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INTRODUCTION

We shall start with the assumption that the objeot
of the research worker is to discover the uniformities in -
observable phenomena so that he will be able to make valid
predictions, The scientific procedure involves the making
and the testing of hypotheses, The object of the present
di scussion 18 to indicate in a general way some of the ways
in which statistical theory may be made to contribute in the
process of teking and analyzing data in testing hypotheses,

Two of the importent kinds of unifommity that the
scientist seeks to discover are:

a, The constants of nature,

be Physical and chemical laws,
For exsmple, tables are available giving the values of literal-
1y hundreds of physical and chemical constants and sclentific
treatises provide us with numerous "laws" of nature,

0f course, these constants and laws must be in-
ferred from measurements, For example, we conceive of the
charge on an electron or the velocity of light as being funda-
mentsl constants. Likewise we concelve of the standard meter
bar as having a constant length. Let X' represent the mag-
nitude of some such constant, It is significant for our dis-
'cussion that we can ﬁever know X' with certainty., Starting
with any accepted method of measurement of such a constant the

only thing we can observe is a sequence of observations
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xl, Iz’ ce ey xi, svey Xn, xn+1, ceoy xn+3, eoe (l)

corresponding to a eerrespondins sequence of repetitive opera-
tions or measurements, Since there is :"general no limit to
the number of times an operation of measurement can be repeated,
the sequence (1) is infinite. In practice the ressarch worker
takes a finite number n of observations and from this, forms

an estimate Qf the unknown true value X',

At this point the statistician may be called upon
to answer the question,

A. Given a finite number n of observed values

Xy Xgy ooy Xy ooy X what is the best estimate

i of the unknown true value X',

Iet us next consider the simplest problem involved
in the search for a law of nature, namely that giving the
relationship between two physical variables X' and Y', such as
the pressure and volume of a gas at constant temperature. Let
us represent the conceived functional relationship f by the

equation¥
A =f (X', }\]'., Xé, ee oy }\i, cee, X; ). (8)
Let us represent by X and Y measurements of X' and Y' re-

spectively, Given a method of measuring X' and one for

*Note in this case that X' and Y' stand for variables each of
which may take on more than one value,
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measuring Y' that may be repeated indefinitely, all that is
observable about the relationship (2) is an infinite sequence

of pairs of values,
lel, szz, 000, XiYi, o 0y ann’ %"'l’ Yn*l’ e 00y xﬂ*J Yn*J.. (3)

Again the statistician may be called upon, this time to answer
the question
Ay. Given a finite number n of observed pairs of
measurements XY, what is the best choloce £ or

the functional relationship f and the best

estimates Ny, kg, cees Mis sess Ay OF the

parameters in this relationship?

In certalin instances, of course, the functional relationship
may be assumed to be known and in this case the problem reduces
to that of making the best estimates of the parameters,

The question now arises, what is meant by "best”™ in
both A and Ay? We might frame the answer in terms of same
measure of ther closeness of our estimate to objective true
physical constants or laws as the case may be. If we do frame
our answers in this way, there is no way of checking our ocon-
clusions in an operationally definite way for the obvious and
simple reason that we can never know for sure what the true
constant or the true law is in a specific case, What approach
is there open to us under such conditions? To get at an answer

let us confine our attention to the simpler of the two problems
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A and Ay, namely to that of estimating the true value X' from
a finite number n of observed values taken by some one method
of measurement such as that corresponding to the sequence (1),
So far as I see, any finite set of n observed values
after they are taken become, as it were, past history. These
are useful in so far as scientifioc prediction is concerned only
in so far as they enable us to make valid predioctions about
one or more of the ocharacteristics of some of the as yet un-
examined parts of the infinite sequence (1). As a scientifio
basis for any prediction, we must assume: a) that the in-
finite sequence (1) exhivits some specific kind of scientifio
uniformity and b) that there exists some rule of prediction
making use of the n previously observed values that will in
the long run of similar cases give the maximum pumber of valid
predictions, provided the sequence exhibits the kind of un-

iformity assumed, Schematically we have the situation shown

in (4).

Xl, xz, LI B2 Ii’ s 0y Xn xn+1, eceoy xn+J’... (‘)
Past Future
Present

Starting with the n observed values to the left of the line
marking the present what kinds of valid predictions cam be

made about the numbers that may be expected to occur on the
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right and how shall we make these predictions? As already
noted our answer to such a question depends upon the assump-
tion or hypothesis that we adopt about the uniformmity of the
infinite sequence. From this viewpoint the sample of n may
be used as a test of the hypothesis chosen.

