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SUMMARY. lero wo study tho spectral theary of compart operatons which leave & ronvex
st Invariant in & Bapach space,  Wo ulso obiain & thoorem In positive opemtore by on apphieation of
tho geneml minimax theorem of Ky Fan,

1. INTRODUCTION

Tho theory of Tositive Operators has acquired much importanco 08 2 result
of ita applications to problems of mechanics and Markoy process.  The theory in finite
dimensions is the well-known theorem of Perron and Frobenius on the xpectrum of
matrices with non-negative entriea. Such matricea leave tho positive orthant in-
variant and Krein and Rutman (1048) extended the theorem to infinite dimensions
by studying operators that Jeave a cone invariant in Banach spaces. Since cones are
in particular, convex aets, tho following question naturally arises. What ean we ray
about operators that leave a closed convex set with the origin ¢ as its extremo
point, invariant 1 Can wo gencralizo the theorem of Krein to the new caxe without
any restriction?

By taking the generated cono of the convox set we observe that the conditions
of the theorem of Krein aro satisficd.  If the spectral radius is positivo wo ean only
sny that the cigen vector corresponding to the spectral radiun belongs to the closuro of
tho generated cone.  In general no eigen vector for the eigen valuo neeit belong to the
convox sct even when K—K is denso in the wholo Banach apaco £ for the convex
sct K. Thin follows frum the folowing two examples.

Example }: E=R, (K=(r,y):z2 y, y> 0,
T 0 Gy Ty

1
3 y Gn

with AX = (2,,z+a,4y, ayz+asy) for X = (2, y).
Ifere wo havo AKX C K and K—K = R%. Tho spectral radius hénml all the

eigen veotors of -!,- lio on tho y-axia. Thua they belong to tho closure of tho generated
cono and nono of them lio in the convex sot.
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Example 2: E = R, (K=(2y, 2y 23, ), (1,423) D (2g=2) 73, 24,23, 2,3 0),

1 Co
¥ ° ¥ 0
1 1
T 0z " 0
A= 2— Ax is defined s above

1 1
5 [] 5 0

1 . '

LT; o0 g

Here alsowe find AX C K with K—K = R, The rpeotral radius ia-,l,- and its
cigen vectors lio on the subspace S = {(x,, 2, 23, 7,)’ : 1y = 0 7, = 0}. Sinco SNK=0¢
no cigen veetor for% lica in K. Thua tho eigen vectors do not belong to K but they
lie in the closure of the gencrated cone. In fact, we shall show that an eigen vector
for tho spectral radius lies in the convex set K, whenever the spectral radius is striotly
greater than unity.

2. CONVEX SETS AND LINEAR FUNCTIONALS

Wo ehall always consider a real Banach space E with its conjugate space E*
of real Lounded linear funotionals on E.

Unless otherwise stated, K will denote a closed convex set with the origin
0 0 an extremo point.

We say z > y whenever z—ye K. Thus z > 0 for all ze K. Since K is
just convex > ir not even a partinl order but still we have

0 2<n <=5 <5
) 2<p 0AC =A< Ny
) s <y=-y <~z

" Xy + T,
(i) n g .'h=)%! < !'I‘TT!".‘
Wo sny z < y whenovor y—z¢ interior of K, when it oxists,
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LINEAR OPERATORS
For K with interior we have

(@) 2>0,0<A1==A2>0

B s<ny<i=3 <4

) €y < :% < y%y,

Propertics (a), (f), (y) are consequences of the fact that every point on the lino joining
a boundary point and an interior point lics completely in the interior of the convex
set except for tho ono boundary point.

Definition 1: K s finitely reproducing whenever E = K—K.
Lemma 1: K is finitely reproducing when K has spheres of arbitrary radina.

Proof: Let zeE and |x| =P bo the norm of z. Take a closed sphero
S(u, )C K with centro « and radive r > P.

