
M. Tech. (Computer Science) Dissertation

Probabilistic Analysis of
Cryptographic Hash Functions

A dissertation submitted in partial fulfillment
of the requirements for the award of
M.Tech.(Computer Science) degree

By

Somindu C R
Roll No: CS0711

under the supervision of

Professor Palash Sarkar
Applied Statistics Unit

I N D I A N S T A T I S T I C A L I N S T I T U T E
203, Barrackpore Trunk Road

Kolkata - 700 108

Acknowledgement

At the end of this course, it is my pleasure to thank everyone who has helped me
along the way.

First of all, I want to express my sincere gratitude to my supervisor Prof. Palash
Sarkar for introducing me to the world of hash functions and starting me on this
interesting problem. I have learnt a lot from him. For his patience, for all his advice
and encouragement and for the way he helped me think about problems with a
broader perspective, I will always be grateful.

I would like to thank all the professors at ISI who have made my educational life
exciting and helped me gain a better outlook on computer science. Special thanks
to Prof. Bimal Roy who first inspired me to study Cryptography.

I would like to thank everybody at ISI for providing a wonderful atmosphere
for pursuing my studies. I thank all my classmates who have made the academic
and non-academic experience very delightful. Special thanks to my friends Sreevani,
Krithika, Nargis, Debosmita, Richa, Sandeep, Sanjay and many others who made
my campus life so enjoyable. It has been great having them around at all times,
good or bad.

My most important acknowledgement goes to my family and friends who have
filled my life with happiness. Most significantly to my parents who have always
encouraged me to pursue my passions and instilled a love of knowledge in me; to my
brothers Vishu and Vicky; to my sisters-in-law Veena and Vinutha and to my nephew
and niece Harshi and Nikitha who have filled my heart with joy. I am indebted to my
friends Vijay, Smitha and Prajna for their endless supply of encouragement, moral
support and entertainment.

i

Abstract

A multicollision for a hash function is a set of two or more distinct domain points all
mapping to the same range point. Multicollision freeness has been suggested as an
important security property of hash functions. Joux has shown that multicollisions
are not harder to find than ordinary collisions for hash functions based on an iter-
ated construction. For general hash functions, the best known attack is the generic
birthday attack. For truly random functions, the complexity of finding r-collisions is
Θ(m(r−1)/r) where m is the size of the range of the hash function. But such functions
are seldom encountered in practice.

For the case of r = 2, Bellare and Kohno analyze the success rate of the birthday
attack on a specific hash function rather than analyzing one chosen at random. They
define balance of a hash function h, denoted µ(h), which is a measure of the “amount
of regularity” of h and study its impact on the birthday attack.

In this thesis we extend the notion of balance to that of r-balance. We then
analyze the performance of the birthday attack via the r-balance. We derive bounds
on the probability of finding r-collisions using the birthday attack for a given hash
function h. Using these bounds we show that the complexity of finding r collisions
is roughly Θ(m(r−1

r)µr(h)) where µr(h) is the r-balance of h. Our results indicate
that higher the r-balance, higher will be the complexity of finding r-collisions. For
r = 2, our analysis provides slightly better bounds than the ones given by Bellare
and Kohno.

ii

Contents

1 Introduction 1

2 Hash Function Preliminaries 4
2.1 The Birthday Attack . 4
2.2 Merkle-Damg̊ard Construction . 7

3 Balance and its impact on Birthday Attacks 9
3.1 Balance of a hash function . 10
3.2 Impact of balance on birthday attack 11

4 Multicollisions 13
4.1 Multicollision attacks on iterated hash functions 13
4.2 Generalized Birthday Problem . 14

4.2.1 Exact probability of finding multicollisions 14
4.2.2 A representation using multinomial c.d.f.’s 15

4.3 Complexity of finding r-collisions . 17

5 Balance-based Analysis of Generalized Birthday Attack 20
5.1 Notation . 21
5.2 r-balance and its properties . 21
5.3 Bounds on C

(r)
h (q) . 25

5.4 Bounds on Q
(r)
h (c) . 29

6 Conclusion 33

iii

List of Figures

2.1 Birthday attack on a hash function h : X → Y based on sampling
without replacement. 5

3.1 Birthday attack on a hash function h : X → Y based on sampling
with replacement. 10

5.1 Generalized birthday attack on a hash function h : X → Y for finding
r-collisions. 21

iv

Chapter 1

Introduction

Hash functions are of fundamental importance in cryptographic protocols. Infor-
mally, a hash function takes as input a bit string that is arbitrarily long and com-
presses it into a fixed length output. A hash function essentially produces a “digest”
or a “fingerprint” of fixed length of a message of arbitrary length ([Sti02]). Most
hash functions used in practice have an upper limit on the size of inputs, but this
limit is so large that it would make sense to say that hash functions take arbitrarily
sized inputs.

A cryptographic hash function is required to satisfy some security properties
depending on the particular protocol in which it is being used. Some of the most
important security properties are collision resistance, preimage resistance and sec-
ond preimage resistance. One desirable property of a hash function is “random
behaviour”. That is, given a hash value, it must be hard to predict another hash
value. Some applications [RS96, GS94, BPVY00] rely on another property called
r-collision freeness.

A collision is a pair of messages that hash to the same value. A hash function is
said to be collision resistant if it is “infeasible” to construct a collision. Since the
domain of a hash function is larger than its range, it follows from the pigeonhole
principle that collisions will surely exist. A hash functions must be designed in such
a way that finding these collisions is computationally difficult. Preimage resistance
refers to the hardness of finding a preimage of a given hash value (note that there
could be more than one preimage for a given hash value). Second preimage resistance
requires that, given a hash value and one of its preimages, finding another message
that maps to the same value is computationally hard. All hash functions can be
attacked using the generic collision-finding attack called the birthday attack.

In cryptography, hash functions are most commonly encountered in digital sig-
natures and data integrity. In case of digital signatures, a long message is hashed
and then the hash value is signed. The sender sends the message and the signature.
The receiver hashes the received message and verifies whether the received signature
is correct for this hash value. This saves both time and space compared to signing

1

the entire message itself. The property of collision resistance comes into play here.
Suppose one could construct two different messages that hash to the same value.
Then the sender could send one of these messages and later claim to have signed and
sent another. To prevent this from happening the hash function must be designed
to be collision resistant.

Another application of hash function is in data integrity where it is used as
follows. The hash value of the data is computed and stored. At any point of time
if we want to verify the integrity of the data, we will compute the hash value and
compare it to the stored value for equality. Note that we have assumed here that the
integrity of the stored hash value is protected in some manner. Other applications of
hash functions include identification schemes and micropayment schemes. A distinct
class of hash functions, called message authentication codes (MACs), are used for
message authentication ([MvOV97, Sti02]). A MAC differs from a hash function in
that it takes as a second input a secret key with the security goal that it be infeasible
to find a message that maps to the same output without the knowledge of the key.

The property of r-collision freeness has been suggested as a useful tool in building
cryptographic protocols. It was used for the micropayment scheme Micromint of
Rivest and Shamir [RS96], for identification schemes by Girault and Stern [GS94]
and for signature schemes by Brickell et. al. [BPVY00]. An r-way collision (or r-
collision) is a set of r messages that hash to the same value. This property requires
that finding an r-collision should be computationally difficult. Consider, for example,
the micropayment scheme of [RS96]. In this scheme, “coins” are produced by a broker
who sells them to users. Users give these coins to vendors as payments. Vendors
return coins to the broker in return for payment by other means. A coin is a bit-string
whose validity can be easily checked by anyone, but which is hard to produce. Here
an r-collision is used as a coin. Verification is simply done by checking whether the
r messages are distinct and they all hash to the same value. The intuition behind
using r-collisions is that forging a coin i.e., finding an r-collision is infeasible and
much harder than finding ordinary 2-collisions.

It was shown by Joux [Jou04] that for iterated hash functions finding r-collisions
is not much harder than finding 2-collisions. Following Joux’s attack, Nandi and
Stinson [NS07] studied multicollision attacks in a more general class of hash func-
tions called generalized sequential hash functions. They showed the existence of
multicollision attacks for this class of hash functions provided that every message
block is used at most twice in the computation of the message digest. They rule out
a large class of hash functions as candidates for multicollision secure hash functions.
These attacks were extended and generalized by Hoch and Shamir [HS06] to tree-
based hash functions that have a fixed expansion rate, which indicates the maximum
number of times a message block is processed in the evaluation of a message digest.
But when the hash function is truly random, it would be more difficult to find an
r-collision than finding a 2-collision. A generic attack that finds r-collisions is the
generalized birthday attack.

