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Abstract

In this Thesis we will discuss three important tools in cryptography namely,
Secret Sharing, Verifiable Secret Sharing and Weak Secret Sharing. In all se-
cure systems that use cryptography in practice, keys have to be protected by
encryption under other keys when they are stored in a physically insecure loca-
tion. But the keys used for protection have to be protected themselves, so no
matter what we do, we cannot avoid having one or more keys in our system that
are only protected because they are stored in a physically secure way. These
are typically very high priority keys, such as the secret key that a certification
authority (CA) uses to create certificates. Precisely because such a key is so
important, it would be a disaster if it was revealed to an adversary. But it
would be equally bad if the key was lost and could not be retrieved. In other
words, there is a big need to keep such keys secret and available at the same time.

This seemingly puts designers of security systems in a rather difficult dilemma:
to make sure that a key is not revealed to anyone, one is inclined to store it only
in a single, very secure location; while the need to make sure the key is always
available seems to imply that you should store the key in as many different lo-
cations as possible. Secret sharing is a technique that allows us to nevertheless
address both of these concerns at the same time.

Alike other methods secret sharing also have some limitations. To over
come the shortcomings of secret sharing the notation of Verifiable secret sharing
(VSS) is introduced. V SS is a two phase protocol (Sharing and Reconstruction)
carried out among n players in the presence of an adversary who can corrupt
up to t players. The goal of the V SS protocol is to share a secret S, among
the n players during the sharing phase, such that in the reconstruction phase,
the secret is reconstructed correctly. In this thesis we will discuss some known
V SS protocols under the information theoretic setting over synchronous net-
work, considering an active unbounded adversary. Weak secret sharing (WSS)
is a variant of verifiable secret sharing, where the reconstructed value may also
be some default value, in case the dealer is corrupted.

In the present thesis we have proposed a 1-round WSS protocol having
communication complexity of O(n). Previously, a 1-round WSS protocol with
communication complexity of O(n2) was proposed. Thus, we get an improve-
ment of θ(n) in the communication complexity.

3



Contents

1 Secret Sharing 6
1.1 Motivating Examples: . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Summary of the Examples . . . . . . . . . . . . . . . . . 7
1.2 Secret Sharing: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Formal Notations for Secret Sharing: . . . . . . . . . . . . . . . . 8
1.4 (n, t) - Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Properties of (n, t) - Secret Sharing: . . . . . . . . . . . . 9
1.5 Why do we need Secret Sharing: . . . . . . . . . . . . . . . . . . 10
1.6 Implementation of (n, t) - Secret Sharing . . . . . . . . . . . . . . 11

1.6.1 Combinatorial approach . . . . . . . . . . . . . . . . . . . 11
1.6.2 (n, t) - Shamir Secret Sharing . . . . . . . . . . . . . . . . 11
1.6.3 Graphical View: . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.4 Observations: . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.5 Examples: . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.6 Limitations of Shamir Secret Sharing: . . . . . . . . . . . 16
1.6.7 Problems created by active adversary: . . . . . . . . . . 16

2 Verifiable Secret Sharing 18
2.1 Dealing with active adversary . . . . . . . . . . . . . . . . . . . 18
2.2 Verifiable Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 V SS Properties: . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Communication Model . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Medium of Communication . . . . . . . . . . . . . . . . 20
2.3.2 Network Topology . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Control over Channels . . . . . . . . . . . . . . . . . . . 20
2.3.4 Synchrony of the network . . . . . . . . . . . . . . . . . . 21

2.4 Adversary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Computational power . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Control over the corrupted players . . . . . . . . . . . . . 21
2.4.3 Mobility of adversary . . . . . . . . . . . . . . . . . . . . 22
2.4.4 Corruption capacity of the adversary . . . . . . . . . . . . 22

2.5 Types of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Environment for V SS Protocols use in this Thesis . . . . . . . . 23
2.7 Types of V SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4



2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Three-Round V SS Protocol with n ≥ 4t+ 1 26
3.1 Properties of Bivariate Polynomials . . . . . . . . . . . . . . . . . 26
3.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Analysis of the Protocol . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Reducing the no. of rounds . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Two-Round Protocol with n ≥ 4t+ 1 . . . . . . . . . . . 30
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Inefficient 3-Round V SS Protocol with n ≥ 3t+ 1 32
4.1 Idea of the Protocol: . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Protocol: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Efficient Four-Round V SS Protocol with n ≥ 3t+ 1 36
5.1 Idea of the Protocol: . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Protocol: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Weak Secret Sharing 40
6.1 Weak Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1.1 Properties of WSS . . . . . . . . . . . . . . . . . . . . . . 41
6.2 V SS versus WSS . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Environment for WSS Protocols . . . . . . . . . . . . . . . . . . 41
6.4 1-Round WSS Protocol for n > 4t . . . . . . . . . . . . . . . . . 41
6.5 Our 1-Round WSS Protocol for n > 4t . . . . . . . . . . . . . . 42

6.5.1 Idea of the Protocol . . . . . . . . . . . . . . . . . . . . . 42
6.5.2 Reed-Solomon error correction . . . . . . . . . . . . . . . 42
6.5.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.5.4 Comparison between existing and our 1-Round WSS Pro-

tocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 conclusion 45

5



Chapter 1

Secret Sharing

1.1 Motivating Examples:

(1) Suppose you and your friend accidentally discovered a map that you believe
would lead you to an island full of treasure. You and your friend are very ex-
cited and would like to go home and get ready for the exciting journey to the
great fortune. Now who is going to keep the map? Suppose you and your
so-called friend do not really trust each other and are afraid that, if the other
one has the map, he/she might just go alone and take everything. Now we need
a scheme that could make sure that the map is shared in a way so that no one
would be left out in this trip. What would be the Solution?
A possible solution is to split the map into two pieces and make sure that both
the pieces are needed in order to find the island. You can happily go home
and are assured that your friend has to go with you in order to find the island.
This illustrates the basic concept of secret sharing. In this example, map is the
secret, while you and your friends are two parties that share the secret.

(2) Imagine that you have invented a new, burger sauce that is even more
tasteless than your competitors. This is important; you have to keep it secret.
You could tell only your most trusted employees the exact mixture of ingredi-
ents, but what if one of them defects to the competition? There goes the secret,
and before long every grease palace on the block will be making burgers with
sauce as tasteless as yours. Now think about it in another way. The recipe of
burger sauce is the secret and each employee is a party. Now we can do one
thing, divide the recipe into pieces for each employee, then only together can
they make the burger sauce. If any employee resigns with his single piece of
the recipe, his information is useless by itself. However, it has a problem, if one
employee, who has a piece of the sauce recipe, goes to work for the competition
and takes his piece with him, the rest of them are out of luck. He can not
reproduce the recipe, but neither can work together. His piece is as critical to
the recipe as every other piece combined.
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(3) In a bank, there is a vault which must be opened every day. The bank
employs three senior tellers; but it is not desirable to entrust the combination
to any one person. Hence, we want to design a system whereby any two of the
three senior tellers can gain access to the vault, but no individual can do so.
This problem can be solved by means of a secret sharing scheme.

(4) Imagine you are setting up to design a control mechanism for a nuclear
missile launch. There is a control panel with a key board. You can enter a
secret code through the keyboard. If the secret code is correct, then the missile
gets launched. There are three officers who are in charge of a missile launch.
A simple solution would be to give the secret code to these three officers, but
then it is possible for a lunatic officer to start a war and destroy the planet. So
you are supposed to design a control mechanism with a condition that nuclear
weapons could be accessed ONLY IF AT LEAST TWO of the three officers
come together. So it is desirable that the secret code should be divided among
the three officers in such a way that the secret code will be reconstruct only if at
least two of the three officers come together. But how can you divide the secret
code in such a way. This problem can be solved by means of a secret sharing
scheme.

(5) Good passwords are hard to memorize. A clever user could use a secret
sharing scheme to generate a set of shares for a given password and store one
share in his address book, one in his bank deposit safe, leave one share with a
friend, etc. If one day he forgets his password, he can reconstruct it easily. Of
course, writing passwords directly into the address book would pose a security
risk, as it could be stolen by an ”enemy”. If a secret sharing scheme is used, the
attacker has to steal many shares from different places.

1.1.1 Summary of the Examples

In the above examples, we note that there is a specific party D (say) and D has
a secret S (say), D wants to share the secret S among all the parties such that
any set of required parties or more parties can get S by pooling their shares.
But any set of less than required parties can not get any information about the
secret S.

In the last two examples there is a specific party called dealer D and dealer
has a secret S. Also there are three parties P1, P2, P3. Dealer D wants to share
the secret S among three parties such that

• Any single party cannot get S from his share.

• Any set of 2 or more parties can get S by pooling their shares.

