
Parts-of-Speech Tagging using Maximum

Entropy Model

A dissertation submitted in partial fulfillment of the requirements for the

M.Tech.(Computer Science) degree of Indian Statistical Institute

By

Swadesh Pratap singh Shakya

Roll No: CS0910

Under the supervision of

Associate Prof. Utpal Garain

INDIAN STATISTICAL INSTITUTE

203, Barrackpore Trunk Road

Kolkata-700108

Indian Statistical Institute

CERTIFICATE

This is to certify that the thesis entitled ‘Parts-of-speech tagging using

maximum entropy model’ is submitted in the partial fulfillment of the degree of

M.Tech. in Computer Science at Indian Statistical Institute, Kolkata.

The work out by Swadesh under my supervision and guidance is adequate,

in scope and quality as a dissertation for the required degree. It is further certified

that no part of this thesis has been submitted to any other university or institute

for the award of any degree or diploma.

Associate Prof. Utpal Garain

(Supervisor)

Countersigned

(External Examiner)

Date: of July 2010

Acknowledgement

 I take this opportunity to thank Associate Prof Utpal Garain, CVPR Unit,

ISI Kolkata for his valuable guidance, inspiration. His pleasant and encouraging

words have always kept my spirits up. I am grateful to him for providing me to

work under his supervision. Also, I am very thankful to him for giving me the idea

behind the algorithm developed in thesis work.

 Finally, I would like to thank all my colleagues, class mates, friends, and my

family members for their support and motivation.

Swadesh

M.Tech.(CS)

Contents

1: Introduction 1

2: Background 3

 2.1: Parts-of-Speech Tagging 3

 2.2: Entropy 3

 2.3: Calculation for p* 6

 2.4: Parameter Estimation 8

2.4.1: Generalized Iterative Scaling 8

3: Development of a POS Tagger 13

 3.1: History 13

 3.2: Features for a POS Tagger 14

4: Experimental Result 17

 4.1: Error types for Our System 17

4.2: Error Type for Stanford System 22

 5: Future work 25

6: Conclusion 26

7: References 27

1

Chapter 1

Introduction

Many different researchers, using a wide variety of techniques, have

examined the task of Part-of-Speech (POS) tagging. The task itself consists of

assigning basic grammatical word classes such as verb, noun and adjective to

individual words, and is a fundamental step in many Natural Language Processing

(NLP) tasks. The tags it assigns are used in other processing tasks such as chunking

and parsing, as well as more complex tasks such as question answering and

automatic summarization systems. Maximum Entropy modeling is one of the

techniques that have been used to perform POS tagging, and gives state-of-the-

art accuracy

We aim to find better ways to perform POS tagging on unknown words. We

will use an existing Maximum Entropy POS tagger that already performs at state-

of-the-art level, and implement additional new features in order to increase its

accuracy. These features will be able to represent real values in any range greater

than zero, rather than a binary 0 or 1 as has been the case for Maximum Entropy

modeling system have used in the past.

The features themselves will encapsulate information found from the

context around a word, as observed for unknown words. For example, if we find

an unknown word in the test data, then it may still appear many times in a much

larger unannotated corpus. By looking at the surrounding words in these

contexts, we can formulate an idea of what POS tag should be assigned. This can

be seen in the sentence below:

The frub house is up on the hill

Here, frub is the unknown word, and as a human we could conclude that it

is an adjective or noun. This is because it sits between a determiner and a noun,

which is a position often assumed by words with these two tags. Also, if we can

find the word frub in other places, then we can get an even better, more reliable

2

idea of what its correct tag should be. This is what the large un-annotated corpus

gives us: a number of examples of how and where unknown words are used.

We should also note that we do not need to know the correct POS tags for

the and house. We can determine simply from the words themselves, that frub is

occupying a position that is also taken up by words such as big or club, these

being examples of adjectives and nouns respectively. Also, the fact that the word

the precedes our unknown word tells us a lot by itself, as this is an extremely

common word that exists with only tag. Our aim then, is to take this intuitive

reasoning for determining the correct tag for an unknown word, and create

features that aid the Maximum Entropy model in doing the same.

