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Abstract

Human Activity Recognition is an active area of research in computer vision with wide

scale applications in video surveillance, motion analysis, virtual reality interfaces, robot

navigation and recognition, video indexing, browsing,etc. It consists of analyzing the

characteristic features of various human actions and classifying them.In a video with

static background, activity analysis generally consists of foreground detection, form-

ing the human trajectory ,feature selection and then classifier. However, in real world

situation the assumption of static background does not always hold.

Learning global motion patterns from a video is an activity classification problem is im-

portant, especially in noisy environment where there is illumination changes,jitters,camera

motion and also background is not same for all the videos used for classification.

In our approach we define a method to tackle a real world situation containing illumina-

tion changes,jitters and camera motion as an inherited noise in the system. Also a given

activity is being performed under different backgrounds. We compute the dense optical

flow and quantize it into different labels.Then correct the alignment of the optical flow

vectors using probabilistic relaxation labeling in each frame and along the time axis to

achieve the dominant motion. We only retain the processed optical flow vectors which

are locally maxima.These step removes some amount of noise in the video.It is followed

by the construction of the tracks which is a sequence of 3 Dimensional points based

on the dominant motion of the system representing the activity.These tracks represent-

ing the global motion of the system are not much effected by the induced noise in the

videos.We select top dominant tracks of the system based on a criterion which is further

processed to represent as the feature descriptor of the given activity.The efficacy of the

approach is demonstrated on challenging LIRIS dataset.
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Chapter 1

Introduction

Human action recognition is one of the most promising topics in computer vision.The

focus of the present work is the automatic recognition of human actions in video se-

quences.In human action classification, a number of action classes is predefined and,

for each class, training samples (positives and negatives) are given. A classifier is then

learned from these training samples. Given a test input video sequence, the objective is

to issue a corresponding action class label to the entire video sequence. In other words,

the question to be answered here is if an action occurs.

By action here we mean a simple motion pattern performed by a single subject ,and in

general lasts for a short period of time.

1.1 Motivation

Human action recognition is a very important component of visual surveillance systems

for event based analysis of surveillance videos. Visual surveillance systems play a very

crucial role in the circumstances where continuous patrolling by human guards is not

possible like international border patrolling, nuclear reactors etc. Demand for automatic

surveillance systems in civilian applications like monitoring a parking lot, shopping com-

plexes etc. is also increasing heavily. It is difficult and manpower intensive to monitor

the data collected from various cameras continuously and this gives rise to the necessity
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for automatic understanding of human actions and building a higher level knowledge of

the events occurring in the scene by the computer vision system.

Recognition of human movements has also been exploited to a large extent for anima-

tion like avatar control, for giving gesture based commands to virtual reality interfaces,

human computer interactions in smart room like environments etc. Content based video

retrieval, indexing and searching is also becoming popular these days . These systems

require cognitive vision techniques for analyzing videos which in real life scenarios mostly

converges to analyzing human actions in the videos.

1.2 Challenges

Figure 1.1: Steps involved in Activity Recognition system

Figure 1.1 shows the steps involved in Activity Recognition system.
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Recognizing Human Action from videos is a challenging problem because physical body

motion can look very different depending on the context. For instance similar action with

different clothes or in different illumination /background can result in large appearance

variation.The same action performed by two different people may look quite dissimilar

in many ways.

Implementing real life activity recognition system is a daunting task considering the

challenges at each stage of the system like background clutter, dynamic illumination

changes, camera movements etc. The action classification problem is characterized by

large intra class variability introduced by various sources like the changes in camera

viewpoint, anthropometry (body shapes and sizes of different actors), different dressing

styles, changes in execution rate of activity, individual styles of actors etc.Due to the

following inherited noise in the video/system we do not get a constant background and

the general step of background subtraction do not provide good result. The performance

of the recognition stage depends on the initial stages and also on the choice of features

for action representation.

Figure 1.2 and Figure 1.3 shows the effect of background subtraction when there is no

illumination changes.

