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Chapter 1

Introduction

The security of discrete logarithm based cryptosystem relies mainly on the
order of the underlying group, unless special structures allow more efficient
algorithms for breaking the system. If the group order is large enough,
then square root attacks like Shank’s baby-step giant-step or pollard’s p-
methods are not applicable. Also it is a good strategy to make sure that the
group order contains a large prime factor, to prevent the Pohlig-Hellman
attack. There are many way to choose an elliptic curves so that above
attacks are not possible. The most secure way of selecting a curve is to fix an
underlying field, randomly choose a curve and compute the group order until
it is divisible by large prime and an Elliptic Curve Cryptosystem is designed
using that elliptic curve. There are many algorithm to count such number.
First Hasse gave a bound for that count. After that Baby step, Giant step
method used Hasse bound to find the count. But most popular algorithm
that use Hasse bound is Schoof’s algorithm. Here we basically have designed
an algorithm that can test irreducibility of any polynomial(Weierstrass form)
of degree 3 without using gcd method. We have used our algorithm to find
whether cardinality is even or odd where Schoof used to use gcd method.
We have studied the problem to find degree of Frobenius Endomorphism
directly. Also we have got some result related to count if we know the type
of elliptic curve. Throughout this thesis p(prime) stands for characteristic
of the underlying field and q(some power of p) stands for cardinality of the
underlying field. Here we are considering only the fields with characteristic
p > 3.

Definition An elliptic curve E over the field F is of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, where ai ∈ F

This equation also called generalized Weierstrass equation.
We let E(F) denotes the set points (x, y) ∈ F2 that satisfy this equation,
along with a ”point at infinity” denoted by ∞.
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1.1 Elliptic curve over prime field Fp with p > 3

The above equation is very useful when working with field with characteristic
2 and characteristic 3. Now if characteristic of the field is not 2 then we can
divide by 2 and complete the square as

(y + a1x/2 + a3/2)2 = x3 +
(
a2 + a2

1/4
)
x2 + a4x+

(
a2

3/4 + a6

)
which can be written as

y2
1 = x3 + b2x

2 + b4x+ b6

with y1 = y + a1x/2 + a3/2 and for some constants b2, b4, b6. If the
characteristic is also not 3, then we let x1 = x+ b2/3 and obtain

y2
1 = x3

1 +Ax+B

for some constants A,B ∈ Fp.
The above equation is called Weierstrass form.

Definition Discriminant of polynomial is defined to be product of the
square of the difference of the roots.

1.1.1 Newtons formula

Let α1, α2, α3, ...αn be the roots of the equation

f(x) = xn + p1x
n−1 + p2x

n−2 + ...+ pn = 0

let sr = αr
1 + αr

2 + ...+ αr
n, where r ≥ 0 an integer

then (i) sr + p1sr−1 + p2sr−2 + ...+ pr−1s1 + rpr = 0 if 1 ≤ r < n
(ii) sr + p1sr−1 + ...+ pnsr−n = 0 if r ≥ n

1.1.2 Finding discriminant of y2 = x3 + Ax + B

Let y2 = x3+Ax+B be an elliptic curve over Fp. Let α1, α2, α3 are the roots
of the equation x3+Ax+B. So discriminant d = (α1 − α2)

2 (α2 − α3)
2 (α3 − α1)

2

i.e

d =

∣∣∣∣∣∣
1 1 1
α1 α2 α3

α2
1 α2

2 α2
3

∣∣∣∣∣∣
∣∣∣∣∣∣
1 α1 α2

1

1 α2 α2
2

1 α3 α2
3

∣∣∣∣∣∣
and ∣∣∣∣∣∣

1 1 1
α1 α2 α3

α2
1 α2

2 α2
3

∣∣∣∣∣∣
∣∣∣∣∣∣
1 α1 α2

1

1 α2 α2
2

1 α3 α2
3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
3 s1 s2
s1 s2 s3
s2 s3 s4

∣∣∣∣∣∣
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(by know result)
where s0 = 3

s1 = α1 + α2 + α3 = 0
s2 = − p1s1 − 2p2 = − 2A
s3 = − p1s2 − p2s1 − p3s0 = − 3B
s4 = − p1s3 − p2s2 − p3s1 = 2A2

Hence

d =

∣∣∣∣∣∣
3 0 −2A
0 −2A −3B
−2A −3B 2A2

∣∣∣∣∣∣ = − (4A3 + 27B2)

With the notion of discriminant we redefine the definition of elliptic curve
as

Definition An elliptic curve E over finite field Fq where q = pr for some
integer r ≥ 1 and p is the characteristic of finite field Fq is of the form

y2 = x3 +Ax+B,where A,B ∈ Fq

with 4A3 + 27B2 6= 0.

This equation is called Weierstrass equation. We let E(Fq) denote the set
points (x, y) ∈ F2

q that satisfy the above equation along with a ”point at
infinity”, called ∞. i.e

E(Fq) = {(x, y) ∈ F2
q | y2 = x3 +Ax+B} ∪ {∞}

1.1.3 Addition law

In order to define a cryptosystem on the set points on elliptic curve, we need
to define an algebric structure on the points. The easiest algebric structure
which provides us with all necessary tools is the group. Therefore we need
to define identity element (zero element), inverse elements, and the addition
of two elliptic curve points which need to be associative.
Let E: y2 = x3+Ax+B be an elliptic curve over Fq. Let P1 = (x1, y1), P2 = (x2, y2)
be two points from E(F2

q) with P1, P2 6= ∞.
Define P1 + P2 = P3 = (x3, y3) as follows

1. If x1 6= x2 then
draw a line through P1 and P2 which cuts the elliptic curve at a point
R = (x, y) (say) then reflection of R which is (x,−y), the sum of the points
P1 and P2 and which is given by (see Figure 1.1)
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Figure 1.1: Addition two distinct points on elliptic curve

x3 = m2 − x1 − x2 , y3 = m(x1 − x3)− y1 where m = y2−y1

x2−x1
.

2. If x1 = x2 but y1 6= y2 then P1 + P2 = ∞. (see Figure 1.2)

Figure 1.2: Inverse of a point on elliptic curve

3. If P1 = P2 and y1 6= 0 then
draw a tangent line through P1 and the tangent cuts at a point R = (x, y)
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(say), then reflection of R is taken to be double of the point P1 and is given
by (see Figure 1.3)
x3 = m2 − 2x1 , y3 = m(x1 − x3)− y1 where m = 3x2

1+A
2y1

.

Figure 1.3: Doubling a point on elliptic curve

4. If P1 = P2 and y1 = 0 then P1 + P2 = ∞.

5. ∀P ∈ E(Fq), P +∞ = P .
With respect to addition E(Fq) forms a commutative group with ∞ as zero
element and inverse of (x, y) is (x,−y).
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Chapter 2

Sketch of Schoof’s Algorithm

2.1 Algebra and Number Theory

Definition Suppose p is an odd prime and a is an integer. a is defined to
be a quadratic residue modulo p if a 6≡ 0 (mod p) and the congruence
y2 ≡ a (mod p) has a solution y ∈ Zp. a is defined to be a quadratic non
residue mod p if a 6≡ 0 (mod p) and a is not a quadratic residue mod p.

Theorem 2.1.1 (Euler’s Criterion) Let p be an odd integer. Then a is
a quadratic residue mod p if and only if

a(p−1)/2 ≡ 1 (mod p).

In the proof of the above theorem, we have used the fact that ap−1 ≡ 1 (mod p)
due to Fermat. But this result also holds for finite field Fq, because Fq�{0}
forms a cyclic group of order q − 1. Hence

Corollary 2.1.2 An element a is quadratic residue in Fq if and only if

a(q−1)/2 ≡ 1 (mod p).

Theorem 2.1.3 Let p(x) be a minimal polynomial over Fq of an element
say a and q(x) is any polynomial over Fq such that a is a root of q(x). Then
p(x) | q(x).

2.2 Torsion Points

Let E be an elliptic curve over field K. Let n be a positive integer. A point
P ∈ E(K) is said to be n torsion point if order of P divides n. Where K
is the algebric closure of K. We are interested in

E[n] = {P ∈ E(K) | nP = ∞ }.
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Definition An elliptic curve E over a field K of characteristic p > 0 is
said to be supersingular if E[p] w {∞} and is said to be ordinary if
E[p] w zp.

