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Chapter 1

Introduction

1.1 Problem I: The Bichromatic Biological
Cell Sorting Problem

1.1.1 Motivation
Rare cell population, e.g. adult stem cell, is available in very small quantities
in samples that also have limited supply. Automatic cell sorting and isolation
for recovery of such live cells is a challenging task. The method involves an
enrichment step by magnetic or fluorescent cell sorting followed by manual
or automatic cell picking or analysis [11]. Thus, applications in the medical,
biological and pharmaceutical fields like stem cell research, cell therapy and
cell based diagnostics need both microorganism detection and manipulation
[26], [18], [14], [2], [19].

A Lab-on-a-Chip (LOC) is a device that can integrate several laboratory
functions on a single chip of very small size. LOCs can handle very small fluid
volumes. LOCs with sensing, processing and actuation functions can serve
this purpose [17]. Microorganisms can be manipulated or displaced from their
location using dielectrophoresis (or DEP). DEP is a physical phenomenon
in which a force is exerted on neutral particles when it is subject to non-
uniform electric field. The microorganisms can also be detected using DEP
cage approach [18] and impedance sensing [17]. Differences in permittivity
and conductivity between the particles and the suspending medium is used
for detecting and then manipulating the microorganisms. The manipulation
is done by applying electric fields using DEP. Static DEP cages have been
developed that can trap live individual cells into closed potential cages [11].

To sum up the process of LOC, we have the power of detecting and ma-
nipulating or moving microorganisms. The microorganisms are manipulated
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using voltage differentials (electric fields) and moved so that they can be
collected at desired locations. The samples are prepared on a cell array by
culturing it with some reagent so that normal or desired samples can be dif-
ferentiated from undesired ones. These are then manipulated using electric
fields so that they are separated and trapped and collected at the correspond-
ing DEP cages or receptors. By manipulation, we mean the microorganisms
on the cell array are displaced towards their corresponding receptor. This
way the cell array is exhausted of the microorganisms. Once the microorgan-
isms are collected at their receptors, several biological tests may be performed
on them. Thus, for an abstract model of the problem, we can assume the
cell array to be represented by a matrix where each cell can be any of the
three types: empty, desired and undesired. We have to empty the cell array
by pushing the desired and undesired cells to their respective receptors. A
similar problem is studied in [12].

1.1.2 Problem Definition
We are given a matrix A ofM×N cells. Each such cell (i, j) (0 ≤ i ≤M−1,
0 ≤ j ≤ N − 1), can have 3 possible values: Red (denoted as R), Blue
(denoted as B) and Empty (denoted as E). Let Nr denote the number of
R cells, Nb denote the number of B cells and Ne denote the number of
E cells. So, Nr + Nb + Ne = M × N . We denote the cell in the ith

row and jth column as (i, j). For a cell (i, j), we define its neighbour-
hood to be the set of cells N = {(i, j − 1) , (i, j + 1) , (i+ 1, j) , (i− 1, j)}
if (i, j) does not lie on the horizontal or vertical boundaries of A. If (i, j)
lies on the horizontal or vertical boundaries or the corners, then the neigh-
borhood of (i, j) is an appropriate subset of N , e.g., the neighborhood of
(0, N − 1) is {(0, N − 2) , (1, N − 1)} and the neighborhood of (1, N − 1) is
{(0, N − 1) , (1, N − 2) , (2, N − 1)}. A cell with value E can exchange its
value with any of its neighbouring cells. A cell with value R or B can ex-
change its value only with a neighbouring E cell. In addition, a cell with
value R (resp. B) can “merge” with a neighbouring cell if and only if that
cell has value R (B resp.), with the value of the cell unchanged after the
“merging” operation. Such exchanges are performed with the help of a volt-
age differential applied across such neighbouring cells. This can be done by
using a manhattan wire layout beneath the cells. Such exchanges allow a
cell to reach to its corresponding receptor. An R-receptor is located outside
the matrix, adjacent to the cell (0, 0). Any R in this cell is removed by the
R receptor, and hence can be replaced in cell (0, 0) by an E. Similarly, a B
receptor is located outside the matrix, adjacent to the cell (N − 1, 0). Any B
in this cell gets removed by the B-receptor, and is replaced in cell (N − 1, 0)
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by an E. So, the number of E cells increases in the matrix as the emptying
process goes on. The R and B receptors provide a mechanism for emptying
R and B cells from the matrix. Figure 1.1.2 shows an example.