Figure 1.2: Background Subtraction Where There Is No Change in Illumination

Figure 1.4 and Figure 1.5 shows the effect of background subtraction when there is

illumination changes.It could not provide good result as there is illumination change in

the background due to which we do not get a constant background.
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Figure 1.3: Background Subtraction Where There Is Change in Illumination

1.3 Related woks

Human action and activity recognition is an important area of research in the eld of

computer vision. A comprehensive review of yhe research has been presented in a number

of survey papers [1, 2]. Learning of motion paths or patterns for action recognition

has been attempted before in the literarture For instance a method based ons pace-

time locally adaptive regression kernels and the matrix cosine similarity measure has

been used in [3].[4] used Motion decomposition of lagrangian particle trajectories where

as multiple motion trajectories for different body parts has been used in [5].A novel

modelling, feature selection and classification architecture for action recogniton can be

found in [6] . A non- parametric model for background subtraction is described in

[7].Optical flow estimation and their principles [8] has been found very usuful for our

approach.[9] has described an approach for finding global motion pattern in complex

videos. Combining skeletal pose with local motion for human activity recognition has

been used in [10].2 different approaches using kinematic features and bag-of-fatures has

been described in [11] and [12] respectively.
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1.4 Our approach

We are proposing a method to detect tracks depicting global motion patterns in a non

static background. These tracks represents the flow of the respective actions and are

processed into direction invariant feature descriptors. Then they are classified into dif-

ferent actions. We have done leave one out cross validation followed by classification

using Support Vector Machine.

The main challenge in classification of the dataset containing real world situation is to

tackle background clutter, dynamic illumination changes, camera movements etc. Due

to large variation between the classes introduced by various sources like the changes in

camera viewpoint, shapes and sizes of different actors, different dressing styles, changes

in execution rate of activity, individual styles of actors etc.

Figure 1.4 depicts our activity recognition system framework.

For a given video clip of an action firstly we compute the dense optical flow of each

frame depicting the pattern of apparent motion of human and objects of interest. We

assign a label to every optical flow vector so that they denote a particular octant in

an angular radian space. Alignment of optical flow vectors are sometimes hampered by

noise.So,for proper alignment of the optical flow vectors it is followed by probabilistic

relaxation labeling to achieve dominant motion pattern and the optical flow vectors

who has locally maxima magnitude are chosen. These processed optical flow vectors

along with their respective labels are then used for construction of tracks which are a

sequence of 3 Dimensional points depicting the flow of motion of a point. This is done by

minimization of a cost function.We choose top dominant tracks to represent the global

motion of the video. These tracks are further processed into direction invariant feature

descriptors and classified into various classes.
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Figure 1.4: Our Activity Recognition System Framework

6



Chapter 2

Optical Flow and Initial Labeling

2.1 Overview

Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and

edges in a visual scene caused by the relative motion between an observer (an eye or a

camera) and the scene.Sequences of ordered images allow the estimation of motion as

either instantaneous image velocities or discrete image displacements.It is in the relation

of the motion field. It can be defined as the 2D projection of the physical movement of

points relative to the observer to 2D displacement of pixel patches on the image plane.

There are several methods for determining optical flow.Optical flow can be found us-

ing Phase correlation which is inverse of normalized cross-power spectrum.Block-based

methods uses minimizing sum of squared differences or sum of absolute differences, or

maximizing normalized cross-correlation. There exists differential methods of estimat-

ing optical flow, based on partial derivatives of the image signal and/or the sought flow

field and higher-order partial derivatives.This includes Lucas Kanade method which is

regarding image patches and an affine model for the flow field.The Horn Schunck method

depends on optimizing a functional based on residuals from the brightness constancy con-

straint, and a particular regularization term expressing the expected smoothness of the

flow field.Buxton Buxton method is based on a model of the motion of edges in image se-

quences.Another type of differential methods include Black Jepson method dealing with
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coarse optical flow via correlation.There exists also general variational methods which

is a range of modifications/extensions of Horn Schunck, using other data terms and

other smoothness terms.Another kind of method includes discrete optimization meth-

ods where the search space is quantized, and then image matching is addressed through

label assignment at every pixel, such that the corresponding deformation minimizes the

distance between the source and the target image. The optimal solution is often re-

covered through Max-flow min-cut theorem algorithms, linear programming or belief

propagation methods.

2.2 Motivation

While an action is occurring it can often described by the flow of motion of the respective

object of interest. Optical Flow vectors describe the flow of motion in an action which

is very useful in action classification problem. So we have calculated dense optical flow

and assign them with labels to represent the magnitude of the motion and the direction

in which the motion is taking place at every point of the frame.

2.3 Procedure

2.3.1 Optical Flow Calculation

For a video sequence of some action type A having N frames,for each frame If , f ∈ 1,

2, ...,N is a grey image matrix defined as a function such that for any pixel (i,j), I(i,j) ∈

ζ, where (i,j) ∈ Z2 and ζ ∈ Z+ determines the range of the intensity values. For each

pair of consecutive frames If−1 and If , f ∈ 2, ...,N we compute the optical flow field

~Vf−1[paper name].

2.3.2 Assigning Initial Labels

We assign a label Lij to the field vectors of ~Vij of a pixel (i,j) where L = 1,2,3......l.