Theorem 2.2.1 Let E be an elliptic curve over a field K and let n be a
positive integer. If the characteristic of K does not divide n or is 0 ,then

E[n] w zn ⊕ zn.

If the characteristic of K is p > 0 and p|n, write n = prn1 with p - n1.
Then

E[n] w zn1 ⊕ zn1 or zn ⊕ zn1 .

Hence by above theorem every elliptic curve either supersingular or ordinary.

2.3 Endomorphism

By an endomorphism of E, we mean a homomorphism α : E(K) → E(K)
that is given by rational functions. In other words, α(P1 + P2) = α(P1) +
α(P2) and there are rational functions R1(x, y), R2(x, y) with coefficients in
K such that

α(x, y) = (R1(x, y), R2(x, y))

for all (x, y) ∈ E(K). Since y2 = x3 +Ax+B for all (x, y) ∈ K, we can
replace any even power of y by a polynomial in x and replace any odd power
of y by y times a polynomial in x and obtain a rational function that gives
the same function as R(x, y) on points in E(K). Therefore, we assume that

R(x, y) =
p1(x) + p2(x)y
p3(x) + p4(x)y

Moreover, we can rationalize the denominator by multiplying the numerator
and denominator by p3 − p4y and then replacing y2 by x3 + Ax + B. This
yields

R(x, y) =
q1(x) + q2y

q3(x)
(1)

Consider an endomorphism given by

α(x, y) = (R1x, y,R2(x, y))

Since α is a homomorphism,

α(x,−y) = − α(x, y).
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This means that

R1(x,−y) = R1(x, y) and R2(x,−y) = −R2(x, y)

Therefore, if R1 is written of the form (1), then q2(x) = 0, and if R2 is
written in the form (1). then the corresponding q1(x) = 0. Therefore we
may assume that

α(x, y) = (r1(x), r2(x)y)

with rational function r1(x), r2(x). write

r1(x) = p(x)/q(x)

with polynomial p(x) and q(x) that do not have a common factor. If
q(x) = 0 for some point (x,y), then we assume that α(x, y) = ∞.

Definition The degree of α is defined to be

deg(α) = Max{degp(x), degq(x)}

if α is nontrivial. When α = 0, let deg(0) = 0.

Definition Define α 6= 0 to be a separable endomorphism if the derivative
r′1(x) is not identically zero. i.e at least one of p′(x) and q′(x).

2.3.1 Frobenius map

Suppose E is defined over the finite field Fq. Let

φq : Fq → Fq

i.e if (x, y) ∈ E(Fq) then φq(x, y) = (xq, yq), φq(∞) = ∞.

Lemma 2.3.1 Let E be defined over Fq. Then φq is an endomorphism of
E of degree q, and φq is not separable.

Lemma 2.3.2 Let α 6= 0 be a separable endomorphism of an elliptic curve
E. Then

deg α = #Ker(α),

where Ker(α) is the kernel of the homomorphism α : E(K) → E(K). If
α 6= 0 is not separable, then

deg α > #Ker(α).
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Lemma 2.3.3 Let E be defined over Fq, and let (x, y) ∈ E(Fq).
1. φq(x, y) ∈ E(Fq).
2. (x, y) ∈ E(Fq) if and only if φq(x, y) = (x, y).

This Lemma gives a way to find cardinality of elliptic curve over Fq.
Since φq is an endomorphism of E, so are φ2

q = φq ◦φq and also φn
q = φq ◦

φq ◦ ... ◦ φq for every n ≥ 1.Since multiplication by −1 is also an endomor-
phism, the sum φn

q − 1 is an endomorphism of E.

Lemma 2.3.4 Let E be defined over finite field Fq and let n ≥ 1.
1. Ker(φn

q − 1) = E(Fqn).
2. φn

q − 1 is a separable endomorphism, so #E(Fqn) = deg(φn − 1).

2.4 Division Polynomials

Let A ,B be two constants in a field K. Define the division polynomials
ψn ∈ Z[x, y,A,B] by
ψ0 = 0
ψ1 = 1
ψ2 = 2y
ψ3 = 3x4 + 6Ax2 + 12Bx−A2

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3)
ψ2m+1 = ψm+2ψ

3
m − ψm−1ψ

3
m+1 for m ≥ 2

ψ2m = (2y)−1(ψm)(ψm−2ψ
2
m−1 − ψm−2ψ

2
m+1) for m ≥ 2.

Lets define another two polynomials φm and ωm by
φm = xψ2

m − ψm+1ψm−1

ωm = (4y)−1(ψm+2ψ
2
m+1 − ψm−2ψ

2
m−1)

Lemma 2.4.1

ψn =

{
y(nxn2−4/2 + . . .) ; if n is even
nxn2−1/2 + . . . ; if n is odd

Lemma 2.4.2 Let P (x, y) be a point on the elliptic curve E over a field K
and let n be a positive integer then

nP =
(
φn(x)
ψ2

n(x)
,
ωn(x)
ψ3

n(x)

)

Lemma 2.4.3 Let n be a odd integer then for (x, y) ∈ E(Fq)

(x, y) ∈ E[n] ⇔ ψn(x) = 0.
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2.5 The Weil Pairing

Let E be an elliptic curve over a field K and let n be a positive integer not
divisible by the characteristic of K. Then E[n] w zn ⊕ zn. Let

µn = {x ∈ K | xn = 1}

be the group of nth roots of unity in K. Since the characteristic of K does
not divide n, the equation xn = 1 has no multiple roots, hence has n roots
in K. Therefore, µn is a cyclic group of order n.

Theorem 2.5.1 Let E be an elliptic curve define over a field K and let n
be a positive integer. Assume that the characteristic of K does not divide
n.Then there is a pairing

en : E[n] × E[n] → µn,

called the Weil Pairing, that satisfy the following properties:

1. Identity: For all P ∈ E[n], en(P, P ) = 1.

2. Alternation: For all P1, P2 ∈ E[n], en(P1, P2) = en(P1, P2)−1.

3. Bilinearity: For all P1, P2, P3 ∈ E[n], en(P1+P2, P3) = en(P1, P3)en(P2, P3),

and en(P1, P2 + P3) = en(P1, P2)en(P1, P3).

4. Non-degeneracy: If P1 ∈ E[n], then en(P1,∞) = 1.If en(P1, P2) = 1
for all P2 ∈ E[n], then P1 = ∞.

5. en(σP1, σP2) = σ(en(P1, P2)) for all automorphisms σ of K such that σ
is an identity map on the coefficients of E(if E is in Weierstrass form, this
means that σ(A) = A and σ(B) = B )

6. en(α(P1), α(P2)) = α(P1, P2)deg(α) for all separable endomorphism α
of E. If the coefficients of E lie in finite field Fq, then the statement also
holds when α is the Frobenius endomorphism φq.

Lemma 2.5.2 Let {P1, P2} be a basis of E[n]. Then en(P1, P2) is a primi-
tive nth root of unity.

Theorem 2.5.3 Let α and β endomorphism of E and let a, b be integers,
then

deg(aα + bβ) = a2deg(α) + b2deg(β)− ab(deg(α+ β)− deg(α)− deg(β))

14



2.6 Counting number of points on Elliptic Curve
over Finite Field

Let E be an elliptic curve over finite field Fq. Let trace a = q + 1 −
#E(Fq). Then by Hasse’s theorem |a| ≤ 2

√
q. The basis approach in

Schoof’s algorithm is Chinese Remainder theorem. Victor Shoup[2] also
took the same approach but he used to compute modular polynomials. The
Schoof-Elkies-Atkin reduced the complexity of Schoof’s algorithm. Here We
basically have modified the Schoof’s algorithm by justifying whether a is
even or odd.

Lemma 2.6.1 Let r, s be integers with gcd(s, q) = 1. Then deg(rφq −
s) = r2q + s2 − rsa.

Theorem 2.6.2 (Hasse) Let E be an elliptic curve over the finite field Fq.
Let a = q + 1− E(Fq). Then a satisfies

|a| ≤ 2
√
q.