The hypothesis chosen involves two cholces:

a) The assumed di stribution function

dy = f (Xl}‘]'.’ ké, ceer Ny eeey }'n'a) ax (5)
where dy is the frequency of occurrence in

the interval X + 1/2 dx and £ is the function-

al relationship here assumed to be continuous.

b) The order in the sequence shows a particular

kind of uniformity called randaom,
The sample of n may then be used to test any hypothesis of
this character.

Likewlise we may start with an assumption of an as-
sumed relationship such as (2) and ask whether or not a given
set of n palrs of observed values of X and Y may reasonably
be expected to have arisen if the errors imn respect to each
parameter happen at random, This problem is beyond the scope
of the present discussion although the methods herein con-

sidered may be extended to cover this more complicated probdlem,



TESTING STATISTICAL HYPOTHESES - SIMPLEST CASE

General

l, Sample from universe (5) with assumed
form £ and assumed values of parameters

(
%
1 t
Given Hypothesis Ho ( 1’ kz’ see? ki’ s km'
(
(

2. Semple drawn at random,

and (6)

Smple xl’ x oo ey x ,. ®seey xno

a!
Problem: The problem 1s to determine whether the observed
sample is likely to have arisen in the process of drawing sam-

ples of n from the assumed universe,
The method of attack is to define one or more statis-

tics © e

12 99 , ej,... s er of the sample where by definition
QJ‘@: (Xl, Xz, ve oy X, coe, Xn) (7)

and then determine the distribution of this statistioc

. (8)

dy, =, (oj) a0,

% 8
Let us assume as the simplest case that the test is to be based
on only one statistic @, and that equation (8) may be integrated
between any desired limits. Then equation (8) provides a means
of computing the chance P of getting as large or larger value

of © than that given by the observed sample.



We then adopt a rule of action by which we agree to
reject the hypothesis Hy.

Example 1
- R
( _ (X=X1)
( 1 ol
(l)dy= i dx where X' = 0 and o' = 1
Given Ho( o'v2n
E 2) Semple of n drawn at random.,
and 1.6
Sample 2,0 X = 1.7 X>1.16
1.3
1.9

Rule If the probatility P of getting as large or larger
average than that observed P f Pl = ,01, reject the hypothesis.
Solution Determine the distribution function }for averages of

Ady= = ff (X) aX ) samples of size n dr—a—w;x__r_rc’)m (8.¥) the as-

sumédﬁ'universe. The solid line in Fig., 1 gives the theoretical

£)

distribution for samples of n = 4, The solid points show how
closely the distribution of an observed set of 1000 averages

of 4 follow this curve and provide empirical confirmation of

Figo 1- b 1 Csnimnye -

the theory

Now the given sample has an average of 1,7 and computation
shows that the area of the s0lid curve to the right of this
value is less than .0l1. Hence upon the basis of the adopted

rule, the hypothesis H, is to be rejected.



Example 2
Hypothesis Hy, same as in Example 1.

‘209
Given the Sample of 4 1.1 o = 1,932 > 1,8

- 02
263

Rule If the probability P of getting as large or larger root
mean square or standard deviation g than that observed is

P<P = .01, reject the hypothesis.

1l
Solution Determine the distribution function

dlycr =1 (g) do (8.2)
for standard deviations of samples of 4 drawn from the assumed

universe, The solid line in Fig. 2 gives the theoretical dis-
tribution for

Fig., 2 - RTINS tf .
samples of 4 and the empirical check with theory as revesled
by the distribution of standard deviations im 1000 samples of
four, It will be observed that the observed g = 1,932 lies
well out on the distribution curve and well beyond the point
corresponding P <Py = .0l. Hence by the rule indicated abdove,

the hypothesis Hgo 1s to be rejected,



Example 3
%Given an hypothesis Ho that is the same as that for the

H, gprevious two examples except that ¢ is no longer as-

(sumed to be known.

06 i = 1005

Given the Sample of 4 i:i G = 357

8
3'§-2.950>2.62

Rule If the probablility P of getting as large or larger
value of Z than that observed is P < P, = .01, reject the
hypothesgis,

Solution Determine the distribution function
dyg = £ (8) d8 (8.3)

X

for the ratio 2 = £ for samples of size n drawn from the
o
assumed universe, Fig. 3 gives the theoretical curve and the

empirical check for the distribution of 1000 velues for as

Fige 3 - Dot 1 2 -

many samples of 4. It also shows for purposes of contrast
the normal error curve that we get under Example 4 when '

is assumed to be known,



- 10 -

Since the observed Z = 2,950 is out on the error
curve beyond the point P S Py, = .01, we must upon the basis
of our adopted rule reject the hypothesis Ho.