Here each label Lij denotes a particular octant in the angular radian space. We take
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the value of l as 8, because orientation field is quantized enough when resolved in eight

directions in digital grid, i.e., in every 45 degrees.

We can define ~Vi,j as optical flow field for any pixel (i,j) where (i,j) ∈ Z2 as

~Vi,j = (Vxi,j , Vyi,j ) (2.1)

The labeling process takes place by quantizing θi,j as following

θi,j = arctan(
Vy
Vx

) (2.2)

After quantization takes place each pixel (i,j) is assigned a label L,where L=1,2,....8

according to the quantized value θi,j .

If no label corresponds for some value of θi,j then it is assigned a no label L0.
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Chapter 3

Relaxation Labeling

3.1 Overview

Relaxation labeling techniques can be applied to many areas of computer vision. The

basic elements of the relaxation labeling method are a set of features belonging to an

object and a set of labels. In the context of vision, these features are usually points, edges

and surfaces. Relaxation labeling has been applied to many problems in computer vision,

from edge detection to scene interpretation on the basis of labeled scene components.

In a labeling problem, one is given:

• A set of objects

• A set of labels for each object

• A neighbor relation over the objects

• A constraint relation over labels at pairs (or n-tuples) of neighboring objects

Solution: An assignment of labels to each object in a manner which is consistent with

respect to the constraint relation
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3.2 Motivation

In real life videos,it contains noise in the background which affects the computed optical

flow of the system. So for optical flow to depict a dominant motion we realign them

using probabilistic relaxation labeling in each frame and along the flow of time.

3.3 Category

Relaxation Labeling problem can be defined in two categories-

• Discrete Relaxation Labeling

• Probabilistic Relaxation Labeling

3.3.1 Discrete Relaxation Labeling

3.3.1.1 Definition

Early work on scene labeling of employed a discrete relaxation approach in which each

scene component was assigned a set of possible interpretations, and inconsistent labeling

were removed by examining firstly label pairs on connected segments, and by ensuring

secondly that the locally defined consistencies could be linked together in a continuous

closed path.

3.3.1.2 Algorithm

3.3.2 Probabilistic Relaxation Labeling

3.3.2.1 Definition

As an alternative to discrete relaxation, probabilistic relaxation allows each scene object

to have associated with it not only a set of component labels, but also a weighting

assigned to each label in the range (0,1). In general, these weighting are considered
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Algorithm 1 Discrete Relaxation Labeling

Procedure Labeling

1: Assign all possible labels to each object
2: while any object has no label OR no updating possible do
3: for each scene object do
4: Delete inconsistent labels on the basis of unary constraints
5: Delete inconsistent labels on the basis of N-ary constraints
6: end for
7: end while
8: if any object unlabeled then
9: return no solution

10: else
11: return current solution
12: end if

EndProcedure

as probabilities, and so the sum of the label probabilities should be equal to 1. So for

each feature, weights or probabilities are assigned to each label in the set giving an

estimate of the likelihood that the particular label is the correct one for that feature.

Probabilistic approaches are then used to maximize (or minimize) the probabilities by

iterative adjustment, taking into account the probabilities associated with neighboring

features.

3.3.2.2 Algorithm

Algorithm 2 Probabilistic Relaxation Labeling

Procedure Labeling

1: Define conditional probabilities for each label assignment to each component
2: while a maximum of an objective function, F is reached OR probabilities cease to

change do
3: for each scene object do
4: update labeling on basis of compatibility function
5: end for
6: end while
7: Return current solution

EndProcedure
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3.4 Procedure

3.4.1 Introduction

Let us assume:

• O is the set { o1, o2,.......,on } of n object features to be labeled.

• L is the set { l1, l2,.......,lm } of m possible labels for the features

Let Pi(lk) be the probability that the label lk is the correct label for object feature oi .

The usual probability axioms can be applied that:

• Each probability Pi(lk) satisfies 0 ≤ Pi(lk) ≤ 1 where Pi(lk)=0 implies that label

lk is impossible for feature oi and Pi(lk)=1 implies that this labeling is certain.

• The set of labels are mutually exclusive and exhaustive. Thus we may write for

each i: ∑
L

Pi(lk) = 1 (3.1)

Thus each feature is correctly described by exactly one label from the set of labels.

The labeling process starts with an initial, and perhaps arbitrary, assignment of prob-

abilities for each label for each feature. The basic algorithm then transforms these

probabilities into to a new set according to some relaxation schedule. This process is

repeated until the labeling method converges or stabilizes. This occurs when little or no

change occurs between successive sets of probability values.

