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SMALL SAMPLES—NEW EXPERIMENTAL RESULTS
By W. A. SEEWHART AND F. W. Winters, Bell Telephone Laboratiries, Inc.

The problem of determining the error of an average of a small sample
is merely one of a whole class of sampling problems which belong to the
very important and rapidly developing branch of invéstigation com-
monly classified as mathematical statistics. The researches #n this
field, by no means a new one, have received great impetus frém the
recent work of Pearson, R. A. Fisher, “Student” and others who,
within the past decade, have provided the scientific tools which make
possible the solution of certain practical problems previously unsolved.

Needless to say, however, all of the important questions in this field
have not been answered; and even those that have, very frequently
suffer in a practical way from the limitations underlying such answers.
Also in some of the recent developments, already referred to, it is not
possible to meet in a practical way all of the conditions upon which the
theoretical solution rests and hence we must rely to a certain extent
upon experimental investigation of the nature offered herein to justify
the application of the theory to the practical problems which arise.
In fact it is just the effects of such limitations that this paper is to
emphasize in such a way, it is hoped, as will indicate that the fruits of
future research may be as great or even greater than those so recently
obtained.

Specifically we shall do three things:

1. Show the practical necessity for using averages of small samples.
2. Show empirically that ‘‘Student’s” theory is a marked improvement
over customary error theory, and indicate theoretically why even
this latest theory fails in most practical cases to give the error of
the average obtained from a small sample.
3. Show by experimental results that the discrepancy between present
" theory and practice warrants further theoretical studies.

WIDESPREAD USE OF SMALL SAMPLES

The necessity for knowing how to analyze the results of small num-
bers of measurements is becoming well established. For example,
most physicists and chemists deal with comparatively few observations
and many large industrial laboratories carry on routine analyses of
raw materials, inspections of product and research investigations where,
for one reason or another, often not more than five observations are

1 ,/{\%.W
VA 217 P

3/ ol \%\‘
W, A, SHEWHARY'S COLLECTION Byl /.3,, ]



2

made. Many of the properties of materials have been established on
comparatively small numbers of widely dispersed observations as, for
example, the ' modulus of rupture of saturated woods of different species
where the standard deviation of a set of tests is usually at least 25 per
cent of the average of this same set. This is true even though extensive
use is to be made of the results.

In the above instances it would be possible to obtain a greater num-
ber of observations although sometimes the cost per observation may
run into hundreds of dollars. Occasionally, however, it is humanly
impossible to obtain further measurements even though we desire to do
so. An example would be the design of a levee of sufficient height to
hold back the flood waters of the Mississippi. An engineer’s estimate
would of necessity be based upon the records of the run-off of that area
whereas such records have only been maintained for a comparatively
few years.!

‘“STUDENT’S”’ THEORY AN IMPROVEMENT OVER CUSTOMARY ERROR
THEORY

Let us review briefly the modern error theory for a sample drawn
from a normal universe and then consider the nature of the limitations
imposed by this theory. Specifically, customary error theory assumes
a set of n observed data constituting a sample to be drawn from a nor-
mal universe characterized? by equation 1,

X=X
dy=a,\/2—ﬁe—(zT,) dX, o)
where X’ and ¢’ are the mean and standard deviation respectively of
the universe, and dy represents to within infinitesimals of higher order
the probability of an observed value of X falling within the range X to
X + dX. It follows, as is well known, that the distribution of means
’

of samples of size n will be given by the same expression where UT is

n
substituted for ¢’ and the variable X now becomes the average X of the
sample.

Now, customary error theory uses as an estimate of ¢’ the following
expression calculated from the sample

- ZE(X —-X)*
g1 = T’ ..................... (2)

X being measured from an arbitrary origin. Obviously s, may or may
not be equal to ¢’ and in general will be distributed asymmetrically

1 8till other cases, to be more amply discussed in a future paper, arise where more information can be
gained by breaking up a large sample into sub-samples and analyzing the subsamples upon the basis of
modern theory than can be obtained by treating the large sample as a unit.

