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Chapter 1

Introduction

Information Retrieval hardly needs any introduction today. Surveys show that about

85% of the users of the internet use popular interactive search engines to satisfy their in-

formation need. Such is the impact of information retrieval, particularly search engines,

in our daily lives that the word google has been added to the Oxford English Dictionary

as a verb, whereby Google it now means search it !

1.1 Brief Introduction To Information Retrieval

Information retrieval is the activity of obtaining information resources relevant to an

information need from a collection of information resources [2]. Searches can be based

on metadata or on full-text (or other content-based) indexing.

Definition 1.1. Information retrieval is finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need from within large

collections (usually stored on computers) [12].

1.1.1 Document, Collection And Query

A document is a file containing significant text content. It has some minimal structures

e.g. title, author, date, subject etc.. Examples of documents are web pages, email,

1



Introduction 2

books, news, stories, scholarly papers, text messages, MSWord documents, MSPower-

point documents, PDF documents, forum postings, blogs etc.

A set of similar documents is called collection. Generally all activities of an IR system

is performed on a collection of documents with a pre-defined structure or format (e.g.

normal text file, pdf, MSWord etc.).

An information retrieval process begins when a user enters a query into the system.

Queries are formal statements of information needs, for example search strings in web

search engines. In information retrieval a query does not uniquely identify a single object

in the collection. Instead, several objects may match the query, perhaps with different

degrees of relevancy.

1.1.1.1 Vector Space Model

In vector space model documents and queries are represented as vectors. This model is

very commonly used.

dj = (w1,j , w2,j , . . . , wt,j)

q = (w1,q, w2,q, . . . , wt,q)

Each dimension corresponds to a separate term. If a term occurs in the document, its

value in the vector is non-zero. Several different ways of computing these values, also

known as (term) weights, have been developed. One of the best known schemes is tf-idf

weighting [3]. TF means term frequency which is the no. of times a term occurs in

a document. IDF means inverse document frequency which is the log of the ratio of

collection size and no. of documents containing that term.

The definition of term depends on the application. Typically terms are single words,

keywords, or longer phrases. If the words are chosen to be the terms, the dimensionality

of the vector is the number of words in the vocabulary (the number of distinct words

occurring in the corpus).

Vector operations can be used to compare documents with queries.
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1.1.2 Retrieval And Evaluation Procedure

1.1.2.1 Retrieval

Before actual retrieval begins,the documents within the collection must be indexed.

Indexing involves processing each document in a collection and building a data structure

of indexed documents. Following are the steps of indexing:

1. Reading and parsing a document.

2. Stopword removal and stemming of each term in the document [14].

3. Inserting each term in the data structure of indexed documents.

The first step of retrieval is to assign a score to each document according to its relevance

with the given query. For this generally inner product similarity is used.

The inner product similarity between document dj and query q can be calculated as:

sim(dj , q) =
dj · q
‖dj‖ ‖q‖

=

∑N
i=1wi,djwi,q√∑N

i=1w
2
i,dj

√∑N
i=1w

2
i,q

According to this similarity the documents are sorted and the top K documents are

returned to the user. Value of K varies from system to system. Figure 1.1 gives an

overview of the procedure.

Figure 1.1: Outline of IR Procedure.
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1.1.2.2 Evaluation

1. Evaluation of Unranked Retrieval Sets:

The two most basic parameters for performance measurement of an IR system are

precision and recall. These are initially defined for the simple case where the IR

system returns only a set of documents. These definitions can be extended for IR

systems which returns a set of documents along with ranks.

Precision is the fraction of the documents retrieved that are relevant to the user’s

information need.

Precision =
number of relevant documents retrieved

number of documents retrieved

Recall is the fraction of the documents that are relevant to the query that are

successfully retrieved.

Recall =
number of relevant documents retrieved

number of relevant documents in the collection

2. Evaluation of Ranked Retrieval Results:

The ranked retrieval results are now standard with search engines. In a ranked

retrieval context, appropriate sets of retrieved documents are naturally given by

the top K retrieved documents.

In recent years, Mean Average Precision(MAP) has become a standard param-

eter [11]. It has been shown that MAP has especially good discrimination and

stability among evaluation measures.

The concept of Average Precision, henceforth abbreviated as AP, is required to

define MAP. For a single query, AP is the average of the precision values obtained

for the set of top K documents existing after each relevant document is retrieved.

For MAP, such AP values are then averaged over all information needs.

Let the set of documents retrieved for a query qj be D = {d1, . . . dmj} such that

document di has rank i. Let Rj be the set of all documents that are relevant to

qj and reljk be an indicator variable which is 1 if dk ∈ Rj , 0 otherwise. Let P (i)

be the precision of the first i documents in D. Then, Average Precision for query

qj is defined as:
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APqj =
1

|R|

mj∑
i=1

P (i) · relji

Let the query set be Q. MAP of Q is the average of APqj for all qj ∈ Q. So,

MAP =
1

|Q|

|Q|∑
j=1

APqj

1.1.3 Vocabulary Problem

The most critical language issue for retrieval effectiveness is the term mismatch problem:

the indexers and the users do often not use the same words. This is known as the vocab-

ulary problem [5] [6], compounded by synonymy (same word with different meanings,

such as ‘java’) and polysemy (different words with the same or similar meanings, such

as ‘tv’ and ‘television’). Synonymy, together with word inflections (such as with plural

forms, “television” versus “televisions”), may result in a failure to retrieve relevant docu-

ments, with a decrease in recall. Polysemy may cause retrieval of erroneous or irrelevant

documents, thus implying a decrease in precision. This problem is particularly acute in

the case of short queries.