Generally, a relaxation process will find a local maximum/minimum in the particular

criterion, F, defining the quality of match. There are two key issues in relaxation, first

the rate of convergence towards the maximum/minimum, and second the position of

the local maximum/minimum in its particular optimization space. Convergence can not

always be guaranteed, and the algorithm may converge to a local maximum/minimum,

based for example on local consistency of several sets of scene objects. To move towards
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a globally optimum solution, it may be necessary to move through solutions which are

locally sub-optimal.

In my procedure I have implemented relaxation labeling using probabilistic relaxation.

3.4.2 Initial Probability Assignment

For a video sequence of some action type A having N frames,for each frame If , f ∈ 1, 2,

...,N is a grey image matrix defined as a function such that for any pixel (i,j), I(i,j) ∈ ζ,

where (i,j) ∈ Z2 and ζ ∈ Z+ determines the range of the intensity values. For each pair

of consecutive frames If−1 and If , f ∈ 2, ...,N we have the optical flow field ~Vf−1. We

can define ~Vfi,j as optical flow field for any pixel (i,j) where (i,j) ∈ Z2 in f th frame as-

~Vi,j = (Vxi,j , Vyi,j ) (3.2)

The magnitude of optical flow field for any pixel (i,j) where (i,j) ∈ Z2 in f th frame can

be defined as the following-

mi,j =
√
V 2
x + V 2

y (3.3)

If P 1
i,j denotes the initial probability of a pixel (i,j) of frame f,where f ∈ 1,2, ....,N-1, then

it is calculated by

P 1
i,j =

mi,j

max
i,j

mi,j
(3.4)

where max
i,j

mi,j defines the maximum magnitude value among all the (i,j)pixels of a

frame.We now have a set of possible labels Li,j , including the no match one, and their

initial probability for each frame P 1
i,j .

3.4.3 Compatibility Coefficients

Intuitively, or from the knowledge of optical flow vectors, one knows that the velocities

of two neighboring points constrain each other in that their magnitudes and directions

cannot be very different. This constraining relation,is further strengthened the closer the

14



two points are, that is the distance between the two points. The consistency relation, or

compatibility, between two neighboring points movement can therefore be determined

from the difference between the two velocities and the distance between the two points.

In our case, the two points are the pixels of the given frame.

Consider two neighboring pixels pi, pj and their respective labels as Li and Lj . We

denote the compatibility coefficient as Ci,j , to describe the consistency relation between

Li and Lj . In our definition compatibility coefficient, expresses the degree of consistency

or inconsistency in terms of our smoothness.In our consideration the compatibility co-

efficient depends on two parameters-

• The difference between two labels

• The distance between two pixels

First consider the differences between the two labels. We define the compatibility coef-

ficient as

αi,j = cos θi,j �

(
1− ‖ |Li| − ‖ |Lj |‖

max
i,j

(|Li|, |Lj |)

)
(3.5)

where, Ci,j is the angle between labels Li, and Lj , max
i,j

(|Li|, |Lj |) is the length of the

longer label. The ratio

(
1 − ‖ |Li|−‖ |Lj |‖

max
i,j

(|Li|,|Lj |)

)
is the relative difference between the two

label’s magnitudes, and it takes values within [0,1].

Firstly, when Li, and Lj are of the same label, the relative difference between their

magnitudes is 1, hence

αi,j = cos θi,j (3.6)

In this case, the two labels are most compatible, i.e., αij = 1, if θij is 0; or most

incompatible, i.e., αij = -1, if θij is Π.

Secondly, when the labels have the same direction, then

αi,j =

(
1− ‖ |Li| − ‖ |Lj |‖

max
i,j

(|Li|, |Lj |)

)
(3.7)
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In this case, the two labels are most compatible, i.e., αij = 1, if they are of the same

length; or most incompatible, i.e., αij = 0 if the two labels relative difference is 1.

In general, the combined effect from label direction and magnitude differences is that

the value of αij is within the range [-1, 1]. αij = 0 indicates that the two labels are

independent of each other.

The compatibility relating to the distance dij between pixels pi and pjcan be expressed

as

βi,j = exp(
−di,j
d0

) (3.8)

where the constant d0 characterizes flow. In general, do is a function of position. Clearly,

like some parameters in many real world problems, do cannot be known beforehand and

is also application dependent. For simplicity, it is taken as a constant,and is chosen

empirically for our application. Clearly, βij is in the range [0,1].

The total compatibility coefficient can be simply given by

Ci,j = αi,j � βi,j (3.9)

It is noted that for the no-match label we define Cij = 0. This is because the no-match

case is related to the fact that a vector is unable to be defined, and it is reasonable to

assume that this fact is independent of the movement of neighboring points.

3.4.4 Updating Probabilities

If a label,within the label set of a feature, has relatively more support from neighboring

features, its chance of being selected as the features’ displacement will be enhanced. Its

probability will be decreased if the label has relatively less support within the label set.

