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Abstract

Online learning is the process of answering the sequence of questions based on

the correct answers of the previous questions. The goal here is to make as little

expected mistakes as possible over the entire sequence of questions. It is studied

in many research areas such as game theory, information theory and machine

learning where settings of online learning are similar to that of these areas.

There are two main components of online learning framework. First, the learn-

ing algorithm also known as the learner and second, the hypothesis class which

is essentially a set of functions. Learner tries to predict answers (labels) to the

asked questions using this set of functions.

This class may be finite or infinite. Sometimes, this class contains some func-

tions which have the capability to provide correct answers to entire sequence of

asked questions. In this case, the goal of learner becomes to identify these func-

tions in the hypothesis class as early as possible during a learning round to avoid

further mistakes for the remaining rounds. This setting, when function class con-

tains some powerful functions which can provide correct answers to the entire

sequence of questions, is called realizable case.

Sometimes, it may not contain any such powerful functions which can provide

correct answers to the entire sequence of questions. In such a case, learner has to

rely on all the available functions in the hypothesis class and use them intelligently

to predict the answers. The goal of the learner, therefore, becomes to make as

little mistakes as that could have been made by the most powerful functions among

the available functions. This setting, when hypothesis class does not contain any

powerful functions which can provide correct answers to the entire sequence of

questions, is called unrealizable or agnostic case.

There are various learning algorithms for each of these settings. All learning

algorithms are expected to make least possible mistakes in each setting. Perfor-

mance of these algorithms is analyzed through the expected number of mistakes

over all possible orderings of the sequence of questions.

This dissertation proposes three algorithms to improve the mistakes bound in

the agnostic case. Proposed algorithms perform highly better than the existing

ones in the long run when most of the input sequences presented to the learner

are likely to be realizable.
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Chapter 1

Introduction

This introduction provides an overview to online learning model, its basic settings

and some applications. It also discusses objectives of the dissertation, overview

of existing methods in the literature and statement of contributions from this

dissertations to online learning model. These points are further described in depth

in later chapters.

Notation : We denote by X the set of input points xt. The associated label

is denoted by yt ∈ {0, 1}. We use H to denote a hypothesis class. Each h ∈ H is

a mapping from X to {0, 1}. For a predicate π, we denote the indicator function

by 1[π] suct that

1[π] =

1 if (h(xt) ̸= yt)

0 otherwise

1.1 Online Learning

Online learning is the process of answering the sequence of questions based on

the correct answers to the previous questions. This is performed in the sequence

of rounds where in each round t, the learner is given a question xt. The learner

is required to predict the answer pt to this question xt. After the learner has

predicted the answer pt, learner is given the right answer yt. Now depending on

the discrepancy between the predicted and right answer, learner suffers a loss. If

learner suffers a loss ie, it has made a wrong prediction, it is said to make a mistake.

By the given right answer, learner tries to improve the prediction mechanism for

further questions. Thus, the goal of the learner is to make as few mistakes as

possible over the entire sequence of questions.

In general,D and Y can be different. But whenD = Y = {0, 1}, we call it online
classification. And in this case, naturally, we use 0-1 loss function: l(xt, yt) =

|pt − yt| .
Example : Suppose we want to predict whether it will be raining tomorrow or
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Algorithm 1 Online Learning

for i = 1, 2, · · · do
receive question(feature vector)xt ∈ χ
predict pt ∈ D

receive the true answer yt ∈ Y

suffer loss l(pt, yt)
end for

not. On day t, xt can be a vector of meteorological measurements. The learner is

required to predict pt ∈ [0, 1] or {0, 1}. When pt is in {0, 1}, it is interpreted as

prediction of raining tomorrow. And if pt is in [0, 1], it is interpreted as prediction

of probability of raining tomorrow. Here, again, the goal of predictor is to make

as little cumulative loss as possible.

1.1.1 Applications of Online Learning

The following are the real life scenarios where online learning finds its applications.

[1]

(i) Online Ranking: Here, the learner is required to rank the given list of

elements. The learner is given the query xt ∈ χ, where xt is a list of k elements

(e.g. Documents). The learner is required to order these k elements. Clearly,

in this case D is the set of all permutations of these k elements {1 · · · k}. So
learner predicts one permutation pt out of the set D based on its knowledge

deduced from the previous queries. Then, the learner is given the right

answer yt ∈ Y = {1 · · · k}. This right answer corresponds to the document

which best matches the query. This is an application of online learning in web

application where online learning is used to order the documents retrieved

by the search system with respect to the user input query. Right answer in

this case becomes the document (web page) which user clicks on finally.

(ii) Prediction with expert advice : In this learner has a set of hypotheses

H (e.g. experts or functions) and at each round it uses one or some of these

hypotheses to predict the answer. Here, challenge of learner is to use these

experts intelligently so that it does not make more mistakes in the long run.

For this, learner uses the “reward when correct and penalize when wrong“

policy to weigh the experts.

(iii) Choosing best page replacement algorithm : Operating system has

many algorithm like FIFO, LRU, NRU etc to choose from for replacing the

2



page at any instance of time. Using a particular algorithm may not be

optimal all the time. Because the performance of different algorithms may

vary depending on the current state of the system. Therefore, prediction with

expert advice form of online learning can be used to choose best algorithm

at tth instance of time. The available algorithms can be considered as a set

of experts. These experts should be chosen intelligently by the learner to

reduce the page faults.

(iv) Online email spam filtering : This is another interesting application of

online learning. In this, learner is given an email feature vector xt and it is

required to predict the label ŷt ∈ {0, 1} of email as spam or non-spam. Then,

learner is given the correct label yt( marked spam or non-spam by the user)

and thus learner updates its prediction mechanism for the next question.

1.2 Basic Settings and Terminologies

This section discusses basic settings and terminologies of the online learning frame-

work.

(i) Input Sequence : Input sequence contains T points where T is finite.

Another very important point is that the questions (input points) cannot be

stored to be used in future. Once the algorithm has predicted the answer,

point has to be discarded.

(ii) Binary classification : The algorithms given in this dissertation assumes

that we have only two classes as class 0 and class 1 i.e. Y = {0, 1}.

(iii) No statistical assumption on input sequence : Classical statistical

theory requires strong assumptions on statistical properties on the data(e.g.

Sampled i.i.d. according to some unknown distribution.) But online learning

does not require any statistical assumptions over the input sequence. The

sequence can be deterministic, stochastic, or even adversarial adaptive to the

learner’s prediction mechanism. Since learner tries to deduce the knowledge

from the previous correct answers, there must be some correlation between

past and present rounds (points). If not, an adversary can make all the

predictions of the learner wrong by just giving the opposite answer to what

the learner has predicted. Therefore, we restrict the adversary to decide the

answer to input question before the learner predicts.

3



(iv) Hypothesis Class (H): We assume that the learner is armed with a class

of hypotheses (functions). Out of these, some or all are used to predict the

label of the input point xt. This class can be finite or infinite. But in this

dissertation work, we assume that H is finite.

(v) Realizable case : The labels of the input sequence can always be assumed

to be generated by a target hypothesis h∗ such that h∗ : X → Y. When this

h∗ ∈ H, we say that input sequence is realizable by the hypothesis class H.

(vi) Unrealizable case(Agnostic Case): When we no longer assume that h∗ ∈
H, we say that input sequence is unrealizable by the hypothesis class H.

(vii) Mistake Bound MA(H) : Mistake bound MA(H) is the maximal number

of mistakes made by the algorithm A on a sequence of examples which is

generated by some h∗ ∈ H. Now, in this case objective is to design an

algorithm which has minimal mistake bound MA(H).

(viii) Regret Bound : In unrealizable case, where we no longer assume that all

the input points are labelled by some h∗ ∈ H, the number of mistakes made

by the algorithm is compared with some best hypotheses h ∈ H. This is

termed as regret because this captures the regret of the algorithm, which

measures how sorry the learner is, in retrospect, not to have followed the

predictions of some hypothesis h ∈ H. Formally, the regret of the algorithm

relative to some h ∈ H when running on a sequence of T points is defined

as :

RegretT (h) =
T∑
t=1

l(pt, yt)−
T∑
t=1

l(h(xt), yt)

And the regret of the algorithm relative to the hypothesis class H is

RegretT (H) = max
h∈H

RegretT (h)

In this case, objective becomes to design lowest possible regret algorithms.

Low regret means RegretT (h) grows sub-linearly with T . i.e. RegretT (h) → 0

as T → ∞. There are some other variations of these settings in online

learning. For example, limited feedback [1], where after each round learner

is given the loss value l(pt, yt) but does not given the actual label yt of point

xt. Discussion about the algorithms in this setting is out of the scope of this

dissertation.

(ix) Online Learnability of Hypothesis class H : Let H be a hypothe-
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sis class and let A be an online learning algorithm. Given any sequence

S = (x1, h
∗(y1)), · · · · · · (xT , h

∗(yT )), where T is any integer and h∗ ∈ H, let

MA(S) be the number of mistakes A makes on the sequence S. We denote

by MA(H) the supremum of MA(S) over all sequences of the above form.

