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Abstract
We develop a method to estimate emotion-specific features on human face. Application of

such a method include characterizing an emotion class and synthesis of emotions. The emotion-
specific features can also be used to study the statistical differences between two clusters, one
facial expression images with no expressions and two facial expression images with some or
maximum emotional content. Once the feature vectors are extracted from the input data, we
classify the data and use the normal to the classifier to trace the changes that a facial expression
image may undergo in different stages of an emotion. We use Support Vector Machines learning
algorithm to construct an optimal classifier. In the result section we show that we are able to
reduce the number of features by 66.36% as compared to the total number of pixels. We show
that using these features and state-of-the-art methods to synthesize images, we improved SNR
of the synthesized image by 13.20% and also improved the cluster measures between a cluster of
no-expression images and a cluster of with-expression images.
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Chapter 1

Introduction

Human emotions are mostly surfaced on the face. There are six basic human emo-
tions considered as universal [9]. They are anger, joy, happiness, sorrow, disgust
and fear.

The question that we would like to address is: from the images of face showing
any one expressions (say, anger, joy, disgust, sorrow etc.), would it be possible to
capture the emotion-specific features? In more lucid terms, given a video of face
image showing a particular emotion (say, anger), can we identify a feature vector
that represents that specific emotion (anger)? Of course the more challenging
issue is whether this feature vector characterizing an emotion is independent of
the structure of face. That is, whether feature vector extracted from the face of
person A is relevant for the person B.

To understand the more general case, assume that we are successful in extract-
ing this emotion-specific feature vector from a data set containing video data of
facial emotion expressions of five persons. The challenge is can this feature vector
be equally true or relevant for a sixth person whose face image was not included
in extracting the original feature vector.

In case we are successful in extracting such a feature vector specific to an
emotion, we can use this feature vector to classify emotions. Given a set of training
and test image sequences, we can possibly extract feature vectors from training
images and then use these feature vectors to classify or label test video frames into
any one of six basic emotion classes.

Such an emotion-specific feature vector can be utilized in another scenario. We
can think of a model to synthesize an emotion. If an expression-neutral face image
is available as a shape vector (xi) and a feature vector (fi) for a particular emotion
is derivable as noted earlier from the training image sequences, then an emotion
can be synthesized as some function of xi and fi. If our modelling is successful and
the quality of fi is reliable then an emotion and even degree or extent of emotion
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can also be imparted on the test (emotion-neutral) face. Hamm et.al. in [16]
tried to separate pose and expression of human face. A solution was proposed
by decomposing the appearance manifold into invariant substructure and variant
substructure, and then clustering of similar expressions were done using factorized
isometric embedding. But the problem of imparting the expressions on a test face
was not addressed. The scenario can be further explained as follows.

Consider there are two clusters of face images. One cluster, say C1, represents
faces with no or little emotions while the other cluster, say C2, represents faces
with (maximum degree of) emotions. In reality, however, there will be a transition
from no emotion to full or maximum degree of emotion (for example, face showing
no anger to maximum anger). So, one utility of our synthesis model could be to
generate the intermediate faces with emotions leading to full-blown emotion. This
is a valid application of in-betweening of emotions used in animation [27]. The term
in-betweening refers that end frames showing no or full emotions are available while
the model tries to develop frames between the end frames (between the extent of
emotions).

The emotion in-betweening can be visualized as a transition between two clus-
ters C1 and C2 when C1 and C2 are separated by a classifier hyper-plane, say y.
If we assume that there is a hyper-plane, say h, leading from C1 to C2, and h is
orthogonal to y, then the in-betweening emotions are ways to find points on h.

Note that for any of the universal emotional expressions that we are discussing
in this report, for example, C1 and C2 as mentioned above, cannot be separated
by linear separating planes. In the next section, we show that non-linear classifiers
will be better to separate clusters like C1 and C2. In section 3, we show a method
with which we can extract emotion-specific-features from dataset containing video
data of facial expressions of, let, k persons, and use it for some (k+1)th person. In
section 4, we use the emotion-specific-features of section 3 to synthesize in-between
frames as one test frame with little or no-expression make its transition to a frame
with maximum expression. In section 5, we present the results of our methods,
and in section 6, we discuss future prospects of our work, and in section 7 we
conclude.
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Chapter 2

Inter-cluster Separability

Consider two clusters δC1 and δC2 as mention in the previous chapter. To repeat,
let face images with no expression represent one cluster δC1 and face images with
some or maximum emotional content of any one type (e.g., anger) be the other
cluster δC2. Let N ∈ R, where N is the total size of the two clusters, and the
populations be defined as a set X = {x1,x2, ...,xN}. To differentiate between
the two classes, let us assign labels to each population as Y ∈ {−1, 1}. A linear
classifier can be constructed in linear space (i.e., the input space) if the populations
are linearly separable. A set of population is said to be non-linearly separable if
there does not exist any linear classifier that may separate the two classes in input
space. Ideally an example of a linearly separable class of population with two
features can be shown in Fig 2.1(a), and non-linearly separable class of population
with two features can be shown in Fig 2.1(b).

(a) (b)

Figure 2.1: (a) Linear classification of two classes, (b) Non-linear classification of two classes

Now we return to the problem of separability of clusters δC1 and δC2. As a
basic step to capture expression we need to understand the distribution of the
data in the input space or some higher dimensional space where they are lineary
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separable. So we study two statistical procedures to be implemented for better
understanding of the separability of the populations.

2.1 Principal component analysis

Principal component analysis (PCA) [19] is a statistical procedure that uses an
orthogonal transformation to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables called principal
components. The principal components are the eigenvectors of the covarince matrix
of the given population. The transformation is done in such a way so that, the
first principal component has the largest variances, and each of the succeeding
principal component have maximum variance among the the components orthogoal
to the preceding component. So let x̄ be the mean of the input set X, P =
{p1,p2, ....,pN}T be a matrix of principal components of X, and bi (a column
vector) be the set of associated coefficients of P for the ith input vector xi, then
xi can be written as,

xi = x̄ + Pbi. (2.1)

Now consider that the principal components are arranged in decreasing order of
variance in P. Then the associated coefficients bi are also arranged accordingly.
We call these coefficients as associated weight values.

2.2 Kernel principal component analysis

Kernel PCA (KPCA) [29] is an extension of PCA using kernel methods to analyze
multivariate data. Let there be N samples in X and X ⊆ Rn. It is natural
that if we project the population X to a space of dimension d such that d ∈ N
and d ≥ N , then the data would almost always be linearly separable. Let the
such a d -dimensional space be F. Let φ be a map such that φ : X 7→ F, and
inner product 〈·, ·〉, be defined in F. Then the input population is transformed to
Φ = {φ(x1), φ(x2), ..., φ(xn)}. Let an eigenvector of the covariance matrix of Φ be
v. Let there exist coefficients αi such that (i = 1, 2, ...,N), then by KPCA,

v =
N∑
i=1

αiφ(xi). (2.2)

So let for kth eigenvector vk, the set of coefficients be αk. Then if xj be test point
from the given population then the projection of φ(xj) on vk is given as,

〈vk, φ(xj)〉 =
N∑
i=1

αki 〈φ(xj), φ(x)〉. (2.3)
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So αk are the associated weight vectors in KPCA, analogous to vectors bi in PCA.
Here we consider that vk’s are arranged in the decreasing order of variance, and
as such αk’s are also ordered in decreasing order of variance.