To deal with the vocabulary problem, several approaches have been proposed including

interactive query refinement, relevance feedback, word sense disambiguation, and search

results clustering. One of the most natural and successful techniques is to expand

the original query with other words that best capture the actual user intent, or that

simply produce a more useful query, i.e. a query that is more likely to retrieve relevant

documents. This approach is known as Query Expansion.

1.2 Query Expansion

The aim of query expansion (QE) is to reduce this query-document mismatch by adding

related or synonymous words or phrases to the query (these words/phrases are called

expansion terms).

For example, a user may be looking for information on “atmospheric pollution from

automobile emissions”, and a relevant document may discuss pollution arising out of
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smoke emitted by motor vehicles. Thus, it may be useful to add the terms cars and

motor vehicles to the example query given above. This is precisely the function of QE

algorithms.

1.3 Our Work

1.3.1 Motivation Behind Work

There exists several standard Automatic Query Expansion algorithms like KLD [8],

RBLM [10], LCA [16], DFR [4] etc. Each of them has its own term selection and term

weighting strategy. The relative performances of these algorithms vary over different

input queries. Also there are queries for which performance does not improve, or even

worsens, when it is expanded.

The actual reasons behind varying relative performances of AQE algorithms have not

really been searched carefully. But understanding the reason as to why some query

expansion algorithms perform better than other query expansion algorithms for a given

query is quite important. For a given input query if the expansion algorithm Ai per-

formed better than algorithm Aj , then what did algorithm Ai do that algorithm Aj did

not, and which resulted in Ai performing better? Similarly if all expansion algorithms

perform poorly for a given query, where is it that all of them are going wrong?

These are the questions whose answer may shed considerable light on how to formulate

better expanded queries, and these are precisely the questions that we try to answer in

this thesis.

1.3.2 Problem Definition

1.3.2.1 Hypothesis

For any query, there exists a set of good expansion terms and if we include them in the

expanded query with optimal weights, a very high (0.85-1) MAP can be achieved.
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Now suppose for a query Q that set of good terms is S. Let there be two query expansion

algorithms A1 and A2 which take the query Q as input and expand it into Q1 and Q2

respectively.

Our hypothesis is that,

1. if Q1 contains more terms from S than Q2 and has assigned them good weights,

then performance of Q1 must be better than Q2;

2. conversely, if Q1 is found to perform better than Q2, then it must have effectively

picked up more terms from S and assigned them better weights than Q2.

To test this hypothesis, at first we have to select a set of queries and a set of standard

query expansion algorithms. For each such query expansion method, we may consider

different variations of them (variations based on parameters like no. of terms etc). For

our case we have chosen the TREC 8 collection (queries 401-450) [1]. The chosen query

expansion algorithms are DFR, KLD, LCA, LCANEW [13] and RBLM. We considered

45 variations of each of them (total 225).

1.3.2.2 Problem Statement

Our problem is basically threefold.

1. First, we have to find a ranked set of good terms for each query. This step is called

“Ideal expanded query (IEQ) generation”. For this, all the available relevance

information can be exploited. For every such IEQ, we have to achieve a MAP

value as close to 1 as possible.

This work has been entirely done by Snehasish Mukherjee and it is clearly described

in his M.Tech Thesis [12]. The IEQs generated by his algorithm are able to achieve

an average MAP of 0.9 which is quite sufficient for our current work. So, we have

not applied any modification on his algorithm.

2. For a query Q(i) from the test collection (i ∈ 401,. . .,450), let Q
(i)
1 ,. . .,Q

(i)
225 be the

different versions of this query. Our next step is to calculate the overlap/similarity

between IEQ(i) and Q
(i)
1 ,. . .,Q

(i)
225 ∀ i ∈ 401,. . .,450. We use SimQuery(IEQ(i), Q

(i)
j )



Introduction 8

to denote the similarity or overlap between the ideal expanded form of Q(i) and

Q
(i)
j . A number of different functions are used as SimQuery. These are de-

scribed in detail in Chapter 2. We then rank Q
(i)
j 1 ≤ j ≤ 225 according to

SimQuery(IEQ(i), Q
(i)
j ).

3. Finally, we compare the actual ranking of queries (based on their performance, i.e.

MAP values) with the predicted ranking of queries (based on SimQuery). We use

SimRanks to denote the rank correlation function used to compare these two rank-

ings. Three standard rank correlation measures Pearson correlation coefficient,

Kendall rank correlation coefficient and Spearman rank correlation coefficient are

used for SimRanks. These are briefly described in Chapter 2.

In this way, we can systematically confirm our hypothesis by looking at the similarity

of terms selected by different QE techniques with the terms of the IEQ as a predictor of

the final performance of those QE techniques.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2 we introduce different

existing and new correlation metrics. We also report the results obtained for all of them

and try to analyse those results in the same Chapter. Finally we conclude the thesis in

Chapter 3 by summarizing our findings and providing pointers to the future direction

of this research.



Chapter 2

Correlation Metrics

Recall from Section 1.3.2.2 that we use SimQuery(IEQ(i), Q
(i)
j ) to denote the similarity

or overlap between the ideal expanded form of Q(i) and Q
(i)
j . In this chapter, we briefly

describe various functions that we use as SimQuery.

2.1 Existing Metrics

2.1.1 Jaccard Index

This is a very basic metric which measures the similarity between two lists by calculating

the ratio of no. of intersecting terms and total no. of terms (i.e. union size).

Jaccard Index: SimQuery(IEQ(i), Q
(i)
j ) =

| IEQ(i) ∩ Q
(i)
j |

| IEQ(i) ∪ Q
(i)
j |

where IEQ(i) and Q
(i)
j are represented in set notation.