R A E B B R

B R R B
B B R B

B A R R B R


Figure 1.1: An example of a cell array with a R-receptor and a B-receptor.
Here, M = 4, N = 4, Ne = 1, Nr = 7, Nb = 8.

We seek to minimize the number of exchanges, and hence, the number
of voltage differentials, to empty the cell array. In Chapter 2, we prove that
this minimization problem is NP-hard, and in Chapter 3, we propose an
approximation algorithm for the special case when a cell can have values
only E or R, and the goal is to push all the R cells to its receptor.

1.2 Problem II: The Sign Annihilation Prob-
lem

We are given a matrix A of N × N cells . Each such cell (i, j) (1 ≤ i ≤
N, 1 ≤ j ≤ N) can have either of 2 possible values or signs: + and –, or it
can be empty, denoted by the value E. The neighbourhood of a cell is defined
in the same fashion as in the previous problem. A cell with a + or – sign can
exchange its value with an empty neighbouring cell. In addition if a signed
cell exchanges its value with a neighbouring cell having the opposite sign,
we say that an annihilation took place and it results in both the cells being
emptied, i.e., after an annihilation both the participant cells have value E.
We aim to minimize the total no. of exchanges needed to empty the N ×N
matrix A having the same no. n of + and – cells. In Chapter 4 we propose
a heuristics for this problem.
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Chapter 2

Hardness of the Bichromatic
Biological Cell Sorting Problem

2.1 Introduction
The main theorem of this chapter is

Theorem 2.1.1. The minimization problem as defined in 1.1, i.e., the Bichro-
matic Biological Cell Sorting Problem, is NP-hard.

We prove a stronger statement, namely the problem of minimizing the
no. of moves when there is only R or E cells and only one R receptor is
NP-hard. We specifically describe this problem for the convenience of the
reader.

Definition 2.1.2. (The Monochromatic Biological Cell Sorting Prob-
lem) We are given a matrix A of M ×N cells . Each such cell (i, j)
(0 ≤ i ≤M − 1, 0 ≤ j ≤ N − 1) can have two possible values: Red (denoted
asR), and Empty (denoted as E). The neighbourhood of a cell is defined as in
1.1.2. A cell with value E can exchange its value with any of its neighbouring
cells. In addition, a cell with value R can “merge” with a neighbouring cell
having value R, with the value of the cell unchanged after the “merging”
operation. Such exchanges allow a cell to reach to its corresponding recep-
tor. An R-receptor is located outside the matrix, adjacent to the cell (1, 1).
So, the number of E cells increases in the matrix as the emptying process
goes on. Any R in this cell is removed by the R receptor, and hence can be
replaced in cell (0, 0) by an E. Figure 2.1.2 shows an example.

We seek to minimize the number of exchanges, and hence, the number of
voltage differentials, to empty the cell array.
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
R A E R E R

E E R E
E R R R
R R R E


Figure 2.1: An example of a cell array with an R-receptor

We reduce the known NP-hard problem Rectilinear Steiner Arborescence
(RSA) [24] to this problem.

2.2 The Rectilinear Steiner Arborescence Prob-
lem

2.2.1 Introduction
Definition 2.2.1. The Rectilinear Steiner Arborescence (RSA) problem is
“Given a set N of n nodes lying in the first quadrant of E2, find a minimum
length directed tree (Rectilinear Steiner Minimum Arborescence, or RSMA)
rooted at the origin and containing all nodes in N , composed solely of hori-
zontal and vertical arcs oriented only from left to right and from bottom to
top.”

