
Execution scheduling methods for mobile applications

Ansuman Dash

Execution scheduling methods for mobile applications

Dissertation submitted in partial fulfillment of the requirements
for the degree of

Master of Technology
in

Computer Science

by

Ansuman Dash
[Roll No: MTC-1305]

under the guidance of

Ansuman Banerjee
Associate Professor

Advanced Computing and Microelectronics Unit

Indian Statistical Institute
Kolkata-700108, India

July 2015

To my family and my supervisor

CERTIFICATE

This is to certify that the dissertation titled “Execution scheduling methods for
mobile applications” submitted by Ansuman Dash to Indian Statistical Institute,
Kolkata, in partial fulfillment for the award of the degree of Master of Technology
in Computer Science is a bonafide record of work carried out by him under my
supervision and guidance. The dissertation has fulfilled all the requirements as per
the regulations of this institute and, in my opinion, has reached the standard needed
for submission.

Ansuman Banerjee
Associate Professor,
Advanced Computing and Microelectronics Unit,
Indian Statistical Institute,
Kolkata-700108, INDIA.

Acknowledgments

I would like to show my highest gratitude to my advisor, Ansuman Banerjee, Advanced
Computing Microelectronics Unit, Indian Statistical Institute, Kolkata, for his guidance
and continuous support and encouragement. He has literally taught me how to do good
research, and motivated me with great insights and innovative ideas.

My deepest thanks to all the teachers of Indian Statistical Institute, for their valuable
suggestions and discussions which added an important dimension to my research work.

I would also like to thank Dr. Pradipta De, SUNY, Korea, Dr. Subhas Nandy, ISI, Kolkata
and Arani Bhattacharya, SUNY, Korea for their constructive comments and various discus-
sions on my research.

Finally, I am very much thankful to my parents and my brother, Ayusman, for their ever-
lasting supports.

Last but not the least, I would like to thank all my friends for their help and support. I
am especially grateful to Shrabanti, Moumita, Arindam and Dnyaneshwar for always being
there for me when ever I had a problem or needed some advice.

Ansuman Dash
Indian Statistical Institute

Kolkata - 700108 , India.

Abstract

Making mobile applications energy efficient immensely builds user satisfaction. Apart from
the fact that there are not many efficient techniques for evaluating energy consumption for
applications on mobile devices, the methods used are static in nature. Static techniques
assume that during the running of an application, no other process can run concurrently,
and the concerned application has the entire CPU at its disposal. This thesis is built around
three main ideas.

Firstly, we propose a novel idea of measuring the energy consumption of an application
running on a mobile device considering the fact that not always the entire CPU is available.
This is because the application may sometimes run in the foreground when the mobile is idle
and therefore, use the maximum CPU available; at other times, there maybe other tasks
being run (apart from the routine background tasks) by the user for which this application
is forced to run in the background. The major highlight of this work is in considering the
concept of variable CPU availability in energy analysis. We have also suggested to model
the energy consumption problem of a mobile phone as a finite state automaton, where our
aim is to find if a state can be reached where the entire battery of the mobile phone is
exhausted.

As our next work, we address the problem of application scheduling on user mobile devices.
Given the fact that a vast number of application may run both as in the foreground and the
background, the scheduling task is a challenging one. We propose to solve this problem using
clustering and iterative refinement. Results on simulated benchmarks show the efficacy of
our proposal.

Mobile Cloud Computing (MCC) offloading has emerged as a key way of mitigating the
resource constraints of mobile devices like smartphones. In MCC offloading systems, one
or more tasks of the mobile application are migrated and executed on the cloud system.
For our final work, we focus on utilizing MCC to optimize applications having tasks with
different levels of quality of service. We propose an algorithm to optimize the quality of
service of tasks while ensuring that their execution does not exceed the given energy budget.
Analysis of our algorithm shows that it provides the optimal solution in polynomial time.

Keywords: Energy Analysis, Reachability, Finite automaton, Static Analysis, Usage
Profile, State Refinement, Static scheduling, Clustering, Mobile Cloud, Quality of Service,
Task Scheduling, Linear Work flow, Concurrent Work flow, Topological ordering.

1

Contents

1 Introduction 9

2 Background and related work 13

2.1 Energy Analysis . 13

2.2 Scheduling of tasks . 14

2.3 Clustering . 15

2.4 Mobile Cloud Computing . 15

2.5 Handling Application Variations . 16

2.5.1 Concurrency . 17

2.5.2 Multiple Applications . 18

2.6 Handling Execution Platform Variations . 18

2.6.1 Mobile Processors . 18

2.6.2 Time and Energy Profile of Applications 19

2.6.3 Cloud architecture . 20

2.7 Impact on Quality of Experience (QOE) . 21

2.7.1 Energy Consumption . 22

2.7.2 Completion Time . 22

2.7.3 Monetary Cost . 23

2.7.4 Security . 23

3

4 CONTENTS

2.7.5 Novelties of this thesis . 24

3 REAST: Residual Energy Aware Scheduling Technique for mobile appli-
cations 25

3.1 Motivation and Objectives . 26

3.2 Formal Model . 28

3.3 Experimental Results . 30

3.4 Conclusion . 32

4 STATEREF: A STATE REFinement technique for REAST 33

4.1 Motivation and Contribution . 34

4.2 The overall methodology . 40

4.3 The iterative refinement framework . 42

4.4 Experimentation results . 46

4.5 Conclusion . 47

5 VARES: A Variation Aware Residual Energy Scheduler for mobile cloud
computing 49

5.1 Problem Description . 50

5.1.1 Mobile Cloud Computing System . 51

5.1.2 Linear Application Model . 51

5.1.3 Concurrent Application Model . 52

5.1.4 Quality of Service Optimization Problem 53

5.2 Algorithm for Linear Work flows . 54

5.3 Algorithm for Concurrent Work flows . 59

5.4 Experimental Evaluation . 62

5.5 Conclusion . 65

CONTENTS 5

6 Conclusion and Future Work 67

7 Disseminations out of this work 69

List of Figures

3.1 Usage Profile Automaton (UPA) . 28

3.2 Screenshot of CPU utilization and power consumption 31

3.3 Comparison of power consumption . 31

4.1 Usage Profile Automaton (UPA) . 35

4.2 Case: Safe to schedule . 38

4.3 A state transition automaton with an edge from state F to state H 39

4.4 Clustered state transition automaton . 39

4.5 A state transition automaton with an edge from state G to state I 39

4.6 Unsorted set of applications . 43

4.7 Clusters of applications with α = 3 . 45

4.8 Clusters refined with α = 2.5 . 45

4.9 Comparison of clustering algorithms . 47

5.1 Linear work flow of an application . 52

5.2 Linear Application Model . 53

5.3 Concurrent work flow of an application . 53

5.4 Topographical ordering of the concurrent work flow 53

5.5 Model of an concurrent application after topological ordering 54

7

8 LIST OF FIGURES

5.6 Linear simulation by varying the number of tasks 62

5.7 Linear simulation results (varying the number of tasks) 63

5.8 Linear simulation by varying the number of variants 63

5.9 Concurrent simulation by varying the number of tasks 64

5.10 Concurrent simulation results (varying the number of tasks) 65

5.11 Concurrent simulation by varying the number of variants 65

Chapter 1

Introduction

In the age where there are tremendous advancements being carried out in the field of
mobile phones, the energy limitations of these devices lead to a major area of concern. It
is necessary for the users of mobile phones to know the energy constraints of their device
so that they can make an informed choice of whether to perform certain tasks or not at a
particular time. For this reason, it is necessary to have good energy estimating techniques
at the disposal of the mobile phone’s user. Recently a lot of research is being carried out
in the area of application level energy analysis for mobile applications. One such work
has been done in [14], where the authors have designed techniques to monitor application
level energy usage on mobile devices. Other works include energy profiling of applications
done by taking physical power measurements at the component level on a piece of real
hardware [14], or by per-instruction modeling of the application [32].

An important thing to consider while performing energy analysis of an application for
execution on a mobile device is the fact that various other applications are in execution
simultaneously on the mobile device. All the other applications also consume certain amount
of energy while running on the mobile device. Along with this, the user might switch from
one application to another at any time. This makes the energy analysis problem of an
application that runs on a mobile device a tough one.

Mobile Cloud Computing (MCC) framework enables partitioning power-hungry mobile ap-
plications to utilize remote cloud resources. The key technique in MCC is code offloading,
which identifies portions of code that are profiled to be computation and energy intensive
to execute on cloud servers. The benefit of offloading to save energy on mobile devices
has been demonstrated in several prototype systems [18, 16, 38]. However, MCC systems
are yet to be in mainstream use on mobile devices [8, 29]. One of the challenges towards
practical use of MCC systems is the unpredictable operating environment. There are sev-
eral sources of variation due to application characteristics, network conditions and platform
differences. The unstable bandwidth of wireless networks can hurt the gains derived from

9

10 1. Introduction

using MCC. Similarly, diversity in application workload on the device, or on the cloud
servers can diminish the potential gains from using MCC frameworks.

At the core of it, the problem lies in how the task offloading mechanism in MCC system
selects the tasks for remote execution. If the offloading decision cannot factor in the varia-
tions in the operating environment, it can lead to poor performance. Several recent works
have explored offloading techniques that can adapt at run-time to changes in the operating
parameters. Adaptive offloading solutions are complex given the presence of several param-
eters and their unpredictable variations. Hence the solutions have explored techniques that
range from adapting to single parameter to multiple parameters.

A number of surveys have studied MCC systems from various viewpoints. For example,
Shiraz et al. discuss different methods of implementing offloading from smartphones [59].
Kumar and Lu show how MCC systems reduce energy consumption on mobile devices [39].
Sharifi et al. present a taxonomy of cyber-foraging systems based on their design and
objectives [57]. Another survey, by Sanaei et al., analyzes heterogeneity in MCC systems
from an architectural point of view [54].

This thesis is built around three main ideas. Firstly, we propose a novel idea of measuring the
energy consumption of an application running on a mobile device considering the fact that
not always the entire CPU is available. This is because the application may sometimes run
in the foreground when the mobile is idle and therefore, use the maximum CPU available;
at other times, there maybe other tasks being run (apart from the routine background
tasks) by the user for which this application is forced to run in the background. The major
highlight of this work is in considering the concept of variable CPU availability in energy
analysis. We have also suggested to model the energy consumption problem of a mobile
phone as a finite state automaton, where our aim is to find if a state can be reached where
the entire battery of the mobile phone is exhausted.

As our next work, we address the problem of application scheduling on user mobile devices.
Given the fact that a vast number of application may run both as in the foreground and the
background, the scheduling task is a challenging one. We propose to solve this problem using
clustering and iterative refinement. Results on simulated benchmarks show the efficacy of
our proposal.

Mobile Cloud Computing (MCC) offloading has emerged as a key way of mitigating the
resource constraints of mobile devices like smartphones. In MCC offloading systems, one
or more tasks of the mobile application are migrated and executed on the cloud system.
For our final work, we focus on utilizing MCC to optimize applications having tasks with
different levels of quality of service. We propose an algorithm to optimize the quality of
service of tasks while ensuring that their execution does not exceed the given energy budget.
Analysis of our algorithm shows that it provides the optimal solution in polynomial time.

11

Organization of the dissertation

The rest of the dissertation is organized into 5 chapters. A summary of the contents of the
chapters is as follows:

Chapter 2: A detailed study of relevant research is presented here.

Chapter 3: This chapter describes a methodology to check if it is possible to schedule
a given application on the mobile device. It also introduces the concept of variable
CPU availability for applications running on the mobile device.

Chapter 4: This chapter proposes refining the finite state automaton created in the
previous chapter.

Chapter 5: This chapter introduces the concept of variants of the tasks that run on the
mobile device and on the cloud architecture.

Chapter 6: This chapter presents an overview of the thesis and the future work to be
carried out.

Chapter 2

Background and related work

In this chapter, we first present a few background concepts needed for developing the foun-
dation of our framework.

2.1 Energy Analysis

Every mobile device has its own energy limitations. The energy constraints of the device
should be known to its user; for this, good energy estimating techniques are required. In
recent times, there has been a lot of research for designing techniques to monitor application
level energy usage on mobile devices. Energy profiling of applications can be done by taking
physical power measurements at the component level on a piece of real hardware [14], or
by per-instruction modeling of the application [32].

Most of the energy analysis methods existing in literature have dealt with applications
which are expected to run in the foreground, and therefore, the energy estimate is usually a
conservative over-approximation of the actual energy footprint at run-time. This is because
of the fact that these methods typically attempt to infer the longest energy path in the
application for any given input, while at run time, such inputs may not occur in practice
and the actual energy consumed maybe less than what is estimated.

In recent times, several articles have provided various models to predict the power con-
sumption of a mobile application. One of the ways to carry out energy analysis is through
program analysis. In a paper by Hao et. al [32], a novel approach to the energy analysis
problem is proposed. They have tried to calculate the code-level estimates that an applica-
tion will consume at run-time by analysing the implementation of it on the mobile device.
Furthermore, they also summarized the results at the granularity of the whole program,
path, method, and source line which can enable reduction of energy consumption of the
application.

13

14 2. Background and related work

A novel methodology to monitor average permanence with CPU availability has been pro-
posed by Banerjee et. al in [7]. Thompson et. al in [61] have suggested a model-driven
methodology to evaluate the power consumption of any mobile application architecture.
They have proposed the System Power Optimization Tool (SPOT) which predicts the power
consumption of an application architecture by generating device logic. This device logic can
be used during early phases of an application’s software life-cycle to gather power consump-
tion information on physical hardware. Carroll et. al in [14] have analyzed the power con-
sumed by the hardware components of a mobile phone. For doing this, they have done the
physical power measurements at the component level on a piece of real hardware. Bhargava
et. al in [10] have tried to come up with the power consumption characteristics of various
distributed and centralized data mining algorithms that can run on a mobile device.

Pathak et. al in [49] have suggested an implementation of a fine-grain energy profiler for
smartphone applications. Ding et. al in [23] have given a smart energy monitoring system
that can profile mobile applications with battery usage information. Flinn et. al in [28]
have calculated the energy consumption of mobile applications by mapping it with program
structure. Murmuria et. al in [46] have used the per-subsystem time shares reported by the
operating system’s power-management module to effectively account for the power usage of
all the primary hardware subsystems on the phone as well as individual applications.

2.2 Scheduling of tasks

Scheduling is instrumental in achieving high performance in parallel and distributed sys-
tems. Work on static multiprocessor scheduling dates back to 1977 [60], where the problem
of scheduling a directed acyclic graph of tasks on two processors is solved using network flow
algorithms. Further research in this direction focused on scheduling distributed applications
on a network of homogeneous processors [42]. As optimal multiprocessor scheduling of di-
rected task graphs is an NP-complete problem [47], heuristics are vastly used. A wide range
of such static scheduling heuristics have been classified and rigorously studied [12, 40, 45].

