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Chapter 1

Introduction

1.1 Preamble

Time-to-event data arises from measurements of time till the occurrence of an
event of interest. Such data are common in the fields of biology, epidemiology, pub-
lic health, medical research, economics and industry. The event of interest can be
the death of a human being (Klein and Moeschberger, 2003), failure of a machine
(Zhiguo et al., 2007), onset of menarche in adolescent and young adult females
(Bergsten-Brucefors, 1976; Chumlea et al., 2003; Mirzaei, Sengupta and Das, 2015),
onset (or relapse) of a disease (Klein and Moeschberger, 2003), dental develop-
ment (Demirjian, Goldstien and Tanner, 1973; Eveleth and Tanner, 1990), breast
development (Cameron, 2002; Aksglaede et al., 2009), beginning of a criminal ca-
reer (Hosmer et.al., 2008), marriage or birth of the first child (Allison, 1982), end
of a work career (LeClere, 2005), end of a strike (Hosmer, Lemeshow and May,
2008), discontinuation of breast-feeding (Clements et al., 1997), healing a wound
(Nelson et al., 2004) and so on. The time-to-event can be measured in days, weeks,
years, etc.

Data on time-to-event are variously described as duration data, survival data,
lifetime data or failure time data, even though the event of interest is not neces-
sarily failure or death. Models and methods for the collection and analysis of such
data comprise the field of survival analysis.

While traditional parametric and nonparametric methods of inference are some-
1



9 Chapter I: Introduction

times used in the analysis of survival data, special methods are often needed
because of the pattern of incompleteness in such data. Incomplete observations
contain only partial information about the random variable of interest. i.e.. we
do not know the exact times-to-event in all the cases. Some typical forms of in-
completeness in survival data are truncation, grouping and censoring. Truncation
occurs when certain individuals are screened out of the study in such a way that
individual instances of screening are not observable even though the screening
criterion is known. Grouping happens when one is able to observe the number of
events occurring in certain specified time intervals, rather than the exact times of
those occurrences. Censoring occurs when one has knowledge of cither the actual
time of occurrence or an interval containing it.

In many clinical and epidemiological studies, a subject may be observed onlv
up to a certain time, and there may be no follow up after that. In some cases. a

subject may be observed after the event of interest has already taken place. In

case the event is not known to have taken place, one would know that it has

happened after the date of the last observation. In case the event is found to have

taken place by the date of first observation, one would know that it has happened

at an earlier time. These are instances of censoring from the right and from the

left, respectively. When a subject is not continuously monitored, it is also possible

that one would only know an interval of time, when the event of interest has taken

place. This is called interval censoring. Left-, right- or interval-censored data can

occur along with uncensored (complete) data also.

When some data, are censored

» 1t makes conceptual sense to work with an un-

obse . .
served or notional time-to-event, for the purpose of modeling. Thus. for both

censored and u € e invoke e time-to-ev
ncensored data, one can invok an und rlying ime-to- ent, which
Al
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occurring in a short interval immediately afterwards, given that the event has not
happened up to that specified time. Once the survival function or the hazard rate
has been specified, one can derive from it other quantities of interest (e.g., median
survival time, mean remaining life at a given time, cumulative hazard function).

There are many parametric models for the probability distribution of the time-
to-event. Popular ones include the exponential, Weibull, lognormal, gamma, Gom-
pertz, log-logistic, Pareto, generalized gamma and so on. Once a parametric model
for the time-to-event has been chosen, standard techniques for parametric infer-
ence become applicable. However, one has to judiciously use the information from
both censored and uncensored observations. As an extension of likelihood based
methods for complete data, there have been similar methods for various types of
censored (or otherwise incomplete) data. Usual large-sample properties of many
likelihood based techniques have been shown to hold for incomplete-data like-
lihood also, under appropriate conditions {Lawless, 1982). Since the validity of
the assumed parametric model needs empirical support, goodness-of-fit tests for
such parametric models are important. Modifications of these tests for censored
data have also been proposed (Lawless, 2003, Chapter 10). One can find a good
summary of these methods in Lee and Wang (2003) and Kalbfleisch and Prentice
(2002).