The rectilinear Steiner arborescence problem was first studied by Nastan-
sky, Selkow, and Stewart [21] in 1974. They proposed an integer program-
ming formulation, which has exponential time complexity. In 1979 Laderia de
Matos [16] proposed an exponential time dynamic programming algorithm.
In 1985, Trubin [25] claimed the RSA problem can be solved in polynomial
time. In 1992, Rao, Sadayappan, Hwang, and Shor [23] showed that Trubin’s
algorithm was incorrect and presented an O (n log n) time approximation al-
gorithm that produces an RSA of length at most 2 times the optimal [23].
In 1994, Cordova and Lee [8] extended the heuristic to points in all four
quadrants with the same time complexity. In 1997, Cho [5] again claimed
that the RSA problem can be solved in polynomial time using a min-cost
max-flow approach. Soon after, Erzin and Kahng showed Cho’s claim is
wrong [10]. In 2000, Lu and Ruan [15], motivated by the polynomial time
approximation scheme (PTAS) of Arora [3], designed a PTAS for the RSA
problem. Their PTAS runs in time O

(
nO(c) log n

)
and produces an RSA

of length at most (1 + 1/c) times the optimal. Finally it was proved to be
strongly NP-complete in 2005 by Shi and Su [24].
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Because an RSMA is a shortest distance tree of minimum total length,
it has important applications in VLSI routing. Cong, Leung, and Zhou [7]
showed that routing trees based on RSMAs may have significantly less delay
than those based on the traditional Steiner trees. Many researchers pro-
posed efficient heuristics and exponential time exact algorithms for the RSA
problem [1], [6].

2.2.2 Some Basic Results
We first fix some conventions and notations used later in the text.

Conventions / Notations:

• The cardinality of a set S is denoted by |S|.

• R denotes the set of real numbers.

• Z denotes the set of integers.

• N denotes the set of natural numbers.

• E denotes the Euclidean plane, or the two-dimensional plane on R2.

• Given a set of points or nodes N in an instance of the RSA problem,
we call the nodes in N sinks.

• Unless otherwise stated, all points in N lie in the first quadrant of E2

and distances are measured in the L1 metric.

• A path is composed of segments which are always directed either up-
ward or to the right.

• ||p|| denotes the sum of coordinates xp + yp for a point p.

• For an arc e, l (e) denotes the length of the arc e in the L1 metric, i.e.,
if e connects points p and q, l (e) = |xp − xq|+ |yp − yq|.

• l (G) denotes the total length of arcs in a graph G.

• For two points p and q on G (N), where G (N) is as defined in 2.2.11,
min (p, q) is the grid point with coordinates (min {xp, xq} ,min {yp, yq}).

We now define the various terminologies related to the RSA problem.

Definition 2.2.2. An arborescence is a rooted tree with all edges directed
away from the root.
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Definition 2.2.3. An RSA is a directed arborescence rooted at the origin,
all of whose leaves are nodes of N , containing all the nodes of N , and having
the property that if an edge e joins p to q, then xp ≤ xq and yp ≤ yq. That
is, all edges point “northeast”.
Definition 2.2.4. A node which has two outlinks is called a Steiner node if
it is not a sink.
Remark 2.2.5. Only sinks and Steiner nodes are legitimate nodes in an RSA.
Definition 2.2.6. If a node has two outlinks, we label the vertical one “left”
and the horizontal one “right”.
Definition 2.2.7. An RSMA for a set N is an RSA A with minimum l (A).
Observation 2.2.8. Let τ(A) denote the depth-first tour of a tree A which
starts at the origin and goes first to the leftmost node whenever there is a
choice. It is easily verified that τ(A) covers every arc twice (in opposite direc-
tions) before it comes back to the origin. Furthermore, the visiting sequence
of τ (A) establishes a linear order π (A) for nodes in N . (This is simply the
preorder of the tree A.)
Lemma 2.2.9. For any RSMA A, if node u lies to the northwest of node v,
i. e., if ux < vx and uy > vy, then u precedes v in π (A).
Proof. Let w be the lowest common ancestor of u and v. Since edges in an
RSMA cannot cross, the path from w to u must be the left outlink from
w, and the path from w to v the right one. Thus, u is visited first and so
precedes v in π (A).
Lemma 2.2.10. In any RSMA A, let u and v be two nodes having the same
parent node z. Then z = min (u, v).
Proof. Suppose to the contrary that min (u, v) = w 6= z. Then zx ≤ wx and
zy ≤ wy, so there is a directed path from z to w. This implies
l (z, u) + l (z, v)
= l (z, w) + l (w, u) + l (z, w) + l (w, v)
> l (z, w) + l (w, u) + l (w, v).
So we can substitute the three arcs [z, w], [w, u], and [w, v] for the two arcs
[z, u] and [z, v] to shorten the tree, a contradiction to the assumption that A
is an RSMA.
Definition 2.2.11. For a given set N of sinks, G(N) denotes the grid that
includes a vertical path from the x-axis and a horizontal path from the y-axis
through every sink, and is bounded by the x-axis, the y-axis, the horizontal
path through the highest sink, and the vertical path through the rightmost
sink.
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We have the following theorem:

Theorem 2.2.12. There exists an RSMA which uses only arcs of G(N).

Proof. Suppose that A is an RSMA which does not use only arcs of G (N).
Find the node p of A which is not a node of G (N) and which is farthest from
the origin (i.e., maximum ||p||). By Lemma 2.2.10, p = min (u, v), where u
and v are the two children of p, but this means that either u or v is not a
node of G (N), a contradiction.

Definition 2.2.13. Let Lz denote the line x+ y = z in the first quadrant.

Definition 2.2.14. A set P of points is a cover for a set Q of points if for
every q ∈ Q, ∃ a p ∈ P which has a path to q. For given Q and z let
Qz denote the subset of Q lying above Lz. Then let MC (Q, z) denote a
minimum cardinality set of points on Lz that covers Qz.

Lemma 2.2.15. Any RSA for N intersects Lz at least MC (N, z) times for
all z.

Proof. This follows immediately from the definition of MC (N, z).

The next lemma deals with the fact that an instance of RSMA can con-
sist of points having non-integer (or even irrational) co-ordinates while in
Problem 2.1.2 the cells of the matrix A can have only integer-coordinates.

Lemma 2.2.16. For any instance of the RSA problem with the set N of n
nodes lying in the first quadrant of E2, we can get a mapping f : N → N ′

such that the linear order as stated in 2.2.8 obtained for the RSMA for N is
an invariant under this mapping.

Proof. We only note that to preserve the structure of the RSMA, it is neces-
sary only to maintain the linear ordering of the distances between the nodes
of G (N).

Henceforth we shall assume all the points in N in an instance of RSA to
have integer coordinates.

2.3 Reduction from the RSA problem to the
Monochromatic Biological Cell Sorting Prob-
lem

Definition 2.3.1. A non-deviating path is one moving through which a red
cell exchanges its value with only a left neighbour or an upper one.
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Before going into the actual reduction from the RSA problem to the
Monochromatic Biological Cell Sorting Problem, we note the following.

Observation 2.3.2. For any sequence of exchanges that empties the matrix
in the Monochromatic Biological Cell Sorting Problem, there is a sequence of
exchanges with a cost not more than the original where every red cell follows
only non-deviating paths.

The intuition is that since the receptor is at the top-left corner of the
matrix, it is always “profitable” to move a red cell (by exchanging its value
with an empty neighbour) leftwards or upwards.

Now we are in a position to prove the theorem

Theorem 2.3.3. The RSA problem as defined in Definition 2.2.1 is polytime
reducible to the Monochromatic Biological Cell Sorting Problem as defined in
Definition 2.1.2.

Proof. We shall look at the respective decision versions of the RSA problem
and the Monochromatic Biological Cell Sorting Problem. Given an instance
of the RSA problem, i.e. a set N of points in the first quadrant of Z2, we
construct an X×Y matrix A (N), where X = maxpx {px : p = (px, py) ∈ N}
and Y = maxpy {px : p = (px, py) ∈ N}. The value E is assigned to all cells
of A by default. For each p = (px, py) ∈ N , we now assign the value R to the
cell at the px

th row and py
th column. Clearly this construction takes O (n)

time where n = |N |. We prove that for an instance N of the RSA problem,
there shall exist a rectilinear Steiner arborescence of length at most k if and
only if A (N) can be emptied by at most k-exchanges.