The idea of partitioning the task graph is fundamental to our job abstraction. Many ex-
isting heuristics already use the idea of clustering groups of tasks in the task graph to
simplify the scheduling problem [22, 31, 65]. However, we are not aware of any existing
scheduling heuristics that applies the same principle to the data center representation, or
that systematically explores the idea of pessimistic abstraction to get coarser partitions and,
thus, improved scalability. Also we are not aware of any clustering heuristic that uses a
refinement loop to change the partition and increase the quality of the produced schedules.

Many generic heuristics for solving optimization problems such as genetic algorithms and
simulated annealing have been used for scheduling [35]. Like our technique these techniques
iteratively search for local optimal solutions but directly solve the concrete problem instance
and do not use abstraction. While these generic approaches produce good schedules, their

2.3. Clustering 15

performance is rather poor [12].

Systems like Hadoop (Apache Hadoop) and DryadLINQ [66] use dynamic scheduling tech-
niques in favor of static scheduling because they are designed for environments with incom-
plete information about both the requirements of executed jobs and the available resources.
Hybrid approaches that combine static and dynamic scheduling can help to increase per-
formance even in incomplete information environments [41]. Our framework provides many
opportunities for exploring such hybrid approaches. By design, our schedulers already work
with incomplete information. One can use the idea of a scheduling horizon [21] where only
tasks that are to be executed in the immediate future are dispatched to their scheduled
nodes. For tasks that are to be executed later one can then compute abstract schedules
that only provide an approximate plan for their execution. These abstract schedules can be
refined dynamically as more precise information about depending task becomes available.
Schedulers like FISCH and the BLIND scheduler work hierarchically, so they can be decom-
posed into different levels, which enables distributed scheduling. Finally, both schedulers
can easily integrate dynamic scheduling techniques such as backfilling [43].

2.3 Clustering

Clustering can be considered the most important unsupervised learning problem [52, 67];
so, as every other problem of this kind, it deals with finding a structure in a collection of
unlabeled data. A loose definition of clustering could be “the process of organizing objects
into groups whose members are similar in some way”. A cluster is therefore a collection of
objects which are “similar” between them and are “dissimilar” to the objects belonging to
other clusters. The term cluster analysis (first used by Tryon, 1939) encompasses a number
of different algorithms and methods for grouping objects of similar kind into respective
categories. A general question facing researchers in many areas of inquiry is how to organize
observed data into meaningful structures, that is, to develop taxonomies. In other words
cluster analysis is an exploratory data analysis tool which aims at sorting different objects
into groups in a way that the degree of association between two objects is maximal if they
belong to the same group and minimal otherwise. Given the above, cluster analysis can
be used to discover structures in data without providing an explanation/interpretation. In
other words, cluster analysis simply discovers structures in data without explaining why
they exist.

2.4 Mobile Cloud Computing

A user expects the mobile system to run a variety of applications. However, a mobile
system is constrained by the residual battery capacity at any point in time, and the lim-
ited computation power of existing mobile processors. Mobile Cloud Computing (MCC) or

16 2. Background and related work

cyber-foraging aims to enable energy or computation intensive applications on mobile sys-
tems by distributed execution of mobile applications. This is done by process offloading, i.e.
migrating a portion of the application state from the mobile device to remote computation
resources.

The user executes a variety of mobile applications on the smartphone. The smartphone
can access the Internet through one or more wireless network channels. It migrates some
portions of the running applications to other computation resources available using the
network. Such computation resources may be the user’s own personal computer, a processor
attached to an wireless access point, other mobile devices, a cloud server or even routers
and switches in the network. On completion of the task on the remote server, the new
program state is transferred back to the smartphone.

In order to enable distributed execution of a mobile application, the MCC system must
determine how to partition an application for scheduling on mobile device and cloud servers.
This is decided by the offloading decision engine, which may be present either on the
smartphone or on a pre-defined server. The offloading decision engine needs to identify the
most energy or computation intensive tasks of the given application. Using this information
and the condition of the environment, it selects the part of the program to be offloaded for
remote execution. The decision taken by it determines the amount of resources saved on
the mobile device and the quality of experience (QoE) of the user.

A mobile system is used in a variety of conditions by the user. For example, users can move
while talking to someone on the phone, or view videos while sitting in a car. This affects
the network performance. Similarly, the user might switch to another application, and thus
change the workload on the MCC system. The computation power of the remote resources
and the mobile device can also vary.

Performance of MCC systems are affected by these changes in operating conditions. MCC
systems are affected by wireless network characteristics and the capabilities of available
computation resources. The workload also varies depending on the applications that are
running on the smartphone. An MCC system has to handle these changes while maintaining
a good QoE for the user. In order to build an adaptive MCC system, a proper understanding
of the range of environmental variables and user expectations is essential. The architect
of an MCC system can then incorporate the user expectations while implementing it. To
meet the user expectations, the use case scenarios can help in determining the importance
of different parameters for adaptation.

2.5 Handling Application Variations

A large variety of mobile applications are run on mobile devices. The expectations of
the user from each of these mobile applications vary. For example, a user expects an
application having lot of interaction to have fast response time. However, for a computation-

2.5. Handling Application Variations 17

intensive application running in the background, it is more important to reduce its energy
consumption. An MCC system needs to handle these multiple applications and sometimes
the conflicting expectations from the users. In this section, we discuss how MCC systems
handle the variation in applications. Variation within applications affect all aspects of the
user’s quality of experience (QoE).

2.5.1 Concurrency

The amount of parallelism that can be exploited increases with an increase in the concur-
rency of an application. Thus, applications having higher amount of concurrency tend to
give better performance using MCC [38]. However, the offloading decision problem for a
sequential application is much more scalable. Moreover, there can be different types of
concurrency in an application – at the task (or method) level, and at the data level. The
type of concurrency available for an application also has an influence in the performance of
an MCC system.

We first discuss the scalability issues related to concurrency. We then discuss how the type
of concurrency influences the design decision of an MCC system.

Improvement in scalability has two major advantages. First, a highly scalable solution
allows the offloading decision algorithm to run on the mobile device. Secondly, it allows the
MCC system to take a more optimal decision. Both these advantages lead to energy and
time savings.

The offloading decision problem is polynomial for sequential applications [44]. For such
cases, the decision problem formulation can be resolved to the shortest path problem. This
allows an MCC system to schedule larger applications in less time.

For applications having task-level concurrency, the offloading decision problem is known to
be NP-Complete [62]. Thus, to build more scalable techniques for concurrent applications,
efficient algorithms to partition such applications are required [17]. One heuristic used by
ThinkAir is to compare the amount of computation involved for each thread and the migra-
tion costs [38]. If the local computation cost exceeds the migration cost, only then execution
is performed on the cloud system using migration. Another work, Hermes gives a polynomial
approximation algorithm for applications with limited amount of parallelism [36].

Applications having data-level concurrency have more flexibility in execution. For some
applications, like computer vision, the output precision reduces with an increase in the
number of threads. This reduction in precision is acceptable upto a certain level. Thus, the
MCC system may decide the optimal level of concurrency. Odessa is an example of such an
MCC system [50].

18 2. Background and related work

2.5.2 Multiple Applications

Most MCC systems developed so far have discussed only the execution of a single applica-
tion at a time. Smartphone devices have multi-tasking operating systems and usually run
multiple applications at the same time.

MCC systems need to model multiple applications for dealing with realistic use cases. This
is because, the energy consumption involved in communication depends not only on the
amount of data, but also on the time when the network interface was last used. This
occurs because interfaces of radio networks remain switched on for a few seconds even after
transmission is complete. A request for transmitting data takes less energy if the network
interface is already on. However, if no such request is sent, then the energy required to
keep the interface running is wasted. Experimental results show energy saving upto 60%
by careful timing of communication requests when radio networks are used [56].

Studies have shown that finding the optimal solution for multiple applications is NP-
hard [20]. One such study has proposed using coalesced offloading, where the algorithm
tries to consolidate the network transmissions of different applications. Experiments on
real-world use cases have shown energy saving of 21% over naive scheduling [64].

2.6 Handling Execution Platform Variations

The underlying architecture of the MCC system is an important consideration in the design
of system architecture. Moreover, the architecture of the mobile devices as well as that of
the cloud system is constantly evolving. This makes it even more important for an offloading
framework to adapt to different systems available in the market.

2.6.1 Mobile Processors

Modern smartphones have up to 8 processors. An increase in the number of mobile proces-
sors reduces the completion time of an application, provided it has sufficient parallelism.
However, it increases energy consumption.

The first MCC systems developed assumed a single processor system [18, 16]. Recent works
have shown that modifying the algorithm to optimize the completion time for multiprocessor
systems is possible [5]. However, the effect on energy consumption is still not clear due to
lack of a relevant energy model.

In order to limit the amount of energy consumption, mobile processors now have an inbuilt
scheme of running at different frequency levels. This is known as Dynamic Voltage and
Frequency Scaling (DVFS). In this scheme, a processor that runs at lower frequency takes

2.6. Handling Execution Platform Variations 19

more time to execute a task, but consumes less energy. It allows the application scheduler
to suitably decrease the energy consumption at the cost of higher completion time.

An MCC system must determine the number of frequency levels that each mobile processor
supports. It needs to have an algorithm that can adapt to the possible frequency levels.
Although some studies have proposed algorithms to adapt to multiple frequency levels, they
have not been implemented in real systems.

Balakrishnan and Tham propose an optimization formulation to partition the application
considering the possible frequency levels [5]. Chen et al. show that the battery discharge
rate depends on the interaction between the strength of wireless signal and the DVFS level
of processors [15]. Thus, the energy consumed by these components must be considered
together in an MCC system. These works have been evaluated using simulation. There are
some works in the literature showing that simulation of DVFS overestimates the amount
of energy saving [53]. This is because modern processors spend a large component of the
power in idle state. Thus, an implementation of an MCC system is necessary to evaluate
the actual energy saving using DVFS.

2.6.2 Time and Energy Profile of Applications

The energy consumed by the execution of an application is affected by the type of hardware
used. This includes the type of processor used, the presence of the coprocessor, the type
of network interface and the capacity of the battery. For an MCC system to take correct
decisions, it must be able to adapt to these changes in hardware without any manual
involvement.

Most MCC systems, such as [19, 16, 38], depend on energy models to determine the energy
consumption of an application. These energy models compute the energy consumption
by looking at either the source or the intermediate code of the application. Thus, these
systems developed their own energy models using specialized high-precision power monitors.
However, this is only feasible on a limited number of different mobile devices. For wide use
of offloading, a more automatic system of estimating energy is needed.

Studies have shown that an accurate energy model can be developed automatically. The
tool PowerBooter develops an automatic energy model for each phone [68]. It calibrates
the energy model by running a specific hardware component on the mobile device over a
period of time. The difference in voltage can be used to compute the amount of energy
consumed by looking at the discharge rate curve available in the battery’s manual. While
this can handle the variation in mobile hardware, the power model for each battery has to
be calibrated manually.

Sesame shows a method of handling multiple batteries automatically [24]. It uses the
registers exposed by the battery’s interface to measure the remaining energy. This can be

20 2. Background and related work

used to study the applications running, and to find their energy profile over a period of
time. In this way, an energy model can be built automatically for each mobile device and
battery.

One problem with these profiling techniques is that they do not consider the impact of user
input on the execution pattern. The user input plays an important role in determining
which methods of an application get executed. Thus, it has a major impact on energy
consumption. Gao et al. model these variations using a semi-Markov model to arrive at a
more accurate estimate of the energy consumption [30].

2.6.3 Cloud architecture

The rapid increase in the number of available computing devices makes offloading to them
a feasible option. This is especially true for latency-sensitive applications, where increase
in latency has a major impact on quality of experience (QoE). Thus, reducing latency by
offloading to devices lying nearby, thereby saving local compute energy, might be more
attractive.

One proposed way of lowering latency is to maintain computation resource closer to the
mobile device, known as cloudlet. Unlike a cloud server, a cloudlet is located at a one-hop
distance from the mobile device. However, it has less computation power compared to a
cloud server. Cloudlets can be attached to wireless access points to enable easy access from
mobile devices.

In order to handle applications with real-time constraints, multiple hierarchy of cloud sys-
tems has been suggested. This includes using a combination of cloudlet and cloud systems.
Satyanarayanan et al. show that cloudlets can help applications improve performance in
hostile environments, such as war and disaster-relief [55]. Zhang et al. show that the
QoE can be improved using both cloudlets and cloud systems as compared to just one of
them [69]. MAP-Cloud proves that finding the optimal solution to determine the execution
points of components is NPhard [51]. It proposes some heuristics that can be used to parti-
tion the application to save energy. CARMS uses locationing to select the best combination
of cloud resources [37]. However, these approaches require installation of additional infras-
tructure, since cloudlets are not readily available on wireless access points [3]. A multi-level
hierarchical mobile cloud system requires a relevant pricing model. So far, most studies
have not considered the cost that the user has to pay to the cloud service provider. For
widespread adoption, a pricing scheme acceptable to both the user and the cloud service
provider is needed.

Another technique of reducing latency is utilized by CDroid [8]. CDroid tightly integrates
the cloud server to a mobile device. It sends the state information of an application when
the mobile device is idle. When a computation-intensive request is received by the mobile
device, most of the information required to handle is thus already available on the server.

2.7. Impact on Quality of Experience (QOE) 21

In this way, it utilizes a dedicated server to cache application state information in order to
reduce the amount of data transmission.

One offloading technique proposed is utilization of other mobile devices available nearby.
The advantage of this approach is that at a particular point, a large number of mobile
devices are usually available. Misco [25] offloads data-intensive applications in order to
enable data-level parallelism. Serendipity implements fine-level offloading at task level to
nearby mobile devices to speed up execution [58]. ECC investigates the devices to which
offloading is attractive based on their proximity, current situation of battery and processor,
and user objective [9].

Offloading to other mobile devices provides a relevant economic incentive to the users of the
remote devices. Execution on the remote devices consumes energy, reducing their battery
life. One study has shown using mathematical modeling that cooperation among remote
mobile devices improves the battery life of all of them [63]. However, this assumes that the
same mobile devices are always available in the system.

Although utilization of other mobile devices has potential, it carries a high security risk.
This is because, it is possible for a malicious remote device to permanently store the user’s
data. It might also be possible for the remote device to make the mobile application more
vulnerable to security threats. Abolfazli et al. suggest sandboxing and signing of the remote
system to detect any modifications [4]. However, the security of such a system has not been
tested yet.

A recent proposal suggests offloading to network devices such as routers and switches. This
is known as fog computing [11]. This does not require new infrastructure, and also has low
latency. However, the challenge is to handle the very high level of heterogeneity among
the different network devices. Mobile fog proposes a programming model to enable fog
computing for mobile devices [34]. The primary challenge of using fog computing is in the
handling of architectural heterogeneity. Conventional frameworks that support architectural
heterogeneity like openCL are not supported by network devices [26]. So far, no MCC
system is available that utilizes fog computing.