While parametric models may be unavoidable for short data, nonparametric
methods have been used to estimate the duration distribution when the sample size
is not very small. The traditional life table method (Lawless, 2003) for computing
conditional survival probabilities is a nonparametric technique for grouped data.
Using this estimator as a starting point, Kaplan and Meier (1958) developed the
product limit (PL) estimator of survival function for randomly right censored data
and showed that this estimator is, in fact, the nonparametric maximum likelihood
estimator (NPMLE) of that function for the said type of data. Since then, a wealth
of nonparametric methods have enriched the field of survival analysis. Since the
exact analysis of performance of these inferential methods is often difficult, large

sample asymptotic properties are studied. The presence of censoring is a challenge
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to analysis of this kind. Formal asymptotic analysis of many of the nonparametric
methods received a boost with the advent of the counting process theory involving
martingales, and the Nelson-Aalen estimator of the cumulative hazard function
(CHF) of a distribution (Aalen, 1975). In the case of interval censoring, Turnbull
(1976) proposed an NPMLE and a computational algorithm for the same, by using
Efron’s idea of self-consistency (Efron, 1967). Good summaries of these methods

are available in Miller (1981), Klein and Moeschberger (2003) and Lawless (2003).

Until this point we have only discussed duration data arising from a popula-
tion presumed to be homogeneous . Many practical situations involve heteroge-
neous populations, and it is important to consider the relation of time-to-event
to factors causing that heterogeneity. The effect of covariates on time-to-event
distribution has been a matter of much interest. A general way to incorporate co-
variates is through regression models, in which the dependence of time-to-event on
concomitant variables is explicitly recognized. The relative risk regression model
proposed by C'ox (1972) has become the workhorse of regression analysis for cen-
sored data. It is one of the models that deal with covariates parametrically, while
keeping a nonparametric flavour as far as the baseline distribution is concerned.

In this sense, the Cox regression model is a semi-parametric model. It makes

fewer assumptions than a completely parametric model, but more assumptions

than a model that would ignore any linkage between distributions underlying dif-

ferent homogeneous groups. The method of analysis based on partial likelihood,

proposed by Cox (1972), can accommodate right-censoring, which is common in

survival data, and left~truncation, which arises when there are delayed entries in

a cohort (Breslow ot al., 1983). Other regression models for survival data with
covariates include the accelerated failure time (AFT) model (Wei, 1992), the

additiv i Xlei
dditive hazard regression model (Klein and Moeschberger 2003), the propor-
tional odds ratio model (Dabrowska and Doksum 1988), The no

» LS ) n-

hazard model (Vonta, 1996) roportions!

and so on. A summary of these methods is avail-

able in Hosmer. Lemeshow and NMay (2()08)

There has also been some work
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on more general regression models for survival data, such as single index re-
gression models (Chaudhuri, 2007), various generalizations of the Cox model
(Bagdonavicius and Nikulin, 2003), models with random effect/frailty (Wienke,
2010) and accelerated intensity frailty model (Liu, Lu and Zhang, 2014). Meth-
ods of analysis for these models are generally developed under the assumption
that the available data are either complete or randomly censored from the right.
Finkelstein, Moore and Schoenfeld (1993) discussed methods for fitting a discrete
proportional hazards model for the case where the data are interval-censored or
right-truncated. Alioum and Commenges (1996) discussed a method for fitting a
proportional hazards model for interval censored data based on Turnbull’s estima-

tor.

1.2 Observational studies on time-to-event

In order to estimate the time-to-event distribution, one would ideally like to ob-
serve a number of individuals continuously or periodically until the occurrence of
the landmark event (Korn et al.,1997; McKay et al.,1998). In a longitudinal study,
exposure status of subjects are recorded at multiple follow-up visits. This can
partially alleviate any distortion created by faded memory. If, at every inspection,
one only keeps record of whether the event of interest has happened, then the
resulting observation amounts to interval censored data. Longitudinal studies also
provide one the opportunity to observe individual patterns of change in quantita-
tive variables. However, researchers often opt for cross-sectional studies in order
to save time and cost.

Cross-sectional studies can produce dichotomous data on the current status of
an individual (whether or not the landmark event has occurred till the day of obser-
vation), which is sometimes described as status quo data (leilmann et al., 2009).
A binary data regression model, such as the probit or the logistic model with time
as the covariate, is often used for estimating the probability distribution function

(Hediger and Stine, 1987; Nakamura, 1991; Betensky, 2000; Dunson and Diuse,
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2002; Cook and Lawless, 2007). It is also possible to estimate the distribution
non-parametrically, by regarding the current status data as either left or right
censored observations, depending on whether or not the event has occurred at the
time of observation. Left and right censored data are both special cases of interval
censored data (Keiding et al., 1996).

In some cross-sectional studies, a subject is asked to recall the time of the
landmark event, in case it has already taken place. Such retrospective data are
usually incomplete (Roberts, 1994; Padez, 2003). In many cases (e.g.. when the
event has not happened or the subject cannot recall when it had happened) one can
specify only a range for the requisite time. Thus, data arising from retrospective
studies are also interval-censored.

