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Chapter 1 

Introduction 

 

Many different researchers, using a wide variety of techniques, have 

examined the task of Part-of-Speech (POS) tagging. The task itself consists of 

assigning basic grammatical word classes such as verb, noun and adjective to 

individual words, and is a fundamental step in many Natural Language Processing 

(NLP) tasks. The tags it assigns are used in other processing tasks such as chunking 

and parsing, as well as more complex tasks such as question answering and 

automatic summarization systems. Maximum Entropy modeling is one of the 

techniques that have been used to perform POS tagging, and gives state-of-the-

art accuracy 

 

We aim to find better ways to perform POS tagging on unknown words. We 

will use an existing Maximum Entropy POS tagger that already performs at state-

of-the-art level, and implement additional new features in order to increase its 

accuracy. These features will be able to represent real values in any range greater 

than zero, rather than a binary 0 or 1 as has been the case for Maximum Entropy 

modeling system have used in the past. 

 

The features themselves will encapsulate information found from the 

context around a word, as observed for unknown words. For example, if we find 

an unknown word in the test data, then it may still appear many times in a much 

larger unannotated corpus. By looking at the surrounding words in these 

contexts, we can formulate an idea of what POS tag should be assigned. This can 

be seen in the sentence below:  

 
The frub house is up on the hill 

 

Here, frub is the unknown word, and as a human we could conclude that it 

is an adjective or noun. This is because it sits between a determiner and a noun, 

which is a position often assumed by words with these two tags. Also, if we can 

find the word frub in other places, then we can get an even better, more reliable 
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idea of what its correct tag should be. This is what the large un-annotated corpus 

gives us: a number of examples of how and where unknown words are used. 

 

We should also note that we do not need to know the correct POS tags for 

the and house. We can determine simply from the words themselves, that frub is 

occupying a position that is also taken up by words such as big or club, these 

being examples of adjectives and nouns respectively. Also, the fact that the word 

the precedes our unknown word tells us a lot by itself, as this is an extremely 

common word that exists with only tag. Our aim then, is to take this intuitive 

reasoning for determining the correct tag for an unknown word, and create 

features that aid the Maximum Entropy model in doing the same. 

 

We will begin by describing the previous work that has taken place on the 

task of POS tagging, including the corpora that are used and the techniques that 

have been applied to the task. This will continue onto particular methods that 

have attempted to better classify unknown words, and then the statistical 

machine learner that we will be using: Maximum Entropy modeling. This will be 

followed by an extensive description of the experiments we performed, and the 

alterations to the Maximum Entropy features and calculations that were required 

to achieve the best performance. We then proceed to a thorough analysis and 

discussion of the results we attained, and finally, further applications, uses of, and 

improvements to the methods described. 
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Chapter 2 

Background 

 

2.1: Part-of-Speech Tagging:  

In the following two sentences,  

• Fruit flies like a banana. 

• Time flies like an arrow. 

The words flies and like are ambiguous. In the first sentence, flies is a noun 

and like is a verb, while in the second sentence, flies is a verb and like is a 

preposition. How can a computer program automatically and accurately predict 

the part-of-speech of ambiguous words flies and like?   

 

2.2: Maximum Entropy 

There are a number of machine learning techniques that can be     applied 

to problems such as POS tagging, prepositional phrase attachment and parsing, as 

well as areas outside the NLP field. Maximum Entropy (MaxEnt) modeling is one 

of these techniques, which estimates a statistical model to give probabilistic 

results (Ratnaparkhi, 1996). It makes no assumptions about the independence 

of features, as is the case with other classifiers like Naive Bayes, and because its 

results are probabilistic, can easily be used in a larger framework for classification. 