Proof Since deg(rφp − s) ≥ 0, the Lemma 2.6.1 implies that
r2q + s2 − rsa ≥ 0
⇒ q

(
r
s

)2 − a ( r
s

)
+ 1 ≥ 0

for all r, s with gcd(s, q) = 1. The set of rational numbers r/s such that
gcd(s, q) = 1 is dense in R. (Proof: Take s to be a power of 2 or power of
3, one of which must be relatively prime with q. The rationals of the form
r/2m and those of the form r/3m are easily seen to be dense in R.)Therefore,

qx2 − ax+ 1 ≥ 0

for all real numbers x. Therefore the discriminant if the polynomial is neg-
ative or 0, which means that a2 − 4q ≤ 0, hence |a| ≤ 2

√
q.

Theorem 2.6.3 Let E be an elliptic curve over Fq. Let a = q+1−#E(Fq).
Then

φ2
q − aφq + q = 0

as endomorphism of E.

The polynomial x2 − ax+ q is often called the characteristic polynomial of
Frobenius.

Theorem 2.6.4 Let #E(Fq) = q + 1 − a. Write x2 − ax + q = (x −
α)(x− β). Then

#E(Fqn) = qn + 1− (αn + βn)

for all n ≥ 1.

15



Remark If we know the cardinality of elliptic curve over prime field, then
we can calculate the cardinality of the elliptic curve over any finite field of
order power of the given prime.

Corollary 2.6.5 Suppose p ≥ 5 is a prime. Then E is supersingular if
and only if #E(Fp) = p+ 1.

2.6.1 Schoof’s Algorithm

Suppose E is an elliptic curve given by y2 = x3 +Ax+B over Fq. We
know, by Hasse’s theorem, that

E(Fq) = q + 1− a. with |a| ≤ 2
√
q.

Let S = {2, 3, 5, 7..., L} be a set of primes such that∏
l ∈ S

l > 4
√
q.

If we can determine a mod l for each prime l ∈ S, then we know a mod
∏
l,

and therefore a is uniquely determined(by Chinese Remainder theorem).
Let l be a prime. For simplicity, we assume l 6= p, where p is the

characteristic of Fq. We also assume that q is odd. We want to compute
a (mod l).
Case l = 2: If x3 + Ax + B has a root e ∈ Fq, then (e, 0) ∈ E[2] and

(e, 0) ∈ E(Fq), so E(Fq) has even order. In this case, q+1−a ≡ 0 (mod p),
so a is even. If x3 + Ax + B has no roots in Fq, then E(Fq) has no points
of order 2, and a is odd. To determine whether x3 + Ax + B has a root
in E(Fq), we could try all the elements in E(Fq), but there is a faster way.
Recall that the roots of x3 + Ax + B are exactly the elements of E(Fq).
Therefore, x3 + Ax + B has a root in E(Fq) if and only if it has a root
in common with xq − x. The Euclidean algorithm, applied to polynomials,
yields the gcd of two polynomials.

If q is very large, the polynomial xq has very large degree. Therefore,
it is more efficient to compute xq ≡ xq (mod x3 + Ax + B) by successive
squaring and then use the result to compute

gcd(xq − x, x3 +Ax+B) = gcd(xq − x, x3 +Ax+B).

If the gcd is 1, then there is no common root and a is odd.
else a is even. This finishes the case l = 2.

Let φq be the Frobenius endomorphism. So by definition

φq(x, y) = (xq, yq).

By Theorem 2.6.3
φ2

q − aφq + q = 0.

16



Let (x, y) be a point of order l. Then(
xq2

, yq2
)

+ q(x, y) = a(xq, yq).

Let
ql = q (mod l), |ql| < l/2.

Then q(x, y) = ql(x, y), so(
xq2

, yq2
)

+ q(x, y) = a(xq, yq).

Since (xq, yq) is also a point of order l, those relation determines a (mod l).
The idea is to compute all the terms except a in this relation, then determine
a value of a that makes the relation hold. Note that if the relation holds for
one point (x, y) ∈ E[l], then we have determined a (mod l); hence, it holds
for all (x, y) ∈ E[l].

Assume first that
(
xq2

, yq2
)
6= ± ql(x, y) for some (x, y) ∈ E[l]. Then

(x′, y′) =def
(
xq2

, yq2
)

+ ql(x, y) 6= ∞,

so a 6≡ 0 (mod l). In this case, the x−coordinate of
(
xq2

, yq2
)

and (x, y)
are distinct, so the sum of the two points are found by the formula using
the line through the two points, rather than a tangent line or a vertical line.
Write

j(x, y) = (xj , yj)

for integers j. We may compute xj and yj using division polynomials see
Lemma 2.4.2. We have

x′ =

(
yq2 − yql

xq2 − xql

)2

− xq2 − xql
.

Writing (
yq2 − y

)2
= y2

(
yq2−1 − 1

)2

= (x3 +Ax+B)
(
(x3 +Ax+B)(q

2−1)/2−1
)2
.

and noting that xql
is a function of x, we change x′ into a rational function

of x. We want to find j such that

(x′, y′) = (xq
j , y

q
j ).

First, we look at the x−coordinates. Starting with (x, y) ∈ E[l], we have
(x′, y′) = ± (xq

j , y
q
j ) if and only if x′ = xq

j . As pointed out above, if this
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happens for one point in E[l], it happens for all(finite) points in E[l]. Since
the roots of ψl are the x−coordinates of the points in E[l] (as in Lemma
2.4.3), this implies that

xi − xq
j ≡ 0 (mod ψl) (2)

(this means that the numerator of x′− xq
j is a multiple of ψl). We are using

here the fact that the roots of ψl are simple(otherwise, we would obtain only
that ψl divides some power of x′−xq

j). This is proved by noting that there are
l2−1 distinct points of order l, since l is assumed not to be the characteristic
of Fq. There are (l2 − 1)/2 distinct x−coordinates of these points, and all
of them are roots of ψl, which has degree (l2− 1)/2. Therefore, the roots of
ψl must be simple.

Assume now that we have found j such that (2) holds. Then

(x′, y′) = ± (xq
j , y

q
j ) = (xq

j , ± y
q
j ).

To determined the sign, we need to look at the y−coordinates. Both y′/y
and yq

j/y can be written as function of x. If

(y′ − yq
j )/y ≡ 0 (mod ψl),

then a ≡ j (mod l). Otherwise, a ≡ − j (mod l). Therefore, we have
found a (mod l).

It remains to consider the case where
(
xq2

, yq2
)

= ± q(x, y) for all
(x, y) ∈ E[l]. If

φ2
q(x, y) =

(
xq2

, yq2
)

= q(x, y),

then
aφq(x, y) = φ2

q(x, y) + q(x, y) = 2q(x, y),

hence
a2q(x, y) = a2φ2

q(x, y) = (2q)2(x, y).

Therefore, a2q ≡ 4q2 (mod l), so q is a square mod l. If q is not a
square mod l, then we cannot be in this case. If q is square mod l, let
ω2 ≡ q (mod l). We have

(φq + ω)(φq − ω)(x, y) = (φ2
q − q)(x, y) = ∞

for all (x, y) ∈ E[l]. Let P be any point in E[l]. Then either (φq −
ω)P = ∞, so φqP = ωP , or P ′ = (φq − ω)P is a finite point with
(φq + ω)P ′ = ∞. Therefore, in either case, there exists a point P ∈ E[l]
with φqP = ± ωP .

Suppose there exists a point P ∈ E[l] such that φqP = ωP . Then

∞ = (φ2
q − aφq + q)P = (q − aω + q)P,
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so aω ≡ 2q ≡ 2ω2 (mod l). Therefore a ≡ 2ω (mod l). Similarly, if there
exists P such that φqP = − ωP , then a ≡ − 2ω (mod l). We can check
whether we are in this case as follows. We need to know whether or not

(xq, yq) = ± ω(x, y) = ± (xω, yω) = (xω, ± yω)

for some (x, y) ∈ E[l]. Therefore, we compute xq − xω, which is rational
function of x. If

gcd(numerator(xq − xω), ψl) 6= 1,

then there is some point (x, y) ∈ E[l] such that φq(x, y) = ± ω(x, y). If
this happens then use the y-coordinates to determine sign.