It may be noted that current status data is the simplest form of interval cen-
sored data. Here, the time-to-event is either left-censored or right-censored, and
there is no case with complete data or censoring from both sides. This special
type of censoring is sometimes referred to as Case I interval censoring. Data aris-
ing from longitudinal studies with multiple inspection times give rise to censoring
from either side or both sides, but there is no case of complete data. This type of
censoring is referred to as Case II interval censoring. Recall based data with possi-

bility of partial or no-recall, arising from retrospective cross-sectional studies lead

to the most general form of interval censored data, including possible instances

of complete data and data censored from left, right or both sides. This type of

censoring is called mixed interval censoring (Sun, 2006, Chapter 2).

While drawing inference from interval censored data, one typically assumes

the censori i i Thi
ensoring to be non-informative. This means that there is a notional non-

observation window that is independent of the event being observed. In this situa-

i I . .
'on. one can use a likelihood that is adjusted for this type of censoring, This likeli-

hood would lead to the maximum likelihood estimator

(MLE) under a parametric
model

or the nonparametric maximum likelihood estimator (NPMLE) proposed

by Twrnbull (1976)

\\ h n i
e current St‘at‘us data are Obtalned 1th ObS T ation im S indepe d
W erv l € 0l ent
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the corresponding time-to-event, the resultant interval censoring may be regarded
as non-informative. Thus, the general form of the likelihood for such data can be
used, together with the corresponding parametric estimators or the nonparamet-
ric (Turnbull) estimator. In the case of recall data however, the non-observation
window is likely to depend on the time of occurrence of the event. Consequently,
the underlying censoring mechanism in this set-up is likely to depend on the time-
to-event, thereby making the censoring informative. This is because of the fact
that memory generally fades with time. As an example, for two post-menrcheal
subjects interviewed at the same age, the one with more recent onset of menarche
is more likely to remember the date. Therefore, parametric methods based on the
likelihood for (non-informatively) interval censored data would not be applicable
to incomplete data arising from recall inadequacy. The Turnbull estimator is also
not meant for informatively censored data.

This difficulty is a significant one. On the one hand, we have current status
data that is suitable for application of general methods for interval censored data.,
but suffers from shortage of information because of coarse grouping. On the other
hand, we have retrospective data, which is more informative, but is not amenable
to the application of those general methods.

There have been several approaches to handle informative censoring for vari-
ous types of data, and the models and methods proposed there are specific to
the emergent mechanism of censoring. Finkelstein et al. (2002) and Kaciroti et al.
(2012) attempted multivariate modeling of the duration of interest and the cen-
soring/inspection times. Scharfstein and Robins (2002) considered right censored
data while inducing dependence between the time-to-event and the censoring time
through prognostic factors/covariates. Tanaka and Rao (2005) also considered in-
formative right-censoring where these two times were combined in a competing
risk set-up. The commonality in all these models is that censoring is assumed to
occur through duration variables that have the same origin of measurements as
that of the duration of interest.

In respect of retrospective data, the above models are not suited for dealing
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with censoring that occurs because of the inability of the subject to recall the
date of occurrence. This is because of the fact that the question of remembering
or forgetting is relevant only after the event of interest has taken place, and
generally has no meaning before that event (and in particular, at the origin of time
measurements). Therefore, notional times of censoring measured from a common
origin of durations would not be meaningful in this situation.

Thus, a different type of model is needed for retrospective data on time-to-event.
There is also a need for developing new methodology to estimate the time-to-
event distribution, parametrically and/or nonparametrically, which will be able

to harness the incremental information contained in recall data as compared to

status data.

1.3 Matters investigated in this thesis

In this thesis, we propose a new model for time-to-event data with informative
censoring arising from a recall based retrospective study, under the assumption
that a subject, who has been interviewed after the occurrence of the event of

interest, either recalls the date perfectly or cannot recall it all.

In Chapter 2, we introduce the model for retrospectively collected time-to-event

data. Under this model, the time of observation is assumed to be independent of
the time-to-event, and the recall probability is regarded as a function of the time
gap between the event and the observation. We show how one can perform likeli-

| -
100d based parametric inference on the basis of this model and study properties

of the maximum likelihood estimator (MLE)

In Ch r . i
apter 3, we derive the honparametric maximum likelihood estimator of

tl b - -
1 1 ] fu NCL1 h tlme t. € ent und T the model m nthIl d
€ surviva nct on o t e O \'% e e e al)Ove. we

exami i
Xamme computational as well ag asymptotic issues. A com

estimator is also studied. puistionslly shmipler

In Chapter 1,
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mator of the regression coefficients as well as the baseline survival function, under
the model assumed in Chapter 2.

In Chapter 5, we summarize the main contributions of this thesis, and indicate
a few directions of possible future work.