We will begin by describing the previous work that has taken place on the

task of POS tagging, including the corpora that are used and the techniques that

have been applied to the task. This will continue onto particular methods that

have attempted to better classify unknown words, and then the statistical

machine learner that we will be using: Maximum Entropy modeling. This will be

followed by an extensive description of the experiments we performed, and the

alterations to the Maximum Entropy features and calculations that were required

to achieve the best performance. We then proceed to a thorough analysis and

discussion of the results we attained, and finally, further applications, uses of, and

improvements to the methods described.

3

Chapter 2

Background

2.1: Part-of-Speech Tagging:

In the following two sentences,

• Fruit flies like a banana.

• Time flies like an arrow.

The words flies and like are ambiguous. In the first sentence, flies is a noun

and like is a verb, while in the second sentence, flies is a verb and like is a

preposition. How can a computer program automatically and accurately predict

the part-of-speech of ambiguous words flies and like?

2.2: Maximum Entropy

There are a number of machine learning techniques that can be applied

to problems such as POS tagging, prepositional phrase attachment and parsing, as

well as areas outside the NLP field. Maximum Entropy (MaxEnt) modeling is one

of these techniques, which estimates a statistical model to give probabilistic

results (Ratnaparkhi, 1996). It makes no assumptions about the independence

of features, as is the case with other classifiers like Naive Bayes, and because its

results are probabilistic, can easily be used in a larger framework for classification.

A Maximum Entropy model is built on a number of constraints, which are

drawn as features from the training data. Once these constraints are met, the

model assumes nothing further, giving a uniform distribution, and the model with

maximum entropy, as suggested by the name. In this way, the model makes use

of all the information available, but does not favor any further unfounded

hypothesis, giving equal chance to all possibilities (Berger et al., 1996).

4

The observed expectation of features functions, as observed in the training, is

calculated by:

 Ep’fj(h,t) =∑ ��(ℎ� , ��)
�(ℎ� , ��)�
�
� (1)

Where ��(ℎ� , ��) denotes the observed probability of (hi,ti) and hi is the history of

word wi, ti is the tag of the tag of word wi in training data.

Similarly, the model’s expectation of features functions, is calculated by:

Epfj(h,t) = ∑ �(ℎ, �)f�(h, t) �∈�,�∈� (2)

In practice, H is very large and the model’s expectation Epfj(h,t) cannot be

computed directly, so the following approximation is used:

 Epfj(h,t) ≈ ∑ ��(ℎ�)�(��|ℎ�)
�(ℎ� , ��)�
�
� (3)

Where p’(hi) is the observed probability of the history hi in the training set.

In this equation, the probability model is calculated as the sum over all

features, of the product of the frequency of a contextual predicate, the

classification h given that contextual predicate, and the feature that determines

whether this probability is taken into account. In the two previous equations, the

feature function serves the purpose of including probabilities when the function is

true. That is, if the contextual predicate occurs in the context we are looking at,

and the classification (such as a particular POS tag) matches that of the current

context, then p’(h,t) (which is a simple measure of frequency) is said to be active,

and is used in calculating the probability for the feature.

We should also note, that the model should be an accurate reflection the

training data. This is an important point, as it clearly makes sense that the

statistical distributions in the training data, which are meant to be representative

5

of language in general, should be the same as those in the model. From this idea,

we have:

 Epfj(h,t)= Ep’fj(h,t), 1 ≤ � ≤ � (4)

And therefore,

 ∑ ��(ℎ�)�(��|ℎ�)
�(ℎ� , ��)�
�
� = ∑ ��(ℎ� , ��)
�(ℎ� , ��)�

�
�

 P = {p: Epfj(h,t)= Ep’fj(h,t) = dj(say), 1≤ � ≤ �} (5)

This gives us a mathematical approach towards finding a subset of models,

from all possible probability models, where the constraints found in the training

data match the probabilities in the estimated model. More simply, those models

that satisfy the above equation for all features, will have a probability distribution

identical to that of the training data.

