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1. Introduction

Stream ciphers form an important class of ciphersystems. Their speed
over that of block ciphers and less complex hardware circuitry make it ad-
vantageous to use stream ciphers in many applications.

In a binary additive stream cipher, the ciphertext is produced by bit-
wise addition of the plaintext with the key stream, all in binary. The key
stream generator is initialized using a secret key. a popular key-stream gen-
erator used in stream ciphers consists of several LFSRs combined through a
nonlinear boolen function.

Attacks that exploit the similarity between the ciphertext and the LFSR
outputs, are termed correlation attack. The nature of the cipher system
allows each LFSR to be analysed seperately, thus leading to a divide and
conquer strategy. The idea of fast correlation attack, which eliminates the
need for an exhaustive search of the LFSR initial conditions was first pro-
posed by Meier and Staffelbach [1]. A number of fast correlation attacks were
later proposed. However, fast correlation attacks suffer from one or more of

the following drawbacks.

1. The presence of a preprocessing phase of considerable complexity which

naturally increases the overall decoding time.
2. An iterative phase which takes time to converge.

3. The assumption of a combining functiion that is not correlation immune

and also known to the decrypter.

The algorithm proposed here is free of all these restrictions which is in the
sideline of Palit, Roy and Arindom [2].



2. Proposed Algorithm

The algorithm can be outlined as follows :

1. For every bit of the cipher stream, generate as many equations as possi-
ble by shifting, squaring etc.. The original LFSR feedback polynomial

computes the percentage of relations, say r, satisfied by each bit.

2. Sort the bits in a proportion in which they are satisfying the linear

equations.
3. Take those bits which has highest proportion.

4. Express the bits, thus, taken in terms of the initial conditions of LFSR
and solve the resultant linear system in order to recover the initial

conditions.

Note that the system may not always be solvable in which case that

particular combination of bits must be rejected.
Computational Complexity

In step 1, the computation of r for each bit position, requires forming at
most (¢ + 1)(log, % + 1) linear equations, where k is the length of the LFSR,
N is the cipher length and ¢ is number of taps. This is because, the number
of polynomial relations drived from the LFSR polynomial is bounded above
by logQ%; and corresponding to each such relation (including the generating
polynomial), we may form, at best, (¢t + 1) linear equations through shifting.
For each equation, we have to compute the product of (¢ 4+ 1) terms. Since
there are N bits in all, the total time taken by step 1 is O((t + 1)?Nlog,%').
Step 2 takes O(Nlog,N) time.

Step 3 takes constant time.
Step 4 takes O(k?) time.



3. Experimental results

1. Forl1+x+a2*=0,p=0.7, N =250

0110 o 1
1110 T
0001 | |1
1000 T3 1

2. For1+2*4+2"=0,p=0.7, N =500

1110000\ /] [0 ]
0111111 T 0
0110001 s 1
1011110 x| = |1
1010011 Ly 0
0000T1T11 T 0
110100 1) || 0

3. For 1 +2® 4+ 2% =0, p= 0.6, N = 500, we determined 21 correct bits

out of chosen 31 bits.

We have tested the result on LFSR of size upto 32. when p was as low as
.60 we were not able to form independent system of linear equations but we

determined most of LFSR bits correctly.

4. Conclusion

Algorithm proposed here works well when the number of taps is small.
At the same time, it eliminates the need for further iterations. Algorithm
doesn’t use any threshold, it just sorts the bits in a proportion in which they
are satisying the linear equations. When p (correlation probability) is low,
then for forming an independent syatem of linear equations, we need cipher

length of large size.
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Abstract

Stream Cipher models are cryptanalysed using statistical techniques
assuming that the detailed architecture of the model (except for the key) and
cipher text are available. The work is to estimate the secret key with a
“reasonable” computational complexity.

Key Words: Stream ciphers, LFSR, Correlation attack, fast correlation attack



1. Introduction

A cryptosystem is a five tuple (P.C, K, £, D), where the following condi-
tions are satisfied:

1. P is a finite set of possible plaintexts
2. C is a finite set of possible keys
3. K, the keyspace, is a finite set of possible keys

4. For each K € K, there is an encryption rule e, € £ and a corresponding
decryption rule dy, € D. Each e, : P — C and dy, : C — P are functions
such that di(e,(r)) = = for every plaintext element = € P.