The methods developed here have been motivated by a recent anthropometric
study conducted by the Biological Anthropology Unit of the Indian Statistical
Institute in and around the city of Kolkata from 2005 to 2011 (ISI, 2012, p.108). In
this retrospective data set, over four thousand randomly selected individuals, aged
between 7 and 21 years, were surveyed. The subjects were interviewed on or around
their birthdays. The data set on female subjects contains age, menarcheal status,
age at menarche (if recalled), and some other information. For this data set, the
landmark event is the onset of menarche, which is sometimes recalled as an exact
date, sometimes recalled as being within a range of possible dates and sometimes
not recalled at all. In order to minimize errors in recall, which has been recognized
as a problematic issue with recall data (Rabe-Hesketh, Yang and Pickles, 2001;
Wen and Chen, 2014), we regarded a date as not recalled at all even when a
range of possible dates was recalled. In this sense, out of the total of 2195 female
subjects interviewed, 977 individuals had menarche but ‘could not recall’ the date
of onset, 443 individuals had menarche and recalled the exact date of its onset,
while 775 individuals did not have menarche till the age at interview. The methods
developed in Chapters 2-4 have been applied to this data set to demonstrate their
usage.

The contents of Chapters 2-4 are based on Mirzaei, Sengupta and Das (2015),
Mirzaei and Sengupta (2015a) and Mirzaei and Sengupta (2015b) respectively.



Chapter 2

Parametric estimation of time-to-event distribu-

tion

2.1 Introduction

In some retrospective studies, a subject is asked to recall the time of occurrence
of a landmark event, in case it has already occurred. This kind of data can be
incomplete, as the event may not have happened till the time of observation, or
the time of its occurrence may not be recalled. In the latter case, the possible
range of dates may depend on the time of occurrence of the event as discussed in
Chapter 1, and consequently the underlying censoring mechanism may be infor-
mative. In this chapter, we develop a new model suitable for this specific type of
informative interval censoring, and develop a parametric approach for estimating
the distribution of the time-to-event. We demonstrate that the new approach pro-
duces more precise estimates than what can be achieved through current status
data, and avoids the problems of bias and inconsistency that are encountered when
one uses recall data without recognizing the informativeness of the censoring.
The standard large sample results for the properties of a maximum likeli-
hood estimator (MLE) based on complete data does not automatically extend
to the case of censored data. Different adjustments are needed for different types
of censoring. The results applicable to random right censoring are available in
Kalbfleisch and Prentice (2002, Chapter 3). For large sample properties of para-
11
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metric MLEs arising from non-informatively interval censored data, one can see
Sun (2006, Chapter 2). We establish in this chapter consistency and asymptotic
normality of the MLE under the chosen model for informatively interval censored
data.

In Section 2.2, we introduce the new model that relates the underlying time-to-
event with actual observations in a retrospective study. The corresponding likeli-
hood is also presented. This model is able to handle, as special cases, data arising
from current status monitoring, non-informative interval censoring and random
right. censoring. In Section 2.3 we discuss an alternative formulation of the model
introduced in Section 2.2. In Section 2.4, we derive some asymptotic results for the
MLE based on the likelihood obtained in Section 2.2. In Section 2.5, we demon-
strate theoretically the advantage of the new estimator over MLE based on current
status data and retrospective data wrongly assumed to be non-informatively in-
terval censored. In Section 2.6, we present a simulation study to investigate the
finite-sample properties of the estimates. In Section 2.7, we discuss the issue of
model adequacy and present a graphical technique for this purpose. In Section 2.8,
we illustrate the methods through the analysis of the real data set mentioned in

Section 1.3. Some concluding remarks are provided in Section 2.9.

2.2 Model

Let the time-to-event of n subjects, Tj,(i = 1,2

o .»m) be samples from the
distribution Fy,

where 4 i T ] j
S a vector of parameters. The jth subject is visited at

It ’
. i 1s assumed that the S;’s are samples from another distribution and are
independent of the T}’s.

time S

l
nt h > Cas Of Status quo data, on Obser €S (S () ) (Z 1 2 n)
‘1 | e e . . e V i,04), - [N Wllere
4 }( Y SS,)- the lndlcator Of t-he e\/ent (IZ S Sl) ‘] i i OOd i
7 - ] ]le l ke]lll S

E[Fe(si)]‘”[Fo(si)]l—&, (2.1)

where Fy(S,) =1 - Fy(S,).
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In a retrospective study, the subject may not recall clearly the date of the event.
Here, we ignore the possibility of the subject recalling an approximate date, and
regard such occurrence as a non-recall event. Let £; be the indicator of the ith
subject recalling the exact time of his/her landmark event. Note that whenever
d; = 1 and g; = 0, it is known that T; < S;. If the underlying censoring mechanism

is presumed to be non-informative, then the likelihood is

n

[T [(Fa (SN = (fo(T))"]* [Fo(S)]* %, (2.2)

i=1
where fg is the probability density function corresponding to the distribution Fj.
It has been pointed out in the Chapter 1 that non-informativeness of censoring
is difficult to justify in the present context. The non-recall probability may depend
on the observation time and the time-to-event, and may be expressed as a function

7 defined over the domain {(¢,s) : 0 <t < s} by the equation
w(t, 8) = P(e; =08, =5T; = t).