Satisfying these constraints does not result in a unique solution, and so

going back to the basic idea of a Maximum Entropy model, we should choose the

solution that has the most uniform distribution. In order to calculate uniformity,

we can use the mathematical measure of entropy, and in particular, conditional

entropy, as described in the following equation

H(p) = - ∑ �(ℎ, �)�� �(ℎ, �)�∈�,�∈�

 = - ∑ ��(ℎ)�(�|ℎ)�� �(�|ℎ)�∈�,�∈� (6)

 The value of H(p) will range from 0, where all probability is given to one

item, to log|h|, where |h| is the number of possible classifications that can be

made (which for POS tagging is the number of POS tags). The most uniform

distribution is the one that maximizes the entropy, that is:

6

p* = !" #!$ H(p) (7)

 p∈ %

Where p* is the Maximum Entropy model we are trying to find, and P is the

set of all probability distributions that meet the constraints as specified in

Equation 5.

2.3: Calculation for p*:

 Maximize E(p,&):

E(p) = H(p) + ∑ &�(E(f�(h, t) − d�)+
�
,

E’(p) = 0

⇒ .
./(0) 1− ∑ �($)�� �($)0 + ∑ &� 13∑ �($)
�($)0 4 − 5�6+

�
, 6 = 0

⇒ - (1 + log p(x)) + ∑ &�
�($) = 0+

�
,

⇒ log p(x) = ∑ &�
�($)+

�
, - 1

⇒ p(x) = exp(∑ &�
�($)+

�
, - 1) = exp(∑ &�
�($)+
�
� + &, - 1)

⇒ p(x)= AB((∑ CDED(0)F

DGH)
I where Z= exp(1 -&,) & x = (h, t)

To maximize E(p), E’’(p) should be less than zero so

7

E’’(p(x)) =
.

./(0) (− (1 + log p(x)) + ∑ &�
�($)+
�
,)

 = − �
/(0) < 0

Maximum Entropy model:

 �(ℎ, �) = �
I exp (∑ &�

+
�
�
� (ℎ, �))

Conditional Maximum Entropy Model:

 �(�|ℎ) = �
I(�) exp (∑ &�

+
�
�
� (ℎ, �))

Where Z(h) = ∑ exp (∑ &�
+
�
�
� (ℎ, �))�,�

So E(p) would be maximum at p(x)

Put Z =
�
O and &� = log P�

p(x) = Q ∏ P�
ED(0)+

�
�

So, Our Maximum Entropy Model is p(x) = S ∏ TU
VU(W)X

U
Y

8

2.4: Parameter Estimation:

2.4.1: Generalized Iterative Scaling:

GIS is a very simple algorithm for estimating the parameters of a Maximum

Entropy model. The algorithm is as follows, where Ep’fj is the observed expected

value of fj and Epfj is the expected value according to model p:

Set &�
(,) equal to arbitrary value, say:

 &�
(,)

 = 0

Repeat until convergence:

 &�
(�Z�)

 = &�
(�) + �

[�� \]^ED
\](_)ED

Where (t) is the iteration index and the constant C is defined as follows:

 C = max ∑
�(ℎ, �)+
�
� (8)

In practice C is maximized over the (h,t) pairs in the training data, although in

theory C can be any constant greater than or equal to the figure in (8). However,

since
�
[determines the rate of convergence of the algorithm, it is preferable to

keep C as small as possible.

9

Proof:

This proof of GIS convergence without the correction feature is based on

the IIS convergence proof by Berger (1997).

Start with some initial model with arbitrary parameters = {λ1, λ2, . . . , λk}.

Each iteration of the GIS algorithm finds a set of new parameters ∆�= ∆ + a = {λ1

+ a1, λ2 + a2, . . . , λk + ak}. which increases the log-likelihood of the model.