2.3 Separability of face images with and without emotions

So now let us see what constitutes the two clusters δC1 and δC2. Let there be r
sequence of images for any one type of emotion (say, anger). In each sequence, let
an image with no expression be the reference frame. Thus for r sequences we have
r reference frames. If we subtract any frame from one sequence from its reference
frame, the result is a difference image. Let the population consist of difference
images from all r sequences. In such a case consider two clusters of images, one,
a cluster of difference images from faces with no expression, and two, a cluster
of difference images from faces with emotional content. We call these clusters
as δC1 and δC2 repectively. To under cluster separability, PCA and KPCA was
performed on the population of difference images. We consider the first three
principal components only. Let b1,b2, and b3 be the weights corresponding to
the first three principal components in PCA and α1, α2 and α3 to be the weights
corresponding to the first three principal components in KPCA.

We validate our results on the benchmark Cohn Kanade dataset [20]. From this
database we select 44 sequences of 44 subjects displaying anger (expression labels
are known). Each sequence contains at least 7 frames. Each sequence starts from
an image with almost no expression and in subsequent frames is deformed to an
image showing maximum expression. The images are digitized in 241× 321 pixel
arrays with 8-bit precision for gray scale [7]. We label initial three frames to be a
member of the cluster δC1 showing no expression and the rest of the frames to be
class δC2 showing some or maximum expression. From each sequence we consider
one reference frame and find out the difference image for rest of the images in the
sequence.

On this database PCA and KPCA are performed, and we plot b1,b2, and b3

and . The results are shown in Fig. 2.2. We can clearly see that separability is
more in case of KPCA. This visual analysis is further supported when we consider
the cluster analysis of the two clusters formed. The results as shown in Tab. 2.1,
clealy show that the cluster measures of KPCA is much better than PCA.

Table 2.1: Cluster Measures after PCA and KPCA of clusters δC1 and δC2

A DaviesBouldinIndex DunnIndex F-Measure
PCA .9832 .3329 .8421

KPCA .6302 .4037 .8960

Thus we have shown that the cluster separability is more in case of KPCA as

12



(a) PCA (b) KPCA

Figure 2.2: Principal component space of the first three weight space of clusters δC1 and δC2 [20]

compared to PCA. Hence we can conlcude that a non-linear clustering method
may perform better in separating the clusters of facial expression images with no
expression and facial expression images with some or maximum expression. This
helps in deciding for a classifier for the facial expression data if required. In the
next section, we try to answer the question that whether we will be able to find
any emotion-specific features, that may help in representing a specific emotion.
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Chapter 3

Emotion specific features

Having established that the facial expression images are better classified using non-
linear classifier, we return to our question on the possibilty of a method to identify
emotion specific features from the two clusters of images, one containing facial
expression images with no emtion and the other containing maximum emotional
content. So let the two clusters be C1 and C2 respectively. In this section we first
elucidate on a method of extracting an emotion specific feature from C1 and C2

and then show that this identified feature is generalizable to any image not present
in the clusters considered.

Consider we have a set of three images at different time stages of a man smiling.
Let the time stages be t1, t2 and t3, where t1 be an image with no expression,
and t3 be an image with maximum expression. t2 being some intermediary state.
Now if we want to see the different stages or steps of changes the face underwent
as it went from t1 to t2 to t3, we need to find the exact path of its change. Image
differencing will not be much of use as simple subtraction and interpolation may
not be enough to generate the intermediate frames. This is also due to the fact
that the subsequent frames in a sequence may not be linearly aligned. Thus we
need proper understanding of the direction of the path of changes that occur at
each stage and also we need to be able to represent and visualize the intermediate
frames.

Before we begin analyzing the changes that occur to human face as it goes
through the stages from no expression to a state of maximum emotional content,
we need to identify a set of features that shall help in the analysis. Naturally these
set of features should minimize intra-class variation while maximizing inter-class
variation. The features selected should again be such that we can represent the
features in terms of facial images. This will help in visualization of any changes
made to the feature vectors. Thus the changing pixel values across a particular
sequence can be of importance, in two ways, one, it will help to identify the
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direction of change and two it will help to represent the features in terms of input
space. Before we delve further in the matter we would like to look back at methods
that can help in identifying features that gives the information of the direction of
change and change in pixel values.

3.1 Existing approaches related to feature selection

Optical flow analysis helps to identify motion fields in one or several frames of an
image sequence and have been studied by many authors, most notably in [18], [24]
and [34]. The method though depends on various external elements like lighting
conditions and non-rigid motions, which was generalized in [4]. Facial geometry
analysis, is used to represent the face using various shapes and location of various
fiducial points. Active Shape Models (ASM) [7] is one of the most popular methods
used in this category. Facial Action Coding System (FACS) [11], introduced the
concept of using facial action units (AUs) being used for describing any facial
activities. Notable works in AU detection include [31], [33] and [3]. More recently
a fully automated AU detection algorithm [32] is used to represent the facial feature
points in the initial video frames, thereby recognizing other temporal features using
AdaBoost [12].

3.2 Criteria for feature selection

We are trying to identify the changes that occur on the surface of a human face as
it goes from a state of no expression to a state of maximum expression. We intend
to generalize the change captured for any facial expression image. To identify
these generalized changes we need to understand what deformations occurs on the
surface of a human face as it goes through the transition. To model this kind of
deformation causing transforms (here, change of expression), we need a feature
selection criteria that can model, one, any motion on the surface of the face with
time and two, capture the change in geometry of the surface of face. We also
need to understand that any changes captured on the surface of a human face has
be local to the region of change. None of the methods described in the previous
section can achieve the two requirements we mentioned few lines ago.

To make the situation more clear, consider a sequence of human facial expres-
sions from a state of no expression to a state of maximum expression as shown in
Fig 3.1. We can see that the surface of face changes as it goes from a state of no ex-
pression to maximum expression. So consider surface normals, as we progress from
the no-expression state to maximum expression state, the normals also change as
seen in Fig. 3.2. It is this change on the surface of the face that we are interested
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to capture.

(a) (b) (c) (d)

Figure 3.1: Variation on the surface of face with change in expression from no expression to
maximum expression

(a) (b) (c) (d)

Figure 3.2: Variation of the surface normals of faces in Fig. 3.1. The red lines are the surface
normals

Consider again the set of human facial images as shown in Fig 3.3. Here we
see a great variation in the structure of each face. To make a generalized emotion-
specific feature we need to reduce the information of the structure of a face.

(a) (b) (c) (d) (e)

Figure 3.3: Variation on the structure of faces in humans

In the next section we show that the information from these surface normals
are extracted and a method to identify the regions on the surface of the face where
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most activty occurs is described.