For the sufficiency part, we observe that by virtue of Observation 2.3.2
given a sequence of moves with k-exchanges, there is a sequence of moves
with a total no. of exchanges at most k where a red cell exchanges its value
only with a left neighbour or an upper one. Tracing the paths of the red
cells towards the receptor and putting edges in the reverse direction give a
rectilinear rooted Steiner tree with all edges directed away from the origin, i.
e., precisely a rectilinear Steiner arborescence, and which has length at most
k.

For the necessity part, we observe that corresponding to an RSA for N ,
we get a sequence of moves for the red cells in A (N) by identifying a cell
(i, j) in the Monochromatic Biological Cell Sorting Problem with the point
(i, j) in the first quadrant of the Euclidean plane in the RSA problem, and
identifying the arc (i1, j1) −→ (i2, j2) in the RSA with pushing a red cell from
the (i2, j2)th location in the matrix A (N) to the (i1, j1)th location through
only leftward or upward moves. Only one thing is left to be taken care of,

12



that is, only leaves are moved, i. e., before we move a node to its parent
(location), all the chips in its subtree are brought to that node. This ensures
that the same edge is not traversed more than once, and hence the total no.
of exchanges does not exceed the length of the RSA.

the Monochromatic Biological Cell Sorting Problem having been a spe-
cial case of the Bichromatic Biological Cell Sorting Problem, Theorem 2.1.1
follows from Theorem 2.3.3.

Corollary 2.3.4. For a set of points N in the first quadrant of the Euclidean
plane, all with integer coordinates, the length of the rectilinear Steiner min-
imum arborescence defined on that set N is equal to the minimum no. of
exchanges required to empty the matrix A (N) as defined in the above proof
of Theorem 2.3.3.
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Chapter 3

A 2-factor Approximation
Algorithm for the
Monochromatic Biological Cell
Sorting Problem

3.1 Algorithm
In this section we propose a new heuristic which is fast and empties the
matrix A in a short no. of exchanges l. The matrix is emptied by iteratively
merging red cells p and q at the location min (p, q) until a single red cell
remains. The cells p and q are first brought to the cell-location min (p, q)
by the straight-line segment through the matrix A joining p or q and the
cell at min (p, q). If min (p, q) is either of p or q, then that red cell need not
be moved. If the position of the final red cell be the origin, i.e., the cell at
(0, 0), then we are done, otherwise we just move it to the origin through a
non-deviating path. Let N be the set of red cells. The nodes p and q are
chosen to maximize ||min (p, q) || over all nodes in the current ||N ||.

Time complexity: This algorithm can be implemented in O (log n) time
using a plane-sweep technique suggested by S. Fortune [23].

3.2 Proving the Approximation Ratio
From the proof of the theorem 2.3.3 it is evident that the paths traced by
the red cells constitute a tree (an arborescence specifically) rooted at the cell
(0, 0) and with only horizontal or vertical edges. Moreover the length of this
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tree is precisely the same as the total no. of exchanges made in emptying the
cell. A bound on the length of the arborescence H produced by Algorithm
3.1 is proved [23], and hence by Corollary 2.3.4 a bound on the total no. of
exchanges made by Algorithm 3.1 follows.

Definition 3.2.1. We define Nz to be the set N at the point in the execution
of the heuristic when we have just merged the last pair of points p, q in N
with ||min (p, q) || ≥ z.

Definition 3.2.2. Wz is defined to be the subset of points of N given by
{p ∈ N : ||p|| ≥ z}.

Lemma 3.2.3. Let pi = (xi, yi) be a node in an arborescence H produced by
our heuristic. There must exist a sink on the vertical path x = xi (horizontal
path y = yi) starting from pi.

Proof. Lemma 3.2.3 is trivial if pi is a sink. We prove the general case by
induction on the number of descendants of pi. Let pi = min (ph, pj). Then
xi = min (xh, xj), say xh. By induction there exists a sink on the vertical
path x = xh starting from ph. But yh ≥ yi. Hence this sink is also on the
vertical path x = xi = xh starting from pi. A similar argument works for the
y-coordinate.