If we have gcd(numerator(xq−xω), ψl) = 1, then we cannot be in the case(
xq2

, yq2
)

= q(x, y), so the only remaining case is
(
xq2

, yq2
)

= −q(x, y).
In this case, aP = (φ2

q + q)P = ∞ for all P ∈ E[l]. Therefore,
a ≡ 0 (mod l).

We summarize Schoof’s algorithm[1] as follows. We start with an ellip-
tic curve E over Fq given by y2 = x3 + Ax + B. We want to compute
#E(Fq) = q + 1− a

1. Choose a set of primes S = {2, 3, 4, ..., L} (with P /∈ S) such that∏
l ∈ S

l > 4
√
q.

2. If l = 2, we have a ≡ 0 (mod 2) if and only if gcd(x3 + Ax+B, xq −
x) 6= 1.

3. For each odd prime l ∈ S, do the following.

(a) Let ql ≡ q (mod l) with |ql| < l/2.
(b) Compute the x-coordinate x′ of

(x′, y′) =
(
xq2

, yq2
)

+ ql(x, y) mod ψl.

(c) For j = 1, 2, ..., (l − 1)/2, do the following.
i. Compute the x-coordinate xj of (xj , yj) = j(x, y).

ii. If x′−xq
j ≡ 0 (mod ψl), go to step (iii). If not, try the next value of j

(in step (c)). If all values 1 ≤ j ≤ (l−1)/2 have been tried, go to step (d).

iii Compute y′ and yj . If (y′−yj)/y = 0 (mod ψl). then a ≡ j (mod l).
If not, then a ≡ − j (mod l).
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(d) If all values 1 ≤ j ≤ (l − 1)/2 have been tried without suc-
cess, let ω2 ≡ q (mod l). If ω does not exist, then a ≡ 0 (mod l).

(e) If gcd(numerator(xq − xω), ψl) = 1, then a ≡ 0 (mod l).
Otherwise, compute

gcd(numerator((yq − yw)/y), ψl).

If this gcd is not 1, then a ≡ 2ω (mod l). Otherwise, a ≡ − 2ω (mod l).
4. Use the knowledge of a (mod l) for each l ∈ S to compute a (mod

∏
l).

Choose the value of a that satisfies this congruence and such that |a| ≤ 2
√
q.

The number of points in E(Fq) is q + 1− a.
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Chapter 3

Modified Schoof’s Algorithm

3.1 Analysis of the degree of φp − 1

Lets first study the Lemma 2.3.3. Condition 2 says that (x, y) ∈ E(Fq) iff
φq(x, y) = (x, y) i.e (x, y) ∈ Ker(φq − 1). So #E(Fq) = #Ker(φq − 1).
Since φq − 1 is separable so

#E(Fq) = #Ker(φq − 1) = deg(φq − 1).

Lets see what happens to find the degree of φq − 1. Here we assume that
q = p because if we know #E(Fp) then we can calculate #E(Fpn) for all
n ≥ 1 by Theorem 2.6.4. To find degree of φp − 1. Let (x, y) ∈ E(Fp)
then

(φp − 1)(x, y) = (xp, yp)− (x, y)
= (xp, yp) + (x,−y)
= (x′, y′).

where x′ is given by

x′ =
(
yp + y

xp − x

)2

− (xp + x)

=
(yp + y)2 − (xp + x)(xp − x)2

(xp − x)2

Before going to take maximum of the degree of polynomials in denominator
and numerator, we have to find

gcd((yp + y)2 − (xp + x)(xp − x)2, (xp − x)2)

Now see that roots of denominator (xp − x)2 are also the roots of (xp +
x)(xp − x)2. Hence the common factors of (xp − x)2 and (yp + y)2 will be
the gcd. Let for some x ∈ Fp,

(yp + y)2 = 0
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Now
(yp + y)2 = y2(yp−1 + 1)2

= y2((y2)(p−1)/2 + 1)2

= (x3 +Ax+B)((x3 +Ax+B)(p−1)/2 + 1)2

= 0

case-1. If x3 +Ax+B = 0 then x3 +Ax+B has a root in Fp

case-2. If (x3 +Ax+B)(p−1)/2 + 1 = 0 i.e
x3 +Ax+B is quadratic non residue.
Both case-1 and case-2 may happen simultaneously. Here problem is that
finding number of quadratic non residue in Fp. So in this way calculating
degree of φp−1 is reduced to finding number of x ∈ Fp for which x3+Ax+B
is quadratic non residue which we want to calculate. So in this it is difficult
to find the cardinality of elliptic curve over prime field.

3.2 Some result using type of the elliptic curves

Elliptic curve cryptosystem are based on the elliptic curve discrete logarithm
problem(ECDLP). There are different attack has been made on elliptic curve
cryptosystem. The MOV-attack[4],[3] and FR-Reduction attack[3] are very
common for supersingular elliptic curve cryptosystem. Also FR-reduction
attack has been done on special type of ordinary curve called MNT curve.
MOV-reduction reduces ECDLP to discrete logarithm problem(DLP) by
using Weil pairing. FR-reduction reduces ECDLP to DLP by using Tate
pairing. We are explaining the main mechanism in shortcut. Let E be
an elliptic curve over Fq. Let P ∈ E(Fq) be point of order N with
gcd(p,N) = 1. Suppose Q ∈ E(Fq) such that Q = lP . We have to
calculate the value of l. The main idea is to find smallest k with k ≥ 1 for
which E[N ] ⊂ E(Fqk). In case of supersingular curve value of k are 1, 2, 3, 4
or 6. Finding such k in ordinary curve is a very hard problem. But in case
of special type ordinary curve(MNT curve), such k can be calculated. So if
such a k is found , then ECDLP on E(Fq) tp DLP on F?

qk . Ultimately it is
implied that we need to know about type of the elliptic curve.
Let E be a supersingular elliptic curve over Fq. If q = p and q ≥ 5 then
by Corollary 2.6.5, #E(Fq) = q + 1.
Now for ordinary case, we have the following result.

Theorem 3.2.1 If E(Fp) contains a point of order p. Then #E(Fp) = p,
for p > 5.

Proof
Since E(Fp) contains a point of order p ⇒ p | #E(Fp) ⇒ #E(Fp) = rp
for some integer r. Since E(Fp) contains atleast one point ⇒ r > 0. Since
in worst case #E(Fp) = 2p+1 so either r = 1 or r = 2. Suppose r = 2
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i.e #E(Fp) = 2p then trace a = p + 1 − #E(Fp) = 1 − p. Now by
Hasse’s theorem |a| ≤ 2

√
p

⇒ |p− 1| ≤ 2
√
p.

⇒ p2 − 6p+ 1 ≤ 0.
⇒ (p− (3 + 2

√
2))(p− (3− 2

√
2)) ≤ 0.

⇒ (p− 5.828)(p− 0.172) ≤ 0.
So the case r = 2 satisfies the Hasse’s theorem when p lies in the interval
(0.172, 5.828). Hence #E(Fp) = p, for p > 5.

3.3 Discriminant Analysis

Definition Suppose p is an odd prime and a is an integer. a is defined
to be a cubic residue modulo p if a 6≡ 0 (mod p) and the congru-
ence y3 ≡ a (mod p) has a solution y ∈ Zp. a is defined to be a
cubic non residue mod p if a 6≡ 0 (mod p) and a is not a cubic residue
mod p.

Theorem 3.3.1 (Cubic’s Criterion) Let p be an odd integer and p is of
the form 3k + 1. Then a is a cubic residue mod p if and only if

a(p−1)/3 ≡ 1 (mod p).