If you can design such a method or scheme then that method or scheme is called
secret sharing.
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We can also think as for example one, given a secret S, we would like n parties
to share the secret so that the following properties hold.

• All n parties can get together and recover S.

• Less than n parties cannot recover S.

In the map example, S is the map, while you and your friend are the two
parties that share the secret.

1.2 Secret Sharing:

In cryptography, secret sharing is a method for distributing a secret among a
group of participants, each of which is allocated a share of the secret. The secret
can only be reconstructed when the shares are combined together; individual
shares are of no use on their own. Basically our goal is to divide some secret
S into n pieces sh1, sh2, ....shn in such a way that knowledge of any t or more
pieces makes S easily computable. Knowledge of any t−1 or fewer pieces leaves
S completely undetermined (in the sense that all its possible values are equally
likely). This scheme is called (n, t) threshold scheme. If t = n then all partici-
pants are required together to reconstruct the secret.

1.3 Formal Notations for Secret Sharing:

In any secret sharing scheme, the following three entities are involved:

• A special party called dealer (D)

• A set of n players/parties P = {P1, P2...., Pn}
• A centralized passive adversary (the adversary obtains the complete infor-

mation held by the corrupted players, but can not alter the information)
At having unbounded computing power. At controls t−1 parties (exclud-
ing D) in passive fashion such that t < n. Secret is selected uniformly and
randomly from a finite prime field F , such that |F | > n. All computation
and communication are done over F .

NOTE: We cannot use public key cryptography, digital signatures, etc against
At. Because At has unbounded computing power, and the secrecy of the pub-
lic key cryptographic schemes holds good against an adversary having bounded
computing power. Because the secrecy of the public key cryptographic schemes
depends on the difficulty of solving certain number-theoretic hard problems. e.g.
secrecy of RSA depends on factoring a number, and secrecy of ELGamal depends
on Discrete logarithm. Now if adversary has unbounded computing power then
using brute-force algorithm adversary can solve factoring and Discrete Loga-
rithm problems, so RSA and ELGamal breaks.

8



1.4 (n, t) - Secret Sharing

Any (n, t) - secret sharing has two phases:

1 Sharing Phase: In this phase, D has a secret S, and D distributes the shares
of S to the individual parties. See Figure1.1

2 Reconstruction Phase In this phase, parties pool their shares to recon-
struct back S.

1.4.1 Properties of (n, t) - Secret Sharing:

Any (n, t) - secret sharing scheme should satisfy the following properties:

1 Correctness: Given any t shares, we can recover the same secret S, which
was shared in the sharing phase.

2 Secrecy: Adversary At should not get any information about S during the
sharing phase from the shares of t− 1 parties under its control.

NOTE: We want to preserve the secrecy of S only up to the sharing phase.
Because, S, will be any how known publicly during reconstruction phase.

Definition [6]The view of any party Pi or adversary At, in secret sharing
consists all the information, or we can say all the messages (private messages
and broadcasts) received by him during the sharing phase. Basically view is
a random variable, because every time view may not be unique. So view is a
random variable follows a uniformly distribution.

Formalization of secrecy: Suppose (At, S), denotes the view of the adversary
At during sharing phase, where S is the shared secret. Any (n, t) - secret
sharing protocol is secure if it satisfies the following property:

View (At, S1) ≡ View (At, S2) for any two secrets S1 6= S2.

The meaning of the above property is that, the view of the adversary
for two different secrets is same. That is the view for S1 and S2 fol-
lows identical distribution. The above property against a computation-
ally unbounded adversary At is also known as Perfect Secrecy or Non-
Cryptographic Secrecy or Shannon Secrecy. Intuitively Perfect Secrecy
means that adversary At is in no better position than guessing S at the
end of sharing phase.
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Figure 1.1: Sharing Phase of a Secret Sharing Scheme

1.5 Why do we need Secret Sharing:

The original motivation for secret sharing is the following: To safeguard cryp-
tographic keys from loss, it is desirable to create backup copies. The greater
the number of copies made, the greater the risk of security exposure; the smaller
the number, the greater the risk that all are lost. Secret sharing schemes address
this issue by allowing enhanced reliability without increased risk.

In other words we can say the motivation for secret sharing is secure key
management. In some situations, there is usually one secret key that provides
access to many important files. If such a key is lost (for example, the person
who knows the key becomes unavailable, or the computer which stores the key
is destroyed), then all the important files become inaccessible. The basic idea
in secret sharing is to divide the secret key into pieces and distribute the pieces
to different persons in a group, so that certain subsets of the group can get
together to recover the key.

As a very simple example, consider the following scheme that includes a
group of n players. Each player is given a share shi, which is a random bit
string of a fixed specified length. The secret is the bit string

S = sh1
⊕
sh2

⊕
........

⊕
shn

10



Note that all shares are needed to recover the secret. A general secret sharing
scheme specifies the minimal sets of users who are able to recover the secret by
pooling their secret information. The simple example above is a perfect n out
of n secret sharing scheme.

1.6 Implementation of (n, t) - Secret Sharing

To implement (n, t) - secret sharing, one way is to use the combinatorial ap-
proach.

1.6.1 Combinatorial approach

Let P = {P1, P2, ......Pn} be the set of n players. Total number of subsets with
t players are

(
n
t

)
= k (say). Suppose S1, S2, ...., Sk are these subsets. Now sup-

pose S be the secret. For each Si, dealer sends rij to the player P i
j as a share,

where P i
j ∈ Si and S = ri1 + ri2 + .... + rit. Do the same for each i = 1, 2, ..., k.

For reconstruction any t players come and pool their shares. But combinatorial
approach for implementing (n, t)- secret sharing is impractical and infeasible to
implement. A popular technique to implement (n, t) secret sharing uses poly-
nomial interpolation (”Lagrange interpolation”). This method was invented by
Adi Shamir in 1979.

1.6.2 (n, t) - Shamir Secret Sharing

The essential idea of Adi Shamir’s threshold scheme [8] is that 2 points are suf-
ficient to define a line, 3 points are sufficient to define a parabola or a circle, 4
points to define a cubic curve and so forth. That is, it takes t points to define a
polynomial of degree t−1. Shamir’s secret sharing scheme is a threshold scheme
based on polynomial interpolation.

Let us suppose that there is a dealer D with secret S. Dealer D wants to
share the secret S among the n players P1, P2, ....., Pn such that any t ≤ n players
are required to reconstruct the secret S. But no group of t− 1 participants can
do so.

1 Sharing Phase: D chooses a random polynomial f(x) with degree t−1 over
the finite field F with secret S = f(0). We require that |F | = p ≥ n + 1,
where p is a prime or prime power. D publicly choose n random non-zero
distinct values xi from the field F , and secretly distributes to each player
Pi the share shi = f(xi).

2 Reconstruction Phase: Any t players pool their shares. Without loss of
generality assume that first t players pool their shares, sh1, sh2, ....., sht.
Now use Lagrange interpolation to find the unique polynomial f(x) such
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that degreef(x) < t and f(xi) = shi for i = 1, 2, ..., t. Reconstruct the
secret to be f(0).

Lemma 1.6.1 (Lagrange interpolation formula for polynomials) Suppose given
a set of t data points:
(x1, y1), (x2, y2), .....(xi, yi), .....(xt, yt)
where no two xi are the same, the interpolation polynomial in the Lagrange form
is given as

f(x) =

t∑
i=1

yiLi(x)

Where Li(x) is given as

Li(x) = (x−x1)(x−x2).....(x−xi−1)(x−xi+1).....(x−xt)
(xi−x1)(xi−x2).....(xi−xi−1)(xi−xi+1).....(xi−xt)

. ∀i = 1, 2, .....t

NOTE: how, given the initial assumption that no two xi are the same, so
this expression is always well-defined.

Lemma 1.6.2 (Uniqueness) There is a unique polynomial which satisfies the
points:
(x1, y1), (x2, y2), .....(xi, yi), .....(xt, yt)

Proof Suppose f(x) = a0 + a1x+ a2x
2 + ...........+ at−1x

t−1 .....................(1)
be the polynomial which satisfies the above points.
f(x) interpolates the data points it’s mean that f(xi) = yi, ∀i = 1, 2, .....t
If we substitute equation (1) in here, we get a system of linear equations in the
coefficients of f(x).

The system in matrix-vector form can be written as
xt−11 xt−21 xt−31 ....... x1 1
xt−12 xt−22 xt−32 ....... x2 1
.. .. .. ....... .. ..
.. .. .. ....... .. ..
.. .. .. ....... .. ..

xt−1t xt−2t xt−3t ....... xt 1




at−1
at−2
..
..
..
a0

 =


y1
y2
..
..
..
yt


We have to solve this system for ai to construct the interpolant f(x). The

matrix on the left is commonly referred to as a Vandermonde matrix. With-
out loss of generality suppose the above system is Ax=b.
where A is Vandermonde matrix, now determinant of A is given as:

det(A) =

t∏
i,j=1,i<j

(xi − xj)

since the t points are distinct, the determinant can’t be zero as xi − xj is never
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zero, therefore A is nonsingular therefor the system has a unique solution.