2.1.2 Inner Product Similarity

This is the dot product of the term-weights from both the lists. We can normalize the

dot product in various ways:

9
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2.1.2.1 L1 Norm

Here normalization is done by dividing the dot product by the product of the sum of all

term-weights from both the lists.

Inner Product Similarity (L1 Norm): SimQuery(IEQ(i), Q
(i)
j ) =

~IEQ(i).
~

Q
(i)
j∑

n wIEQ(i)
n ·

∑
p w

Q
(i)
j

p

where IEQ(i) and Q
(i)
j are represented in vector notation. wIEQ(i)

n is the weight of the

nth term of IEQ(i) and w
Q

(i)
j

p is the weight of the pth term of Q
(i)
j .

2.1.2.2 L2 Norm

Here normalization is done by dividing the dot product by the product of Euclidian

norms of both the lists.

Inner Product Similarity (L2 Norm): SimQuery(IEQ(i), Q
(i)
j ) =

~IEQ(i).
~

Q
(i)
j

‖ ~IEQ(i)‖ · ‖ ~
Q

(i)
j ‖

where IEQ(i) and Q
(i)
j are represented in vector notation.

2.1.2.3 L∞ Norm

Here normalization is done by dividing the dot product by the product of maximum

term-weights from both the lists.

Inner Product Similarity (L∞ Norm): SimQuery(IEQ(i), Q
(i)
j ) =

~IEQ(i).
~

Q
(i)
j

max
(

~IEQ(i)
)
· max

(
~

Q
(i)
j

)

where IEQ(i) and Q
(i)
j are represented in vector notation.

2.1.2.4 Unnormalized

Here no normalization is done.

Inner Product Similarity (Unnormalized): SimQuery(IEQ(i), Q
(i)
j ) = ~IEQ(i).

~
Q

(i)
j

where IEQ(i) and Q
(i)
j are represented in vector notation.
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2.1.3 NDCG

NDCG is an abbreviation for Normalized Discounted Cumulative Gain [7] [15]. This

metric is generally used for evaluating the performance of an Information Retrieval

system [11].

We used it in measuring similarity between an expanded query Q
(i)
j and the correspond-

ing Ideal expanded query IEQ(i) assuming that the terms belonging to the IEQ(i) are

relevant terms and their weights are the corresponding gains received by the expanded

query if it includes them.

The Discounting function reduces the achieved gain on the basis of rank. The discount

increases with the intersecting term’s rank in Q
(i)
j . Generally logarithmic discounting

function is used. The following is one standard formulation of NDCG.

NDCG: SimQuery(IEQ(i), Q
(i)
j ) =

∑
t∈IEQ(i) ∩ Q

(i)
j

2W
IEQ(i)

t −1

log(1+R
Q
(i)
j

t )

where IEQ(i) and Q
(i)
j are represented in set notation, W IEQ(i)

t is the weight of term t

in IEQ(i) and R
Q

(i)
j

t is the rank of the term t in Q
(i)
j .

2.1.4 Pearson Correlation Coefficient

Pearson Correlation Coefficient(r):

SimQuery(IEQ(i), Q
(i)
j ) =

∑
n

(
wIEQ(i)

n − ¯wIEQ(i)
)(

w
Q

(i)
j

n −
¯

wQ
(i)
j

)
√∑

n

(
wIEQ(i)

n − ¯wIEQ(i)
)2(

w
Q

(i)
j

n −
¯

wQ
(i)
j

)2

where wIEQ(i)

n and w
Q

(i)
j

n are the weights of the nth terms in the ideal and candidate

queries. ¯wIEQ(i)
and

¯
wQ

(i)
j are the means of term-weights of IEQ(i) and Q

(i)
j . Here only

terms belonging to both IEQ(i) and Q
(i)
j are considered.
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2.1.5 Kendall Rank Correlation Coefficient (τ)

Kendall rank correlation coefficient (τ):

SimQuery(IEQ(i), Q
(i)
j ) =

no of concordant pairs− no of discordant pairs
1
2n(n− 1)

where a concordant pair is a pair of terms in IEQ(i) ∩ Q
(i)
j whose relative order in

Q
(i)
j is the same as that in IEQ(i). Similarly a discordant pair is a pair of terms in

IEQ(i) ∩ Q
(i)
j whose relative order in Q

(i)
j is the opposite of that in IEQ(i). n is the

union size.

2.1.6 Spearman’s Rank Correlation Coefficient

Spearman’s Rank Correlation Coefficient (ρ):

SimQuery(IEQ(i), Q
(i)
j ) =

∑
n

(
rIEQ(i)

n − ¯rIEQ(i)
)(

r
Q

(i)
j

n −
¯

rQ
(i)
j

)
√∑

n

(
rIEQ(i)

n − ¯rIEQ(i)
)2(

r
Q

(i)
j

n −
¯

rQ
(i)
j

)2

where rIEQ(i)

n and r
Q

(i)
j

n are the ranks of nth term belonging to IEQ(i) ∩ Q
(i)
j in IEQ(i)

and Q
(i)
j . ¯rIEQ(i)

and
¯

rQ
(i)
j are the means of ranks of terms of IEQ(i) and Q

(i)
j . Here

only terms belonging to both IEQ(i) and Q
(i)
j are considered.
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2.1.7 Result