A bound of the form MA(H) ≤ B ≤ ∞ is called a mistake bound. We say

that a hypothesis class H is online learnable if there exists an algorithm A

for which MA(H) ≤ B < ∞.

(x) Best Hypotheses : H is the set of some hypotheses. Given an input

sequence, if we use all of them one by one, some may make more mistakes

than others. Then, those hypotheses which make least number of mistakes

are called best hypotheses.

(xi) Ldim(H) : This is a dimension of hypothesis classes that characterizes the

best possible achievable mistake bound for a particular hypothesis class. This

measure was proposed by Nick Littlestone [6] and referred to as Ldim(H).

Before explaining Ldim(H), one definition needs to be given.

Definition 1.1 [6] (H Shattered Tree): A shattered tree of depth d is

a sequence of instances (v1, v2, · · · , v2d−1) in X such that for all labelling

(y1, y2, · · · , yd) ∈ {0, 1}d, ∃h∗ ∈ H such that ∀ t ∈ [d] we have h(vit) = yt,

where it = 2t−1 +
t−1∑
j=1

yj2
t−1−j.

Definition 1.2 [6] (Littlestone’s dimension(Ldim(H))): Ldim(H) is

the maximal integer T such that there exist a shattered tree of depth T .

Table 1.1: Predictions of H = {h1, h2, h3, h4} on the sequence of ex-
amples v1, v2, v3.

h1 h2 h3 h4

v1 0 0 1 1

v2 0 1 * *

v3 * * 0 1

Ldim(H) is very crucial combinatorial measure in online learning as VC

dim(H) [2] is in PAC learning [3] because it provides the lower bound on the

number of mistakes in the realizable case as the following lemma states:
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Figure 1.1: Shattered tree of depth 2

The dashed blue path corresponds to the sequence of examples
((v1, 1), (v3, 0)). This tree is shattered by the hypothesis class H =
{h1, h2, h3, h4} where the predictions of each hypothesis in H on the
instances v1, v2, v3 is given in the table 1.1. Here * means it can be 0
or 1.

Lemma 1.1 : No algorithm can have a mistake bound strictly smaller than

Ldim(H), namely, ∀A, MA(H) ≥ Ldim(H) [1].

We have the following relation among Ldim(H), VC-dim(H) and log2(H).

Lemma 1.2 : VC-dim(H) ≤ Ldim(H) ≤ log2(H) [1].

. (a) VC-dim(H) ≤ Ldim(H) and this gap can be arbitrarily large.

Suppose VC-dim(H) = d and let x1, · · · , xd be a shattered set. We now

construct a complete binary tree of instances v1, · · · , v2d1, where all nodes

at depth i are set to be xi. Now, the definition of shattered sample clearly

implies that we got a valid shattered tree of depth d, and we conclude that

VC-dim(H) ≤ Ldim(H).

Figure 1.2: Constructing a shattered tree from a shattered sequence
(x1, · · · , xd)

Now the following example shows that the gap can be arbitrarily large.

Example 1.1 Let X = [0, 1] and H = {x → 1[x≥a] : a ∈ [0, 1]}, namely, H is

6



the class of threshold on the segment [0, 1]. Then, Ldim(H) = ∞.

Here the gap between two quantities is infinity as H has Ldim = ∞ and

VC-dim = 1.

(b). Ldim(H) ≤ log2(H)

Any tree that is shattered by H has depth at most log2(H). Therefore

Ldim(H) ≤ log2(H)

.

1.3 Problem Statement

In the realizable case, we assume that all the labels of a sequnce of questions are

generated from some h∗ ∈ H. i.e. these h∗ makes 0 mistakes on the sequence of

T points. In the unrealizable(agnostic) case, we do not assume this. However, we

assume that there are some better hypotheses in H which make lesser mistakes

than others.

In the literature, there are methods which are developed for both cases ex-

clusively. It’s true that the methods, which are developed for unrealizable case,

will work for realizable case also. But existing methods do not have much better

bound if the input sequence is found to be realizable before it ends.

So, we would like to devise some methods which perform extremely well in

realizable case and do not perform that badly if sequence is remains unrealizable.

We begin with the following objectives :

(i) Devise some methods for the finite hypothesis class and unrealizable case

which perform extremely well if input sequence is found to be realizable and

do not perform that bad if it remains unrealizable. In other words, we would

like to develop some methods which improves the mistake bound in realizable

case greatly whereas loose very little in regret bound in unrealizable case.

(ii) We would also like to get hold of the best hypotheses at the end of the

sequence. This might be required for various reasons. For example, an

application of learning algorithm might be just to find the best hypotheses

in the class for a input sequence.

7



1.4 Existing Methods in literature

We will be describing all the related methods to this dissertation work in the

literature of online learning very briefly in this section. These will be explained in

depth in chapter 2.

Section 1.1 clearly states the expectations from an online learning algorithm.

Still, it would be useful to restate those requirements again informally here before

describing the methods.

Let T be the number of rounds (points). Let H be the finite hypothesis class.

Then mistake bound (in realizable case) or regret bound (in unrealizable case)

should be sub linear with T . i.e. If A is any online learning algorithm then

MistakeA(H) or RegretA(H) = o(T ).Here o is the small o of algorithmic complexity

notations. It does not need to be a function of only T . In fact, it will also be some

function of |H| as well. But with respect to T , it should be asymptotically sub

linear with T . For example, if R denotes regret bound and R =
√

0.5 ln(|H|)T ,
It is sub linear with T because

√
T = o(T ).

Based on the size of hypothesis class and realizability/unrealizability of the

input sequence, all the available methods in online learning in standard settings

can be divided into following categories:

(i) Finite hypothesis class and realizable case

(ii) Finite hypothesis class and unrealizable case

(iii) Infinite hypothesis class and both realizable and unrealizable cases

Now, we describe all the methods for each setting one by one.

1.4.1 Finite hypothesis class and realizable case

As this is the realizable case of input sequence we are assuming that all target

labels are generated by some target hypotheses h∗ ∈ H such that yt = h∗(xt),∀t.
We are also assuming that |H| is also finite i.e. |H| < ∞.

Here are the following algorithms for this setting.

(i) Consistent() [1]: Consistent() algorithm is a very basic algorithm which

uses very natural approach to find best hypothesis at any point. It chooses

any hypothesis from the available hypothesis set to predict the label of the

point. But for the future rounds, it carries forward only those hypothe-

ses which have predicted right for the current round. By this way, if the

8



algorithm makes a mistake in any round, it discards at least one hypothe-

sis from the hypothesis class H. i.e. after making a mistake in tth round;

|Ht+1| = |Ht| − 1. Thus, its mistake bound is given as follows:

Mconsistent(H) ≤ |H| − 1

(ii) Halving() [1]: In consistent, we were just using arbitrary single hypothesis

to predict the label. A better idea would be to take the majority vote and

then decide. It will improve the chances of correct prediction and will also

enable the learner to discard at least half of the hypotheses if algorithm

makes a mistake in any round.

At each round, it partitions the hypothesis class into two sets. One partition

consists of all those hypotheses which are predicting 0 and other contains

which are predicting 1. Then, halving() chooses predictions of the partition

which has larger cardinality. When correct answer is revealed to the learner,

it discards the partition whose predictions are not same as correct answer.

Since at any round if algorithm makes a mistake, we can safely discard at

least half of the hypotheses.

Thus, Halving() enjoys the mistake bound equals to log2(|H|).

Mhalving(H) ≤ log2(|H|).

(iii) Standard Optimal Algorithm or SOA () [1]: This is the optimal al-

gorithm in the realizable setting. The idea is same as that of halving(). It

also partitions the hypothesis class into two sets. One partition consists of

all those hypotheses which are predicting 0 and other contains which are

predicting 1. Then, unlike halving(), it chooses predictions of the partition

which has larger Ldim rather than partition with larger cardinality. When

correct answer is revealed to the learner, it discards the partition whose

predictions are not same as the correct answer.

Thus, similar to the bound for the halving(), SOA enjoys the mistake bound

equals to the Ldim(H).

MSOA(H) ≤ Ldim(H)
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1.4.2 Finite hypothesis class and unrealizable case

In the unrealizable case, we do not assume that all the labels are generated from

some h∗ ∈ H. But we assume that there are some better hypotheses in H which

make lesser mistakes than others. We analyse the mistake bound with respect to

these hypotheses and term this mistake bound as regret bound.

The rationale behind all the described algorithms for realizable case was to find

the best hypothesis and then continue prediction using that only for the future

rounds. This gave the learner the liberty of discarding hypotheses which made

mistakes even once. Learner could discard the hypotheses because once they make

a mistake; they can never be the target hypothesis.

But in unrealizable case, there may not be such hypotheses; we cannot discard

them just because they make a mistake in one or some rounds. We will have to

keep track of mistake count of all the hypotheses and make our prediction based

on the mistake count of each one so far.