 

A Maximum Entropy model is built on a number of constraints, which are 

drawn as features from the training data. Once these constraints are met, the 

model assumes nothing further, giving a uniform distribution, and the model with 

maximum entropy, as suggested by the name. In this way, the model makes use 

of all the information available, but does not favor any further unfounded 

hypothesis, giving equal chance to all possibilities (Berger et al., 1996). 
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The observed expectation of features functions, as observed in the training, is 

calculated by: 

  

   Ep’fj(h,t) =∑ ��(ℎ� , ��)
�(ℎ� , ��)�
�
�    (1) 

 

Where ��(ℎ� , ��) denotes the observed probability of (hi,ti) and hi is the history of 

word wi, ti is the tag of the tag of word wi  in training data. 

Similarly, the model’s expectation of features functions, is calculated by: 

Epfj(h,t) = ∑ �(ℎ, �)f�(h, t) �∈�,�∈�     (2) 

 

In practice, H is very large and the model’s expectation Epfj(h,t) cannot be 

computed directly, so the following approximation is used: 

   Epfj(h,t) ≈  ∑ ��(ℎ�)�(��|ℎ�)
�(ℎ� , ��)�
�
�   (3) 

Where p’(hi) is the observed probability of the history hi  in the training set. 

In this equation, the probability model is calculated as the sum over all 

features, of the product of the frequency of a contextual predicate, the 

classification h given that contextual predicate, and the feature that determines 

whether this probability is taken into account. In the two previous equations, the 

feature function serves the purpose of including probabilities when the function is 

true. That is, if the contextual predicate occurs in the context we are looking at, 

and the classification (such as a particular POS tag) matches that of the current 

context, then p’(h,t) (which is a simple measure of frequency) is said to be active, 

and is used in calculating the probability for the feature. 

 

We should also note, that the model should be an accurate reflection the 

training data. This is an important point, as it clearly makes sense that the 

statistical distributions in the training data, which are meant to be representative 
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of language in general, should be the same as those in the model. From this idea, 

we have: 

  

  Epfj(h,t)= Ep’fj(h,t),  1 ≤  � ≤  �     (4) 

And therefore, 

 ∑ ��(ℎ�)�(��|ℎ�)
�(ℎ� , ��)�
�
�  = ∑ ��(ℎ� , ��)
�(ℎ� , ��)�

�
�  

           P = {p: Epfj(h,t)= Ep’fj(h,t) = dj(say), 1≤ � ≤ �}             (5) 

 
This gives us a mathematical approach towards finding a subset of models, 

from all possible probability models, where the constraints found in the training 

data match the probabilities in the estimated model. More simply, those models 

that satisfy the above equation for all features, will have a probability distribution 

identical to that of the training data.  

 

Satisfying these constraints does not result in a unique solution, and so 

going back to the basic idea of a Maximum Entropy model, we should choose the 

solution that has the most uniform distribution. In order to calculate uniformity, 

we can use the mathematical measure of entropy, and in particular, conditional 

entropy, as described in the following equation 

 

 

H(p) = - ∑ �(ℎ, �)�� �(ℎ, �)�∈�,�∈�    

        = - ∑ ��(ℎ)�(�|ℎ)�� �(�|ℎ)�∈�,�∈�       (6) 

 

 The value of H(p) will range from 0, where all probability is given to one 

item, to log|h|, where |h| is the number of possible classifications that can be 

made (which for POS tagging is the number of POS tags). The most uniform 

distribution is the one that maximizes the entropy, that is: 
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p* = !" #!$ H(p)      (7) 

 p∈ % 

 
 

Where p* is the Maximum Entropy model we are trying to find, and P is the 

set of all probability distributions that meet the constraints as specified in 

Equation 5. 

 

 

 
2.3: Calculation for p*: 

 

  
 Maximize E(p,&):   

 

E(p)  = H(p) + ∑ &�(E(f�(h, t) − d�)+
�
,   

 

E’(p) = 0 

 

⇒ .
./(0) 1− ∑ �($)�� �($)0 + ∑ &� 13∑ �($)
�($)0 4 − 5�6+

�
, 6 = 0 
 
⇒ - (1 + log p(x)) + ∑ &�
�($) = 0+

�
,  
 
⇒ log p(x) =  ∑ &�
�($)+

�
,  - 1 
 
⇒ p(x) = exp(∑ &�
�($)+

�
,  - 1) = exp(∑ &�
�($)+
�
� + &, - 1) 

 
⇒ p(x)= AB( (∑ CDED(0)F

DGH )
I         where  Z= exp(1 -&, )  & x = (h, t) 

 
 

 

To maximize E(p), E’’(p) should be less than zero so 
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E’’(p(x)) = 
.