Pearson Kendall Spearman

Jaccard index 0.558512 0.439212 0.577354

Inner Product L1 Norm −0.321893 −0.274142 −0.352637

Inner Product L2 Norm 0.306361 0.328803 0.412454

Inner Product L∞ Norm 0.429213 0.352161 0.444382

Inner Product Unnormalized 0.419395 0.375006 0.485278

NDCG 0.27668 0.35067 0.45515

Pearson 0.028628 −0.025947 −0.044691

Kendall −0.132430 −0.10328 −0.144502

Spearman −0.121821 −0.105900 −0.150395

Table 2.1: Existing Correlation Metrics for 225-element-set

Pearson Kendall Spearman

Jaccard index 0.736682 0.604199 0.739018

Inner Product L1 Norm −0.538969 −0.419434 −0.524876

Inner Product L2 Norm 0.639795 0.498164 0.640914

Inner Product L∞ Norm 0.677685 0.544253 0.679660

Inner Product Unnormalized 0.651261 0.531109 0.662361

NDCG 0.49919 0.47927 0.60287

Pearson −0.037164 −0.026907 −0.051484

Kendall −0.191254 −0.141127 −0.192506

Spearman −0.198278 −0.154138 −0.214458

Table 2.2: Existing Correlation Metrics for 45-element-set of DFR Variant

Pearson Kendall Spearman

Jaccard index 0.747630 0.621196 0.763451

Inner Product L1 Norm −0.533632 −0.436281 −0.543391

Inner Product L2 Norm 0.658796 0.523195 0.669392

Inner Product L∞ Norm 0.635724 0.515586 0.649033

Inner Product Unnormalized 0.640888 0.513360 0.646433

NDCG 0.51957 0.50958 0.64167

Pearson −0.060492 −0.032890 −0.063408

Kendall −0.219706 −0.175159 −0.233796

Spearman −0.212889 −0.170887 −0.230653

Table 2.3: Existing Correlation Metrics for 45-element-set of KLD Variant
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Pearson Kendall Spearman

Jaccard index 0.653996 0.507467 0.631757

Inner Product L1 Norm −0.544778 −0.415812 −0.498609

Inner Product L2 Norm 0.051115 0.022250 0.045036

Inner Product L∞ Norm 0.618788 0.520190 0.616143

Inner Product Unnormalized 0.682740 0.578685 0.665302

NDCG 0.33268 0.42062 0.49040

Pearson −0.035513 −0.026497 −0.045504

Kendall −0.096548 −0.099416 −0.126994

Spearman −0.080004 −0.105960 −0.134169

Table 2.4: Existing Correlation Metrics for 45-element-set of LCA Variant

Pearson Kendall Spearman

Jaccard index 0.692599 0.562692 0.671922

Inner Product L1 Norm −0.421535 −0.318506 −0.404660

Inner Product L2 Norm 0.446192 0.384541 0.479864

Inner Product L∞ Norm 0.599938 0.480292 0.585377

Inner Product Unnormalized 0.606207 0.481689 0.586575

NDCG 0.51218 0.45220 0.55906

Pearson −0.040316 −0.047056 −0.076093

Kendall −0.083330 −0.073668 −0.107263

Spearman −0.079093 −0.075885 −0.112744

Table 2.5: Existing Correlation Metrics for 45-element-set of LCANEW Variant

Pearson Kendall Spearman

Jaccard index 0.7826450 0.6297879 0.7687967

Inner Product L1 Norm −0.8475117 −0.7326186 −0.8586733

Inner Product L2 Norm 0.6598335 0.5547841 0.6909573

Inner Product L∞ Norm 0.7181386 0.6019089 0.7397788

Inner Product Unnormalized 0.4936310 0.4401082 0.5588896

NDCG 0.51895 0.53755 0.66888

Pearson −0.0048715 −0.0270240 −0.0075296

Kendall −0.1686076 −0.0871832 −0.1312030

Spearman −0.1639409 −0.0820235 −0.1295021

Table 2.6: Existing Correlation Metrics for 45-element-set of RBLM Variant
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2.1.8 Analysis

1. Jaccard Index: In spite of being the simplest among the SimQuery variants, this

gives the best value for our 225-element set consisting of all 5 variants. But its

drawback comes from the fact that it ignores term-weights. It never checks the

quality of the terms selected by the candidate expanded queries from the ideal

expanded query. It just counts the number of such terms.

2. Inner Product Similarity:

(a) It is quite counter-intuitive that L1 Norm performs so poorly for all variants.

One probable reason can be the existence of dominance in term-weights of

candidate terms. But how these dominant terms affect the L1 Norm metric

is not clear.

(b) The average of L2 Norm has basically dropped for its poor performance in

case of LCA variations.

(c) L∞ Norm and Unnormalized versions are very close except for RBLM varia-

tion where L∞ Norm is much better.

(d) The main disadvantage of the Unnormalized version is that it is highly sus-

ceptible to scaling. Suppose IEQ(i) is an ideal query and Q
(i)
1 ,Q

(i)
2 are two

candidate expanded queries.

Let

IEQ(i) = T p
1 + T q

2 + T r
3 ,

Q
(i)
1 = T a

1 + T b
3 + T c

4

and

Q
(i)
2 = Tn∗a

1 + Tn∗b
3 + Tn∗c

4

where IEQ(i), Q
(i)
1 and Q

(i)
2 are represented in vector notation. T1, T2, T3, T4

are query-terms; p, q, r, a, b, c are term-weights and n is a constant.

Then the performance of Q
(i)
1 and Q

(i)
2 in terms of MAP will be same, but

Inner Product Similarity (Unnormalized) of Q
(i)
2 (i.e. n ∗ (a ∗ p+ b ∗ r)) will

be n times more than that of Q
(i)
1 . This is certainly not desirable and it is

also highly counter-intuitive that in spite of possessing such a drawback this

metric performs equally well as other normalized versions.
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3. : Pearson, Kendall and Spearman’s Correlation Coefficients: This three metrics

consistently perform poorly. To understand the reason behind this, we performed

the following experiment for each of them:

(a) Find those queries having the least values (<-0.7) for the metric.