For each iteration n,we update label Lij ’s probability Pn
ij ,according to Lij ’s consistency

relation with the labels of all of neighboring features.This iterative scheme is similar to

that given by Rosenfeld and Kak.
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The compatibility coefficient Cij can be equivalently seen as the support of label Lj for

Li,weighted by Pij . The total support for Li therefore, is proportional to

qni,j =
∑
j

Ci,jP
n
i,j =

∑
j

αi,jβi,jP
n
i,j (3.10)

snij is defined as the support function for the nth iteration and is calculated as

sni,j =
1

C|max
r

(qnir)|
qni.j (3.11)

where |max
r

(qnir)| corresponds to the largest value of the support found within the label

set of pi, and C≥1 is a constant which controls the speed of convergence as explained

in the next paragraph. Clearly, Sn
ij is within the range [-1,1], and it can be - 1 or 1 for

some values of the j only if C = 1.

When C� 1 , all supports |snij | will be small so that their probabilities Pn
ij ; get modified

slowly, i.e.. the system converges slowly. On the other hand, when C is close to 1, some

supports Sn
ij approach -1. Consequently their associated probabilities Pn

ij are suppressed

very quickly.

Pn+1
ij is then updated according to,

Pn+1
i,j =

Pn
i,j(1 + sni,j)∑

r
Pn
i,r(1 + sni,r)

(3.12)

where Pn+1
ij is the probability for n+ 1th iteration.

3.4.5 Termination Condition

We define the function nz(A) as number of non zero elements in the matrix A. Then we

define termination condition on the iterative process using a threshold on the number

of non zero elements on the difference between new label and the old label between
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consecutive iterations, i.e.,

1

M ×N
nz(In+1 − In) ≤ ρd (3.13)

where ρd is the given threshold. When termination condition is met, the maximum

probability label within the label set of each feature is taken as an estimate of the

features’ displacement. If the maximum probability is the no-match labels’ probability

then the displacement of the feature is undetermined.

Figure 3.1: Before Relaxation Label-
ing

Figure 3.2: After Relaxation Label-
ing
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Chapter 4

Non Maximal Suppression

4.1 Overview

Non-maximum suppression is often used along with edge detection algorithms. The

image is scanned along the image gradient direction, and if pixels are not part of the

local maxima they are set to zero. This has the effect of suppressing all image information

that is not part of local maxima.

We will use non maximal suppression in our algorithm to determine if the optical flow

magnitude assumes a local maximum in the optical flow direction.

4.2 Motivation

To reduce the effect of noise in the system we have computed the locally maxima optical

flow vector along a direction and thresholded it with the mean of magnitude of processed

optical flow vectors.
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4.3 Procedure

4.3.0.1 Calculation Of Local Maxima

We have already assigned a label Lij to the field vectors of ~Vij of a pixel (i,j) where

L = 1,2,3......l. Here each label Lij denotes a particular octant in the angular radian

space. As we have taken the value of l as 8, the orientation field is quantized enough

when resolved in eight directions in digital grid, i.e., in every 45 degrees.So when L=1

it denotes 0 degree,when L=2 it denotes 45 degree, when L=2 it denotes 90 degree and

so on.

mij is the magnitude of the optical flow vector ~Vij = (Vxi,j , Vyi,j ) at pixel pij calculated

as

mi,j =
√
V 2
x + V 2

y (4.1)

So,the process is carried out as

• if the label Ll corresponds to 0 degrees its magnitude mij will be considered if it

is greater than the magnitudes at pixels px+1,y and px−1,y

• if the label Ll corresponds to 45 degrees its magnitude mij will be considered if it

is greater than the magnitudes at pixels px+1,y+1 and px−1,y−1

• if the label Ll corresponds to 90 degrees its magnitude mij will be considered if it

is greater than the magnitudes at pixels px,y+1 and px,y−1

• if the label Ll corresponds to 135 degrees its magnitude mij will be considered if

it is greater than the magnitudes at pixels px−1,y+1 and px+1,y−1

• if the label Ll corresponds to 180 degrees its magnitude mij will be considered if

it is greater than the magnitudes at pixels px−1,y and px+1,y

• if the label Ll corresponds to 225 degrees its magnitude mij will be considered if

it is greater than the magnitudes at pixels px−1,y−1 and px+1,y+1
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• if the label Ll corresponds to 270 degrees its magnitude mij will be considered if

it is greater than the magnitudes at pixels px,y−1 and px,y+1

• if the label Ll corresponds to 315 degrees its magnitude mij will be considered if

it is greater than the magnitudes at pixels px+1,y−1 and px−1,y+1

The new maxima magnitude we get after the above process is denoted by Mij for each

frame f=1,2,....N.