Now, # = n+rl—:r and y, = u—rl—:l- belong to K.
Sinco 0g J;—l <1, wehave =1, [’ l—zl‘y,cl(.
r 2r 2r
Further z= 'l';:—:lr- .'Ix—J;,L ‘U

and this complotes the proofs of the Jemma.

Remark 1: In the case of concs, K having non-cmpty interior is sufficient,
but this is not true for convex sets. \We consider the following as an example.
Erample 3: E=R'(K=(zr,y):(r.y) 30, y=1}.

K is convex but X —K 3 E even though K is unbounded, with non-empty
interior. We slate the Lemmns 2,3,4,5 and 6 from Krein and Rutman (1048),
without proofs,

Lemma 2: If K is a cone with interior then any additive functional, non-
negative on K is bounded and hence belongs to E*.

Lemma 3: Let K be a cone. 1f fe K*, (i.e. feE* and f(y) > 0 for all yeK)
and u ia an inlerior poin of K, then f{n) > p|{|. for some p > 0, such that S{u, pYCK.

Lemma 4: Let K be a cone.  An clement z, €K, the closure of K if and only
if flx) > 0 for every feK®.

Lemwn &: If K ia a cone with interior then for any feK*—0 and x€ interior
of K, f(x)> 0.
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Definition 2: A cono K is normnl if and only if for any pair of polntaz, ye K

lz+yi > max{l=z], |y}, 8> 0.
or equivalently |z4+y| > 8, whon z, yeK with |z =|y| = 1.
Lemma 8: If K ie a wormal cone with interior then the st
I, = {y: —u & y  u} ia bounded, for every interior point u point we K.

Definition 3: An operator A Is atrongly positive whenover A KC K ond
A*r > 0 for every xe K, whero n(z) Ia a yusitive integer depending on z.

3. MININAX TMEOREM AND POSITIVE OPERATORS IN REFLEXIVE
BaNACH SPACES
In this section wo shall uso tho following theorem of Ky Fan (1933) to prove
a theorem of Krein in positive operators,
Proposition (Ky Fan): If K,, X'y aro 2 compnot convex sets in locally convex
linear topological spaces E, and E, respectively and if f(z, y) is a bilinear functional
on E; x E, possensing continuity in ench variable, then

n}i’n "?:x Jz )= m‘l:x n}lln Jle,9) = flzs Yo} 7a6 Ky, Yo6Ky

Theorem 1: Let K be a closed cone in a reflexive Banach space E. Lel K,
K hace non-emply inlerior. Further let A be a strongly positive bounded linear operator.
Then

(1) The apectral rading Ay is an eigen valie of A.

(2) There exisls an cigen veclor z for Ag withz > 0.

(3) The oubspace S, = {y: Az = Az} ia one-dimensional.

(4) A* has an cigen veclor f for A, which is airicily positive on K*—0.
(55 No other lincarly independent eigen veclors of A or A* liein K or K*
reapeclively.
Proof : Sinco £ = E* wo havo by Lemma 4, K = K**, For any « in the
interior of K and f;, fy ¢ K*

N +/iw) > 2> 0
by Lemma 3, where |fy] = |f;] =1 and S(u, p)C K.
Thereforo 1h+41 2 L +flw) 3 2p.
This shows that K* fa normal. Similatly A ia nlso normal, since X* has non-cmpty
intorior and K** = K.
Lot us consider tho following sots m, and m,.
mim{fif(y)= )N K* yoe intorior of K, |y,| = L.
= [pifilr) = 1)K fysintorior of K°*If] == 1.
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By Lemma 3,/(%) > 3 |/] and e} > py | 2] when Sl o) G K and 8(fos o) G K*
Thus m; and m, are bounded by;l and —;- respectively. Thoy are alio weakly
1 1

closed and by the refloxivity of £ they aro compaot in their weak topologics. More-
over thoy are cross scotions of K and K* (i.e. fe K*—~0 == Afem, for some A > 0 and
26K =0 == pxem, for some st > 0).

Congider tho bilinear functional

Kl 9) = (S (d=2)y) = J(4=2) y).

which is weakly continuous in each variablo £ and y, for all A, real.