(b) For each such query find those variations which caused that poor value. We

selected two types of variations : firstly those having high similarity (top

20%) but low MAP (bottom 20%), secondly those having high MAP (top

20%) but low similarity (bottom 20%).

(c) Analyse the no. of intersection terms, their ranks, weights etc. for each such

variation.

After careful analysis, we found that these three metrics concentrate only on the

order of the terms selected from the ideal query by the candidate query. So, they

totally disregard the count or goodness of the intersecting terms. This is the main

factor behind their poor performance.

Consider, for example, two variants Q
(i)
1 and Q

(i)
2 . Suppose |IEQ(i) ∩ Q

(i)
1 | = 3

and |IEQ(i) ∩ Q
(i)
2 | = 10. If the terms in Q

(i)
1 are ranked in the same order as in

IEQ(i), SimQuery(IEQ(i), Q
(i)
1 ) will be very high, but the MAP for this query will

be low, especially if the 3 common terms are relatively less important in IEQ(i).

On the other hand, If the terms in Q
(i)
2 are not ranked in the same order as in

IEQ(i), SimQuery(IEQ(i), Q
(i)
2 ) will be very low, but the MAP for this query will

be high, especially if the 10 common terms are relatively more important in IEQ(i).

We calculated that on an average there exists 5 no. of intersecting terms for high-

similarity-low-MAP cases and 16 no. of intersecting terms for low-similarity-high-

MAP cases. So, these 3 metrics are not quite suitable to be used as SimQuery.
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2.2 New Metrics

2.2.1 Modified Jaccard Index

General Jaccard index counts the no. of intersecting terms but it does not consider their

goodness. Let two n-terms-long candidate expanded queries be Q
(i)
1 and Q

(i)
2 . Suppose

both of them have 5 terms in common with the corresponding ideal expanded query

IEQ(i). Q
(i)
1 contains the top 5 terms of IEQ(i) (in terms of term-weights) and Q

(i)
2

contains the bottom 5 terms of IEQ(i). Jaccard Index values for Q
(i)
1 and Q

(i)
2 will be

same but Q
(i)
1 is expected to perform much better than Q

(i)
2 .

So, to address this drawback Jaccard Index is modified in the following two ways:

2.2.1.1 Modification 1

Here the sum of the term-weights of the intersecting terms is calculated where term-

weights are taken from IEQ(i).

Jaccard Index Modification 1: SimQuery(IEQ(i), Q
(i)
j ) =

∑
t∈IEQ(i) ∩ Q

(i)
j

W IEQ(i)

t

where IEQ(i) and Q
(i)
j are the ideal and candidate queries respectively, represented in

set notation, and W IEQ(i)

t is the weight of the term t in IEQ(i).

2.2.1.2 Modification 2

Here the sum of the reciprocals of the term-ranks of the intersecting terms is calculated

where term-ranks are taken from IEQ(i).

Jaccard Index Modification 2: SimQuery(IEQ(i), Q
(i)
j ) =

∑
t∈IEQ(i) ∩ Q

(i)
j

1

RIEQ(i)

t

where IEQ(i) and Q
(i)
j are the ideal and candidate queries respectively, represented in

set notation, and RIEQ(i)

t is the rank of the term t in IEQ(i).

2.2.2 Modified Kendall’s Rank Correlation Coefficient

In general, Kendall Rank Correlation Coefficient (τ) works well for measuring similarity

between two lists having the same set of terms. But it does not handle those cases
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where there exists such terms in both ideal and candidate expanded queries, which do

not belong to intersection of them. This is very common in our case. If we choose a pair

of terms randomly from the union of ideal and candidate queries, anyone or both of the

terms may not belong to their intersection. Now, the question is whether to treat them

as concordant pairs or discordant pairs. So, we have modified Kendall Tau as required

for our purpose and tried to decide the concordance/discordance of the pairs based on

some conditions.

2.2.2.1 Modification 1

1. Let, U = IEQ(i) ∪ Q
(i)
j .

2. Now, let us choose two terms randomly from U . Let the terms be T1 and T2.

3. (a) Case 1: T1 belongs to IEQ(i) and it does not belong to Q
(i)
j

i. T2 belongs to IEQ(i) and it does not belong to Q
(i)
j : In this case we

cannot say anything about concordance or discordance as both the terms

belong only to the ideal query. So, to be on the safer side we count it

as discordance. This in fact is a very important case because occurs hit

about 75% times.

ii. T2 belongs to both IEQ(i) and Q
(i)
j : As T1 does not belong to Q

(i)
j and

T2 belongs to Q
(i)
j , so we can safely assume that rank of T2 is higher than

rank of T1 in Q
(i)
j . So, if rank of T2 is also higher than rank of T1 in

IEQ(i), then it’s a concordance otherwise it’s a discordance.

iii. T2 belongs to Q
(i)
j and it does not belong to IEQ(i): As T1 does not

belong to Q
(i)
j and T2 belongs to Q

(i)
j , so we can safely assume that rank

of T2 is higher than rank of T1 in Q
(i)
j . Similarly, as T2 does not belong

to IEQ(i) and T1 belongs to IEQ(i), we can assume that rank of T1 is

higher than rank of T2 in IEQ(i). So, it’s undoubtedly a discordance.