There would be three cases for an individual 7, with different contributions to the

likelihood.

CASE (i) When &; = 0 (the event has not occurred till the time of observation),
the contribution of the individual to the likelihood is Fp(S;).

CASE (ii): When d; = 1 (the event has occurred and the subject can remember
the time), the contribution of the individual to the likelihood is fo(T3){1 —
7(T;, Si)}-

CASE (iii): When (1 — ;) = 1 (the event has occurred but the subject can-

not recall the time), the contribution of the individual to the likelihood is
fos’ Ffo(uw)m(u, S;)du.

The likelihood according to this model is
&

ﬁ l:(/s’ fe(u)ﬂ'(U, Sz)du> o [fg('I;)(l - (T, Si))]el' [Fe(Si)]l_él- (2.3)
i=1 0

We presume, for the sake of simplicity, that the non-recall probability depends

only on the time elapsed since the event of interest, S; — T;. In other words, we
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model 7 as |
w(t,s) = my(s — 1), 0<t <s, (2.4)

where 7, is a family of functions indexed by the parameter 7). According to this
model, the likelihood is
n s, 1-es e " + \11-6,
I1 {(/ Jo(u)my(Si — U)du> [fo(T)(1 — (S — T | [Fa(Si)) ™
=LA (2.5)

The MLE based on the above likelihood is expected to harness the information
in the recall data without making unrealistic assumptions about censoring. 'T'he
parameter 7, which can be a vector, would have to be regarded as a nuisance
parameter in the present context.

In an unpublished technical report, Stine and Small (1986) had used MLE based
on a special case of the above likelihood, where 7, is presumed to be a piecewise
constant function. They did not study the statistical properties of the estimator.

Here, the informativeness of the censoring mechanism is captured through the
function 7,,. When m, is a constant, the likelihood (2.5) becomes a constant. multi-
ple of the likelihood (2.2). As a further special case, if 7, = 1. the likelihood (2.5)

reduces to the likelihood (2.1). On the other hand, when 7, - 0. the likelihood

reduces to
n

T e(T) % (Fos)-o (2.6)

i=1
which is the same as the likelihood for randomly right-censored prospective data

obtained from continuous

monitoring. Thus, the likelihood (2.5) is based on a
model that is more general than the usual censoring models.

23 An alternative formulation

I'here can be an alternative modeling of the recalled

‘ event time involving another
(possibly notional) duration.

I'here could be an underlying distribution (Fy) for
f the event of interest, and another distribution (7q)

rence to the forgetting of the date. The latter may
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in fact be a sub-distribution function, with some mass at infinity. Suppose U;
is the unobservable time that the ¢th subject would take to forget the epoch of
his/her landmark event, having distribution m,. We assume that, fori =1,...,n,
the distribution of the triplet (T3, .S;,U;) is the product of its one-dimensional
marginals and the triplet for the different individuals are independent of one
another. Note that S; is always observed, U; is never observed, and T; is observed
only when T; < §; < T; + U;. The observables §; and e; can be expressed in
terms of these random variables as the indicators of T3 < S; and U; + T; > S,
respectively, the latter being defined only when ; = 1. It follows that, given S; = s
and T, = t with s > ¢, the non-recall probability depends on the time elapsed since

the landmark event as
Ple; =0|Ti =t,S;=8) = P(U; < S;—T|T, = t,5; = s) = my(s —t).  (2.7)

In this formulation also, there would be three cases for determining the contribu-

tion of individual i to the likelihood.

CASE (i) When S; < T, (neither event has occurred till the date of observation),
the contribution of the individual to likelihood is F3(.S;).

CASE (ii): When T; < S; < T; + U; (only the first event has occurred), the
contribution of the individual to likelihood is fo(T3){1 — my(Si — T3)}-
CaAsE (iii): When S; > T; + U;, (both the events have occurred) the contribution

of the individual to likelihood is [ fo(u)m,(S; — w)du.