The main property is property 4. It savs that if a plaintext = is encrypted
using eg, and the resulting ciphertext is subsequently decryvpted using dy,

then the original plaintext x results.

Cryptanalysis (popularly known as code breaking) is the other side of
coin. It is assumed that ciphertext is always available to the attacker and
in some cases, some plaintext may also be available. We have considered

ciphertext only attack.

In section 2, general stream cipher model is described in detail, where
ciphertext is produced by bitwise addition of plaintext with the keyv stream,
all in binary. The kev stream generator is initialised using a secret key.
A popular key stream generator is used in stream ciphers consit of several

LFSR’s combined through a nonlinear combining function.

The secret key, unknown to the decrypter, is normally chosen to be initial

conditions for the LFSR’s. the LFSR polynomials are assumed to be known.

The objective of the nonlinear combining function is to destrov the inher-
ent linearity present in LFSR sequences. It enables the key stream to have

a large linear complexity in order to prevent linear cryptanalvsis. However,



depending on the order of resiliency of the function, there is still some cor-
relation between the ciphertext and the LFSR outputs. Attacks that exploit
the similarity between the ciphertext and the LFSR outputs, are termed cor-

relation attack. The first attack on this model was due to siegenthaler [1]
which has been described in section 3.1. The idea of a fast correlation at-

tack, which eliminates the need for an exhaustive search of the LFSR initial

conditions, was first proposed by Meier and Staffelbach [2], This has been
described in section 3.2.

It is important to note, however, that the existing fast correlation attacks

suffer from one or more of the following drawbacks [3, 4].

1. The presence of a preprocessing phase of considerable complexity which

naurally increases the overall decoding time.
2. An iterative phase which takes time to converge.

3. The assumption of a combining function that is not correlation immune

and also known as to the decrvpter.

The algorithm which has been proposed here is free of all these restrictions
which is in the sideline of Palit, Roy and Arindam [5].



2. The stream cipher system architecture and its
components

Figure 1 shows the general form of a popular stream cipher system. The
generator G' produces a random sequence called the ‘keystream’ (Y'). This is
X-ORed (added modulo 2), bit-by-bit with the encoded message called the
‘plaintext’ (M) to produce the ‘ciphertext’ (C'). For decryption, the same
keystream must be X-0 Red with the ciphertext (in synchronization with
the encryption process) to retrieve the encoded plaintext.

Example: Let M=11010111......... be the plaintext and Y=10010101
....... the computed key stream. Then M is encrypted to C = M @ Y
=01000010...... which is sent to the receiver. The legal receiver who can compute
Y =10010101............ by himself, decrypts Cby M=C® Y = 11010111..........

A cryptosystem 1s said to have perfect secrecy it plx|y) = plx) V @ €
P,y e . P is a finite set of possible plaintexts, C' is a finite set of possible
ciphertexts and K stands for the set of possible keys. This means that the a
postertort probability that the plaintext is x, given that the ciphertext y is
observed, is identical to the a prior: probability that the plaintext is x. Let

e € FE be the encryption rule and dig € D be the decryption rule. Then
Shannon provides another charecterization of perfect secrecy suppose :



P K,C,E,D represents a cryptosystem with |P| = |K| = |C|. Then the
cryptosystem provides perfect secrecy if and only if every key is used with
uniform probability ﬁ and for every x € P and every y € (C there is a

unique key such that ex(z) = y. A well known realization of a perfectly
secret system 1s the Vernam One-time pad. This consists of bit-by-bit X-
ORing of the plaintext and keystream to obtain the ciphertext. Decryption
is performed by X-ORing the ciphertext and keystream. Most importantly,
each key must be used only once which makes the system unconditionally
secure and must be of length at least that of the plaintext.