Theorem 1.6.3 Shamir’s secret sharing scheme satisfies both the property of
(n, t) secret sharing, namely correctness and secrecy.

Proof Now we will proof the properties.

1 Correctness: Correctness is straightforward. We use Lemma 1.6.1 to find
the secret, we always get unique polynomial by Lemma (1.6.2).

2 Secrecy: Now we need to verify the Secrecy of this scheme. Suppose we have
only t− 1 parties contributing shares. This corresponds to knowing t− 1
points of a degree t− 1 polynomial. Can we find out coefficient f(0) = S?
Or even gain partial information about secret? It turns out we cannot.
Stating this formally, given t − 1 shares (xi, f(xi)), and a hypothetical
value x∗ for the secret, to test whether the secret is x∗. We know that
secret is constant term of f(x), so we need that x∗ = f(0), or in other
words, that point (0, x∗) is another correspondence. If we just know t− 1
points, none of which have xi = 0.Thus all x∗ values from the field F , for
the secret are equally likely, and secrecy holds.

Note that Shamir’s scheme is provable secure, that means: in a (n, t) scheme
one can prove that it makes no difference whether an attacker has t − 1 valid
shares at his disposal or none at all; as long as he has less than t shares, there
is no better option than guessing to find out the secret.

1.6.3 Graphical View:

Now again we will briefly explain Shamir’s secret sharing in graphical view, as
it will help to clear the concept.

Sharing Phase: In the sharing phase dealer chooses a random polynomial
f(x) of degree t − 1, and take n points on this polynomial. These polynomial
points dealer sends to the players. See Figure 1.2

Reconstruction Phase: In the reconstruction phase any t players come
together, without the loss of generality assume first t players pool their shares,
that is the points on the polynomial. Now we have t points, we can reconstruct
the polynomial f(x). See Figure 1.3

1.6.4 Observations:

1. In shamir’s secret sharing why we choose prime?
– Because the cardinality of finite field is prime or prime power.

13



deg t− 1

S

x1 x2 x3 xn

y1
y2

yn

y3

Dealer chooses f (x) Give n points on f (x) to the players

S

Figure 1.2: Sharing Phase

y1
y2

y3 yt

x1 x2 x3 xt

S

t players pool their shares reconstrucation of f (x)

Figure 1.3: Reconstruction Phase

2. Why we choose field, why not any other algebraic structure?
– Because field gives us facility to do operations namely, addition,

multiplication, substraction, divide. Other algebraic structure does not
provide these facilities.

3. Why we choose prime p ≥ n+ 1?
– We need to choose n non zero distinct points from the field. As field

consists of zero element, If cardinality of field is less than n + 1, we can
not choose n non zero distinct points from the field.

4. Why we choose non-zero element?
Otherwise player with 0 element can get the complete secret as: f(0) = S.

5. Why we choose distinct element?
– Otherwise more than one player will get same share, this situation
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can create problem in reconstruction of the polynomial.

1.6.5 Examples:

Example (1) -Sharing Phase: Suppose S = 1234 be the secret. Number of
players n = 6 and threshold t = 3. Now suppose dealer chooses a polynomial
f(x) = 1234 + 166x+ 94x2

over a sufficient large field. Note secret S = f(0) = 1234.
For simplicity assume that dealer chooses publicly non zero distinct elements
1, 2, 3, 4, 5. Therefore Secret share points are:
(1, 1494), (2, 1942), (3, 2598), (4, 3402), (5, 4414), (6, 5614).
Dealer gives each participant a different single point (both x and f(x) ).

Reconstruction Phase: In order to reconstruct the secret any 3 points will
be enough. Let us consider
(x1, y1) = (2, 1942), (x2, y2) = (4, 3402), (x3, y3) = (5, 4414).
Using Langrange polynomial:

L1(x) = (x−x2)(x−x3)
(x1−x2)(x1−x3)

= 1
6x

2− 11
2 x+ 31

3

L2(x) = (x−x1)(x−x3)
(x2−x1)(x2−x3)

= − 1
2x

2− 31
2 x− 5

L3(x) = (x−x1)(x−x2)
(x3−x1)(x3−x2)

= 1
3x

2− 2x+ 22
3

f(x) = y1L1(x) + y2L2(x) + y3L3(x) = 1234 + 166x+ 94x2

So secret S is f(0) = 1234.

Example (2) The bank vault example and nuclear missile launch example can
be solved using (3, 2) - Shamir secret sharing. As we know in these examples
there are three players, and dealer wants to share secret S.

Dealer chooses randomly a straight line, and gives three points to the play-

S

s1

s2

s3

α1 α2 α3
Figure 1.4: Sharing Phase
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ers on this line. If at least two parties pool their shares then the straight line
can be uniquely interpolated. But with only one share, say (α1, s1), there are
all possible straight lines in the field F passing through this point. See Figure 1.5

S1

S2

s1

α1

S

Figure 1.5: Secrecy preserved

1.6.6 Limitations of Shamir Secret Sharing:

It seems we have a solution for secret sharing, we have an efficient procedure
to share a secret such that secrecy and correctness both hold. Looks like we’re
done, right? Actually, we should not be satisfied with Shamir’s scheme. Here
are some limitations with it.

• In Shamir secret sharing, D is assumed to be honest.

• Also adversary At is assumed to be passive.

• If the participants cheat in the recover phase, the secret can not be recov-
ered. The other participants don’t even have a way of knowing if someone
cheated.

In real life scenario, At can be active.

Definition (Active Corruption) At has full control over the corrupted parties
and can force the corrupted parties to behave in any arbitrary manner during
a protocol.

1.6.7 Problems created by active adversary:

Sharing Phase: In the sharing phase of Shamir secret sharing dealer dis-
tributes the shares. We assumed that dealer D is honest, and honestly chooses
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the polynomial f(x) of degree(t− 1), but D may be corrupted and can choose
polynomial f(x) of degree ≥ t, then how can t players reconstruct the same
polynomial f(x). Since t points can reconstruct a polynomial of degree at most
t− 1. In other words, the dealer may not a share valid secret and may get away
with it.

Reconstruction Phase: Suppose D is honest but one or more parties are
dishonest. That is some players are actively corrupted. In reconstruction phase
actively corrupted players may produce wrong shares.

The above two problems clearly say that secret sharing is not equipped to
tolerate these problems.
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Chapter 2

Verifiable Secret Sharing

In chapter 1, we stated, if dealer or participants are cheater then there arise two
problems:

1. In the sharing phase, the dealer might send inconsistent shares to the
players.

2. In the reconstruction phase players can give wrong shares.

In other words we can say that if adversary is actively corrupted (adversary
takes full control over the corrupted players) then there is problem to recon-
struct the secret. To overcome these problems, the first effort came from Tompa
and Woll [3] and McEliece and Sarwate [4], who gave some partial solutions.
After that, the notion of V SS was introduced by Chor, Goldwasser, Micali and
Awerbuch [2] to completely resolve the problems.

2.1 Dealing with active adversary

We should incorporate verification mechanism which ensures the following:

1. D has selected a t degree polynomial and distributed shares on this poly-
nomial during the sharing phase.

2. The share produced by a party during the reconstruction phase is same as
the one received during the sharing phase. It means, it should be verified
that parties produce right shares.

Secret sharing (SS) + above verification mechanism = Verifiable Secret
Sharing (V SS)
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2.2 Verifiable Secret Sharing

Let P = {P1, P2, .....Pn} be the set on n players, and D be the dealer. Now
there are two models:

1. D ∈ P

2. D /∈ P .

We will assume (1) D ∈ P , also assume that at most t players can actively
corrupted (possibly including D). Now we define the verifiable secret sharing.
V SS is a two phase protocol (Sharing and Reconstruction) carried out among
n parties in the presence of a active adversary. The goal of the V SS is to share
a secret, S, among the n parties during the sharing phase in a way that would
later allow for a unique reconstruction of this secret in the reconstruction phase,
while preserving the secrecy of S until the reconstruction phase.

Sharing Phase: The dealer initially holds secret S ∈ F where F is a finite
field of sufficient size; and each player Pi holds some private information
ri. The sharing phase may consist of several rounds. In each round, each
player can privately send messages to other players or can broadcast a
massage.

Reconstruction Phase: In the reconstruction phase, each player Pi reveals
his share r∗i (a dishonest player may reveal r∗i 6= ri), and a reconstruction
function Rec is applied in order to compute the secret, S = Rec(v∗1 , ..., v

∗
n).