Even if |H| is finite, it can be arbitrarily large. If it is too large; we cannot use

all the hypotheses in consideration to make prediction. Therefore, based on this,

there are two different algorithms for this setting.

(i) Prediction with expert advice : Weighted Majority Algorithm(WM)

when |H| < ∞ : [4]

So far all the algorithms described were deterministic in their prediction.

But this is a probabilistic algorithm which assigns some weights to each

hypothesis and treats these weights as a probability vector.

Let H = {h1, h2, · · · , hd}. Weighted majority (WM) algorithm treats this

class as set of experts. It assigns a weight w ∈ [0, 1] to each expert and

keeps updating it based on the number of mistakes made by each expert so

far. When a point xtis received by the WM, it collects weights of all experts,

which are predicting 1 for this xt, in a variable pt and then it predict 1 with

probability pt (Note that pt ∈ [0, 1]). When the true answer ytof xt is revealed

to the algorithm, it update the mistake count of each expert whichever made

mistake on this xt. This enjoys the asymptotically optimal regret bound [5]

as follows:

Expected Regret BoundWM(H) =
√
(0.5 ln(|H|)T )

(ii) Expert() algorithm when |H| is allowed to be ∞ but Ldim(H) < ∞ :

[1]

10



When H is allowed to be ∞, we cannot use each hypothesis in each round

for deciding the prediction. But we assume that Ldim(H) is finite so that

we can use SOA() (described earlier in section 1.1.3) somehow. Since we are

assuming that H can be arbitrarily large and we cannot use each hypothesis

in each round, the challenge before us is how to define a set of experts that

on one hand is not excessively large while on the other hand contains an

expert that gives accurate prediction. Here, basic idea is to simulate each

expert by running SOA() algorithm on a small sub-sequence of points. We

define an expert for each sequence of length L <= Ldim(H) and then use

that constructed set of experts that sub-sequence.

Expected Regret BoundExpert()(H) = Ldim(H) +
√

(0.5 Ldim(H)T log(T ))

1.4.3 Infinite hypothesis class and realizable and unrealiz-

able cases :

These cases are out of the scope of this dissertation work. However there are some

algorithms like Perceptron() and Winnow() [6] in these settings which can be

found in the literature [4], [7], [8], [9].

1.5 Contributions from this dissertation

This dissertation proposes three different methods to accomplish the objectives

stated in the section 1.1.2. They are named as New Consistent WM(), New Halving

WM(), and New SOA WM(). The best method among the three is New SOA WM().

All of the three proposed algorithms are given briefly as follows.

(i) New Consistent WM() :

This algorithm combines the Consistent() (introduced in chapter 1, section

1.1.3 and described in detail in chapter 3, section 2.1) andWeighted Majority()

(introduced in chapter 1, section 1.1.3 and described in detail in chapter 3,

section 2.2) algorithms in a way to improve the regret bound in realizable

case. This algorithm enjoys the following expected regret bound

(a) In realizable case :

MNew Consistent WM(H, T ) ≤ |H|
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(b) In unrealizable case :

T∑
t=1

E[1[ŷt ̸= yt]]−min
h∈H

T∑
t=1

1[h(xt) ̸= yt] ≤ |H|+
√
(0.5 ln(|H|) (T − |H|))

(ii) New Halving WM() :

This algorithm combines the Halving() (introduced in chapter 1, section 1.1.3

and described in detail in chapter 3, section 2.1) and Weighted Majority()

(introduced in chapter 1, section 1.1.3 and described in detail in chapter 3,

section 2.2) algorithms in a way to improve the regret bound in realizable

case.

This algorithm enjoys the following expected regret bound

(a) In realizable case :

MNew Halving WM(H, T ) ≤ log2(|H|)

(b) In unrealizable case :

T∑
t=1

E[1[ŷt ̸= yt]]−min
h∈H

T∑
t=1

1[h(xt) ̸= yt] ≤
√

(0.5 ln(|H|) (T − log2 |H|))+

log2(|H|)

(iii) New SOA WM() :

This algorithm combines the SOA() (introduced in chapter 1, section 1.1.3

and described in detail in chapter 3, section 2.1) and Weighted Majority()

(introduced in chapter 1, section 1.1.3 and described in detail in chapter 3,

section 2.2) algorithms in a way to improve the regret bound in realizable

case.

This algorithm enjoys the following expected regret bound

(a) In realizable case :

MNew SOA WM(H, T ) ≤ Ldim(H)

12



(b) In unrealizable case :

T∑
t=1

E[11[ŷt ̸= yt]]−min
h∈H

T∑
t=1

1[h(xt) ̸= yt] ≤
√

(0.5 ln(|H|) (T − Ldim(H)))+

Ldim(H)

All of these three methods are described in depth in the chapter 3.
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Chapter 2

Existing Methods

In this chapter, all the methods which were described in section 1.3 are explained

in depth. As it was mentioned that based on the size of hypothesis class and

realizability/unrealizability of the input sequence, all the available methods in

online learning in standard settings can be divided into the following categories:

(i) Finite hypothesis class and realizable case

(ii) Finite hypothesis class and unrealizable case

(iii) Infinite hypothesis class and both realizable and unrealizable cases

Now, we describe all the methods for each setting one by one in the following

sections.

2.1 Finite hypothesis class and realizable case

As this is the realizable case of input sequence we are assuming that all target

labels are generated by some target hypotheses h∗ ∈ H such that yt = h∗(xt),∀t.
We are also assuming that |H| is also finite i.e. |H| < ∞.

Here are the following algorithms for this setting :

2.1.1 Consistent

This is given in Algorithm 2. [1]

As it was mentioned earlier that Consistent() algorithm is a very basic algo-

rithm which uses very natural approach to find best hypothesis at any point. It

chooses any hypothesis from the available hypothesis set to predict the label of the

point. But for the future rounds, it carries only those hypotheses which predicted

right for the current point. By this way, if the algorithm makes a mistake in any

round, it discards at least one hypothesis from the hypothesis class H. i.e. after

making a mistake in tth round |H t+1| = |H t| − 1.

14



Algorithm 2 Consistent

Input: A finite hypothesis class H
Initialize: V1 = H

for t = 1, 2, · · · do
receive xt

choose any h ∈ Vt

predict pt = h(xt)
receive true answer yt = h∗(xt)
update Vt+1 = {h ∈ Vt : h(xt) = yt}

end for

2.1.1.1 Analysis of Consistent()

The Consistent() algorithm maintains a set, Vt, of all the hypotheses which are

consistent with (x1, y1), · · · , (xt1, yt1). This set is often called the version space.

It, then, picks any hypothesis from Vt and predicts according to this hypothesis.

It is clear that whenever Consistent() makes a mistake; at least one hypothesis is

removed from the Vt. So after making M mistakes, |Vt| = |H| −M .

Note that H is never empty because of the realizability assumption that h∗ ∈
H. So in worst case Consistent() can make at most |H| − 1 mistakes and in best

case it will make only 1 mistake. This is the case when it gets hold of the best

hypothesis in the very beginning itself. Therefore, based on this discussion, we

have the following corollary stating the mistake bound of the Consistent().

Corollary 0.1. : Let H be a finite hypothesis class. The consistent algorithm

enjoys the mistake bound Mconsistent(H) ≤ |H| − 1 [1].

2.1.2 Halving

This is given in Algorithm 3. [1]

Algorithm 3 Halving()

Input: A finite hypothesis class H

Initialize: V1 = H

for t = 1, 2, · · · do

receive xt

predict pt = arg maxr∈{0,1} |{h ∈ Vt : h(xt) = r}|
(in case of a tie predict pt = 1)

receive true answer yt = h∗(xt)

update Vt+1 = {h ∈ Vt : h(xt) = yt}
end for
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2.1.2.1 Analysis of Halving()

In consistent, we were just using arbitrary single hypothesis to predict the label. A

better idea would be to take the majority vote and then decide. This will improve

the chances of correct prediction and it will also enable us to discard at least half

of the hypotheses if algorithm makes a mistake in any round.

At each round, it partitions the hypothesis class into two sets. One partition

consists of all those hypotheses which are predicting 0 and other contains which

are predicting 1. Then, halving() chooses predictions of the partition which has

larger cardinality. When correct answer is revealed to the learner, it discards the

partition whose predictions are not same as correct answer. Since at any round if

algorithm makes a mistake, we can safely discard at least half of the hypotheses.