Proof
Suppose a is cubic residue, then a ≡ y3 (mod p). Now

a(p−1)/3 ≡ (y3)(p−1)/3 (mod p)

≡ yp−1 (mod p)
≡ 1 (mod p) (by Fermat theorem)

Conversely, suppose a(p−1)/3 ≡ 1 (mod p). Let b be a primitive element
mod p. Then a ≡ bi (mod p) for some positive integer i. Then we have

a(p−1)/3 ≡ (bi)(p−1)/3 (mod p)

≡ bi(p−1)/3 (mod p)

Since b has order p− 1, it must be the case that (p− 1) divides i(p− 1)/3.
Hence i is a multiple of 3 and the cubic root of a are ±bi/2 (mod p). This
complete the proof.
As in corollary 2.1.2we can write

Corollary 3.3.2 An element a is cubic residue in Fq if and only if

a(q−1)/3 ≡ 1 (mod p).
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Let E be an elliptic curve over finite field E(Fq). we want to verify whether
x3 +Ax+B has a root in Fq or not. The algorithm which are used through
finding gcd(xq−x, x3 +Ax+ b). If gcd is 1 then x3 +Ax+B are irreducible
else reducible.
Discriminant of x3 +Ax+B is

D = (α1 − α2)2(α2 − α3)2(α3 − α1)2

= − (4A3 + 27B2)

where α1, α2, α3 are the roots of x3 +Ax+B = 0. So
α1 + α2 + α3 = 0
α1α2 + α2α3 + α3α1 = A

α1α2α3 = −B

Theorem 3.3.3 Let E be an elliptic curve over a field Fq. If D is quadratic
non residue then x3 + Ax + B = 0 has exactly one root in Fq. If D is
quadratic residue then either x3 + Ax + B = 0 has no root in Fq or
x3 +Ax+B = 0 has exactly three roots.

Proof
Since D 6= 0 so α1, α2, α3 are distinct roots of x3 +Ax+B = 0
(a) Let α1, α2, α3 ∈ Fq, then

(α1 − α2)(α2 − α3)(α3 − α1) ∈ Fq

⇒ D is quadratic residue in Fq.

(b) Let α1 ∈ Fq but α2, α3 6∈ Fq, then

x3 +Ax+B = (x− α1)(x2 + α1x+ (A+ α2
1))

then x2 + α1x + (A + α2
1) has no root in Fq. Let D′ = (α2 − α3)2 = −

(4A+ 3α2
1) ∈ Fq. Then D′ is quadratic non residue

infact if D′ = (α2 − α3)2 is quadratic residue.
⇒

α2 − α3 ∈ Fq (3.1)

Now α1 + α2 + α3 = 0 ∈ Fq and α1 ∈ Fq

⇒
α2 + α3 ∈ Fq (3.2)

from (3.1) and (3.2) we have α2 ∈ Fq, a contradiction.
since α2 and α3 are the roots of the equation x2 +α1x+ (A+α2

1) = 0, we
can write

(x− α2)(x− α3) = x2 + α1x+ (A+ α2
1)
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⇒ (α1 − α2)(α1 − α3) = A+ 3α2
1 ∈ Fq

⇒ (α1 − α2)2(α1 − α3)2 is quadratic residue.
D = (α1 − α2)2(α1 − α3)2︸ ︷︷ ︸ (α2 − α3)2︸ ︷︷ ︸
D is product of quadratic residue and quadratic non residue. Hence D is
quadratic non residue.

(c) Let α1, α2 ∈ Fq and α3 6∈ Fq.
Since α1 + α2 + α3 = 0 ∈ Fq

⇒ α3 ∈ Fq, a contradiction.
Hence not a case.

(d) Let α1, α2, α3 6∈ Fq.
⇒ x3 +Ax+B is irreducible over Fq

Let d = (α1 − α2)(α2 − α3)(α3 − α1).
Consider field extension of Fq

Fq3 w
Fq(x)

< x3 +Ax+B >

Here α1 = x ∈ Fq3 and Fq3 is finite field of q3 numbers of elements and
is given by ∏

β∈Fq3

(x− β) =
(
xq3 − x

)
Now ∃ an element in Fq3 for which x3 +Ax+B is the minimal polynomial.
Infact x3 +Ax+B is the minimal polynomial of x. Since x3 +Ax+B is a
polynomial of α1 and α1 is a root of xq3 − x by Theorem 2.1.3, we have
x3 +Ax+B | xq3 − x
⇒ α1, α2, α3 ∈ Fq3

⇒ d ∈ Fq3

Now d2 = D in Fq ⇒ d2 −D = 0 in Fq

Suppose D is quadratic non residue in Fq

⇒ x2 −D is irreducible in Fq.
Consider the field extension

Fq2 w
Fq[x]

< x2 −D >

and we get x2 −D | xq2 − x (same as previous argument)
Since d satisfies x2 −D = 0 in Fq

⇒ d ∈ Fq2 . Since degree of minimal polynomial of d is 2 in Fq, so any
element of c ∈ Fq2 is of the form c = a+ bd, where a, b ∈ Fq.
Now since Fq ⊂ Fq3 and d ∈ Fq3

⇒ c = a+ bd ∈ Fq3 .
⇒ Fq2 is a subfield of Fq3
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⇒
[
Fq3 : Fq2

]
is an integer, which is a contradiction.

Hence D is a quadratic residue.

Remark Whatever proof we have done for x3+Ax+B have the same proof
for any cubic polynomial except case (c).

When D is quadratic residue either x3 +Ax+B has exactly three roots or
no root in Fq. We were unable to distinguish this case. But using following
theorem we can do that (for details see the reference [5]).

Theorem 3.3.4 The necessary and sufficient conditions that

x3 +Ax+B

be irreducible in the Fq, p > 3, are the following two:
(1) D is square 6= 0 in Fq, let say D = 81µ2;
(2) 1

2(−B + µ
√
−3) a not cubic in the field (Fq,

√
−3).

Remark By above two theorem, we can say how many roots the polynomial
x3+Ax+B can have in Fq by analysis the discriminantD = −(4A3+27B2).

Now We are giving the complete algorithm whether the given polynomial
x3 +Ax+B is reducible over Fq or not.

3.3.1 Discriminant based algorithm for irreducibility testing

Let x3 +Ax+B be a polynomial over Fq with discriminant D = − (4A3 +
27B2) 6≡ 0 (mod q). First evaluate the value D(q−1)/2 (mod q). If this
value is 1, then D is quadratic residue.
else D is quadratic non residue.
case(1.) D is quadratic non residue.
So by Theorem 3.3.3 x3 +Ax+B has exactly one root. i.e x3 +Ax+B is
reducible.
case(2.) D is quadratic residue.
Then D = − (4A3 + 27B2) = 81µ2 say. i.e D = (9µ)2. Then applying
the following algorithm for finding square root D.
Computing Square Roots Modulo p
Input: An element a of Fp which is quadratic residue.
Output: A square root x ∈ Fp of the given element a.

1. First check form of prime p.

2. If p = 4k + 3 for some k ≥ 0 then a square root x is given by
x = a(p+1)/4 (mod p).
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3. If p = 8k + 5 for some k ≥ 0, then calculate a(p−1)/4 (mod p).

4. If the value is 1, then x = a(p+3)/8 (mod p) is a square root of
a.

5. If the value is −1, then x = 2a.(4a)(p−5)/8 (mod p) is a square root of a.

6. If p = 8k + 1 for some k ≥ 0 then we use algorithm of Tonelli
and Shanks as

Let p− 1 = 2e.s with s odd.
6a. Choose number n at random until n is quadratic non residue. Then
set z ←− ns (mod p).

6b. Let y ← z, r ← e, x ← a(s−1)/2 (mod p), b ← ax2 (mod p), x ← ax (mod p).

6c. If b ≡ 1 (mod p), then x is a square root. Otherwise find small-
est m ≥ 1 such that b2

m ≡ 1 (mod p).

6d. Set t ← y2r−m−1
, y ← t2, r ← m, x ← xt, b ← by (all

operation done under modulo p) and go to step c.