2 Throughout this article the primed notation is used to represent parameters of the theoretical fre-
quency function, as distinet from the unprimed estimates of these calculated from the sample,
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about ¢, the lower limit of the distribution being, of course, o;=0.

In 1908 “Student” pointed out that, if we use o) as an estimate of true

standard deviation ¢’ of the universe, we can no longer assume that

- VAE-X)
o1

this problem, however, ‘“Student” actually found the distribution of a

- —
X where a=,‘lw, and in
n

slightly different variable 2z =X
this case X is measured from the true mean X’ of the universe, X being
the mean of the sample.

The distribution of z is derived upon the following assumptions:

will be distributed normally. In the investigation of

1. That the distribution of means of samples of size » is normal.
2. That the distribution of ¢ is given by the expression!

n—1

2 n—2 ng?

J(@)do = —g—— T e, 3)
22 |n—3
'z

where f(c)do is to infinitesimals of higher order the probability of
occurrence of a value of o within the range ¢ to ¢ + do.

3. That X and ¢ of a sample of size n are not correlated.

Papers by “Student,”? Pearson,® Fisher* and others have established
the justification of these three assumptions for the case of the normal
law and have provided a comprehensive set of tables for estimating the
error of the average in terms of the observed standard deviation.
Now, we shall consider the application of this theory to some experi-
mental results.

A study of the data obtained from 1000 samples of four drawn from
each of three universes, normal, rectangular and right-triangular gives
some interesting information as shown in Chart I. The observed
frequency distributions of z from the three universes are shown in this
figure, but at present we shall confine our attention to the normal case.

The solid curves give the probability (in per cent) of the occurrence of
a value of z between — o and any assigned value, say z0. Of course
these curves also may be used to give the probability of observing a

! Provided we define ”;3= T (12—-—1) . (neven)

* ““Student,” Biometrika, Vol. VI, pp. 1-15, 1908; Vol. XI, pp. 416-417, 1917; Metron, Vol. V, No. 3,
pp. 18-21, 1925,

3 Karl Pearson, Biometrika, Vol. X, pp. 522-529, 1915.

4 R. A. Figher, Biometrika, Vol. X, pp. 507-521, 1915; Proceedings of the Cambridge Philosophical
Society, Vol. XXI, pp. 655-658; Metron, Vol. V, pp. 3-17 and pp. 22-32, 1925.
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value of z between —zo and +2,. The straight line represents custom-
ary theory which assumes that the probability of an observed mean
differing from the true mean of the universe by any assigned multiple of
the observed standard deviation of the mean, is given by the normal
law frequency function. It is clear that the twisted curve representing
“Student’s” integral gives quite a different result from that obtained
by the older theory.

Doubtless anyone acquainted with ‘“Student’s” work will recognize

CHART 1
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at once the essential points of difference between it and normal law
theory. The important fact to be noted here is that for small samples
like four or five such as often occur in practical problems, ‘“Student’s”’
theory gives a much better representation of the facts than does cus-
tomary theory.

The black dots represent the observed distribution of z for 1,000
samples of four drawn from a normal universe. We see how closely
these dots follow the theoretical curve of “Student’’ even though the
range of the sampled universe was of necessity limited and not in-
finite as theory assumes. However, does ‘Student’s” theory still
apply when the sampled universe is not normal?
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Inasinuch as the distribution of z is based upon the three stated
assumptions, we naturally would be led to inquire whether these as-
sumptions were still justified when the universe is not normal. The
rigorous answer is no, not a single one of them is justified. What then
is the effect of the limitations underlying ‘““Student’s” distribution?

We give now the theoretical basis for these effects and show later how
some of them contribute to the failure of ““Student’s” theory when, for
want of a better method, it is applied to other more general cases than
that for which it was intended.