Now by applying the thcorom of Ky Fan we have

{A) = min max (f(4—A)y) = max min (J{A-2}y) = (/o (d—A)y;)

1o 1o

where fy6m, and y,em,.
We observo the following
(1) ®0)>0
(2) »(a)ie i and i ing
(3) v(A)= —00 ag A 0.
{0) = (f','dy’) for somo f'sm, and y'em,.

But
(/'dy’) 3 (f, Ay') for all fen} and in partioular

20) =(f Ay} > (fAy') > 0 by the strong positivity of A.
Let fu, ¥y ¥s bo minimax solutions for A = A; and A = A,, respeotively.
Thorofore,

udy) < (h (A=23yy)
) > (h (A=2)).
Thus HA)—1{dy) < (o A=20) < [4=Ail 1] |51 o (30)
Changing the suffixes we have
o{dy) ~vldy) < [ A=Al V] |2l (32

Therofors, we find from (3.1) and (3.2) that
oA =v(A))] € |4=44] CU Sa 110 )

whoro C is a positive constant depending on £y, fy, ¥, and gy Thereforo »(d) is conti-
nuous,

Ono can eaxily show that w(A) is non-increasing. For any A if /, is the maximal
solution then

o) (A A=A)a) = (A Ayo) =S ¥o) K Ui Are) =M ).

1£.8(yo, p) C K, for un interior point vy of K then sinco my is bounded and (f yo) >plf],
wo find ¥A)= —co a8 A—» 40,
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Tlus by the continuity of t{A) wo find
;) = 0 for somo Ay > 0. . (33)
Let 2,37 bo optimal for A = A, This gives
(Z(4=2)y) > 0 for all, yeK (sinco my generates K)
(f(A=A)) 0 forall, feK® (winco m gencrates K°).
Therefore by Lemma 4 wo have
(A=2)'¢ € K* and (A,—A): €K, e (34)
and (Ag—A):6 K implies A2 < Az and that 0 < AWz C Az, . (3.5)
Thus z > 0.

If (A—2,)'y 5 0 then by Lemma 4 and by steps (3.4) and (3.5) it i3 seen
that (y (d—Ag):) = ((4—2A,)'y 2) > 0. This contradicts z to be a minimax solution.
Thua Ay = Y. v (3.0
If (A;—A)z # 0 then, sinco (4**y) (y) = AT Y(y) implies (y) > 0 for yeK—0 by the
strong positivity of A, we have by step (3.4) (¢, (A;—A)z) > 0 which contradicts tho
optimality of z a8 a solution. Theroforo

Az =g . (37)

Now, if /iy = Ayy for any ch lincarly independent of z in tho complex

extension £ of E where A is the extension of A to E, wo can take yeE without loss of
gonerality by the positivity of Ap. Wo can also choose a real @, with y+az lying on
tho Loundary of K. This shows that an eigen vector belongs to the boundary of
K which contradicts tho strong positivity of 4. Thus S, is I-dimonsional. Similarly

one can show that .S;o = {f: A'f = Ayf) is also 1-dimensivnal.

Since K is normal J, = {y :—2z ¥ < 2} is bounded.
Furthor =4 Ay A%,

that is, —z<—<z and —ﬂl<c

by tho boundedness of 1,. Thus

A"y * A
<\ IF{{"[ <c2°. A <o for|A]> 2.

Morcover, RA, A)y = —= 2= exists for yel,.

/\"'
Since —2 ¢ ¢ % < zforanyyandeomo ¢ > 0. R(A, A)y = (4 —2A)1y exists for all

yaud all A with| X[ > A, Since A, is alvo an cigen vahio, wo concludo that A, iy tho
spectral radivg of A, Sinco A u = au, ueK—0 implios afy, u) = {7, Au) = (A*y, u)
= Afy, u). (¥, #) > 0, wo havo A, = a and ueSA,. This completes tho proof of tho
theorem,
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Remark 2: Even if E is not reflexivo and A™ haa no interior atill we can by
the 2amo proof show that all the assertions of the theorem except for the fieat ono
(i.e. Ay is tho spectral radiux) are true, provided the cone K has a weakly compact
crosa-scclion or even n compact cross-section in somo locally convex topology in which
the operator A is also continuous when restricted to tho crosa-acclion. Tho closed
bonnded oross-scction in A is alwaya weakly compnot, as closed bounded set in E* aro
weakly compact.