2

Bellare and Kohno [BK04] analyze the performance of the birthday attack on a
hash function in terms of what they define as balance of the hash function. They show
that the birthday attack fares well against functions with low balance as compared
to highly balanced ones. Their results indicate that designing a hash function that
has random behaviour and also high balance would ensure better security against
birthday attacks.

The main question addressed here the following: What is the notion of balance
of a hash function in the context of r-collisions? How will the balance affect the
generalized birthday attack that finds r-collisions?

The rest of the thesis is organized as follows. In Chapter 2, we provide basic
definitions concerning hash functions followed by a description of the birthday attack
and its analysis in the random oracle model. In Chapter 3, we state the definition of
balance and discuss its impact on the birthday attack. In Chapter 4, we will discuss
multicollision attacks on iterated hash functions. Then we will review some statistics
literature on the generalized birthday problem. In Chapter 5, we will define the
notion of r-balance and analyze the performance of the generalized birthday attack
via the r-balance.

3

Chapter 2

Hash Function Preliminaries

A function h : X → Y is called a hash function if the domain X and range Y are
finite sets such that |X| > |Y |. If a hash function is secure then it should be infeasible
for a bounded adversary to solve the following problems.

• Preimage
Given y ∈ Y , find x ∈ X such that h(x) = y

• Second Preimage
Given x ∈ X, find x′ ∈ X such that x 6= x′ and h(x′) = h(x)

• Collision
Find x, x′ ∈ X such that x 6= x′ and h(x) = h(x′)

We will now analyze the difficulty of solving the collision finding problem in a
certain idealized model for a hash function called the random oracle model.

Random Oracle Model The random oracle model introduced by Bellare and
Rogaway [BR93], provides a mathematical model for an “ideal” hash function. In
this model a hash function h is chosen uniformly at random from the set FX,Y of
all functions from the set X to the set Y . There is no algorithm or formula that
computes the values for h but we are provided only oracle access to the function h.
Given x ∈ X, the only way to compute h(x) is to query the oracle. As a consequence
of these assumptions, the hash values for a function h ∈ FX,Y are independently and
uniformly distributed over Y . That is,

Pr[h(x) = y] =
1
m

for all x ∈ X and y ∈ Y , where m = |Y |.

2.1 The Birthday Attack

As mentioned in Chapter 1, one of the most important security properties of a
hash function is collision-resistance, which measures the ability of an adversary to

4

Choose X0 ⊆ X such that |X0| = q

For i = 1, ..., q do

yi ← h(xi)

EndFor

If there is a pair (i, j) such that yi = yj

then return xi, xj

EndIf

Return "failure"

Figure 2.1: Birthday attack on a hash function h : X → Y based on sampling
without replacement.

find a collision for the hash function. All hash functions suffer from the generic
birthday attack. Figure 2.1 shows the classical birthday attack on a hash function
h. The attack picks points x1, x2, · · · , xq without replacement from the domain X
and computes yi = h(xi) for i = 1, · · · , q. The attack is successful if there is a pair
i, j such that xi, xj form a collision for h. The integer q ≥ 2 is the number of trials.
The attack returns a collision for h or returns “failure” if it fails to find one. The
relation to birthdays arises from the question of how many people need be in a room
before the probability of there being two people with the same birthday is close to
one. Assuming birthdays are independently and uniformly distributed over the days
of the year it turns out that when the number of people hits

√
365 the chance of a

birthday collision is already quite high, around 1/2.

We will now provide an analysis of the birthday attack of Figure 2.1 in the random
oracle model.

Theorem 2.1.1. Let h : X → Y be a hash function with |X| = n and |Y | = m.
Then for any integer q ≥ 2,

1. The success probability of the classical birthday attack is given by

p = 1−
(

1− 1
m

)(
1− 2

m

)
· · ·
(

1− q − 1
m

)
.

2. The minimum number of trials required to find a collision with probability p is
approximately determined by solving for q in

q ≈

√
2m ln

(
1

1− p

)
.

5

Proof. Let X0 = {x1, · · ·xq}. For i = 1, · · · , q, define Ei to be the event that
yi /∈ {y1, y2, · · · yi−1}. According to the random oracle model, the yi’s are uniformly
distributed in Y . If y1, · · · , yi−1 are all distinct then Pr[Ei] is the probability that
yi takes one of the m− i + 1 remaining values from Y . Thus we have,

Pr[Ei|E1 ∧ E2 ∧ · · · ∧ Ei−1] =
m− i + 1

m

for 2 ≤ i ≤ q. By applying chain rule we obtain

Pr[E1 ∧ E2 ∧ · · · ∧ Eq] =
(

1− 1
m

)(
1− 2

m

)
· · ·
(

1− q − 1
m

)
.

Now,

p = Pr[at least one collision] = 1− Pr[no collisions] = 1− Pr[E1 ∧ E2 ∧ · · · ∧ Eq]

and thus statement 1 follows. Now we proceed to the proof of statement 2. Using
the fact that 1− x ≤ e−x for 0 < x < 1, we get

q−1∏
i=1

(
1− i

m

)
≤

q−1∏
i=1

e−
i
m

= e−
Pq−1

i=1
i
m

= e−
q(q−1)

2m

Thus we have

p ≈ 1− e−
q(q−1)

2m

e−
q(q−1)

2m ≈ 1− p

−q(q − 1)
2m

≈ ln(1− p)

q2 − q ≈ 2m ln
(

1
1− p

)
q ≈

√
2m ln

(
1

1− p

)

If we substitute p = 0.5 then we obtain

q ≈ 1.17
√

m

This shows that around
√

m trials are needed to find a collision for h with probability
equal to 1/2.

6

2.2 Merkle-Damg̊ard Construction

Hash functions map arbitrarily long strings to fixed length strings. In practice,
building a cryptographic function with an input of variable size is not a simple
task. Due to this reason, most hash functions are based on an iterated construction
that makes use of a building block called the compression function whose inputs
have fixed sizes ([Sti02]). The compression function f takes two inputs: a chaining
variable and a message block; it outputs the next value of the chaining variable.
The most popular generic construction is the Merkle-Damg̊ard (MD) Construction
([Mer79, Dam89]). We will now give a brief description of the MD-construction.
Throughout this section we will consider hash functions whose inputs and outputs
are bit strings. Denote the length of a bit string x as |x|. Before processing, the
message is first padded and split into elementary blocks.

Padding scheme Padding is done by appending a single ‘1’ bit, followed by as
many ‘0’ bits as needed. To avoid some attacks, the binary encoding of the mes-
sage length is also added to complete the padding. This is called Merkle-Damg̊ard
strengthening.

The iteration Once the padded message is split into ` blocks, M1, · · · ,M`, the
chaining variable is set to some fixed initial value, IV , and the iteration is performed.

• Pad the original message and split it into ` blocks M1, · · · ,M`.

• Set H0 to the initial value IV .

• For i = 1, · · · , `, let Hi = f(Hi−1,Mi).

• Output h(M) = H`.

The following theorem states that if a collision can be found for h then a collision
can be found for the compression function f . This means that it is enough to design
a collision resistant compression function to ensure that the hash function is collision
resistant.

Theorem 2.2.1 (Merkle-Damg̊ard Theorem). If the compression function f is col-
lision resistant then the hash function h is also collision resistant.

Proof. Suppose that h is not collision resistant. This means that there are two
messages M and M ′ such that h(M) = h(M ′). Let M = M1‖M2‖ · · · ‖M` and
M ′ = M ′

1‖M ′
2‖ · · · ‖M ′

k where Mi’s and M ′
j ’s are of the same length.

Case 1: The lengths of M and M ′ are different.
If the lengths of two messages are different then their last blocks must be different.

h(M) = h(M ′)

7

=⇒ f(H`−1,M`) = f(H ′
k−1,M

′
k)

which gives a collision for f .

Case 2: The lengths of M and M ′ are same.
Let the number of blocks be `. If all the intermediate hash values are equal, i.e.
Hi = H ′

i for all i ≤ l with some Mj = M ′
j . In this case, a collision is obtained as

follows.
Hj = f(Hj−1,Mj) = f(H ′

j−1,M
′
j) = H ′

j

If some intermediate hash values are unequal, i.e., Hi 6= H ′
i for some i ≤ l then

consider the maximum such i. A collision can be obtained as follows.

Hi+1 = f(Hi,Mi+1) = f(H ′
i,M

′
i+1) = H ′

i+1

8

Chapter 3

Balance and its impact on
Birthday Attacks

In a birthday attack, we pick points x1, x2, · · · , xq from X and compute yi = h(xi)
for i = 1, · · · , q. The attack is successful if there is a pair i, j such that xi, xj

form a collision for h. Here, q is called the number of trials. There are several
variants of this attack which differ in the way the points x1, x2, · · · , xq are chosen.
The attack considered in [BK04] shown in Figure 3.1, considers points that are
chosen independently and uniformly at random from X. This attack is as good as
the classical birthday attack given in Figure 2.1 when the domain is substantially
larger than the range (say, n ≥ 2m). This is because the probability of two domain
points being equal becomes negligible compared to probability of a collision when
the domain is large enough. Let Ch(q) be the probability that the birthday attack
on hash function h : X → Y succeeds in finding a collision in q trials. For any real
number c with 0 ≤ c < 1, let

Qh(c) = min{q : Ch(q) ≥ c}. (3.1)

The discussion in Section 2.1 suggests that the function Ch(q) grows with q as follows.