Lemma 3.2.4. During the construction of H, for any z ≥ 0 and p, q ∈ Wz,

1. xp 6= xq and yp 6= yq,

2. xp < xq if and only if yp > yq,

3. if xp < xq, then xp + yq < z.

Proof. 1. Suppose that xp = xq and, say, yp > yq. Then min (p, q) =
(xq, yq) = q. But q lies on or above Lz and xq + yq > z, a contradiction
to the assumption p, q ∈ Nz.

2. Suppose that xp > xq and yp > yq. Then min (p, q) = q, and an
argument similar to 1 leads to a contradiction.

3. Suppose that xp + yq > z. Then min (p, q) = (xp, yq) lies on or above
Lz, contradicting p, q ∈ Nz.

Lemma 3.2.5. Let p, q be points in Wz with xp < xq. Then there exists a
sink either on the horizontal path between p and (xq, yp) or on the vertical
path between (xq, yp) and q.
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Proof. By Lemma 3.2.3, there is a sink p′ on the horizontal path y = yp

starting from p and a sink q′ on the vertical path x = xq starting from q.
Suppose that both xp′ > xq and yp′ > yq. Then the paths [p, p′] and [q, q′]
cross at (xq, yp) in the arborescence produced by H, a contradiction.

We now prove

Theorem 3.2.6. l (H) ≤ 2l (RSMA).

Proof. First, observe that, for any RSA A, l (A) =
∫
|A ∩ Lz|dz. Any RSA

must intersect Lz at least |MC (N, z) | times. We will show that H intersects
Lz at most 2 · |MC(N, z)| times for any z. Hence l (H) ≤ 2l (A) for any RSA
A, implying Theorem 3.2.6.

Order the nodes inWz according to the increasing order of the x-coordinate
into p1, . . . pm(z), where m (z) = |Wz|. By Lemma 3.2.3 there exists a sink
on the vertical path x = x1 starting at p1. Hence MC (N, z) must contain a
point whose x-coordinate does not exceed x1. By Lemma 3.2.5, there exists
either a sink on the horizontal path y = y2 between p2 and (x3, y2) or a sink
on the vertical path x = x3 between (x3, y2) and p3. Hence MC (N, z) must
contain a point whose x-coordinate lies between z−y2 and x3. But x1+y2 < z
by Lemma 3.2.4. Hence z − y2 > xl and the above two points in MC (N, z)
are distinct. Similarly, MC (N, z) contains a point whose x-coordinate lies
between z − y2j and x2j+l for j = 2, 3, . . . bm/2c, and these points are all
distinct. Hence Wz contains at most 2|MC (N, z) | points, which implies H
interesects Lz at most 2|MC (N, z) | times. Since z is arbitrary, Theorem
3.2.6 is proved.
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Chapter 4

An Efficient Heuristics for The
Sign Annihilation Problem

We recall the Sign Annihilation Problem.

Definition 4.0.7. (The Sign Annihilation Problem) We are given a
matrix A of N × N cells . Each such cell (i, j) (1 ≤ i ≤ N, 1 ≤ j ≤ N)
can have either of 2 possible values or signs: + and –, or it can be empty,
denoted by the value E. The neighbourhood of a cell is defined in the same
fashion as in the previous problem. A cell with a + or – sign can exchange its
value with an empty neighbouring cell. In addition if a signed cell exchanges
its value with a neighbouring cell having the opposite sign, we say that
an annihilation took place and it results in both the cells being emptied,
i.e., after an annihilation both the participant cells have value E. We aim
to minimize the cost of annihilation, which is defined as the total no. of
exchanges needed to empty the N × N matrix A having the same no. n of
+ and – cells.

Definition 4.0.8. Given a matrix A of N×N cells with either+ or – values,
we define a weighted bipartite graph G (A) = (U, V,E), where |U | = |V | = n,
with a weight function W : E → N on A as follows:

• U def= the set of ‘+’-signed cells.

• V def= the set of ‘–’-signed cells.

• E = {(u, v) : u ∈ U, v ∈ V }, i. e., G is a complete bipartite graph.