3.3 Localized feature extraction

We begin our feature extraction first by collecting all input images, and construct-
ing surface traingulations. We consider each pixels position as points on which
triangulation is to be done. We perform Delaunay triangulation [25] on the given
input image to obtain the surface mesh. To each vertex of a triangle in the surface
mesh we add the pixel values. This gives a 3D surface mesh for each image. Now
at each vertex we calculate the unit surface normals. This is done by using con-
cepts of Gouraud shading [14]. If more than two triangles shares the same vertex,
we average the normals of each the triangles and assign the resultant vector to the
pixel. This defines the surface normal at each pixel position in every image. We
henceforth shall name these normal vectors as Gouraud shading vectors. We then
try to find the pixel positions where these Gouraud shading vectors vary the most
in an image sequence. The pixel positions thus obtained are called active pixels.
To obtain active pixels in an image sequence, we first find a mean representation
of each Gouraud shading vectors in a sequence of images and then the standard
deviation.
Let there be r sequence of images and p pixels in an image in each of the r se-
quences. Each of the images is converted to vector of size p. Let I be the input
space, then I ⊆ Rp. Let there be q images in each sequence. Let the Gouraud
shading vectors of the ith pixel be Yi, such that Yi = {yi1,yi2, ....,yiq} where yij
is the Gouraud shading vector of the ith pixel of the jth frame. Let µi be the mean
and σi be the standard deviation of the Gouraud shading vectors of the ith pixel
in a sequence of images. Let k be any number such that k ∈ R. For each Yi, we
calculate the cosine of the angle between µi+kσi and µi−kσi. Let the cosine of the
vectors of ith pixel be θi. θi would give an estimate of the angle between µi ± kσi.
This would help to understand how much the Gouraud shading vector varies in
a given sequence. The smaller the cosine value, the greater is the angle between
the vector, hence the greater is the variance. Therefore, we rank the pixels on the
basis of increasing θi value. Let m be such that m ∈ N and m ≤ p. We select m
pixel positions from each of the sequence of images. For the lth sequence, we store
the selected m pixel positions in a vector, Vl. Thus, for r sequences, we have a
set of r Vl vectors. We select the pixel positions that occur most frequently in
each of the Vl vectors. The selection is done as follows. For each occurance of jth

pixel in lth sequence, we assign a single vote to the jth pixel. Therefore, each jth

pixel can get a minimum of 0 votes and a maximum of r votes. We find the mean,
µ, and standard deviation, σ, of the votes. Let t be any number such that t ∈ R.
We select all those pixels which have at least µ+ tσ votes. We call these pixels as
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active pixels. A example of the active pixels identified from the surface mesh can
be seen in Fig. 3.4 and in Fig. 3.5(c).

Figure 3.4: The colored lines form the surface mesh of a given shape, and the black vectors form
the unit Gouraud shading normals from the active pixels on the face (this is before active region
identification)

To ensure that the changes made as a result of altering the pixel values have a
smooth effect on a region of an image, we segment the image on the basis of den-
sity of the active pixel. The segmented regions are called active regions, and are
identified with the help of the active pixels identified in the previous step. We find
4-connectivity of each of the active pixels. We then remove all the active pixels
which have no 4-connected neighbours. This leads to removal of lone pixels with
no neighbours, as seen in Fig. 3.5(d). We say two pixels are connected if, one, they
are 4-way connected, and two, one pixel’s 4-connected neighbour is 4-connected
to another pixel. We thus have different sets of connected pixels. We take each
set and construct its convex hull [10]. Let the region identifed by the vth convex
hull be κv. We consider every pixel inside the convex hull κv to be the new set of
active pixels. The regions thus identified are called active regions, as can be seen
in Fig. 3.5(e).

We construct the feature vectors as pixel values taken from the active pixels
identified in the previous step. The feature vectors do not form a linear vector
space, and lie on a space of higher dimensional manifold. The active regions
identified in the previous step ensures that we have information of the pixels where
changes due to expressions occur the most. In other words, they help in idenfing
local deformations and minimizes the effect of any global change. Let the number
of pixels selected as active pixels be n. Let k ∈ N, and k ≤ n, such that for all
values of k, xk ∈ Rn are the feature vectors. We denote the space spanned by the
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(a) (b) (c) (d) (e)

Figure 3.5: The identification of active pixels and active regions from images (a) Image with no
expression, (b) image with maximum emotional content (here, anger) (c) the active pixels after
removing pixels with no 4-connected neighbours, (d) the active regions after creating convex hull
of the 4-connected components, and (e) the white pixels are the identified active pixels from the
image sequence

feature vectors as X . An obvious conclusion is X ⊆ Rn.
In the next section we use the active regions identified in this section as feature

vectors specific to one emotion, and use this to understand the differences between
the two class of no expression and with expression facial images. We also show
that understanding the differences shall help in synthesizing emotions.
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Chapter 4

Emotion Synthesis

Once we extract the feature vectors from the input images, we return to the ques-
tion of what we intend to do with these features. We want to use these emotion
specific features to deform a non-expression image to an image with some-or max-
imum emotional content. As such we want to generate the in-between frames. To
do this we need to know the differences between the two cluster of images, where
one cluster, say C1, consist of features extracted from images with no-expression
and the other cluster, say C2, consist of images with some or maximum emotion
content pertaining to one specific expression (say, anger). To do this, we need
to statistically analyze the clusters. Here we construct a classifier to distinguish
between two classes, one, face images with no expression, and two, face images
with maximum emotional content. There are many classifers that can used to
classify the two clusters. We use SVM learning algorithm [5], [6] to estimate an
optimal classifier. The classifier function constructed as a result implicitly encodes
the differences between the two classes. It is these differences that we are trying
to understand in our work. If the difference can be interpreted in terms of the
input space, then we shall be able to visualize them. So before we delve further
into how this can be done, we study some basic theories of SVM.

4.1 Background: Support Vector Machine

Let xk ∈ X where X ⊆ Rn, be obeservation vectors (can also be referred to as
feature vectors), and yk ∈ {−1, 1} be corresponding class labels. Let Euclidean
inner product be defined in X . Let there exist l such observation vectors. SVM
learning algorithms helps to estimate a linear optimal classifier from the given
observation vectors. Let w be the projection vector that maximizes the distance
between two classes. Let b

‖w‖ be the offset of the classifier from the origin, and
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x ∈ X . The classifier can then be represented as,

f(x) = 〈x . w〉+ b. (4.1)

It maximizes the margin between the two classes with respect to the separating
hyperplane. It has been shown that the projection vector that maximizes the
distance between the two classes can be represented as a linear combination of the
vectors in the feature space. Let m ∈ N, such that m ≤ l. Let αm ∈ [0,∞) be
coefficients constructed as a result of constrained quadriatic optimization to solve
for w, and w∗ be the optimized value of w, then w∗ can be represented as,

w∗ =
l∑

m=1

αmymxk. (4.2)

If any mth vector has a non-zero αm, it is termed as supprot vector, as it is
these vectors that define the boundary of each class. Thus the classifier function
becomes,

f(x) =
l∑

m=1

αmym〈x . xm〉+ b. (4.3)

A visual depiction of an SVM can be seen in Fig. 4.1.