The change in log-likelihood is as follows:

Lp’(’) - Lp’()

= ∑ ��(ℎ, �)�� �∆^�,� (�|ℎ) - ∑ ��(ℎ, �)�� �∆�,� (�|ℎ)

= ∑ ��(ℎ, �)�� �
I∆^(�)�,� exp (∑ (&� + a�)+

�
�
� (ℎ, �))

- ∑ ��(ℎ, �)�� �
I∆(�)�,� exp (∑ &�

+
�
�
� (ℎ, �))

 = ∑ ��(ℎ, �)�,� ∑ a�
+
�
�
� (ℎ, �) - ∑ ��(ℎ)� log

I∆^(�)
I∆(�)

As in Berger (1997), use the inequality – logα ≥ 1 – α to establish a lower bound

on the change in likelihood:

Lp’(’) - Lp’() ≥

10

 ∑ ��(ℎ, �)�,� ∑ a�
+
�
�
� (ℎ, �) + ∑ ��(ℎ)� 11 − I∆^(�)

I∆(�) 6

 = ∑ ��(ℎ, �)�,� ∑ a�
+
�
�
� (ℎ, �) + 1 − ∑ ��(ℎ)� 1I∆^(�)

I∆(�) 6

= 1 + ∑ ��(ℎ, �)�,� ∑ a�
+
�
�
� (ℎ, �)

 − ∑ ��(ℎ) ∑ �
I∆(�) b$� ∑ (&�

+
�
��� + a�)
�(ℎ, �)

 = 1 + ∑ ��(ℎ, �)�,� ∑ a�
+
�
�
� (ℎ, �)

 − ∑ ��(ℎ) ∑ �∆(�|ℎ)b$� ∑ a�
+
�
���
�(ℎ, �)

Call the right hand side of this last equation A(a|∆). If we can find a a for

which A(a|∆) > 0, then Lp’(∆ + a) is an improvement over Lp’(). The obvious

approach is to maximize A(a|∆) with respect to each aj, but this cannot be

performed directly, since differentiating A(a|∆) with respect to aj leads to an

equation containing all elements of a.

The trick is to rewrite A(a|∆) as follows, with an extra term which will be

used to satisfy Jensen’s inequality:

 A(a|∆) = 1 + ∑ ��(ℎ, �)�,� ∑ a�
+
�
�
� (ℎ, �)

 − ∑ ��(ℎ) ∑ �∆(�|ℎ)b$� ∑ ED(�,�)
[

+Z�
�
��� ca�

11

Where C is previously defined in equation a, fn+1(h, t) = fc(h, t) as in (9), and

an+1 is defined to be zero. Note that the correction feature has been introduced

but has been given a constant weight of zero.

The next part of the proof introduces another, less tight, lower bound on

the change in likelihood, by using Jensen’s inequality, which can be stated as

follows:

Let f be a convex function on the interval I. If x1, x2, . . . xn ∈ I and t1, t2, . . . tn

are non-negative real numbers such that ∑ �� = 1d
�
� , then

 f(∑ ��$�

d
�
�) ≤ ∑ ��
($�)d

�
�

Since ∑ ED(�,�)
[

+Z�
�
� = 1 and the exponential function is convex, we can apply

Jensen’s inequality to give a new form of A(a|∆):

 A(a|∆) 1 + ∑ ��(ℎ, �)�,� ∑ a�
+
�
�
� (ℎ, �)

 − ∑ ��(ℎ) ∑ �∆(�|ℎ) ∑ ED(�,�)
[

+Z�
�
� exp (�� ca�)

Call this bound B(a|∆). Della Pietra et al. (1997) give extra conditions on the

continuity and derivative of the lower bound, in order to guarantee convergence.

These conditions can be verified for B(a|∆) in a similar way to Della Pietra et al.

(1997).

Differentiating B(a|∆) with respect to each weight update aj (1 ≤ aj k) gives:

ef(.|∆)

e.D
 = ∑ ��(ℎ, �)�,�
� (ℎ, �)

 − ∑ ��(ℎ) ∑ �∆(�|ℎ)
� (ℎ, �)exp (�� ca�)

12

The effect of introducing C is that solving
ef(.|∆)

e.D
 = 0 can be done analytically (at

the cost of a slower convergence rate), giving the following:

 a� =
�
[log

∑ /^(�,�)g,_ ED (�,�)
∑ /^(�) ∑ /∆(�|�)ED (�,�)_g

 =
�
[log

\]^ED(�,�)
\](_)ED(�,�)

Which leads to the update rule in (7).