./(0) (− (1 +  log p(x))  + ∑ &�
�($)+
�
,  ) 

 

              =  − �
/(0) < 0 

 

 

 
Maximum Entropy model: 

 

  �(ℎ, �) = �
I exp (∑ &�

+
�
� 
� (ℎ, �)) 

 
 

Conditional Maximum Entropy Model: 

 

  �(�|ℎ) = �
I(�) exp (∑ &�

+
�
� 
� (ℎ, �)) 

 
 

Where     Z(h) = ∑ exp (∑ &�
+
�
� 
� (ℎ, �))�,�    

 
 

So E(p) would be maximum at p(x) 

 

Put Z =   
�
O    and  &� = log P�  

 

p(x) = Q ∏ P�
ED(0)+

�
�  

 
 

 

So, Our Maximum Entropy Model is p(x) = S ∏ TU
VU(W)X

U
Y  
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2.4: Parameter Estimation: 

 
2.4.1: Generalized Iterative Scaling: 

 
GIS is a very simple algorithm for estimating the parameters of a Maximum 

Entropy model. The algorithm is as follows, where Ep’fj is the observed expected 

value of fj and Epfj is the expected value according to model p: 

  

 

Set &�
(,) equal to arbitrary value, say: 

 

   &�
(,)

 = 0 

 

Repeat until convergence: 

 

 

  &�
(�Z�)

 = &�
(�) + �

[ �� \]^ED
\](_)ED

  

 

 

Where (t) is the iteration index and the constant C is defined as follows: 

 

  

  C = max ∑ 
�(ℎ, �)+
�
�    (8) 

 

 

In practice C is maximized over the (h,t) pairs in the training data, although in 

theory C can be any constant greater than or equal to the figure in (8). However, 

since 
�
[ determines the rate of convergence of the algorithm, it is preferable to 

keep C as small as possible. 
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Proof:  
 

This proof of GIS convergence without the correction feature is based on 

the IIS convergence proof by Berger (1997).   

 

Start with some initial model with arbitrary parameters  = {λ1, λ2, . . . , λk}. 

Each iteration of the GIS algorithm finds a set of new parameters  ∆�= ∆ + a = {λ1 

+ a1, λ2 + a2, . . . , λk + ak}. which increases the log-likelihood of the model.  

 

 

The change in log-likelihood is as follows: 

 

 

Lp’( ’)  - Lp’(  ) 

  

 

=  ∑ ��(ℎ, �)�� �∆^�,� (�|ℎ) -  ∑ ��(ℎ, �)�� �∆�,� (�|ℎ) 

  

  

= ∑ ��(ℎ, �)�� �
I∆^(�)�,� exp (∑ (&� + a�)+

�
� 
� (ℎ, �))  

 

- ∑ ��(ℎ, �)�� �
I∆(�)�,� exp (∑ &�

+
�
� 
� (ℎ, �)) 

 

  

 = ∑ ��(ℎ, �)�,� ∑ a�
+
�
� 
� (ℎ, �) - ∑ ��(ℎ)� log

I∆^(�)
I∆(�)   

 

 

As in Berger (1997), use the inequality – logα ≥ 1 – α  to establish a lower bound 

on the change in likelihood: 

 

 
Lp’( ’)  - Lp’(  ) ≥ 

  



10 

 

 

 ∑ ��(ℎ, �)�,� ∑ a�
+
�
� 
� (ℎ, �) + ∑ ��(ℎ)� 11 −  I∆^(�)