Ch(q) ≈
(

q

2

)
· 1
m

, (3.2)

where m = |Y | is the size of the range of h and q ≤ O(
√

m). This implies that
a collision is expected in about m1/2 trials. This is obtained by viewing the range
points y1, y2, · · · , yq computed in the attack as being independently and uniformly
distributed in Y .

Bellare and Kohno [BK04] explain why this argument is actually not correct. It is
because the point h(x), for x drawn at random from X, is not necessarily uniformly
distributed in Y . Rather, the probability that h(x) equals a particular range point
y is |h−1(y)|/|X|, where h−1(y) is the set of all preimages of y under h. So the range
points computed in the attack are uniformly distributed over Y if and only if h is

9

For i = 1, ..., q do

xi
$←X

yi ← h(xi)

EndFor

If there is a pair (i, j) such that yi = yj and xi 6= xj

then return xi, xj

EndIf

Return "failure"

Figure 3.1: Birthday attack on a hash function h : X → Y based on sampling with
replacement.

regular, meaning that every range point has the same number of preimages under h.
Given a hash function h one cannot assume that h has “random behaviour” because
the analysis of the birthday attack ignores the actual function entirely by looking
at only random functions. One ends up not analyzing the given function h, but
rather analyzing an abstract and ideal object which ultimately has no connection
to h, regardless of the design principle underlying h. Hence in [BK04] the authors
assess the success rate of birthday attack by looking at Ch(q) for a specific h rather
than one chosen at random. They define the balance measure for a hash function
and then provide quantitative estimates of the success rate of the birthday attack as
a function of the balance of the hash function being attacked.

3.1 Balance of a hash function

The balance of a hash function is a measure of the “amount of regularity” of the
function. It is defined as follows.

Definition 3.1.1 (Balance [BK04]). Let h : X → Y be a hash function whose do-
main X and range Y = {y1, y2, · · · , ym} have sizes n, m ≥ 2, respectively. For
i = 1, 2, · · · ,m, let ni = |h−1(yi)| denote the size of the preimage of yi under h. The
balance of h, denoted µ(h), is defined as

µ(h) = logm

(
n2

n2
1 + · · ·+ n2

m

)
, (3.3)

where logm(·) denotes the logarithm in base m.

The intuition behind the above definition is that

1
mµ(h)

=
n2

1 + · · ·+ n2
m

n2

10

is the probability that h(a) = h(b) if a, b are drawn independently with replacement
from the domain X. From the definition it follows that the balance is a real number
between 0 and 1 i.e., 0 ≤ µ(h) ≤ 1. Balance 1 indicates that the hash function is
regular and balance 0 indicates that it is a constant function.

3.2 Impact of balance on birthday attack

The following theorems summarize the results obtained in [BK04].

Theorem 3.2.1. Let h : X → Y be a hash function. Let n = |X| and m = |Y | and
assume n > m ≥ 2. Let α ≥ 0 be any real number. Then for any integer q ≥ 2

(1− α2/4− α) ·
(

q

2

)
·
(

1
mµ(h)

− 1
n

)
≤ Ch(q) ≤

(
q

2

)
·
(

1
mµ(h)

− 1
n

)
, (3.4)

the lower bound being true under the additional assumption that

q ≤ α ·
(
1− m

n

)
·mµ(h)/2. (3.5)

It is important to have upper and lower bounds on Ch(q) that are close to
each other, because based on these estimates we are making very specific choices of
hash function parameters, in particular, output lengths. Accordingly Theorem 3.2.1
strives for good bounds and achieves this since, as α→ 0, the lower bound of Equa-
tion (3.4) approaches the upper bound. So the bounds can be made as close as we
want. However, there is a tradeoff: as α→ 0 the lower bound is valid across smaller
and smaller ranges of q due to the restriction of Equation (3.5).

Suppose that n ≥ 2m ≥ 4. If we choose α = 2/5, then for any integer q ≥ 2, we
have

0.28 ·
(

q

2

)
· 1
mµ(h)

≤ Ch(q) ≤
(

q

2

)
· 1
mµ(h)

. (3.6)

These bounds show that

Ch(q) = Θ(1) · q2

mµ(h)
,

as long as q is not too large.

Theorem 3.2.2. Let h : X → Y be a hash function. Let n = |X| and m = |Y | and
assume n ≥ 2m ≥ 4. Let α ≥ 0 be any real number such that β = 1− α2/4− α > 0.
Let c be a real number in the interval 0 ≤ c < 1. Then

√
2c ·mµ(h)/2 ≤ Qh(c) ≤ 1 +

√
4c

β
·mµ(h)/2 , (3.7)

the upper bound being true under the additional assumption that

c ≤ (α · (1−m/n)−m−µ(h)/2)2 · β
4

. (3.8)

11

Substituting α = (
√

17− 3)/2 will yield the following bounds.
√

2c ·mµ(h)/2 ≤ Qh(c) ≤ 1 + 2.36 ·
√

2c ·mµ(h)/2 (3.9)

the upper bound being true under the additional assumption that c ≤ 0.0006 and
mµ(h) ≥ 2, 200. These results indicate that Qh(c) = Θ(

√
c) ·mµ(h)/2.

The above theorems show that a collision is expected in about mµ(h)/2 trials.
Hence it is expected that the birthday attack fares better on hash functions with low
balance as compared to highly balanced ones. Therefore designers should consider
high balance as one of the design criteria for hash functions.

Regular vs. Random Functions A symmetry argument shows that if h1, h2 :
X → Y are regular functions, then Ch1(q) = Ch2(q). Denote this value by Creg

X,Y (q).
Similarly Qh1(c) = Qh2(c) and denote this value by Qreg

X,Y (c). It can be shown that

Proposition 3.2.3. If h : X → Y is a hash functions then Ch(q) > Creg
X,Y (q) and

Qh(c) < Qreg
X,Y (c).

In other words, regular functions are the best with regard to security against the
birthday attack.

Designers of hash functions often have as target to make the hash function have
“random behaviour”. To assess how this impacts their security against the birth-
day attack consider the performance of the birthday attack when the function h is
random. Let h be chosen randomly from FX,Y . Let C$

X,Y (q) denote the probability
that the attack succeeds in q trials. The probability is over the initial choice of h
and the choice of x1, x2, · · · , xq made in the attack. Let Q$

X,Y (c) denote the smallest
value of q for which C$

X,Y (q) ≥ c. Then it can be shown that

Proposition 3.2.4. C$
X,Y (q) > Creg

X,Y (q) and Q$
X,Y (c) < Qreg

X,Y (c)

This indicates that random functions offer less security than regular functions
against the birthday attack. Hence designing hash functions that have random be-
haviour subject to being regular would improve security slightly.

Does MD transform preserve balance? Many popular hash functions are de-
signed by applying the Merkle-Damg̊ard (MD) transform to an underlying compres-
sion function. The results in [BK04] show that the MD transform does not preserve
regularity or maintain balance. This indicates a weakness in the MD transform based
design principle from the point of view of ensuring high balance. Also, it is shown
that regularity not only of the compression function but also of certain associated
functions does suffice to guarantee regularity of the hash function. The conclusion
is that a general design principle, attempting to ensure high balance of a hash func-
tion by only establishing some properties of the compression function, cannot be
recommended.

12

Chapter 4

Multicollisions

The notion of collision can be generalized to that of r-way collision (or r-collision).
An r-collision is simply an r-tuple of distinct domain points x1, x2, · · · , xr such that,
h(x1) = h(x2) = · · · = h(xr). If the hash values behave almost randomly, finding
an r-collision could be done by hashing about m(r−1)/r points in the domain. This
tends to m when r becomes large. Due to this fact relying on r-collision freeness in
cryptographic constructions seems to be a good way to gain more security without
increasing the size of the hash functions.

The intuition behind relying on r-collision freeness is that finding multicollisions
is harder than finding collisions. This is true for a truly random function. But many
of the hash functions used in practice are based on an iterated construction and Joux
[Jou04] has demonstrated that r-collisions in iterated hash functions are not much
harder to find than ordinary collisions, even for very large values of r.