It can be seen that these contributions also lead to the likelihood (2.5). In fact,
the above formulation provides an interpretation of the ‘forgetting function’ 7,
(introduced in the previous section) as the distribution function of the time to the
forgetting event, measured from the date of occurrence of the main event. This
interpretation holds when 7, is non-decreasing, while the general formulation of

Section 2.2 remains applicable even when 7, does not have this property.
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2.4 Large sample properties

The factors in the product likelihood (2.5) have different forms in different cases.
For example, T} is used only when 6; = 1 and €; = 1. In order for the stan-
dard asymptotic results to be applicable, each factor of this likelihood has to be
expressed as the density of some random vector in a suitable probability space.
We have already assumed that the T}'s (time-to-event) are samples from the
distribution Fyp and the S;’s (ages on interview date) are samples from another

distribution. Let G be the common distribution of the S;’s. Let
Vi = (Si = T)e:ds, (2.8)
where ; and §; are as defined in Section 2.2. Note that the vector

is observed in all cases, and contains all the requisite information.

We now show that the it" factor in the product likelihood (2.5) is in fact propor-

tional to the density of Y;. We prove this result below, after dropping the subscript
i for simplicity. The dominating probability measure used for defining this density
B =19 x 9y x Y3 where ¥J; is the measure with respect to which ¢ has a density
(e.g.. the counting or the Lebesgue measure, depending if G is discrete or continu-

ous. respectively)

Uz is the sum of the counting and the Lebesgue me
Us

asures, and
is the counting measure (Ash, 2000).

Theore A0 7 ) )
m 2.1. The density of Y —= (8,V,8) with, respect to the measure p is

Q(S)Fe(s) v =0 andé =0

h(s.v,8) = 9(s) Jy Jo(u)m,(s — wdi if v =0 and § — 1,
9(s) fo(s — v)(1 - (V)
0

) .10
2fU>Oand<5:1, (210

otherwzse

where g lS t]le denslt Of G Wltll res eCt tO the IIleaSLlIe ls
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Proof. The density in the first two cases can be obtained by considering the cor-
responding probability masses:
h(s,0,0) = P(V = 0,4 =0|S = s)g(s)
= P(T > s|S = s)g(s) = Fy(s)g(s);
h(s,0,1) = Er[h(s,0,1)|T]
— Br[P(S > TIS = 5, T)g(s)my(s — T)
= [ a@ms —uptude.
0

In the third case, the density can be derived as the derivative of a probability,

h(s,0.1) = g(s)aP(V <v,8=15=3s)

ov

_ I Plo<V<<v+h,0 =1|5=5s)
= 9(s) lim -

. Plu<V<v+h|S=s)
= 9(s) Jim, h
B I Plu<s—-T<v+hT<s,e=1)
‘g(s)hlg}) h

. Pls—v—-h<T<s—v,e=1)
=9(s) Jim, h

. ET[P(e:llT)I(s—v—h<T§s—'u)]
= 9(s) lim 3
o i L B (s = )i
A h

= g(s)fo(s — v)(1 = my(v)).

I:I
The likelihood (2.5) can be written in terms of S;, V; and 6; as
n S; Iv;=0) I N
H |: (/ fG(U)Wn(Si - u)du) [f()(S.L -V - 7777(‘/;))] (V;50)
i=1 0
x [Fy(S:)]' ™" (211)
_ T, ASi, Vi 8)
H?:1 9(S;) ’

The numerator is a product of densities of the form (2.10), while the denomi-

nator does not contain any information about 8. This likelihood can also be inter-
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preted as a product of conditional densities of (V;, d;) given .S;, fori - 1.2..... n.
Further, this conditional likelihood is free from g, i.e., inference for § can proceed
by ignoring any parameter of g.

Once the likelihood (2.5) is identified as a product of densities, standard results
for consistency and asymptotic normality of the MLE become applicable. We
would look for conditions on the original variables S;. T; and ¢,. which completely
determine the observable triplet (S;, V;,6;). Since the likelihood involves only the
conditional density of (V;,8;) given S;, it suffices to look for conditions on the
distribution of (Tj,¢;) only. Specifically, the conditions would involve the density
fo, the density of T;, and the function 7, which defines the conditional density of
the binary random variable &; given T; and S;.

We need the following conditions in order to establish consistency of the MLE.

(C1) The parameter 6§ is identifiable with respect to the family of densities fg of
the time-to-event, and the parameter 7 is identifiable with respect to the
family of functions 7, representing non-recall probability. In other words.
01 # 0, implies fo, # fo,, and ™ # 12 implies 7, / M-

(C2) The parameter spaces for 8 and 7] are open.

c3) T ={l:
(C3) The sets Ay = {t: fo(t) > 0} and 4; = {v: () > 0} are independent of
6 and 7 respectively.