A linear feedback shift register (LFSR) 1s commonly used to implement
a pn sequence. It is both efficient and easy to implement in hardware as
well as software. The nth bit of the output generated serially by an LFSR
of length d is related to the previous d bits by the linear equation

Ty =a1x;_1 +asx;_9+ -+ agri_d, (1]

ay,...,ag being binary constants which, along with the d initial values,
characterize the pn sequence. The above equation is often described by

means of the polynomial a(X) =1+ a1 X + a2 X? + - -« + ag X, known as
the feedback or connection polynomial. When the feedback polynomial is
primitive, 1.e., cannot be factorized and any root of it generates the entire
field, the period (cycle-length, after which repetition sets in) of the sequence
generated is of mazimal length and equals 2¢ — 1. The longer the period
length of the sequence, more is the ’pseudorandomness’ of the sequence.
Having a long period length is of vital importance to the security of the
cryptosystem.

An example of an LFSR with a primitive feedback polynomial 1 + =+ 2
is shown below in Figure 2. The period of the sequence is 24 — 1 = 15.
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Figure 2. Block diagram of a linear feedback shift register (LFSR) of
lenght 4.

Since the bits of the LFSR sequence satisfy a linear recurrence relation-
ship, the use of such a sequence as the keystream leads to an attack of
by the Berlekamp-Massey shift register synthesis algorithm

eliminate the possibility of attacks along these lines, the outputs of several
LFSRs are combined using a nonlinear Boolean function in order to destroy
the inherent linearity present in the keystream. The corresponding system
which is one of the most popular stream cipher systems, is shown in Fig-
ure 3. The system is initialized with a set of initial conditions for the LFSRs

which is the secret key.

In such a system, the attacker may face one or more of the following
problems, viz. unknown initial conditions of the LFSRs, unknown LFSR

10



polynomials, unknown combining function, availability of limited cipher-
length and the need for computation in a reasonable amount of time.

An LFSR of length d;, has 24 — 1 different choices of the initial condi-
tions. The total number of LFSR. initial conditions possible for the system
shown in Figure 3 is

m

K = H(?d-f — 1)the all zero condition is never used
j=1

If the feedback polynomials of the shift registers are unknown, and R; is the
number of (possibly primitive) feedback polynomials for the jth LFSR. then

K =[] Rr;(2%7).
d=1

Hence, in a situation when the attacker has access to the ciphertext only,
for a brute force attack, he must attempt the decryption using all K keys
and wait till a meaningful decrypted message is obtained. This is computa-
tionally infeasible for LFSRs of even moderate sizes.

11



3. Sigenthaler’s correlation attack

Because of the fact that the probability of 0 in the coded plain text is
not exactly equal to half, there 1s often a non-zero correlation between the
keystream and each of the LFSR output sequences. This correlation was
first exploited by Siegenthaler to form a divide and conqure approach
that the correct initial condition (i.c.) of each LFSR may be determined
independently of the i.c.s of the others. He assumed that the shift register
sizes and the form of the nonlinear combining function are known. The
number of trials to find the i.c.s 1s then dramatically reduced to

m
)
i=1

3.1 The method

Let N denote the cipherlength available, X f . ¢ ;L the sequence produced
by the jth LFSR, and d;, the size of the jth LFSR, 7 = 1,...,m. Since each
of the LFSR outputs are pn sequences, X/, ¢ = 1,---, N are i.i.d random
variables with

Px(X! =0)= Py(X] =1)

for all ¢ and j. Further, if the nonlinear combining function f is balanced,
1.e. its output has an equal number of zeros and ones, then

P(Y; = 0) = P(Y; = 1).

Let pp = P(M; =0) and p; = P(C; = X;’] Even though p; is not
directly related to the correlation between C; and X/, an attack based on

the deviation of this probability from one-half is conventionally referred to
as a ‘correlation attack’. Note that

M; =0)P(M; =0) + P(Y; # X)|M; = 1)P(M; = 1) (2)

pj = P(Y;= X!
Since Y; and X f are both independent of M;, we have the simplification
pi = qjpo + (1 —q;)(1 — po) (3)

where g; = P(Y; = Xf]l

12



Consider the random sequence

gi_ 1 ifCi=X],
o G # X

It can be deduced that Zf is a Bernoulli random variable and S (1 —Zf] ~
Bin(N,1 — p;). Thus, for large N, the empirical measure of concurrence
between C; and X f given by

N )
aj=N-2) (1-27), 1<j<m (4)

is approximately normally distributed with mean and variance

oy, = 4Np;(1 —pj).