4.1 Multicollision attacks on iterated hash functions

We now give a brief summary of Joux’s attack. We will ignore the padding process in
the MD-transform as long as we consider collisions between messages of same length
since collisions without padding lead to collisions with padding on messages of same
length. Using Joux’s attack, one can find a 2t-collision for an iterated hash function
h that costs t times as much as building ordinary 2-collisions. Let f denote the
compression function and let H0,H1, · · · denote the chaining values. Assume that
we have access to a collision finding machine C, that given as input a chaining value
H, outputs two different message blocks M and M ′ such that f(H,M) = f(H,M ′).
This collision finding machine may use the generic birthday attack or any specific
attack based on a weakness of f . Using t-calls to C, we can build 2t-collisions for h
using the following method:

• Let H0 be the initial value IV of h.

• For i = 1, · · · , t, do

13

– Call C and find Mi and M ′
i such that f(Hi−1,Mi) = f(Hi−1,M

′
i)

– Let Hi = f(Hi−1,Mi).

• Output the 2t messages of the form (m1,m2, · · · ,mt) where mi is one of Mi

and M ′
i .

Following Joux’s attack, Nandi and Stinson [NS07] studied multicollision at-
tacks in a more general class of hash functions called generalized sequential hash
functions. They showed the existence of multicollision attacks for this class of
hash functions provided that every message block is used at most twice in the
computation of the message digest. The expected complexity of their attack is
O
(
t2 ln t (log2 m + ln ln t)

√
m
)

to find 2t-collisions. Thus they rule out a large class
of hash functions as candidates for multicollision secure hash functions. These at-
tacks were extended and generalized by Hoch and Shamir [HS06] to tree-based hash
functions that have a fixed expansion rate, which indicates the maximum number of
times a message block is processed in the evaluation of a message digest.

If a hash function is truly random then birthday attack is the best known attack
for finding multicollisions. The problem of finding multicollisions is analogous to the
generalized birthday problem which is well studied in both statistics and cryptogra-
phy literature. The following subsections summarize different results concerning the
probability of finding r-collisions when the hash function has random behaviour.

4.2 Generalized Birthday Problem

The problem of finding r-collisions is analogous to the generalized birthday problem
described as follows:

q people are selected at random. What is the probability that at least
r of them will have the same birthday? What is the smallest value of q
such that the probability is greater than or equal to 1/2 that at least r
people have the same birthday?

This problem is abstractly equivalent to the scheme of placing q balls in m cells.
In the following section we will discuss McKinney’s solution [McK66] to this problem.

4.2.1 Exact probability of finding multicollisions

The solution to the problem given by McKinney is as follows.

Let Xi (i = 1, 2, · · · , q) be independent, identically distributed random variables
with uniform distribution over the set of cells. If y1, y2, · · · , ym denote the cells, then

Pr[Xi = yj] =
1
m

.

14

The exact probability that r or more Xi’s are equal is to be determined. Let the
event E be defined as “no r of the random variables Xi’s are equal” (or equivalently,
at most r − 1 of the Xi’s are equal). Then

Pr[r or more Xi’s are equal] = 1− Pr[E]

Pr[E] is then computed by summing the probabilities of all ways in which q random
variables can take on less than r equal values.

For a given q, let

q1 = number of non-repeated Xi’s
q2 = number of pairs of equal Xi’s
· · ·
qr−1 = number of (r − 1)-tuples of equal Xi’s, where

q =
r−1∑
i=1

iqi. (4.1)

Then Pr[E] is given by
∑

Pr[q; q1, q2, · · · , qr−1] where the summation extends
over all qi (i = 1, 2, · · · , qr−1) which satisfy Equation (4.1). The general term of the
summation is the probability that there are exactly q1 non-repeated items, q2 pairs,
· · · , qr−1 (r − 1)-tuples of equal Xi’s. This takes the form

Pr[q; q1, q2, · · · , qr−1] =
q!∏r−1

j=1(qj !)(j!)qj
·
P
(
m,
∑r−1

i=1 qi

)
mq

, (4.2)

where P(a, b) denotes the number of permutations of a things taken b at a time.

4.2.2 A representation using multinomial c.d.f.’s

The multinomial distribution is described in [Fel08] as follows.

Consider a succession of N independent trials where each trial can have one of
several outcomes. Denote the possible outcomes of each trial by E1, E2, · · · , Et and
suppose that the probability of the realization of Ei in each trial is pi (i = 1, · · · , t).
For t = 2, we have Bernoulli trials. In general, the numbers pi are subject only to
the condition

p1 + · · ·+ pt = 1

Let N1, N2, · · · , Nt denote the number of occurrences of the events E1, E2, · · · , Et

respectively. N1, N2, · · · , Nt are said to follow a t-category multinomial distribution
with sample size N and parameters p1, p2, · · · , pt. The p.m.f. is given by the proba-
bility that in N trials, E1 occurs k1 times, E2 occurs k2 times, etc., which takes the
form

Pr[N1 = k1, N2 = k2, · · · , Nt = kt] =
N !

k1!k2! · · · kt!
pk1
1 pk2

2 · · · p
kt
t ,

15

where the ki’s are arbitrary non-negative integers subject to the obvious condition

k1 + k2 + · · ·+ kt = N.

The multinomial cumulative distribution function is defined as follows.

Pr[N1 ≤ a1, · · · , Nt ≤ at] =
∑

k1≤a1
···

kt≤at

Pr[N1 = k1, N2 = k2, · · · , Nt = kt]

One can express Pr[E] (defined in Section 4.2.1) using a multinomial cumula-
tive distribution function. Let N1, N2, · · · , Nm denote the number of balls in cells
y1, y2, · · · , ym respectively. Then (N1, N2, · · · , Nm) will have an m-category multi-
nomial distribution with sample size q and parameters pi = 1

m (i = 1, · · · ,m). Then
Pr[E] can be expressed as follows.

Pr[E] = Pr[N1 ≤ r − 1, N2 ≤ r − 1, · · · , Nm ≤ r − 1]

Levin [Lev81] provides an efficient way to compute a multinomial c.d.f. by ex-
pressing it as the conditional distribution of independent Poisson random variables
given fixed sum. The previous methods could be applied only in the equiprobable
case whereas Levin’s approximation works even when probabilities are different.

Theorem 4.2.1. Let (N1, N2, · · · , Nt) have a t-category multinomial distribution
with sample size N and parameters (p1, p2, · · · , pt). Let (a1, a2, · · · , at) be non-
negative integers, and define

pN = Pr[N1 ≤ a1, · · · , Nt ≤ at].

Then for any real number s > 0,

pN =
N !

sNe−s

(
t∏

i=1

Pr[Xi ≤ ai]

)
Pr[W = N], (4.3)

where Xi ∼ indep P(spi) = independent Poisson r.v.’s with mean spi and W is a sum
of independent truncated Poisson r.v.’s, namely W =

∑t
i=1 Yt where Yi ∼ T Pai(spi) =

truncated Poisson(spi) with range 0, 1, · · · , ai.

Proof. The theorem may be proved by applying Bayes’ Theorem to the usual repre-
sentation of the multinomial frequencies conditional on their sum being fixed. Let
Ai denote the event Xi ∼ indep P(spi). Then the multinomial c.d.f. is

Pr[A1 · · ·At|Σt
1Xi = N] =

Pr[A1 · · ·At]
Pr[Σt

1Xi = N]
Pr[Σt

1Xi = N |A1 · · ·At].

The result follows by noting that
∑

Xi ∼ indep P(s) and that the conditional dis-
tribution of Xi given Ai is T Pai(spi).

16

For large t the Central Limit Theorem offers an approximation to the last term
i.e., Pr[W = N]. Levin suggests an Edgeworth expansion which provides better
accuracy than just a first order normal approximation.

Diaconis and Mosteller [DM89] suggest an approximation that is valid for fixed
r and large m. The number of balls required to have probability p of r or more balls
in the same cell is approximately given by solving for q in

qe−q/(rm)

(
1− q

(r + 1)m

)−1/r

≈
(

m(r−1)r! ln
(

1
1− p

))1/r

(4.4)

It follows from the above expression that for fixed p, the complexity of finding
an r-collision is Θ(rm(r−1)/r) using the birthday attack. For fixed p and r, the
complexity is Θ(m(r−1)/r).

4.3 Complexity of finding r-collisions

As mentioned in the Section 4.2.2, the approximate complexity of finding an r-
collision using the birthday attack is Θ(rm(r−1)/r). We will now give a proof of this
result which appears in [Pre93]. The following notation will be used in the analysis:
for any positive integers d and r such that d ≥ r ≥ 2, (d)r = d(d− 1) · · · (d− r + 1).

