,……, 1−N , whereas the PRGA has rounds 1, 2,…….. To indicate RC4 

state after round r (which is the state after r + 1 KSA rounds or after r 

PRGA rounds), we use the subscript r in Sr, ir and jr.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 2 
 

A Practical Attack on Broadcast             
RC4 

 

 

In this chapter we describe a major statistical bias in the distribution of the 

initial bytes of RC4 streams, and discuss its cryptanalytic applications. 

 

2.1 The Bias  
 

Our main observation is that the second output word of RC4 has a very 

strong bias, viz. it takes on the value 0 with twice the expected probability 

(2/N instead of 1/N). Other values of the second output and all the values of 

other outputs have almost uniform distributions. 

 

2.1.1 The Biased Second Output of RC4 
 

Theorem 2.1.1 Assume that the initial permutation S is randomly chosen 

from the set of all the possible permutations of SN. Then the probability that 

the second output word of RC4 is 0 is approximately 2/N. 

 

Proof: Notation: Denote the permutation S after it has been updated in round 

t by St (S0 is the initial permutation) and the output of this round as zt. 

 

Claim 2.1.2 When S0[2] = 0 and S0[1] ≠ 2, the second output(z2) is 0 with 

probability 1. 

 

 

 



 
 

Figure 2.1: The first two rounds of RC4 when S0[2] = 0 and S0[1] ≠ 2  

 

 

Proof: When S0[1] ∫ 2 : 

 

Round 0:   i0 = 0 = j0.  

                 Denote S0[1] by X. 

Round 1:  i1 = 1 

                 j1 = j0 + S0[i1] = 0 + S0[1] = X 

                 S0[1] ↔ S0[X] 

                 ⇒  S1[1] = S0[X] = Y, say. 

                      S1[X] = S0[1] = X 

                z1 = S1[S1[1] + S1[X]] = S1[Y + X] 

Round 2:  i2 = 2 

                j2 = j1 + S1[i2] = X + S1[2] = X (since S1[2] = S0[2] = 0). 

                S1[2] ↔ S1[X] 

                ⇒  S2[2] = S1[X] = X 

                     S2[X] = S1[2] = 0 

               z2 = S2[S2[2] + S2[X]] = S2[X + 0] = 0 

 

When S0[1]=2 : 

 

Round 1:  i1 = 1 



                j1 = j0 + S0[i1] = 0 + S0[1] = 2 

                S0[1] ↔ S0[2] 

                ⇒  S1[1] = S0[2] = 0 

                      S1[2] = S0[1] = 2 

                z1 = S1[S1[1] + S1[2]] = S1[0 + 2] = 0 

Round 2:  i2 = 2 

                j2 = j1 + S1[i2] = 2 + S1[2] = 2 + 2 = 4 

               S1[2] ↔ S1[4] 

               ⇒  S2[2] = S1[4] = U ≠ 0 = , say (U ≠ 0 = S1[1]) 

                     S2[4] = S1[2] = 2 

               z2 = S2[S2[2] + S2[4]] = S2[U + 2] = 0, only when U = 255 

               since then z2 = S2[1] = 0.  

              Thus z2 = 0 with probability 1/N.                                                      á 

 

Proof(of Theorem 2.1.1): 

 

P[z2 = 0] 

   = P[z2 = 0 | S0[2] = 0] . P[S0[2] = 0]  

     + P[z2 = 0 | S0[2] ≠ 0] . P[S0[2] ≠ 0]  

   ≈ 1 .1/N + 1/N .(1 –  1/N )  

   = 1/N. (1 + 1 – 1/N )  

   ≈ 2/N  

which is twice its expected probability.                                á 

 

 

An Interesting Observation Based On This Bias 
 

By applying Bayes rule to the above result, we get 

 

P[S0[2] = 0 | z2 = 0] 

   = P[S0[2] = 0] . P[z2 = 0 | S0[2] = 0] / P[z2 = 0] 

   ≈ ((1/N). 1) / (2/N)  

   = 1/2 

 

Consequently, whenever the second output byte is 0 we can extract an entry 

of S with probability 1/2, which significantly exceeds the trivial probability 

of 1/N. This fact can be used to accelerate most of the known attacks by a 

factor of N/2, but this improvement does not suffice to mount a practical 

attack on RC4n > 5. 

 



  

2.1.2 The Biased First and Second Output of RC4 
 

A similar phenomenon appears in the distribution of the first pair of values, 

where the output pair (z1 = 0, z2 = 0) has probability that is three times the 

expected 1/N
2
.This result is described in the form of the following theorem: 

 

Theorem 2.1.3 Assume that the initial permutation S is randomly chosen 

from the set of all the possible permutations of SN. Then the probability that 

both the first and second output word of RC4 is 0 is approximately 3/N
2
. 

 

Proof: The probability mass is distributed as per the following three cases:   

 

Claim2.1.4  When S0[2] ≠ 0, P(z1 = 0, z2 = 0) = 1/N
2
. 

 

Proof: 

Round 0:  i0 = 0 = j0.  

                Let S0[1] = X, S0[2] = Y  

Round 1:  i1 = 1 

                 j1 = j0 + S0[i1] = 0 + S0[1] = X 

                S0[1] ↔ S0[X] 

                ⇒  S1[1] = S0[X] = Y, say 

                     S1[X] = S0[1] = X 

                z1 = S1[S1[1] + S1[X]] = S1[Y + X] ( = 0 with probability 1/N ) 

 

Round 2:  i2 = 2 

                j2 = j1 + S1[i2] = X + S1[2] = X + Y (since S1[2] = S0[2] = Y) 

                S1[2] ↔ S1[X + Y] 

                ⇒  S2[2] = S1[X + Y] = U, say 

                      S2[X] = S1[2] = Y 

                z2 = S2[S2[2] + S2[X]] = S2[U + Y] ( = 0 with probability 1/N ) 

 

Thus P(z1 = 0, z2 = 0) = 1/N . 1/N = 1/N
2
.                                                        á 

 

 

Claim 2.1.5 When S0[2] = 0, S0[1] ≠ 1, P(z1=0, z2=0) = 1/N. 