I∆(�) 6 

 

 

 = ∑ ��(ℎ, �)�,� ∑ a�
+
�
� 
� (ℎ, �) + 1 − ∑ ��(ℎ)� 1I∆^(�)

I∆(�) 6 

 

 

= 1 + ∑ ��(ℎ, �)�,� ∑ a�
+
�
� 
� (ℎ, �)  

 

              − ∑ ��(ℎ) ∑ �
I∆(�) b$� ∑ (&�

+
�
��� + a�)
�(ℎ, �) 

 

 

  = 1 + ∑ ��(ℎ, �)�,� ∑ a�
+
�
� 
� (ℎ, �) 

 

  

               − ∑ ��(ℎ) ∑ �∆(�|ℎ)b$� ∑ a�
+
�
��� 
�(ℎ, �) 

 

 
Call the right hand side of this last equation A(a|∆). If we can find a a  for 

which A(a|∆) > 0, then Lp’(∆ + a) is an improvement over Lp’( ). The obvious 

approach is to maximize A(a|∆) with respect to each aj, but this cannot be 

performed directly, since differentiating A(a|∆) with respect to aj leads to an 

equation containing all elements of a. 

 

The trick is to rewrite A(a|∆)  as follows, with an extra term which will be 

used to satisfy Jensen’s inequality: 

  

 

 A(a|∆) = 1 + ∑ ��(ℎ, �)�,� ∑ a�
+
�
� 
� (ℎ, �) 

               − ∑ ��(ℎ) ∑ �∆(�|ℎ)b$� ∑ ED(�,�)
[

+Z�
�
��� ca� 
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Where C is previously defined in equation a, fn+1(h, t) = fc(h, t) as in (9), and 

an+1 is defined to be zero. Note that the correction feature has been introduced 

but has been given a constant weight of zero. 

 

The next part of the proof introduces another, less tight, lower bound on 

the change in likelihood, by using Jensen’s inequality, which can be stated as 

follows: 

 
Let f be a convex function on the interval I. If x1, x2, . . . xn ∈ I and t1, t2, . . . tn 

are non-negative real numbers such that ∑ �� = 1d
�
� , then 

 

 
    f(∑ ��$�

d
�
� ) ≤  ∑ ��
($�)d

�
�  

 

Since ∑ ED(�,�)
[

+Z�
�
� = 1 and the exponential function is convex, we can apply 

Jensen’s inequality to give a new form of A(a|∆): 

 

 

 A(a|∆)  1 + ∑ ��(ℎ, �)�,� ∑ a�
+
�
� 
� (ℎ, �) 

               − ∑ ��(ℎ) ∑ �∆(�|ℎ) ∑ ED(�,�)
[

+Z�
�
� exp (�� ca�) 

 

Call this bound B(a|∆). Della Pietra et al. (1997) give extra conditions on the 

continuity and derivative of the lower bound, in order to guarantee convergence. 

These conditions can be verified for B(a|∆)  in a similar way to Della Pietra et al. 

(1997). 

 

Differentiating B(a|∆)  with respect to each weight update aj (1 ≤ aj k) gives: 

 

  

  

 

 
ef(.|∆)

e.D
  = ∑ ��(ℎ, �)�,� 
� (ℎ, �) 

               − ∑ ��(ℎ) ∑ �∆(�|ℎ)
� (ℎ, �)exp (�� ca�)  
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The effect of introducing C is that solving 
ef(.|∆)

e.D
 = 0 can be done analytically (at 

the cost of a slower convergence rate), giving the following: 

 

  

  

 a�  = 
�
[log 

∑ /^(�,�)g,_ ED (�,�)
∑ /^(�) ∑ /∆(�|�)ED (�,�)_g

 

 

 

     = 
�
[log 

\]^ED(�,�)
\](_)ED(�,�) 

 

 
Which leads to the update rule in (7). 
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Chapter 3 

 

Development of a POS Tagger 
 
3.1: History: 

 
To make history of any word, we require that current word, previous two 

word, next two word, tag of previous two word. 