Then µ = 9−1
√
D (mod q). Now study −3 which is either quadratic

residue or quadratic non residue
subcase(2a.) −3 is quadratic residue
then

√
−3 ∈ Fq ⇒ γ = 1

2(−B + µ
√
−3) ∈ Fq. We define a mapping ψ

ψ : F?
q −→ F?

q

by ψ(x) = x3 for all x ∈ Fq. If Ker(ψ) = 1 then ψ is one one ⇒ ψ is
bijective. Since γ ∈ Fq and ψ is bijective ⇒ ∃x ∈ Fq such that γ = x3.
Now Ker(ψ) = 1⇐⇒ 3 - q−1. So in this case if 3 - q−1 them x3 +Ax+B
is reducible.
If 3 | q − 1 then apply Cubic’s Criterion. i.e calculate γ(q−1)/3 (mod q).
If this value is 1 then γ has a cubic root in Fq and hence x3 + Ax + B is
reducible.
If this value is not 1 then γ has no cubic root in Fq and hence x3 +Ax+B
is irreducible.
subcase(2b.) −3 is quadratic non residue
Then

√
−3 6∈ Fq

⇒ x2 + 3 is irreducible over Fq

Consider the field extension of Fq which is

Fq2 w
Fq

〈x2 + 3〉
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since
√
−3 ∈ Fq2 ⇒ γ ∈ Fq2

Now write γ = 1
2(−B) + µ

√
−3 = − B

2 + µ
2

√
−3 = c+ d

√
−3 (say) let

call it (c, d), where c, d ∈ Fq. Now define the product of same element in
Fq2 as

(c, d)2 (mod q) = (c+ d
√
−3)2 (mod q)

= c2 − 3d2 + 2
√
−3cd (mod q)

= (c2 − 3d2 (mod q), 2cd (mod q))

Now define the product of two distinct elements (c1, d1), (c2, d2) ∈ Fq2 as

(c1, d1)(c2, d2) (mod q) = (c1 + d1

√
−3)(c2,+d2

√− 3) (mod q)

= ((c1c2 − 3d1d2) +
√
−3(c1d2 + c2d1) (mod q)

= (c1c2 − 3d1d2 (mod q), c1d2 + c2d1 (mod q))

Now calculate γ(q2−1)/3 (mod q) by efficient algorithm as follows.
Let (q2 − 1)/2 =

∑r
i=0 ki2i, where k′is ∈ 0, 1

1. (P ←− γ = (c, d)).
2. for(i = 1 to r) do:
3. if (kr−i = 1) then
4. P ←− P 2 (mod q).
5. P ←− P ? γ (mod q)
6. else P ←− P 2 (mod q).
7. end for.
8. return P .
If P = (1, 0), then the polynomial x3 +Ax+B over Fq is reducible. Oth-
erwise irreducible.

Remark The algorithm for finding square root works on prime field. So
when we will apply our algorithm, it will be assumed that q = p.

We summarize the algorithm as follows: We start with a cubic polynomial
of the form x3 +Ax+B over the finite field Fq. We want to check whether
x3 +Ax+B is irreducible over Fq or not. Let discriminant D = − (4A3 +
27B2) 6= 0

Input: coefficients of Weierstrass equation i.e A, B and q.
Output: A message reducible or irreducible.
1. Check whether D is quadratic residue over Fq or not.

2. If D is quadratic non residue, then x3 +Ax+B is reducible.

3. If D is quadratic residue, then D is square and D = (9µ)2. then
µ = 9−1

√
D. Then find γ = 1

2(−B+µ
√
−3) = (c+ d

√
−3), call it (c, d)
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where c, d ∈ Fq

4. Check whether −3 is quadratic residue over Fq or not.

5. If −3 is quadratic residue, then
√
−3 ∈ Fq. So γ = (c, d) ∈ Fq.

6. Now check whether 3 | q − 1 or not.

7. If 3 - q − 1 then x3 +Ax+ b is reducible over Fq.

8. If 3 | q − 1, check whether γ is cubic residue over Fq or not.

9. If γ is cubic residue, then x3 +Ax+B is reducible.

10. If γ is cubic non residue, then x3 +Ax+B is irreducible.

11. If −3 is quadratic non residue, then
√
−3 6∈ Fq

12. Consider field extension Fq2 w Fq

〈x2+3〉 . Then γ = 1
2(−B+µ

√
−3) = (c, d) ∈ Fq2 ,

where c, d ∈ Fq.

13. Now check whether γ is cubic residue over Fq2 or not.

14. If γ is cubic residue, then x3 +Ax+B is reducible.

15. If γ is cubic non residue, then x3 +Ax+B is irreducible.

3.3.2 Complexity

Step 1. takes time o(log q).
Step 3. takes time o(log q) when p = 4k + 3 or 8k + 5 and o(log q)4 when
p = 8k + 1
Step 4. takes time o(log q).
Step 8. takes time o(log q).
Step 13. takes time o(log q).
And other step will take constant time. So total time complexity is o(log q)
when p = 4k + 3 or 8k + 5 and o(log q)4 when p = 8k + 1.
Note:- When we will use our algorithm for irreducibility testing, mind that
q = p.
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3.3.3 Examples

Here we have taken some example for different form of prime p. We are using
some notation in the table. We write D for discriminant in 2nd column, QR
for quadratic residue in 3rd column,

√
D for square root D in 5th column,

µ for 9−1
√
D in 6th column, γ for 1

2(−B + µ
√
−3) = (c, d) in 7th column,

cubic root of γ in last column of the table. The entry in the last column
”-” means the roots are not distinct. The roots that have been included
may be in the extension of Fp. Here some entries in the last column are
polynomial, that means the roots are belonging in the corresponding field
extension of Fp. For p = 5 see the Table 4.1, for p = 7 see the Table 4.2
and for p = 13 see the Table 4.3, Table 4.4, Table 4.5 and Table 4.6 in the
appendix.

3.4 Conclusion

We have modified the Schoof’s Algorithm only in the case l = 2 which
is equivalent to test irreducibility of the Weierstrass equation x3 +Ax+B.
Since complexity of our algorithm is o(log p) when p = 4k+3 or p = 8k+5
and o(log p)4 when p = 8k + 1. And existance algorithms can not find
gcd(xp−x, x3 +Ax+B) with complexity less than our algorithm. Also the
special achievement of our algorithm is that if we you the type of elliptic
curve that already have been discussed. So our algorithm is better than the
Schoof’s algorithm in the case l = 2.
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Chapter 4

Appendix

Table 4.1: Table for prime 5 which is of the form p = 8k + 5

polynomial D QR
√
D µ γ cubic root of γ root of the polynomial

x3 + 1x+ 0 1 Y 1 4 (0,2) (0,1) 0,2,3
x3 + 1x+ 1 4 Y 2 3 (2,4) - x, x2 + 3x+ 4, 4x2 + x+ 1
x3 + 1x+ 2 3 N - - - - 4
x3 + 1x+ 3 3 N - - - - 1
x3 + 1x+ 4 4 Y 2 3 (3,4) - x, x2 + x+ 4, 4x2 + 3x+ 1
x3 + 2x+ 0 3 N - - - - 0
x3 + 2x+ 1 1 Y 1 4 (2,2) - x, x2 + 3, 4x2 + 4x+ 2
x3 + 2x+ 2 0 0 - - - - -
x3 + 2x+ 3 0 0 - - - - -
x3 + 2x+ 4 1 Y 1 4 (3,2) - x, x2 + 4x+ 3, 4x2 + 2
x3 + 3x+ 0 2 N - - - - 0
x3 + 3x+ 1 0 0 - - - - -
x3 + 3x+ 2 4 Y 2 3 (4,4) - x, 2x2 + 4, 3x2 + 4x+ 1
x3 + 3x+ 3 4 Y 2 3 (1,4) - x, 2x2 + 4x+ 4, 3x2 + 1
x3 + 3x+ 4 0 0 - - - - -
x3 + 4x+ 0 4 Y 2 3 (0,4) (0,3) 0,1,4
x3 + 4x+ 1 2 N - - - - 3
x3 + 4x+ 2 1 Y 1 4 (4,2) - x, 2x2 + 3x+ 2, 3x2 + x+ 3
x3 + 4x+ 3 1 Y 1 4 (1,2) - x, 2x2 + x+ 2, 3x2 + 3x+ 3
x3 + 4x+ 4 2 N - - - - 2
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Table 4.2: Table for prime 7 which is of the form p = 4k + 3