For all known codes of the plaintext, the probability pg is generally different
from 0.5. Hence, p; = 0.5 if and only if g; = 0.5. This happens to be the
case when the combining function is first order correlation immune 1.e., if

the function is f(X{, Xo,..., X,,), then P(f = X;) = %,‘v’i =1,...,n.

If p; is different from 0.5, then a; is different from 0. On the other hand,

if an arbitrary trial sequence is used in place of }{'f, then p; = 0.5, and
consequently

My, = U, .

Thus, the question of determining the correctness of a candidate 1.c. of the
gth LFSR reduces to a test of the null hypothesis Hy : m,; =0 against the
alternative hypothesis Hy : ma; # (. Note that the sequence X 10X {u
needed for computing the test statistic, a;, is uniquely determined by the
candidate i.c., once the connection polynomial is known.

13



Let us assume, without loss of generality, that p; > 0 for a particular i.c.
of the jth LFSR. If the cut-off used for the test statistic a; is T, then the

probability of false alarm is
P(a >T|Ho) =1 —®(T/VN),
while the probability of miss is
P(a < T|Hy) = (T — (N(2p; —1)))/2/Np,;(1 = p;)),

where ®(.) is the standard Normal distribution function. Siegenthaler rec-
ommends setting the threshold T to ensure a predetermined maximum prob-
ability of miss. If several candidate 1.c.s exceed the threshold, then all of

these should be used to try and decode the ciphertext. If no candidate i.c. is
found to exceed the threshold, then a different connection polynomial may

be tried out.

14



3.2 The fast correlation attack

The correlation attacks described so far are based on carrying out an ex-
haustive search over possible initial conditions. Fast correlation attacks,

however, attempt to reconstruct the entire LFSR sequence in an iterative
fashion. This section presents the first algorithm of this kind, proposed by

Meter and Staffelbach .

3.2.1 The theory

As in the last section we assume that the LFSR sequence is given by (1).
The stream cipher system is viewed as a binary noisy channel with the LFSR.
output at its input. Its output is the ciphertext. The analysis is performed
for a single LFSR, though a number of LFSRs can be analyzed similarly.
(Consequently we drop the index j.) The channel is assumed to be such
that

p=PC;=X;)>05 (6)

We consider only Boolean functions implying that the coefficients of the
polynomial are either 0 or 1. The number of non-zero coefficients a;, [ = 1, 2,

.,d give the number of taps or feedback connections. We assume the
existence of ¢ such taps. Then, (1) can be rewritten as:

Z Xio1 =0

0<l<d,a;=1 @

having ¢ + 1 terms. Note that a particular bit, say X; can be placed in any

of the ¢ + 1 positions of (1). This implies that X; simultaneously satisfies
t + 1 equations of the form (1), Another important observation is

that polynomial multiples of a(X) generate linear relationships satisfied by
X and in particular, powers of the form a(X)?, j = 2%, i =12
for which a(X)? = a(X7). Thus, by repeated shifting of the sequence and
‘squaring’ of the polynomial, a large number of linear relations with the
same number of taps are generated, all of which are satisfied by the bit Xj;.

15



For example, consider the polynomial 1 + « + z* and assume that the
cipherlength available is N = 65. Then, listed below are the resulting poly-
nomials produced by raising 1 + z + z? to j, where j =2/, i=1,2,3, .

(1+z+2Y? = 1422+ 2%+ 22+ 22° + 224(mod2) = 1+ 2* + 25
(1+z+2H = 1428+ 2%+ 222 +221° + 22%(mod2) = 1 4 2% + 219
(14 z+2Y% = 142"+ 2% + 227 + 221° + 228 (mod2) = 1 + 2* + 216

(14 z+ )¢ 1+ 2%+ 2™ 4 22% 4 221 + 22°% (mod2) = 1 + 2° + 2™
(I+az+2Y? = 1420 + 2% 4 2219 + 22°° 4 20 (mod2) = 1 + 21 + 2°

Note that the order of the last polynomial is 64 1.e. the corresponding LFSR.
will have a 64 delay units (the LFSR equation will be: (X, = X,,_15 +
X,_g4). Since the length of the data is only 65, generation of any further
polynomials by this method will not be of any use. In general, the "squaring”
is continued till 2'd < N