2.2.1 V SS Properties:

Any V SS protocol should satisfy the following properties:

Secrecy: If D is honest (i.e., is uncorrupted by the adversary), then the adver-
sary’s view during the sharing phase reveals no information about S. More
formally, the adversary’s view is identically distributed under all different
values of S. It means, if D is honest, then secret S is perfectly secure
during the Sharing phase. Note we need secrecy if D is honest and up to
the sharing phase.

Correctness: If D is honest, then the reconstructed value is always equal to
the secret S, irrespective of the behavior of adversary.

Strong commitment: If D is dishonest, then there exits some S∗ ∈ F such
that S∗ is committed/shared by D during sharing phase, and same S∗ will
be reconstructed during reconstruction phase, irrespective of the behavior
of adversary.

Now there arise some questions,

1. How the corruption is done?
–It depends on the adversary model.
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2. How we can verify that secret distribution is consistent?
–To verify this there is need for communication between players, so com-
munication model is required.

2.3 Communication Model

Communication model [6] has some attributes as Medium of Communication,
Network Topology, Control over Channels, Synchrony of Network etc.

2.3.1 Medium of Communication

In any V SS protocol, the parties communicate with each other over channels
where channels can be point-to-point, multi-cast and broadcast.

Point-to-point channels: It is a one to one channel, which enables both way
communication between two players.

Multi-cast channels: It is a one to many channel, which allows a player to
send some message identically to a subset of players in the network.

Broadcast channels: It is a one to all channel, which allows any player to
send some message identically to all other players in the network.

2.3.2 Network Topology

The topology of the network means, how players are connected to each other.
Basically a network can be of two types complete or incomplete.

Complete network: In a complete network, every pair of players are directly
connected. That is all players form a complete graph.

Incomplete network: In an incomplete network, the connectivity can be lim-
ited. That is every pair of players may not be directly connected.

2.3.3 Control over Channels

Communication channels can be categorized according to the control of the
adversary over channels. We distinguish three levels of control over the channel,
Secure, Insecure, and Unauthenticated.

Secure: Channel is secure, it means, channel is authentic and secret. In simple
words we can say that in secure channel model, the communication be-
tween any two uncorrupted or honest players are completely out of reach
to the adversary i.e adversary cannot affect or change or even eavesdrop
the communication.
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Insecure: Channel is insecure, it means, channel is authentic but tappable. In
simple words we can say that in insecure channel model, the adversary
can hear all the communication among all the parties; yet the adversary
can not alter the communication between two honest parties.

Unauthenticated: Channel is unauthenticated, it means, channel is unau-
thenticate and tappable. In simple words we can say that in unauthenti-
cated channel model, the adversary has full control over the communica-
tion. That is, on the top of tapping the communication the adversary can
delete, generate and modify messages at wish.

2.3.4 Synchrony of the network

There are two types of network setting Synchronous setting and Asynchronous
Setting.

Synchronous setting: In synchronous setting there is concept of global clock.
It means if a player sends a massage to another player, then time delay is
bounded by some known constant.

Asynchronous setting: In asynchronous setting there is no concept of global
clock. It means if a player sends a massage to another player, then there
is no fix time for massage delay. Moreover, messages may be received in
an order different than the order of sending.

2.4 Adversary Model

In adversary model [6], we need to know, what is the computational power of
adversary, control over the corrupted players by adversary, mobility of adversary,
and corruption capacity of the adversary. We will discuss all these one by one.

2.4.1 Computational power

The computational power of the adversary may be limited to probabilistic poly-
nomial time or may have unbounded computing power. Adversary with polyno-
mial time power is called bounded adversary, and with unbounded computing
power is called unbounded adversary.

2.4.2 Control over the corrupted players

Control over the corrupted players [7] means, what can the adversary do with
the information of the corrupted players. An adversary can control over the
players in four ways. According to these four ways, the adversary can be of four
type, namely passive, active, fail-stop and mixed adversary

Passive adversary: If the adversary acts like an eavesdropper, that is adver-
sary can try to know the data of honest players on the basis of information
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with corrupted players, but can not alter the data of corrupted players.
Such an adversary is called as passive adversary.

Active adversary: If the adversary can take complete control of the corrupted
players and can alter the behavior of the corrupted players in an arbitrary
fashion. Such an adversary is called active adversary.

Fail-stop adversary: If the adversary can stop the working of any of the cor-
rupted player. Such an adversary is called as fail-stop adversary.

Mixed adversary: If the adversary may simultaneously control some players
in passive, active and fail-stop fashion (possibly disjoint set of players).
Such an adversary is called mixed adversary.

2.4.3 Mobility of adversary

Mobility of adversary means, at which stage, during the protocol adversary can
corrupt the players, according to that stage we can categorize the adversary.
According to mobility of adversary, there can be three types of adversary, namely
static, adaptive and mobile.

Static adversary: If the set of corrupted players is fixed by adversary, before
the protocol begins its execution (but set of corrupted players unknown to
us), then such an adversary is called as a static adversary. Once a party
is corrupted by static adversary, he remains corrupted for the rest of the
protocol execution.

Adaptive adversary: If the adversary is allowed to corrupt players during
the protocol execution, then such an adversary is called as an adaptive
adversary. Thus an adaptive adversary chooses which player to corrupt as
the protocol proceeds. Once a party is corrupted, he remains corrupted
for the rest of the protocol execution.

Mobile adversary: If an adversary can corrupt players at any time, but he
can also release corrupted players, regaining the capability to corrupt fur-
ther players, such an adversary is called as a mobile adversary. Thus an
adversary is mobile if he can corrupt, in an adaptive way, a different set
of parties at different times during the execution. That is a party once
corrupted need not remain so throughout.

2.4.4 Corruption capacity of the adversary

Corruption capacity of an adversary is defined as the maximum number of
players, which can be corrupted by adversary. There are two different ways of
specifying the number of corrupted players, namely threshold and non-threshold.

Threshold: In the threshold specialization, the number of corrupted players,
at any given time, is limited to at most t (a threshold).
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Non-threshold The non-threshold specialization is a generalization of the thresh-
old one. In the non-threshold specialization, an adversary structure which
is a set of subsets of the players, is used where the adversary is permitted
to corrupt the players of any one arbitrarily chosen subset in the adversary
structure.

2.5 Types of Security

According to the computing power of adversary, we can categorize the secu-
rity into two types. Security against the adversary having unlimited computing
power, is called information-theoretic security. While security against an adver-
sary having limited computing power, is called cryptographic security.

2.6 Environment for V SS Protocols use in this
Thesis

In this thesis, we will survey V SS protocols in the following setting:

• Communication Model

1. Medium of Communication: Point-to-point channel with and
sometime without broadcast channel.

2. Network Topology: Complete network

3. Control over Channels: Secure channel model.

4. Synchrony of Network: synchronous

• Adversary Model

1. Computational power: Unbounded powerful adversary.

2. Control over the Corrupted Players: Active

3. Mobility: Static

4. Corruption Capacity: Threshold

NOTE: We will talk about information-theoretic security, because we are
assuming adversary with unbounded computing power. We denote At as the
adversary with the above features, where t is the threshold for corruption.

Still before survey of V SS protocols we need to know some thing more. Any
V SS protocol under the above setting has four parameter namely, Resilience,
Communication Complexity, Round Complexity and Computation Complexity.

• Resilience: Resilience is the maximum number of corrupted players that
can be tolerated by the protocol, and still protocol satisfy its all three
properties secrecy, correctness and strong commitment.
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• Communication complexity: Communication complexity tries to quan-
tify the amount of communication required for the protocol. It is the total
number of bits communicated by the honest parties in the protocol. A pro-
tocol is called communication efficient if the communication complexity is
polynomial in n and error parameter (in case the protocol is statistical
and has an error parameter).

• Round complexity: Round complexity is the total number of rounds
taken for the execution of the protocol in sharing phase. Generally all the
V SS protocol take only one round to reconstruct the secret. The round
complexity of V SS protocols is one of their most important complexity
measures. Indeed, interaction over a computer network is usually the most
time-consuming operation (because of lagging or network congestion). It is
thus very important to devise protocols which require the minimal number
of rounds to complete. A protocol is called round efficient if the round
complexity is polynomial in n and the error parameter (in case the protocol
is statistical and has an error parameter).

• Computation complexity: It is the computational resources required
by the honest parties during a protocol execution. A protocol is called
computationally efficient if the computational resources required by each
honest party are polynomial in n and error parameter (in case the protocol
is statistical and has an error parameter).

2.7 Types of V SS

In information theoretic settings (i.e. under the assumption of a computationally
unbounded adversary), there are mainly two flavors of V SS namely Perfect V SS
(i.e. error free) and statistical V SS (involves some probability of error)

Perfect V SS: A V SS protocol is said to be perfect V SS, if the protocol sat-
isfies all the three properties secrecy, correctness and strong commitment,
without any error probability.