Theorem 4.3.1. Let q balls be distributed in m cells independently and uniformly
at random. Then the number t of cells containing exactly r balls is given by

(
m

t

)
(q)tr

(r!)t

(
1− t

m

)q−tr

mtr

m−t∑
v=0

(−1)v

(
m− t

v

)
(q − tr)vr

(r!)vmvr

(
1− v

m−t

)q−(v+t)r(
1− t

m

)vr (4.5)

Proof. We start by calculating the probability that one of the cells contains exactly
r balls.

p1 =
(

q

r

)
(m− 1)q−r

mq
.

Here
(
q
r

)
is the number of selections of r balls and (m− 1)q−r is the number of ways

in which the remaining q − r balls can be distributed over the remaining m − 1
cells. The total number of distributions is given by mq. Similarly, for two cells this
probability is equal to

p2 =

(
q
r

)(
q−r

r

)
(m− 2)q−2r

mq
.

The product of the two binomial coefficients can be simplified to

q!
(r!)2(q − 2r)!

=
(q)2r

(r!)2

The general expression for v ≤ m is then

pv =
(q)vr

(r!)v

(
1− v

m

)q−vr

mvr
(4.6)

17

The probability that v cells contain r balls is given by

Sv =
(

m

v

)
pv, (4.7)

as there are
(
m
v

)
ways to select v cells out of m. The next step is to calculate

the probability that no cell contains exactly r balls. This can be done using the
inclusion-exclusion principle:

P (m, q, r, 0) =
m−1∑
v=0

(−1)vSv. (4.8)

Consider now a distribution where t cells contain exactly r balls. These t cells can
be chosen in

(
m
t

)
ways and the balls in these cells can be chosen in (q)tr/(r!)t ways.

The remaining q − tr balls are distributed over the remaining cells so that none of
these cells contains r balls; the number of such distributions is (m − t)q−trP (m −
t, q − tr, r, 0). Dividing by mq one obtains for the probability that exactly t cells
contain r balls as

P (m, q, r, t)

=
1

mq

(
m

t

)
(q)tr

(r!)t
(m− t)q−trP (m− t, q − tr, r, 0)

=
(

m

t

)
(q)tr

(r!)t

(
1− t

m

)q−tr

mtr

m−t∑
v=0

(−1)v

(
m− t

v

)
(q − tr)vr

(r!)vmvr

(
1− v

m−t

)q−(v+t)r(
1− t

m

)vr

This completes the proof.

It is not feasible to evaluate (4.5) for large values of m and q. We will hence
study the asymptotic behaviour of this function. Let r > 1. If q/m is too small,
then we can expect no cells containing r balls; in this case P (m, q, r, 0) is near unity
and all P (m, q, r, t) with t ≥ 1 are very small. If q/m is very large, then most cells
will contain about r = q/m balls. We will discuss only the intermediate case.

Theorem 4.3.2. Let q balls be distributed in m cells independently and uniformly at
random. Then the number t of cells containing exactly r balls follows asymptotically
a Poisson distribution with

P (m, q, r, t) = e−λr
λr

t

t!
and λr =

me−
q
m

r!

(q

m

)r
(4.9)

This holds when q and m tend to infinity such that λr remains bounded.

Proof. First we will estimate the quantity Sv of (4.7). Based on the inequality
(x)k ≤ xk for s ≥ 1 one obtains

v!Sv ≤
mv

mvr

qvr

(r!)v

(
1− v

m

)q−vr

18

From Taylor’s expansion, for 0 < x < 1, we have
−x

1− x
< ln(1− x) < −x. (4.10)

Therefore
v!Sv <

mv

(r!)v

(q

m

)vr
e−(q−vr

m)v.

Using the inequality (x)k ≥ (x− k)k for s ≥ 1, we get the lower bound as follows.

v!Sv ≥
(m− v)v

mvr

(q − vr)vr

(r!)v

(
1− v

m

)q−vr

Using (4.10), we get

v!Sv >
mv

(r!)v

(q

m

)vr
(

1− vr

q

)vr

e
−

“
q−v(r−1)

m−v

”
v
.

Now define

λr =
me−

q
m

r!

(q

m

)r

and suppose that q and m increase in such a way that λr remains constrained to a
finite interval 0 < a < λr < b. For each fixed v the ratio of the upper and lower
bounds tends to unity, under the condition that vr � q. Hence

0 ≤ λr
v

v!
− Sv → 0. (4.11)

This relation holds trivially when λr → 0 Hence (4.11) holds whenever q and m
increase in such a way that λr remains bounded. Now

e−λr − P (m, q, r, 0) =
∞∑

v=0

(−1)v

(
λr

v

v!
− Sv

)
(4.12)

and (4.11) implies that the right side tends to zero. The observation that (4.5) can
be rewritten as StP (m, q, r, 0) shows that for each fixed t

P (m, q, r, t)− e−λr
λr

t

t!
→ 0.

This completes the proof.

The probability that exactly one r-collision occurs is λre
−λr and the probability

that at least one r-collision occurs is 1 − eλr . If one wants to calculate the number
of trials in order to have at least one r-collision with probability 1− e−1 ≈ 0.63, one
has to solve numerically the equation λr = 1 or

qe−
q

mr = m
r−1

r (r!)
1
r .

If q ≤ m then the following is a good approximation.

q ≈ m
r−1

r (r!)
1
r .

This shows that the number of trials is Θ(rm(r−1)/r).

19

Chapter 5

Balance-based Analysis of
Generalized Birthday Attack

As mentioned in Chapters 1 and 4, r-collision freeness is a desirable security property
of a hash function. One natural question that arises from the discussions in the
previous sections is the following.

Can we extend balance-based analysis to the generalized birthday attack?
What would be the equivalent notion of balance in the context of r-
collisions?

The generalized birthday attack, that we consider, for finding r-collisions (r ≥
2) for a given hash function h : X → Y is shown in Figure 5.1. It picks points
x1, x2, · · · , xq from the domain X independently and uniformly at random. If any r
of these points map to the same range point then it returns them, and if no r-collision
is found it returns “failure”. The integer q ≥ r is the number of trials. Note that for
r = 2, the algorithms given in Figures 5.1 and 3.1 are the same.

Our goal here is to analyze the performance of the generalized birthday attack
on a hash function h : X → Y in terms of what we call r-balance of h. Equivalently,
we want to analyze how the following metrics vary with r-balance.

• C
(r)
h (q): probability that the birthday attack of Figure 5.1 successfully finds

an r-collision for h in q trials (q ≥ r).

• Q
(r)
h (c): the minimum number of trials required to obtain an r-collision with

probability greater than or equal to c. That is,

Q
(r)
h (c) = min{q : C

(r)
h (q) ≥ c}. (5.1)

Note that, for a balance-based analysis of the generalized birthday attack, the
definition of balance given in [BK04] will not suffice. We need an equivalent for-
mulation in the context of r-collisions. In the following section we will provide the
definition of r-balance and discuss its properties.

20

For i = 1, ..., q do

xi
$←X

yi ← h(xi)

EndFor

If there are indices i1, · · · , ir such that h(xi1) = · · · = h(xir)
and xi1 , · · · , xir are distinct

then return xi1 , · · · , xir

EndIf

Return "failure"

Figure 5.1: Generalized birthday attack on a hash function h : X → Y for finding
r-collisions.

5.1 Notation

We will use the following notation for our analysis.

• If d is a non-negative integer, then [d] = {1, 2, · · · , d}.

• For an integer r ≥ 2, [d]r denotes the set of all r-element subsets of [d].

• [d]r,2 denotes the set of all 2-element subsets of [d]r.

• For any y ∈ Y , h−1(y) = {x ∈ X : h(x) = y}.

• Let r ≥ 2 and d ≥ 0 be integers. Then (d)r is defined as follows.

(d)r =
{

d(d− 1) · · · (d− r + 1) if d ≥ r
0 otherwise

• P(a, b) denotes the number of permutations of a things taken b at a time.
Clearly P(a, b) = (a)b.

5.2 r-balance and its properties

Recall that in [BK04], balance was defined as a function of the probability that two
uniformly chosen (with replacement) domain points map to the same range point.
It is defined this way because in case of 2-collisions the probability that the domain
points coincide can be ignored compared to the probability of r-collisions when the
size of the domain is at least twice the size of the range. But in case of r-collisions,
where r is large, we cannot ignore the probability of domain points coinciding. So if
we are looking for r-collisions, a natural way to define the r-balance of h would be
in terms of the probability of finding r-collisions for h.

21

Definition 5.2.1. Let h : X → Y be a hash function whose domain X and range
Y = {y1, y2, · · · , ym} have sizes n, m ≥ r, respectively. For i ∈ [m], let ni = |h−1(yi)|
denote the size of the preimage of yi under h. The r-balance of h, denoted µr(h), is
defined as

µr(h) =
1

r − 1
· logm

(
1
pr

)
, (5.2)

where pr denotes the probability of an r-collision when r elements are chosen inde-
pendently and uniformly at random from the domain X.