13

Chapter 3

Development of a POS Tagger

3.1: History:

To make history of any word, we require that current word, previous two

word, next two word, tag of previous two word.

 hi = {wi-2, wi-1, wi, wi+1, wi+2, ti-1, ti-2}

This is the history of i
th

 word.

Word:

Tag:

Position:

The stories about well-heeled communities and developers

DT NNS IN JJ NNS CC NNS

1 2 3 4 5 6 7

 Table1: Sample Data

History of 1

st
 word will be:

h1 = {the, stories, about}

History of 2
nd

 word will be:

h2 = {the, stories, about, well-heeled, DT}

14

History of 3
rd

 word will be:

h3 = {the, stories, about, well-heeled, communities, DT, NNS}

History of 4
th

word will be:

h4 = {stories, about, well-heeled, communities, and, NNS, IN}

History of 5
th

 word will be:

h5 = {about, well-heeled, communities, and, developers, IN, JJ}

History of 6
th

 word will be:

h6 = {well-heeled, communities, and, developers, JJ, NNS}

History of 7

th
 word will be:

h7 = {communities, and, developers, NNS, CC}

3.2: Features for POS Tagging:

The joint probability of a history h and tag t is determined by those

parameters whose corresponding features are active, i.e., those αj such that fj(h,t)

= 1. A feature, given (h,t), may activate on any word or tag in the history h.

For example,

fj(hi, ti) = h1 i
 jk

i$(l�) = "in " !n5 �� = opq
0 ��ℎb"lijb

r

15

If the above feature exists in the feature set of the model, its corresponding

model parameter will contribute towards the joint probability p(hi,ti) when wi

ends with "ing" and when ti =VBG. Thus a model parameter αj effectively serves as

a "weight" for a certain contextual predictor, in this case the suffix "ing", towards

the probability of observing a certain tag, in this case a VBG.

The model generates the space of features by scanning each pair (hi, ti) in

the training data with the feature "templates" given in Table 2. Given hi as the

current history, a feature always asks some yes/no question about hi, and

furthermore constrains ti to be a certain tag.

For example, Table 1 contains sample from training data while Table 3

contains the features generated while scanning (h3, t3), in which the current word

is about, and Table 4 contains features generated while scanning (h4, t4), in which

the current word, well-heeled, frequency of well-heeled is 3, i.e. less than 5 in

training data .

Condition Features

Frequency of wi ≥ 5 wi = Word and ti= Tag

Frequency of wi < 5 Word is prefix of wi , size of Word < 5 and ti= Tag

Word is suffix of wi , size of Word < 5 and ti= Tag

wi contains number and ti= Tag

wi contains Uppercase character and ti= Tag

wi contains hyphen and ti= Tag

For all wi ti-1= Tag of wi-1 and ti= Tag

ti-1 ti-2= Tag of wi-1. Tag of wi-2 and ti= Tag

wi-1 = previous word and ti= Tag

wi-2 = previous to previous word and ti= Tag

wi+1 = next word and ti= Tag

wi+2 = next to next word and ti= Tag

Table2: Features on the current history hi

16

wi = about & ti = IN

 wi-1 = stories & ti = IN

 wi-2 = the & ti = IN

 wi+1 = well-heeled & ti = IN

 wi+2 = communities & ti = IN

 ti-1 = NNS & ti = IN

 ti-2 = DT & ti = IN

Table 3: Features Generated From h3 from table 1

 wi-1 = about & ti = JJ

 wi-2 = stories & ti = JJ

 wi+1 = communities & ti = JJ

 wi+2 = and & ti = JJ

 ti-1 = IN & ti = JJ

 ti-2 = NNS & ti = JJ

 prefix(wi) = w & ti = JJ

 prefix(wi) = we & ti = JJ

 prefix(wi) = wel & ti = JJ

 prefix(wi) = well & ti = JJ

 suffix(wi) = d & ti = JJ

 suffix(wi) = ed & ti = JJ

 suffix(wi) = led & ti = JJ

 suffix(wi) = eled & ti = JJ

 wi contains hypen & ti = JJ

Table 4: Feature Generated From h4 from table 1

17

Chapter 4

Experimental results

In this chapter, We will describe our experimental results. We downloaded

Stanford tool kit for maxent from http://nlp.stanford.edu/software/tagger.shtml

We trained the tool kit with Bengali tagged text file consisting of 4318 tagged

sentences and tested on untagged Bengali test file consisting of 150 sentences.