 

Proof: 

Round 0:  i0 = 0 = j0.  



                Let S0[1] = X 

Round 1:  i1 = 1 

                j1 = j0 + S0[i1] = 0 + S0[1] = X 

                S0[1] ↔ S0[X] 

                ⇒  S1[1] = S0[X] = Y, say 

                      S1[X] = S0[1] = X 

                z1 = S1[S1[1] + S1[X]] = S1[Y + X] ( = 0 with probability 1/N ) 

Round 2:  i2 = 2 

                 j2 = j1 + S1[i2] = X + S1[2] = X (since S1[2] = S0[2] = 0) 

                S1[2] ↔ S1[X] 

                ⇒  S2[2] = S1[X] = X 

                      S2[X] = S1[2] = 0 

                z2 = S2[S2[2] + S2[X]] = S2[X + 0] = 0 

 

Thus P(z1=0, z2=0) = 1/N . 1 = 1/N.                                                                á 

 

Case 3: S0[2] = 0, S0[1] = 1 

 

 

Claim 2.1.6 S0[2] = 0, S0[1] = 1, P(z1=0, z2=0) = 1. 

 

Proof: 

Round 0:  i0 = 0 = j0.  

Round 1:  i1 = 1 

                 j1 = j0 + S0[i1] = 0 + S0[1] = 1 

                S0[1] ↔ S0[1] 

                ⇒  S1[1] = S0[1] = 1    

                z1 = S1[S1[1] + S1[1]] = S1[1 + 1] = 0 ( since S1[2] = S0[2] = 0 )  

Round 2:  i2 = 2 

                 j2 = j1 + S1[i2] = 1 + S1[2] = 1 (since S1[2] = 0) 

                 S1[2] ↔ S1[1] 

                 ⇒  S2[1] = S1[2] = 0 

                      S2[2] = S1[1] = 1 

                 z2 = S2[S2[1] + S2[2]] = S2[0 + 1] = 0 

Thus P(z1 = 0, z2 = 0) = 1                                                                       á 

 

Proof (of Theorem 2): 

P[z1 = 0, z2 = 0]  

   = P [z1=0, z2=0 | S0[2] ≠ 0] . P [S0[2] ≠ 0] 

     + P [z1=0, z2=0 | S0[2] = 0, S0[1] ≠ 1] . P [S0[2] = 0, S0[1] ≠ 1] 



     + P [z1=0, z2=0 | S0[2] = 0, S0[1] = 1] . P [S0[2] = 0, S0[1] = 1] 

   ≈ 1/N
2
.(1 – 1/N) + 1/N .1/N . (1 – 1/N) + 1. 1/N. 1/N 

   = 1/N
2
.(1 – 1/N + 1 – 1/N + 1)  

   = 1/N
2
 .(3 – 2/N) 

   ≈ 3/N
2
  

which is thrice its expected probability.                                á 

 

 

An Interesting Observation Based On This Bias 

 
By applying Bayes rule to the above result, we get 

 

P[S0[2] = 0 | z1 = 0, z2 = 0] 

   = P[S0[2] = 0] . P[z1 = 0, z2 = 0 | S0[2] = 0] / P[z1 = 0, z2 = 0] 

   = ((1/N). (1/N + 1/N)) / (3/N
2
)  

   = 2/3 

 

Consequently, whenever the first and second output byte is 0 we can extract 

two entries of S with probability 2/3, which significantly exceeds the trivial 

probability of 1/N
2
.  

 

 

 

2.2 Cryptanalytic Applications  
 

The strong bias described so far has several practical cryptanalytic 

applications. 

 

2.2.1 Distinguishing RC4 from Random Sources 
 

The following  observation can be used to construct a strong distinguisher 

for RC4 which requires only O(N ) output words. 

 

Theorem 2.2.1 Let X, Y be distributions, and suppose that the event e 

happens in X with probability p and in Y with probability p(1 + q). Then for 

small p and q, O(1/pq
2
) samples suffice to distinguish X from Y with a 

constant probability of success. 



 

Proof: Let Xe, Ye be the random variables specifying the number of 

occurrences of e in t samples. Then Xe and Ye have binomial distributions 

with parameters (t, p) and (t, p(1 + q)), and their expectations, variances and 

standard deviations are: 

E[Xe] = tp,  

E[Ye] = tp(1 + q) 

 

V(Xe) = tp(1 –  p) ≈ tp  

V(Ye) = tp(1 + q)(1 –  p(1 + q)) 

      = tp(1 + q –  p(1 + q)
2
)  

      ≈ tp(1 + q)  

 

SD(Xe) = tp  

SD(Ye) = )1( qtp +  ≈ tp  

 

We'll analyze the size of t that implies a difference of at least one standard 

deviation between the expectations of the two distributions: 

 

  E[Xe] –  E[Ye] ≥ SD(Xe)  

⇔  tp(1 + q) – tp ≥ tp  

⇔  tpq ≥ tp  

⇔  t ≥ 1/pq
2
 

 

Consequently, O(1/pq
2
) samples (The constant depends on the desired 

success probability) suffice for the distinguishing.                                        á 

 

Let X be the probability distribution of the second output in uniformly 

distributed streams, and let Y be the probability distribution of the second 

output in streams produced by RC4 for randomly chosen keys. The event e 

denotes an output value of 0, which happens with probability of 1/N in X and 

2/N in Y. By using the previous theorem with p = 1/N and q = 1, we can 

conclude that we need about (1/pq
2
) = N outputs to reliably distinguish the 

two distributions.  