4.3.0.2 Thresholding On Mean Of Maxima Magnitude

We define µ as the mean of the maxima magnitude Mij . It can be expressed as

µ =
1

N

∑
ij

Mij (4.2)

So the new magnitude M
′
i,j after thresholding can be expressed as

M
′
i,j =


0 if Mi,j < µ

Mi,j otherwise

(4.3)
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Chapter 5

Tracking The Global Motion

5.1 Overview

Learning dominant motion patterns or activities from a video is an activity classifica-

tion problem is important, especially in noisy environment where there is illumination

changes,jitters,camera motion and also background is not same for all the videos used

for classification. Here tracking of human and object are hard if not impossible because

of the noise associated with the video. We use instantaneous motion field of the video

marked with relaxed labels for learning the motion patterns.

The motion field is a collection of independent flow vectors detected in each frame of the

video where each flow is vector is associated with a spatial location. A motion pattern

is then defined as a group of flow vectors that are part of the same physical process or

motion pattern that is motion of a person/object.

5.2 Motivation

In a low density scene activity analysis generally consists of foreground detection, form-

ing the human trajectory ,feature selection and then classifier. However, in real world

situation the assumption of low density does not always hold. In noisy environment

background subtraction may be often misleading as the background is not constant due
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to inherited noise of the system. The motion field is highly effected by the noise like

illumination changes, camera motion and jitters which may hamper the detection of the

object of interest. So to remove the effect of noise in the system we find the tracks based

on the dominant motion of the system representing the activity.

These tracks representing the global motion of the system are not much effected by the

induced noise in the videos. The motion flow field is obtained by first using the existing

optical flow methods to compute the optical flow vectors in each frame,then properly

aligning the optical flow vectors to mark the major motion of the spatial area using

relaxation labeling and then combining the relaxed optical flow vectors from all frames

of the video into top N tracks representing the global motion field.

5.3 Procedure

5.3.0.3 Estimation of Tracks In The Video

In our context we define track as a sequence of (xt,yt) points where t=1,2,.....M and M

represents the number of frames in the video representing a motion in the system.

For a video containing M number of frames let each frame be represented by Ft where

t=1,2,....M .Each pixel of Ft , ptij at time=t contains processed optical flow field Vtij .

The magnitude M
′
ti,j at Vtij may be zero or may have some positive quantity. Similarly

for every pixel in Ft+1, we have a processed optic flow vector, say Vt+1ij having magnitude

M
′
t+1i,j

as zero or some positive quantity .

Considering there is no significant high inter frame motion we can establish between Vtij

and Vt+1hk where pixel pt+1hk is one of the 8 neighbors of the ptij when ptij is placed at

the location pt+1ij . This correspondence is established by minimization of cost function

between the source point and its neighbor based on the following criteria-

• The two points ptij and pt+1hk should be spatially close to each other.

• The absolute difference between the magnitude M
′
tij and M

′
t+1hk

should be mini-

mized.
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• The angle of optical flow vector atij and at+1hk at ptij and pt+1hk should be close

to each other.

So we define the cost function Chk where hk is the 8 neighborhood of ij as

Ch,k =
|M ′

ij −M
′
hk|

max
hk
|M ′

ij −M
′
hk|

+ α ∗ 1− cos (aij − ahk)

max
hk

(1− cos (aij − ahk))
(5.1)

where 0 ≤ α ≤ 1 and 0 ≤ |M ′
ij−M

′
hk|

max
hk
|M ′

ij−M
′
hk|
≤ 1.

As value of -1 ≤ cos θ ≤ 1,so value of 0 ≤ 1−cos (aij−ahk)
max
hk

(1−cos (aij−ahk)) ≤ 1.

The minimum cost function among all the neighborhood points phk with respect to the

source point pij is calculated by

C
′
i+1,j+1 = min

hk

Ch,k

max
hk

Ch,k
(5.2)

The point pi+1,j+1 corresponds to one of neighborhood points phk which has the mini-

mum cost function with respect to the source point pij and added as the next coordinate

of the track.If there is any conflict ,that is if the cost function between the point and the

neighboring point is minimum but equal then we will resolve the the conflict by choosing

the neighboring point for which |M ′
ij −M

′
hk| value is minimum. We will get multiple

number of tracks for a video,each track represented as a series of 3-Dimensional points.