3.2.2. Underlying Model

The number of linear relations that can be generated for a particular bit
X, 1 = i1, say, will naturally be restricted by the cipherlength N available.
Each squaring of the polynomial doubles its length and will continue as long
as the quantity 2'd is less than N i.e. till i < \_logg(%”. In other words,
the total number of relations obtained

log, (N/d) , N
T= > (N=-24d)= Nlogy(57) +d
=0 - ®)

Since every relation is satisfied by all £ + 1 bits, the average number of
relations per bit equals

| _(t—l—l)TN . N
m = N lﬂbi(ﬁ)(f +1) )

16



Consider the ith bit X;. These relations may be expressed in the form:

Liy=X;+w =0 l=1,---,m, (10)

where w; represents a sum of exactly ¢ different remaining terms with X; in
one of the ¢ + 1 positions 1n (7).

Consider now a bit of the cipherstream, C; instead of X; in (10)
LI=CI+EE £=l,,?n (11)

with z; representing a sum of exactly ¢ different remaining terms with
(', 1n one of the t 4 1 positions

In this case, I; may not be equal to zero.

Now, let wy; = wpy +wpo + -+ -+ wy and z; = z;1 + 219 + - -+ + 2z where,
wyj and 25, j = 1,---,t are binary variables, all independent and identically
distributed with equal probability of being 0 or 1. Note that P(X; = C;) =
p = P(wi; = z;).

Then, s(t) = P(w; = z;) can be recursively computed as follows:

s(1) = p
s() = psU-1)+(A-p)(1-s(G-1)) F=2,---,t (19

Observe that, for a particular ciphertext bit to satisfy the [th relation i.e.
L =C; 4z =0, either C; = X; and w; = z or C; # X; and w; # z; .
Hence

+ (1=p)(1 —s)tsm"

where s = s(t). Further

17



P(Ci=Xj|Ly=---=Lp,=0; = Lpp1=---=1Lp=1)
psh(l _S)m—h
pst(1 —s)m=h 4 (1 —p)(1 — s)hsm—h
PC;#Xj|Ly=---=Lp=0; = Lppy=---=Lp=1)
(1—p)(1 —s)"s™"
pst(1 —s)m=h 4+ (1 —p)(1 — s)hsm=h

The basic strategy of the attack is as follows. For a bit C;, we start with an a
priori probability p = P(C; = X;) > 0.5 . We count the number h of indices
[ for which L; = 0. We then alter the a priori probability p = P(C; = X;)
to a new value p* using (13) It is to be expected that

if C; = X; is true

then p* must increase and vice-versa. This can be verified by computing the
expected value of p* in the two cases.

m h m—h
# m ps (1 _5) h m—h
E(p*|C; = X;) = 1 -

h=0
m h m—~h
. m ps"(1 —s) _h b
Ep'|C: # X;) = m=r
ez X =2, (h)psm —9r T (- g = )

18



3.2.3 The Algorithms

Let
R = P(c, = xn,and ¢, satisfies at least h of m relations),
QQ = P(cpsatisfies at least h out of m relations),
T = P(c, = xn/cpsatisfies at least h of m relations).

Then, using (13)

Q=Y (Tf) (ps'(1 = )" "+ (1 =p)(1 = 8)'s™ ")
i=h

(14)

R = Z() (1-s)"", T=R/Q

The quantity h/m which is the minimum fraction of equations that a bit of
the cipherstream must satisfy, shall be henceforth, referred to as the upper
threshold.

(15)

Then, using (13)

h m . . . )
D = Z (lt )(ps"’(l _S)Tﬂ—l + (1 —p)(l _S)lsﬂ‘l—l)

i=0 (16)
h T 1 m—1
V = Z . |ps' (1 —s)™7",
i=0 \" 17)
h m
147 22(..)(1—;:) (1—s)™", =W/D
i=0 \' (18)

19



The maximum fraction of equations h/m, that a bit can satisfy in order to
be designated as wrong shall be called the lower threshold. Note that the
value of h for the upper threshold is different from that of i for the lower
threshold.

Meier and Staffelbach give two algorithms based on these computations.
One is an exponential-time attack which is non-iterative in nature. It has
limited scope as it has been seen that for ¢ > 10 and p < 0.75, this algorithm
holds no advantage over an exhaustive search of the initial conditions.