Figure 4.1: The figure shows a typical case of a linear SVM. The black dots represent one class
and the blue dots represent another class. The black bold line separating the two classes is the
classifier. w is the normal to the classifier. −b

‖w‖ is the distance of classifier from the origin. The

points on the dotted line represent the support vectors of each class. The distance between the
two doted lines is the margin of separation between the two classes

Naturally this method is not applicable to all problems, as there exists non-
linear problems. To solve these non-linear problems we need a special trick.
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4.1.1 Non-linear analysis

Let xi, xj ∈ Rp and k be a similarity measure defined as,

k : I × I 7→ R, (xi,xj) 7→ k(xi,xj). (4.4)

The function k is called a kernel [23]. Let K be a p × p matrix, such that for all
xi,xj ∈ I , K := (k(xi,xj))ij. A p × p matrix K over a set of complex numbers
defined as {c1, c2, ....., cp} ∈ C satisfying

p∑
i=1

p∑
j=1

ciĉjKij ≥ 0, (4.5)

where ĉj is the complex conjugate of cj, is called a positive definite matrix.
Let I be a non-empty set. Any function k, defined as k : I × I 7→ C for which,

all m ∈ N, {x1, ....,xm} ∈ I, results in a positive definite gram matrix is called a
positive definite kernel. Real valued kernels are included in the previous definition
as a special case. But ci necessarily need not be real. To obtain real coefficients
ci, K needs to be a symmetric matrix, i. e., Kij = Kji.

The Moore-Aronszajn theorem [1] states that for every positive definite kernel,
there exists a unique reproducing kernel Hilbert space (RKHS), and vice-versa.
Let H be the RKHS associated withy k, such that H is endowed with the inner
product.

Let a function be defined in H as:

φ : I 7→ H, x 7→ k(·,x). (4.6)

Thus φ(x) = k(·,x) is the function that assigns the value k(xi,x) to xi ∈ I. In
other words, the function φ helps in representing x in terms of x’s similarity to
all other points in the input space I. Since inner product is defined in H, any
fucntion ψ(·) in H can be evaluated at any xi ∈ I with,

ψ(xi) = 〈ψ(·), k(·,xi)〉, (4.7)

i. e., k is the representer of evaluation. The rich representation of the input
space provided by φ, comes with the cost of high computational requirements. To
counter this, the definition of eq. 4.7 provides for an efficient kernel trick if ψ(·) is
replaced with k(·,xi). This is given as,

k(xi,xj) = 〈k(·,xi), k(·,xj)〉, (4.8)

for all xi,xj ∈ I. This is called the reproducing kernel property. Thus k(xi,xj) =
〈φ(xi), φ(xi)〉. This is the kernel trick. Following the kernel trick, representer
theorem [21] provides powerful theoritical foundations for non-linear problems in
SVMs and kernel-PCA. It was later generalized in [28].
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4.1.2 Solving the non-linear problem

Let us assume the observation vectors xk are not linearly separable. So we project
xk on a higher dimension space F, with the help of a kernel function φ. Therefore
φ is defined as:

φ : I 7→ F, x 7→ k(·,x). (4.9)

Since φ is a kernel function, we can construct a kernel matrix K defined as:

K(xi, xj) = 〈φ(xi) . φ(xj)〉 ∀xi,xj ∈ Rn (4.10)

Let fK be the non-linear classifier function analogous to f of eq. 4.1. The
equation of the classifier for a kernel mapping to a higher dimensional space, is

fK(x) =
l∑

k=1

αkykK(x , xk) + b (4.11)

Thus the projection vector becomes

w =
l∑

k=1

αkykφ(xk). (4.12)

Before we proceed further we also state how the kernel function behaves when
the function is i) Linear, and ii) RBF. For linear kernels K(xi,xj) = 〈xi.xj〉, that

is the mapping φ is identity. For RBF kernels we have K(xi,xj) = e−‖xj−xj‖
2/γ

where γ determines the width of the kernel.

4.2 Works related to detection of local deformation

We have shown in chapter two, that the clusters formed by facial expression images
are better seprated using non-linear methods. But as in all non-linear problems we
are presented with the complication of solving the pre-image problem. This arises
due to the fact that any small deformation done to a face with no-expression will
project the feature vector in the direction of the cluster of feature vectors from
images with some expression. In fact in a linear situation an ideal direction will
be the normal to the classifier. Thus we need to first understand the differences
between the two classes and then identify the normal to the classifier and then use
it to project a feature vector form one class to another.

In this section we identify the statistical differences between the two classes by
Golland et. al. [13]. SVM’s learning algorithm is used to estimate the optimal
classifier. The classifier characteristics allow us the opportunity to identify dif-
ferences between the populations. Thus, as we move the vectors from one class
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to another we are able to identify changes which when expressed in terms of the
original image gives us better insight to these differences. The concept of discrim-
inative direction is introduced here, which identifies a specific direction to move
from every point in one class in the feature space I to another class. In other
words, this discriminative direction helps us change any input sample to make it
look like a member of the other class.

4.2.1 Discriminative direction

The discriminative direction principally gives us that direction in which the least
change in a feature vector leads it to be identified as a member of the other class.
Ideally this change is along the direction of the normal to the classifier constructed
due to the support vector machine. If we consider kernel mapping for non-linear
classifiers, we cannot always move along this normal in the feature space. This is
caused since we do not have any access to the kernel space. Thus we search in
the feature space a direction across the classifier which minimizes the divergence
of the projection from the classifier.

We now return to determining the discriminative direction in the feature space
with respect to the discriminative direction in the higher dimensional space. We
note that ideally to move from one class to the another class we need to move in
the direction of the normal to the classifier, i.e., w. So we take the projection of
the feature vector along w.

Let x be a point in the feature space I. Thus formally consider x to be moved
to x + dx in the feature space, the image in F changes by,

dz = φ(x + dx) − φ(x). (4.13)

Thus the deviation form w can be computed as

e = dz − 〈dz . w〉
‖w‖

w

‖w‖
= dz − 〈dz . w〉

〈w.w〉
w, (4.14)

Squaring this error, we get

‖e‖2 = 〈dz . dz〉 − 〈dz . w〉2

〈w . w〉
(4.15)

e2 is expressed as a function of dx, where e2 is the error in the kernel space and the
mapping is thus defined as E(dx) = e2. We thus minimize this error in the kernel
space and thus obtain the minimum possible error in the feature space. Thus the
optimization problem can be now defined as:

minimize E(dx) = ‖e‖2 = 〈dz . dz〉 − 〈dz . w〉2

〈w . w〉
(4.16)
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s.t. ‖dx‖2 = ε (4.17)

Now if we look at the optimization problem and consider the definition of the
kernel function, we immediately realize how the kernel trick is going to work for
us. Thus computing the dot productcs in the kernel space we have:

〈dz . w〉 = 〈{φ(x + dx) − φ(x)}.{w}〉

or, 〈dz . w〉 = 〈φ(x + dx) . w〉 − 〈φ(x) . w〉

or, 〈dz.w〉 =
l∑

k=1

αkyk{〈φ(x + dx).φ(xk)〉 − 〈φ(x).φ(xk)〉}

or, 〈dz . w〉 =
l∑

k=1

αkyk(K(x + dx, xk) − K(x , xk))

or, 〈dz . w〉 =
l∑

k=1

αkyk
∑
i

∂K(u, v)

∂ui

∣∣∣∣ u=x
v=xk

dxi

or, 〈dz . w〉 = ∇fK(x) . dx (4.18)

where dx is the gradient of the feature vector presently considered and ∇fK(x) is
the gradient of the classifier function evaluated at x. If we try to geometrically
analyze the dot product we find that ∇fK(x) helps us get the direction in which
the feature vector needs to be ideally displaced in the feature space to produce
the instantaneous change required for it to be classified as a member of the other
class.