We have the following theorem analysing the mistake bound of Halving algo-

rithm :

Theorem 1. Let H be a finite hypothesis class. The Halving() algorithm enjoys

the mistake bound Mhalving(H) ≤ log2(|H|).[1]

Proof. We simply note that whenever Halving makes a mistake we have |Vt+1| ≤
|Vt|/2. Therefore, if M is the total number of mistakes then we have,

1 ≤ |Vt+1| ≤ |H|/2M

Now rearranging the terms, we have

1 ≤ |H|/2M

2M ≤ |H|

M ≤ log2|H|

2.1.3 Standard Optimal Algorithm or SOA

This is given in Algorithm 4 .[1] :

2.1.3.1 Analysis of SOA()

This is the optimal algorithm in the realizable setting. The idea is same as that

of halving(). It also partitions the hypothesis class into two sets. One partition

consists of all those hypotheses which predict 0 and other contains which predict
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Algorithm 4 SOA()

Input: A finite hypothesis class H
Initialize: V1 = H

for t = 1, 2, · · · do
receive xt

for r ∈ {0, 1} let V
(r)
t = {h ∈ Vt : h(xt) = r}

predict pt = arg maxr∈{0,1} Ldim(V
(r)
t )

(in case of a tie predict pt = 1)
receive true answer yt = h∗(xt)
update Vt+1 = {h ∈ Vt : h(xt) = yt}

end for

1. Then, unlike halving(), it chooses predictions of the partition which has larger

Ldim rather than partition with larger cardinality. When correct answer is re-

vealed to the learner, it discards the partition whose predictions are not same as

the correct answer.

The following Lemma proves the optimality of SOA ().

Lemma 2. SOA enjoys the mistake bound MSOA(H) ≤ Ldim(H).[1]

Proof. It suffices to prove that whenever the algorithm makes a mistake, we have

Ldim(Vt+1 ≤ Ldim(Vt) − 1). We prove this claim by assuming the contrary, that

is, Ldim(Vt+1 = Ldim(Vt)). If this holds true, then the definition of pt implies that

Ldim(V
(
t r) = Ldim(Vt)) for both r = 1 and r = 0. But, then we can construct a

shattered tree of depth Ldim(Vt) + 1 for the class Vt, which leads to the desired

contradiction.

Combining Lemma 1.1 and Lemma 2, we obtain[1]:

Corollary 2.1. Let H be any hypothesis class. Then, the standard optimal al-

gorithm enjoys the mistake bound MSOA(H) = Ldim(H) and no other algorithm

Acan have MA(H) < Ldim(H) [1].

The following table summarizes all the available algorithms and their mistake

bounds described above for finite hypothesis class and realizable case.

2.2 Finite hypothesis class and unrealizable case

In the unrealizable case, we do not assume that all the labels are generated from

some h∗ ∈ H. But we assume that there are some better hypotheses in H which

make lesser mistakes than others. We analyse the mistake bound with respect to

these hypotheses and term this mistake bound as regret bound.
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Table 2.1: Summary of mistake bounds of existing algorithms for finite hypothesis
class and realizable case.

Seq Algorithms Mistake Bound Optimal Mistake Bound

1. Consistent() O(|H|)

2. Halving() O(log2|H|) O(Ldim(H))

3. SOA() O(Ldim(H))

The rationale behind all the described algorithms for realizable case was to

find the best hypothesis and then predict using that only. This gave us the lib-

erty of discarding hypotheses which made mistake even once. We could discard

the hypotheses because once they make a mistake; they can never be the target

hypothesis.

But in unrealizable case, there may not be such hypotheses; we cannot discard

them just because they make a mistake in one or some rounds. We will have to

keep track of mistake count of all the hypotheses and make our prediction based

on the mistake count of each one.

Even if H is finite, it can be arbitrarily large. If it is too large we cannot use

all the hypotheses in consideration to make prediction. Therefore, based on this,

there are two different algorithms for this setting.

2.2.1 Prediction with expert advice: Weighted Majority

Algorithm(WM) when |H| is finite

So far all the algorithms described were deterministic in their prediction. But this

is a probabilistic algorithm which assigns some weights to each hypothesis and

treats these weights as a probability vector.

LetH = {h1, h2, · · · , hd}. Weighted Majority (WM) algorithm treats this class

as set of experts which help it predicting the answer. This is given in Algorithm

5.[1]:

2.2.1.1 Analysis of Weighted Majority()

Basically, Weighted Majority assigns a weight w ∈ [0, 1] to each expert and keeps

updating it based on the number of mistakes made by each expert so far.

When a point xtis received by the WM, it collects weights of all experts, which

are predicting 1 for this xt, in a variable pt and then it predict 1 with probability
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Algorithm 5 Weighted Majority : Learning with Expert Advice

Input: A finite hypothesis class H containing d experts. Number of
rounds(input points) T
Initialize: η =

√
2 ln(d)/T ; ∀i ∈ [d],M0

i = 0
for t = 1, 2, · · · do
receive xt

receive expert advice (ht
1(xt), h

t
2(xt), · · · , ht

d(xt)) ∈ {0, 1}d

Define wt−1
i = e−ηMt−1

i∑d
j=1 e

−ηMt−1
j

Define p̂t =
∑

i:ht
i(xt)=1 w

t−1
i

Predict ŷt = 1 with probability p̂t
receive true answer yt
update M t

i = M t−1
i + 1[ht

i(xt) ̸= yt]
end for

pt (Note that pt ∈ [0, 1]). When the true answer of xt is revealed to the algorithm,

it update the mistake count of each expert whichever has made mistake.

The following theorem analyses the regret bound for the Weighted Majority

algorithm [1]:

Theorem 3. Weighted Majority satisfies the following :

T∑
t=1

E[1[ŷt ̸= yt]]−min
i∈[d]

T∑
t=1

1[ht
i(xt) ̸= yt] ≤

√
0.5 ln(d)T

Proof. The algorithm maintains the number of prediction mistakes each expert

made so far,M t−1
i , and assign a probability weight to each expert accordingly.

Then, the learner sets p̂t to be the total mass of the experts which predict 1. The

definition of ŷt clearly implies that

E[1[ŷt ̸= yt]] =
d∑

i=1

wt−1
i 1[ht

i(xt) ̸= yt] (2.1)

That is, the probability to make a mistake equals to the expected error of

experts, where expectation is with respect to the probability vector wt.

Now, we begin the proof : Define Zt =
∑

i e
−ηM t

i . We have

ln
Zt

Zt−1

= ln

∑
i e

−ηM t−1
i e−η1[ht

i(xt )̸=yt]∑
j e

−ηM t
j

=
d∑

i=1

wt−1
i e−η1[ht

i(xt )̸=yt]

19



Note that wt is a probability vector and 1[ht
i(xt) ̸= yt] ∈ [0, 1]. Therefore, we

can apply Hoeffdings inequality (see for example [2], Lemma 2.2) on the right-hand

side of the above to get

ln
Zt

Zt−1

≤ −η
d∑

i=1

wt−1
i 1[ht

i(xt) ̸= yt]

where the last equality follows from Eq. (2.1). Summing the above inequality

over t we get

ln(ZT )− ln(Z0) =
T∑
t=1

ln
Zt

Zt−1

≤ −η

T∑
t=1

E[1[ŷt ̸= yt]] +
Tη2

8
(2.2)

Next, we note that ln(Z0) = ln(d) and that

lnZT = ln(
∑
i

e−ηMT
i ) ≥ ln(max

i
e−ηMT

i ) = −η min
i

MT
i

Substituting the values of ln(ZT ) and ln(Z0) in Eq.(2.2)

−η min
i

MT
i − ln(d) ≤ −η

T∑
t=1

E[1[ŷt ̸= yt]] +
Tη2

8

Dividing both sides by η and rearranging the terms, we get

T∑
t=1

E[1[ŷt ̸= yt]]−min
i∈[d]

T∑
t=1

1[ht
i(xt) ̸= yt] ≤

ln(d)

η
+

η T

8

Putting η =
√

8 ln(d)/T , we get the desired result

T∑
t=1

E[1[ŷt ̸= yt]]−min
i∈[d]

T∑
t=1

1[ht
i(xt) ̸= yt] ≤

√
0.5 ln(d)T

This dissertation work is based on constructing an algorithm to improve this

bound in realizable case.

2.2.2 Expert algorithm: When |H| is allowed to be ∞ but

Ldim(H) is finite

When H is allowed to be ∞, we cannot use each hypothesis in each round for

deciding the prediction. But we assume that Ldim(H) is finite so that we can use
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SOA() (described earlier in section 1.1.3) somehow.

Since we are assuming that H can be ∞ and we cannot use each hypothesis

in each round, the challenge before us is how to define a set of experts that on

one hand is not excessively large while on the other hand contains an expert that

gives accurate prediction.

Here, basic idea is to simulate each expert by running SOA() algorithm on

a small sub-sequence of points. We define an expert for each sequence of length

L <= Ldim(H) and then use that constructed set of experts that sub-sequence.

The algorithm for defining experts is given in Algorithm 9.[1]:

Algorithm 6 Expert(i1, i2, · · · , iL)
Input: A finite hypothesis class H, Indices i1 < i2 < · · · < iL
Initialize: V1 = H

for t = 1, 2, · · · , T do
receive xt

for r ∈ {0, 1} let V
(r)
t = {h ∈ Vt : h(xt) = r}

predict pt = arg maxr∈{0,1} Ldim(V
(r)
t )

(in case of a tie predict pt = 1)
receive true answer yt
if yt ̸= ŷt and t ∈ {i1, i2, · · · , iL} then

Update Vt+1 = V
(yt)
t

else
Update Vt+1 = Vt

end if
end for

The following key lemma shows that there exists an expert whose performance

is almost optimal[1].