Thus the gencral minimax theorem, yields also Theorem 1 of Schaefer (1960)
in a restricted sense.

4. OPERATORS LEAVINO A CONVEX SET INVARIANT

First of all we shall prove a theorem in finito dimensions.

Theorem 2: Let 0 be an extreme point of a closed conver set in R* (real
Euclidean n-space). Let A be a linear transformation with AK G K. Further, It A°f
—/ be won-negative on K for some feR* and T = (z: f(z) = ¢, ¢ > 0)K be bounded
Jor some ¢.

Then
(1) A has an eigen value Ay > 1 and
(2) A has an eigen vector y, €K for A,

Proof : T being olosed and 1 led 7' is pact. Mo T is convex.

Sinee A°f/—f is non-negative on K, then
(A% =/)z) = f(Az)—[(x} > O for all zeK.
Thus (f, Az) > ¢ for all z¢T.

If Ky ={r:f(z) { JNK, then 0¢K evidently, and Ax¢K,—T. Thus for
any z¢T, the line joining Az and 0 cuts 7' at s uniquo point, eay p, * Az. Consider
themap @ : 2= 4, - Az of T into itsclf. Sinco Az§ K\—T, p, € 1. It is easily scen
that & ia also continuovs, Therefore by Browor's fixed point theorem @{y,) == y, for
somo YT, i.o. Iy, A¥o = Yo which shows that

1
Ays = Ay, b= > 1, yeeT.

This completes the proof of the theorom.

As atated in the beginning of Seetion 2, we will take A to bo a closed convex
sct with 0 as an extremo point in tho real Banach spaco E. Fucther wo assumo
K—K =E. By Lemma 1, wo know that it is truo if K containa sphores of
arbitrary radius.

Wo shall give the first infinite dimensional generalization of Krein’s thoorom
to convex acta ns follows.

Theorem 8: Let A be a compact operator with AK C K. 1f the apectral radivs
Ao of A is atrictly greater than unity then,

Ayy = Ay, Jfor some y£K.
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Wo shall prove the theorem under difforont cases.
Case 1 i Tho spectral radius A, > 2 and it belongs to the apectrum ofA).
Proof : By the well known theory of compact operators in Banach spacos,
we have

(A=271= RO ) = £ Q-=A)T

where the Laurant’s serics as an analytic operator function has only finite poles.

Further Iy, R = —n,... ore bounded operators. Since K—K = E, there exists
a ueK with T'_u # 0.

e A"
Now RQA, d)yu = —}.: e for A> 2, > 2
sinco AKCK, A% K forall n.

N
For any finito N, )i ‘;Td' +(l 4\"") 0 is a convex linear combination of elements
of K. This follows from tho fact O.Imt

HELEpS
s ST <t
¥ A"

Th 2— X 1N

us L= for al
N gn
Since K is closed, h 2;—"-: €K, where limit is taken in the strong topo-

L]

logy, i.e. —R(A, A)m:K
Thua lim —(A=2)*R(QA, A)u = —T'—n"¢K.
)

A= 2o
Let yo = — l:-u. Now, we have

AR, Ayx = AR, AJutu

and that
— lim AQ=AYRQA, Ajum— Lim AQ—AYRX Au— lim (A=)
A=3p¢0 A= Ao#+0 A= Ag+0
7))
In (4.1) the last torm on the right hand side is zoro.
Wo have Ayy = Ay whero yg= — T'_, w.
Case 2: Among tho ch st bers of A of maximal modulus thero

in & voot of & positive nuinbor.