2.7 Impact on Quality of Experience (QOE)

The variations in the environmental parameters affect the quality of experience (QoE) of
the user. Although the objective of the MCC system is to maintain high QoE in a difficult
environment, this is not always possible. In this section, we study the parameters that
affect the QoE of the user. We also briefly discuss how the importance of different QoE
parameters may vary depending on the context.

22 2. Background and related work

2.7.1 Energy Consumption

We first discuss the effect of the application component on energy consumption. Increasing
the amount of concurrency and multitasking allow higher energy savings by making it easier
to offload software components. However, increase in real-time constraints increases amount
of local execution, and reduces energy savings.

The network component of the ecosystem is also an important factor influencing energy
consumption. Higher bandwidth reduces the energy cost of transmission, thus saving energy.
Intermittent connectivity leads to checkpointing of applications, and more local execution,
thus leading to lower energy savings. Latency has no effect on energy, since it only affects
completion time. Network interfaces have different energy consumption patterns, and thus
the energy saving varies. Greater user mobility increases energy consumption and lowers
energy gain by increasing the cost of hand-off from one base station to another [6].

The execution platform also affects the energy consumption. Increase in number of mobile
processors increases the energy cost, and lowers energy savings. Intelligent use of Dynamic
Voltage and Frequency Scaling (DVFS) can lead to higher energy savings, by allowing a
processor to run at lower speed, while offloading more tasks. Having a coprocessor also
leads to lower energy savings, since running it increases the energy consumption. Having
a higher energy profile gives the MCC system more scope to offload, and leads to higher
energy savings. A cloud architecture having more computation resources nearby reduces
the energy cost of transmission, and thus leads to higher energy savings.

2.7.2 Completion Time

The completion time is affected by the number and type of applications given by the user.
Higher concurrency and more multitasking allows better utilization of parallelism, leading
to greater time saving. Real-time constraints force the MCC system to schedule the tasks
in a way that satisfies the constraints. This may lead to higher or lower completion times,
depending on the condition of the channel in the MCC system.

The network condition has a major impact on completion time. Higher bandwidth and
lower latency lead to faster transmission of data, and thus greater time saving. Intermittent
connectivity leads to loss of contact with the cloud system, leading to more local execution
and thus lower time saving. Some network interfaces inherently provide higher bandwidth
and lower latency, thus affecting the completion time. Higher user mobility forces the cloud
system to migrate data across different servers, in order to better support the user. This
leads to lower time saving.

The execution platform also affects the completion time. Increase in the number of mobile
processors leads to faster execution, but decreases the scope of offloading, and thus reduces
time saving. A similar result is obtained by adding a coprocessor on the mobile system.

2.7. Impact on Quality of Experience (QOE) 23

However, DVFS has no effect on the completion time, unless the MCC system optimizes
energy consumption.

More computation-intensive jobs give the MCC system more scope to offload, leading to
higher time saving. A cloud system with more layers and having some layers closer to the
mobile device reduces latency and thus leads to higher time saving.

2.7.3 Monetary Cost

User surveys suggest that controlling the monetary cost incurred by mobile software is the
greatest concern of users [27]. Thus, an adaptive MCC system has to control the monetary
cost. The application component of the mobile ecosystem has a significant impact on the
monetary cost. Utilizing higher amount of concurrency and more multitasking require
more server processors, thus increasing the server cost. Having more real-time constraints
increases the amount of communication, leading to higher bandwidth cost.

The monetary cost of offloading is affected by only the network interface used by the MCC
system. This is because network interfaces have different pricing models. For example, since
3G has lower bandwidth and higher latency than LTE, data transfer over 3G usually has
a lower cost. Thus, using an interface that provides better service increases the monetary
cost.

Among the many parameters of execution platform, only the cloud architecture affects the
monetary cost. This is because hiring more computation resources is expensive. Thus, the
cost goes up with an increase in more layers of cloud system.

2.7.4 Security

Mobile devices usually contain a lot of private data of users. Moreover, ensuring the integrity
of the data that has been computed remotely is also important. Thus, security forms an
important component of the QoE.

The type of application has an impact on privacy of data. Having more real-time constraints
in the application increases the number of migrations from the cloud to the mobile device.
This makes the system more vulnerable to a man-in-the-middle attack, where the attacker
alters the packets during transmission. The variations in the parameters of the network
component also affect security. Some network interfaces, like Wi-Fi, are more vulnerable
to man-in-the-middle attacks, as compared to 3G or LTE [48]. Higher mobility of user
increases security by making it more difficult to sniff data [13].

Only the cloud architecture in execution platform component has an impact on security.
A malicious remote computation resource used by the mobile device for offloading can

24 2. Background and related work

subtly modify the execution of the application. This can affect the integrity of the running
application, making the system vulnerable to attacks.

2.7.5 Novelties of this thesis

In this thesis, we have suggested a more realistic energy analysis methodology for appli-
cations and have considered variants of the applications that are to be executed. Along
with energy analysis which is done statically, varying percentage of CPU of the applications
running on the mobile device has been considered. Applications are monitored as state
transition automaton and is refined to meet our objective which is discussed later in this
thesis. We also analyze the use of multiple variants. Multiple variants of a single task leads
to multiple possible energy paths, and the scheduler can choose an energy path based on
the energy-constraint.

Chapter 3

REAST: Residual Energy Aware
Scheduling Technique for mobile
applications

In this chapter, we deal with applications (e.g. Play Store update, virus scan, etc.) which
may run as both, a foreground task when the mobile device is idle and as a background
task when a user application is triggered in foreground. In such cases, a straightforward
application of the energy analysis methods existing in literature may lead to under-estimates
of the total energy consumption. This is because of the fact that these methods [32] typically
assume that the application will have the maximum CPU at its disposal (except the routine
system processes) when running in the foreground of the mobile device. However, in reality,
for the kind of applications we consider, there is a considerable amount of interaction with
the user, and in all the ways the mobile is used, full CPU power may not be available for
running the application which may have to run as a background application with varying
percentages of CPU available. For example, when the mobile device is idle, the concerned
application may have the maximum portion of the available CPU, however, this reduces
when the user attends to a call or listens to music and the application is forced to run in the
background causing the application to take some extra time than estimated. This additional
time is caused by the foreground application started by the user, in addition to the routine
jobs running on the mobile device. While the energy consumption due to the routine
background jobs maybe available from kernel measurements, the battery consumption due
to the foreground jobs is difficult to estimate apriori.

Scheduling such classes of applications therefore have to be done carefully, given the current
energy level of the mobile device and the application running in the foreground. Standalone
application level energy analysis of a Google Play Store update, for example, may give us
some estimate of the battery to be exhausted as a result of an update invocation. However
this is only a lower bound of the actual energy consumed at run-time, considering the

25

26 3. REAST: Residual Energy Aware Scheduling Technique for mobile applications

fact this update will run in context switching mode, both as a foreground and background
application on the mobile device. Thus, whether an update invocation leads to the battery
getting depleted completely is a question to the user. Considering other processes running
on the device when we start an application, we need to decide if the phone will ever reach
a situation such that the entire battery is exhausted. This problem is the major point of
discussion in this chapter. In particular, there are two major highlights of this proposal as
outlined below.

• We propose the notion of an application usage profile model for modelling the energy
footprint on a mobile device. This model is built from usage logs of a given mobile
device, monitoring the energy consumptions per unit time for each running application
and tracking different kinds of applications run by the user while also monitoring the
times for which they are run.

• Given the usage profile as above, we attempt to solve the energy analysis problem in
a more realistic setting compared to the methods existing in literature.

3.1 Motivation and Objectives

We take our motivation from the work done by Hao et. al. [32]. In this paper, the au-
thors have proposed a novel approach for calculating the energy consumption of a mobile
application through program analysis. They have suggested a tool and have extracted as
its output, the code-level estimation of the energy that an application will consume at
run-time, through analysis of the implementation of the application.

We now argue why the method above is an under-estimate and maybe misleading in practice.
Consider that we wish to perform a Google Play store update on a smartphone. The energy
consumption of the update can be predicted by the model proposed in [32] which does not
talk about the percentage of CPU that is available for Play store update and assumes that
at all the times, the CPU available is maximum available to a foreground process. We now
analyse the situation more realistically. Let us assume that the update needs to install a
2MB patch for which the estimated energy consumed will be 20J with 1J of energy being
consumed in each second. This energy consumption is applicable if we have 100% CPU
for the use of the Google Play store update. This always might not be the case and if the
update runs as a background job, the actual battery consumed will be much more than
20J since during the entire duration, the user might run various other applications in the
foreground.

Since the value of energy consumed per second with 100% CPU for the update is 1J and
it will consume in total 20J of energy, it will run for 20 seconds. Assume that 20% CPU
is available for its use at the time when the update installation begins. Then the update
after starting will have its new value of energy consumption per second as 1* 20/100 =

3.1. Motivation and Objectives 27

0.2J. So, to do its entire task with just 20% CPU, it will take 20/0.2 = 100 seconds. Thus,
the total battery consumed by the mobile phone for the entire duration of 100 seconds will
be the total energy consumed by the update and the application which was running in the
foreground during this period considering that the device stays in the same application state
in this period.

In practice, the above situation may not be true and the mobile device may switch between
multiple applications and therefore, the update installation may actually witness various
fractions of CPU availability during its operation. Moreover, the amount of time for which
the device stays at a certain state is also variable and user dependent. Given such a
situation, energy analysis becomes a difficult problem as we describe below. To capture the
application level variability, we present here the notion of an application level usage profile
model, typically collected from user usage logs. To handle the variability in time for which
the user runs an application we use the notion of average permanence as described below.

Consider Figure 3.1 which shows three applications that are obtained from the log dumps
of an android mobile phone user, and two blocks representing the phone when in idle state
and when it is switched off. The average permanence time (H) and the rate of energy
dissipation (R) are also shown corresponding to each state of the user. Rate of energy
dissipation includes the energy consumed by the system processes. Average permanence
is the amount of time the user uses a particular application in one go after starting the
application. In other words, it is the time difference between starting an application and
ending it. Monitoring the average permanence with CPU availability has already been done
as a probabilistic finite state machine by [7]. We augment the same model and use it in our
work as described in Section III. We now describe how to obtain the energy footprint of the
Play store update given the above model. Let us assume when the Google Play application
starts, the user is in the Youtube state, with a battery of 250J left and the user has been
using Youtube for the last 900 seconds. According to the permanence time of Youtube as
given in Figure 3.1, the user will stay in that state for another 35 seconds. In this time, let
us assume that the update is getting 20% CPU for its use. So, for the next 35 seconds, the
total energy consumed will be 4.15 (for Youtube) + 0.2 (for update) for 35 seconds, that is,
145.25J + 7J = 152.25J. Now, the Google Play store update needs another 20J - 7J = 13J
to complete its task. The user now makes a transition to the idle state where the update
is getting 90% CPU for its use. The amount of work done per second will be 1* 90/100 =
0.9J, for which the update will take 13/0.9 = 14.45 seconds. The energy consumed is 3.34
(for Idle state) + 0.9 (for update) for 14.45 seconds = 48.26J + 13J = 61.26J. So, the total
energy consumed is 152.25J + 61.26J = 213.51J, which is less than 250J initially available
with the mobile device. Thus, the update can be allowed to begin. If instead of going to
idle state, the user would have played Temple Run 2 and CPU available for the update is,
say, 40%, the amount of work done by the update will be 1* (40/100) = 0.4J per second.
It will take another 13/0.4 = 32.5 seconds to complete its task. The energy consumed is
3.47 (for Temple Run 2) + 0.4 (for update) for 32.5 seconds = 112.78J + 13J = 125.78J.
In this scenario, the total energy consumed is 152.25J + 125.78J = 278.03J which is more
than the 250J that was initially available for the mobile device. Thus, the update should

28 3. REAST: Residual Energy Aware Scheduling Technique for mobile applications

Figure 3.1: Usage Profile Automaton (UPA)

not be allowed to start.

This example scenario motivates our proposal. It is necessary to model the usage profile
while performing the energy consumption estimation during the entire computation, else,
we may end up with an under-estimate that may not hold in reality. The following section
illustrates our proposal of usage profile modelling and energy consumption analysis.

3.2 Formal Model

We now formally define the notion of the application level Usage Profile Automaton (UPA).
A number of research articles such as [7] have analyzed and modelled usage profiles on smart-
phones and we intend to use that for our analysis. The automaton will be represented with
the following parameters:

• S, denoting the set of application states
⋃

the (idle, switched off) states.

• E is a set of edges with one edge present between each state pair. In other words the
automaton is a graph without self loops

• H: S → R represents the average permanence value defined as H(si) = ti, where si ∈
S, ti ∈ R.

• R: S → R, denoting the rate of energy consumption at a state.

3.2. Formal Model 29

• C : S → [0%, 100%] is the CPU availability.

Each foreground application (i.e., applications which run only as foreground jobs) that the
user runs on his device appears as a state in S. The rate of energy dissipation also includes
the contribution of the routine system processes. As discussed earlier, the focus of our
analysis is more on mixed-mode applications (i.e., applications that run as foreground jobs
when the CPU is idle and as background jobs when some other application is running on
the mobile device).The problem we address is as follows. Given a state s ∈ S and remaining
battery level l, is it safe to run a mixed mode application A with energy requirement EA

given that the user has already spent some time in the state s, and may transit to any
other state after the average permanence time for that state is over. To answer the question
above, we need to check if the zero battery state is reached by the time this mixed-mode
application finishes. We answer the previous question with the help of a simple algorithm
on our Usage Profile Automaton. Let the time remaining in the current state s be tr which
is obtained by subtracting the time elapsed from the average permanence of s. Algorithm
1 answers the reachability problem. Let F be the critical state.

Algorithm 1 Algorithm for reachability
1 Input: UPA, l, F (critical state) , s (current state) , tr. (time elapsed in the current state) , EA (Total energy
required by the mixed mode application to complete its operation)
2 Output: F reachable or F not reachable
3 FUNCTION FindPath (s, EA, te)
4 WHILE all possible paths from current state s have not been explored
5 Get CA = C(s)
6 IF (CA X RA X tr) < EA

7 THEN EA′ = EA - (CA X RA X tr)

8 make transition to the next state S
′

9 ELSE return ”F not reachable”
10 EXIT
11 ENDIF
12 IF the new state S

′
is F

13 THEN return ”F reachable”
14 EXIT
15 ENDIF
16 FindPath(S

′
, EA′)

17 ENDWHILE

Algorithm 1 essentially does a depth first traversal beginning with the current status and
for each new state encountered in the iteration at every level, it tries to check if the critical
state is reached. If at any level this is any true, the algorithm exists and return that F is
not reachable. Otherwise, this leads to a recursive call to a new state. In this manner, every
path beginning with the current state is explored by our algorithm. At the end, we can
get a more realistic estimate of the energy consumption for the mixed mode application. If
the critical state indeed turns out to be reachable, we can advise the user not to start the
mixed-mode application.