  

                         hi =  {wi-2, wi-1, wi, wi+1, wi+2, ti-1, ti-2} 

This is the history of i
th

 word. 

   
Word: 

 

Tag: 

 

Position: 

The     stories     about     well-heeled      communities     and       developers 

 

DT        NNS        IN             JJ                       NNS                     CC          NNS 

 

1           2              3              4                        5                           6             7 

           
         Table1:  Sample Data 

  
 

 
History of 1

st
 word will be: 

 

h1 = {the, stories, about} 

 

History of 2
nd

 word will be: 

 

h2 = {the, stories, about, well-heeled, DT} 
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History of 3
rd

 word will be: 

 

h3 = {the, stories, about, well-heeled, communities, DT, NNS} 

 

 

History of 4
th 

word will be: 

 

h4 = {stories, about, well-heeled, communities, and, NNS, IN} 

 

 

History of 5
th

 word will be: 

 

h5 = {about, well-heeled, communities, and, developers, IN, JJ} 

 

 

History of 6
th

 word will be: 

 

h6 = {well-heeled, communities, and, developers, JJ, NNS} 

 

 
History of 7

th
 word will be: 

 

h7 = {communities, and, developers, NNS, CC} 

 

 

3.2: Features for POS Tagging: 

 
The joint probability of a history h and tag t is determined by those 

parameters whose corresponding features are active, i.e., those αj such that fj(h,t) 

= 1. A feature, given (h,t), may activate on any word or tag in the history h. 

 

For example,  

 

fj(hi, ti) = h1   i
 jk

i$(l�) = "in "  !n5 �� = opq
0                                                       ��ℎb"lijb

r 
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If the above feature exists in the feature set of the model, its corresponding 

model parameter will contribute towards the joint probability p(hi,ti) when wi 

ends with "ing" and when ti =VBG. Thus a model parameter αj effectively serves as 

a "weight" for a certain contextual predictor, in this case the suffix "ing", towards 

the probability of observing a certain tag, in this case a VBG. 

 

The model generates the space of features by scanning each pair (hi, ti) in 

the training data with the feature "templates" given in Table 2. Given hi as the 

current history, a feature always asks some yes/no question about hi, and 

furthermore constrains ti to be a certain tag. 

 

For example, Table 1 contains sample from training data while Table 3 

contains the features generated while scanning (h3, t3), in which the current word 

is about, and Table 4 contains features generated while scanning (h4, t4), in which 

the current word, well-heeled, frequency of well-heeled is 3, i.e. less than 5 in 

training data . 

 

 

Condition Features 

Frequency of wi ≥ 5 wi = Word and  ti= Tag 

Frequency of wi < 5 Word is prefix of wi , size of Word < 5 and ti= Tag 

Word is suffix of wi , size of Word < 5 and ti= Tag 

wi  contains number and ti= Tag 

wi  contains Uppercase character and ti= Tag 

wi  contains hyphen and ti= Tag 

For all wi ti-1= Tag of wi-1 and ti= Tag 

ti-1 ti-2= Tag of wi-1. Tag of wi-2 and ti= Tag 

wi-1 = previous word and ti= Tag 

wi-2 = previous to previous word and ti= Tag 

wi+1 = next word and ti= Tag 

wi+2 = next to next word and ti= Tag 

  
  

Table2: Features on the current history hi 
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wi = about      & ti = IN 

 wi-1 = stories     & ti = IN 

 wi-2 = the     & ti = IN 

 wi+1 = well-heeled     & ti = IN 

 wi+2 = communities    & ti = IN 

 ti-1 =  NNS      & ti = IN 

 ti-2 = DT       & ti = IN 

 

Table 3: Features Generated From h3 from table 1 

 
 