For r = 2, we have

m−µ2(h) =
∑m

i=1 ni(ni − 1)
n2

=
∑m

i=1 ni
2

n2
−
∑m

i=1 ni

n

= m−µ(h) − 1
n

This shows that µ2(h) is always greater than µ(h). The difference gets smaller as n
grows larger.

Proposition 5.2.1. Let r elements be chosen independently and uniformly at ran-
dom from the domain X. The probability that they form an r-collision is determined
by

pr =
∑m

i=1(ni)r

nr
.

Proof. Let r elements w1, w2, · · · , wr be picked independently and uniformly at ran-
dom from the domain X. Let E be the event that these elements form an r-collision.
Let A denote the event that these are distinct and for 1 ≤ i ≤ m, let Bi be the event
that h(w1) = · · · = h(wr) = yi. Then

E = AB1 ∪AB2 ∪ · · · ∪ABm.

Since Bi’s are mutually exclusive events, we have

Pr[E] =
m∑

i=1

Pr[ABi]

=
m∑

i=1

Pr[A|Bi] · Pr[Bi]

=
m∑

i=1

ni(ni − 1) · · · (ni − r + 1)
nr

i

· n
r
i

nr

=
m∑

i=1

ni(ni − 1) · · · (ni − r + 1)
nr

Since pr = Pr[E], the proposition follows.

22

The following lemma will be used in obtaining bounds on the r-balance of a hash
function.

Lemma 5.2.2. Let r ≥ 2 be an integer. Let n1, n2, · · · , nm be non-negative integers
such that

∑m
i=1 ni = n. Then

m ·
(n

m

)
r
≤

m∑
i=1

(ni)r ≤ (n)r

Proof. We will prove the bounds using a counting argument. Let S(ni) denote the
set of all distinct arrangements of ni things taken r at a time. Then |S(ni)| =
P(ni, r) for i = 1, · · ·m. If nj ≤ r − 1 for some j then S(nj) = ∅. Assume,
without loss of generality, that the first k of the ni’s are greater than r − 1. By
definition n =

∑m
i=1 ni. Let S denote the set of all distinct arrangements of n things

taken r at a time. Each arrangement in S(ni) is also present in S. This show that
S(n1) ∪ S(n2) ∪ · · · ∪ S(nk) ⊆ S. Also since the S(ni)’s are disjoint, we have

P(n1, r) + P(n2, r) + · · ·+ P(nk, r) ≤ P(n1 + n2 + · · ·+ nk, r) = P(n, r)

Equality occurs when k = 0 i.e., one of the ni’s is equal to n and the rest are zero.
This gives an upper bound on

∑m
i=1(ni)r.

m∑
i=1

(ni)r ≤ (n)r (5.3)

Now we claim that
∑m

i=1(ni)r attains its minimum when all ni’s are equal i.e.,
n1 = n2 = · · · = nm = n

m . Suppose there exist ni and nj such that ni > n
m and

nj < n
m . Assume, without loss of generality, that i = 1 and j = 2. To prove the

claim, we need but show that

P(n1 − 1, r) + P(n2 + 1, r) + · · ·+ P(nk, r) < P(n1, r) + P(n2, r) + · · ·+ P(nk, r).

Let Ti denote the set containing ni items. Clearly, T1 ∪ T2 ∪ · · · ∪ Tm = X. Let
x ∈ T1. The number of arrangements of items in T1 taken r at a time that contain
x is equal to rP(n1− 1, r− 1). Suppose we remove x from T1 and put it in T2. Then
the number of arrangements of items in T2 taken r at a time that contain x is equal
to rP(n2, r − 1). Thus we have

(P(n1, r) + P(n2, r) + · · ·+ P(nk, r))− (P(n1 − 1, r) + P(n2 + 1, r) + · · ·+ P(nk, r))
= |S(n1) ∪ S(n2) ∪ · · · ∪ S(nm)| − |S(n1 − 1) ∪ S(n2 + 1) ∪ · · · ∪ S(nm)|
= |S(n1) ∪ S(n2)| − |S(n1 − 1) ∪ S(n2 + 1)|
= |S(n1 − 1)|+ rP(n1 − 1, r − 1) + |S(n2)| − |S(n1 − 1)| − |S(n2)| − rP(n2, r − 1)
= rP(n1 − 1, r − 1)− rP(n2, r − 1)
> 0

23

since n1 − 1 > n2. Thus we have a lower bound on
∑m

i=1(ni)r.

m∑
i=1

(ni)r ≥ m ·
(n

m

)
r

(5.4)

From (5.3) and (5.4), we have

m ·
(n

m

)
r
≤

m∑
i=1

(ni)r ≤ (n)r

Now we present upper and lower bounds on the r-balance of a hash function and
see when they are attained.

Proposition 5.2.3. Let h be a hash function. Then

1
r − 1

logm

nr

(n)r
≤ µr(h) ≤ 1

r − 1
logm

nr

m ·
(

n
m

)
r

(5.5)

The lower bound is attained when h is a constant function and the upper bound is
attained when h is a regular function.

Proof. From Lemma 5.2.2, we have

m ·
(n

m

)
r
≤

m∑
i=1

(ni)r ≤ (n)r

Dividing throughout by nr we get,

m ·
(

n
m

)
r

nr
≤
∑m

i=1(ni)r

nr
≤ (n)r

nr

nr

(n)r
≤ nr∑m

i=1(ni)r
≤ nr

m ·
(

n
m

)
r

Taking logm and dividing by r−1 we obtain the required bounds on r-balance. From
Lemma 5.2.2, we know that the lower bound of

∑m
i=1(ni)r is attained when h is a

regular function and the upper bound is attained when h is a constant function.
From this the proposition follows.

Note that the lower bound in Equation (5.5) is close to zero and the upper bound
is close to 1 when the size of the domain n is substantially large.

24

5.3 Bounds on C
(r)
h (q)

In this section we provide upper and lower bounds on C
(r)
h (q) as functions of the

r-balance. Consider the generalized birthday attack as shown in Figure 5.1. For
every I ∈ [q]r, I = {i1, i2, · · · , ir}, define a random variable ZI as follows.

ZI =
{

1 if xi1 , xi2 , · · · , xir form an r-collision
0 otherwise

From Proposition 5.2.1 and the definition of r-balance we have

E[ZI] = Pr[ZI = 1] =
∑m

i=1(ni)r

nr
= m−(r−1)µr(h) = pr (5.6)

Let Z =
∑

I∈[q]r
ZI . Z denotes the number of r-collisions.

Theorem 5.3.1 (Upper Bound on C
(r)
h (q)). Let h : X → Y be a hash function with

|X| = n and |Y | = m. Assume m ≥ r ≥ 2. Then for any integer q ≥ r

C
(r)
h (q) ≤

(
q

r

)
m−(r−1)µr(h). (5.7)

Proof. By linearity of expectation we have

E[Z] =
∑

I∈[q]r

E[ZI] =
(

q

r

)
E[ZI] =

(
q

r

)
· pr (5.8)

The upper bound is obtained by a direct application of Markov’s inequality.

C
(r)
h (q) = Pr[Z ≥ 1] ≤ E[Z]

1
=
(

q

r

)
· pr (5.9)

To obtain a lower bound on C
(r)
h (q), we will need the following lemma.

Lemma 5.3.2. Let ` be an integer such that ` > r. Then

p` ≤ m−`(r−1
r

)µr(h)

Proof. By definition,

p` =
∑m

i=1(ni)`

n`
.

We need an upper bound on
∑m

i=1(ni)` in terms of µr(h), m and r. From Lemma 5.2.2
we know that

∑m
i=1(ni)` attains a maximum when n1 = n and all the remaining ni’s

25

are zero. When this happens, pr will be determined by pr = n(n−1)···(n−r+1)
nr and

(n)r = nr · pr.

pr =
(

1− 1
n

)(
1− 2

n

)
· · ·
(

1− r − 1
n

)
≤
(

1− r − 1
n

)r

pr
1/r ≤

(
1− r − 1

n

)
For all j > r − 1, (

1− j

n

)
>

(
1− r − 1

n

)
(5.10)

Using Equation (5.10), we have

(n)` = (n)r · (n− r)(n− r − 1) · · · (n− ` + 1)

= nr · pr · n`−r
(
1− r

n

)(
1− r + 1

n

)
· · ·
(

1− `− 1
n

)
≤ n` · pr ·

(
1− r − 1

n

)`−r

≤ n` · pr · pr
`−r

r

≤ n` · pr
`/r

The bound can now be obtained as follows.

p` =
∑m

i=1(ni)`

n`

≤ n` · pr
`/r

n`

≤ pr
`/r

=
(
m−(r−1)µr(h)

)`/r

= m−`(r−1
r

)µr(h)

This completes the proof.