Let Aw = Agu. Siico A4 > 1, by tho assumption in this case, we have A3 > 2
for somo n. Since Ak = A, A3 in alro tho apcotra) radius of A and therefore by
Caso 1, wo havo A"y, = Ady, for romo y,eR.
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m-1 - Ay
Consider Y= (Lll—w!f' +~IA et ’\.'j’l + |,\'lu|)
,pu 1 Aty
We have Ayy = ( [T"fl‘ ------ +“.nJ| )

-1y, Ay, ALy,
W o+ e+ e+ o)
(Horo 258 i written M|/\.|-L&_¥°JI-). Theteforo Aye = A Yo
0
Sinco A"K C K for all n and since] Ag| > 1 with 25 > 2 y¢K. This completes
the proof of the theorem when Case 2 is true.
Case 3: Nono of the eigen values of maximal modulus is a root of a positive
number.
Let A, bo an eigen value  with maximal real part among roots of maximal
modulus.
ie. Ay =2, | =Pexp(ig) 0<go<2n
and exp (i N'gg) # 1 for any integer N. By spectral mapping theorem (Danford
and Schwatz (1958))
we have al(l—e)A+€4?) = (1 = )A+eAY; Aeo{d)}
whero o{d) is tho epectrum of A.
Suppose Aca(d) and |A] = |A,| = P, then X = Pe™ and cos 3 < cos gy by
assumption.
Further (I—e)A4-eAt = P(1 —s)e"‘ +5P‘e“"
and  [(1l—OA+e| = P. V(T— O+ P 2e(l—6)P . cos g < [{1—e}Ro+€A8]

by tho choics of A, among maximal roota in modulus, Thus (1 —¢)Ag+ €A%, (1 — €M+ EAS
aro eigenvalues of A, = (1—e)d4¢4" By a proper choice of ¢ > 0 wo can mako
the argument of (1~ €)X+ A3 commens.rablo with 27 Further for arbitrarily small
€>0 we can assume (1—e)A,+eA3 > 1 and thevefors Caso 2 is applicablo here
finco (1—e)Ag+€A3> 1. Actually (1—g)d4ed? leaves K invariant for a proper
choico of ¢, satisfying also tho commensurability condition. As ¢ is nrbitrary, it follows
that 2> 1. Thus the proof of the theorem ia completo.

Theorem 4: If A is a compact operator and

() AKCK

(b) Ay—cyek, pek,ly| =1,6> 1.

(¢) There exists an feE* rwith f(y) > 0 for all yeK—0.
Then Ays = Mo yy€ K, 4 3 ¢, rchere ), ia the apectral radius of A.
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Proof: AKC K with dy—cyeK wo havo A"y—ed™'ycK. As in concs
we eannot concludo that A™y—c"yeK.
Let ay, ay, ..., 2y bo N positivo numbers with
i) o<a<l, i=12,.

S M8y
(ii) T, =, =
(i) Yo, < 1.
Sinco A*y—cA-2yek for all n, by the convexity of K
¥ adty—cAt 1) 41— Ea)0 K.
i

That is (ayA¥y—acy)ek,
which gives ay{ASy—c¥y)ek.
Sinco f(y) > 0 for alt yeK—0,
SladAy—c"y) = ayf(4%y—c"y) > 0.
By tho positivity of ay we havo
N4y 5 M) > 0.

Thua 17 14%1 > %)
which shows 14%] > C.v_/'%'
Since 0<{%<I,H]L—m- YA >e> L

i.e. the spectral radius of A >1. By nn application of Theorem 3, we get the required
result and hence the theorem.

Remark 3: If we take K to bo a cone and AKX C K then pAK C K for any
positivo constant p.  Thus by proper choice of p we can make the spectral radius of
pA, strictly greater than unity, whenever it is positive. We can now apply the
theorem by treating K as a convex sct and therefore wo get pAy,=pA,* Yo Where
p+2, is the speetral radiua of pd. Thus Ay, = Ay, where yeK.
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