 
 
 wi-1 = about      & ti = JJ 

 wi-2 = stories     & ti = JJ 

 wi+1 = communities    & ti = JJ 

 wi+2 = and     & ti = JJ 

 ti-1 =  IN       & ti = JJ 

 ti-2 = NNS       & ti = JJ 

 prefix(wi) = w     & ti = JJ 

 prefix(wi) = we      & ti = JJ 

 prefix(wi) = wel      & ti = JJ 

 prefix(wi) = well      & ti = JJ 

 suffix(wi) = d       & ti = JJ 

 suffix(wi) = ed     & ti = JJ 

 suffix(wi) = led      & ti = JJ 

 suffix(wi) = eled      & ti = JJ 

 wi contains hypen    & ti = JJ 

 

Table 4: Feature Generated From h4  from table 1  
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Chapter 4 

Experimental results 

In this chapter, We will describe our experimental results. We downloaded 

Stanford tool kit for maxent from http://nlp.stanford.edu/software/tagger.shtml 

We trained the tool kit with Bengali tagged text file consisting of 4318 tagged 

sentences and tested on untagged Bengali test file consisting of 150 sentences. 

The Stanford system is giving 90.58 % accuracy. We have trained our system on 

the same training data and tested on the same test file and our system is giving 

93.81 % accuracy which is improvement with the existing algorithm. Our system is 

giving better results for Bengali text file.  

 

4.1: Error types for Our System: 

 

 Word   Correct tag   Our Model’s tag 

��     WQ    VM 

����   XC    NN 

���   VAUX    VM 

	�
   VAUX    VM 

���   RP    VM 


��   QF    INTF 

����   VAUX    VM 

���-
�����  VM    _ 
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��   VM    VAUX 

���   QF    INTF 

��   DEM    CC 

���   QF    INTF 

	�   RP    CC 

���   RP    VM 

���   RP    VM 

���   VAUX    VM 

����   VAUX    VM 

����   VAUX    VM 

����   VAUX    VM 

����   JJ    DEM 

����   RDP    NN 

���   CC    RP 

����   PSP    VM 

����   PSP    VM 

����   PSP    VM 

��   NNP    PRP 

������  NN    XC 

����
   VM    VAUX 
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����   VAUX    VM 

��   INTF    QF 

��   RP    CC 

��   DEM    PRP 

� ��   RDP    RB 

�!��   VAUX    PSP 

������   RB    JJ 

���   PSP    VM 

!���   VAUX    VM 

���   RP    VM 

����   INTF    DEM 

���   VAUX    VM 

���   DEM    JJ 

�������  DEM    QF 

	�
   VAUX    VM 

� ��   RDP    RB 

����   VAUX    PSP 

��   VM    VAUX 

���-�  NN    _ 

���   RP    VM 
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�   DEM    NN 

���   RP    VM 

��   DEM    CC 

�"�   VM    VAUX 

	�   QF    CC 

��   VM    VAUX 

��#   XC    DEM 

��   DEM    CC 

!���   VAUX    VM 

"�����  VAUX    VM 

���   PSP    VM 

��   DEM    CC 

	"�����  PRP    NNP 

�   PRP    CC 

���   VAUX    VM 

�#   PRP    DEM 

���   VM    VAUX 

������  NN    XC 

��   RP    CC 

��   DEM    CC 
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������  NN    XC 

��   DEM    CC 

������  NN    XC 

	"�����  PRP    NNP 

	�   RP    CC 

���   RP    VM 

��$   RP    CC 

	"�����  PRP    NNP 

�%��   VM    PSP 

��#   VAUX    VM 

����   PSP    VM 

��   QF    WQ 

��   VAUX    VM 

�   DEM    NN 

	�   RP    CC 

��
�   PRP    QF 

����   PSP    VM 

��   VAUX    VM 

����   VAUX    VM 

 ����
         VM    VAUX 



22 

 

����   WQ    QF 

 

4.2: Error types for Stanford System: 

 