Statistical V SS: A V SS protocol is said to be statistical V SS, if the V SS
protocol satisfies the secrecy. But protocol satisfies two other properties
correctness and strong commitment with some error probability.
NOTE: We assume secrecy to be perfect

Theorem 2.7.1 [14] Perfect V SS protocol, tolerating adversary At is possible
if and only if n ≥ 3t+ 1.

Theorem 2.7.2 [13] Statistical V SS protocol, tolerating adversary At is pos-
sible if and only if n ≥ 2t+ 1.
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2.8 Conclusion

In this chapter we looked into the definition of the V SS. Also we discussed
the different settings for the V SS protocols. Finally in the section 2.6 we men-
tioned the environment of our interest, for the V SS protocols. In the upcoming
chapters we will study the perfect V SS protocols in this environment.

25



Chapter 3

Three-Round V SS Protocol
with n ≥ 4t + 1

In this chapter we will discuss the three-round V SS protocol [5] with n ≥ 4t+1
under the setting, which we considered in chapter 2. The protocol is designed
using bivariate polynomials. So first we need to know the properties of the bi-
variate polynomial.

3.1 Properties of Bivariate Polynomials

Let us suppose that F (x, y) be the random bivariate polynomial over the field
F of degree t in both x and y. Suppose F (x, y) is given as:

F (x, y) =

i=t,j=t∑
i=0,j=0

rijx
iyj , where rij ∈ F

• F (x, y) can have at most (t+ 1)2 coefficients.

• If we know (t + 1)2 points on the bivariate polynomial F (x, y), but we
don’t know, what is F (x, y), then we can reconstruct uniquely F (x, y).

• Let fi(x) = F (x, i) and gi(y) = F (i, y), where i, j ∈ F , then both fi(x)
and gi(y) are univariate polynomial of degree t.

• fi(j) = gj(i)

NOTE: Each fi(x) is the ith row polynomial, and each gj(y) is the jth col-
umn polynomial of the Table 3.1, ∀i, j ∈ {1, 2, ...., n}. It simply means that, the
values in the ith row are the values on the polynomial fi(x), and similarly values
in the jth column are the values on the polynomial gj(y). We have n ≥ t values
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Table 3.1: n2 points on F (x, y)
g1(y) ↓ .... gj(y) ↓ .... gn(y) ↓

f1(x)→ F (1, 1) .... F (j, 1) .... F (n, 1)

.... .... .... .... .... ....
fi(x→ F (1, i) .... F (j, i) .... F (n, i)

.... .... .... .... .... ....
fn(x)→ F (1, n) .... F (j, n) .... F (n, n)

in each row and in each column, and degree of fi(x) and gj(y) is t. So we can
easily reconstruct both fi(x) and gj(y).

3.2 Protocol

Sharing phase: Three Rounds

• Round (1)

1. Dealer D chooses a random bivariate polynomial F (x, y) over the
field F , with degree t in x and y such that F (0, 0) = S, where S ∈ F
is the secret.

2. Dealer D privately sends to every player Pi the univariate polynomi-
als fi(x) = F (x, i) and gi(y) = F (i, y).

• Round (2)
Every player Pi privately send to Pj the value gi(j) ∀j ∈ {1, 2, ......n}.

• Round (3)
Player Pj broadcast a list Lj of players Pi for whom it holds that fj(i) 6=
gi(j).

Local computation by each player:

1. Every player construct a graph G on n nodes. In G, the edge (i, j) exists
if Pi is not in the list Lj and Pj is not in the list Li.

2. Find the complementary graph of G.

3. Find the maximal matching in the complementary graph

4. Define C to be G without the vertices of the matching.

5. Define ADD to be the set of vertices i such that i 6= C and there exits
2t+ 1 nodes j ∈ C such that i, j ∈ G.

6. If |C| + |ADD| ≥ 3t + 1 the accept the sharing, otherwise disqualify the
dealer.
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Reconstruction Phase:
Each player Pi ∈ C ∪ADD broadcasts fi(0). Use error correction on {fi(0)}i∈C∪ADD

to recover the polynomial g0(y) = F (0, y). The reconstructed value is g0(0).

3.3 Analysis of the Protocol

Sharing Phase:

Round (1): In the first round dealer simply chooses a random polynomial
F (x, y), and hide the secret S as the constant term of the polynomial
F (x, y). Because dealer chooses F (x, y) randomly, so players do not know
the F (x, y). Now dealer shares the secret S by sending univariate polyno-
mials to the players. Indices of the players are fixed and publicly known.

Round (2): Now we need to check whether the shares distributed by dealer in
round (1) are consistent or not. Because dealer may also be corrupted. For
this there is need for communication between the players. So every player
Pi privately sends to Pj the value gi(j), because Pi will be consistent with
Pj iff gi(j) = fj(i) and gj(i) = fi(j).

Round (3): Every player Pi construct a list Li of inconsistent players, and
broadcast this list.
NOTE: Still we can not say any thing about Li, even we can not say any
thing about cardinality of Li, because a dishonest player can broadcast any
list with cardinality 0 to n

Local computation by each player: In third round of sharing phase every
player broadcast the list Li. So every player has a set of lists, L =
{L1, L2, ......Ln}. Now draw a graph G with n vertices and there is an
edge (i,j) iff Pi is not in the list Lj , and Pj is not in the list Li.
NOTE: If dealer has shared something consistent then in graph G there
will be a clique of size at list 3t+ 1
But to find the clique in a graph is a NP -hard problem, so we use a trick
here, for that we need to know some basic definitions from graph theory.

• Definition (Compliment Graph): In graph theory, the complement
or inverse of a graph G is a graph H on the same vertices such that
two vertices of H are adjacent iff they are not adjacent in G.

• Definition (Maximal Matching): Given a graph G = (V,E), a match-
ing M in G is a set of pairwise non-adjacent edges; that is, no two
edges share a common vertex. A maximal matching is a matching M
of a graph G with the property that if any edge not in M is added to
M , it is no longer a matching, that is, M is maximal if it is not a
proper subset of any other matching in graph G.
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• Definition (Clique): A clique in an undirected graph G is a subset
C of the vertex set of G, such that for every two vertices in C, there
exists an edge connecting the two.

Reconstruction Phase: To reconstruct the share S, each player Pi ∈ C ∪
ADD broadcasts fi(0). Now among these fi(0) values at most t may be
corrupted, and |C∪ADD| ≥ 3t+1, also note that fi(0) = g0(y) = F (0, y).
By using error correcting algorithm we can construct g0(y), and secret is
S = g0(0).

Lemma 3.3.1 If dealer is honest then C includes at least 2t+1 honest players.

Proof If D honest then there is a clique between all honest players. This means
that each edge in the matching includes at least one dishonest player. Thus there
can be at most t honest players in the matching, and all are the rest are in C.
Thus, there are at least 2t+ 1 honest players in C.

Lemma 3.3.2 If dealer is honest then each honest player Pi not in C will be
included in ADD.

Proof If D is honest then by above lemma 3.3.1, there are at least 2t+1 honest
players in C. Also we know that, in the honest dealer case, all honest players
are a clique. If Pi is honest and Pi /∈ C, then Pi will be connected to at least
2t+ 1 players in C and hence Pi will be add to ADD.

Lemma 3.3.3 Even if dealer is dishonest and dealer does not get disqualified
in the sharing phase, then also the set of honest players in C ∪ADD defines a
unique bivariate polynomial F ∗(x, y) of degree at most t in x and y.

Proof Let us suppose that D does not disqualified in the sharing phase, then
|C| ≥ 2t+ 1. Otherwise |C|+ |ADD| < 3t+ 1 and D should not have qualified.
Now C contains at least t + 1 honest players. Suppose these honest players
defines a polynomial F ∗(x, y). According to definition of ADD, every other
honest player Pi ∈ ADD agree with at least 2t+ 1 values in C, out of which at
least t+ 1 belong to honest players. Thus it is on F ∗(x, y). Take S∗ = F ∗(0, 0).
We need to prove that this value will be reconstructed by all the good players.
We know that |C|+ |ADD| ≥ 3t+ 1 and all good players in C ∪ ADD defines
this secret S∗ and there are at most t bad players in C ∪ADD. Thus, the error
correcting procedure will yield the values S∗.

Theorem 3.3.4 The three round protocol satisfies all the three properties of
V SS.