Fiom the work of Tchouproff, Pearson and others as cited in arecent
article by Church,! we have

0-,7:—(7—-_7
Vn
B’l_=_i)
n
’ _ﬁIZ 3
Blog= " +3

where o'z, 15, B2y represent the standard deviation, skewness,
and kurtosis of the distribution of means of samples of size n drawn
from a universe characterized by o, 8’1 and 8. We see that, as n
becomes large, B’IXHO and B’ —3 or the values of skewness and kur-

tosis corresponding to the normal law. Irrespective, therefore, of the
shape of the universe the distribution of means of samples of size #, so

far as characterized by the parameters §';; and 8'x5, approaches
'

normality with a standard deviation \;ﬁ' In the same article by

Church, he gives the first four moments of the distribution of the
variance o for samples of size n drawn from any universe character-
ized by the parameters g1, 8>, 8, 8’2 and 8’s. From a study of
these it seems that the distribution of ¢ for universes other than normal
may differ materially from that given by equation 3.

Hence, in general, though the first assumption may be approximately
fulfilled even for comparatively small values of n, we may not expeet
the second assumption to be even approximately satisfied except in
rare cases. Another important limitation is introduced through the
correlation between the mean X and variance ¢% of a sample. Ney-
man? has shown that the average X and variance ¢2 are correlated for

1 A. E. R. Church, “On the Means and Squared Standard Deviations of Small Samples from Any
Population,’’ Biometrika, Vol. XVIII, pp. 320-394, November, 1926.

2J. Neyman, “On the Correlation of the Mean and Variance in Samples Drawn from an Infinite
Population,” Biometrika, Vol. XVIII, pp. 401-413, 1926.
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all samples drawn from other than a normal universe. Moreover, in
practice even though we know the universe to be.normal in appearance
it nevertheless embraces only a finite range. Hence we must always
expect correlation between the mean X and variance ¢%, 7. e. even
“‘Student’s” theory probably never rigorously applies to a practical

problem.
CHART II

CONTROL CHART TAKING INTO ACCOUNT THE CORRELATION BETWEEN
STANDARD DEVIATION AND AVERAGES FOR SAMPLES OF 4
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The truth of this statement becomes evident when we study the
regression' of standard deviation on average for the three universes as
shown in Chart II. Even in the case of the normal universe there
seems to be some correlation between o and X, at the ends of therange
of averages. This is to be expected, however, since the range of the
experimental normal universe, as also of the other universes was of
necessity limited. The dotted limit lines theoretically should include

99.7 per cent of the observations.

1 The curves of regression were constructed following the methods described by Neyman. We are

indebted to Miss Marion B. Cater and Miss Miriam S, Harold for carrying out the experimental work
and making all calculations.
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For samples from universes characterized by values of 8, and 8,
satisfying the relation 8'; —8’1—3=0, the regression of variance on the
mean is linear. For samples from universes with 8”’s lying above this
line, the regression to the first order of approximation is parabolic with

CHART II (Continued)
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branches directed in the negative sense (downward), and for samples
from universes with 81’s lying below this line, the branches of the
parabola are directed in the positive sense (upward). The universes
chosen for study are examples of the first two types of regression.

The effect of this correlation upon the distribution of 2=2 where
g

z=X — X' becomes evident. For linear regression we would expect the
distribution to be skew and therefore not the same as that given by
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“Student.” For the first of the two above-mentioned types of non-
linear regression, ““Student’s” integral will give probabilities corre-
sponding to a given range of z which are too high and, for the second
type of non-linear regression, “Student’s” integral will give probabili-

CHART II (Continued)
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ties which are too low, provided in each case that both assumptions (1}
and (2) are met.

We present now some empirical evidence to serve as a background
for the above statements as well as to show in picturesque form the
fallure of even the best available theory.