 Word (frq)  Correct tag  Stanford Model’s tag 

। (9)   SYM    NN 

" (27)   SYM    NN 

�� (1)   WQ    VM 

���� (1)   XC    NN 

"  (24)   SYM    XC 

&�� (1)   PSP    XC 

�� (1)   PRP    QF 

	�� (1)   NST    NN 

�
��� (1)   PRP    NN 

�
� (1)   PRP    NN 

" (2)   SYM    INJ 

" (7)   SYM    NNP 

��� (1)   RP    VM 

���� (1)   RDP    NN 

��' (1)   NST    CC 
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���� (1)   PSP    VM 

�� (1)   NNP    PRP 

�� (1)   DEM    PRP 

�
��� (1)   PRP    NN 

������ (1)   RB    JJ 


��� (1)   PSP    CC 

��� (1)   PSP    VM 

���� (1)   VAUX    VM 

��� (1)   VAUX    VM 

���
 (1)   VAUX    VM 

��� (1)   DEM    PRP 

�������(1)   DEM    QF 

�
� (1)   PRP    NN 

���"�(1)   RB    NN 

���-�(1)   NN    WQ 

" (1)   SYM    PSP 


���� (1)   PSP    CC 

��# (1)   XC    PRP 

��( (1)   JJ    NN 

����
 (1)   VM    VAUX 
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� (1)   PRP    CC 

������(1)   RB    JJ 

�� (1)   DEM    WQ 

"�����(1)   VAUX    VM 

��$(1)   RP    CC 

���� (1)   PSP    VM 

/ (1)   SYM    XC 

/ (1)   SYM    NN 

�� (1)   QF    WQ 

��' (1)   NST    CC 

�� (2)   NEG    RB 

" (1)   SYM    RB 

����
 (1)   VM    VAUX 

���� (1)   WQ    QF 
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Chapter 5 

Future work 

 
          In feature work, we intend to apply natural language learning to corpora 

that are linguistically deeper, as well as corpora that are not linguistically 

annotated. 

 

          The development of a machine learning based good accuracy POS tagger 

requires a large amount of training data. The future work also includes the 

development of a large amount of annotated data which can be further used for 

training the system. The present tagger can be used for the initial annotation and 

the errors can be manually checked which otherwise a very difficult task to 

annotate large amount of corpus.  

 

            We also plan to explore some other machine learning algorithms (e.g. 

Support Vector Algorithm and Neural Networks) to understand their relative 

performance of POS Tagging task under the current experimental setup. MAXENT 

based models do not work well when the amount of annotated data is less. This 

might be due to the effect of transition probability over emission probability in 

the sequence identification. Support Vector Algorithm, Neural Networks or 

Decision Tree based algorithms might overcome the above situation. 
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Chapter 6 

Conclusion 
 

The aim of this project was to use the information in an unannotated 

corpus - in particular, the contexts surrounding unknown words - in order to 

increase performance on POS tagging unknown words. Although a number of 

techniques have been applied to this problem in the past, none attempted to 

draw upon the information that could be found in a larger amount of raw text. 

The advantage of this method, is that it only requires an unannotated corpus, 

which is much easier to create than a corpus like the Penn Treebank, and so it is 

easily portable to another domain or language. 

 

In particular, the use of real-valued features resulted in a much larger 

improvement than binary features would have given us. Maximum Entropy 

features in the past have always been limited in this respect, and seeing the 

results we attained, one cannot doubt the benefits that real-valued features can 

bring. The increased flexibility they give us, and their ability to capture 

relationships between values, make them extremely advantageous. One can see 

that the kind of information we were trying to represent was a good example case 

for their usage, but there are many other features that would also be intrinsically 

suited to them. 
 

POS tagging itself is a task that has been studied in detail, and 

consequently, it is also a task in which any increase in performance is hard to 

achieve. Furthermore, even a small improvement is worthwhile, because when 

one tags a large amount of text, even a small increase in accuracy will reduce the 

number of errors significantly. Our work has shown, through the thorough and 

extensive series of experiments that have been performed, that the techniques 

we implemented did indeed result in a substantial increase in accuracy. 
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