30 3. REAST: Residual Energy Aware Scheduling Technique for mobile applications

Extending the energy analysis with transition probabilities

The algorithm bound provides a conservative analysis towards the reachability problem. If
the zero battery state is reachable by any path from the current state, the algorithm will
advise not to use the application. However in reality, this path may have very low probability
of occurrence. To capture this, the idea of Usage Profile Automaton can be extended to
a probabilistic Usage Profile Automation where the edges are labelled with probabilities
of those transitions occurring. This can be obtained by logging user usage patterns on
smart-phones and applying supervised learning to build the state-transfer function. The
state diagram of such a automaton is similar to the one shown in Figure 3.1 with transitions
annotated by transition probabilities. With this additional information we can annotate
each path obtained by Algorithm 1 with corresponding probabilities of occurrence. This
can be of greater help to the user. For low probability paths, reaching the critical state may
not be as important and the user can take an informed decision.

3.3 Experimental Results

To prove that the applications that we intend to run, in our case the Google Play store
update, do not get 100% CPU at their disposal, we used energy measurement applications
available in Google Play store to calculate the actual energy consumed by our application
when it runs on the mobile phone. There are various applications that do this modelling
like [1, 2]. These applications give us the amount of CPU being used by various processes
running on the mobile phone along with their energy uses. From their log files, we can get
all the applications that had run for a given period and the energy each of them consumed in
each second of time. Consider the snapshot taken from such an app as shown in Figure 3.2.
It is clear that Google Play store, which has been running for the last 40 seconds, has
consumed 5.2J of energy and is currently using 14.8% total CPU processing capacity. There
are various other applications running simultaneously on the mobile phone such as Google
Contacts Sync and PowerTutor2 which are also utilizing some portion of the CPU. A lot
of the CPU is being used by the system processes that are running on the phone. Thus to
assume that 100% CPU is available for our concerned application is not quite correct.

We took some data readings with a time period of 10 seconds between each reading. The
data consist of the power consumed by different processes running on the mobile phone at
those time instances. The total energy consumed is the sum of the energy consumed by
the LCD, the CPU as well as the network communication used for all the processes for a
duration of 100 seconds. We considered to monitor these three parameters because all three
of these consume the battery of the mobile phone. We also calculated the amount of energy
consumed by the Google Play store alone in intervals of 10 seconds. Finally, we compared
the two set of values in the form of a graph as shown in Figure 3.3. The x-axis represents
the time elapsed in seconds and the y-axis represents the energy consumed in Joules.

3.3. Experimental Results 31

Figure 3.2: Screenshot of CPU utilization and power consumption

Figure 3.3: Comparison of power consumption

It is clear from Figure 3.3 that if we assume that 100% CPU is available for the Google Play

32 3. REAST: Residual Energy Aware Scheduling Technique for mobile applications

store to do its operation, the total battery power consumed by the mobile phone will be
represented by the line for Google Play store. But since other processes are also running, the
total battery power consumed is actually the line for all processes, which has much greater
values than with only Google Play store running. So, we have shown that it is necessary to
consider that CPU available to our concerned application is much less than 100% and thus
any static estimate of the energy consumption will always yield an under-estimate of the
total energy consumed.

3.4 Conclusion

In this chapter, we address the problem of energy analysis of a mixed-mode application,
using the concept of an usage induced profile automaton. In particular, we wish to answer
the question: Given a mobile phone with its current battery condition and an application to
run, do we reach a state where all the battery of the mobile phone is exhausted. We believe
that our proposal will aid in more realistic energy decisions in comparison to the methods
existing in literature. We are currently investigating on application level classification for
diverse application types which benefit from our analysis.

Chapter 4

STATEREF: A STATE
REFinement technique for REAST

In this chapter, we extend the problem addressed in the previous chapter for a large scale
setting. From the previous chapter, we adopt a simple intuitive finite state model for
representing the applications running on a user’s mobile device, where the applications
are represented as nodes of the automaton. The edges between the nodes represent the
transitions of the mobile device from one application to another. The applications are
considered to be heterogeneous, that is, each application may consume different amount of
energy (per second) when run and the average running time of each application may vary.
This application finite state machine is created by mining through the work logs of a user’s
mobile device. We build on the foundation of the application state model proposed in the
previous chapter. We monitor a user mobile device for days and weeks and extract the
running data of all the applications for that duration of time in the form of a usage log file.
This log file is then represented an automaton. In the previous chapter, we have proposed
and solved an application scheduling problem by modeling that as a reachability analysis
task on the application state model. This forms a key ingredient of our work.

An interesting scenario arises when the usage log file contains a lot of different applications.
In this case, the automaton thus created becomes very large to analyze,thereby the naive
method suggested in the previous chapter is bound to run into scalability issues. This forms
the core motivation of this chapter, whereby, we propose to adopt the notion of iterative
refinement on the application state machine to address the scalability issue. The basic
technique of refinement we use here is based on the discussion in [33].

Our approach proceeds as follows. We first compute an abstract version of the entire
state transition diagram. We do so by combining related applications into single states
or clusters. The similarity among different applications can be defined in terms of similar
resource requirements, similar skeleton of execution, or any other such parameter. Our

33

34 4. STATEREF: A STATE REFinement technique for REAST

parameter of defining similarity among different applications is the product of the energy
dissipation rate and the permanence time the user spends in an application. This makes
the state transition diagram more easy to infer with much less number of states which are
basically clusters of different applications.

After successfully creating an abstract version of the original state transition diagram,
we try to solve our scheduling problem. Since the abstracted version is much smaller,
scheduling can be done faster. We analyze the scheduling problem on the abstract state
machine. The task of the scheduler is to find if it is feasible to run a desired application
on the mobile device without degrading the performance of the mobile device. For this,
starting from the state the mobile device is currently in, all the paths need to be checked
till the time the execution of the desired application is successfully completed. Thus, the
desired criteria for the successful completion of the scheduling problem is the situation
where the scheduling algorithm does not find a path which leads to an undesirable state
(a state which leads to a decrease in performance of the mobile device). If that is not the
case, the scheduler needs to refine the abstraction, which results in a new abstract state
machine on which the scheduling algorithm can be applied again. This process needs to
be repeated iteratively until the scheduling problem can be solved in the affirmative or we
find that it is actually not possible to schedule the application on the given mobile device.
Additionally, if the abstract state machine at any iteration expands to the original concrete
state machine containing one state per application, and still the scheduling is not possible,
then the scheduler declares that it is not safe to schedule the desired application immediately.
The ability to automatically and efficiently provide an answer to the scheduling problem
is the main crux of this contribution. We provide experimental results to show how our
proposal compares with the naive scheduling method proposed in the previous chapter.

4.1 Motivation and Contribution

We begin by describing the concept of the application state automaton that is used in this
chapter for solving the scheduling problem through iterative refinement. The application
state model is created by monitoring all the states running in a mobile device. This state
model is used to answer the question of whether it is possible to schedule an application to
run on a particular mobile device at a given time. Application logs of a mobile device are
collected and a simple rechability algorithm is run through them to find out: given a mobile
device with certain amount of battery remaining, and an application that the user intends
to run on the mobile device, is it safe to run the application. In other words, is it possible
that while running the application, the entire battery of the mobile device is exhausted and
the application is not able to complete. If such a scenario can arise, then the scheduler
declares it as unsafe to run the application. The user should run the application only after
charging the mobile device properly.

The application usage state model, referred to as Usage Profile Automaton (UPA) as de-

4.1. Motivation and Contribution 35

Figure 4.1: Usage Profile Automaton (UPA)

scribed in the previous chapter is created through the logs of the user mobile device. An
example state transition automaton is shown in Figure 4.1. The states of UPA are the
applications that run on the mobile device during the entire duration of the log. Figure 4.1
has five states labelled A to E. R denotes the amount of energy spent in one second and
H is the average permanence time. Now, suppose that while using the mobile device, the
user decides to run an application, like a virus scan or a Google Play Store update. It can
either be completed quickly or it might take a considerable amount of time for its comple-
tion. Consider an application App to be run on the mobile device from the current state A.
The time required for the complete execution of App is 1700 seconds and its rate of energy
dissipation is 1 mJ/sec. It is supposed to run on a mobile device having remaining battery
energy of 10000 mJ. Suppose the user is currently in state A. The average permanence time
of state A is 1600 seconds and its rate of energy dissipation is 3 mJ/sec. After completion
of execution of state A, the amount of execution time left for App to complete its execution
is 1700 − 1600 = 100 seconds. The remaining mobile battery energy is 10000 − 1 ∗ 1600
(for App) − 3 ∗ 1600 (for state A) = 3600 mJ. App will complete its execution in another
100 seconds. Now, from state A, the user may transit to either state B, state D or state E.
Let us first consider state B. State B has an average permanence time of 900 seconds and
rate of energy dissipation as 4.10 mJ/sec. In 100 seconds, the amount of battery energy
drained of the mobile device is 1 ∗ 100 mJ (for App) + 4.10 ∗ 10 = 141 mJ, after which it
still has 3600 mJ − 141 mJ = 3459 mJ of battery remaining. This will lead to a successful
scheduling of App on the mobile device. Next consider the transition from state A to state
D. State D has an average permanence time of 300 seconds and rate of energy dissipation
as 3 mJ/sec. In 100 seconds, the amount of battery energy drained of the mobile device in
state D is 1∗100 mJ (for App) + 3∗10 = 130 mJ, after which it still has 3600 mJ − 130 mJ

36 4. STATEREF: A STATE REFinement technique for REAST

= 3470 mJ of battery remaining. So, this will also lead to a successful scheduling of App on
the mobile device. Finally, consider the transition from state A to state E. State E has an
average permanence time of 100 seconds and rate of energy dissipation as 2.50 mJ/sec. In
10 seconds, the amount of battery energy drained of the mobile device in state E is 1 ∗ 100
mJ (for App) + 2.50 ∗ 10 = 125 mJ, after which it still has 3600 mJ − 125 mJ = 3475
mJ of battery remaining, which will lead to the successful scheduling of App on the mobile
device. Hence the scheduling algorithm will give success as its output since all the paths
resulted in the completion of the execution of App without the mobile device exhausting its
entire battery energy. Thus it is necessary to know whether it will be successfully completed
or not, if the application is scheduled to start execution from the current state. A simple
reachability analysis from the current state can reveal the answer. If there exists a path
on which the residual battery left after the application execution reaches an undesirable
value, it is not advisable to schedule the application from the current state. Intuitively, the
user may actually end up selecting any of the outgoing paths from the current state during
actual execution. Thus our conservative analysis is of immense value. The application state
model helps us to analyze these questions statically.

The motivation for this scheduling problem has been from the work done by Hao et. al. [32].
In [32], the authors have proposed a novel approach for calculating the energy consumption
of a mobile application through program analysis. They have suggested a tool and have
extracted as its output, the code-level estimation of the energy that an application A will
consume at run-time, through analysis of the implementation of the application.

The analysis done by the algorithm proposed in the previous chapter is simple when the
number of applications recorded by the log file is few in number. However, this is not always
the case. Imagine a scenario in which the log file has the data of a few days which contains
a large number of applications, for which a naive explicit state representation and traversal
may not scale to handle the task of suggesting if all suitable paths are safe. Initially to
traverse all the possible paths of the automaton just to find if there exists that one path
which is unsafe is unrealistic for a huge group of applications.

Consider a Usage Profile Automaton which has around 1000 states. When the scheduler
wishes to start an application (virus scan or Google Play store update), suppose that the
user is in state A. From state A, the user has many options. In case of a complete graph,
the user has 1000 options. After the user transits to another state, again he/she has another
1000 options to choose from. If the application runs for a long duration of time, the total
number of different paths to be considered will simply blow up, and the result will take a
very long time to compute.

It may be noted here that our main task is only to suggest if it is safe to run the application.
To be able to handle a large state transition automaton, we propose here, a cluster-based
scheduling analysis approach. Each cluster will has a subset of applications from the mobile
device’s log and each application belongs to one and only one cluster. The clusters can be
created using standard clustering methods. Now the scheduling algorithm boils down to a

4.1. Motivation and Contribution 37

rechability analysis on a clustered state machine with possibly multiple iterations to answer
the scheduling question. We explain below the philosophy behind our proposal through a
simple example.

Cluster based analysis

The objective of the cluster construction step is to create application clusters such that it
is more amenable to schedulability analysis. To do so, we merge different application states
with similar parameters into clusters. Each cluster has a subset of applications from the
mobile device’s log and each application is in one and only one cluster. If two application
states which fall within the same cluster after clustering had a transition earlier from one
to the other, the edge will be represented as a self loop on the corresponding cluster. Each
time the application takes one iteration of the self loop, a quantum of permanence time is
elapsed. In case there is a transition from an application from cluster C1 to an application
in cluster C2, there will be a transition from cluster C1 to cluster C2.

The creation of clusters is done by assigning each application to a cluster through some clus-
ter creation technique. Here, we use both the parameters used to represent the states of the
Usage Profile Automaton, the rate of energy dissipation and the average permanence time.
For each application within a cluster, we calculate the product of its rate of energy dissipa-
tion and its average permanence time. We call this product as state energy consumption.
Then we use clustering methods to create clusters keeping the state energy consumption
as the sole parameter. The value of the rate of energy consumption parameter of a cluster
is the highest rate of energy consumption value among all the application states belong to
that cluster. Similarly, the value of the average permanence time parameter of a cluster
is assumed to be the longest average permanence time value among all the applications
in that cluster. The reason for taking the maximum values for both, the rate of energy
consumption and the average permanence time, from all the applications of a cluster is to
provide a conservative over-estimate of these values. In our work, we take the product of
these two parameters for each cluster, which we have coined as state energy consumption.
The amount of energy consumed in a particular state is the energy dissipated per second
multiplied by the number of seconds the user remained in that state, which is nothing but
the state energy consumption of that state. So after the formation of the clusters, the value
of the state energy consumption parameter of a cluster will be greater than or equal to
the value of the state energy consumption parameter of any of the applications present in
that cluster (the equivalent scenario will arise when in a cluster, the same application had
the maximum value for both, the rate of energy consumption and the average permanence
time). This leads to the conservative over-estimate since no more than the value denoted
by the state energy consumption can be spent at a time in a cluster, that is, the user can
not spend more time in a cluster of applications than the average permanence time of that
cluster, and the rate of energy dissipation during that duration can not exceed the rate of
energy dissipation of the same cluster.