The Stanford system is giving 90.58 % accuracy. We have trained our system on

the same training data and tested on the same test file and our system is giving

93.81 % accuracy which is improvement with the existing algorithm. Our system is

giving better results for Bengali text file.

4.1: Error types for Our System:

 Word Correct tag Our Model’s tag

�� WQ VM

���� XC NN

��� VAUX VM

	�
 VAUX VM

��� RP VM

�� QF INTF

���� VAUX VM

���-
����� VM _

18

�� VM VAUX

��� QF INTF

�� DEM CC

��� QF INTF

	� RP CC

��� RP VM

��� RP VM

��� VAUX VM

���� VAUX VM

���� VAUX VM

���� VAUX VM

���� JJ DEM

���� RDP NN

��� CC RP

���� PSP VM

���� PSP VM

���� PSP VM

�� NNP PRP

������ NN XC

����
 VM VAUX

19

���� VAUX VM

�� INTF QF

�� RP CC

�� DEM PRP

� �� RDP RB

�!�� VAUX PSP

������ RB JJ

��� PSP VM

!��� VAUX VM

��� RP VM

���� INTF DEM

��� VAUX VM

��� DEM JJ

������� DEM QF

	�
 VAUX VM

� �� RDP RB

���� VAUX PSP

�� VM VAUX

���-� NN _

��� RP VM

20

� DEM NN

��� RP VM

�� DEM CC

�"� VM VAUX

	� QF CC

�� VM VAUX

��# XC DEM

�� DEM CC

!��� VAUX VM

"����� VAUX VM

��� PSP VM

�� DEM CC

	"����� PRP NNP

� PRP CC

��� VAUX VM

�# PRP DEM

��� VM VAUX

������ NN XC

�� RP CC

�� DEM CC

21

������ NN XC

�� DEM CC

������ NN XC

	"����� PRP NNP

	� RP CC

��� RP VM

��$ RP CC

	"����� PRP NNP

�%�� VM PSP

��# VAUX VM

���� PSP VM

�� QF WQ

�� VAUX VM

� DEM NN

	� RP CC

��
� PRP QF

���� PSP VM

�� VAUX VM

���� VAUX VM

 ����
 VM VAUX

22

���� WQ QF

4.2: Error types for Stanford System:

 Word (frq) Correct tag Stanford Model’s tag

। (9) SYM NN

" (27) SYM NN

�� (1) WQ VM

���� (1) XC NN

" (24) SYM XC

&�� (1) PSP XC

�� (1) PRP QF

	�� (1) NST NN

�
��� (1) PRP NN

�
� (1) PRP NN

" (2) SYM INJ

" (7) SYM NNP

��� (1) RP VM

���� (1) RDP NN

��' (1) NST CC

23

���� (1) PSP VM

�� (1) NNP PRP

�� (1) DEM PRP

�
��� (1) PRP NN

������ (1) RB JJ

��� (1) PSP CC

��� (1) PSP VM

���� (1) VAUX VM

��� (1) VAUX VM

���
 (1) VAUX VM

��� (1) DEM PRP

�������(1) DEM QF

�
� (1) PRP NN

���"�(1) RB NN

���-�(1) NN WQ

" (1) SYM PSP

���� (1) PSP CC

��# (1) XC PRP

��((1) JJ NN

����
 (1) VM VAUX

24

� (1) PRP CC

������(1) RB JJ

�� (1) DEM WQ

"�����(1) VAUX VM

��$(1) RP CC

���� (1) PSP VM

/ (1) SYM XC

/ (1) SYM NN

�� (1) QF WQ

��' (1) NST CC

�� (2) NEG RB

" (1) SYM RB

����
 (1) VM VAUX

���� (1) WQ QF

25

Chapter 5

Future work

 In feature work, we intend to apply natural language learning to corpora

that are linguistically deeper, as well as corpora that are not linguistically

annotated.