(b) Case 2: T1 belongs to IEQ(i) and Q
(i)
j

i. T2 belongs to IEQ(i) and it does not belong to Q
(i)
j : As T2 does not

belong to Q
(i)
j and T1 belongs to Q

(i)
j , so in Q

(i)
j rank of T1 is higher than

rank of T2. If in IEQ(i) also, rank of T1 is greater than rank of T2 then

the pair is concordant otherwise it is discordant.
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ii. T2 belongs to both IEQ(i) and Q
(i)
j : This is the case of normal Kendall

τ . So, the pair is concordant when rank of T1 is greater than rank of T2

in both IEQ(i) and Q
(i)
j OR when rank of T1 is less than/equal to rank

of T2 in both IEQ(i) and Q
(i)
j . Otherwise it is discordant.

iii. T2 belongs to Q
(i)
j and it does not belong to IEQ(i): As T2 does not

belong to IEQ(i), we can assume that rank of T1 in IEQ(i) is higher

than rank of T2 in IEQ(i). If for Q
(i)
j also rank of T1 is higher than rank

of T2, then the pair is concordant otherwise it is discordant.

(c) Case 3: T1 belongs to Q
(i)
j but it does not belong to IEQ(i)

i. T2 belongs to IEQ(i) and it does not belong to Q
(i)
j : As T2 does not

belong to Q
(i)
j and T1 belongs to Q

(i)
j , so in Q

(i)
j rank of T1 is higher than

rank of T2. On the other hand, as T1 does not belong to IEQ(i) and T2

belongs to IEQ(i), so rank of T2 in IEQ(i) is higher than the rank of T1

in IEQ(i). So, this case is definitely discordant.

ii. T2 belongs to both IEQ(i) and Q
(i)
j : T1 does not belong to IEQ(i) but

T2 belongs to IEQ(i). This means that rank of T2 is higher than rank of

T1 in IEQ(i). If for Q
(i)
j also rank of T2 is higher than rank of T1 then

only the pair is concordant.

iii. T2 belongs to Q
(i)
j and it does not belong to IEQ(i): None of T1 and

T2 belong to IEQ(i). So, we can not say anything about the concor-

dance/discordance of this pair. For safe calculations, we have assumed

this as a case of discordance.

4. Now finally calculate the modified Kendall correlation coefficient in the same way

as the original.

SimQuery(IEQ(i), Q
(i)
j ) =

no of concordant pairs− no of discordant pairs
1
2 |U |(|U | − 1)

2.2.2.2 Modification 2

This is a relatively lenient version of the above variation. Here in case of discordant

pairs, the difference between the weights of the discordant terms is taken into account.

If that is less than a threshold, then the pair is considered as a concordant pair.
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T1 T2 Treated as Concordance if

In IEQ(i), not in Q
(i)
j In IEQ(i), not in Q

(i)
j Never

In IEQ(i), not in Q
(i)
j In IEQ(i) and in Q

(i)
j

In IEQ(i), rank(T1) <
rank(T2)

In IEQ(i), not in Q
(i)
j In Q

(i)
j , not in IEQ(i) Never

In IEQ(i) and in Q
(i)
j In IEQ(i), not in Q

(i)
j

In IEQ(i), rank(T1) >
rank(T2)

In IEQ(i) and in Q
(i)
j In IEQ(i) and in Q

(i)
j

In both IEQ(i) and Q
(i)
j ,

either rank(T1) > rank(T2) or
rank(T1) <= rank(T2)

In IEQ(i) and in Q
(i)
j In Q

(i)
j , not in IEQ(i) In Q

(i)
j , rank(T1) > rank(T2)

In Q
(i)
j , not in IEQ(i) In IEQ(i), not in Q

(i)
j Never

In Q
(i)
j , not in IEQ(i) In IEQ(i) and in Q

(i)
j In Q

(i)
j , rank(T1) < rank(T2)

In Q
(i)
j , not in IEQ(i) In Q

(i)
j , not in IEQ(i) Never

Table 2.7: Modified Kendall Rank Correlation - Modification 1

Selection of Threshold:

As the range of weights in ideal (IEQ(i)) and candidate queries (Q
(i)
j ) are different, we

need two thresholds Θ1 and Θ2, one for the ideal query and one for the candidate query.

Θ1: This can be taken as a percentage of average weight or maximum weight of IEQ(i).

Θ2: This can be taken as a percentage of average weight or maximum weight of Q
(i)
j .

2.2.2.3 Modification 3

In the first modification, we simply counted the no. of concordant and discordant pairs.

But here each concordance and discordance is assigned a weight [9]. That weight is

basically influenced by two factors:

1. Element weights: As the higher weighted terms are considered to be more im-

portant, concordance and discordance among the higher weighted terms should

be given more importance than concordance and discordance among the lower

weighted terms. We, therefore, use the ideal weights of the terms belonging to the

selected pair, as a multiplying factor.

2. Element similarities: While element weights address the question of swaps occur-

ring near the beginning or an end of a permutation, many times the importance of
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the swap crucially depends on the similarity of the elements being swapped. In an

extreme case, swapping two identical elements should result in no change to the

metric, whereas swapping two radically different elements should result in a large

effect, even if the weights are small. So, to take element similarities in account,

the weight difference between the pair of terms (weights taken from IEQ(i)) may

also be used as a multiplying factor.

Here, a single score is used which is increased for concordant pairs and decreased for

discordant pairs in the following way:

Let T1 and T2 be the terms chosen randomly from U where U is the union of terms

belonging to ideal expanded query IEQ(i) and candidate expanded query Q
(i)
j .

For concordance,

score = score + (weight of T1 from IEQ(i))*(weight of T2 from IEQ(i))*(absolute dif-

ference of weights of T1 and T2)

For discordance,

score = score - (weight of T1 from IEQ(i))*(weight of T2 from IEQ(i))*(absolute differ-

ence of weights of T1 and T2)

If anyone of T1 and T2 does not belong to IEQ(i), its weight is replaced by the average

term-weight of IEQ(i)

Finally for normalization, the score is divided by |U |*((|U |-1)/2) where |U | is the union

size.