38 4. STATEREF: A STATE REFinement technique for REAST

We now analyze the application scheduling problem from the perspective of the clusters.
After we have created the clusters using certain cluster formation algorithm, we can adopt
a simple reachability method from the current cluster (the current state of the original
concrete usage profile automaton gets mapped to some cluster which therefore becomes the
current cluster to start from). We consider the clusters as states of the state transition
automaton and try to calculate if a path can be traversed such that we end up reaching a
state where the entire battery energy of the mobile device is fully consumed. We explain
the situations that may arise below by a couple of intuitive examples. Let us consider the
case that the schedulability analysis for an application App starts at a particular state A of
the concrete usage profile automaton which maps to the state S of the clustered automaton.
The App has an energy requirement of E J. The state parameters of the clustered usage
profile automaton have been assigned as discussed above. There are two cases that need to
be considered here.

Figure 4.2: Case: Safe to schedule

Case 1: If all paths from state S in the clustered machine result in the completion of the
application App without the battery getting depleted, then we can declare that it is safe
to run the application on the original unclustered usage profile automaton as well. This
is possible because we took the highest energy consumption parameter and the longest
average permanence time parameter from all the applications present in each cluster. So,
we considered the worst case energy consumption that is possible, since an application in
a cluster will have its state energy consumption parameter less than or equal to the state
energy consumption parameter of the cluster. For an example depicting cluster creation,
consider the clustering shown in Figure 4.2. Application states A and E have been clustered
together to create the cluster AE (also see Figure 4.1) which has the highest rate of energy
dissipation and the longest average permanence time among the two application states.
There are only four states now on which the schedulability analysis is to be performed and
we indeed have no unsafe paths here.

Case 2: If the schedulability analysis uncovers a path on which the entire battery of the
mobile device is consumed by running App, then we can have three scenarios.

4.1. Motivation and Contribution 39

Figure 4.3: A state transition automaton with an edge from state F to state H

Figure 4.4: Clustered state transition automaton

Figure 4.5: A state transition automaton with an edge from state G to state I

• In the first scenario, the failure path uncovered by the scheduling algorithm on the
clustered abstract state machine is actually a valid path in the actual unclustered
state transition automaton. Also, for all the clusters, the rate of energy consumption
and the average permanence time have been derived from a single application of
each cluster. In this case, the failure reported is actually a true one. For example,
consider the state transition automaton shown in Figure 4.3. After clustering, the
state transition automaton is shown in Figure 4.4. In this scenario, the path from FG

40 4. STATEREF: A STATE REFinement technique for REAST

to HI is a valid path since both the parameters of FG and HI have been contributed
by states F and H respectively, which themselves have a path in between them.

• In this case, the failure path uncovered by the schedulability analysis algorithm is not
a valid path on the original unclustered automaton. Again, for all the clusters, the
rate of energy consumption and the average permanence time have been derived from
a single application of each cluster. Hence the schedulability answer is not correct.
The failure result which comes out of the schedulability analysis is a side-effect of the
clustering we had done and not a true failure because of the transitions and the self
loops. The transitions may actually lead the schedulability analysis to infeasible paths
which are not possible on the unclustered state machine and thus gives a false failure
result. Consider the state transition automaton shown in Figure 4.5 where there is a
path from state G to state I. After clustering, the state transition automaton will be
same as that shown in Figure 4.4. In this scenario, the path from FG to HI is not a
valid path since both the parameters of FG and HI have been contributed by states
F and H respectively, which do not have a path in between them in Figure 4.5. This is
where we need to refine the cluster and possibly come up with a different abstract UPA
on which the schedulability answer can be collectively deduced. Refinement is neces-
sary since we have taken a conservative over-estimate of the state energy consumption
parameter of every cluster, thus resulting in the exhaustion of the battery energy of
the mobile device. So a refinement is done with the hope that such set of clusters
might be found which will result in a safe state for the application App to run.

• In the final scenario, it may happen that for at least one cluster, both of its parameters
have been derived from two different applications within that cluster. Here also, the
next step will be refining the state diagram.

To understand which of the above scenarios are applicable, we need to analyze the un-
clustered state machine and proceed accordingly. In the section below, we formalize our
approach of clustering, refinement and schedulability analysis.

4.2 The overall methodology

When there are a large number of applications whose states need to be analyzed in the state
diagram, the state diagram might blow up. So, different clusters with energy threshold
can be created where each state is assigned to a particular cluster based on some energy
threshold. The main idea is as follows:

1. Divide all the application states into a number of clusters (C), using an algorithm
which will be elaborated shortly, based on the product of rate of energy consumption
and average permanence time of individual applications (the state energy consumption
parameter).

4.2. The overall methodology 41

2. Let the highest value of the rate of energy consumption among all the applications
in a cluster c ∈ C be Ri (i is the application having highest rate of energy consumed
in cluster c), and the longest average permanence time of an application in the same
cluster be Hj (j is an application in cluster c where i may or may not be equal to j).
Assign the rate of energy consumed and the average permanence time parameters of
the cluster c as Ri and Hj respectively. Then the state energy consumption parameter
of cluster c will be Ri ∗ Hj .

3. The application states present in the unclustered state diagram are now replaced by
states (C) representing few different clusters of application states. The new state
diagram is created as follows:

• We create the C micro clusters as the C states of the new state automaton.

• We add self loops on clusters corresponding to the transitions (if any) between
two states inside the same cluster.

• For each transition between two states belonging to two different clusters, we
create an edge from the cluster to which the source state belongs to the cluster
to which the destination state belongs in the new state diagram, if not already
drawn.

• The value of the rate of energy consumption parameter of a cluster is the highest
value of the corresponding parameter among all the applications states in that
particular cluster. Also, the value of the average permanence time parameter
of a cluster is the longest value of the corresponding parameter among all the
applications in that particular cluster.

4. The schedulability analysis starts with the cluster which holds the state currently
running on the mobile device. Then the normal paths are followed to see if the
desired application that the user wants to run reaches completion before the entire
battery of the mobile device is exhausted on any path. The following situations can
arise as discussed earlier.

• We do not find such a path. We declare that it is safe to schedule the desired
application.

• Such a path could be found. In other words, before the application could com-
plete, the mobile device will exhaust its entire battery power. In this case, we
need to examine the unclustered state machine and proceed accordingly. If the
path is a valid one, we conclude that scheduling is not possible. If the path is
invalid, and not present in the unclustered machine, we need a refinement step.
In this case, we create new clusters by replacing/dividing old clusters. The cre-
ation of new clusters is done by the Similar Duration Job Abstraction algorithm
which is a refinement algorithm. Based on the algorithm we decide the number
of clusters to be formed and what applications need to be assigned to which clus-
ter. We then execute steps 2 to 4 iteratively. If we have broken the clusters to a
depth such that there are no more clusters and each application is represented as

42 4. STATEREF: A STATE REFinement technique for REAST

a single state, and we still have not have declared that it is safe to schedule the
desired application, then we declare that it is unsafe to schedule it. Hence the
user should charge the mobile device properly before scheduling the application.

4.3 The iterative refinement framework

We discuss about the formal model that we used in our work. The Usage Profile Automaton
is same as that used in the previous chapter minus the CPU availability parameter.

• S, denoting the set of application states
⋃

the (idle, switched off) states.

• E is the transition relation between application states.

• H: S → R represents the average permanence value defined as H(si) = ti, where si ∈
S, ti ∈ R.

• R: S → R, denoting the rate of energy consumption at a state.

Each application that the user runs on his device appears as a state in S as collected from
the logs. For each transition observed between application states in the logs, we add a
transition to E. The rate of energy dissipation also includes the contribution of the routine
system processes. The scheduling problem considered here is as follows. Given a state s ∈ S
and remaining battery level l, is it safe to run an application A with energy requirement EA

and the rate of energy dissipation RA given that the user has already spent some time in
the state s, and may transit to any other state after the average permanence time for that
state is over. To answer the question above, we need to check if the zero battery state is
reached by the time this application finishes. To do so, we first create the abstract clustered
UPA as described below.

The clustering problem

Formally, the parameters of the clustered UPA are as follows:

• C, denoting the set of clusters, where each cluster contains a set of applications states⋃
the (idle, switched off) states. Each application state is present in exactly one

cluster.

• E is the set of edges. If two application states belonging to the same cluster have
an edge in between them, then add a self loop to that cluster. If an edge is present
between two application states belonging to two different clusters, then there is an
equivalent edge in between the two clusters.

4.3. The iterative refinement framework 43

• H now represents the average permanence value.

• R is the highest rate of energy consumption value among all the applications present
in that cluster.

The clusters are created using the α-Similar Duration Job Abstraction algorithm as de-
scribed below.

Similar Duration Job Abstraction

An α-similar duration job abstraction is a partition of the applications into many clusters
in the state diagram such that the application with the highest value of the state energy
consumption parameter is at most α times the shortest one in every cluster. Initially, we
will set the value of the α parameter as 3. There is some pre-processing required to sort all
the applications in non-decreasing order and store them.

Figure 4.6: Unsorted set of applications

The basic algorithm using similar duration job refinement is as given in Algorithm 2 (ini-
tially, the value of α is 3). Our algorithm for refining using similar duration job abstraction
is given in Algorithm 3. Algorithm 3 is the similar duration job abstraction refinement
algorithm. If we found a path in Algorithm 2 which leads to a state having zero mobile
energy left, then Algorithm 3 will be executed. In Algorithm 3, if in each cluster, the value
of the rate of energy dissipation and the average permanence time of the cluster was taken

44 4. STATEREF: A STATE REFinement technique for REAST

Algorithm 2 Similar Duration Job Abstraction algorithm

1: Take as input all the applications sorted in non-decreasing order based on their state
energy consumption

2: Assign the first application as the head of the first cluster
3: With the current value of α, add applications in the sorted order to the first cluster
4: After encountering an application A which falls outside the range of α times the first

application, assign application A as the head of a new cluster
5: Continue this process till all the applications have been covered
6: Apply the scheduling algorithm
7: if Success then
8: Declare that it is safe to schedule the desired task
9: EXIT with success

10: else
11: if both the rate of energy dissipation and the average permanence time parameters

of each cluster is same as that of any individual application within that cluster then
12: Examine the path for validity.
13: if path is found to be valid then
14: EXIT with failure
15: else
16: Run Algorithm 3
17: end if
18: else
19: Run Algorithm 3
20: end if
21: end if

Algorithm 3 Refinement using Similar Duration Job Abstraction

1: Take the clusters as input
2: if all the clusters are individual applications then
3: Declare that it is not safe to schedule the task
4: EXIT with failure
5: end if
6: energy difference = Energy requirement of the task − Energy that the task spent in

the previous step
7: energy percent = energy difference / Energy requirement of the task ∗ 100
8: Round up energy percent to single decimal digit
9: α = α − energy percent

10: Redo Algorithm 2 using the new value of α

4.3. The iterative refinement framework 45

Figure 4.7: Clusters of applications with α = 3

Figure 4.8: Clusters refined with α = 2.5

from a single application for each cluster (Line 2), or if all applications are individually

46 4. STATEREF: A STATE REFinement technique for REAST

represented as states and no more cluster exists (Line 6), then no safe path exists. Other-
wise, we calculate the percentage of energy that the desired task still needs to complete its
operation, round off the value to single digit of decimal, and subtract it from the current α
value to create the new α value. Then, Algorithm 2 is called again.

Let us consider a hypothetical example. Figure 4.6 shows an unsorted set of 20 applications,
labelled from A to T. The numbers with each applications represent the state energy
consumption parameter, that is, the product of the rate of energy dissipation and the
average permanence time for that state. We assume that these states are part of a state
transition automaton having edges in between them which depict the transitions between
any two applications. By applying the clustering step of Algorithm 2, we will get a structure
as shown in Figure 4.7. Basically, all the applications are sorted based on their state energy
consumption values in non-decreasing order and then clustered by taking α = 3. Then
suppose that a path is found which leads to a state where the mobile device’s battery will
be completely exhausted after only 50% of the desired task’s energy has been spent. So, the
amount of energy of the desired task that was left to be spent is 50% or 0.5 times the total
energy required by the desired task. Thus, the new value of the parameter α is 3 − 0.5 =
2.5. We then perform the refinement algorithm, that is, Algorithm 3. The resulting output
is shown in Figure 4.8.

4.4 Experimentation results

We conducted a number of random simulations for testing the scalability of the scheduling
algorithm without clustering, and for the scheduling algorithm with clustering and refine-
ment (using similar duration job abstraction algorithm). The usage logs were collected from
real usage profiles by our android application. The results are summarized in the graph
plotted in Figure 4.9. For each of these, we have considered that the desired task that the
user wants to run requires 100 mJ of energy to complete its execution. The rate of energy
dissipation for the task is 0.1 mJ per second., and the remaining battery energy of the mo-
bile device is 10000 J. We considered fifteen different cases of the usage profile automaton
with varying number of states between 600 and 2000, which we have used as the horizontal
axis of the graph shown in Figure 4.9. The time taken is represented on the vertical axis.
The upper curve represents the values obtained when a simple scheduling algorithm is per-
formed without clustering, whereas the lower curve represents the values obtained by our
proposed algorithm which supports clustering of applications and the refinement of those
clusters.

As it can be seen, there is a significant time difference in the performance between the
algorithms. Also, the increase in the time consumed in algorithm supporting clustering
(and refinement) is almost uniform (lower curve) as the number of application states in-

4.5. Conclusion 47

Figure 4.9: Comparison of clustering algorithms

crease, whereas for the simple scheduling algorithm which does not support clustering (upper
curve), the increase in time consumed is more as the number of application states increase.
This justifies the fact that clustering and refinement solves the scheduling problem faster
than simple scheduling algorithms in the average case. However in the worst case it may so
happen that the original unclustered state machine does not really contain a path which is
safe, and therefore our clustering and refinement algorithm runs through multiple iterations
and finally reaches a single state unclustered UPA and terminates with a negative answer.
In this process, it consumes more time than what a naive scheduling algorithm without
clustering would have taken. However such situations were rare and we could not find any
in our random experiments.

4.5 Conclusion

The application schedulabilitiy analysis problem on a mobile device with a significant num-
ber of application states in a usage log, can consume a lot of time if all the applications are
explicitly represented. This chapter adopts a clustering based iterative refinement approach
to solve the schedulability analysis problem. Preliminary experiments show that our intu-
itions are well justified. We are currently working on extending our analysis to a framework
and an android application which can be widely used.

Chapter 5

VARES: A Variation Aware
Residual Energy Scheduler for
mobile cloud computing

Offloading in Mobile Cloud Computing (MCC) is a key way of mitigating resource con-
straints of mobile devices like smartphones. In offloading, some of the tasks within a mobile
application are migrated and executed on resource-rich cloud systems. Intelligent selective
migration of energy or computation-intensive tasks have shown significant energy and time
savings

In many mobile applications, such as cloud gaming and video streaming, the quality of
service offered to the user can vary depending on the availability of resources. For such
applications, proper adaptation of quality of service and scheduling of tasks on the mobile
device or cloud is essential. This allows such applications to optimize the quality of service
given to the user while satisfying the available energy budget.