• W = {wi,j}, where e = (ui, vj) (u ∈ U , v ∈ V ) maps to wi,j under W .
wi,j is given by wi,j

def= the length (in the L1 metric) of the shortest free
path between ui and vj. If no such path exists, then wi,j

def=∞.
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Algorithm: We find out the minimum weight bipartite matching on G
as defined above by the Hungarian method [13], [20]. The perfect matching
thus obtained pairs each + with a distinct –, and the annihilations follow
this pairing.

Time complexity: The construction of G takes O (|E|) = O
(
|V |2

)
time. The Hungarian method solves the weighted matching problem for a
complete bipartite graph with 2 · |V | nodes in O

(
|V |3

)
arithmetic operations

[22]. Hence our heuristics runs in O
(
|V |3

)
= O (n3) time.

Remark 4.0.9. The solution obtained by our heuristic may not be the opti-
mum, because with each annihilation, the matrix gradually becomes empty,
and hence paths between opposite-signed cells may become free, thus alter-
ing (reducing, to be specific) the length of a shortest path between the cells.
Thus the pairing (matching) obtained at the initial stage of the annihilation
process may not be the optimum pairing.
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Chapter 5

Conclusion

We studied two combinatorial optimization problems — The Bichromatic
Biological Cell Sorting Problem and the Sign Annihilation Problem.

We proved that the Bichromatic Biological Cell Sorting Problem is NP-
hard, moreover we proved the computational hardness for the simpler Monochro-
matic Cell Sorting Problem. In doing so we studied in some detail the Rec-
tiliear Steiner Arborescence Problem. We provided a constant factor app-
proximation algorithm for the Monochromatic version of the Biological Cell
Sorting Problem.

Then we focussed on the Sign Annihilation Problem, and described an
O (n3)-time heuristics for this problem.

5.1 Scope of this work

5.1.1 Desired work to do in Problem I: The Bichro-
matic Biological Cell Sorting Problem

We note that the approximation algorithm provied in 3.1 can be extended to
give a constant-factor approximation algorithm for the more general Bichro-
matic Biological Cell Sorting Problem, for which the existence of no such
algorithm is known.

5.1.2 Possible avenues of progess in Problem II: The
Sign Annihilation Problem

There is much left to do in the case of the Sign Annihilation Problem. The
apparent simplicity of the problem hides the extremely large no. of combi-
natorial possibilities that lie in finding out the desired pairing. A proof of
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correctness for any purported “exact” algorithm will have to deal with the
hitch that as the annihilation process progresses, the configuration of the ma-
trix changes, and so what seems like an optimal choice at any one particular
step of the algorithm may not be the optimal choice globally.

While investigating the effect of various initial configurations on the cost
of annihilation, we started with the simple case when no cell of the matrix is
initially empty, i .e., for an N ×N matrix A, there are initially N2

2 cells with
+ sign and exactly N2

2 cells with – sign.
It is immediately observed that the lower bound on the cost is the initial

no. of + cells, i. e., N2

2 , and this is achieved with several initial configura-
tions. Two examples are shown in Figure 5.1.


+ − + −
+ − + −
+ − + −
+ − + −




+ − + −
− + − +
− + + −
+ − − +



Figure 5.1: Here N = 4, n = 8, and the cost of annihilation is 8

Unfortunately it proves difficult to determine the upper bound on the
cost of annihilation in this case, i. e., for n = N2

2 . We conjecture it to be
O
(

N3

4

)
, which is achieved in the case when the + and - signs are separated

into above the main diagonal and below it. Figure 5.2 gives an example.


+ + + −
+ + − −
+ + − −
+ − − −



Figure 5.2: Here N = 4, n = 8, and the cost of annihilation is 17

We also conjecture that this diagonal separation gives the “worst” initial
configuration, but again a proof alludes us, at least for now.
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We also looked into the problem of finding the equivalence of two such
matrices. Given two matrices of the same size, but with different configura-
tions both having the same number of (initial)+-signed cells (or equivalently,
the initial number of –-signed cells), we ask the question whether one can
be transformed into the other by a sequence of moves. The previous work
done in this area indicates that any two configurations with the same distri-
bution of cells of two different signs can be transformed into one another by
a sequence of moves so that all intermediate configurations are connected [9].
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