2.2.3 Modified NDCG

2.2.3.1 Modification 1

Previously, in general NDCG the gain function was exponential. Here a linear gain

function is used. Again, to reduce the discount, the ranks of the intersecting terms

among only the intersecting terms are used whereas in the original function ranks of the

intersecting terms among all the terms of the candidate query were used.
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Modified NDCG (Modification 1): SimQuery(IEQ(i), Q
(i)
j ) =

∑
t∈IEQ(i) ∩ Q

(i)
j

W IEQ(i)

t

log(1+Rnew
Q
(i)
j

t )

where IEQ(i) and Q
(i)
j are represented in set notation, W IEQ(i)

t is the weight of term t

in IEQ(i) and Rnew
Q

(i)
j

t is the rank of the term t in IEQ(i) ∩ Q
(i)
j based on weights

from Q
(i)
j .

2.2.3.2 Modification 2

This applies just a little modification on the discounting function of the previous one.

In the previous modification we used logarithmic discounting function. Here that is

modified to K
K+x form.

Modified NDCG (Modification 2): SimQuery(IEQ(i), Q
(i)
j ) =

∑
t∈IEQ(i) ∩ Q

(i)
j

W IEQ(i)

t ∗K

K+Rnew
Q
(i)
j

t

where IEQ(i) and Q
(i)
j are represented in set notation, W IEQ(i)

t is the weight of term t

in IEQ(i) and Rnew
Q

(i)
j

t is the rank of the term t in IEQ(i) ∩ Q
(i)
j based on weights

from Q
(i)
j . K is a constant. Here we have used K=100.
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2.2.4 Result

Pearson Kendall Spearman

Modified Jaccard Index Modification 1 0.609345 0.477624 0.622117

Modified Jaccard Index Modification 2 0.568972 0.467555 0.609813

Modified Kendall rank Modification 1 0.58400 0.45014 0.59293

Modified Kendall rank Modification 2(5% Tolerance) 0.58110 0.44970 0.59334

Modified Kendall rank Modification 3 0.49527 0.38649 0.51929

Modified NDCG Modification 1 0.59481 0.46831 0.61108

Modified NDCG Modification 2 0.61155 0.47609 0.62229

Table 2.8: Modified Correlation Metrics for 225-element-set

Pearson Kendall Spearman

Modified Jaccard Index Modification 1 0.738764 0.611565 0.748209

Modified Jaccard Index Modification 2 0.686228 0.598325 0.733332

Modified Kendall rank Modification 1 0.74553 0.60069 0.74512

Modified Kendall rank Modification 2(5% Tolerance) 0.74280 0.59993 0.74273

Modified Kendall rank Modification 3 0.56782 0.46358 0.58647

Modified NDCG Modification 1 0.74689 0.61196 0.75308

Modified NDCG Modification 2 0.74039 0.60562 0.74559

Table 2.9: Modified Correlation Metrics for 45-element-set of DFR Variant

Pearson Kendall Spearman

Modified Jaccard Index Modification 1 0.752889 0.633273 0.773281

Modified Jaccard Index Modification 2 0.708425 0.620701 0.759729

Modified Kendall rank Modification 1 0.75702 0.62084 0.77041

Modified Kendall rank Modification 2(5% Tolerance) 0.75439 0.61835 0.76784

Modified Kendall rank Modification 3 0.59549 0.50018 0.62549

Modified NDCG Modification 1 0.76727 0.64110 0.78546

Modified NDCG Modification 2 0.75496 0.63112 0.77367

Table 2.10: Modified Correlation Metrics for 45-element-set of KLD Variant
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Pearson Kendall Spearman

Modified Jaccard Index Modification 1 0.642716 0.555810 0.649509

Modified Jaccard Index Modification 2 0.598220 0.548810 0.640968

Modified Kendall rank Modification 1 0.65892 0.51799 0.63880

Modified Kendall rank Modification 2(5% Tolerance) 0.65786 0.51606 0.63771

Modified Kendall rank Modification 3 0.48432 0.42281 0.50300

Modified NDCG Modification 1 0.64712 0.54432 0.64274

Modified NDCG Modification 2 0.64555 0.55082 0.64805

Table 2.11: Modified Correlation Metrics for 45-element-set of LCA Variant

Pearson Kendall Spearman

Modified Jaccard Index Modification 1 0.688367 0.571537 0.694557

Modified Jaccard Index Modification 2 0.669122 0.562692 0.671922

Modified Kendall rank Modification 1 0.69235 0.56292 0.67719

Modified Kendall rank Modification 2(5% Tolerance) 0.69093 0.56290 0.67460

Modified Kendall rank Modification 3 0.55696 0.45170 0.54975

Modified NDCG Modification 1 0.65974 0.55427 0.65667

Modified NDCG Modification 2 0.68946 0.56957 0.67503

Table 2.12: Modified Correlation Metrics for 45-element-set of LCANEW Variant

Pearson Kendall Spearman

Modified Jaccard Index Modification 1 0.7986536 0.7303869 0.8403749

Modified Jaccard Index Modification 2 0.7662713 0.7334866 0.8425134

Modified Kendall rank Modification 1 0.77774 0.61812 0.76066

Modified Kendall rank Modification 2(5% Tolerance) 0.78371 0.61525 0.76409

Modified Kendall rank Modification 3 0.69365 0.61788 0.72092

Modified NDCG Modification 1 0.79194 0.70700 0.82787

Modified NDCG Modification 2 0.79908 0.70844 0.83154

Table 2.13: Modified Correlation Metrics for 45-element-set of RBLM Variant
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2.2.5 Analysis

1. Modified Jaccard Index Modification 1: This so far gives the best results. Except

LCA and LCANEW variations it performs quite well (above 0.74) for the other

three groups of variations (especially for RBLM). But it still has a drawback that

it does not take care of how a term selected from ideal expanded query is weighted

in candidate expanded queries.