Lemma 4. Let (x1, y1) · · · (xT , yT ) be a sequence of examples and let H be a hy-

pothesis class with Ldim(H) < ∞. There exists L ≤ Ldim(H) and a subsequence

1 ≤ i1 ≤ · · · ≤ iL ≤ T , such that Expert(i1, i2, · · · , iL) makes at most

L+min
h∈H

T∑
t=1

1[h(xt) ̸= yt]

mistakes on the sequence of examples.

Proof. To simplify our notation, let M(h) be the number of mistakes a hypothesis

h makes on the sequence of examples. Let h∗ ∈ H be an optimal hypothesis, that

is M(h∗) = minh M(h). Let j1, · · · , jk be the set of rounds on which h∗ does not

err. Thus, k = T − M(h∗). The sequence of examples (xj1 , yj1), · · · (xj1 , yj1)
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is realizable for H (since h∗ ∈ H never err on this sequence). Therefore, if

we run SOA(Algorithm 4) on this sequence we have at most Ldim(H ) mis-

takes. Choose i1, i2, · · · , iL to be a sub-sequence of j1, · · · , jk that contains the

indices of examples on which SOA errs, and note that L ≤ Ldim(H). Since

the predictions of SOA on j1, · · · , jk are exactly the same as the predictions of

Expert(i1, i2, · · · , iL) on j1, · · · , jk we get that the total number of prediction mis-

takes of Expert(i1, i2, · · · , iL) on the entire sequence is at most L+M(h∗).

After constructing the experts as above, our algorithm becomes the application

of Weighted Majority() algorithm and given in Algorithm 7.[1]:

Algorithm 7 Agnostic Online Learning Algorithm

Input: A finite hypothesis class H with Ldim(H) < ∞; learning rate η > 0;
Number of rounds T
Initialize:
for each L ≤ Ldim(H) do
for each sub-sequence 1 ≤ i1 < i2 < · · · , iL ≤ T do
Construct an expert from i1, i2, · · · , iL as in algorithm 4 Expert().

end for
end for

To analyse this algorithm, we combine Lemma 4 with the upper bound on the

number of experts

d =

Ldim(H)∑
L=0

(
T

L

)
≤ T Ldim(H)

to obtain the following [1]:

Theorem 5. Let H be a hypothesis class with Ldim(H) < 1. If we run Algorithm

7 on any sequence (x1, y1), · · · (xT , yT ), we obtain the expected regret bound,

T∑
t=1

E[1[ŷt ̸= yt]]−min
h∈H

T∑
t=1

1[h(xt) ≠ yt] ≤ Ldim(H) +
√

(0.5 Ldim(H)T ln(T ))

The above theorem implies that a class H that has a finite Ldim is agnostic

online learnable.

The table 2.2 summarizes all the available algorithms and their regret bounds

described above for finite Ldim hypothesis class in unrealizable case.
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Table 2.2: Summary of regret bounds of existing algorithms for finite Ldim hy-
pothesis class and unrealizable case.

Seq Algorithms Regret Bound Optimal Regret Bound

1.
Weighted Majority()
when |H| < ∞
Ldim(H) < ∞

=
√

(0.5 ln(H)T ) O(
√

Ldim(H)T )

2.
Experts() when |H|
is allowed to be ∞,
Ldim|H| < ∞

O(Ldim(H)+√
(0.5 Ldim(H)T ln(T )) )

Same as above

2.3 Infinite hypothesis class and realizable and

unrealizable case

This case is out of the scope of this dissertation work. However there are some

algorithms like Perceptron() and Winnow() in this setting which can be found in

the literature [1],[4], [7],[8],[9].

23



Chapter 3

Proposed Methodologies

3.1 Problem Statement and Objectives

As mentioned in the section 1.1.2, our settings are following:

In the realizable case, we assume that all the labels are generated from some

h∗ ∈ H. i.e. these h∗ makes 0 mistakes on the sequence of T points. In the

unrealizable(agnostic) case, we do not assume this. However, we assume that

there are some better hypotheses in H which make lesser mistakes than others.

In the literature, there are methods which are developed for both cases ex-

clusively. It’s true that the methods, which are developed for unrealizable case,

will work for realizable case also. But existing methods do not have much better

bound if the input sequence is found to be realizable.

So, we would like to devise some methods which perform extremely well in

realizable case and do not perform that bad if sequence is found to be unrealizable.

To recapitulate, we began with the following objectives :

(i) Devise some methods for the finite hypothesis class and unrealizable case

which perform extremely well if input sequence is found to be realizable and

do not perform that bad if input sequence is nor found to be unrealizable.

In other words, we would like to develop some methods which improves the

mistake bound in realizable case greatly while loosing the regret bound in

unrealizable case very slightly.

(ii) We would also like to get hold of the best hypotheses at the end of the

sequence. This might be required for various reasons. For example, one

application of learning algorithm might be just to find the best hypotheses

in the class for a input sequence.
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3.2 Approach

If we observe the algorithms described in the section 2.1 for the finite hypothesis

class and realizable case, the mistake bound does not depend on the length T of the

input sequence. It depends only on the size of the hypothesis class |H|. Further,
The Weighted Majority() algorithm described in section 2.2 enjoys the same regret

bound which depends on both T and |H|, no matter the input sequence is realizable

or unrealizable. This is what that drives the idea of devising the proposed method.

Therefore, the proposed algorithm combines the approaches of existing algorithms

presented in section 1.1 and 1.2. In the following section, we present the new

algorithms. These new algorithms couple the weighted majority algorithm with

each of the algorithm described in section 1.2, namely, Consistent(), Halving()

and SOA(). This gives us the much better bound in the realizable case while does

not loose that much in unrealizable case.

For all the proposed algorithms, we make following assumptions

(a) |H| is finite. i.e. |H| < ∞

(b) Ldim(H) is finite. i.e. Ldim(H) < ∞

(c) Ldim(H) << T

3.3 Proposed Algorithms

As already mentioned, the proposed algorithms couple the weightedmajority() al-

gorithm with each of the algorithm described in section 1.2, namely, Consistent(),

Halving(), and SOA(). Out of these three algorithms, New SOA WM() is the

best algorithm. It is described in section 3.3.3.

All the proposed algorithms are described in detail in the following subsections.

3.3.1 Weighted Majority with Consistent

The following algorithm combines the Weighted Majority() and Consistent() algo-

rithms. This is the most basic algorithm that can be produced by combining these

two algorithms. Therefore, it does not provide much better bound. However, it is

still better than the weighted majority in realizable case.

The proposed algorithm is given in Algorithm 8.
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Algorithm 8 New Consistent WM()

Input: A finite hypothesis class H containing d experts.i.i |H| = d. Number
of rounds(input points) T
Initialize: η =

√
2 ln(d)/T ; ∀i ∈ [d],M0

i = 0
Initialize: V1 = H

for t = 1, 2, · · · do
Receive xt

if (Vt is not empty) then
choose any h ∈ Vt

predict pt = h(xt)
Receive true answer yt = h∗(xt)
Update Vt+1 = {h ∈ Vt : (h(xt) = yt)}
Update M t

i = M t−1
i + 1[ht

i(xt) ̸= yt]
else
Receive expert advice (ht

1(xt), h
t
2(xt), · · · , ht

d(xt)) ∈ {0, 1}d

Define wt−1
i = e−ηMt−1

i∑d
j=1 e

−ηMt−1
j

Define p̂t =
∑

i:ht
i(xt)=1 w

t−1
i

Predict ŷt = 1 with probability p̂t
Receive true answer yt
Update M t

i = M t−1
i + 1[ht

i(xt) ̸= yt]
end if

end for

3.3.1.1 Analysis of New Consistent WM():

Let T be the number of input points and |H| be the size of the hypothesis class.

We assume that |H| < ∞ The basic idea here is to use Consistent() algorithm

in the beginning of the sequence. Since consistent() algorithm discards all the

hypothesis which predicts wrong on any input point, we keep using the predictions

of Consistent() until its current hypothesis class Vt becomes empty. Depending

on whether the sequence is realizable or not, there are following two cases to be

analysed:

3.3.1.2 Case 1 : When input sequence is realizable by H

From section 2.1, Algorithm 2, we know that mistake bound of Consistent() algo-

rithm is |H| − 1. Therefore in the worst case, instance of Consistent() will make

as many as |H| − 1 mistakes. Thereafter, it will not make any mistake.

