RUI1

APPLICATION OF STATISTICS

TN

MASS PRODUCTION

bу

W. A. Shewhart Bell Telephone Laboratories, Inc.

Outline of paper to be presented by invitation before Canton-Akron Section of the ASME in Akron, Ohio, March 20th.

Historical Background

Slide #16062 - Mass production in its infancy.

Interchangeability

Slide #17802 - March of technique of control in step with march of ideas.

- 1. Statistical law 1900.
- 2. Operation of control 1924.
- 3. Operational meaning 1928
- 4. Need for operationally verifiable specifications 1934.
- 5. Operationally verifiable meanings 1939.

S3 (21624) - Tolerance range

concept of mass production as an operation such that, if repeated again and again, it will give a result X within previously specified tolerance limits.

Problem

- 1. Minimize rejections.
- 2. Minimize cost of inspection.
- 3. Minimum tolerances.
 - 3.1 To save material
 - 3.2 To maximize lifting power.
- 4. Maximize assurance.
 - 4.1 Blowing time of fuses in shells.
 - 4.2 Drugs and hospital supplies.
 - 4.3 Strength of materials.

S4(8836) - Evidence of reduction in rejections 1.4 - .8 = .6.

S5 (18845) - Fuses - minimize tolerances.

- S6 (16047) Fuses sequence of samples
 Maximize assurance, minimize cost of inspection.
- S7 (17798) Velocity of light: not as good state of control as S6.

Statistics in Scientific Control

Statistics enters each of 3 steps

Hypothesis I

S9 (8889) - State of Statistical Control

Drawings from a bowl - normal.

- 1. Maximum control.
- 2. Maximum assurance.
- S10 (15437) Control chart for averages of numbers drawn from bowl.
- S11 (21617) Runs.

Hypothesis II

Sl2 (21879) - Operation of control: Steps

S13	(7809)	- 204	obse	rvati	ons:	table	3	
S1,4	(8837)	- Cont	rol	chart	s: 51	and	16	samples
514		Z.P.		×11.	Nate	Annon.	ta b	te

516 " " (protted)

S18 " " " (true)

S16 " " Contract chart,

Contact resistance.

SPECIFICATION

OLD NEW

1. Specification sets tolerance range as is of the

screen.

2. Mass production b

based upon scien-

tific knowledge.

3. Only tolerance range specified.

- 4.
- 5. Inefficient overall tolerances.

- 1. Specification is of the nature of an hypothesis.
- 2. Mass production is a means of acquiring knowledge.
- 3. Tolerance range
 plus two action
 limits A and B
 and aimed-at
 value C
 S12(16061)
- 4. When control is attained set minimum tolerance range.
- 5. Efficient overall tolerances.

INSPECTION

NEW

1. Important step in scientific

2. Detect assignable causes to be

method.

removed.

 α .TO

2. Separate good from

bad as screening

1. Routine job.

process.

3. Keep eye on the product.	3. Keep eve on
4. Inspect in accord with a standard.	4. Help shape standard in much the same way that a judge must help shape law.
5. Data used primarily to screen product.	5. Data fed back into specification to set aimed-at values, etc. exprunning clity report.
6. How large a same?	6. How minimize size throu.
7. Emphasis on size of sample.	7. Emphasis not only on size of sample but also on how sample is obtained and quantity of prior information.

"Single Sampling and Double Sampling Inspection

Tables", by H. F. Dodge and H. G. Romig, Bell System Technical Tournal, January 1941.

Now we are in a place to consider. The potential properties of the production of higher than the potential pression of higher ow in order to remain a signable cause. The production is to have a sential ties ties to have a sential ties to have a sential ties to have a sential

Thus you see how statistical theory has helped the William Fell-of-our story, the manufacturer, to hit his mark—the highest standard of quality and the greatest quality ac ance at a given cost.

CONCLUSION

S17 (20472) - Three correlated steps.

Statistical Scientific Method + Mass Froduction

= New Tool of Research

Date.....