Computing 〈dz . dz〉 in present feature space we have:

〈dz . dz〉 = 〈(φ(x + dx) − φ(x)).(φ(x + dx) − φ(x))〉

or,〈dz . dz〉 = 〈(φ(x + dx).φ(x + dx)〉 − 2.〈φ(x + dx).φ(x)〉 + 〈φ(x) . φ(x)〉
or, 〈dz . dz〉 = K(x + dx,x + dx) − 2K(x + dx,x) + K(x,x)

or, 〈dz . dz〉 =
∂2K(u , v)

∂ui∂vi

∣∣∣∣ u=x
v=xk

dxidxj

or, 〈dz . dz〉 = dxTHK(x)dx (4.19)

The Hessian taken on a small (local) region on the surface of a manifold gives
the information about the direction in which the normal to the surface change
at fastest rate. The fastest changing normal is termed as the principal direction
of that local region. In other words, the Hessian gives us the information of the
pricipal direction of a local region. Therefore equating the Hessian of the classifier
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function at x we get the direction in which the normal from the surface of the
manifold, in which the feature vectors are defined, changes at the fastest rate.
Any movement in this direction shall cause that change which causes the feature
vector to be classified as a member of the other class. Hence naturally any vector
in the feature space tends to move in this direction towards the classifier, and
thereby causing the error.

The optimization problem now becomes:

minimize E(dx) = dxT (HK(x)− ‖w‖−2∇fTK(x)∇fK(x))dx (4.20)

s.t. ‖dx‖2 = ε (4.21)

The solution to the above problem is the smallest eigenvector of the matrix

QK(x) = HK(x)− ‖w‖−2∇fTK(x)∇fK(x) (4.22)

If HK(x) = cI, then the smallest eigenvector of the matrix QK(x), which is
same as the largest eigenvector of ∇fTK(x)∇fK(x). The largest eigenvector of
∇fTK(x)∇fK(x) is ∇fTK(x), which is nothing but the gradient of the classifier
function. We note that the rank of ‖w‖−2∇fTK(x)∇fK(x) is unity and the non-zero
eigenvalue is equal to ‖w‖−2‖∇fK(x)‖2 corresponding to the eigenvector ∇fTK(x).
We would now see that such a form of HK(x) would help us achieve an analytical
solution of the above mentioned minimization problem.

The linear kernel is a dot product kernel, i.e., K(xi,xj) = k(〈xi,xj〉). Thus

∂2K(u , v)

∂ui∂vi

∣∣∣∣ u=x
v=xk

= k′(‖x‖2)δij + k′′(‖x‖2)xixj (4.23)

Since we consider linear kernels here k′′(‖x‖2) = 0, we have HK(x) = cI for all
x. For linear kernel classifiers, ‖∇fK(x)‖ = ‖w‖, and thus c = 1. Hence we have,
HK(x) = I and the discriminative direction is defined as

dx∗ = ∇fTK(x) =
∑
k

αkykxk = w (4.24)

E(dx∗) = HK(x) − ‖w‖−2‖∇fK(x)‖2 = 0 (4.25)

The above result conforms to our intuition that we shall be able to move ideally
along the direction of the normal to the separating hyperplane for linear kernels.

The Gaussian kernel is a distance kernel, i.e., K(u,v) = k(‖u − v‖2). For
distance kernels,

∂2K(u , v)

∂ui∂vi

∣∣∣∣ u=x
v=xk

= −2k′(0)δi,j (4.26)
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For Gaussian kernels, k′(0) = − 1
γ
. The discriminative direction is thus,

dx∗ = ∇fTK(x) = −2

γ

∑
k

αkykK(x,xk)(x− xk) (4.27)

E(dx∗) =
2

γ
− ‖w‖−2‖∇fK(x)‖2 (4.28)

It should be observed that the error here is non-zero, since all vectors in the kernel
space masy not have a pre-image in the feature space. This restricts us to move
ideally in the direction of the discriminative direction.

The method though suffers from the fact that the feature space is not differen-
tiable. As such the generated pre-images of the deformed vector fails to comply
to the distribution of the feature set. To counter this short coming L. Zhou et.al.
in their work in [35] added the constrained that the pre-image constructed should
comply with the distribution of the feature vector to be deformed in the input
space X . In the next subsection we study the methods of doing this.

4.2.2 Regularized discriminative direction

L.Zhou et.al. [35], built on the short comings in the previous theorem. They con-
structed the discriminative direction using information of the local region around
a point in the feature space. The idea was to deform the input features in such a
way so that the reconstructed image conformed to the distribution of the feature
space. The direction in which the featurue points were deformed is called regular-
izing discriminative direction, and it is constructed using the distribution of the
neighborhood of a point in the feature space. In this section we shall elaborate on
the methods involved in the development of the theory.

Considering the same feature space as given in the previous section, let, w be
the projection vector that maximizes the distance between two classes. Let x̂ ∈ X
be the vector which is to be deformed so that it will be classified as a member of
the other class and φ(·) be the function that projects x̂ to a higher dimensional
kernel space. So the higher dimensional vector corresponding to x̂ is φ(x̂). Moving
φ(x̂) along w for s steps leads to φ(x̂) + sw.

Let z ∈ X such that z
φ−1

←−− φ(x̂) + sw where z is the best estimate of the pre-
image of φ(x̂)+sw. Therefore, the discriminative direction is z−x̂. To estimate the
pre-image of the discriminative direction, the error due to reconstruction should
be minimized. We call this error as the residual error, and is represented by ρ(z).
From definition ρ(z) can be represented as,

ρ(z) = ‖φ(x̂) + sw− φ(z)‖2. (4.29)

27



The eq. 4.29 should be minimized with respect to z to get an optimal representa-
tion of z. We name this optimal representation of z as z∗, and it can be defined
as,

z∗ = arg min
z∈Rd

ρ(z),

or, z∗ = arg min
z∈Rd
‖φ(x̂) + sw− φ(z)‖2. (4.30)

Now

ρ(z) = 〈φ(x̂) + sw, φ(x̂) + sw〉+ 〈φ(z), φ(z)〉 − 2〈φ(x̂) + sw, φ(z)〉, (4.31)

where 〈φ(x̂) + sw, φ(x̂) + sw〉 is constant with respect to z. Considering Gaussian
kernels 〈φ(z), φ(z)〉 is also constant. So, eq. 4.31 can be reduced to:

ρ(z) = −2〈φ(x̂) + sw, φ(z)〉+ c (4.32)

where c is any constant in R. Thus the minimization function of eq. 4.30 can now
be reformularized as:

z∗ = arg max
z∈Rd

2〈φ(x̂) + sw, φ(z)〉 (4.33)

Before we move further, we would like to look into the works of Rathi [26] and
Kwok [22].