 

 

 



2.2.2 A Ciphertext-Only Attack on Broadcast RC4 
 

There are many broadcasting protocols which are used today in a variety of 

applications. For example, many users send the same email message to 

multiple recipients (encrypted under different keys), and many groupware 

applications enable multiple users to synchronize their documents by 

broadcasting encrypted modification lists to all the other group members. All 

these applications are vulnerable to this attack.  

 

Theorem 2.2.2 Let M be a plaintext, and let C1,C2,………,Ck be the RC4 

encryptions of M under k uniformly distributed keys. Then if k = Ω(N),the 

second byte of M can be reliably extracted from C1,C2,………,Ck. 

 

Proof: Let Ki be the i
th
 key and the corresponding RC4 output stream is Zi, 

where i = 1,……,k. Then 

Ci[2] = M[2] ⊕  Zi[2] 

Since, according to theorem 2.1.1, Zi[2] = 0 with probability 2/N with the 

restriction that k = Ω(N), therefore  

Ci[2] = M[2] with probability 2/N. 

 

Thus, a fraction of 2/N of the second ciphertext bytes are expected to have 

the same value as the second plaintext byte, and thus the most frequent 

character in C1[2],……,Ck[2] is likely to be M[2] itself.                            á 

 

An improvement can be done on the above attack if we use theorem 2.1.3 

and the result is as follows 

 

Theorem 2.2.3 Let M be a plaintext, and let C1,C2,………,Ck be the RC4 

encryptions of M under k uniformly distributed keys. Then if k = Ω(N
2
),the 

first and second byte of M can be reliably extracted from C1,C2,………,Ck. 

 

Proof: Ci[1] = M[1] ⊕  Zi[1] and 

           Ci[2] = M[2] ⊕  Zi[2] 

Since, according to theorem 2.1.3, Zi[1] = 0 and Zi[2] = 0 with probability 

3/N
2
 with the restriction that k = Ω(N

2
), therefore  

Ci[1] = M[1] and Ci[2] = M[2] with probability 3/N
2
. 

 

Thus, a fraction of 3/N
2
 of the second ciphertext bytes are expected to have 

the same value as the second plaintext byte, and thus the most frequent 



character in C1[1],……,Ck[1] is likely to be M[1] itself and that in 

C1[2],……,Ck[2] is likely to be M[2] itself. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

 

Weaknesses in the Key Scheduling 
Algorithm of RC4 
 

 

 

Here we present a special kind of weakness, called invariance weakness in 

the key scheduling algorithm of RC4. We identify a large number of weak 

keys, in which knowledge of a small number of key bits suffices to 

determine many state and output bits with non-negligible probability.  

 

3.1 The Invariance Weakness  
 

3.1.1 The Weakness in KSA* 

 
We prove here the invariance weakness only for a simplified variant of the 

KSA, which we denote as KSA* as described in Figure 1. The only 

difference between them is that KSA* updates i at the beginning of the loop, 

whereas KSA updates i at the end of the loop. After formulating and proving 

the existence of this weakness in KSA*, we describe the modifications 

required to apply this analysis to the real KSA. 

 



 
 

    Figure 3.1. KSA vs. KSA* 

 

 

Definition 3.1.1 Let S be a permutation of SN, t be an index in S and b be 

some integer. Then if S[t]≡mod b t, the permutation S is said to b-conserve the 

index t. Otherwise, the permutation S is said to b-unconserve the index t. 

 

Denote the permutation S and the indices i and j after round t of KSA* as St, 

it and jt respectively. Denote the number of indices that a permutation b-

conserves as Ib(S). For the sake of simplicity, we often write it instead of 

Ib(St). 

 

Definition 3.1.2 A permutation S of SN, is b-conserving if Ib(S) = N , and is 

almost b-conserving if Ib(S) ≥ N - 2. 

 

Definition 3.1.3 Let b,l be integers, and let K be an l  words key. Then K is 

called a b-exact key if for any index t  K[t mod l ] ≡mod b (1 - t). In case K[0] 

= 1 and MSB(K[1]) = 1, K is called a special b-exact key. 

 

Proposition 3.1.1 For a b-exact key, it is necessary (but not sufficient) that 

b | ℓ. 

Proof:  K[i] ≡mod b (1 –  i) 

    K[i + ℓ] ≡mod b (1 –  i) 

          ≡mod b (1 – i –  ℓ) 

 => K[i+ℓ] = (1 –  i) +  λb 

      = (1 – i –  ℓ) + µb 



 => ℓ = (µ –  λ)b 

 => b | ℓ.  

 

Theorem 3.1.2 Let q ≤ n and ℓ be integers and b  � 2
q
. Suppose that b | ℓ 

and let K be a b-exact key of ℓ words. Then the permutation S = KSA*(K) is 

b-conserving. 

 

Before getting to the proof itself, we will prove an auxiliary lemma. 

 

Lemma 3.1.3 If it  + 1 ≡ jt  + 1 (mod b), then it  + 1 = it, i.e. Ib(St  + 1) = Ib(St). 

  

Proof: The only operation that might affect S (and maybe I) is the swapping 

operation. However, when it + 1 and jt + 1 are equivalent (mod b), St + 1 b-

conserves it + 1 (jt + 1) if and only if St b-conserved jt (it). Thus the number of 

indices St b-conserves remains the same. 