Proof We will show that all the three properties of the V SS are satisfied by
the protocol. As we know that the secrecy and the correctness properties make
sense, if adversary is honest. Third property strong commitment is required to
be shown when dealer is dishonest. so we will take two cases.
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• HONEST DEALER:

Secrecy: We need to show that the secrecy is preserved up to sharing
phase. For this we analysis each round of sharing phase. In Round
(1) secrecy preserve, because even if adversary controls over t play-
ers, then adversary has knowledge of t, fi(x) and gi(y) pairs. But
to reconstruct the secret S, which is the constant term of F (x, y),
adversary needs at least such t + 1 pairs. So secrecy is preserved.
Adversary can only guess the value of the secret, and that guess can
be any value from the field F . In Round (2) player Pi sends to player
Pj the value gi(j), then also adversary can not get any information
about the secret. Because even if Pj is corrupted then also he is re-
ceiving gi(j) = fj(i) value from Pi that he has already obtained. In
Round (3) also no information is revealed related to the secret. Now
only we need to show that dealer does not get disqualified. From
Lemma 3.3.1 and Lemma 3.3.2 we note that |C| + |ADD| ≥ 3t + 1
will hold if D is honest. So dealer will not be disqualified.

Correctness: It is straight forward. If dealer is honest then from Lemma
3.3.1 and Lemma 3.3.2 we know that |C| + |ADD| ≥ 3t + 1 and all
honest players are in one of the sets. In the reconstruction phase at
least 2t+ 1 of the 3t+ 1 values are the true values of g0(y) hence the
error correction recovers this polynomial and the secret S

• DISHONEST DEALER:

Strong commitment: If D is dishonest then there are two cases, either
D disqualified or qualified. If D disqualified then protocol has termi-
nated properly. So we think only when D was not disqualified. That
is |C| + |ADD| ≥ 3t + 1. Now we need to show that there exist a
consistent secret S∗ and all good players reconstruct S∗. It is proved
by Lemma 3.3.3. Hence proof of the theorem completes.

3.4 Reducing the no. of rounds

In this section we will study, how can we reduce the number of rounds from
three to two. To reduce the number of rounds Gennaro et.al [5] introduced a
technique. According to this technique in round one when dealer sends shares,
in the same time players exchange random pads via private channels. Now in the
next round instead of sending values via private channels, players can broadcast
their values by using random pad. Now at this point we can easily check where
is inconsistency occurred.

3.4.1 Two-Round Protocol with n ≥ 4t+ 1

Sharing phase; Two Rounds:

• Round (1)
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1. Dealer D chooses a random bivariate polynomial F (x, y) over the
field F , with degree t in x and y such that F (0, 0) = S. where S ∈ F
be the secret.

2. Dealer D privately sends to every player Pi the univariate polynomi-
als fi(x) = F (x, i) and gi(y) = F (i, y).

3. Player Pi sends to each player Pj , an independent random pad rij
picked uniformly from the field F .

• Round (2)
Every player Pi broadcasts

– aij = fi(j) + rij

– bij = gi(j) + rji

Local computation by each player:

1. Define Li to include all players Pj for whom bij 6= aji.

2. Every player construct a graph G on n nodes, in G, exits an edge (i, j) if
Pi is not in the list Lj and Pj is not in the list Li.

3. Find the complementary graph of G.

4. Find the maximal matching in the complementary graph

5. Define C to be G without the vertices of the matching.

6. Define ADD to be the set of vertices i such that i 6= C and there exits
2t+ 1 nodes j ∈ C such that i, j ∈ G.

7. If |C| + |ADD| ≥ 3t + 1 the accept the sharing, otherwise disqualify the
dealer.

Reconstruction Phase:
Each player Pi ∈ C∪ADD broadcasts fi(0). Use error correction on {fi(0)}i∈C∪ADD

to recover the polynomial g0(y) = F (0, y). The reconstructed value is g0(0).

3.5 Conclusion

In this chapter we discussed a 3-round V SS protocol with n ≥ 4t+ 1 given by
Gennaro et. al [5]. Also we studied a round reduction technique, and discussed
a 2-round V SS protocol with n ≥ 4t + 1. In the next chapter, we will discuss
an inefficient 3-round protocol with n ≥ 3t+ 1
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Chapter 4

Inefficient 3-Round V SS
Protocol with n ≥ 3t + 1

In this chapter we will discuss an inefficient three round protocol of [5] with
n ≥ 3t + 1. Suppose P = {P1, P2, ......Pn} be the set of n players and t be the
threshold value. Now first we will look at two results and then we will start
protocol.

Theorem 4.0.1 A perfect V SS protocol can be designed iff n ≥ 3t+ 1. That is
no matter whatever be the size of the network but this network can be corrupted
up to 33%. So we can design perfect V SS protocol for n ≥ 3t+1, n ≥ 4t+1, n ≥
5t+ 1 etc. But we can not design perfect V SS protocol for any n < 3t+ 1.

Theorem 4.0.2 The minimum number of rounds needed to design a perfect
V SS protocol for n = 3t+ 1 is 3, i.e.if network is corrupted up to33%, then we
need at least 3 rounds to design a V SS protocol.

4.1 Idea of the Protocol:

Very first question comes in our mind, is it possible to design such a protocol?
Our answer will be positive, yes by Theorem (4.0.1) we can say , it is possible.
Now we think a little more, is it possible to design two-round perfect V SS pro-
tocol for n = 3t + 1? This time our answer will be negative , no we can not
design because of Theorem (4.0.2). Ok one more question, can we design a more
than three-round perfect V SS protocol for n ≥ 3t+ 1? Of course yes, because
three-round is the lower bound.
Now we start the idea of the protocol, let us suppose that P1, P2, ....Pn be the
n players with n ≥ 3t+ 1, at most any t players may be corrupt. Suppose D be
the Dealer. D wants to share a secret S∈F where F is a field.
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NOTE: All computation will be over this field F

Now there can be at most t corrupted players. Total number of subsets with
t players are

(
n
t

)
= k (say). Suppose S1, S2, ..........Sk are these subsets. Now

choose k numbers from the field F such that S= r1 + r2 + ......+ rk. We can do
it easily as we can generate random numbers r1, r2, .....rk−1 and then let rk=
S-(r1+r2+ ......+rk−1). This is also called additive sharing. Now dealer D gives
rl share to each player who are not in Sl, l=1,2....,k. Therefore at least n − t
player get rl share and these t players who are in Sl will never get rl also among
these at least n − t = 2t + 1 players, at least t+1 players are honest. Now in
reconstruction phase we want to reconstruct S for this we need rl, l = 1, 2, ...., k
shares. So for rl share every player who is not in Sl, will give his rl share.
Among them at most t can be corrupted and at least t + 1 will be honest. So
take majority based decision for rl. Now we need to think more, suppose If
dealer D is dishonest then we need to ensure that all honest players get same
share. That is say dealer shared rl among all n − t players who are not in Sl,
then it should be insure that all honest players get same rl. Question is- but why
we need to ensure it ? otherwise there will be problem in reconstruction phase.
since then we cannot take decision on majority based. Another question is- but
how we will ensure it ? for this each pair of players pi and pj need to exchange
all their common shares. (because D shares rl using private channel so pi and pj
do’t know what pi get and what pj get) to check if they agree. If they disagree.
a complaint is being broadcasted. If there is complaint then either the dealer
shared bad value or the dealer is honest and bad player is exchanging incorrect
values. To settle this ambiguity, dealer has to reveal the controversial shares.

NOTE : This information is already in the hands of adversary so no extra
information adversary get.
NOTE : If a bad dealer modifies the controversial share at this point there is
still a unique value committed as the shared secret because the secret is defined
as sum of the k shares.

4.2 Protocol:

Sharing phase:

• Round (1) Let S1, S2, ......Sk be the sets of all possible subsets with t
players, dealer D has a secret S∈F (field), D choose k random values
r1, r2, ......rk∈F such that S= r1 + r2 + ......+ rk.

1. D sends to player Pi the value rl such that Pi /∈Sl, {l = 1, 2, ....k}
2. Simultaneously, each player Pi sends to each player Pj a random paid
rlij∈F and Pi, Pj /∈Sl, {l = 1, 2, ....k}.

• Round (2) If Pi, Pj /∈Sl,
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1. Pi broadcasts alij= rl+r
l
ij

2. Pj broadcasts alji= rl+r
l
ij , ∀ l = 1, 2, ....., k.

• Round (3) For each pair Pi and Pj such that alij 6=alji the dealer broadcasts
the value rl which is now taken by all the players.

Reconstruction Phase:
For shares rl each player Pi /∈Sl provides the share rl it owns. Take the value
that appears most often as the proper share rl. Set Rec = r1 + r2 + ......+ rk.

Theorem 4.2.1 The three round protocol satisfies all the three properties of
V SS.

Proof We will show that all the three properties satisfies by the protocol. As
we know that the secrecy and the correctness properties make sense, if adversary
is honest. Third property strong commitment is required to show when dealer
is dishonest. So we will take two cases.