polynomial D QR
√
D µ γ cubic root of γ root of the polynomial

x3 + 1x+ 0 3 N - - - - 0
x3 + 1x+ 1 4 Y 2 1 (3,4) - x, 2x2 + 6, 5x2 + 6x+ 1
x3 + 1x+ 2 0 0 - - - - -
x3 + 1x+ 3 5 N - - - - 5
x3 + 1x+ 4 5 N - - - - 2
x3 + 1x+ 5 0 0 - - - - -
x3 + 1x+ 6 4 Y 2 1 (4,4) - x, 2x2 + 6x+ 6, 5x2 + 1
x3 + 2x+ 0 3 N - - - - 0
x3 + 2x+ 1 4 Y 2 1 (3,4) x, 3x2 + 6x+ 4, 4x2 + 3
x3 + 2x+ 2 0 0 - - - - -
x3 + 2x+ 3 5 N - - - - 6
x3 + 2x+ 4 5 N - - - - 1
x3 + 2x+ 5 0 0 - - - - -
x3 + 2x+ 6 4 Y 2 1 (4,4) - x, 3x2 + 6x+ 4, 4x2 + 3
x3 + 3x+ 0 4 Y 2 1 (0,4) (0,1) 0,2,5
x3 + 3x+ 1 5 N - - - - 4
x3 + 3x+ 2 1 Y 1 4 (6,2) - x, 2x2 + x+ 4, 5x2 + 5x+ 3
x3 + 3x+ 3 6 N - - - - 1
x3 + 3x+ 4 6 N - - - - 6
x3 + 3x+ 5 1 Y 1 4 (1,2) - x, 2x2 + 5x+ 4, 5x2 + x+ 3
x3 + 3x+ 6 5 N - - - - 3
x3 + 4x+ 0 3 N - - - - 0
x3 + 4x+ 1 4 Y 2 1 - - x, x2 + 5, 6x2 + 6x+ 2
x3 + 4x+ 2 0 0 - - - - -
x3 + 4x+ 3 5 N - - - - 3
x3 + 4x+ 4 5 N - - - - 4
x3 + 4x+ 5 0 0 - - - - -
x3 + 4x+ 6 4 Y 2 1 (4,4) - x, x2 + 6x+ 5, 6x2 + 2
x3 + 5x+ 0 4 Y 2 1 (0,4) (0,1) 0,3,4
x3 + 5x+ 1 5 N - - - - 1
x3 + 5x+ 2 1 Y 1 4 (6,2) - x, x2 + x+ 1, 6x2 + 5x+ 6
x3 + 5x+ 3 6 N - - - - 2
x3 + 5x+ 4 6 N - - - - 5
x3 + 5x+ 5 1 Y 1 4 (1,2) - x, x2 + 5x+ 1, 6x2 + x+ 6
x3 + 5x+ 6 5 N - - - - 6
x3 + 6x+ 0 4 Y 2 1 (0,4) (0,1) 0,1,6
x3 + 6x+ 1 5 N - - - - 2
x3 + 6x+ 2 1 Y 1 4 (6,2) - x, 3x2 + 5x+ 5, 4x2 + x+ 2
x3 + 6x+ 3 6 N - - - - 4
x3 + 6x+ 4 6 N - - - - 3
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Table 4.3: Table for prime 13 which is of the form p = 8k + 5

polynomial D QR
√
D µ γ γ

1
3 root of the polynomial

x3 + 1x+ 0 9 Y 3 9 (0,11) (0,7) 0,5,8
x3 + 1x+ 1 8 N - - - - 7
x3 + 1x+ 2 5 N - - - - 12
x3 + 1x+ 3 0 0 - - - - -
x3 + 1x+ 4 6 N - - - - 10
x3 + 1x+ 5 10 Y 6 5 (4,9) - x, 6x2 + 4, 7x2 + 12x+ 9
x3 + 1x+ 6 12 Y 5 2 (10,1) - x, 2x2 + 10, 11x2 + 11x+ 3
x3 + 1x+ 7 12 Y 5 2 (3,1) - x, 2x2 + 11x+ 10, 11x2 + x+ 3
x3 + 1x+ 8 10 Y 6 5 (9,9) x, 6x2 + 12x+ 4, 7x2 + 9
x3 + 1x+ 9 6 N - - - - 3
x3 + 1x+ 10 0 0 - - - - -
x3 + 1x+ 11 5 N - - - - 1
x3 + 1x+ 12 8 N - - - - 6
x3 + 2x+ 0 7 N - - - - 0
x3 + 2x+ 1 6 N - - - - 2
x3 + 2x+ 2 3 Y 4 12 (12,6) - x, 5x2 + 5x+ 11, 8x2 + 7x+ 2
x3 + 2x+ 3 11 N - - - - 12
x3 + 2x+ 4 4 Y 2 6 (11,3) - x, 3x2 + 10x+ 4, 10x2 + 2x+ 9
x3 + 2x+ 5 8 N - - - - 8
x3 + 2x+ 6 10 Y 6 5 (10,9) (1,8) 3,4,6
x3 + 2x+ 7 10 Y 6 5 (3,9) (2,1) 7,9,10
x3 + 2x+ 8 8 N - - - - 5
x3 + 2x+ 9 4 Y 2 6 (2,3) - x, 3x2 + 2x+ 4, 10x2 + 10x+ 9
x3 + 2x+ 10 11 N - - - - 1
x3 + 2x+ 11 3 Y 4 12 (1,6) - x, 5x2 + 7x+ 11, 8x2 + 5x+ 2
x3 + 2x+ 12 6 N - - - - 11
x3 + 3x+ 0 9 Y 3 9 (0,11) (0,7) 0,6,7
x3 + 3x+ 1 8 N - - - - 11
x3 + 3x+ 2 5 N - - - - 4
x3 + 3x+ 3 0 0 - - - - -
x3 + 3x+ 4 6 N - - - - 12
x3 + 3x+ 5 10 Y 6 5 (4,9) - x, 5x2 + 10, 8x2 + 12x+ 3
x3 + 3x+ 6 12 Y 5 2 (10,1) - x, 6x1 + x+ 12, 7x2 + 11x+ 1
x3 + 3x+ 7 12 Y 5 5 (3,1) - x, 6x2 + 11x+ 12, 7x2 + x+ 1
x3 + 3x+ 8 10 Y 6 5 (9,9) - x, 5x2 + 12x+ 10, 8x2 + 3
x3 + 3x+ 9 6 N - - - - 1
x3 + 3x+ 10 0 0 - - - - -
x3 + 3x+ 11 5 N - - - - 9
x3 + 3x+ 12 8 N - - - - 2
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Table 4.4: Table for prime 13 which is of the form p = 8k + 5

polynomial D QR
√
D µ γ γ

1
3 root of the polynomial

x3 + 4x+ 0 4 Y 2 6 (0,3) (0,4) 0,3,10
x3 + 4x+ 1 3 Y 4 12 (6,6) - x, 3x2 + 8, 10x2 + 12x+ 5
x3 + 4x+ 2 0 0 - - - - -
x3 + 4x+ 3 8 N - - - - 11
x3 + 4x+ 4 1 Y 1 3 (11,8) - x, x2 + 11x+ 7, 12x2 + x+ 6
x3 + 4x+ 5 5 N - - - - 12
x3 + 4x+ 6 7 N - - - - 7
x3 + 4x+ 7 7 N - - - - 6
x3 + 4x+ 8 5 N - - - - 1
x3 + 4x+ 9 1 Y 1 3 (2,8) - x, x2 + x+ 7, 12x2 + 11x+ 6
x3 + 4x+ 10 8 N - - - - 2
x3 + 4x+ 11 0 0 - - - -
x3 + 4x+ 12 3 Y 4 12 (7,6) - x, 3x2 + 12x+ 8, 10x2 + 5
x3 + 5x+ 0 7 N - - - - 0
x3 + 5x+ 1 6 N - - - - 6
x3 + 5x+ 2 3 y 4 12 (12,6) - x, 6x2 + 5x+ 7, 7x2 + 7x+ 6
x3 + 5x+ 3 11 N - - - - 10
x3 + 5x+ 4 4 Y 2 6 (11,3) - x, x2 + 10x+ 12, 12x2 + 2x+ 1
x3 + 5x+ 5 8 N - - - - 11
x3 + 5x+ 6 10 Y 6 5 (10,9) (1,8) 5,9,12
x3 + 5x+ 7 10 Y 6 5 (3,9) (2,1) 1,4,8
x3 + 5x+ 8 8 N - - - - 2
x3 + 5x+ 9 4 Y 2 6 (2,3) - x, x2 + 2x+ 12, 12x2 + 10x+ 1
x3 + 5x+ 10 11 N - - - - 3
x3 + 5x+ 11 3 Y 4 12 (1,6) - x, 6x2 + 7x+ 7, 7x2 + 5x+ 6
x3 + 5x+ 12 6 N - - - - 7
x3 + 6x+ 0 7 N - - - - 0
x3 + 6x+ 1 6 N - - - - 5
x3 + 6x+ 2 3 Y 4 12 (12,6) - x, 2x2 + 5x+ 8, 11x2 + 7x+ 5
x3 + 6x+ 3 11 N - - - - 4
x3 + 6x+ 4 4 Y 2 6 (11,3) - x, 4x2 + 2x+ 3, 9x2 + 10x+ 10
x3 + 6x+ 5 8 N - - - - 7
x3 + 6x+ 6 10 Y 6 5 (10,9) (1,8) 1,2,10
x3 + 6x+ 7 10 Y 6 5 (3,9) (2,1) 3,11,12
x3 + 6x+ 8 8 N - - - - 6
x3 + 6x+ 9 4 Y 2 6 (2,3) - x, 4x2 + 10x+ 3, 9x2 + 2x+ 10
x3 + 6x+ 10 11 N - - - - 9
x3 + 6x+ 11 3 Y 4 12 (1,6) - x, 2x2 + 7x+ 8, 11x2 + 5x+ 5
x3 + 6x+ 12 6 N - - - - 8
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Table 4.5: Table for prime 13 which is of the form p = 8k + 5