 

 St(it + 1), and St(jt + 1) are swapped to get St + 1(jt + 1)and St + 1(it + 1) 

respectively. Thus St + 1(it + 1) = St(jt + 1). Now the following two cases may 

arise: 

 

Case1: Let St  b-conserves index jt  + 1. 

 => St(jt + 1) ≡mod b jt + 1 

     ≡mod b it + 1  (since jt + 1 ≡mod b it + 1) 

=> St + 1(it + 1) ≡mod b it + 1   

=> St + 1 b-conserves index it + 1. 

 

Case2: Let St does not b-conserve index jt + 1. 

 => St(jt + 1) Tmod b jt + 1 

  => St(jt + 1)  Tmod b it + 1  (since jt + 1 ≡mod b it +1) 

=> St+1(it + 1) Tmod b it + 1   

=> St + 1 does not b-conserve index it + 1.                                               á 

 

Proof(of Theorem 3.1.2): We will prove by induction on t that for any 1≤ t 

≤ N , it turns out that Ib(St) = N and it ≡ jt (mod b). This in particular implies 

that IN = N, which makes the output permutation b-conserving. 

 

For t = 0 (before the first round), the claim is trivial because i0 = j0 = 0 and 

S0 is the identity permutation which is b-conserving for every b.  

Suppose that jt ≡ it and St is b-conserving. Then  

it + 1 = it + 1 and  



jt + 1 = jt + St[it + 1] + K[it + 1 mod ℓ]  

    ≡ mod b it + it + 1 + (1 - it + 1) = it + 1 = it + 1 

 

Thus, it + 1 ≡ jt + 1 (mod b) and by applying Lemma 1 we get it + 1 = it = N and 

therefore St+1 is b-conserving.                                                                         á 

 

KSA* thus transforms special patterns in the key into corresponding patterns 

in the initial permutation.  

 

 

3.1.2. The Weakness in KSA  
 

The small difference between KSA* and KSA is essential in that KSA, 

applied to a b-exact key, does not preserve the equivalence (mod b) of i and j 

even after the first round. Analyzing its execution on a b-exact key gives 

 

j1 = j0 + S0[i1] + K[i1] = 0 + S0[0] + K[0] = K[0] ≡mod b 1 Tmod b 0 = i1 

 

and thus the structure described in Section 3.1.1 cannot be preserved by the 

cyclic use of the words of K. However, the invariance weakness can be 

adjusted to the real KSA, and the proper modifications are formulated in the 

following theorem: 

 

Theorem 3.1.4 Let q ≤ n and ℓ be integers and b �  2
q
. Suppose that b | ℓ 

and let K be a special b-exact key of ℓ words. Then  

P[KSA(K) is almost b-conserving] ≥ 2/5  

when the probability is over the rest of the key bits. 

 

Extensive experimentation indicates that this bound is not tight, and the 

probability is actually very close to one half. 

 

    First we prove the following lemma that indicates special properties of 

RC4 round operation (for the KSA, as well as the PRGA).  

 

Lemma 3.1.5 Let ir and jr be the indices of round r of PRGA (or KSA). Let X 

be the value pointed to by j in this round before the swap (i.e., Sr-1[jr] = X). 

Then X will not be involved in determining j during rounds r + 1,...,r + N-1. 

 



Proof. We can consider the permutation S as a queue of elements used to 

update j. Assuming a random behavior of the entries of S, this queue has the 

following properties: 

 

Random Entering A new value that enters the queue is entered into a 

random position. When the value X is pointed to by i (before the swap), it is 

used to forward j and afterwards it enters the permutation in the pseudo-

random position j (relative position j + 1 - i). 

 

Turn Loss On every round, a randomly chosen element in the queue loses 

its turn and is thrown to the end of the line. When the value X is pointed to 

by j (before the swap), it is swapped to position i, which is the worst relative 

position (N - 1). The choice of this deprived value is pseudo-random. 

 

No Overpass The k
th 

element in the queue must wait at least k rounds for its 

turn. The only transfers in the queue are of the first two types, and 

consequently no element can move forward. 

 

The correctness of the lemma stems from these properties of RC4 round 

operation. The value pointed to by j (before the swap) has a Turn Loss and 

must wait at least N rounds before being used as S[i] (No Overpass).           á 

 

 
 

Figure 3.2 Schematic representation of Theorem 3.1.2 and Theorem 3.1.4 



 

 

 

 

 

 

 

Recall that the swap operation of the first round caused the entries i0 and j0 to 

be unconserved, and ruined the equivalence of i and j. However, the 

additional constraints on the key ensure that in the second round j becomes 

equivalent to i, and that the unconserved entries will not affect the 

preservation of the structure during the rest of the KSA. The following 

lemma summarizes this scenario. 

 

Lemma 3.1.6 If K is a special 2-exact key for which K[1] = N-2, then the 

indices i and j of rounds 1,...,N-1 are equivalent (mod 2). 

 

Proof: K[0] = 1, which causes the corrupted indices after round 0 to be i0  = 

0 and j0 = j-1  + S-1[0] + K[0] = 0 + 0 + 1 = 1. The discrepancy of S1[1] is used 

to fix the non-equivalence of i and j during round 1: 

 

        i1 = 1 

        j1 = j0 + S0[1] + K[1] = 1 +  0 + (N - 2) = N - 1 ªmod 2  i1  
 

Consequently, i1 ª j1, I1 = N - 2 and the unconserved indices in S1 are 0 and 

N - 1. Lemma 3.1.5 ensures that these values (that are almost the last ones 

in the queue at this point) are not involved in determining j during rounds 

2,...........,N - 2, a fact that ensures that only conserved indices are involved 

in determining j2,.........,jN - 2. This property, along with the exactness of K, 

preserves the equivalence of j and i (just as in the proof of Theorem 3.1.2) at 

least until after round N - 2.                                                                           á 

 

Lemma 3.1.7 Let K be a special 2-exact key of an even size. Suppose that 

K[1] = N-2 (this constraint is compatible with the requirements of special 2-

exact keys). Then the outcome of the KSA applied to K is an almost 2-

conserving permutation, regardless of the other bits of the key. 