Rathi [26] Review

Let the distance between two vectors in the feature space be d, and the distance
between their corresponding representations in the kernel space be dF . We already
know w =

∑
i αiφ(xi) and lies in the higher dimensional kernel space spanned by

the training points. To minimize ρ(z), we set the derivative with respect to z to
zero and rearrange. For RBF kernel:

z =
K(x̂, z)x̂ + s

∑n
i=1 αiK(xi, z)xi

K(x̂, z) + s
∑n

i=1 αiK(xi, z)
(4.34)

Assuming 〈φ(x), φ(x)〉 = 1 ∀x, we have

K(x,y) = 〈φ(x), φ(y)〉 = 1− 1

2
‖φ(x)− φ(y)‖2

Therefore:

z =
(2− ‖φ(x̂)− φ(z)‖2)x̂ + s

∑n
i=1 αi(2− ‖φ(xi)− φ(z)‖2)xi

(2− ‖φ(x̂)− φ(z)‖2) + s
∑n

i=1 αi(2− ‖φ(xi)− φ(z)‖2
(4.35)
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for ρ(z) = 0, φ(z) = φ(x̂) + sw, and ‖w‖ = 1. Therefore eq. 4.35 reduces to:

z∗ =
(2− s2)x̂ + s

∑n
i=1 αi(2− ‖φ(xi)− (φ(x̂) + sw)‖2)xi

(2− s2) + s
∑n

i=1 αi(2− ‖φ(xi)− (φ(x̂) + sw)‖2)
(4.36)

Now we move on to express ‖φ(xi)− (φ(x̂) + sw)‖2 in terms of the kernel matrix.

‖φ(xi)− (φ(x̂) + sw)‖2

= 〈φ(xi), φ(xi)〉+ 〈φ(x̂), φ(x̂)〉+ s2〈w,w〉+ 2s2〈φ(x̂),w〉
−2〈φ(xi), φ(x̂)〉 − 2〈φ(xi),w〉

= 1 + 1 + s2 + 2s
n∑
j=1

αjK(xj, x̂)− 2K(xi, x̂)− 2s
2∑
j=1

αjK(xi,xj)

= 2 + s2 + 2sαTKx̂ − 2K(xi, x̂)− 2sαTKxi (4.37)

where α = (α1, . . . . , αn)T , Kx̂ = (K(x̂,x1), . . . , K(x̂,xn))T and Kxi =
(K(xi,x1), . . . , K(xi,xn))T .

Kwok’s [22] Method

This method tries to find a relationship between distances in the feature space X
and the kernel space. To do so, let us define φ(x̂) + sw = zF . Now, we try to find
xi in feature space, such that φ(xi) and zF are k nearest neighbors. Let z be the
pre-image of zF . Also define

dF = ‖φ(xi)− (φ(x̂) + sw)‖ (4.38)

be the distance between φ(xi) and (φ(x̂) + sw) in the kernel space.
We thus need to establish a relationship between dF and d = ‖xi − z‖ ∈ Rn

(n-dimensional real space). If φ maps x,y ∈ X to the Gaussian kernel space, then

d2F(x,y) = ‖φ(x)− φ(y)‖2 = 2−K(φ(x)− φ(y))

= 2(1− e−
d2(x−y)

2σ2 )

d2 = −2σ2log(1− d2F
2

) (4.39)

The pre-image x is computed using

z = −U ∧−1 V T (d2 − d20)
2

+ x̄ (4.40)

where, d2 = (d1, . . . . . , d
2
m)T , d0 is a vector with the i-th entry equal to ‖xi− x̄‖2.

We need to observe that X = [x1− x̄, . . . . . , xm− x̄], where x̄ is the mean given
by x̄ = 1

m

∑
i xi and the singular value decomposition of X is given as X = U∧V T .
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Regularized discriminative direction

Returning to the problem, we already know that

z∗ = arg min
z∈Rd

ρ(z)

To find a solution to the above minimization problem, we try to do a regularization
of the output term using the local distribution. So let, x̂ be the feature vector which
is to be deformed, leading to it’s classification as a member of the opposite class.
To do this we move x̂ for s steps in the direction of w. Therefore we have

z
φ−→ φ(x̂) + sw (4.41)

We now try to define the neighborhood of x̂ in the feature space. Let us construct
a closed ball of ε radius around x̂. This shall be termed as the neighborhood of x̂
and Nε(x̂) be the set of vectors in the neighborhood. Therefore:

Nε(x̂) = {x | ‖x− x̂‖ ≤ ε} (4.42)

Let ρ(x | x ∈ Nε(x̂)) be the empirical pdf of x in Nε(x̂) estimated from n training
samples in Nε(x̂). We model this pdf as a normal distribution with mean µ = x̂
and σ2 =

∑
= 1

n−1
∑n

i=1(xi − x̂)(xi − x̂)T , where xi’s are the training samples
in Nε(x̂). Provided that s is small, it is enough to ensure that z stays in Nε(x̂).
Since z complies with the pdf of x̂, we require that ρ(z) to be large or, similarly
(z − µ)T

∑−1(z − µ) be small for
∑

to be of full rank. Thus the optimization
problem is

z∗ = arg min
z∈Rd

ρ(z) + 2η(z− µ)T
∑−1

(z− µ) (4.43)

where η is the regularization term. Observe that
∑

is the co-variance matrix of
the vector in the neighborhood of x̂. Therefore, the covariance matrix can be
written as: ∑

= Γ ∧ Γ T

where Γ is the matrix of eigenvectors and ∧ is the diagonal matrix of the eigen-
values. Therefore, the optimal z∗ should be of the form

z∗ ∈ {z | z = µ+ Γ ∧
1
2 u} (4.44)

Combining eq. 4.43 and eq. 4.44, we can get an optimized z from an optimized u,
which can be derived as

u∗ = arg min
z∈Rd

ρ(µ+ Γ ∧
1
2 u) + 2η〈u,u〉 (4.45)
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z∗ can be computed using eq. 4.44. Since the dimensions of the feature space is
large optimizing u is cumbersome. A differential equation based method is thus
used to directly work out z∗ and u∗ for a given step size s.

