NOTE ON THE PROBABILITY ASSOCIATED WITH THE
ERROR OF A SINGLE OBSERVATION

By Dr. W. A, SHEWHART
Bell Telephone Laboratories

. The Problem: The object of the present note is to give an em-
pirical indication of the magnitude of the correction which must be
applied to the customary Theory of Error estimate of the proba-
bility associated with the error of a single observation or, in other
words, to the estimate of the probability associated with a given
rang.

We can make the practical significance of this problem clear by
considering a very simple type of example. The determination of
the strength of wood entering into any kind of construction involves
a knowledge of the modulus of rupture of the particular kind of
timber being used where, of course, modulus of rupture is a certain
particularly located stress per unit area under breaking load.
Obviously, it is of considerable importance in this as in many similar
problems to know the probability associated with any range so that
we may determine the expected number of pieces of wood of the
particular species under consideration to be found in the future within
any chosen limits. The most comprehensive and valuable source of
information on the strengths of timber is perhaps the seriés of
bulletins published by our own government laboratories. For
example, Table 1 of Bulletin 556 of the United States Department of
Agriculture gives results of modulus of rupture tests on 126 species
of wood. The number of trees tested per species, however, varies
from 2 to 60, the modal number being 5. Tests of this nature are
very expensive because they involve the selection, the preparation
and shipment of trees to the testing laboratories, not to mention the
cost of making the physical tests in the laboratory. This problem
is merely typical of that of setting standards for physical properties
of materials whether they be of engineering or other interest.

Now an engineer making use of a given kind of wood naturally
wants to know the probable number of trees having a particular
quality within a given range so that he may compare one species of
trees with that of another to determine which meets his needs better.
In other words he wants to know the probability associated with a
given range.
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The results herein presented show that the customary estimate
of this probability is foo large by several per cent when the sample
size “‘n” is small as so often is the case in many important engineering
problems such as the one indicated.

In the particular case in hand more extensive data are not
available primarily because of the cost of accumulating the same.
Many cases arise, however, where it is impossible to secure large
numbers of observations. This would be true if we wished, as the
Civil Engineers often do, to determine the probability that the
annual flood run-off in future years will fall within a certain range.
In many such cases records have been kept for only a few years and
hence only a few observations are available upon which to base an
estimate of this probability.

Customary Solution: Engineering practice is, of course, to use
error theory for estimating the probability associated with any range.
Thus, if X1, X, + - -, X, represent n observed values of a chance
variable X, the probability P; of a future observation falling within
arange X =L, to X = Ly is assumed to be given by the integral

L, 1 —
P,= f e~ X-D2eg X (1)
L, 0V27

where X is the arithmetic mean of the sample and ¢ is the estimate,
determined from the sample of size 7, of the standard deviation ¢’
of the universe. Naturally the use of this integral involves the as-
sumption that the universe is normal, and the following discussion
will be limited by this same assumption except where otherwise
noted. It is apparent that this integral would give the true proba-
bil’ity provided we knew theaverage X', and the standard deviation
o'iof the universe. In that case P; would be equal to P.. However,
in_ practice we seldom, if ever, have this information, hence P, is
notlin"general equal to P,.

If weletly=I1,—X and ly=L;— X, then what we really need to
know is the theoretical distribution function for the probability
associated with the range X+ to X+41. Such functions for the
ranges of interest are not available and so recourse was made to an
empirical determination of some of these.

Experimental Results: In most engineering work, as in practi-
cally every field of science, two ranges are of great interest, viz.,
X 1.6745¢ and X + 3¢ where as before ¢ is the estimate of the true
standard deviation o’ of the universe. It is generally assumed that
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the probability associated with either one of these rangesis that
given by the normal law integral, equation (1). For the first range,
this gives .500 and for the second .997. As already stated, experi-
mental results presented below show that these two probabilities
are higher than they should be, particularly for small samples. In
our discussion we shall also consider the range X +t¢ where ¢ is any
real number. In general we shall find that the probability associated
with a given range as found from equation (1) is always greater than
the expected probability P, that should be associated with this range.

Now, there are two obvious reasons why the expected probability
P, associated with the range X = fo should be different from the ex-
pected probability P, associated with the corresponding range
X' +to’ although the use of equation (1) assumes the equality of
these two probabilities. One reason is that a range of given value
subtends a greater area of the universe when spaced symmetrically
in respect to the average X’ of the universe than the same range
subtends when spaced symmetrically about X unless, of course,
X=X’'. The other reason is that the distribution of ¢ is unsym-
metrical and the difference P;— P, depends upon the method of
calculating o or, in other words, of estimating ¢’.

If we make use of the method of maximum likelihood!, we have

L EE =X
o= V‘T )

and the difference P,— P; for n =4, as will be seen below, is approxi-
mately .14 and .10 respectively for 1=.6745 and {=3. Specifically
the use of the integral of equation (1) together with the estimate
of ¢’ given by equation (2) indicates probabilities .500 and .997. For
ranges corresponding to the two values of ¢ just noted, we should
correct these results to read .36 and .90, respectively. For example
in the pole problem mentioned above we should say that about 40%
and 929, of future samples of poles should be expected to have
moduli of rupture lying within the respective ranges X +.6745¢ and
X + 30, where ¢ is calculated by equation (2) and X is the average
of the moduli of rupture for the 5 poles, instead of 50.0%, and 99.7%
given by the method of maximum likelihood.

! Whittaker and Robinson, Calculus of Observations, First Edition, pp.
186-187.