Theorem 5.3.3 (Lower Bound on C
(r)
h (q)). Let h : X → Y be a hash function with

|X| = n and |Y | = m. Assume m ≥ r ≥ 2. Let α ≥ 0 be a real number such that

r ≤ q ≤ α ·m(r−1
r)µr(h). (5.11)

Then

C
(r)
h (q) ≥

(
3
2
− 1

2
(α + 1)r

)
·
(

q

r

)
·m−(r−1)µr(h). (5.12)

26

The reason for making the assumption (5.11) is as follows. In Sections 4.2 and
4.3, we stated that it would approximately take Θ(m(r−1)/r) trials to find a collision
for a fixed probability. Intuitively one would expect that the number of trials needed
when the balance is also considered would be roughly Θ(m(r−1

r)µr(h)).

Now we will give a proof of Theorem 5.3.3.

Proof. Let [q]r,2 denote the set of all 2-element subsets of [q]r. By the principle of
inclusion and exclusion, we have

C
(r)
h (q) = Pr

 ∨
I∈[q]r

ZI = 1

 (5.13)

=
∑

I∈[q]r

Pr[ZI = 1]−
∑

I,J∈[q]r
I 6=J

Pr[ZI = 1 ∧ ZJ = 1]

+ · · · + (−1)(
q
r)−1 Pr

 ∧
I∈[q]r

ZI = 1

 (5.14)

The first two terms in the above equation gives us a lower bound on C
(r)
h (q).

C
(r)
h (q) ≥

∑
I∈[q]r

Pr[ZI = 1]−
∑

{I,J}∈[q]r,2

Pr[ZI = 1 ∧ ZJ = 1] (5.15)

Equation (5.8) tells us that the first term in the above equation is∑
I∈[q]r

Pr[ZI = 1] =
(

q

r

)
Pr[ZI = 1] =

(
q

r

)
· pr (5.16)

In order to obtain a lower bound we need an upper bound on the second term of
Equation (5.15). We now claim that∑

{I,J}∈[q]r,2

Pr[ZI = 1 ∧ ZJ = 1] ≤ 1
2

(
q

r

)
· pr · ((α + 1)r − 1) (5.17)

Combining Equations (5.15), (5.16) and (5.17), we obtain the lower bound stated in
Equation (5.12) as follows.

C
(r)
h (q) ≥

(
q

r

)
· pr −

∑
{I,J}∈[q]r,2

Pr[ZI = 1 ∧ ZJ = 1]

≥
(

q

r

)
· pr −

1
2

(
q

r

)
· pr · ((α + 1)r − 1)

=
(

3
2
− 1

2
(α + 1)r

)
·
(

q

r

)
· pr

27

It remains to prove the claim stated in (5.17).

For k = 0, 1, · · · , r − 1, let Nk be the number of sets {I, J} ∈ [q]r,2 such that
|I ∩ J | = k. The k common elements can be chosen in

(
q
k

)
ways. The remaining

r − k elements in I can be chosen in
(
q−k
r−k

)
ways and for each such I, we can chose

the remaining r−k elements in J in
(
q−r
r−k

)
ways. But this way we are counting every

unordered pair twice (i.e., {I, J} and {J, I} are indistinguishable but counted twice).
Therefore, we have

Nk =
1
2

(
q

k

)(
q − k

r − k

)(
q − r

r − k

)
=

1
2

(
q

r

)(
r

k

)(
q − r

r − k

)
(5.18)

We can now break up the second term in Equation (5.15) as follows:

∑
{I,J}∈[q]r,2

Pr[ZI = 1 ∧ ZJ = 1] =
r−1∑
k=0

Nk · Pr[ZI = 1 ∧ ZJ = 1 : |I ∩ J | = k] (5.19)

When k = 0, the events ZI = 1 and ZJ = 1 are independent and hence for k = 0,

Pr[ZI = 1 ∧ ZJ = 1] = Pr[ZI = 1] · Pr[ZJ = 1] = pr
2 (5.20)

When k ≥ 1, the events ZI = 1 and ZJ = 1 indicate that the elements in I map to a
common point and so do the elements in J . Since I ∩ J 6= ∅, the common image of
the elements of both I and J must be the same. Hence Pr[ZI = 1 ∧ ZJ = 1] is the
probability that the 2r − k distinct elements in I ∪ J form a 2r − k-collision. That
is,

Pr[ZI = 1 ∧ ZJ = 1] = p2r−k (5.21)

Combining Equations (5.18), (5.19), (5.20) and (5.21), we obtain the following:

Pr[ZI = 1 ∧ ZJ = 1] = N0 · pr
2 +

r−1∑
k=0

Nk · p2r−k (5.22)

To obtain an upper bound on the above expression, we need an upper bound on
p2r−k. From Lemma 5.3.2, we have

p2r−k ≤ m−(2r−k)(r−1
r

)µr(h) (5.23)

Let
a =

∑
{I,J}∈[q]r,2

Pr[ZI = 1 ∧ ZJ = 1].

28

Combining Equations (5.11), (5.18), (5.22) and (5.23), we obtain

a =
1
2

(
q

r

)(
q − r

r

)
pr

2 +
1
2

(
q

r

) r−1∑
k=1

(
r

k

)(
q − r

r − k

)
p2r−k

≤ 1
2

(
q

r

)(
(qr · pr) · pr +

r−1∑
k=1

(
r

k

)
qr−k ·m−(2r−k)(r−1

r
)µr(h)

)

=
1
2

(
q

r

)(
(qrm−(r−1)µr(h)) · pr + m−(r−1)µr(h)

r−1∑
k=1

(
r

k

)
qr−k ·m−(r−k)(r−1

r
)µr(h)

)

=
1
2

(
q

r

)((
qm−(r−1

r
)µr(h)

)r
· pr + pr

r−1∑
k=1

(
r

k

)(
q ·m−(r−1

r
)µr(h)

)r−k
)

Using the assumption that q ≤ α ·m(r−1
r)µr(h), we obtain

a ≤ 1
2

(
q

r

)
pr

(
αr +

r−1∑
k=1

(
r

k

)
αr−k

)

=
1
2

(
q

r

)
pr ((α + 1)r − 1)

which proves the claim in (5.17).

Comparison with Ch(q)

Substituting r = 2 in (5.7) and (5.12), we get the following bounds on C
(2)
h (q).(

1− α2

2
− α

)
·
(

q

2

)
·m−µ2(h) ≤ C

(2)
h (q) ≤

(
q

2

)
·m−µ2(h)

the lower bound being true provided q ≤ α ·mµ2(h)/2. Replacing α with 0.4 gives us

0.52 ·
(

q

2

)
·m−µ2(h) ≤ C

(2)
h (q) ≤

(
q

2

)
·m−µ2(h)

which are slightly better than the bounds on Ch(q) stated in (3.6). The difference
is due to the way we have defined µ2(h). Note that we do not need any additional
restrictions on the sizes of the range and domain for our bounds to hold.

5.4 Bounds on Q
(r)
h (c)

Now we will provide upper and lower bounds on Q
(r)
h (c).

29

Theorem 5.4.1. Let h : X → Y be a hash function with |X| = n and |Y | = m.
Assume m ≥ r ≥ 2. Let α ≥ 0 be a real number such that β =

(
3
2 −

1
2(α + 1)r

)
> 0.

Let c be a real number such that 0 ≤ c < 1. Then

c1/r
(r

e

)
m(r−1

r)µr(h) ≤ Q
(r)
h (c) ≤

(
c

β

)1/r

rm(r−1
r)µr(h) (5.24)

the upper bound being true under the additional assumption that

c ≤
(α

r

)r
· β (5.25)

Proof. From Theorem 5.3.1 we have

C
(r)
h (q) ≤

(
q

r

)
m−(r−1)µr(h)︸ ︷︷ ︸

U(q)

To get the lower bound of Equation (5.24) we need to solve for q in the equation
U(q) = c.

c =
(

q

r

)
m−(r−1)µr(h)

≤
(qe

r

)r 1
m(r−1)µr(h)

q ≥ c1/r
(r

e

)
m(r−1

r)µr(h)

This proves the lower bound of Equation (5.24). We now obtain the upper bound.
From Theorem 5.3.3 we have

C
(r)
h (q) ≥ β

(
q

r

)
m−(r−1)µr(h)︸ ︷︷ ︸

L(q)

Solving for q in the equation L(q) = c we get

c = β

(
q

r

)
m−(r−1)µr(h)

≥ β
(q

r

)r 1
m(r−1)µr(h)

q ≤
(

c

β

)1/r

· r ·m(r−1
r)µr(h)︸ ︷︷ ︸

qu

30

r cmaxr

2 2.34375× 10−2

3 4.32376× 10−4

4 4.28984× 10−6

5 2.66499× 10−8

6 1.13553× 10−10

7 3.52733× 10−13

8 8.34584× 10−16

Table 5.1: Table of values of cmaxr for r ranging from 1 to 8.