• HONEST DEALER:

Secrecy: We need to show that the secrecy is preserved up to sharing
phase. For this we analyse each round of sharing phase. In Round
(1) we note that among S1, S2, .....Sk there is at least one set that
contains all corrupted players. Say Sl be that set. Now dealer gives
rl share to those players who are not in Sl. Therefor there is one
share that adversary does not get. So secrecy is preserve in round
(1). In Round (2) players broadcast their shares with random pad
(mask), so no information is revealed about the secret. In Round
(3) dealer broadcasts controversial share for alij 6=alji. This value is
already known to adversary. So no new information revealed.

Correctness: We have to show that if dealer is honest then in recon-
struction phase S will be reconstruct, irrespective of the behavior of
adversary. It is obvious because for every share rl, we are taking
majority based decision and every time we can get only at most t
corrupted shares and at least t + 1 share will be correct. Therefore
we can reconstruct the same secret S.

• DISHONEST DEALER:

Strong commitment: we need to show that if dealer is corrupted then
there exits some S∗∈F such that S∗ is commited/shared by dealer
during sharing phase and same S∗ will be reconstructed during recon-
struction phase irrespective of the behavior of adversary. Since the
secret is defined as the sum of the k shares. So even if D is dishonest,
then still a unique value committed as the shared secret at the end
of the sharing phase. Hence the property of strong commitment is
satisfied.

34



4.3 Conclusion

In the present chapter we studied an inefficient 3-round V SS protocol [5] with
n ≥ 3t+1, using additive sharing. In the next chapter we will discuss an efficient
4-round V SS protocol with n ≥ 3t+ 1.
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Chapter 5

Efficient Four-Round V SS
Protocol with n ≥ 3t + 1

In this chapter we will discuss an efficient four round protocol of [5] with
n ≥ 3t + 1. Suppose P = {P1, P2, ......Pn} be the set of n players and t be the
threshold value.

5.1 Idea of the Protocol:

We will use the concept of bivariate polynomial. Let us suppose that P1, P2, .....Pn

be the n-players with n ≥ 3t + 1 and among these n-players at most t players
may be corrupted. Suppose dealer D is any one of them. Now we think about
every situation and try to design a protocol.

1. Dealer D chooses a random bivariate polynomial F (x, y) of degree t in
x and y such that F (0, 0) = S be the secret. D sends to the player
Pi the polynomials fi(x) = F (x, i) and gi(y) = F (i, y) privately. At this
point question is- Can dealer broadcast these univariate polynomials? No
because if D broadcasts, then there is no meaning of secrecy, adversary
can get secret easily. Both fi(x) and gi(y) are univariate polynomials of
degree t. But think what is the guaranty that D has send right (consistent)
fi(x) = F (x, i) and gi(y) = F (i, y). That is if D is dishonest then D can
send inconsistent fi(x) and gi(y). So we need to check it. But how can
we check it? Since only Pi knows about it’s fi(x) and gi(y). So there is
need for communication between players, and take the benefit of property
of the bivariate polynomials.

2. Each player Pi sends to Pj the value gi(j) privately ∀ j = 1, 2, ...n. Now
again the same question. why Pi sends value privately-? because if Pi

broadcast the value gi(j), then it will be known to adversary and adversary
can reconstruct the secret. But what is the benefit of sending gi(j)? Since

36



now Pj can check whether fj(i) = gi(j) or not. If yes then both Pi and
Pj are consistent.

3. Each player Pj broadcasts a list Lj of players Pi for whom it holds that
gi(j) 6= fj(i). Now every player knows that where is inconsistency. Sup-
pose Pi and Pj are inconsistent. So either Pi or Pj is corrupt or dealer
has shared inconsistent gi(y) or fj(x). So at this point we need to know
what is the controversial share F (i, j).

4. Dealer broadcasts F (i, j). But still there is no guaranty that this F (i, j)
broadcasted byD is right share. So there is need to give chance to unhappy
players, say Pi for complain against this value.

5. Player Pi may complain if this value which was revealed by the dealer is
inconsistent with its own private information. Now again it may possible
that D is honest. That is, dealer had broadcast right share and player Pi

is corrupt. So how we will come to know this? Yes there is one way, if
D broadcasts fi(x) and gi(y) related to Pi then every one can know that
broadcasted F (i, j) by D was consistent or not.

6. Dealer D broadcasts all the information held by the Pi. That is D broad-
casts fi(x) and gi(y). Now again there is case Pi is honest and fi(x) and
gi(y) are inconsistent. But since fi(x) and gi(y) are public so players can
check fi(j) = gj(i) or not. If not, again we need to complain.

7. Complaints from the players.

But we notice, that this is a 7-round protocol. But we want to design a 4- round
protocol. So we need to think that can we compressed the rounds. First 3-rounds
can be compressed to 2-rounds using the concepts of random pad.

1. Dealer D sends to Pi the polynomials fi(x) and gi(y). Simultaneously Pi

sends to Pj an independent random pad rij use uniformly from the field
F .

2. Player Pi broadcasts
aij = fi(j) + rij
bij = gi(j) + rji
We note that, aij = fi(j) + rij = F (j, i) + rij
and bji = gj(i) + rij = F (j, i) + rij
That is if Pi and Pj are consistent then aij = bji. But if aij 6= bji then
there is inconsistency between Pi and Pj . But dealer now cannot tell
whether Pi or Pj is misbehaving. Because shares of Pi and pj are masked
and to know the real shares, D need to know the unmasked controversial
share.
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3. For each pair aij 6= bji
Pi broadcasts αij = fi(j) = F (j, i)
Pj broadcasts βji = gj(i) = F (j, i)
D broadcasts γij = F (j, i)
after this stage D knows that which player is misbehaving say Pi. So
instead broadcast its real share F (i, j) , dealer D should broadcast fi(x)
and gi(y). So that we can compressed one more round.

4. Dealer D broadcasts fi(x) and gi(y). Now again there is need to verify
this public polynomial, because if D is corrupted then there is chance that
broadcasted fi(x) and gi(y) may not be consistent.

5. Players broadcast a complaint if necessary.

Still we compressed two rounds, but to achieve 4-round protocol we need to think
more. We think about steps 3, 4 and 5. In step 3 players broadcast their shares,
and in step 4 dealer broadcast fi(x), and in step 5 need to verify fi(x). But if D
broadcasts controversial share F (j, i) in step 3 then every one know which player
is misbehaving. So in step 4 dealer broadcasts fi(x) and each player broadcast
in the clear his point on fi(x). Everybody now can check whether point is con-
sistent or inconsistent.

5.2 Protocol:

Sharing phase:

• Round (1) Dealer D chooses a random bivariate polynomial F (x, y), over
a field F of degree t in x and y with F (0, 0) = S be the secret.

1. D sends to player Pi the polynomials fi(x) and gi(y)

2. Player Pi sends to player Pj an independent random pad rij choose
from field F .

• Round (2) Player Pi broadcasts,

1. aij = fi(j) + rij

2. bij = gi(j) + rji.

• Round (3) For each pair aij 6= bji,

1. Pi broadcasts αij = fi(j)

2. Pj broadcasts βji = gj(i)

3. D broadcasts γij = F (j, i)
a player is said to be unhappy if the value which he broadcasts does
not match with the dealer’s value. If there are more than t unhappy
players then disqualified the dealer.
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• Round (4) For each unhappy player Pi, dealer broadcasts the polynomial
fi(x) and each happy player Pj broadcasts gj(i).

Local computation: For each public polynomial fi(x), check for at least 2t + 1
happy players Pj , the following holds gj(i) = fi(j). If it is not the case than
disqualify the dealer

Reconstruction Phase:

We note that F (0, 0) = S, and constant term of g0(y) = F (0, y) is the secret
S. Also note that fi(0) = g0(i) ∀i = 1, 2, ....n. So every player Pi provides
fi(0), so we get n points on a polynomial among these n points at most t
may be wrong. Now use Reed-Solomon error-correction [13] algorithm and get
polynomial g0(y) and secret S = g0(0).

5.3 Conclusion

In this chapter we discussed an efficient 4-round protocol with n ≥ 3t+ 1 given
by Gennaro et. al [5]. In the next chapter we will study a primitive of V SS,
called WSS. Also in the next chapter we will propose a 1-round WSS protocol
for n > 4t with communication complexity O(n).
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Chapter 6

Weak Secret Sharing

Weak secret sharing (WSS) is a variant of verifiable secret sharing, where the
reconstructed value may also be some default value, in case the dealer is cor-
rupted.