 

Proof: I1 = N – 2. Thus according to lemma 3.1.3 we get IN - 2 = I1 = N - 2. 

 



We analyze two possible scenarios for the last round (round N - 1). If SN - 1 
conserves the index N - 1, j is updated appropriately and we can reuse 

Lemma 3.1.4 to conclude that IN-1 = IN-2. Otherwise, the index N - 1 is 

unconserved by SN - 2 causing j to be updated inappropriately, i.e., iN - 1 T jN - 1. 

However, N - 1 is unconserved, and thus, swapping it with the non-

equivalent index jN - 1, causes the index jN - 1 (independently of its apriori 

status) to become conserved (we use here the fact that b = 2, which implies 

that if a T c and c T d then a T d). Thus, at most one of the indices iN - 1, jN - 1 
was conserved by S before round N - 1 and at least one of them is conserved 

after round N - 1. Consequently, the number of conserved indices cannot 

decrease and iN - 1 ¥ iN - 2 = N - 2, implying that SN  is almost 2-conserving.   á  

 

 

Lemma 3.1.8  Let K be a special 2-exact key and let S = KSA(K). Then  

 

  P[KSA(K) is almost 2-conserving] ≥  2/5 

 

Proof: Recall that the conditions of this lemma include predetermining the 

whole K[0], but only the MSB of K[1]. The eliminated condition (with 

respect to Lemma 3.1.6) is that K[1] = N - 2, which sent the corrupted entry 

to the last position, making it unlikely that it will affect the other entries. 

Without this condition, the unconserved entries might interfere with the 

updates of j, ruin its equivalence to i, and generate more unconserved 

indices. However, with relatively high probability, this problematic scenario 

will be prevented even under these weakened conditions. As in the previous 

case, the corrupted entry in i0 = 0 is promised not to be touched by i during 

the remaining N - 2 rounds. The second corrupted entry (j1 ) might be used 

to update j in round j1, which would ruin the equivalence of the indices. 

However, if this location is pointed to by j before round j1, the discrepancy 

in moved to an entry which i will not visit (it is possible that this entry will 

be pointed to by j on some intermediate round r, and the discrepancy will 

move from j1 to ir = r, but the entry r will be untouchable by i, and thus the 

discrepancy can move only between entries which i will never visit), and 

will not interfere with the updates of j. Notice that j1 = 1 + K[1] > N/2 (recall 

that MSB(K[1]) = 1), and thus j has many opportunities (at least N/2) to visit 

position j1 before i does. The probability of N/2 pseudo random j's to reach 

some specific value, is well approximated by 1 - 1/ e  º 2/5. This gives a 

lower bound on the probability that KSA(K) is almost 2-conserving.                                           
á 

 



Finally, we derive the proof of Theorem 3.1.4 from the proof of Lemma 

3.1.8. The equivalence of the indices after the second round (round 1) is 

independent of b, and the only part of the proof that might change is the 

probability of the unconserved entries to corrupt this equivalence. However, 

the corrupted entries are still 0 and j2 > N/2 and thus this probability can be 

still bounded from below by 2/5.                                                                    á 

 

 

    KSA thus transforms special patterns in the key into corresponding 

patterns in the initial permutation. For RC4n that uses a key of  l  = 2
p
. m 

words (of n bits each), we found that for every q  p, there exists an 

assignment of n + 1 + q( l  - 1) bits (the first word, q LSBs of each of the 

other  l  - 1 words, and the MSB of the second word) of K that determines 

Θ (qN ) bits of S0 with a significant probability of one half. For the 

commonly used RC48 with a key of 6 bytes, 14 bits of K determine 238 bits 

of S0, 19 bits of K determine 472 bits of S0, etc. This correlation implies that 

the KSA of RC4 does not mix the bits of the key equally between the bits of 

the permutation, and this phenomenon induces a weakness of the KSA. 

 

 

 

3.2 Key-Output Correlation  
 

Here we will analyze the propagation of the weak key patterns into the 

generated outputs. First we prove Theorem 3.2.1 which deals with the highly 

biased behavior of a weakened variant of the PRGA, applied to a b-

conserving permutation. Next, we will argue that the prefix of the output of 

the original PRGA is highly correlated to the prefix of the swapless variant 

(on the same initial permutation), which implies the existence of biases in 

the PRGA distribution for these weak keys. 

 

 

3.2.1 Correlation for PRGA* 
 

Definition 3.2.1 Let PRGA* be a weakened variant of PRGA with no swap 

operations. RC4* be a weakened variant of RC4 with that uses PRGA
*
. 

 



Definition 3.2.2 Let q ∈ N, b � 2
q
. Let {xr}r=1 to ∞ be the stream of q-bit 

words, produced by applying the q-bit PRGA
*
  to the identity permutation in 

Sb. Then the stream {xr} is called a b-pattern, and every stream {Xr}r=1 to h of n 

bit words (n ¥ q) that satisfies 

 

∀ r ≤ h,  Xr ª xr  (mod b) 

 

is called a b-patterned stream. 

 

Claim 3.2.1 Any stream produced by PRGA
*
 from a b-conserving 

permutation is b-patterned. 