Some Geperal Remarks

It will be; noted that the development of tests of
hypotheses depends upon the mathematical development of corres-
ponding distribution functions for statistice of semples of
size n, For example, the tests in the three examples above
date respectively from the time of Gauss and La Place for the
lst, to 1880 for the second and 1908 for the 3rd,

It should also be noted that samples of any size n
may be used in the above cases for testing the specified
hypotheses. In fact a test by means of large samples 1s no
better in this sense than the test by a small semple, This

fact is illustrated in Fig. 4. Making use of the Z test used

Fig. 4 i*, TR

in example 3 given above, we may plot the range about the ob-
served average within which the true value X' may be expected
to fall for any given probability P of repetitive trials and
for eny size n of semple, In Fig. 4 the 1st hundred rsnges

are for ssmples of 4; the second forty are for samples of 40,









and the remaining four are for samples of 1000, Theoretically

50% of each group of ranges should cut the X = 0 line, The
observed proportions are ,51, .45, and .50.

Errors of the First Kind

Now we are in a position to examine more closely the
significance of the probability Pl in each of the three ex~
emples shown above, The choice of Pl = ,01 is of course
arbitrary and any other value between O and 1 could have been
chosen. We should note that Py 1s the probau lity of re ject-
ing the hypothesis when true and we seldom want to do that in

a large percentage of cases or as we say P. is the probability

1
of committing an error of the lst kind. Consequently Py is

often arbitrarily chosen as either .0l or .05,

It follows from what has been said above that one
may use small samples just as well as large to test the
hypotheses introduced above in the case of Examples 1, 2, and
3. Resulting from this situation many modern theoretical
statisticians have emphasized the importance of amall samples,
and many applied statisticiaﬁgizgne gayly on.using small
samples and computing what have been terued errors of the
first kind. Some have teken this result as the lorns sourht
for answer to the question, how large & saxmple shall one tuke?

In fact, Pl= .01 and Pl =,05 are usually called the 1lx und

5% levels of significance.

W A. SHEWNART'S COLLECYRN,
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TESTING SIGNIFICANCE OF OBSERVED DIFFERENCES (Up to 1908)

Agaln and again in scientific research, we have two or
more samples and the question is raised as to whether they are

"significantly” different. We shall confine our attention to the

case of two samples of n; and n, observed values of some variable
X,

X519 Xlz, cesy Xli, eeey X 1n) Sample 1 ;

X, Xzz’ eess Xgp  eeey Xan Sample 2 ; (9)
For exemple the nj; measurements may have been taken on one day
and the set of n,, on another day; both sets might have been
taken on the same day but by different observers or different
measuring equipments; or the two sets may represent the effects
of two kinds of treatment on the quality characteristic X of a
given kind of material. The list of examples might be extended
indefinitely.

The problem here involved is fundamentally one of test-
ing a specified hypothesis Ho, as, for example, the hypothesis
that the two samples ceme from the same specified universe of
chance causes or the hypothesis that they came from different
specified universes.

The customary method of attack is to assume that both
samples came from a normal universe and then to find the distri-
bution function of & = X} - Xz for samples of size n) and ng.

For convenience, let us assume that nj = np. Then we may write

dyg = fp (8) 48 . (8.4)






This is a distrivbution function of the type (8) and subject to
the same limitations as were imposed on (8) we may use (8.,4) in
computing the errqr Py of the first kind for certain rules of
rejecting specified hypdtheses.

of course,'the distribution function fy depends upon
the hypothesis made about the universes. For example, if we
assume that the universes are normal with standard deviations
ogy' and 62' respectively, it has been known since the time of

LaPlace and Gauss that f§ was normal with a standard deviation

(012 (0y')2
o' = n, + n5 . In 1908 "Student" working in the

research laboratory of the Guinness Brewery succeeded in finding
fy for the case where the standard deviations o¢;' and o,' of the
two normal universes are assumed to be equal but unknown.

Table 1 presents the classic example used by "Student”
in his article of 1908, Two treatments were given each of 10
individuals., The cuestion discussed in the literature is: Does
treatment #2 give an effect that is significantly greater than

treatment #1%

Table 1
Trial Number Treatment #1  Treatment #2 Difference (f#2 - #1)
1l 0.7 1.9 é.i
2 "106 008 [ ]
5 -1;2 lol 1.3
4 -1l.2 0.1 1.3
5 -el -0.1 0.0
6 Se4 4,4 1.0
7 3.7 5.5 1.8
8 0,8 1.6 0.8
9 0.0 4.6 4.6
10 2.0 de4 l.4
Average X X, = 0.75 Xp = 2.33 Xy - X = 1.58
Ot nA wa . = 1,70 Go = 1.90 o = 1.17
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L =X 1,58

Calling 2z = A T.17 = » We can find the probability P

of getting as large or larger value of z than that observed by
the same method as used in example 3 of the previous section.
If we adopt the rule of rejecting the hypothesis that the two
semples came from the same universe with unknown stendard devia-
tion whenever P < Py = .01, then we would reject the hypothesis
in this case,

Importance of Sample Size

It is of interest to see what the conclusion would have
been if instead of using the whole 10 individuals, a sample of
only the first 4, 5, 6, 7, 8 and 9 had been used. The last
column of Table 2 shows that the answer would have been the same

for samples of 7, 8, 9 and 10, because in each case P ¢ P1 = ,01l.