Since in this case, even after processing |H| − 1 points, Vt will not be empty

and will contain at least one hypothesis. These are the those hypotheses which

realizes the input sequence. Hence, Consistent() part will be continuing for the
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rest of the T −|H|− 1 points and will not make any mistake further. Thus, in the

realizable case the mistake bound of proposed algorithm is following :

MNew Consistent WM(H,T) ≤ |H| (3.1)

3.3.1.3 Case 2 : When input sequence is not realizable by H

When the input sequence is not realizable by the hypothesis class, the Consistent()

portion of the algorithm can make at most |H| mistakes . Hence, till or before

|H| points, Vt will become empty and hereafter, Weighted Majority will starting

predicting.

Note that, while Consistent() portion was predicting and whenever it was mak-

ing mistakes, we were simultaneously updating the mistake count of each hypoth-

esis. This leaves weighted Majority in the same state as if Weighted Majority()

was being used from the beginning itself. Since Weighted Majority() receives the

mistake count list containing mistake count of each hypothesis on the previous

points, it makes predictions on the remaining points using this list. This helps

Weighted majority() distribute the weights according to the mistakes count of

hypothesis on the previous points.

This can be guaranteed that the point where Vt becomes empty, mistake count

of each hypothesis is ≥ 1. If not so, algorithm would have been continued us-

ing consistent() with the hypothesis whose mistake count is 0. This also helps

Weighted Majority() to initialize mistake count of each hypothesis in the begin-

ning of the Weighted Majority() part in the New Consistent WM algorithm.

From the section 2.2, Theorem 3, we know that Weighted Majority() enjoys

the following expected regret bound on a given input sequence of length T

T∑
t=1

E[1[ŷt ̸= yt]]−min
i∈[d]

T∑
t=1

1[ht
i(xt) ̸= yt] ≤

√
0.5 ln(|H|)T (3.2)

After analyzing the realizable and unrealizable cases separately, we present the

following theorem which presents the regret bound of the proposedNew Consistent WM()

algorithm.

Theorem 6. Algorithm 8 enjoys the following expected regret bound

(a) In realizable case :

MNew Consistent WM(H, T ) ≤ |H|
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(b) In unrealizable case :

T∑
t=1

E[1[ŷt ̸= yt]]−min
h∈H

T∑
t=1

1[h(xt) ̸= yt] ≤
√
(0.5 ln(|H|) (T − |H|)) + |H|

Proof. Since the input sequence either be realizable or unrealizable, we have dis-

cussed the bounds in both of the cases separately and equation 3.1 and 3.2 clearly

establish the above required bound.

In the following section, we couple the weighted majority algorithm with halv-

ing() algorithm described in the section 1.2.

3.3.2 Weighted Majority with Halving

The proposed algorithm is given in Algorithm 9.

Algorithm 9 New Halving WM()

Input: A finite hypothesis class H containing d experts. Number of
rounds(input points) T
Initialize: η =

√
2 ln(d)/T ; ∀i ∈ [d],M0

i = 0
Initialize: V1 = H

for t = 1, 2, · · · do
Receive xt

if (Vt is not empty) then
Predict pt = arg maxr∈{0,1} |{h ∈ Vt : (h(xt) = r)}|
(in case of a tie predict pt = 1)
Receive true answer yt = h∗(xt)
Update Vt+1 = {h ∈ Vt : (h(xt) = yt)}
Update M t

i = M t−1
i + 1[ht

i(xt) ̸= yt]
else
Receive expert advice (ht

1(xt), h
t
2(xt), · · · , ht

d(xt)) ∈ {0, 1}d

Define wt−1
i = e−ηMt−1

i∑d
j=1 e

−ηMt−1
j

Define p̂t =
∑

i:ht
i(xt)=1 w

t−1
i

Predict ŷt = 1 with probability p̂t
Receive true answer yt
Update M t

i = M t−1
i + 1[ht

i(xt) ̸= yt]
end if

end for
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3.3.2.1 Analysis of New Halving WM()

Let T be the number of input points and |H| be the size of the hypothesis class.

We assume that |H| < ∞ The basic idea here is to use Halving() algorithm in the

beginning of the sequence. Since Halving() algorithm discards at least half of the

hypothesis once it makes any mistake, we keep using the predictions of Halving()

until its current hypothesis class Vt becomes empty. Depending on whether the

sequence is realizable or not, there are following two cases to be analyzed:

3.3.2.2 Case 1 : When input sequence is realizable by H

From section 2.1, Algorithm 3, we know that mistake bound of Halving() algorithm

is log2(|H|). Therefore in the worst case, instance of Halving() will make as many

as log2(|H|) mistakes. Thereafter, it will not make any mistake.

Since in this case, even after processing log2(|H|) points, Vt will not be empty

and will contain at least one hypothesis. These are the those hypotheses which

realizes the input sequence. Hence, Halving() part will be continuing prediction

for the rest of the T − log2(|H|) points and will not make any mistake further.

Thus, in the realizable case, the mistake bound of proposed algorithm is following

:

MNew Halving WM(H,T) ≤ | log2(|H|) (3.3)

3.3.2.3 Case 2 : When input sequence is not realizable by H

When the input sequence is not realizable by the hypothesis class, the Halving()

portion of the algorithm can make at most log2(|H|) mistakes . Till or before

log2(|H|) points, Vt will become empty and hereafter, Weighted Majority will

starting predicting.

Note that, while Halving() portion was predicting and whenever it was making

mistakes, we were simultaneously updating the mistake count of each hypothesis.

This leaves Weighted Majority() in the same state as if the Weighted Majority()

was being used from the very beginning. Since weighted majority() receives the

mistake count list containing mistake count of each hypothesis on the previous

points, Weighted Majority() makes predictions on the remaining points using this

list. This helps Weighted Majority() distribute the weights according to the mis-

takes count of hypothesis on the previous points.

This can be guaranteed that the point where Vt becomes empty, mistake count

of each hypothesis is ≥ 1. Because, otherwise, algorithm would have been contin-

29



ued using Halving() with the hypothesis whose mistake count is 0. This also helps

Weighted Majority() to initialize mistake count of each hypothesis in the beginning

of the Weighted Majority() part in the New Halving WM() algorithm.

From the section 2.2, Theorem 3, we know that Weighted Majority() enjoys

the following expected regret bound on a given input sequence of length T

T∑
t=1

E[1[ŷt ̸= yt]]−min
i∈[d]

T∑
t=1

1[ht
i(xt) ̸= yt] ≤

√
0.5 ln(H)T (3.4)

After analysing the realizable and unrealizable cases separately, we present the

following theorem which presents the regret bound of the proposedNewHalvingWM()

algorithm.

Theorem 7. Algorithm 9 enjoys the following expected regret bound

(a) In realizable case :

MNew Halving WM(H, T ) ≤ log2(|H|)

(b) In unrealizable case :

T∑
t=1

E[1[ŷt ̸= yt]]−min
h∈H

T∑
t=1

1[h(xt) ̸= yt] ≤
√
(0.5 ln(|H|) (T − log2 |H|))+

log2(|H|)

Proof. Since the input sequence either be realizable or unrealizable, we have dis-

cussed the bounds in both of the cases separately and equation 3.3 and 3.4 clearly

establish the above required bound.

3.3.3 Weighted Majority with SOA

As mentioned in the beginning of this section 3.3, this algorithm enjoys the least

expected regret bound. This comes from the fact that unlike Halving(), it uses

Ldim of the two different sets V
(0)
t and V

(1)
t and uses the set for prediction which

has the larger Ldim. The proposed algorithm is given in the Algorithm 10 :

3.3.3.1 Analysis of New SOA WM()

Let T be the number of input points and |H| be the size of the hypothesis class.

We assume that |H| < ∞ The basic idea here is to use SOA() algorithm in
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Algorithm 10 New SOA WM()

Input: A finite hypothesis class H containing d experts. Number of
rounds(input points) T
Initialize: η =

√
2 ln(d)/T ; ∀i ∈ [d],M0

i = 0
Initialize: V1 = H

for t = 1, 2, · · · do
Receive xt

if (Vt is not empty) then

for r ∈ {0, 1} let V
(r)
t = {h ∈ Vt : h(xt) = r}

predict pt = arg maxr∈{0,1} Ldim(V
(r)
t )

(in case of a tie predict pt = 1)
Receive true answer yt = h∗(xt)
Update Vt+1 = {h ∈ Vt : (h(xt) = yt)}
Update M t

i = M t−1
i + 1[ht

i(xt) ̸= yt]
else
Receive expert advice (ht

1(xt), h
t
2(xt), · · · , ht

d(xt)) ∈ {0, 1}d

Define wt−1
i = e−ηMt−1

i∑d
j=1 e

−ηMt−1
j

Define p̂t =
∑

i:ht
i(xt)=1 w

t−1
i

Predict ŷt = 1 with probability p̂t
Receive true answer yt
Update M t

i = M t−1
i + 1[ht

i(xt) ̸= yt]
end if

end for

the beginning of the sequence. From the Lemma 1.2, we know that Ldim(H) ≤
log2(|H|). Therefore, SOA() algorithm discards at least half of the hypothesis

whenever it makes a mistake. we keep using the predictions of SOA() until its

current hypothesis class Vt becomes empty. Depending on whether the sequence

is realizable or not, there are following two cases to be analysed:

3.3.3.2 Case 1 : When input sequence is realizable by H

From section 2.1, Lemma 2, we know that mistake bound of SOA() algorithm is

Ldim(H). Therefore in the worst case, instance of SOA() will make as many as

Ldim(H) mistakes. Thereafter, it will not make any mistake.