 

Proof: Let {Xr}r=1 to ∞  be this stream. Denote the state components sequences 

induced by this stream by {Sr}r=1 to ∞, {Ir}r=1 to ∞  and {Jr}r=1 to ∞. Denote the 

same sequences induced by the q-bit stream {xr}r=1 to ∞  by {sr}, {ir}, {jr}.  We 

first prove by induction on r that ∀ r Ir ª ir (mod b) and Jr ª jr (mod b). We 

use the fact that there are no swap operations and thus the permutations S 

and s do not change and remain b-conserving throughout the generation 

process. 

 

Base Case  For r = 0 (before the first round), I0 = i0 = J0 = j0 = 0.  

 

Inductive Step  Suppose that Ir - 1 ª ir - 1 and Jr - 1 ª jr - 1. Then 

 

Ir = Ir - 1 + 1 ª ir - 1 + 1 ª ir  
Jr = Jr - 1 + Sr -1[Ir] ª jr - 1 + Ir ª jr - 1 + ir ª jr - 1 + s[ir] ª jr 

 

Having these equivalences, we can easily derive the equivalence of the 

streams 

 

xr = sr[sr[ir] + sr[jr]] ª sr[ir] + sr[jr] ª ir + jr  

Xr = Sr[Sr[Ir] + Sr[Jr]] ª Sr[Ir] + Sr[Jr] ª Ir + Jr = ir + jr = xr                  á 
 

 

 

Analysis of this q-bit stream shows that it is periodic with period 2b. 

 

Theorem 3.2.2 Let q ≤ n, b  �  2
q
 and S0 be a b-conserving permutation. Let 

{Xt}t=1 to ∞ be the output sequence generated by applying PRGA* to S0, and xt  

�  Xt mod b. Then the sequence {xt}t=1 to ∞  is periodic with period 2b. 



 

Proof: Since there is no swap operation, the permutation does not change 

and remains b-conserving throughout the generation process. Notice that all 

the values of S0 are known (mod b), as well as the initial indices i0 = j0 = 0 ≡ 

0 (mod b), and thus the round operation (and the output values) can be 

simulated (mod b), independently of S0.  

 

it = t 

jt = jt - 1 + S[it] = jt-1 + S[t] ≡mod b  jt - 1 + t 

 

Thus we have 

 

 jt  ≡mod b  jt-1 + t 

 jt-1 ≡mod b  jt-2 + t-1 

  ………………… 

  j1 ≡mod b  j0 + 1 

 

By adding the above equations we have 

 

    jt ≡mod b j0 + ∑ =

t

i
i

1
 = t (t + 1) / 2 

             

Now   xt = S[S[it] + S[jt]] 

              = S[≡mod b it + jt] 

              ≡mod b  it + jt 
              ≡mod b  t + t (t + 1) / 2 

              = t (t + 3) / 2 

 

Thus   x2b + 1  ≡mod b  (2b + 1)(2b + 4)/2 

                     =  (2b + 1)(b + 2) 

                     ≡mod b  2 

 

Also   x1  ≡mod b  1.(1 + 3 )/2 = 2 ≡mod b  x2b + 1 

 

Hence proving the periodicity.                                                                       á                               

 

 

The following figure illustrates the above theorem for b = 2. 

 

     



                
 

   Table 3.1: Important parameters(mod 2) of the first few  

   rounds of RC4
*
,  applied to a 2-conserving permutation 

 

                      

  

3.2.2 Correlation for PRGA 
 
After proving this biased behavior of PRGA

*
 on b-conserving permutations, 

we analyze the expression of this phenomenon when using the original 

PRGA. Recall that at each round of the PRGA S changes in at most two 

locations. Thus we can expect a diminishing correlation between the 

sequences of permutations produced by PRGA and PRGA
*
 from the same 

initial permutation. 

 

This correlation fades out when r is increased, since as more swaps that are 

made by the PRGA, more entries are "spoiled" by these swaps. This 

diminishing correlation is expressed also in the output words, which are 

completely determined by the correlated permutations. Consequently special 

exact keys are likely to be transformed by the KSA into almost b-conserving 

permutations, which are likely to be transformed by the PRGA into 

relatively long b-patterned streams. The correlation between special exact 

keys and patterned stream prefixes is demonstrated in Figure 5.2, where the 

function h →  P[1 ≤ ∀ r ≤ h Zr ª xr mod 2
q
] (for special 2

q
-exact keys) is 

empirically derived for n = 8, l  = 16 and different q's. For example, a 

special 2-exact key completely determines 20 output bits (the LSBs of the 

first 20 outputs) with probability 2
- 4.2

 instead of 2
- 20

, and a special 16-exact 



key completely determines 40 output bits (4 LSBs from each of the first 10 

outputs) with probability 2
- 2.3

, instead of 2
- 40

. 

 

We have thus demonstrated a strong probabilistic correlation between some 

bits of the secret key and some bits of the output stream for a large class of 

weak keys. An important observation about this correlation is its unexpected 

dependency on n. Notice that the size of the correlated prefix depends on the 

probability that all the entries that are used to produce the output (three 

entries per round) are "virgin", that is were not swapped in an earlier round. 

The probability that the three indices which are used to generate the h
th
 

output, were not swapped in the previous h - 1 rounds, has negative linear 

dependence on the probability of a random entry to hit a specific entry, 

which is proportional to 1/N . Thus the size of the correlated output depends 

linearly on N (and exponentially in n). This is somewhat surprising since one 

would expect that enlarging the array would strengthen the overall security. 

However, the expression of the invariance weakness is amplified, which 

counterbalances this expectation. Moreover, assuming a fixed-size key, the 

fraction of 2
q
-exact keys for q > 1 "prefers" large n's. This is due to the fact 

that the dependency on l  =  #key bits / n is stronger than the dependency on 

n (recall that a 2
q
-exact key requires fixing n + 1 + q ( l  - 1) bits). 