T . L. .
(C4) The function fo(t) is differentiable with respect to @ for all f such that the

derivative i i
vative is absolutely bounded by an integrable function h(f). and the

functi is di i i
ction 7,(v) is differentiable with respect to 17 for all v such that the

derivative ;
rivative is absolutely bounded by an integrable function hy(v).
Theorem 2.2, Let for —
fori=1,2, . Ti and S; be samples from distributions Fy

' has density fo, and &
independent binary random variables with

s n,
and G, respectively, where F /
i = Ir<s,y. Letey..... 5, be

P(e; = 0|S, —
(i =0|S; = s, Ty =tt < §) = (s — t).

Let fo and Ty satisfy Conditions

C1)- e
(C1)-(C4), Then there ezists a sequence (6,. 1j,)
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of local mazima of the likelihood function (2.5) which is consistent, i.e.,

6
KN Jorall 0 andn (2.12)
M n

Proof. Let Y; be constructed from (T3, S;, £;) in the manner described in (2.9). Note
that Y; is observable even when (T3, S;,¢;) is not. We have shown in Theorem 2.1
that the Y;’s are samples from a distribution. Their joint density is proportional to
the likelihood (2.5), which can be written in terms of Y;’s alone, and the constant
of proportionality is the marginal density of S;'s (free of the parameters). It can
be easily seen that the hypothesis of the present theorem and Conditions (C1)-
(C3) imply that the distribution of Y] satisfies Conditions C1-C4 of Theorem 7.1.1
of Lehman (1999). Condition (C4) implies that the quantities [; % fo(w)my(s —

u)du and [ fo(u an”n( — u)du are well defined, and are the derivatives of the
conditional density of (V;, ;) given S; with respect to 6 and n, respectively, in the
case v = 0 and § = 1. It is easier to establish the corresponding implications in
the other cases, which lead to the fulfiliment of Condition C5 of Theorem 7.1.1 of
Lehman (1999). The statement of the theorem follows. O

The log-likelihood obtained from (2.5) can be written as

o0.m) = Z[ (1 —<ton ([ sty — wya)
iy (a(T) (1 —n(S~T) + (1~ 6 log (A(S)) . (2.19)

In order to establish asymptotic normality of the MLE, the following additional

conditions on £(6,n) are needed.

(C5) Second partial derivatives of £(9,n) with respect to # and n exist and are
continuous, and may be passed under the integral sign in [ 40,n)dp.

(C6) The elements of the matrix

2
ao%o £(0,n) aoan’fe(e n)

A(0,m) =
37739T£(0 ) 671377 8(0 77)
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are bounded in absolute value, uniformly in some neighborhood of the
true value of the parameter (8,7), by some function KA(r) such that
E(Go,no)K(X) < 00.

(C7) The Fisher information matrix of a single sample

1 [ (Zed.m) (Zeo.m)" (5o m)E&E.m)T
1(6,n)= -F

T
3
is non-singular.

Theorem 2.3. Let fori=1,2,...,n, T; and S; be samples from distributions Fy
and GG respectively, where Fy has density fy, and 6; = It s,y Let eq.. ... £, be

independent binary random variables with
Ple;=0|S; = 5, T; = t,t <s) = m,(s — t).

Let fo and m, satisfy Conditions (C1)-(C7), Then any consistent sequence of roots

{6,. 1) of the likelihood equation obtained from (2.5) satisfies

6., 0
v — HN(0, 1710, ). (2.11)
T n

Proof. Let Y; be defined as in (2.9). From Theorem 2. L, Yy, ..., Y, are i.i.d. sam-
ples from a distribution. The assumption of the present, theorem. together w
Conditions (C1)-(C2)

and (

ith
, imply that the distribution of Y7 satisfi
5) of Theorem 18 of Ferguson (1996)
(C5)-(C7)

es Conditions (1)

It is also easy to see that Conditions

imply that the distribution of Y1 satisfies Conditions (2)-(4) of Theorem

18 of Ferguson (1996). The proof follows. O

2.5 Theoretical comparison of estimates

2.5.1. Bias of MLE based on conventional likelihood
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be inconsistent under the general censoring model of Section 2.2. Inconsistency is
established if the bias can be shown not to go to zero as the sample size goes to
infinity. As the MLE based on (2.2) is not generally available in closed form, we
avoid computing the asymptotic bias, and compute instead the expected value of
the score function obtained from the likelihood (2.2), computed under the general
model.

Let fo(t) = -;;6_% and 7,(u) = 1 — e 7. The derivative of the log-likelihood
obtained from (2.2) with respect to @ is

< Se v -1t )
> [51-(1 — &) (o_e__) + 8 (7 + 0—2> +(1 - 5,-);—2} . (2.15)

i=1 1—-e7®

The expectation of (2.15) with respect to the general model of Section 2.2 is n

times
S e
Eg [%FG(S)—F/ (%S+ gg) (1—7rn(S—t))f0(t)dt+1£e—__S/wn(S—t)fg(t)dt].