Since in this case, even after processing Ldim(H) points, Vt will not be empty

and will contain at least one hypothesis. These are the those hypotheses which

realizes the input sequence. Hence, SOA() part will be continuing prediction for

the rest of the T −Ldim(H) points and will not make any mistake further. Thus,
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in the realizable case the mistake bound of proposed algorithm is following :

MNew SOA WM(H,T) ≤ Ldim(H) (3.5)

3.3.3.3 Case 2 : When input sequence is not realizable by H

When the input sequence is not realizable by the hypothesis class, the SOA()

portion of the algorithm can make at most Ldim(H) mistakes . Till or before

Ldim(H) points, Vt will become empty and hereafter, Weighted Majority() will

starting predicting.

Note that, while SOA() portion was predicting and whenever it was making

mistakes, we were simultaneously updating the mistake count of each hypothesis.

This leaves Weighted Majority() in the same state as if the Weighted Majority()

was being used from the very beginning. Since weighted majority() receives the

mistake count list containing mistake count of each hypothesis on the previous

points, Weighted Majority() makes predictions on the remaining points using this

list. This helps Weighted Majority() distribute the weights according to the mis-

takes count of hypothesis on the previous points.

This can be guaranteed that the point where Vt becomes empty, mistake count

of each hypothesis is ≥ 1. Because, otherwise, algorithm would have been contin-

ued using SOA() with the hypothesis whose mistake count is 0. This also helps

Weighted Majority() to initialize mistake count of each hypothesis in the beginning

of the Weighted Majority() part in the New SOA WM() algorithm.

From the section 2.2, Theorem 3, we know that Weighted Majority() enjoys

the following expected regret bound on a given input sequence of length T

T∑
t=1

E[1[ŷt ̸= yt]]−min
i∈[d]

T∑
t=1

1[ht
i(xt) ̸= yt] ≤

√
0.5 ln(|H|)T (3.6)

After analysing the realizable and unrealizable cases separately, we present the

following theorem which presents the regret bound of the proposed New SOA WM()

algorithm.

Theorem 8. Algorithm 9 enjoys the following expected regret bound

(a) In realizable case :

MNew SOA WM(H, T ) ≤ Ldim(H)
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(b) In unrealizable case :

T∑
t=1

E[11[ŷt ̸= yt]]−min
h∈H

T∑
t=1

1[h(xt) ̸= yt] ≤
√
(0.5 ln(|H|) (T − Ldim(H)))+

Ldim(H)

Proof. Since the input sequence either be realizable or unrealizable, we have dis-

cussed the bounds in both of the cases separately and equation 3.5 and 3.6 clearly

establish the above required bound.

Our second objective in section 3.1 was to get hold of the best function at the

end of the sequence. It can be seen that it has also been achieved in all three

proposed algorithms by keeping mistake count of each function. The functions

which have least number of mistake count at the end; are the best functions. Note

that, in realizable case, the functions which have mistake count equals to 0 are

best functions.

In this section, we described several methods for the finite hypothesis class

and both realizable or unrealizable case setting. In particular, We presented three

methods to improve the mistake bound for this setting using Weighted Majority

with other methods picked up from the different setting named as finite hypothesis

class and realizable case. Proposed methods do not improve the regret bound in

general but they greatly improve the mistake bound for the realizable case while

loosing a little in unrealizable case.

3.4 Contributions

Firstly, table 3.1 summarize the regret bounds of proposed algorithms and compare

them with that of existing ones.

Seq Algorithms
Mistake Bound
(Realizable case)

Regret Bound
(Unrealizable case)

Optimal
Regret Bound
(Unrealizable
case)

1. Weighted Majority()
√

0.5 ln(H)T
√

0.5 ln(H)T (
√

Ldim(H)T )

2. New Consistent WM() |H| |H|+
√

0.5 ln(|H|) (T − |H|) Same as above

3. New Halving WM() log2(H) log2(H) +
√

0.5 ln(|H|) (T − log2(|H|)) Same as above

4. New SOA WM() Ldim(H) Ldim(H) +
√

0.5 ln(|H|) (T − Ldim(H)) Same as above

Table 3.1: Comparison of regret bounds of existing and proposed algorithms for
finite hypothesis class and unrealizable case.
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It can be observed that the mistake and regret bounds of Weighted Majority

are same. Proposed algorithms reduces the mistake bound by a large factor while

loosing very little in regret bound.

For example, In case of New Consistent WM() ;

√
T →

√
T − |H|

In case of New Halving WM() ;

√
T →

√
T − log2(|H|)

and in case of New SOA WM() ;

√
T →

√
T − Ldim(H)
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Chapter 4

Simulations

This chapter gives supplementary backing to the results claimed in proposed

methodologies in chapter 3. Since implementation of all the three proposed al-

gorithms is very much similar to that of one another and Algorithm 9 is easy

to implement, we are giving the implementation of this algorithm only named

New Halving WM() given in section 3.3.2.

Although, the simulations presented in this chapter are neither necessary nor

sufficient to prove bounds for any proposed algorithm. In fact, the behaviour of

any online learning algorithms is completely analysed by theoretical proofs for

mistake and regret bounds. Still, the simulations are presented in this chapter

with the following objectives:

• To show that the proposed algorithms indeed conform to the given regret

bound.

• To present a simple implementation scenario for the online learning frame-

work.

For implementing proposed algorithms we need the following :

(i) Input sequence of T labelled points (realizable and unrealizable by H based

on the scenario being discussed)

(ii) Finite hypothesis class H

4.1 Construction of hypothesis class H and input

sequence S :

This section describes the process of construction of hypothesis class and input

sequence. This constructed input sequence may be realizable or unrealizable de-

pending on the hypothesis class H.
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For implementation purpose, we need to generate both types of input sequence.

To analyse the realizable case, we need to generate it in such a way that ∃h∗ ∈ H

such that

h∗(xt) = yt ; ∀t ∈ [T ]

We generate points of sequence S satisfying the following :

xt ∈ (−T/2 + 1, T/2)

and

yt ∈ {0, 1}

4.1.1 Generating hypothesis class H or function class

Since we have T many points and all xt ∈ (−T/2+1, T/2), the following is the way

adopted for generating function such that neither all the functions make correct

predictions on all the xt (except the realizable case) nor all the functions make

mistakes on all the xt.

hi(xt) =


0 if xt ≤ i

1 otherwise

(4.1)

That is, ith function will assign label 0 to all the xt which are ≤ i and assigns 1

to all those xt which are > 1. Naturally, i should lie in [d], where d is the number

of functions in hypothesis class (ie d = |H|) and for this example d ≤ T

So our hypothesis class becomes the set of these hi:

H = {hi : i ∈ [d]} (4.2)

4.1.2 Generating input sequence S labeled by some h

Here is the following way adopted for generating realizable and Unrealizable se-

quence S of length T .

4.1.2.1 Constructing Realizable Sequence :

For realizable sequence, we need to generate the labels of points using such a

function(hypothesis) h∗ which can be easily included in the hypothesis class.(Here

”easily” means that this function should be similar to other functions of the hy-

pothesis class.)

36



To make the sequence realizable, labels of the sequence are generated by the

following function.

h0(xt) =


0 if xt ≤ 0

1 otherwise

(4.3)

That is, it assigns label 0 to all non positive points and label 1 to all positive

points. The table 4.1 demonstrate an example of a sequence generated by the

function in eq 4.3 with T = 8.

Table 4.1: Example sequence of length 8 which is realizable by the
hypothesis class constructed according to function definition given by

equation 4.3

t xt yt

1. −3 0

2. −2 0

3. −1 0

4. 0 0

5. 1 1

6. 2 1

7. 3 1

8. 4 1

So the sequence is

S = {(−3, 0), (−2, 0), (−1, 0), (0, 0), (1, 1), (2, 1), (3, 1), (4, 1)}

Note that h0 realizes this entire sequence.

4.1.2.2 Constructing Unrealizable Sequence :

To make the sequence unrealizable, labels are generated by the following function.

h(xt) = 1 ; ∀xt
(4.4)

That is, it assigns label 1 to all points. Since some xt of the sequence are

negative and some of them are positive and no single function provides the label 1

to all the points of the sequence; this constructed sequence will never be realizable
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by the below constructed hypothesis class H.

Table 4.2 presents an example of a sequence generated by the function in eq

4.4 with T = 8.