Consequently using a 128-bit key in RC48,16  is more immune to this 

weakness than using this key in RC416,8. This phenomenon, where the 

expression of the invariance weakness is amplified when n is increased, is 

demonstrated in Figure 3.3. 

 
 



       

                                  
 

 

Figure 3.3: This graph demonstrates the probabilities of special 2
q
-exact 

keys of RC48,16 to produce streams with long 2
q
-patterned prefixes 

 



 
 

 

Figure 3.4: This graph demonstrates the output prefix that is 2-patterned 

with fixed probabilities (1/4, 1/32, 1/256 and 2
- 12

) when RC4n,16 is applied 

to a 2-exact key, as a function of n. 

 

 

 

 

 

 

 

 

 

 



3.3 Cryptanalytic Applications of the Invariance   

      Weakness     
 

 

3.3.1 Distinguishing RC4 Streams from  
         Randomness  
 

In [2] Mantin and Shamir described a significant statistical bias in the 

second output word of RC4. They used this bias to construct an efficient 

algorithm which distinguishes between RC4 outputs and truly random 

sequences by analyzing only one word from O(N) different outputs streams. 

This is an extremely efficient distinguisher, but it can be easily avoided by 

discarding the first two words from each output stream. If these two words 

are discarded, the best known distinguisher requires about 2
30
 output words 

(see [3]). Our new observation yields a significantly better distinguisher for 

most of the typical key sizes. The new distinguisher is based on the fact that 

for a significant fraction of keys, a significant number of initial output words 

contain an easily recognizable pattern. This bias is flattened when the keys 

are chosen from a uniform distribution, but it does not completely disappear 

and can be used to construct an efficient distinguisher even when the first 

two words of each output sequence are discarded. 

 

    Notice that the probability of a special 2
q
-exact key to be transformed into 

a 2
q
-conserving permutation does not depend of the key length l  (see 

Theorem 3.1.4). However, the number of predetermined bits is linear in l , 

and consequently the size of this bias (and thus the number of required 

outputs) also depends on l . In Table 3.2 we specify the quantity of data 

required for a reliable distinguisher, for different key sizes. In particular, for 

64 bit keys the new distinguisher requires only 2
21
 data instead of the 

previously best number of 2
30
 output words. 

 

    It is important to notice that the specified output patterns extend over 

several dozen output words, and thus the quality of the distinguisher is 

almost unaffected by discarding the first few words. For example, discarding 

the first two words causes the data required for the distinguisher to grow by 

a factor of between 2
0.5

 and 2
2
 (depending on l ). Another important 

observation is that the biases in the LSB's distribution can be combined in a 

natural way with the biased distribution of the LSB 's of English texts into an 



efficient distinguisher of RC4 streams from randomness in a ciphertext-only 

attack in which the attacker does not know the actual English plaintext 

which was encrypted by RC4. This type of distinguishers is discussed in the 

next section. 

 

 

   

 

 

  Table 3.2: Data required for a reliable distinguisher, for different key sizes  

 

 
 

 

 
 

3.3.2  Ciphertext-Only Distinguishers based on the  
          Invariance Weakness 
 

The distinguishers we presented in Section 3.3.1, as well as most of the 

distinguishers mentioned in the literature (for RC4 and other stream ciphers) 

assume knowledge of the plaintext in order to isolate the XORed keystream. 

 

    However, in practice the only information the attacker has is typically 

some statistical knowledge about the plaintext, e.g., that it contains English 

text. Combining the non-random behaviors of the plaintext and the 



keystream is not always possible, and there are cases where XORing biased 

streams result with a totally random stream (e.g. when one stream is biased 

in its even positions and the other stream is biased in its odd positions). We 

prove here that if the plaintexts are English texts, it is easy to construct a 

ciphertext-only distinguisher from aforesaid biases. The intuition of this 

construction is that the biases described in Section 3.3.1 are in the 

distribution of the LSBs, and consequently they can be combined with the 

non-random distribution of the LSBs of English texts. 

 

There are many major biases in the distribution of the LSBs of English texts, 

and they can be combined with biases of the keystream words in various 

ways. In theorem 3.3.1 we estimate the bias caused by XORing two streams 

which are biased in their LSBs distribution. 

 

Theorem 3.3.1  Let {mt}, {zt} and {ct} be the plaintext, keystream and 

ciphertext (mod 2) of a stream cipher respectively (we assume independence 

between the plaintext and the keystream). Suppose that zt and mt have 

positive biases bz > 0, bm > 0 towards the bits vz; vm respectively, i.e, Pr[zt = 

vz] = 0.5 + bz and Pr[mt = vm] = 0.5 + bm. Then 

 

Pr[ct = vm ⊕  vz] = 0.5 + 2bmbz  

 

Proof: 

                                                                               

Pr[ct = vm ⊕  vz] = Pr[mt = vm, zt = vz] + Pr[mt = vm , zt = vz ] 

                          = Pr[mt = vm] ÿ Pr[ zt = vz] + Pr[mt = vm ] ÿ Pr[ zt = vz ] 

                          = (
2

1
 + bm) ÿ (

2

1
 + bz) + (

2

1
 - bm) ÿ (

2

1
 - bz) 

                          = 
2

1
+ 2bmbz 

                                                                                                                        á 

 

Next we exemplify constructions of ciphertext-only distinguishers, by 

concentrating on specific biases of the LSBs distributions in English texts. 

 

Corollary 3.3.2  Let C be the ciphertext generated by RC4 from a random 

key and the ASCII representation of plaintexts, distributed according to the 

first order statistics of English texts. Let  p
l
 be the probability of a random 

l -words key to be special 2- exact. Then C can be distinguished from a 



random stream by analyzing the first few words of about 
2

800

l
p
 different RC4 

streams. 