Using eq. ?? and eq. 4.45, eq. 4.44 is equivalent to maximizing 〈φ(x̂) +

sw, φ(µ+ Γ ∧ 1
2 u)〉 − η〈u,u〉 provided 〈φ(x), φ(x)〉 which is the case for Gaussian

kernels as shown before. So we can rewrite the optimization function as

f(s,u) = 〈φ(x̂) + sw, φ(µ+ Γ ∧
1
2 u)〉 − η〈u,u〉

= K(x̂, µ+ Γ ∧
1
2 u) + s

∑
i

αiK(xi, µ+ Γ ∧
1
2 u)− η〈u,u〉

, g(u) + sh(u)− ηl(u) (4.46)

where
g(u) = K(x̂, µ+ Γ ∧

1
2 u)

h(u) =
∑
i

αiK(xi, µ+ Γ ∧
1
2 u)

and
l(u) = 〈u,u〉

Thus for each s there exists a u∗ for which f (s, u) is maximized. We note that if
s = 0, then f (s, u) is maximized when u∗ = 0. The optimization problem given by
eq. 4.46, is not convex and thus have multiple local maxima. Thus for each s we
try to find u which is a solution for the optimization problem for a given s (static
optimization problem). We thus consider the function u∗(s) in Rd which tries to
identify the changes occuring to u∗ with s such that u∗(0) = 0. As long as u∗(s) is
continuous and differentiable we can get at least a local maxima. Approximating
f (s, u) by a second order Taylor series expansion, we have:

f(s,u) ≈ g(u0) + sh(u0)− ηl(u0) + (Jg − sJh − ηJl)(u− u0)

+
1

2
(u− u0)

T (Hg + sHh − ηHl)(u− u0) (4.47)

where J and H are Jacobian and Hessian of g, h and l evaluated at u0, and u0

maximizes f (s,u) when s = s0. Thus first order derivative of f with respect to u
vanishes at u0 and any other extremum u∗.

We have ∂f
∂u
|(u0,s0) = 0. Thus we get from eq. (39) Jg− ηJl = −s0Jh. Using this

in the equation of ∂f
∂u
|(u∗,s) = 0 we have:

sJh + Jg − ηJl + (Hg + sHh − ηHl)(u
∗ − u0)

= (s− s0)Jh + (Hg + sHh − ηHl)(u
∗ − u0) = 0
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Thus we have
du∗

ds

∣∣∣∣
s=s0

= −(Hg + sHh − ηHl)
−1Jh (4.48)

Therefore the tangent of u∗(s) at s = 0 is:

du∗

ds

∣∣∣∣
s=0

= −(Hg − ηHl)
−1Jh (4.49)

It is very clear from the above that once we get the slope (tangent) of u∗(s) at
different s values, we can iterate to obtain u∗ for every s as :

u∗ (t) = u∗ (t−1) +
du∗

ds

∣∣∣∣
s=0

(st − st−1) (4.50)

We can also use this formulation to obtain the pre-image using the regularized
discriminative direction as:

x̂(t) = z∗ = x̂(t−1) + Γ t−1[∧t−1]1/2u∗ (t) (4.51)

where u∗ (0) = 0, Γ t−1 and ∧t−1 are estimated from x̂(t−1) and it’s neighborhood.
We should also note that x̂(0) = x̂. The mean µ(t−1) and covariance

∑t−1 are

estimated from the training points close to x̂(t−1) in Nε(x̂).
The iterative solution for each u(t) is estimated using the four stage Runge-

Kutta Method. This helps in supressing lower order error terms. Given any intial
value problem in ordinary differential equations y′ = f(x, y) and y0 = f(x0), the
four stage Runge-Kutta Method attains the solution by:

k1 = hf(xn, yn)

k2 = hf(xn +
1

2
h, yn +

1

2
k1)

k3 = hf(xn +
1

2
h, yn +

1

2
k2)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 +O(k5) (4.52)

where h denotes the small step interval.
In the next section we explain on how we intend to use discriminative direction

as a solution to the problem of synthesizing emotions on the facial images.
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4.2.3 Use of discriminative direction for emotion synthesis

We now look at how all the analysis we did in the previous section is going to help
us. We need to remember the fact that we are trying to synthesize emotions on the
surface of a facial image with no-expression. We also do not have the information
of the neighbourhood of such an image. Keeping these things in mind, we look
at the feature vectors we extracted in the previous chapter. These feature vectors
capture local information on the surface of a human face, in the form of regions
where typically most changes occur as the face goes from a state of no expression to
maximum expression. In other words the local regions identified can be generalized
for any face.

We can extract the information about how changes on the surface of human
face occur in X , with the help of discriminative direction as discussed in the last
section. If we use the active regions as features, we aid to the classfier by giving it
information only regarding the local changes in the surface of the face as it goes
through different stages of any one expression. As such we use the feature vectors
identified in the last chapter as features for modelling the deformations. Since
they contain pixel values, they can also be used directly for emotion synthesis
on facial expression images once we have the pre-images. We show in the next
chapter that these discriminative direction from each feature vector can be used
as a representaive of each class. We add the deformed vectors to the input images,
after some pre-processing and hence are successful in synthesizing the emotions.
We also show that discriminative direction helps us to achieve a powerful tool to
represent the data in X .
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Chapter 5

Experimental Results

5.1 Dataset

In this section we analyze the results due to discriminative direction and regular-
ized discriminative direction using the feature vectors constructed as a result of
active region segmentation. The study includes capturing the changes identified by
both algorithms on the same feature set. We aim at benchmarking the results due
to discriminative direction and regularized discriminative direction using features
recognized by active region segmentation against features taken from all pixels in
a population. For this we use the Cohn-Kanade facial expression database [20].
From the database, we have selected 27 sequences of 27 subjects displaying anger
(labels for each sequence is known). In each sequence, there are at least 7 frames.
Each sequence of frames start with a facial expression image with almost no ex-
pression and end with maximum expression, the intermediate frames representing
the gradual change of each face. Images are digitized to 640 × 480 or 490 pixels
with 8-bit precision for gray-level shading.

Each image in the database contain at most 50% of face regions. Since we
work on finding active pixels which are valid for any image, we need a proper
standardization techniqueto find and normalize the orientation and position of
the face. We did not consider any sequence of images where any rotation along
horizontal and vertical images exist. We then used ASM [7] to find faces and
then segment them. We then resize all the segmented image to 100 × 100. We
then use TV-L2 decomposition [2] to decompose some of the facial structure and
texture from all the images in the database. All experiments are done on both kind
of images separately. Finally during synthesis we combine by joining respective
structure and texture images.
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5.2 Experiments

To study the pre-images generated, we separate the dataset into two classes. Class
labels used are: -1 for facial expresson images with no expression (we refer to these
as normal class henceforth) and 1 for facial expresson images with some or max-
imum expression of any one type, e.g. anger (we refer to these as abnormal class
henceforth). The face images are converted into m-dimensional vectors, where m
is the product of the number of rows and columns of the image matrix. For each
person’s images in the dataset, we denote the first four frames as normal class and
last four frames as abnormal class. The step size ∆s = st− st−1 in the direction of
the normal to the classifier of SVM is taken as 0.1 in each algorithm. A total of
10 steps are considered during reconstruction. We perform two experiments prin-
cipally, a) construction of facial expression images using all pixel values as feature
for the two methods, one, using Golland’s discriminative direction and two using
Zhou’s regularized discriminative direction and b) construction of facial expression
images using emotion specific features as features for the two methods, one, using
Golland’s discriminative direction and two using Zhou’s regularized discriminative
direction. We then compare the results on the basis of SNR with respect to ground
truth. We also demonstrate the cluster indices by using discriminative directions
as a representaive of each image in a cluster. We also finally do a complexity
analysis of our methods.