The entire analysis is repeated by taking the size of pixel as 4 ∗ 4 block, 8 ∗ 8 block,

16 ∗ 16 block and 32 ∗ 32 block. So we have five series of tracks

• for each pixel of the image

• for each 4 ∗ 4 block of the image

• for each 8 ∗ 8 block of the image

• for each 16 ∗ 16 block of the image

• for each 32 ∗ 32 block of the image
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5.3.0.4 Selection of Top Dominant Tracks

After estimation of tracks in the video we get a series of tracks represented by a sequence

of 3-Dimensional coordinates. Each of these tracks represents the motion of the initial

point in consideration along the length of the video.

We express Tracki represented by series of points (xi1,y
i
1), (xi2,y

i
2),........(x

i
M ,yiM ) domi-

nant over Trackj represented by series of points (xj1,y
j
1), (xj2,y

j
2),........(x

j
M ,yjM ) if disti

> distj where disti is represented as

distn =
∑
m

√
(xnm+1 − xnm)2 + (ynm+1 − ynm)2 (5.3)

where m=1,2,3....M-1.

Based on the above criterion from the series of tracks,we choose N top dominant tracks.

These dominant tracks represents the global motion of the video depicting the ac-

tion.Here in our experiment we take N=5;
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Chapter 6

Computation Of Feature

Descriptor

6.1 Overview

In machine learning and statistics, feature selection, also known as variable selection,

attribute selection or variable subset selection, is the process of selecting a subset of

relevant features for use in model construction.The main goal in feature selection in su-

pervised learning is to find a feature subset that produces higher classification accuracy.

6.2 Motivation

Feature characterizes its corresponding action and is used for classifying different videos

into particular class.

6.3 Procedure

From the last stage we got top N dominant tracks represented by series of 3-Dimensional

points (xi1,y
i
1),(x

i
2,y

i
2),.......,(x

i
M ,yiM ) where there are M number of frames in the video
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and i=1,2,....,M.We employ the construction of a direction invariant feature descriptor

from these tracks to represent an action.

We describe the vectors of the track as ~Tp = (~Txp , ~Typ) where p =1,2,3,......M-1. The

vectors are computed as

~Txp = (xp+1 − xp)̂i (6.1)

~Typ = (yp+1 − yp)ĵ (6.2)

The angle between the vectors represent the change of direction made while an activity

is taking place.This is direction invariant feature for an action and do not depend on

on the starting and ending location of object of interest in different videos for the same

action. It is calculated as

θp = arccos
~Txp � ~Typ
|~Txp ||~Typ |

(6.3)

We distribute the values of θp where p=1,2,3.....M-1 in an L-bin histogram. Here each

bin denotes a particular octant in the angular radian space. We take the value of L as

16, that means it is quantized in every 22.5 degrees.The histogram H = h1, h2, ..., hL

construction takes place by quantizing θxy and adding up Mxy
′

to the bin indicated by

the quantized θxy where pxy is the pixel of the frame in consideration and Mxy
′

is its

corresponding optical flow magnitude. In mathematical notation,

hi =
∑
p


Mxy if θp ∈ ith octant

0 otherwise

(6.4)

So,each video produces one 16-bin histogram leading to 16-dimensional histogram vector

which depicts the characteristics of that action. These feature descriptors are used for

classification of the action.
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Chapter 7

Experiment and Result

7.1 Dataset

The dataset used is the LIRIS human activities dataset which consists of 10 classes.

Each of classes can be a normal activity, a human-human interaction or a human-object

interaction:

The Activities are

• Activity 01 :: Discussion of two or several people

• Activity 02 :: A person gives an item to a second person

• Activity 03 :: An item is picked up or put down

• Activity 04 :: A person enters or leaves an office

• Activity 05 :: A person tries to enter an office unsuccessfully

• Activity 06 :: A person unlocks an office and then enters it

• Activity 07 :: A person leaves baggage unattended

• Activity 08 :: Handshaking of two people

• Activity 09 :: A person types on a key-board
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• Activity 10 :: A person talks on a telephone

This dataset is used to extract training features and test features . We have used 7

video sequences for each video and each video having 200-250 frames at an average. All

images have size 480*640. The dataset contains background clutter, dynamic illumina-

tion changes, camera movements etc. Large variation between the classes introduced

by various sources like the changes in camera viewpoint, shapes and sizes of different

actors, different dressing styles, changes in execution rate of activity, individual styles

of actors etc increases the classification difficultly level.