Let us take a gaming application as an example. In gaming applications, the quality of
service is measured using the amount of detail shown in the application. In such a scenario,
increasing the amount of detail makes the game more realistic. However, this increases
the amount of data transfer through the network, thus increasing the energy consumption.
Thus, one objective of the MCC system is to ensure that the best possible quality of service
is provided while adhering to the energy budget limitation of the user.

In this chapter, we first develop two different application models of the MCC system to
formulate respective scheduling problems. One application model is a linear model to solve
linear work flows and another a concurrent model for concurrent work flows. With the help
of these models, we develop the respective linear and concurrent algorithms to optimize
the quality of service under energy budget constraint. We also show that our algorithm

49

505. VARES: A Variation Aware Residual Energy Scheduler for mobile cloud computing

provides the optimal solution in polynomial time.

We divide an application into several tasks such that each task has various variants, each
variant having different QoS parameters. The crux of our model development is to divide
each task into variants and to represent each variant distinctively, as an individual node in
a graph depicting the entire application. This results in an application graph where each
task of the application is broken down such that each variant of each task is represented as
a node in the graph. We then apply a scheduling algorithm to find different paths which
symbolize different possible schedules of the graph. Finally we choose one schedule from
the various schedules which satisfies the energy budget, also provides the best number of
variants for that energy budget.

Our contributions may be summarized as follows:

• We develop two formal models, a linear one and a concurrent one, to optimize the
quality of service under energy budget constraint.

• We propose polynomial algorithms to solve the respective problems.

• We analyze our algorithm mathematically and through trace-driven simulation to
show it provides an optimal solution, and is effective in practice.

5.1 Problem Description

Our problem involves scheduling an application to run. The application consists of various
micro tasks which can be scheduled in some topological order (based on certain dependencies
among the tasks). Each task of an application can have different number of variants. Each
of these variants can be executed locally on the mobile device. These variants can be
numbered from 1 to n where 1 is the best variant of a task that can be executed locally
and n is the worst variant of the same task that can be executed locally. Apart from the
option of executing each task locally through one of its variant, a task can also be offloaded
to the cloud for its execution. When on the cloud, only the best variant of a task will be
executed. We number the cloud variant of a task as 0.

The execution of an application on the cloud does not exhaust any mobile device energy.
But the trade-off is the data transmission energy and the data receiving energy (with respect
to the concerned application), which need to be accounted for. In the mobile device, there
is no transmission/receiving energy for the data but there is energy exhausted of the mobile
device to execute the application.

Since we are assuming that the tasks of an application have certain topological ordering,
this order can be followed to execute the tasks. The problem of scheduling a task of an
application involves deciding whether to schedule a task on the cloud or locally on the mobile

5.1. Problem Description 51

device, and if a decision is made to schedule the task locally, then which variant of the task is
to be executed. Say that variant v of task x has been scheduled to execute locally. Since the
task is a local task, it will consume the mobile device’s energy and this energy consumption
needs to be taken into account while calculating the total energy consumed by the schedule.
Also, if the previous task or the next task or both (in topological ordering) were scheduled to
execute on the cloud (variant 0), then there will be some energy consumption in downloading
the input if the previous task was on the cloud or/and offloading the output if the next task
is scheduled on the cloud. If a task which immediately precedes or succeeds the current
task in topological ordering is scheduled locally, then there will be no energy consumed to
transfer the input to the current task or to supply the output of the current task. The
transfer energy will also be non-zero if the previous or the next task is to be executed on
the local device and the current task is scheduled to execute on the cloud. Finally, the
amount of energy consumed by the mobile device in performing the cloud variant of a task
is zero since the mobile device will play no part in its execution.

The quality of a variant is described by the QoS parameter of that variant. So in our case,
for a task x, the QoS parameter of variant 0 and variant 1 will be same and also the highest
among other variants. Let the energy consumed by the best variant of a task x be e. The
the energy consumed by the second variant of task x will be e/α, where α is a constant.
The energy consumed by the third variant of task x will be e/α2. Similarly, the energy
consumed by the ith variant will be e/α(i−1).

5.1.1 Mobile Cloud Computing System

The entire application containing various tasks is represented in the form of a Directed
Acyclic Graph (DAG). Each node in the graph is represented as a task of the application.
There is an edge from a task x to another task y only if the start of task y is dependent
on the completion of task x. Each node has an energy parameter associated with it called
the node energy, which denotes the amount of energy that the node will consume for its
execution. The cloud variants of all the tasks have the node energy’s value as zero. There is
also energy consumption parameters associated with each edge. We will call this parameter
as edge energy. For local mobile device to local mobile device transition and cloud to cloud
transition, the edge energy is zero. It is assumed that the first and the last tasks of the
application are native tasks and have a single variant.

5.1.2 Linear Application Model

A linear work flow of an application can be seen in Figure 5.1. For the formation of the
linear application model, we will break each non-native task of the graph in Figure 5.1
and expand it so that each variants of each task is a node in the new graph. The linear
application model for Figure 5.1 is shown in Figure 5.2. Each level of nodes in Figure 5.2

525. VARES: A Variation Aware Residual Energy Scheduler for mobile cloud computing

Figure 5.1: Linear work flow of an application

represent a single task and each task is divided into three variants, represented as nodes.
The node energy is written inside each node and the edges are represented by the edge
energies. The nodes are labelled from 0 to 10. Nodes 0 and 10 are native tasks. Node 1
represents the cloud variant of second task, node 2 represents the first variant of the second
task that can be executed on the local device and node 3 represents the second variant of
the same task. Thus, all blue nodes represent the cloud variants, all grey nodes variants
represent the first local variant and all brown nodes represent the second local variant of
their respective tasks. The transitions between the nodes are same as described above.

Given this model, the scheduler will suggest a path from the start node (node 0) to the
destination node (node 10) such that exactly one variant of each task is chosen to be
executed. The constraint of choosing exactly one variant from a task is realized in Figure 5.2
since there is no edge between any two nodes belonging to the same layer.

5.1.3 Concurrent Application Model

The concurrent model faces the problem of of having concurrent nodes, which results in a
non-linear model. A concurrent work flow can be seen in Figure 5.3. Figure 5.3 can no
longer be represented as a layered graph since node 0 has two outgoing edges, hence the
structure of the graph is no longer linear. To solve this problem, a topological sort of all
the nodes in the work flow can be done. A topological sort of the work flow in Figure 5.3
is shown in Figure 5.4. Now, the graph in Figure 5.4 is linear and the scheduler can now
suggest a path from start node to destination node by again representing the graph in
Figure 5.4 in its expanded form as shown in Figure 5.5. An important point to note here
is that there might be some edges lost and/or some new edges added in the topological
ordering of nodes. For example, in Figure 5.4, edge from node 1 to node 3 has been added
which was not present in the original work flow in Figure 5.3. Also, edge from node 1 to
node 2 is absent in Figure 5.4. The energies of the absent edges need to be accounted for
by the scheduler, and those edges which have been newly added can be simply represented
by an edge having edge energy as 0.

5.1. Problem Description 53

Figure 5.2: Linear Application Model

Figure 5.3: Concurrent work flow of an application

Figure 5.4: Topographical ordering of the concurrent work flow

5.1.4 Quality of Service Optimization Problem

Given any of the above models, our aim is to optimize overall QoS of the entire application.
In other words, the scheduler needs to choose a path with as good QoS parameters as

545. VARES: A Variation Aware Residual Energy Scheduler for mobile cloud computing

Figure 5.5: Model of an concurrent application after topological ordering

possible for each and every task of the application. The constraint is that the energy
consumed by scheduling the chosen set of variants should not cross the energy threshold
given by the application user. If it exceeds the energy threshold barrier, a path with inferior
variants have to be chosen. Now assume the cloud variant and the best (first) variant that
can be executed locally on the mobile device having weightage of 1 in the QoS calculation of
the entire application. We will call this weightage of a variant as the index of that variant.
The rest of the local variants have indices equal to their variant number, that is, starting
from 2 to n, where n is the total number of variants of a task. Let there be total N tasks
in an application A, and the variant chosen by task xi for scheduling has its index value
equal to indexi. Also, let the total energy consumed by the entire application A be E.
Mathematically, the optimization problem can be represented as

∀x ∈ A,maximize
N∑
i=1

indexi s.t. E ≤ energy threshold

5.2 Algorithm for Linear Work flows

The sequential algorithm to solve the problem scenario is given by Algorithm 4. The
parameters used in Algorithm 4 are explained below.

• node e[i]: The amount of energy to be consumed by node i. For cloud variant, it’s
value is zero.

• I sum[i][j]: The sum of indices of a path traversed from source node till node i. The

5.2. Algorithm for Linear Work flows 55

entry number of that path is denoted by j.

• E sum[i][j]: The sum of the total energy consumed while traversing a path from source
node till node i. The entry number of that path is denoted by j. The sum includes
the node energy consumed as well as the transition energy consumed while traversing
the path j.

• path[i][j]: The actual paths which are traversed from source to node i is stored in this
array, numbered by j for the node i. For cloud variant, 0 is appended to the path.
For other mobile variants, the variant number starting from 1 to n is appended to the
path, where n is the total number of variants.

• node n: Represents the node number of the node currently being explored.

• entries[i]: The total number of entries that have been stored corresponding to node
i. Each of these entries has a value in the arrays index sum, E sum and path corre-
sponding to node i.

• parents of node n: All the nodes which have a transition edge to the current node.

• edge e[i][j] : Energy consumed during the transition from node i to node j.

• E threshold: Entered by the user. Denotes the maximum amount of energy that can
be exhausted to complete the entire task.

Explanation of Algorithm 4

Algorithm 4 works as follows. Each node maintains some particular number of entries. For
each corresponding entry, there are values stored in I sum, E sum and path arrays for
that node. The algorithm in Figure 5.2 starts with the first node, node 0. From node 0, it
explores all possible paths. It can go to three nodes, nodes 1, 2 and 3, which are basically
a cloud variant and two local variants of a single task. Then the control moves on to node
1. The parent of node 1 is node 0. The sum of indices till node 1 is 2 (1 for node 0 + 1
for node 1). Since currently there are no other entries for node 1, a new entry is created
storing the sum of indices in array I sum. In the corresponding entry in the E sum entry
for node 1, the sum of energies of node 0, the edge energy from node 0 to node 1 and the
energy of node 1 is stored. The path traversed till node 1 is ”10” (1 for node 0 and 0 for
the cloud variant, that is, node 1). This value is stored in the corresponding entry of path
array for node 1. For node 2 and node 3, a similar procedure is carried out. The entries for
node 2′s I sum and path arrays will be 2 and ”11” respectively. Similarly, the entries for
node 3′s I sum and path arrays will be 3 and ”12” respectively.

Now we will consider what happens at node 4. There are three parent nodes of node
4 namely, nodes 1, 2 and 3. First we will consider the parent node 1. The sum of indices

565. VARES: A Variation Aware Residual Energy Scheduler for mobile cloud computing

Algorithm 4 Algorithm for solving Linear sequence of processes

1: while all the parents of node n have been explored do
2: for i = 1 to entries[parent] do
3: E sum← E sum[parent][i] + edge e[parent][node n] + node e[node n]
4: I sum← I sum[parent][i] + index[node n]
5: Save the path in the path array
6: if I sum already exists in an entry of array I sum then
7: keep the lower energy sum in the corresponding entry of the array E sum and

change the entry in the path array accordingly
8: end if
9: end for

10: Explore the next parent
11: end while
12: Sort the array I sum in ascending order and change the entries of E sum and path

accordingly
13: for i← 1 to entries[last node] do
14: if E sum of that entry of the last node is ≤ E threshold then
15: print the entry’s path, E sum, I sum
16: EXIT
17: end if
18: end for
19: print no path exists with energy less than the given E threshold

5.2. Algorithm for Linear Work flows 57

of the first entry of node 4 will be 3 (2 from parent node and 1 for node 4), and this value
will be stored as the first entry of the I sum array for node 4. The energy stored in E sum
array of node 1 will be summed up with the edge energy from node 1 to node 4 and the
node energy of node 4, and stored in the corresponding entry of the E sum array for node
4. The value of the path array’s first entry for node 4 will be ”100” (10 from node 1 and 0
for the cloud variant, that is node 4).

Now we will go on to the next parent of node 4, that is, node 2. The sum of indices will
be 3 (2 from parent node and 1 for node 4). But the value 3 is already stored as the first
entry of the I sum array for node 4. So the sum of energies of node 2′s E sum array, the
edge energy of the edge from node 2 to node 4 and the node energy of node 4 will be added.
This energy sum is smaller that the energy sum stored as the first entry of the E sum array
for node 4. So the previous stored energy sum value is replaced with the new smaller value
in the first entry of the array E sum for node 4. The path array for the first entry of node
4 is updated to ”110” (11 from node 2 and 0 for the cloud variant, that is node 4). We keep
only a single entry for a particular index value sum for a node. The proof of keeping the
entry with smaller energy sum among the entries having the same index sum is given later
in this section.

The next parent of node 4 is node 3. We find that the sum of indices is 4 (3 from node
3 + 1 for node 4). This value does not exist in the array I sum of node 4. So a new entry
is created in array I sum in which the value 4 is stored. New entries are also created for
the arrays E sum and path for node 4 and the respective new values are stored in those.

After we are finished exploring all the parents of node 4, we go on to node 5. A similar
procedure is followed for nodes 5, 6, 7, 8, 9 and the last node, 10. After completing the
operation of the last node, we sort the indices stored in the I sum array of node 10 in
ascending order. Since all indices are unique, there will not be any tie while sorting. We
arrange the entries in the arrays E sum and path in the same order as their corresponding
entries in the array I sum have been sorted. The user then enters an energy threshold.
The algorithm looks through the array E sum sequentially and finds the first entry which
has a value less than or equal to the energy threshold. The algorithm prints this value with
the corresponding entries in the arrays I sum and path for node 10. If no such energy sum
value is found, then the algorithm prints that no such path exists.

Theorem 5.1. Given a graph G of a linear work flow W , if a node i contains two paths,
path1 and path2, having the same sum of indices till node i but the energy sum of path1 ≤
the energy sum of path2, then the entry for the path2 can be discarded since it will never
yield a smaller energy sum path than path1.