6.1 Weak Secret Sharing

Let P = {P1, P2, .....Pn} be the set on n players, and D be the dealer. Now
there are two models:

1. D ∈ P

2. D /∈ P .

We will assume D ∈ P and also assume that at most t players can be actively
corrupted (possibly including D). Now we define the weak secret sharing. WSS
is a two phase protocol (Sharing and Reconstruction) carried out among n par-
ties in the presence of a active adversary. The goal of the WSS is to share a
secret, S, among the n parties during the sharing phase in a way that would
later allow for a unique reconstruction of this secret in the reconstruction phase,
while preserving the secrecy of S until the reconstruction phase.

Sharing Phase: The dealer initially holds secret S ∈ F where F is a finite
field of sufficient size; and each player Pi holds some private information
ri. The sharing phase may consist of several rounds. At each round, each
player can privately send messages to other players or can broadcast a
massage.

Reconstruction Phase: In the reconstruction phase, each player Pi revealed
information r∗i (a dishonest player may reveal r∗i 6= ri), a reconstruction
function Rec is applied in order to compute the secret, S = Rec(v∗1 , ..., v

∗
n).
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6.1.1 Properties of WSS

Any WSS protocol should satisfy the following properties:

Secrecy: If D is honest (i.e., is uncorrupted by the adversary), then the adver-
sary’s view during the sharing phase reveals no information about S. More
formally, the adversary’s view is identically distributed under all different
values of S. It means, if D is honest, then secret S is perfectly secure
during the sharing phase.
NOTE: We need secrecy, if D is honest and up to the sharing phase.

Correctness: If D is honest, then the reconstructed value is always equal to
the secret S, irrespective of the behavior of adversary.

Weak commitment: If D is dishonest, then at the end of the sharing phase
there is a unique value S∗ ∈ F , such that at the end of the reconstruction
phase all honest players output S∗ or default value ⊥/∈ F , irrespective of
the behavior of the corrupted players.

6.2 V SS versus WSS

WSS is a primitive which satisfies the same properties as V SS except for the
commitment property. V SS has a strong commitment, which requires that at
the end of the sharing, there is a fixed value S∗ and that the honest parties
output this value in the reconstruction phase. In contrast, WSS has a weaker
commitment property which requires that at the end of the reconstruction phase,
the honest parties output S∗ or default value ⊥/∈ F .

6.3 Environment for WSS Protocols

We follow the environment for WSS protocols same as we presented in sec-
tion 2.6 of Chapter 2. Recall that the set of players is denoted by P =
{P1, P2, .....Pn}, and adversary is denoted by At.

Theorem 6.3.1 One-round as well as two-round perfect WSS protocol, toler-
ating adversary At, is possible if and only if n ≥ 4t+ 1.

Theorem 6.3.2 Three-round WSS protocol, tolerating adversary At, is possi-
ble if and only if n ≥ 3t+ 1.

6.4 1-Round WSS Protocol for n > 4t

Fitzi et al. [1] designed a 1-round WSS protocol, in which they used a random
bivariate polynomial.

Theorem 6.4.1 There is a 1-round WSS protocol which satisfies all the three
properties of WSS., with communication complexity O(n2).
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6.5 Our 1-Round WSS Protocol for n > 4t

Here we design a 1-round WSS protocol for n > 4t. It is shown that there exists
a 1-round WSS protocol for n > 4t by Fitzi et al. [1] They used the concept of
bivariate polynomial.

6.5.1 Idea of the Protocol

In our 1-round WSS protocol, instead of bivariate polynomial, we will use
univariate polynomial. To reconstruct the secret, we will use Reed-Solomon error
correction algorithm [12]. So first we state the Reed-Solomon error correction.

6.5.2 Reed-Solomon error correction

Suppose we have given n distinct points of which at least n − t points are on
some unique t degree polynomial, say f(x). That is we know out of n points,
at most t are wrong. It means at most t points do not lie on the polynomial
f(x). But we do not know which t points are wrong and what is f(x). Now our
goal is to reconstruct the polynomial f(x) from the given n points. To solve
this problem we have the following theorem:

Theorem 6.5.1 [12] Reed-Solomon error correction could reconstruct f(x)
from the n points, even if t of them are corrupted if and only if n ≥ 3t+ 1.

We now present the protocol. The secret S is assumed to be taken from a
finite field F with |F | > n, additionally, 1, 2, ........., n are interpreted as distinct
non-zero field elements. Suppose P = {P1, P2, .........., Pn} be the set of n players
and At be the adversary.
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6.5.3 Protocol

• Sharing Phase: One Round
Dealer D chooses a random univariate polynomial f(x) of degree t, over
the field F , with f(0) = S be the secret.

– D sends privately to the player Pi the value f(i) as a share.

• Reconstruction Phase:
Every player Pi broadcasts his share f(i). Now to reconstruct the secret
apply Reed-Solomon error correction algorithm. There arise two cases:

– Case (1): If we get a polynomial f∗(x) of degree t, after apply-
ing the Reed-Solomon error correction algorithm, then secret is
S∗ = f(0). That is secret is the constant term of the constructed
polynomial.

– Case (2): If we do not get a polynomial of degree t, after applying
the Reed-Solomon error correcting algorithm, then reconstruct a
default value ⊥/∈ F

Theorem 6.5.2 Our 1-round WSS protocol satisfies, all the three properties
of WSS protocol.

Proof We will show that all the three properties of the WSS satisfies by the
protocol. As we know that the secrecy and the correctness properties make
sense, if adversary is honest. Third property weak commitment is required to
show, when dealer is dishonest. So we will take two cases.

• HONEST DEALER:

Secrecy: We need to show that the secrecy is preserved up to the sharing
phase. In sharing phase D sends privately the value f(i) to the player
Pi. So even if adversary controls over t players, then the adversary
has knowledge of t values on the polynomial. But to reconstruct the
polynomial of degree t, adversary needs at least t + 1 values on the
polynomial. Hence secrecy is preserved.

Correctness: It is straight forward. Dealer is honest then he sends cor-
rect shares to all the players. Thus at the end of the reconstruction
phase, using Reed-Solomon error correction algorithm, we always re-
construct the same secret. which was shared by the dealer in the
sharing phase.

• DISHONEST DEALER:

Weak Commitment: Now we have to consider D is corrupted. As we
know in our protocol, there are two cases in the reconstruction phase.
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If case (2) arise then all the players compute⊥ and weak commitment
is satisfied. On the other hand, what happened, if case 1 arise. That
is a t degree polynomial constructed in the reconstruction phase. We
will show that, if in the reconstruction phase a t degree polynomial
exists, then it will be the committed polynomial by the dealer. We
know that two polynomials of degree t can have at most t common
values. That is the two polynomials of degree t can cut each other
at most t points. Now suppose adversary shares two secrets S1 and
S2, corresponding to, two t degree polynomials f1(x) and f2(x) re-
spectively. Now at most t players can be dishonest. A dishonest
player can produce any value in the reconstruction phase. Remain-
ing n − t players are honest. Among these n − t honest players at
most t players can have mixed shares (because two polynomials of
degree t can have at most t common values). Now suppose D shares
S1 with t honest players and S2 with other t honest players. Note:If
D shares Si {i = 1or2} more than t honest players then Si will be
the committed secret or ⊥ will be reconstructed. Now almost we have
done. Actually, now we have t corrupted players, t honest players
with shares of S1, t honest players with shares of S2, and t honest
players with mixed shares of S1 and S2. So we have taken care of 4t
players, but our protocol works for n > 4t players. Without loss of
generality assume that, there are n = 4t+ 1 players. Now the recon-
struction of the polynomial will depend on the share of the remaining
one honest player. Without loss of generality suppose this remaining
player has share of S1. Now if corrupted players give shares of S1

in the reconstruction phase, then we have 3t+ 1 players with shares
of S1. S1 will be the committed secret. On the other hand, if the
corrupted players give shares of S2 in the reconstruction phase, then
a default value ⊥ reconstruct. But S2 will never reconstruct. So
always unique value will be reconstruct. Hence weak commitment
property holds good.

6.5.4 Comparison between existing and our 1-Round WSS
Protocol

Existing 1-round WSS protocol of Fitzi et. al [5] has communication complexity
O(n2). In our proposed WSS protocol, during the sharing phase the dealer D
sends only one value to each player Pi. As there are n players, therefore the
total communication complexity of the proposed WSS protocol will be of O(n),
which is significantly less than the existing 1-round protocol.
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Chapter 7

conclusion

In this Thesis we discussed three important tools in cryptology namely, Secret
Sharing, Verifiable Secret Sharing and Weak Secret Sharing. We also studied
some existing perfect V SS protocol. In this work we proposed a 1- round
WSS protocol with communication complexity O(n). Now there are some open
problems:

• Open Problem (1): To derive lower bound on communication complexity
of perfect V SS.

• Open Problem (2): To design a computationally efficient 4 round statistical
V SS with n = 2t+ 1.
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