Table 2

Sample Size X P
4 1.550 .013
5 1.240 .035
6 1.200 013
7 1.286 <.01
8 1,225 <.01
9 1.600 <.01

Here as in the previous section one gets the impression that a
smell sample is just as good as a large sample to detect a
significent difference as it is often called. There is, however,

a fly in the ointment as has already been hinted. Let us there-

fore examine the meaning of significance.
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Significant Differences

Broadly speaking, there are five kinds of signifiocant

differences between universes that may be of scientific and
engineering interest. These are for any given parameter 1; of
the universe:

1. Any difference D‘il - )‘izl =A' S o,

2. Any difference A' large enough to be discovered
at reasonable cost,

3. Any difference A' such as to indicate the presence
of an assignable or findable cause,

4., Any difference A' large enough to be sensed.

5. Any difference A' large enough to be of economic
significance in that it makes one universe more
valuable than another.

Just so soon as we think of significant differences in this way
it 1s obvious that we must be careful in choosing the test for
rejecting an hypothesis to see that it gives us what we want in a
specific case., This was realized as early as 1924 by members of
the Laboratories staff in their develepment of inspection sampling
plans and the operation of controlling the quality of product.
ERRORS OF THE SECOND KIND IN TESTING HYPOTHESES 1926 - 1939

In using any rule for rejecting a hypothesis Ho, we

may meke two kinds of errors:

1. We may reject the hypothesis Ho when in fact it

is true.

2., We may accept the hypothesis Hgo when in fact it

is false,
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These were called, respectively, errors of the 1st and 2nd kind

by Neyman and Pearson in their first fundamental paper on testing

hypotheses in 1928. In our own work beginning with about 1924

they had been thought of as consumer and producer risks, An ex-
tensive literature of many hundred pages has grown up since 1928
all of which 1s as yet contained only in original memoirs. All
that we can do here 1s to indicate how the consideration of these
two kinds of error influence our choice of the number of observa-
tions to be made in testing an hypothesis and also influences our
choice of statlstical hypothesis to be tested.

Sample Size Often Determined by Errors of 2nd Kind

Let us start with the two treatment samples of columns
2 and 3 of Table 1. Let us test the following hypothesis H,;
a) Both samples drawn from the same normal universe with

Hy a standard deviation o' = 1.8,

(
(
E
(b) Both samples are drawn at random.

Under these conditions the distribution of the difference

X - X3 = b for samples of size n is normal with standard devia-

tion

%% ve & n

Let us assume that we wish to make the probability P, of errors
of the lst kind equal to the probability P, of errors of the

second kind., Also let us assume that the economically sig-

nificant error is 2. How large a sample must we take in apply-

ing our rule of rejecting so as not to make P, greater than let

us say .017
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Under the conditions here assumed, it may be shown

that in order for P; = Pg = ,01 we must have

Al = -X'! - i' = 4,65 0,' - 11.83
1 2 ) —“5

In thls case A' is to be 2. Hence we have

5 = 1183
7/a

or n = 34,9

That is to say, there is a certain size sample necessary to re-
duce to not over .0l the probabllity of making an error of the
second kind greater than the dilfference A' assumed to be

economically significant,

We may, of course, use the relation A' = }%%-@9-

to see

how A' depends on n. A few values are given in Table 3 below,

n At

1 11.83

9 3,90
16 20,96
25 2,36
36 1.97
49 1.69

In Fig. 5 is pictured a case corresponding to probdba-
bilities Py = .01l and Pp = .25 of errors of the first and second
kinds.

Fig. §



Papers Presented - 1936-37

Some Comments on the Practical Significance

of Tests for Significance - Cowles Commission
July, 1936.

Use of Laws of Chance in Industrial Development
Colorado Springs, Colorado College, July, 1936.

Collection, Compilation, and Publication of
Statistics with Particular Reference to Inter-
national Use - Discussion before World Power
Conference, September, 1936. (fIiled in
Correspondence Folder)

Discussion of Roop's paper before Society of
Naval Architects and Marine Engineers - Nov-
ember, 1936, (Filed in Correspondence Foléder)

The Application of Statistical Mdethods to
Manufacturing Problems -~ Franklin Institute,
February, 1937. (I.E.B. 6).

Accuracy and Precision - A.S.,T.M. Round Table
Discussion, June, 1937. Filed in Correspon-
dence Folder.

W, A. SREWNART'S COLLECYS
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