2. Modified Kendall versions 1 and 2 performs quite well. But the mostly hit case

(around 80%) here is when both of the terms of the chosen pair belong only to

IEQ or only to candidate expanded query, and this case has probably not been

well handled here. In order to be conservative, we just assumed such pairs to be

discordant, but that assumption may not be right.

2.3 Poor Queries

We checked the overlap among the 12 queries with the lowest Simranks scores for Jaccard

Index, Modified Jaccard Index Modification 1, Modified Kendall rank modification 1 and

Modified NDCG Modification 1. We found as many as 10 queries in common across the

4 similarity measures. These 10 queries are 401, 409, 419, 429, 430, 432, 433, 440, 442

and 448.

2.3.1 Reasons Behind Poor Performance

For some of these 10 poor queries, some probable reasons for their poor performance are

given below.

1. For 433, all candidate expanded queries have MAP=0. So, our hypothesis does

not apply in this case.

2. For 401, 432, 442 and 448 the range and standard deviations of the MAP values

achieved by the candidate queries are very low. So, for these queries, the correlation

among the SimQuery(IEQ(i), Q
(i)
j ) values and variant MAPs is in any case not

expected to be high.
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Query Mean MAP Range of MAP Standard Deviation

401 0.01471 0.0391 0.00723

432 0.00028 0.0017 0.00026

442 0.00621 0.0336 0.00805

448 0.00504 0.0249 0.00381

Table 2.14: Mean, Range and Standard Deviation of MAP for some poor queries

3. For 429 and 430, the no. of relevant documents is very low (just 11 and 6 respec-

tively).

2.3.2 Result Without Poor Queries

Results of some of the best performing metrics are given below without counting the 10

poor queries:

Jaccard Index Modified Jaccard 1 Modified Kendall 1 Modified NDCG 1

overall 0.67754 0.71609 0.68811 0.71584

DFR 0.83194 0.84399 0.84185 0.84881

KLD 0.83351 0.84528 0.84454 0.85434

LCA 0.75195 0.77666 0.75512 0.76543

LCANEW 0.79318 0.78932 0.79979 0.76276

RBLM 0.80612 0.88157 0.80833 0.87254

Table 2.15: Performance without poor queries
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Conclusion

3.1 Summary of Findings

1. Metrics for measuring overlap/correlation between IEQ and candidate expanded

queries:

Among the standard correlation metrics Jaccard index performs the best. Among

the new metrics, except modification 3 of Kendall (relatively poor), all perform

almost equally well. These modified metrics perform relatively better than Jaccard

index.

2. On variant basis, maximum correlation values are given below:

Variation Maximum Correlation Value Achieved by Metric

DFR 0.75300 NDCG Modification 1-Spearman

KLD 0.78546 NDCG Modification 1-Spearman

LCA 0.68274 Inner Product Unnormalized-Pearson

LCANEW 0.69456 Jaccard index Modification 1-Spearman

RBLM 0.84251 Jaccard Index Modification 2-Spearman

Table 3.1: Best Correlation Metrics for each variation

3. For the mixture of all these 5 variations we are getting maximum 0.62229 similarity

(NDCG Modification 2-Spearman) which is substantially less than the average of

all 5 variations (0.75). The most probable reason for this is as follows. If we have

two pairs of highly correlated lists, it does not guarantee high correlation after

mixing them up.

27
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For example, suppose the first pair of lists is:

(1,5,7) and (0.3,0.5,0.8) (this pair of lists has Spearman correlation 1)

and suppose the second pair of lists is:

(2,6,8) and (0.25,0.4,0.6) (this pair of lists also has Spearman correlation 1)

Now, the mixture of this two pair of lists will be

(1,2,5,6,7,8) and (0.3,0.25,0.5,0.4,0.8,0.6)

This mixture pair of lists has much less correlation (0.8) than both of its con-

stituents.

Apart from this, lack of proper scaling/normalization while checking the overall

correlation, can be another probable reason.

4. While finding correlation between IEQ and candidate expanded queries, Pearson,

Kendall and Spearman’s correlation coefficients are found to be quite poor (in the

range 0-(-0.2)). The reason found behind this is their tendancy to give the order

of the lists more importance than the actual list data. The detailed explanation is

given in Section 2.1.8.

5. The reason behind poor performance of Inner Product L1 norm is not yet known.

Inner Product Unnormalized metric was expected to perform worse than all three

normalized versions of Inner Product similarity. But this did not happen; instead

Inner Product Unnormalized metric sometimes gave better results among all vari-

ations of Inner ProductSimilarity metric.

3.2 Future Work

1. It is not at all clear why Inner Product L1 norm performs so badly.

2. The results for LCA variations are quite confusing. For this variation, Inner Prod-

uct unnormalized metric gives the best values which is not at all expected. Inner

Product L2 Norm is almost 0 here whereas it gives 0.5-0.65 values for other vari-

ations. The metrics like Jaccard modifications, Kendall modifications, NDCG

modifications could not perform that well for LCA variations. So, the reasons

behind these confusing results are to be found out by carefully observing the LCA

expanded queries.
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3. We have found a reasonably good overlap among the queries performing poorly

for Jaccard modifications, Kendall modifications and NDCG modifications. Some

probable reasons behind their poor performance have been discussed in Section

2.3.1. The complete characterisation is yet to be done.
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