5.3 Tables and figures

To illustrate the ability to capture the minimum deformations required for a vector
of the normal class to be classified as a member of the abnormal class, as a result
of the two methods, we construct the respective pre-images after deformations in
the kernel space using all the pixel values. Four reconstructed frames for each
methods are shown in figures 5.1, 5.2, 5.3, and 5.4. While figures 5.1 and 5.3
show the outputs of the respective pre-image methods, figures 5.2 and 5.4 show
the changes that are identified across time. Blue marks those pixels whose values
increases with time, and red marks those pixels whose value decreases with time,
taking the initial image as the frame of reference. In Fig. 5.5 and 5.6 we show the
result of using active regions as features on both the methods. Again, blue marks
those pixels whose values increases with time, and red marks those pixels whose
value decreases with time, taking the initial image as the frame of reference.

In table 5.3, we show the size of feature vectors used in case of our feature
extraction method against pixel values considered for each image. In table 5.1, we
compare the clusters of no expression image against images with some or maximum
expression using the features identified by our method and the features identified
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by using pixel values. In table 5.2 we compare the results of SNR of the synthesized
images, using each of the methods, and ground truth frames.

5.4 Images

In this section we present the images that shows the synthesis methods. In Fig.
5.2, 5.4, 5.6, and 5.8, the red region represent the regions where the pixel values
have increased and blue represent the region where the pixel values have decreased.

(a) (b) (c) (d)

Figure 5.1: Reconstructed images using discriminative direction

(a) (b) (c) (d)

Figure 5.2: Regions of changes identified using discriminative direction

(a) (b) (c) (d)

Figure 5.3: Reconstructed images using regularized discriminative direction

36



(a) (b) (c) (d)

Figure 5.4: Regions of changes identified using regularized discriminative direction

(a) (b) (c) (d)

Figure 5.5: Reconstructed images using discriminative direction and emotion-specific features

(a) (b) (c) (d)

Figure 5.6: Regions of changes identified using discriminative direction and emotion-specific
features

(a) (b) (c) (d)

Figure 5.7: Reconstructed images using regularized discriminative direction and emotion-specific
features
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(a) (b) (c) (d)

Figure 5.8: Regions of changes identified using discriminative direction and emotion-specific
features

5.5 Comparison

5.5.1 Cluster Analysis

As mentioned before we represent each vector in each class using their respective
discriminative direction. Thus the clusters C1 and C2 represent discriminative di-
rection of no-expression images and with expression images. The cluster measures
of these two clusters is shown in table 5.1

Table 5.1: Cluster Measures of different methods on the dataset

Method DaviesBouldinIndex DunnIndex F-Measure
Discriminative direction .1391 2.6430 .9577
(using all pixel values)

Regularized discriminative direction .1678 3.1422 .8423
(using all pixel values)

Discriminative direction .1343 2.7202 0.5516
(using active regions)

Regularized discriminative direction .1769 3.2952 .9938
(using active regions)

5.5.2 Quality of synthesis

We calculate SNR of each synthesized image with the ground truth and present
the results in table 5.2. We can clearly see that implementation using our features
yeild better results.

Table 5.2: SNR of the synthesized image with the ground truth

Method SNR
Discriminative direction (using all pixel values) 14.9151

Regularized discriminative direction (using all pixel values) 18.1130
Discriminative direction (using active regions) 18.3793

Regularized discriminative direction (using active regions) 20.5395
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5.5.3 Number of features

We present a comparision of the number of features required to represent each
vector in table 5.3. This is important becuase of the fact that the decrement
in features is infact beneficiary for faster execution and practical usability of the
method. This also helps in decreasing the complexity of each algorithm used to
construct discriminative direction.

Table 5.3: Comparision of the size of features using active regions and using all pixel values

Method Number of features
Using active regions 3364

Using all pixels 10000

5.6 Complexity Analysis

We detail here the time complexity of our method. Let there be n pixels in an
image. Finding the Gouraud shading vectors can be done in O(n) time. The
surface triangulation can also be done in O(nlogn) [30]. Thus for r sequence of
images a total of rn vectors are to be found. For each of the r sequence of Gouraud
shading vectors we need to find a mean and a standard deviation. Both of these
can be found in O(rn) time. To find which pixels are active we calculate the angle
between the interval of mean and sigma. This can be done in 2O(n). Selection
of active pixels are done using first ranking of the angle variables in decreasing
order of angles, and then selecting k number of features where k can be any
number less than n. This can be done in O(nlogn). From these active pixels, each
pixel’s 4-connectivity can be calculated in O(n) time. Then finding the connected
components can be done in O(n) time using depth first search techniques [8]. We
then for each connected components calculate the convex hull. Thus can be done
in O(nlogn) time [15]. Thus the overall complexity never goes beyond O(rn). In
ideal situations of facial expression identification r << n. Thus the complexity
of our algorithm never goes beyond O(nlogn). However this helps in significantly
decreasing the size of the features. As such, computations for both the methods,
discriminative direction and regularized discriminative direction is hastened.
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Chapter 6

Conclusion

In this thesis we study the problem of image-based feature detection to represent
emotion. This can help in better clustering of facial expression images and also
emotion synthesis. Our study reveals, that extracting such features are of greater
importance for reasons of complexity in preventing facial structure to influence the
feature vectors. We have used a novel feature extraction technique to minimize
the effect of facial structure by extracting localized informatio from the surface of
human face. We then use this feature to study the differences in images of no facial
expressions and with facial expressions. We demonstrate our results on facial ex-
pression images. We believe that such localized information extraction techniques
can be used in broader aspects to identify local deformities (as in medical image
analysis). The informations can then be used to understand the discriminative
features between two class. The method can be extended to generative models to
understand differences in populations. The analysis generates a detailed descrip-
tion of deformations on the surface of any shape and can facilitate understanding
the cause of such deformations.
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Chapter 7

Future Direction

Classification using discriminative directions has not been done during the course
of work. This is due to the fact that parameter estimation was taking up a lot of
time, and thus it became difficult to estimate an optimal classifier.

We also tried to find a closed form solution to the problem. A closed solution
for pre-image in KPCA exists in [17]. Using generalized representer theorem [28]
this can be achieved.

There is one last probblem that has not been addressed here. Defining a manif-
fold on which any discriminative direction can be generalized. This is valid due to
the fact that all face images has been studied to follow certain deformation pattern
as it goes from a state of no expression to maximum expression. If this direction
can be modelled using a vector space, the work of estimation any changes on the
surface of the face due to a single expression shall be easy. It has to be noted that
combining information from all expression we can never create a vector space.
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