polynomial D QR
√
D µ γ γ

1
3 root of the polynomial

x3 + 7x+ 0 6 N - - - - 0
x3 + 7x+ 1 5 N - - - - 9
x3 + 7x+ 2 2 N - - - - 6
x3 + 7x+ 3 10 Y 6 5 (5,9) - x, 3x2 + 5x+ 1, 10x2 + 7x+ 12
x3 + 7x+ 4 3 Y 4 12 (11,6) (1,3) 2,3,8
x3 + 7x+ 5 7 N - - - - 1
x3 + 7x+ 6 9 Y 3 9 (10,11) - x, 6x2 + 2x+ 2, 7x2 + 10x+ 11
x3 + 7x+ 7 9 Y 3 9 (3,11) - x, 6x2 + 10x+ 2, 7x2 + 2x+ 11
x3 + 7x+ 8 7 N - - - - 12
x3 + 7x+ 9 3 Y 4 12 (2,6) (1,7) 5,10,11
x3 + 7x+ 10 10 Y 6 5 (8,9) - x, 3x2 + 7x+ 1, 10x2 + 5x+ 12
x3 + 7x+ 11 2 N - - - - 7
x3 + 7x+ 12 5 N - - - 4
x3 + 8x+ 0 6 N - - - - 0
x3 + 8x+ 1 5 N - - - - 3
x3 + 8x+ 2 2 N - - - - 2
x3 + 8x+ 3 10 Y 6 5 (5,9) - x, 4x2 + 7x+ 4, 9x2 + 5x+ 9
x3 + 8x+ 4 3 Y 4 12 (11,6) (1,3) 1,5,7
x3 + 8x+ 5 7 N - - - - 9
x3 + 8x+ 6 9 Y 3 9 (10,11) - x, 5x2 + 2x+ 5, 8x2 + 10x+ 8
x3 + 8x+ 7 9 Y 3 9 (3,11) - x, 5x2 + 10x+ 5, 8x2 + 2x+ 8
x3 + 8x+ 8 7 N - - - - 4
x3 + 8x+ 9 3 Y 4 12 (2,6) (1,7) 6,8,12
x3 + 8x+ 10 10 Y 6 5 (8,9) - x, 4x2 + 5x+ 4, 9x2 + 7x+ 9
x3 + 8x+ 11 2 N - - - - 11
x3 + 8x+ 12 5 N - - - - 10
x3 + 9x+ 0 9 Y 3 9 (0,11) (0,7) 0,2,11
x3 + 9x+ 1 8 N - - - - 8
x3 + 9x+ 2 5 N - - - - 10
x3 + 9x+ 3 0 0 - - - - -
x3 + 9x+ 4 6 N - - - - 4
x3 + 9x+ 5 10 Y 6 4 (4,9) - x, 2x2 + 12, 11x2 + 12x+ 1
x3 + 9x+ 6 12 Y 5 2 (10,1) - x, 5x2 + x+ 4, 8x2 + 11x+ 9
x3 + 9x+ 7 12 Y 5 2 (3,1) - x, 5x2 + 11x+ 4, 8x2 + x+ 9
x3 + 9x+ 8 10 Y 6 5 (9,9) - x, 2x2 + 12x+ 12, 11x2 + 1
x3 + 9x+ 9 6 N - - - - 9
x3 + 9x+ 10 0 0 - - - - -
x3 + 9x+ 11 5 N - - - - 3
x3 + 9x+ 12 8 N - - - - 5
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Table 4.6: Table for prime 13 which is of the form p = 8k + 5

polynomial D QR
√
D µ γ γ

1
3 root of the polynomial

x3 + 10x+ 0 4 Y 2 6 (0,3) (0,4) 0,4,9
x3 + 10x+ 1 3 Y 4 12 (6,6) - x, x2 + 11, 12x2 + 12x+ 2
x3 + 10x+ 2 0 0 - - - - -
x3 + 10x+ 3 8 N - - - - 7
x3 + 10x+ 4 1 Y 1 3 (11,8) - x, 4x2 + x+ 5, 9x2 + 11x+ 8
x3 + 10x+ 5 5 N - - - - 10
x3 + 10x+ 6 7 N - - - - 8
x3 + 10x+ 7 7 N - - - - 5
x3 + 10x+ 8 5 N - - - - 3
x3 + 10x+ 9 1 Y 1 3 (2,8) - x, 4x2 + 11x+ 5, 9x2 + x+ 8
x3 + 10x+ 10 8 N - - - - 6
x3 + 10x+ 11 0 0 - - - - -
x3 + 10x+ 12 3 Y 4 12 (7,6) - x, x2 + 12x+ 11, 12x2 + 2
x3 + 11x+ 0 6 N - - - 0
x3 + 11x+ 1 5 N - - - - 1
x3 + 11x+ 2 2 N - - - - 5
x3 + 11x+ 3 10 Y 6 5 (5,9) - x, x2 + 5x+ 3, 12x2 + 7x+ 10
x3 + 11x+ 4 3 Y 4 12 (11,6) (1,3) 6,9,11
x3 + 11x+ 5 7 N - - - - 3
x3 + 11x+ 6 9 Y 3 9 (10,11) - x, 2x2 + 2x+ 6, 11x2 + 10x+ 7
x3 + 11x+ 7 9 Y 3 9 (3,11) - x, 2x2 + 10x+ 6, 11x2 + 2x+ 7
x3 + 11x+ 8 7 N - - - - 3
x3 + 11x+ 9 3 Y 4 12 (2,6) (1,7) 2,4,7
x3 + 11x+ 10 10 Y 6 5 (8,9) - x, x2 + 7x+ 3, 12x2 + 5x+ 10
x3 + 11x+ 11 2 N - - - - 8
x3 + 11x+ 12 5 N - - - - 12
x3 + 12x+ 0 4 Y 2 6 (0,3) (0,4) 0,1,12
x3 + 12x+ 1 3 Y 4 12 (6,6) - x, 4x2 + 12x+ 6, 9x2 + 7
x3 + 12x+ 2 0 0 - - - - -
x3 + 12x+ 3 8 N - - - - 8
x3 + 12x+ 4 1 Y 1 3 (11,8) - x, 3x2 + 11x+ 11, 10x2 + x+ 2
x3 + 12x+ 5 5 N - - - - 4
x3 + 12x+ 6 7 N - - - - 11
x3 + 12x+ 7 7 N - - - - 2
x3 + 12x+ 8 5 N - - - - 9
x3 + 12x+ 9 1 Y 1 3 (2,8) - x, 3x2 + x+ 11, 10x2 + 11x+ 2
x3 + 12x+ 10 8 N - - - - 5
x3 + 12x+ 11 0 0 - - - - -
x3 + 12x+ 12 3 Y 4 12 (7,6) - x, 4x2 + 6, 9x2 + 12x+ 7
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