Proof. We will prove it by contradiction. Suppose we keep both the paths, path1 and path2
in the belief that at some later node, path2 will go on to produce an energy sum which will
be smaller than that produced by path1 at the same node. Let there be a node j such that
node i is the parent of node j, and the index value of node j be k. The index sum till node

585. VARES: A Variation Aware Residual Energy Scheduler for mobile cloud computing

j for path2 will be the index sum of path2 till node i + k. The sum of indices for path1
till node j would be same as that for path2 since we know that path1 and path2 have the
same sum of indices till node i. So if j gets added to both the sum, the resultant value will
always be the same. Now, let the energy sum along path1 till node i be E1 and that for
path2 till node i be E2. Also, let the sum of energies consumed by the edge from node i
to node j and by node j itself be Ej . The sum of energy consumed by path1 when it adds
node j to its path will be E1 + Ej , and for path2 will be E2 + Ej . Since E1 ≤ E2, E1 +
Ej will also be ≤ E2 + Ej . Moreover, our aim is to give user the smallest energy consumed
path for a particular sum of indices. So, it is of no use to keep an entry for path2 after node
i since for each and every succeeding node, it will produce the same sum of indices as that
of path1, but its energy sum will always be larger than that of path1.

Corollary 5.1. Given a graph G of a linear work flow W , a path path1 obtained at the
last node corresponding to certain index sum is the path which consumes the least amount
of energy for that particular index sum. In other words, we get the optimal path at the last
node corresponding to their index sum.

Proof. The proof is an extension of Theorem 5.1. At each node, if more than one path is
found having the same sum of indices, then the one having the higher energy consumption
is discarded. So at each node, we keep only those paths which have the least amount of
energy consumed associated with them for a particular index sum. Therefore at the last
node, we only get the paths corresponding to the least amount of energy consumed for a
particular index sum value.

Complexity of Algorithm 4

Let there be a total of T tasks that are represented in the linear work flow. Let each
task have a maximum of K variants, including the cloud variant. The cloud variant and
the first local variant have index value as 1 and the remaining variants have index value
ranging from 2 to K − 1, where K − 1 is the last local variant. Assume i1, i2, i3, ..., iK
are the K parents of node j. The maximum number of entries a node needs to store is
{[(T − 2) ∗ (K − 1)] + 2} ∗ 3, since the maximum sum of indices at the last node of the work
flow will be the sum of indices of the path which contains the variants of each task having
index value equal to K − 1 (the last variant of each task). There will be T − 2 such tasks,
and the remaining two tasks will be the native start task and the native end task which
have only a single variant of value 1. Also, there is a multiplication by 3 since we need to
store three arrays with respect to each node, index sum, energy sum and path. The space
complexity is [(T − 2) ∗ (K − 1)] + 2.

Space complexity: [(T − 2) ∗ (K − 1)] + 2

The amount of time needed by a node will be the time needed to process [(T−2)∗(K−1)]+2
paths from each of its parent nodes. In the worst case, there will be K parents. Also, this

5.3. Algorithm for Concurrent Work flows 59

precessing needs to be done for all nodes except for the start node, that is for [(T−2)∗K]+1
nodes, with the assumption that all tasks have K variants but the last task has a single
variant. So, the processing time will be added with the time to sort the entries in the last
node in order of increasing indices sum which will take {[(T−2)∗(K−1)]+2}∗log{[(T−2)∗
(K−1)]+2}. The resultant time complexity is {{[(T −2)∗(K−1)]+2}∗{[(T −2)∗K]+1}}
(for processing all the nodes) + {{[(T − 2) ∗ (K − 1)] + 2} ∗ log{[(T − 2) ∗ (K − 1) + 2]}}
(for sorting the array index sum at the last node), which can be approximated to {[(T −
2) ∗ (K − 1)] + 2} ∗ {[(T − 2) ∗K] + 1}.

Time complexity: {[(T − 2) ∗ (K − 1)] + 2} ∗ {[(T − 2) ∗K] + 1}

5.3 Algorithm for Concurrent Work flows

The algorithm to solve the problem scenario in the concurrent setting is given by Algo-
rithm 5. The parameters used in Algorithm 5 are same as used for the linear algorithm.

Explanation of Algorithm 5

Line 1: The nodes need to be arranged in topological order.
Lines 7-8: In the original work flow, there might be edges from nodes immediately preceding
the current node which might not be depicted in the topological ordering. So the energy of
those edges will be added to the array E sum.
The rest of the lines work similar to Algorithm 4.

Algorithm 5 starts by doing a topological sorting of all the nodes of the concurrent work
flow. This is done to give a certain order of execution to all the nodes of the work flow.
The ordering suggests one of the possible schedules of the work flow. A topological sort
is done so that the dependencies among all the nodes are maintained. By converting the
concurrent schedule to a linear topological schedule, there is no deviation from the actual
problem, which we will prove through a theorem later in this section. In our example in
Figure 5.3, the topological sorting will produce a linear schedule. One of the possible linear
schedule is shown in Figure 5.4. Note that even though there are some edges missing and
some new edges have popped up, the original set of edges between any two nodes are still
present in the array edge e. The remaining part of the algorithm is similar to that of the
linear one with one difference. For each edge that was present in the original concurrent
work flow but is absent in the topologically sorted work flow, the edge weight is added to a
path when the destination node is encountered. For example, if in the original work flow,
there was an edge from node i to node j but this edge is absent in the topologically ordered
work flow, then the edge energy of edge ij is added during the processing of node j by
looking up in the edge e array. For the edges which have occurred due to the topological
ordering but are actually absent in the concurrent work flow have the value 0 assigned to

605. VARES: A Variation Aware Residual Energy Scheduler for mobile cloud computing

Algorithm 5 Algorithm for solving Concurrent sequence of processes

1: do a topological ordering of all the nodes in the given workflow
2: while all the parents of node n have been explored do
3: for i = 1 to entries[parent] do
4: E sum← E sum[parent][i] + edge e[parent][node n] + node e[node n]
5: I sum← I sum[parent][i] + index[node n]
6: Save the path in the path array
7: for all the nodes i which have an edge to the current node in the original workflow

do
8: E sum← edge e[i][node n]
9: end for

10: if I sum already exists in an entry of array I sum then
11: keep the lower energy sum in the corresponding entry of the array E sum and

change the entry in the path array accordingly
12: end if
13: end for
14: Explore the next parent
15: end while
16: Sort the array I sum in ascending order and change the entries of E sum and path

accordingly
17: for i← 1 to entries[last node] do
18: if E sum of that entry of the last node node is ≤ E threshold then
19: print the entry’s path, E sum, I sum
20: EXIT
21: end if
22: end for
23: print no path exists with energy less than the given E threshold

5.3. Algorithm for Concurrent Work flows 61

them in the edge e array. So these edges are basically considered as edges without any
energy consumption.

At the end of the algorithm, when we have completed the operation of the last node,
we sort the indices stored in the I sum array of the last node in ascending order. Also, we
arrange the entries in the arrays E sum and path in the same order as their corresponding
entries in the array I sum have been sorted. The user then enters an energy threshold.
The algorithm looks through the array E sum sequentially and finds the first entry which
has a value less than or equal to the energy threshold. The algorithm prints this value with
the corresponding entries in the arrays I sum and path for the last node. If no such energy
sum value is found, then the algorithm prints that no such path exists.

Theorem 5.2. Given a graph G, a concurrent work flow C can be converted into a linear
work flow L such that the schedule obtained from the linear work flow is a possible schedule
that could have been chosen for the concurrent work flow.

Proof. For the conversion, we use topological sorting. Because of this, the dependencies
among the nodes are maintained. Since the topological sort arranges the nodes in one of
the ways in which the control can reach from start to the end node in the concurrent graph,
the linear schedule thus obtained is also a schedule of the concurrent graph. It is important
to note that any one of the various schedules of the concurrent work flow will suffice to our
requirement.

Complexity of Algorithm 5

The space complexity of Algorithm 5 will be same as that for the linear algorithm. Let T be
the total number of tasks and K be the maximum number of variants of a task, including
the cloud variant. The first and the last tasks are native having a single local variant.

Space complexity: O([(T − 2) ∗ (K − 1)] + 2)

There will be some added time required for the initial topological ordering of the nodes.
Also, while exploring each parent of a node, it needs to be looked up whether any edge exists
so that its destination is the current node and it was present in the original concurrent work
flow but is absent from the topologically sorted work flow.

The topological ordering can be done by a depth first search with an extra stack, which is
linear in terms of the number of edges and the number of nodes. In worst case, it will be
T + [T ∗ (T − 1)]/2 (since a completed graph will have [T ∗ (T − 1)]/2 edges). For looking
up for a missing edge, in worst case T − 1 nodes need to be searched and this time will be
added to the processing time at each node. The processing time and sorting time (at the
last node) will be same as that for the linear algorithm. The resultant time complexity is
{T +[T ∗ (T −1)]/2} (for topological ordering) + {{[(T −2)∗ (K−1)]+2}∗{[(T −2)∗K]+

625. VARES: A Variation Aware Residual Energy Scheduler for mobile cloud computing

1} ∗ (T − 1)} (for processing all the nodes) + {{[(T − 2) ∗ (K− 1)] + 2} ∗ log{[(T − 2) ∗ (K−
1) + 2]}} (for sorting the array index sum at the last node), which can be approximated to
{[(T − 2) ∗ (K − 1)] + 2} ∗ {[(T − 2) ∗K] + 1} ∗ (T − 1).

Time complexity: {[(T − 2) ∗ (K − 1)] + 2} ∗ {[(T − 2) ∗K] + 1} ∗ (T − 1)

5.4 Experimental Evaluation

Figure 5.6: Linear simulation by varying the number of tasks

Figure 5.6 shows a simulation obtained by varying the number of tasks for linear models.
The number of variants of each task is kept fixed at 2, excluding the cloud variant. The
column ’Energy consumed with best local variants only’ signifies the energy consumed if
no variants of the local task were used (not even the cloud variant). The ’Minimum energy
path’ column focuses on the path that consumed the least amount of energy in completing
the tasks using the two local and one cloud variants. The ’Best QoS path’ column shows the
parameters of the path which provides the best quality of service path to complete the tasks,
again using two local and one cloud variants. It can be seen that when we introduce the
local and cloud variants, the amount of energy consumed gets decreased considerably (the
’Best QoS’ column) for the same sum of indices or QoS parameter. This is due to the fact
that there is a new cloud variant which has been introduced which provides an alternative
path to the best variant path on the local device. The comparison of the ’Minimum energy’
column with the ’Energy consumed with local variants only’ column is shown in Figure 5.7.

5.4. Experimental Evaluation 63

Figure 5.7: Linear simulation results (varying the number of tasks)

Figure 5.8: Linear simulation by varying the number of variants

If the user has energy constraint, the the user can take a path which consumes the least
amount of energy, which as seen from Figure 5.7 (lower curve) is much less than the path
which only considers the best variants of the tasks on the mobile device (upper curve).

Next, we vary the number of tasks and the number of variants. The result for linear

645. VARES: A Variation Aware Residual Energy Scheduler for mobile cloud computing

Figure 5.9: Concurrent simulation by varying the number of tasks

simulation is shown in Figure 5.8. The notable change is in the minimum amount of energy
consumed to complete the process with multiple variants is significantly lower than if the
best local variants were used. Also, with the increase in the number of variants, the number
of unique paths also increases, which will enable the user to have more options to choose
from.

Figure 5.9 and Figure 5.11 are the simulation of the concurrent models. The graph shown
in Figure 5.10 shows the comparison between the least energy consuming path with all the
variants (lower curve) against the path which considers the best local quality of service
parameters for the tasks (upper curve). The outcome is similar to that of the linear one.
This emphasizes the fact that use of variants can reduce the energy consumption to perform
a set of tasks by decreasing the QoS parameter which will eventually aid a user to perform
tasks in an energy constrained environment.

5.5. Conclusion 65

Figure 5.10: Concurrent simulation results (varying the number of tasks)

Figure 5.11: Concurrent simulation by varying the number of variants

5.5 Conclusion

Variants of the original task give users the option to choose a lower energy path to complete
their task by compromising on the Quality of Service parameter. This can be useful under

665. VARES: A Variation Aware Residual Energy Scheduler for mobile cloud computing

energy-constrained scenarios. We wish to extend our experimentation on image processing
applications to see the impact of variants in most commonly used software tools.

Chapter 6

Conclusion and Future Work

In chapter 3, we proposed a scheduling algorithm which takes into account the percentage of
CPU currently available for the use of an application. This gives a more realistic approach
to energy analysis of an application and answers the question if it is possible to schedule a
given application at a particular time. In chapter 4, we modified the scheduling algorithm
presented in chapter 3 by creating clusters of applications. This is useful in the scenario
where there are large number of applications and the scheduling will take a considerable
amount of time to complete its operation. We also proposed an iterative refinement algo-
rithm to refine the clusters. Finally in chapter 5, we suggested the use of variants of an
application in a mobile device and a cloud variant. The scheduling algorithm can run on
these variants and find several energy paths with different values of energy, from which the
scheduler can choose the path which provides the best Quality of Service and satisfies a
given energy constraint.

We are creating an android application which will combine the approaches presented in
chapters 3, 4 and 5, and thus for any given application, answer the question if it is safe to
schedule an application. Also for a set of applications having different variants, our android
application will give the best path to schedule the given set of applications (in terms of
Quality of Service), given an energy constraint.

67

Chapter 7

Disseminations out of this work

• A. Dash, and A. Banerjee, “When to schedule an application? An energy-aware deci-
sion,” in Proceedings of the 6th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom ’14), 2014.

• A. Dash, and A. Banerjee, “Application state refinement for scheduling applications
on mobile devices,” under review at 7th IEEE International Conference on Cloud
Computing Technology and Science (CloudCom ’15), 2015.

69

Bibliography

[1] Amobisense. Google Play app.

[2] Power tutor 2. Google Play app.

[3] Ermyas Abebe and Caspar Ryan. Adaptive application offloading using distributed
abstract class graphs in mobile environments. Journal of Systems and Software,
85(12):2755–2769, 2012.

[4] Saeid Abolfazli, Zohreh Sanaei, Muhammad Shiraz, and Abdullah Gani. Momcc:
market-oriented architecture for mobile cloud computing based on service oriented
architecture. In Communications in China Workshops (ICCC), 2012 1st IEEE Inter-
national Conference on, pages 8–13. IEEE, 2012.

[5] Pranav Balakrishnan and Chen-Khong Tham. Energy-efficient mapping and scheduling
of task interaction graphs for code offloading in mobile cloud computing. In Proceedings
of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing,
pages 34–41. IEEE Computer Society, 2013.

[6] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani. En-
ergy consumption in mobile phones: a measurement study and implications for network
applications. In Proceedings of the 9th ACM SIGCOMM conference on Internet mea-
surement conference, pages 280–293. ACM, 2009.

[7] A. Banerjee, H. S. Paul, A. Mukherjee, S. Dey, and P. Datta. A framework for specu-
lative scheduling and device selection for task execution on a mobile cloud. In ARMS-
CC Workshop, 2014.

[8] Marco Barbera, Sokol Kosta, Alessandro Mei, Vasile Perta, and Julinda Stefa. Mobile
offloading in the wild: Findings and lessons learned through a real-life experiment with
a new cloud-aware system. In INFOCOM, 2014 Proceedings IEEE, pages 2355–2363.
IEEE, 2014.