 The development of a machine learning based good accuracy POS tagger

requires a large amount of training data. The future work also includes the

development of a large amount of annotated data which can be further used for

training the system. The present tagger can be used for the initial annotation and

the errors can be manually checked which otherwise a very difficult task to

annotate large amount of corpus.

 We also plan to explore some other machine learning algorithms (e.g.

Support Vector Algorithm and Neural Networks) to understand their relative

performance of POS Tagging task under the current experimental setup. MAXENT

based models do not work well when the amount of annotated data is less. This

might be due to the effect of transition probability over emission probability in

the sequence identification. Support Vector Algorithm, Neural Networks or

Decision Tree based algorithms might overcome the above situation.

26

Chapter 6

Conclusion

The aim of this project was to use the information in an unannotated

corpus - in particular, the contexts surrounding unknown words - in order to

increase performance on POS tagging unknown words. Although a number of

techniques have been applied to this problem in the past, none attempted to

draw upon the information that could be found in a larger amount of raw text.

The advantage of this method, is that it only requires an unannotated corpus,

which is much easier to create than a corpus like the Penn Treebank, and so it is

easily portable to another domain or language.

In particular, the use of real-valued features resulted in a much larger

improvement than binary features would have given us. Maximum Entropy

features in the past have always been limited in this respect, and seeing the

results we attained, one cannot doubt the benefits that real-valued features can

bring. The increased flexibility they give us, and their ability to capture

relationships between values, make them extremely advantageous. One can see

that the kind of information we were trying to represent was a good example case

for their usage, but there are many other features that would also be intrinsically

suited to them.

POS tagging itself is a task that has been studied in detail, and

consequently, it is also a task in which any increase in performance is hard to

achieve. Furthermore, even a small improvement is worthwhile, because when

one tags a large amount of text, even a small increase in accuracy will reduce the

number of errors significantly. Our work has shown, through the thorough and

extensive series of experiments that have been performed, that the techniques

we implemented did indeed result in a substantial increase in accuracy.

27

Chapter 7

References

[Berger et al., 1996] Adam Berger, Stephen A. Della Pietra, and Vincent J. Della

Pietra. 1996. A Maximum Entropy Approach to Natural Language Processing.

Computational Linguistics, 22(1):39-71

[Brill.] Eric Brill. A Simple Rul-Based Part-of-Speech Tagger. University of

Pennsylvania.

[Chuneh, Wang and Chien, 2006] Chuang-Hua Chues, Hasin-Min Wang and Jen-

Tzung Chien. 2006. A Maximum Entropy Approach for Semantic Language

Modeling, Vol. 11, No.1, March 2006, pp. 37-56.

[Darroch and Ratcliff, 1972] J. N. Darroch and D. Ratcliff. 1972. Generalized

Iterative Scaling for Log-Linear Models. The Annals of Mathematical Statistics,

43(5):1470-1480.

[Dandapat, 2009] Sandipan Dandapat. 2009. Parts-of-Speech Tagging for Bengali.

Ph.D. thesis, Indian Institute of technology, Kharegpur

[Dalal, Nagaraj, Sawant, Shelke] Aniket dalal, Kumar Nagraj, Uma Sawant,

Sandeep Shelke. Hindi Parts-of-speech Tagging and Chaunking: A Maximum

Entropy Approach, Indian Institute of Technology, Mumbai.

[Ratnaparkhi. 1996] Adwait Ratnaparkhi. 1996. A maximum entropy part-of-

speech tagger. In Proceedings of the EMNLP Conference, pages 133–142,

Philadelphia, PA.

[Ratnaparkhi. 1998.] Adwait Ratnaparkhi. 1998. Maximum Entropy Models for

Natural Language Ambiguity Resolution. Ph.D. thesis, University of Pennsylvania.

28

[Ratnaparkhi. 1999.] Adwait Ratnaparkhi. 1999. Learning to parse natural

language with maximum entropy models. Machine Learning, 34(1-3):151–175.

[Vadas. 2004.] David Vadas. 2004. POS Tagging Unknown Words using an

Unannotated Corpus and Maximum Entropy. Ph.D. thesis, The University of

Sydney

	documtation-Part1.pdf
	dissertation - Copy.pdf