In a similar way we find that, if the customary Theory of Error

estimate of ¢’ is used, viz., _
-_— 2
- /‘/ 2(X-X) ’ @)
n—1

then the difference Py — P; for n =4 becomes approximately only .07.
Even this difference, however, is quite too large an effect to be over-
looked unnecessarily in many practical problems.

Another method of estimating ¢’ is to make use of the most
likely estimate o of o’ determined from the relation?

oo 1/E(X—X)2 @

n—2
The present study shows that the use of this value of ¢ reduces the
difference Py~ P, for n =4 to approximately .05 and .01, respectively
for the ranges X + 3¢ and X +.67450.

This difference is not large enough to be of great engineering
importance in most cases. Hence we seem to be justified, upon the
basis of these empirical results, in using the integral of equation (1),
together with ¢ given by equation (4), it being apparent that the
difference P;— P, for other than a symmetrical range in respect to
X' should be less than that for a symmetrical range, and that, as the
sample size increases, the difference P;— P, rapidly decreases.

The first part of the experimental study consisted of drawing
1000 samples of four from a normal universe and calculating the
ranges X +.6745¢, X + 30, X' +.6745¢, X'+ 30, for ¢ as given by
equations (2) and (4). For each range for each of the samples of four,
the fraction of the universe standing on this range as base was
determined. This fraction represents the probability of an observed
value X falling within this range. The averages of the observed
probabilities (1000 for each kind of range for each ¢) associated with
the different ranges are found in column 2 of Table 1. The average

probability corresponding to ¢ determined from equation (3) was
computed by interpolation.

*Pearson, Karl, “On the Distribution of Standard Deviations of Small
Samples,” Biometrika, Vol. 10, 1015, pp. 522-529. The engineering use of this
relationship is discussed by the present author in an article “Correction of Data
for Errors of Averages,” Bell System Technical Journal, Vol. V, April 1926,

PD. 308-319. In the writer's opinion the present paper empirically justifies some
of the applications there made.
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The ranges X’ + {0 are included toindicate the magnitude of the
difference between the expected probability associated with the
range X + /o and the probability associated with the range X' +1o.
From these results it becomes evident that the variation in ¢ from
sample to sample apparently has more effect in producing a difference
P, — P, than does the variation in X about X'.

TABLE 1. PROBABILITY ASSOCIATED WITH CERTAIN RANGES*

Normal Rectangular Triangular
Range Universe Universe Universe
X' 430 .92 — —
X +30 .90 .91 .01
X'4+34/—s .97 —_ —
n—2
= T
X 34/ ——0 .95 .96 .96
n—2
X'+ .6745¢ .40 — —
X +.67450¢ .36 —_— —
X'+ .6745 "20 .53 — —
T
X +.6745 —° .49 —_ —_—
(X -)X?
* In this table o= 4/ —(-—;')—

It is also of interest to note the wide dispersion of the distribu-
tion of probabilities associated with a given range. The black dots
in Fig. 1 give as a typical case the observed distribution for the range
X +30(n=4). We see that one observed probability was as low as
.13, that seven did not exceed .18; that 50 did not exceed .50 and
that 500 or one-half of the probabilities did not exceed .95. This means
that about 500 of the observed probabilities fell between .95 and
1.00, and that once in this series of 1000 trials we obtained a range
which corresponded to a probability of .13 when we would have as-
sumed that it corresponded to a probability of .90.

It need scarcely be mentioned of course that the experimental
results given above do not prove that the magnitude of the dif-
ference P,— P; is of the order indicated above. In fact, it would not
be possible to prove that the true difference had been observed even
though the numbers of observations were increased at will. The
probability is approximately .99, however, that the observed dif-
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ference Py— P, in any case does not differ by more than .01 from the
true difference.

So far, our discussion has been limited to the consideration of
samples drawn from a normal universe. What is the significance
of this limitation? No complete answer to this question is forth-
coming but sufficient work has been done to indicate that some type
of correction must be considered in the interpretation of some of the
important generalized formulas of sampling, such as those given by
Tchebycheff, Camp, and others.

In connection with some other work, 1000 samples of four were
drawn from each of two universes,—one rectangular, $;’=0 and
B:’=1.8 and the other a right triangular universe 8;'=1.32 and
Bs’=2.4., The average probability associated with the ranges

- (X —-X) _ (X —-X)?
Xi3/‘/__(___)_and Xi3/‘/ nz/‘/ ( ) were determined
n— n

n

for each of these universes and the results are included in Table 1.
A very striking coincidence is observed, namely, that the average
probabilities are practically the same for the three kinds of universe.
That this must be a mere coincidence is obvious upon a little con-
sideration of the reasons why these probabilities should not be the
same in general for all ranges. For both of these universes the
probability associated with the range X’+3¢’ is 1.00 which corre-
sponds to certainty. Hence we see that there is a really important
difference P, — P, for each of these universes.

It appears, therefore, that in practice we must take into con-
sideration the effect of:_applying the general sampling formulae a
posteriori that are supposed to be applied a priori.

Conclusion: If we feel that we are justified in assuming that we
are sampling from a normal universe, it appears that we may use
the integral of equation (1) as giving the probability associated with
a given range provided we use the estimate of ¢ given by equation
(3) without introducing errors of greater magnitude than those
indicated in this paper and which are always less than those given by
customray theory. If we know nothing about the universe and
still use this method of finding the probability associated with a given
range, enough has been done to show that sometimes at least we
shall not be led very far astray, although much more work remains
to be done to cover this general case.
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