[9] Kshitij Bhardwaj, Sreenidhy Sreepathy, Ada Gavrilovska, and Karsten Schwan. Ecc:
Edge cloud composites. In Mobile Cloud Computing, Services, and Engineering (Mo-
bileCloud), 2014 2nd IEEE International Conference on, pages 38–47. IEEE, 2014.

71

72 BIBLIOGRAPHY

[10] Ruchita Bhargava et al. Energy consumption in data analysis for on-board and dis-
tributed applications. In ICML, 2003.

[11] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and
its role in the internet of things. In Proceedings of the first edition of the MCC workshop
on Mobile cloud computing, pages 13–16. ACM, 2012.

[12] Tracy D Braun, HJ Siegal, Noah Beck, Ladislau L Bölöni, Muthucumaru Maheswaran,
Albert Reuther, James P Robertson, Mitchell D Theys, Bin Yao, Debra Hensgen, et al.
A comparison study of static mapping heuristics for a class of meta-tasks on hetero-
geneous computing systems. In Heterogeneous Computing Workshop, 1999.(HCW’99)
Proceedings. Eighth, pages 15–29. IEEE, 1999.

[13] Srdjan Čapkun, Jean-Pierre Hubaux, and Levente Buttyán. Mobility helps security in
ad hoc networks. In Proceedings of the 4th ACM international symposium on Mobile
ad hoc networking & computing, pages 46–56. ACM, 2003.

[14] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smartphone.
In Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Con-
ference, pages 21–21, 2010.

[15] Shuang Chen, Yanzhi Wang, and Massoud Pedram. A semi-markovian decision pro-
cess based control method for offloading tasks from mobile devices to the cloud. In
Global Communications Conference (GLOBECOM), 2013 IEEE, pages 2885–2890.
IEEE, 2013.

[16] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti.
Clonecloud: elastic execution between mobile device and cloud. In Proceedings of the
sixth conference on Computer systems, pages 301–314. ACM, 2011.

[17] Byung-Gon Chun and Petros Maniatis. Dynamically partitioning applications between
weak devices and clouds. In Proceedings of the 1st ACM Workshop on Mobile Cloud
Computing & Services: Social Networks and Beyond, page 7. ACM, 2010.

[18] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,
Ranveer Chandra, and Paramvir Bahl. Maui: making smartphones last longer with
code offload. In Proceedings of the 8th international conference on Mobile systems,
applications, and services, pages 49–62. ACM, 2010.

[19] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,
Ranveer Chandra, and Paramvir Bahl. Maui: Making smartphones last longer with
code offload. In Proceedings of the 8th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’10, pages 49–62, New York, NY, USA, 2010.
ACM.

[20] Yong Cui, Shihan Xiao, Xin Wang, Minming Li, Hongyi Wang, and Zeqi Lai.
Performance-aware energy optimization on mobile devices in cellular network. In IN-
FOCOM, 2014 Proceedings IEEE, pages 1123–1131. IEEE, 2014.

BIBLIOGRAPHY 73

[21] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kessel-
man, Gaurang Mehta, Karan Vahi, G Bruce Berriman, John Good, et al. Pegasus: A
framework for mapping complex scientific workflows onto distributed systems. Scien-
tific Programming, 13(3):219–237, 2005.

[22] Ding Ding, Siwei Luo, and Zhan Gao. A dual heuristic scheduling strategy based
on task partition in grid environments. In Computational Sciences and Optimization,
2009. CSO 2009. International Joint Conference on, volume 1, pages 63–67. IEEE,
2009.

[23] Fangwei Ding et al. Monitoring energy consumption of smartphones. In Internet of
Things (iThings/CPSCom), 2011 International Conference on and 4th International
Conference on Cyber, Physical and Social Computing, pages 610–613, Oct 2011.

[24] Mian Dong and Lin Zhong. Self-constructive high-rate system energy modeling for
battery-powered mobile systems. In Proceedings of the 9th international conference on
Mobile systems, applications, and services, pages 335–348. ACM, 2011.

[25] Adam Dou, Vana Kalogeraki, Dimitrios Gunopulos, Taneli Mielikainen, and Ville H
Tuulos. Misco: a mapreduce framework for mobile systems. In Proceedings of the 3rd
international conference on pervasive technologies related to assistive environments,
page 32. ACM, 2010.

[26] Heungsik Eom, Pierre St Juste, Renato Figueiredo, Omesh Tickoo, Ramesh Illikkal,
and Ravishankar Iyer. Opencl-based remote offloading framework for trusted mobile
cloud computing. In Parallel and Distributed Systems (ICPADS), 2013 International
Conference on, pages 240–248. IEEE, 2013.

[27] Adrienne Porter Felt, Serge Egelman, and David Wagner. I’ve got 99 problems, but
vibration ain’t one: a survey of smartphone users’ concerns. In Proceedings of the
second ACM workshop on Security and privacy in smartphones and mobile devices,
pages 33–44. ACM, 2012.

[28] Jason Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the energy
usage of mobile applications. In Proceedings of the Second IEEE Workshop on Mobile
Computer Systems and Applications, WMCSA ’99, 1999.

[29] Huber Flores, Pan Hui, Sasu Tarkoma, Yong Li, Satish Srirama, and Rajkumar Buyya.
Mobile code offloading: from concept to practice and beyond. Communications Mag-
azine, IEEE, 53(3):80–88, 2015.

[30] Wei Gao, Yong Li, Haoyang Lu, Ting Wang, and Cong Liu. On exploiting dynamic
execution patterns for workload offloading in mobile cloud applications. In Network
Protocols (ICNP), 2014 IEEE 22nd International Conference on, pages 1–12. IEEE,
2014.

74 BIBLIOGRAPHY

[31] Apostolos Gerasoulis and Tao Yang. A comparison of clustering heuristics for schedul-
ing directed acyclic graphs on multiprocessors. Journal of Parallel and Distributed
Computing, 16(4):276–291, 1992.

[32] Shuai Hao et al. Estimating mobile application energy consumption using program
analysis. ICSE ’13, pages 92–101, 2013.

[33] Thomas A. Henzinger, Vasu Singh, Thomas Wies, and Damien Zufferey. Schedul-
ing large jobs by abstraction refinement. In Proceedings of the Sixth Conference on
Computer Systems, EuroSys ’11, pages 329–342, New York, NY, USA, 2011. ACM.

[34] Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwälder, and
Boris Koldehofe. Mobile fog: A programming model for large-scale applications on the
internet of things. In Proceedings of the second ACM SIGCOMM workshop on Mobile
cloud computing, pages 15–20. ACM, 2013.

[35] Edwin SH Hou, Nirwan Ansari, and Hong Ren. A genetic algorithm for multiprocessor
scheduling. Parallel and Distributed Systems, IEEE Transactions on, 5(2):113–120,
1994.

[36] Yi-Hsuan Kao, Bhaskar Krishnamachari, Moo-Ryong Ra, and Fan Bai. Hermes: La-
tency optimal task assignment for resource-constrained mobile computing.

[37] A Khalifa and M Eltoweissy. Collaborative autonomic resource management system for
mobile cloud computing. In the Fourth International Conference on Cloud Computing,
GRIDs, and Virtualization, Spain, volume 20, pages 1–1, 2013.

[38] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang. Thinkair:
Dynamic resource allocation and parallel execution in the cloud for mobile code offload-
ing. In INFOCOM, 2012 Proceedings IEEE, pages 945–953. IEEE, 2012.

[39] Karthik Kumar and Yung-Hsiang Lu. Cloud computing for mobile users: Can offload-
ing computation save energy? Computer, (4):51–56, 2010.

[40] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating di-
rected task graphs to multiprocessors. ACM Computing Surveys (CSUR), 31(4):406–
471, 1999.

[41] Yu-Kwong Kwok, Anthony Maciejewski, Howard Jay Siegel, Arif Ghafoor, Ishfaq Ah-
mad, et al. Evaluation of a semi-static approach to mapping dynamic iterative tasks
onto heterogeneous computing systems. In Parallel Architectures, Algorithms, and
Networks, 1999.(I-SPAN’99) Proceedings. Fourth InternationalSymposium on, pages
204–209. IEEE, 1999.

[42] Cheol-Hoon Lee and Kang G Shin. Optimal task assignment in homogeneous networks.
Parallel and Distributed Systems, IEEE Transactions on, 8(2):119–129, 1997.

BIBLIOGRAPHY 75

[43] David A Lifka. The anl/ibm sp scheduling system. In Job Scheduling Strategies for
Parallel Processing, pages 295–303. Springer, 1995.

[44] Xue Lin, Yanzhi Wang, Qing Xie, and Massoud Pedram. Energy and performance-
aware task scheduling in a mobile cloud computing environment. In Cloud Computing
(CLOUD), 2014 IEEE 7th International Conference on, pages 192–199. IEEE, 2014.

[45] Ehsan Ullah Munir, Jianzhong Li, Shengfei Shi, Zhaonian Zou, and Qaisar Rasool.
A performance study of task scheduling heuristics in hc environment. In Modelling,
Computation and Optimization in Information Systems and Management Sciences,
pages 214–223. Springer, 2008.

[46] R. Murmuria et al. Mobile application and device power usage measurements. In SERE
2012, pages 147–156, 2012.

[47] Christos H Papadimitriou and Mihalis Yannakakis. Towards an architecture-
independent analysis of parallel algorithms. SIAM journal on computing, 19(2):322–
328, 1990.

[48] Bumjoo Park and Namgi Kim. Secure and efficient communication method in rogue
access point environments. International Journal of Smart Home, 7(4):37–46, 2013.

[49] Abhinav Pathak et al. Where is the energy spent inside my app?: Fine grained energy
accounting on smartphones with eprof. EuroSys ’12, pages 29–42, 2012.

[50] Moo-Ryong Ra, Anmol Sheth, Lily Mummert, Padmanabhan Pillai, David Wether-
all, and Ramesh Govindan. Odessa: enabling interactive perception applications on
mobile devices. In Proceedings of the 9th international conference on Mobile systems,
applications, and services, pages 43–56. ACM, 2011.

[51] M Reza Rahimi, Nalini Venkatasubramanian, Sharad Mehrotra, and Athanasios V
Vasilakos. Mapcloud: mobile applications on an elastic and scalable 2-tier cloud ar-
chitecture. In Proceedings of the 2012 IEEE/ACM Fifth International Conference on
Utility and Cloud Computing, pages 83–90. IEEE Computer Society, 2012.

[52] Tariq Rashid. Clustering, 2007.

[53] Sonal Saha and Binoy Ravindran. An experimental evaluation of real-time dvfs schedul-
ing algorithms. In Proceedings of the 5th Annual International Systems and Storage
Conference, page 7. ACM, 2012.

[54] Zohreh Sanaei, Saeid Abolfazli, Abdullah Gani, and Rajkumar Buyya. Heterogeneity
in mobile cloud computing: taxonomy and open challenges. Communications Surveys
& Tutorials, IEEE, 16(1):369–392, 2014.

[55] Mahadev Satyanarayanan, Grace Lewis, Edwin Morris, Soumya Simanta, Jeff Boleng,
and Kiryong Ha. The role of cloudlets in hostile environments. Pervasive Computing,
IEEE, 12(4):40–49, 2013.

76 BIBLIOGRAPHY

[56] Aaron Schulman, Vishnu Navda, Ramachandran Ramjee, Neil Spring, Pralhad Desh-
pande, Calvin Grunewald, Kamal Jain, and Venkata N Padmanabhan. Bartendr: a
practical approach to energy-aware cellular data scheduling. In Proceedings of the
sixteenth annual international conference on Mobile computing and networking, pages
85–96. ACM, 2010.

[57] Mohsen Sharifi, Somayeh Kafaie, and Omid Kashefi. A survey and taxonomy of cyber
foraging of mobile devices. Communications Surveys & Tutorials, IEEE, 14(4):1232–
1243, 2012.

[58] Cong Shi, Vasileios Lakafosis, Mostafa H Ammar, and Ellen W Zegura. Serendipity:
enabling remote computing among intermittently connected mobile devices. In Pro-
ceedings of the thirteenth ACM international symposium on Mobile Ad Hoc Networking
and Computing, pages 145–154. ACM, 2012.

[59] Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokhar, and Rajkumar Buyya.
A review on distributed application processing frameworks in smart mobile devices for
mobile cloud computing. Communications Surveys & Tutorials, IEEE, 15(3):1294–
1313, 2013.

[60] Harold S Stone. Multiprocessor scheduling with the aid of network flow algorithms.
Software Engineering, IEEE Transactions on, (1):85–93, 1977.

[61] Chris Thompson, Hamilton Turner, and Jules White. Analyzing mobile application
software power consumption via model-driven engineering.

[62] Tim Verbelen, Tim Stevens, Filip De Turck, and Bart Dhoedt. Graph partitioning
algorithms for optimizing software deployment in mobile cloud computing. Future
Generation Computer Systems, 29(2):451–459, 2013.

[63] Yanzhi Wang, Xue Lin, and Massoud Pedram. A nested two stage game-based op-
timization framework in mobile cloud computing system. In Service Oriented Sys-
tem Engineering (SOSE), 2013 IEEE 7th International Symposium on, pages 494–502.
IEEE, 2013.

[64] Liyao Xiang, Shiwen Ye, Yuan Feng, Baochun Li, and Bo Li. Ready, set, go: Coalesced
offloading from mobile devices to the cloud. In INFOCOM, 2014 Proceedings IEEE,
pages 2373–2381. IEEE, 2014.

[65] Jia Yu, Rajkumar Buyya, and Chen Khong Tham. Cost-based scheduling of scientific
workflow applications on utility grids. In e-Science and Grid Computing, 2005. First
International Conference on, pages 8–pp. IEEE, 2005.

[66] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson, Pradeep Ku-
mar Gunda, and Jon Currey. Dryadlinq: A system for general-purpose distributed
data-parallel computing using a high-level language. In OSDI, volume 8, pages 1–14,
2008.

BIBLIOGRAPHY 77

[67] Osmar R Zäıane. Principles of knowledge discovery in databases-chapter 8: Data
clustering. In & Shantanu Godbole data mining Data mining Workshop 9th November,
2003.

[68] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P Dick, Zhuo-
qing Morley Mao, and Lei Yang. Accurate online power estimation and automatic
battery behavior based power model generation for smartphones. In Proceedings of the
eighth IEEE/ACM/IFIP international conference on Hardware/software codesign and
system synthesis, pages 105–114. ACM, 2010.

[69] Yunkai Zhang, Renyu Yang, Tianyu Wo, Chunming Hu, Junbin Kang, and Lei Cui.
Cloudap: Improving the qos of mobile applications with efficient vm migration. In High
Performance Computing and Communications & 2013 IEEE International Conference
on Embedded and Ubiquitous Computing (HPCC EUC), 2013 IEEE 10th International
Conference on, pages 1374–1381. IEEE, 2013.