EMPIRICAL RESULTS SHOWING IMPORTANCE OF FURTHER RESEARCH

Since in practice the three stated assumptions are, strictly speaking
never met, we have no general way of determining how closely ‘“Stu-
dent’s” integral will give the distribution of 2. We are obliged, there-
fore, at the present time to analyze the situation empirically.
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The dots © and O in Chart I represent the observed distribution of z
for 1,000 averages of four drawn from the rectangular and right-trian-
gular universes respectively. Apparently the effect of the correlation
is the controlling factor in these two cases. At least the results
are as would be expected, since 8’, and 8'» for each of the two non-
normal universes lie above the line fy—p1—3=0. The observed
distributions of means and of standard deviations obtained from
samples of four drawn from the rectangular universe are very much like
those of the means and standard deviations of samples drawn from
the normal universe. Assumptions (1) and (2) are, therefore, ap-
proximately met in this case whereas a glance at the regression between
z and ¢ for this universe will suffice to show that assumption (3) is not
even approximately fulfilled. We note that as x increases in absolute
value the corresponding average value of ¢'decreases, which means that

2=2 increases. The significance of this fact is that a greater number
[

of 2’s will lie outside a certain |z| (the curve of regression of ¢ on z being
approximately symmetrical) than is the case for the 2’s from a normal
universe where the average value of ¢ for a given z is practically con-
stant.

In terms of “Student’s’” integral we may, therefore, state, with some
confidence, that the value obtained from the integral for the range —z
to +z is too large, at least for most values of z between 0 and 3. The
physical significance of this fact is seenin the arrangement of the dots ©
relative to “Student’s’” curve, that is they are on the concave side of
the latter and therefore subtend between the range —z to -2, a smaller
probability than that indicated by ‘“Student’s” theory, 7. e. the range?
corresponding to a given probability as given by ‘‘Student’s” theory is
too small.

How is it for the case of the right-triangular universe? The observed
distributions of means and standard deviations of samples drawn from
this universe are quite similar in appearance to the corresponding
distributions from the rectangular universe. The curve of regression
of o on x for this case is in general character like that for therectangular
universe only not so symmetrical. What was said about z, as the
value of z increases in the rectangular, may be repeated in general for
this case, particularly for those 2’s corresponding to negative values of

1 A still more important problem than that described in this paper has to do with the expected proba-
bility associated with the range given by X=tox where

| Ee—
ronmy [ZE-T2
X ”

Empirical information obtained from 150 observations shows that this probability is approximately
92 per cent when ¢ =3.
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2. On the positive side the average ¢ for a given z does not decrease so
rapidly as z increases and we would, therefore, expect a closer agree-
ment between ““Student’s’” curve and that of the observed z’s when the
latter are positive. The position of the dots O relative to “Student’s”’
curve over the observed range seem to agree very well with what we
might expect from such a study of the regression curve. Here then as
in the rectangular case we feel justified in concluding that “Student’s”’
integral for the probability of an observed value of z falling within the
range —zo t0 2o is too large, at least for most values of z, <3, t. e
the range associated with a given probability as indicated by ‘‘Stu-
dent’s” theory is too small. .

In the light of the theoretical and empirical results here presented it
seems likely that the probability associated with a given range —z to
+2 as given by “Student’s” integral must be considered as an upper
bound. In other words, the range associated with a given proba-
bility as given by ‘“Student’s” integral must be considered as a lower
bound when sampling from a universe whose 8”s lie above the line
B':—B'1—3=0.

SUMMARY

In closing let us describe briefly the ideas we have attempted to con-
vey. We have the practical problem of estimating the error of the aver-
age obtained from a small sample. For the case of sampling from g
normal universe the empirical results here presented show that “Stu-
dent’s”” theory applies even though assumptions (1), (2) and (3) are,
strictly speaking, not met because of the physical limitations of any
universe such as must be used to check theory.

For the case of sampling from a non-normal universe, we have pointed
out the theoretical reasons for the failure of “Student’s” theory. The
empirical results show that the correction that may be necessary, if we
attempt to apply ““Student’s” theory, when sampling from other than
a normal universe is of sufficient magnitude to warrant further exten-
sion of theory to cover the cases which arise in practice.

Ty
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