Table 4.2: Example sequence of length 8 which is realizable by the
hypothesis class constructed according to function definition given by

equation 4.4.

t xt yt

1. −3 1

2. −2 1

3. −1 1

4. 0 1

5. 1 1

6. 2 1

7. 3 1

8. 4 1

Table 4.3 shows the prediction of each function given by eq 4.2 with d = 5 over

the following sequence(same as defined before).

S = {(−3, 0), (−2, 0), (−1, 0), (0, 0), (1, 1), (2, 1), (3, 1), (4, 1)}

Here M(hi) denotes the total number of mistakes made by the hypothesis i on

the entire sequence S.(Red coloured number shows the wrong prediction.)

It can be seen that h0 does not make any mistake. Hence it can realize the

sequence S.

4.2 Simulation of New Halving WM Algorithm

As already mentioned that implementation of all the three proposed algorithms

(Algorithm 8, 9, 10) is very much similar to that of one another, we are giv-

ing the implementation of only Algorithm 9 named New Halving WM() given in
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Table 4.3: Showing predictions and total mistake count of each
function on the entire sequence S.

t xt yt h0(xt) h1(xt) h2(xt) h3(xt) h4(xt)

1. −3 0 0 0 0 0 0

2. −2 0 0 0 0 0 0

3. −1 0 0 0 0 0 0

4. 0 0 0 0 0 0 0

5. 1 1 1 0 0 0 0

6. 2 1 1 1 0 0 0

7. 3 1 1 1 1 0 0

8. 4 1 1 1 1 1 0

M(hi) −− −− 0 1 2 3 4

section 3.3.2.

From theorem 7, algorithm 9 enjoys the following regret bound :

(a) In realizable case :

MNew Halving WM(H, T ) ≤ log2(|H|)

(b) In unrealizable case :

T∑
t=1

E[1[ŷt ̸= yt]]−min
h∈H

T∑
t=1

1[h(xt) ̸= yt] ≤
√
(0.5 ln(|H|) (T − log2 |H|))+

log2(|H|)

In realizable case, we analyse the ”expected” mistake bound which can be

described as follows :

Expected Mistakes =
Total number of mistakes

All possible permutations of the input sequence

In unrealizable case, we analyse the ”expected” regret bound which can be

represented in terms of mistake bound as follows

Expected Regret = Expected Mistakes−Mistakes by best functions
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Here we have ”expected” mistake or regret bound. Then, ideally we need to

count mistakes made by the algorithm over all possible permutations of an input

sequence. it is extremely time consuming or in fact computationally infeasible

to check the expected mistake count of any learning algorithm over all possible

sequences of a long input sequence. Therefore, we either provide expected mistakes

count on all possible permutations of very short sequence (e.g. T = 8or 9) or

we generate some random permutations of a long input sequence (when T ∼
1000 or 10, 000).

4.3 Simulation results

This section presents the simulation results for the realizable and unrealizable

cases separately. It, further, presents simulation results with randomization of

realizable and unrealizable sequences. i.e. we will randomly pick any sequence

from the set of realizable and unrealizable sequences.

4.3.1 Realizable case

Im realizable case, we assume that ∃h∗ ∈ H such that

h∗(xt) = yt ; ∀t ∈ [T ]

hence,

Mh∗(S) = 0

But depending on the order in which points of input sequence are presented

to the algorithm, algorithm can make any number of mistakes ranging from 0 to

ln(H). i.e.

MA(H,S) ∈ [log2(|H|)]

These mistakes are essentially the mistakes made by the algorithm to find that

best hypothesis (function) h∗.

Table 4.4 presents some simulation results in where S is realizable by the con-

structed hypothesis class H.

4.3.1.1 Observations :

It can be seen that this difference is clearly very huge in realizable case and

New Halving WM() algorithm really outperforms in the realizable case.
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T
Permuta−
tions

|H| M(hm)

WM()
total
mistakes
(1)

WM()
expected
mistakes

WM()
expected
mistake
bound

Max
mist−
akes

Min
mist−
akes

New()
total
mista
−kes
(2)

New()
expected
mistakes

New()
mistake
bound

Max
mist−
akes

Min
mist−
akes

Diff
(1)− (2)

1000 100 500 0 3, 576 35.76 55.74 46 23 325 3.25 8 5 1 3, 251

1000 100 500 0 3, 663 36.63 55.74 49 25 331 3.31 8 6 1 3, 332

1000 100 500 0 3, 636 36.36 55.74 46 25 318 3.18 8 6 1 3, 318

8 40, 320 4 0 53, 136 1.31 2.35 3 0 36, 964 0.91 2 2 0 16, 172

8 40, 320 4 0 53, 305 1.32 2.35 3 0 36, 999 0.91 2 2 0 16, 306

8 40, 320 4 0 53, 052 1.31 2.35 3 0 37, 003 0.91 2 2 0 16, 049

Table 4.4: Showing comparison of mistake counts of existing and proposed algo-
rithms in realizable case on all permutations of the sequence S given in table 4.1
and some randomly generated permutations of large sequence of 1000 points.

Due to space constraint in table, we rename new algorithm as :
New Halving WM() → New().

In this table, hm denotes the best function. i.e. which makes least number of
misatkes over the entire input sequence.

The values in ”Diff” column denotes the difference between the mistakes made
by Weighted Majority() algorithm and the New Halving WM()

We also observe that mistakes for both original and proposed one are conforming

to the theoretical bounds.

4.3.2 Unrealizable case

In unrealizable case, we analyse the regret bound rather than the mistake bound.

In other words, regret bound is essentially a mistake bound when mistakes are

counted w.r.t the best hypothesis in the class.

Table 4.5 presents some simulation results in where S is not realizable by the

constructed hypothesis class H.

4.3.2.1 Observations :

If we observe the values in ”Diff” column in table 4.5 and compare the ”Diff”

values from table 4.4, we see that we are still gaining very minimal in the unre-

alizable case. But, in general, we can not gain anything in the unrealizable case

using the proposed algorithms. This unexpected gain shows that, in general, we

will loose very little in the unrealizable case.

Similar to the table 4.4, table 4.5 also shows that the regrets for both original

and proposed ones are conforming to their corresponding theoretical bounds.
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T
Permuta−
tions

|H| M(hm)

WM()
total
regret
(1)

WM()
expected
regret

WM()
expected
regret
bound

Max
mist−
akes

Min
mist−
akes

New()
total
regret
(2)

New()
expected
regret

New()
regret
bound

Max
mist−
akes

Min
mist−
akes

Diff
(1)− (2)

1000 100 500 500 3, 615 36.15 55.74 49 26 3593 35.93 64.49 47 0 22

1000 100 500 500 3, 636 36.86 55.74 46 29 3, 610 36.10 64.49 44 0 26

1000 100 500 500 3, 584 35.84 55.74 51 28 3, 584 35.84 64.49 44 0 0

8 40, 320 4 4 3, 187 1.31 2.88 7 4 1, 908 1.28 4.03 3 0 1, 279

8 40, 320 4 4 3, 461 1.32 2.88 7 4 2, 106 1.29 4.03 3 0 1, 355

8 40, 320 4 4 3, 462 1.32 2.88 7 4 1, 703 1.28 4.03 3 0 1, 759

Table 4.5: Showing comparison of regret counts of existing and proposed algo-
rithms in unrealizable case on all permutations of the sequence S given in table
4.1 and some randomly generated permutations of large sequence of 1000 points.

Due to space constraint in table, we rename new algorithm as :
New Halving WM() → New().

In this table, hm denotes the best function. i.e. which makes least number of
misatkes over the entire input sequence.

The values in ”Diff” column denotes the difference between the regrets of
Weighted Majority() algorithm and the New Halving WM()

Note that regret values in the this table are obtained by subtracting mistakes of
best expert from the mistakes made by each algorithm compared here.
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Chapter 5

Conclusion, Discussion and Future Work

In this dissertation, we proposed three algorithms for the finite hypothesis class

and both realizable and unrealizable cases. Proposed algorithms are designed

by coupling the existing best algorithms available for realizable and unrealizable

cases.

The motivation behind proposed algorithms was to reduce the mistakes which

Weighted Majority() makes in realizable case. Because, no matter the sequence

is realizable or not, regret bound was same. This was exploited by running

Weighted Majority() in parallel. By this, if the input sequence is found to be

realizable, algorithm will make very less mistake. If not, then we updated mistake

count of each function which helped Weighted Majority() take over later on and

predict optimally thereafter.

The major contribution of this dissertation is to propose algorithms which

perform really outstanding in realizable case but slightly worse in unrealizable

case. This nature of performance of the proposed algorithms is very useful where

we have some preliminary information about the realizability of the sequences. If

input sequences are likely to be realizable than proposed algorithms will always

be far better than the existing ones.

The way in which Weighted Majority() runs in parallel indicates the scope of

further improvement in theoretical bound of proposed algorithms in the unrealiz-

able case. Further, the same approach can be applied in the other setting also of

online learning; such as limited feedback model, stochastic noise model etc.
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