This proves the upper bound of Equation (5.24) provided that q = qu meets the
restriction stated in Equation (5.11).

q ≤
(

c

β

)1/r

rm(r−1
r)µr(h)

≤
((α

r

)r
β
)1/r

(
1
β

)1/r

rm(r−1
r)µr(h)

≤ αm(r−1
r)µr(h).

Thus Equation (5.25) is true.

Comparison with Qh(c)

For r = 2, (5.24) gives the following bounds on Q
(2)
h (c).

√
c · 2

e
·mµ2(h) ≤ Q

(2)
h (c) ≤

√
4c

β
·mµ2(h)

provided c ≤ α2β/4. Substituting α = 0.5 which maximizes the expression α2β/4
we get

0.7357
√

c ·mµ2(h) ≤ Q
(2)
h (c) ≤ 3.26599

√
c ·mµ2(h)

the upper bound being true under the restriction c ≤ 0.0234375. Our bounds are
valid over a wider range of c compared to the bounds stated in (3.9).

How good is the upper bound?

We will now analyze the upper bound on Q
(r)
h (c) given in Theorem 5.4.1. To get the

range of c for which the upper bound is valid for different values of r we need to look
at the following expression (obtained by substituting for β in (5.25)).(α

r

)r
(

3
2
− 1

2
(α + 1)r

)
(5.26)

31

The constraint that β must be positive we can say that α < (3)1/r − 1. It is now
clear that 0 ≤ α < 1. The maximum range of c can be obtained by finding the
maximum value that (5.26) attains. If we differentiate this expression with respect
to α, we will get a polynomial s(α) of degree 2r−1 which has exactly one term with
a negative sign. Hence s(α) will have only one real root. At this value of α, (5.26)
will attain a maximum.

For any r ≥ 2, let cmaxr denote the maximum value of the expression (5.26).
Table 5.1 shows values of cmaxr for r ranging from 2 to 8.

One can observe that the value of cmaxr is decreasing rapidly with increasing
values of r which means that as r grows larger the upper bound of Theorem 5.4.1 is
valid across smaller ranges of c.

32

Chapter 6

Conclusion

The results stated in sections 5.3 and 5.4 suggest that an r-collision can be found in
about m(r−1

r)µr(h) trials. This indicates that functions with high r-balance fare better
against birthday attacks than the ones with low r-balance. Hence ensuring high r-
balance provides good security against birthday attacks for finding multicollisions.

One could look at several other problems related to birthday attacks and balance-
based analysis of this attack. Here are some interesting problems.

1. Bellare and Kohno [BK04] show that the MD-transform does not preserve
balance by considering degenerate compression functions. They also give some
experimental results that suggest that SHA-1 actually preserves balance. If the
compression function is balanced and non-degenerate then what can be said
about the balance of the MD iterates?

2. There are several space efficient algorithms that find cycles in random graphs.
These methods can be used to find collisions in a hash function. Is there a
space efficient algorithm to find multicollisions?

Cycle detection algorithms

Cycle detection is the algorithmic problem of finding a cycle of the following type:
For any function f that maps a finite set S to itself, and any initial value x0 in S,
the sequence of iterated function values x0, x1 = f(x0), x2 = f(x1), · · · , xi =
f(xi−1), · · · must eventually use the same value twice: there must be some i 6= j
such that xi = xj . Once this happens, the sequence must continue by repeating the
cycle of values from xi to xj−1.

Floyd’s cycle-finding algorithm ([Flo67, Knu97]) is a pointer algorithm that uses
only two pointers, which move through the sequence at different speeds. Brent’s
algorithm [Bre80] is also a pointer algorithm using only two pointers but its under-
lying principle is different. It has been shown that, on an average, Brent’s algorithm
is faster than Floyd’s. There is a discussion of these algorithms in Exercise 3.1-6 of

33

[Knu97]. Nivasch [Niv04] describes an algorithm that does not use a fixed amount
of memory, but for which the expected amount of memory used is logarithmic in the
sequence length. This algorithm uses a stack to store the sequence values. The same
algorithm can be run with multiple stacks allowing a time-space tradeoff similar to
the previous algorithms.

A note on Problem 2

Problem 2 has been addressed recently by Joux and Lucks in [JL09]. They give an
algorithm to find 3-collisions that roughly uses mδ storage and whose running time
is m1−δ for δ ≤ 3. This shows that finding 3-collisions in time m2/3 would require
m1/3 units of storage.

The basic idea is as follows: First an array is initialized with N δ collisions for
the hash function h. Then simply create Nγ images of random points until we hit
one of the known collisions.

To make this algorithm space efficient each of the N δ collisions can be generated
using one of the cycle finding algorithms mentioned earlier. It can be shown that
the time complexity of this algorithm is roughly O(m1−δ) and storage required is
O(mδ)

34

Bibliography

[BK04] M. Bellare and T. Kohno. Hash function balance and its impact on
birthday attacks. In C.Cachin and J.Camanisch, editors, Advances in
Cryptology - EUROCRYPT ’04, volume 3027 of Lecture Notes in Com-
puter Science. Springer-Verlag, 2004.

[BPVY00] E. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung. Design validation
for discrete logarithm based signature schemes. In PKC’2000, volume
1751 of Lecture Notes in Computer Science, pages 276–292. Springer-
Verlag, 2000.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm
for designing efficient protocols. In Proceedings of the First Annual Con-
ference on Computer and Communications Security, pages 62–73. ACM
Press, 1993.

[Bre80] R. P. Brent. An improved monte carlo factorization algorithm. BIT,
20:176–184, 1980.

[Dam89] I. Damg̊ard. A design principle for hash functions. In G. Brassard, editor,
Advances in Cryptology - CRYPTO ’89, volume 435 of Lecture Notes in
Computer Science, pages 416–427. Springer-Verlag, 1989.

[DM89] P. Diaconis and F. Mosteller. Methods for studying coincidences. Journal
of the American Statistical Association, 84:853–861, 1989.

[Fel08] W. Feller. An introduction to probability theory and its applications,
volume I. Wiley India, 3 edition, 2008.

[Flo67] R. W. Floyd. Non-deterministic algorithms. Journal of the ACM,
14(4):636–644, 1967.

[GS94] M. Girault and J. Stern. On the length of cryptographic hash-values
used in identification schemes. In Advances in Cryptology - CRYPTO
1994, volume 839 of Lecture Notes in Computer Science, pages 202–215.
Springer-Verlag, 1994.

[HS06] J. J. Hoch and A. Shamir. Breaking the ice - finding multicollisions
in iterated concatenated and expanded (ice) hash functions. In Fast

35

Software Encryption 2006, volume 4047 of Lecture Notes in Computer
Science, pages 179–194, Berlin, Germany, 2006. Springer-Verlag.

[JL09] A. Joux and S. Lucks. Improved generic algorithms for 3-collisions. Cryp-
tology ePrint Archive, Report 2009/305, 2009. http://eprint.iacr.
org/.

[Jou04] A. Joux. Multicollisions in iterated hash functions. application to cas-
caded constructions. In Advances in Cryptology - CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science, pages 474–490, Berlin, Ger-
many, 2004. Springer-Verlag.

[Knu97] D. E. Knuth. The Art of Computer Programming, vol. II: Seminumerical
Algorithms. Reading. Addison-Wesley, MA, 3 edition, 1997.

[Lev81] B. Levin. A representation for multinomial cumulative distribution func-
tions. The Annals of Statistics, 9(5):1123–1126, September 1981.

[McK66] E. H. McKinney. Generalized birthday problem. The American Mathe-
matical Monthly, 73(4):385–387, April 1966.

[Mer79] R. C. Merkle. Secrecy, authentication and public key systems. PhD thesis,
Stanford University, 1979.

[MvOV97] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997. Available at http://www.cacr.
math.waterloo.ca/hac/.

[Niv04] G. Nivasch. Cycle detection using a stack. Information Processing Let-
ters, 90/3:135–140, 2004.

[NS07] M. Nandi and D. R. Stinson. Multicollision attacks on some generalized
sequential hash functions. IEEE transactions on Information Theory,
53(2):759–767, February 2007.

[Pre93] B. Preneel. Analysis and Design of Cryptograhic Hash Functions. PhD
thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 1993.

[RS96] R. Rivest and A. Shamir. Payword and micromint - two simple micro-
payment schemes. CryptoBytes, 2(1):7–11, Spring 1996.

[Sti02] D. R. Stinson. Cryptography theory and practice. Chapman and
Hall/CRC, 2 edition, 2002.

36