 

Proof:  The first order statistics of English texts gives a 55% probability of a 

character to have LSB 0, and thus bm º 0.05. Analyzing the results from 

section 3.2 we get 

 

bz = Pr[c1 = 0] - 0.5 

 

    = Pr [c1 = 0 | key is special b-exact] +  

       Pr [c1 = 0 | key is not special b-exact] . (1 - p
l
)  

       - 0.5 

    º 0.75 ÿ p
l
 + 0.5 ÿ (1 - p

l
) - 0.5 

    = 0.25 ÿ p
l
 

 

Thus, Pr[c1 = 0] = 0.5 + 2 ÿ 0.05 ÿ 0.25 ÿ p
l
= 0.5 + 0.025 ÿ p

l
 = 0.5 ÿ (1 + 0.05 

p
l
) and the data required for a reliable ciphertext-only distinguisher is (again 

we use Theorem 2.2.1) 

 

O( 
2

1

pq
) = O( 

( )205.05.0

1

l
p⋅⋅

) = O (
2

800

l
p

) 

 
                                                                                                                        á 

 

    For the typical RC48,8, p l
 = 2

-16
 and we get a 2

41.6
 ciphertext-only 

distinguisher. A drawback of this approach is that our distinguisher works on 

prefixes of messages that have distribution different from first order 

statistics of English. For example, the space character is not likely to occur 

at the beginning of a message, whereas in first order statistics of English, it 

is the most probable character. Experiments we made imply that the 4th 

character of English texts has probability of 60% for having an LSB of 0. 

Thus we get bm = 0.1, and bz = Pr[z4 = 0] - 0.5 º 0.25 ÿ p
l
 (from the graph), 

which gives Pr[c4 = 0] = 0.5 + 2 ÿ 0.1 ÿ 0.25 ÿ p
l
 = 0.5 ÿ (1 + 0.1 ÿ p

l
). Thus 

the data required for the distinguisher is 2
39.6

 outputs. 

 



It is important to note that we did not use all the statistical information that is 

available in either the keystream or the plaintext distributions, and 

consequently this analysis does not represent the best possible attack. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 
 

Conclusion and Scope of Future  

Works 
 

 

 

4.1 Conclusion  
 

In this thesis we have described several flaws in the initialization mechanism 

of RC4, which are caused by its extreme simplicity. The complicated task of 

the KSA, which is to extend relatively short random keys into large 

pseudorandom permutations, is reasonably but only partially fulfilled. The 

initialization of the pseudo-random index j to 0 seems to be the most 

problematic operation, and the second byte bias could be avoided by using a 

more complex initialization of j. Possible methods for initializing j are to use 

j from the end of the KSA or to give it the value of one of the key words. 

The invariance weakness is the inherent consequence of the structure of the 

KSA. 

 

    A perfect initialization mechanism is not easy to achieve. We would like 

to avoid patterns that are independent of the key (like the second byte bias), 

while on the other hand we do not want any trivial dependency between the 

key and the first output bits (like the invariance weakness). A common mode 

of operation to achieve these contradicting goals is to discard a prefix of 

output bits. These mute rounds usually disconnect the generated stream from 

the initialization process, and improve the "randomness" of the generated 

stream. Discarding the first two bytes voids the practical attacks, but retains 

the invariance weakness. Consequently, it is recommended to discard at least 

complete sequence of N words.  

 

    One can notice that when enlarging RC4 words into 16 bits (which is 

sometimes recommended for faster encryption of large amount of data), the 

discarded prefix should also grow in the same way (exponentially). The 



expression of the invariance weakness spreads over several hundred words 

in RC416 and eliminating only 256 words is not sufficient when N is larger. 

 

    The final and a positive conclusion about the security of RC4 is that using 

RC4 in this way seems to be secure, even when using a concatenation-based 

session-key derivation. It is believed that no information leaks about either 

the key or any part of the encrypted messages. 

 

 

 

4.2 Scope of Future Works  
 

Many new observations about the internal state, the output distribution and 

the correlation between them in RC4 are there in the literature. Several 

methods are being described to extract partial information about the internal 

state, and we believe that these methods can be further improved. 

 

    Excluding prefix distinguishers, the best known distinguisher for RC4 

([3]) is based on counting the number of occurrences of output pairs in 

periodic positions in the stream, which is an amazingly simple method. A 

non-negligible portion of our thesis was dedicated to describing better 

distinguishers.  

 

    The most promising way to constructing a distinguisher is based on the 

correlations of Jenkins. We know that whenever a value X is pointed to by j 

before the swap, it will not be pointed to by i (before the swap) for at least N 

rounds. However, the values that are pointed to by i can be guessed to be i  - 

z. Thus knowing S[j] = X can be used to predict that i - z will differ from X 

during at least N rounds. Furthermore, the value that was used as S[j] has a 

constant probability (1/e) to be used as S[i] after exactly N rounds, and a 

doubled probability to be equal to i - z in this round. The lower bound to 

success probability of guessing S[j] with success probability is 
N

1
(1 + 

N

c
) 

(for a small constant c), but not strict and unfortunately a tighter bound is not 

yet found. 

 

    A promising research direction is to extend the analysis of the KSA in the 

view of transfer function. Calculating (recursively or explicitly) the pairs 

transfer function, i.e. the probability that the values in positions a and b to 



reach positions c and d respectively within r rounds, might lead to new 

observations. This function is at least as biased as the singles transfer 

function, and might be more useful. It is possible that the pairs transfer 

function can be easily derived from the singles transfer function. If this is the 

case, it will provide new insights into the complete distribution of KSA 

outputs, which might be surprisingly biased. 
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