The other algorithm is polynomial time. It starts with a value of h such
that the relative increase of correct bits, given by W — 1 is maximum and a
threshold N = U N which is the expected number of bits with p* < pinreshold-
The value of p* is calculated from which the no. of bits with p® less than
a threshold, 7.e. NN, 1s counted. If this is greater than Ny, eshoid, only the
bits with p* less than the threshold are complemented and the procedure
continued till all the bits equal those of the cipherstream. However, if Ny,
is less than the threshold, the algorithm must restart with a new a prior
probability.

It 1s seen that the polynomial time algorithm stabilizes in only a few
iterations.

20



4. Proposed algorithm

We now propose an algorithm to obtain some bits of LFSR sequence.
Omnce a sufficient number of bits have been correctly determined (slightly
more than the length of the LFSR), the initial conditions of the corresponding

LFSR are obtained by constructing and solving a svstem of linear equations.

Note that equation(14) and (15) of last section is generally used for deter-
mination of upper threshold and equation(17) and (18) is generally used for
lower threshold, but, since the probability of correctly determining the bits
increases while the mumber of bits correctly dtermined decreases. the reverse
situation occurs as the lower threshold is increased, the probability that a bit
1s wrong decraeses while the number of wrong bits increases. Hence, there is
a trade-off between ensuring a particular probability of correct determination

of bits and obtaining some required number of them.

So, rather than going in above trade-off, we have sorted the bits in a
proportion in which they are satisfving the linear equations. We have cho-
sen those bits for solving the system of linear equations which have highest

proportion.

The algorithm can be outlined as follows :

1. For every bit of the cipher stream, generate as many equations as possi-
ble by shifting, squaring etc.. The original LFSR feedback polynomial

computes the percentage of relations, say r, satisfied by each bit.

2. Sort the bits in a proportion in which thev are satisfving the linear

equations.

3. Take those bits which has highest proportion.

21



4. Express the bits, thus, taken in terms of the nitial conditions of LFSR
and solve the resultant linear syvstem in order to recover the initial

conditions.

Note that the system may not alwavs be solvable in which case that par-

ticular combination of bits must be rejected.

Computational Complexity

In step 1, the computation of r for each bit position, requires forming at
most (t+ 1)(logy, 2" + 1) linear equations, where k is the length of the LFSR,
N is the cipher length and f is number of taps. This is because, the number
of polynomial relations drived from the LFSR polynomial is bounded above
by lcrgz%; and corresponding to each such relation (including the generating
polynomial), we may form, at best, (f+ 1) linear equations through shifting.
For each equation, we have to compute the product of (f 4+ 1) terms. Since
there are N bits in all, the total time taken by step 11is O((t + 1)*Nlog,<).
Step 2 takes O(Nlogy,N) time.

Step 3 takes constant time.
Step 4 takes O(k”) time.

Experimental results:

. For 14z 4z*=0,p=0.7, N =250

0110 Zo 1
1110 o | |1
0001 | |1
1000/ [as |1
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2. The following points should be noted relevant to the exp lanation of the results:

e An entry of the form ky,k,........ k, In the leftmost column of the tables
means that, for the LFSR under consideration, the generating polynomial is
1+ D+ D+ ...+ D“

e The three sub columns on the right correspond to values of incorrectly
determined LFSR bits over chosen bits after sorting for cipher texts of
size100, 1000 and 5000.

p=0.7

Polynomial N=100 N=1000 N=5000
1,22,31,32 10/32 5/32 3/32
2,8,31 2/31 1/31 2/31
18,31 8/31 1/31 0/31
18,25 6/25 1/25 0/25

p=0.8
Polynomial N=100 N=1000 N=5000
1,22,31,32 7132 3/32 2/32
2,8,31 1/31 0/31 0/31
18,31 6/31 0/31 0/31
18,25 1/25 0/25 0/25

23



5. Conclusion

Algorithm proposed here works well when the number of taps is small. At the
same time it eliminates the need for further iterations. Algorithm does not use
any threshold it just sorts the bits in a proportion in which they are satisfying
the linear equations. When the p is low then for forming an independent system
of linear equations we need cipher length of large size.
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