7.2 Parameters

We have quantize the dense optical flow into 8 bin histogram so that it is resolved in

eight directions in digital grid, i.e., in every 45 degrees. In relaxation labeling we have

considered the compatibility factor as 1.05 for optimum speed of convergence.A 4 ∗ 4

neighborhood was considered while updating the labels in each frame and a 3 ∗ 3 ∗ 3

neighborhood was considered while updating the labels along the temporal axis. While

constructing the tracks,we have considered the blocks at pixel level,4 ∗ 4 block level,8 ∗ 8

block level,16 ∗ 16 block level and 32 ∗ 32 block level and found out the top N dominant

tracks belonging to all these levels. For computing the cost function we have taken

the value of α as 0.5 to establish the dominance of the effect of magnitude over angle

of the optical flow vectors. We have already quantize the angles into 8 directions and

also realigned the optical flow vectors into proper directions. So now magnitude of the

optical flow vectors will have a higher stand over the direction to which it is oriented.

So the magnitude is given preference in cost function over angle of orientation of the

optical flow vectors.
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7.3 Metrics for evaluation

Various performance measures within action classification exist, covering different as-

pects of the task. This section covers the most used performance measures, their bene-

fits and drawbacks.The Craneld tests, conducted in 1960s, established the desired set of

characteristics for a retrieval system. Even though there has been some debate over the

years, the two desired properties that have been accepted by the research community for

measurement of search effectiveness are recall,i.e., the number of action videos classified

to a class; and precision, i.e., number of action videos correctly classified to a class.

7.3.1 Precision and recall

Effectiveness is purely a measure of the ability of the system to satisfy the user in terms

of the proper classification of a test action. Initially, effectiveness can be measured

exploiting precision and recall; a similar analysis could be given for any pair of equivalent

measures. It is helpful at this point to introduce the famous confusion matrix depicted

in table.

Table 7.1: Precision and Recall

Actions Deemed non-relevant Deemed relevant

negative true negative (TN) false positive (FP)
positive false negative (FN) true positive (TP)

Such table is a visualization tool typically used in supervised learning (where it is also

called a matching matrix ). Each row of the matrix represents the instances in a predicted

class, while each column represents the instances in an actual class.

One benefit of a confusion matrix is that it is easy to see if the system is confusing two

classes (i.e., commonly mislabeling one as another).

Precision is defined as the number of correctly classified action videos by the total number

of action videos (namely Π = TP /(TP + FP )), and Recall is defined as the number of

action videos classified to a class divided by the total number of action videos (namely

ρ = TP /(TP + FN )).
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In terms of the confusion matrix above, accuracy = (TP + TN )/(TP + FP + FN +

TN ).

7.4 Result

We have 70 action video sequence ,where there are 10 classes and each class has 7 videos.

We have employed leave one out cross validation followed by classification using Support

Vector Machine(SVM). Leave-one-out cross-validation involves using a single observation

from the original sample as the validation data, and the remaining observations as the

training data. This is repeated such that each observation in the sample is used once

as the validation data. This is the same as a K-fold cross-validation with K being equal

to the number of observations in the original sampling. The SVM takes a set of input

data and predicts, for each given input, which of two possible classes forms the output,

making it a non-probabilistic binary classifier.

Table 7.2 shows the confusion matrix created taking the 10 class,where the columns

denote the actual classes and the rows denote the predicted classes. We can calculate

the recall,precision of each class from the confusion matrix and thus estimate the overall

accuracy of our classification system.

Table 7.3 depicts the calculated Recall,Precision,F-1 Score per class.

So,the overall accuracy of the system

= 59+56+39+52+55+49+54+51+58+47
63∗10

= 82.54%
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Table 7.3: Precision , Reacll and F1-Score

Class Class description Recall Precison F1-Score

Class 1 Discussion of two or several people 93.65% 83.09% 88.05%

Class 2 A person gives an item to a second person 88.88% 86.15% 87.49%

Class 3 An item is picked up or put down 61.90% 73.58% 67.23%

Class 4 A person enters or leaves an office 82.53% 86.66% 84.54%

Class 5 A person tries to enter an office unsuccessfully 87.30% 80.88% 83.96%

Class 6 A person unlocks an office and then enters it 77.77% 87.5% 82.3%

Class 7 A person leaves baggage unattended 85.71% 79.41% 82.43%

Class 8 Handshaking of two people 80.95% 86.44% 83.60%

Class 9 A person types on a key-board 92.06% 85.29% 88.54%

Class 10 A person talks on a telephone 74.60% 75.80% 75.19%
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Chapter 8

Future Works

There are a variety of enhancements that could be made to this system to achieve greater

performance in real life situation.Each of classes of LIRIS dataset can be a normal

activity, a human-human interaction or a human-object interaction, or a combination of

the latter two types.

But our system fails to recognize the actions properly if there is more than one action

taking place simultaneously.Our main assumption is there is only one dominant motion

in the system which is depicted by the global motion of the video.But if two or more

than two actions takes place simultaneously,it gives rises to more than one global motion

in the system.
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