—e®

In the further special case 7 = 8, the above expression reduces to

1 %6_5 ( s S S _g)
— 8¢ " (9 9% -2 _Ze%)|.
Eslzel_e—% N

For the expectation to be equal to zero, the function in square brackets should be
orthogonal to the probability function of S, which would not hold in general. One
can design infinitely many distributions of S, which would violate this condition.
If the expected value of the score function obtained from (2.2 is not zero, the

asymptotic bias of the corresponding ‘MLE’ is also not zero.

2.5.2. Additional information from recall data

In order to identify the additional information arising from recall data, we return
to the expression of the likelihood in terms of the joint density of (S,V,6). We
presume that the distribution of S does not involve any unknown parameter. Then

the joint density of the observed triplet can be written as

hon(s,v,0) = fo(s,0) fon(v]s,0).
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Thus, the log-likelihood for a single sample is
log(hon(s, v, 6)) = log(fs(s.9)) + log(fo.n(¢ls.d)).
and consequently, information for the two parameters is of the form
Ir(0,m) = Is(0,1) + 14(6, 1), (2.16)

where the matrices Iy, /s and 14 are the information arising from recall data.
status quo data and recall data conditioned on status quo data. respectively.
Since the likelihood of status quo data is free from 7, I4(6. 1) is a function of 8

alone, and can be written as

Lo
15(67 77) - ' ’
0 0

where

82
L =-FE [ng(ﬁ)(s’d))] .

On the other hand, the additional immformation obtain from the recall data is

I I
IT

IA(Ga 77) =

k]

where

I

l

82
|5t fugfuls, ).

o2
Li=_—_p|_9 S
3 [aganT lOg(fB,n(UIS, (5))] )

2

Li=—F [W log(fem(v[s,d)):l .

Ill partlcul : IeSt, 18
al 5 h ddltl na,l lnformatl 1 f 9 th paralneter Of t
r, t e a O on o 5 e mnte :

Iy — LIDT,

\\he]] 17 iS known ”le a(l .1 i I lllf r ’
3 dl lOIla O e C t
es (6] 2.



2.6 Simulation results 23
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Fig 2.1: Log of information based on recall data and status quo likelihoods.

As an example, consider the special case, where fo(t) = e & and (V) =
1 — e~¥/7. Figure 2.1 shows plots of the log of information arising from status quo
data (1), from recall data (I + I — I3I;'IT) and from recall data with known
n, (I1 + I), for different values of 1 and a range of values of 6. It can be seen
that, when 7 is large, there is a considerable gap between the first two, while
there is not much gap between the second and the third curves. Thus, in this case,
the price for not knowing the nuisance parameter 7 is minimal compared to the
gain from recall data. On the other hand, for a small value of 7 (i.e., time-to-event
forgotten quickly), recall data does not augment the information noticeably. When

the gap is substantial, the MLE based on status quo data is expected to have poor

efficiency with respect to the MLE computed from (2.5).

2.6 Simulation results

For the purpose of simulation, we generate sample times-to-event from the Weibull

distribution with shape and scale parameters o and B, respectively. Thus, 6 =
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(a. B). Further, we assume that the ‘age at interview’ follows the discrete uniform

distribution over [7,21] and that
mo(z) =1—e77. (2.17)

We use the following values of the parameters.

(i) «=11,8=13and n = 3,
(il) « =10, f=12and nn = 5.

The two choices correspond to median ages of the landmark event of about 11.57
and 12.58 years, and inter-quantile ranges of about 1.78 and 1.80 vears. respec-
tively. ‘These choices are in line with the data analytic example given in Section 2.x.
‘The mean times to forget are chosen as 3 and 5 years, respectively.

We compare the performance of the MLE’s based on the status quo likelihood
(2.1), the interval censoring likelihood (2.2) and the recall data likelihood (2.5) for
our model. Computation of MLE’s in all the cases is done through numerical opti-

mization of the likelihood using the ‘Quasi-Newton’ method (Nocedal and Wright.,
2006).

. . . S
We run 1000 simulations for each of the above combinations of parameters. for

sample sizes n = 50, 500 and 1000.

‘lable 2.1 shows the bias, the standard deviation (Stdev),

the mean squared
error

(MSE) and the Cramer-Rao Lower Bound (CRLB) for the MLE's of the

three ikeli
ree parameters based on the three likelihoods, for the combination of parameter
values in cases (i) and (ii).

I : . . .
n both cases it is found that the bias for the MLE based on interval censoring

likelihood stabilizes around a positive constant wh

. en the sample size increases.
Bias

status quo data, and is also in line with the Cramer

Rao lower bound - icularly
when the sample size ig large particularh
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TABLE 2.1
Bias, Stdev, MSE and CRLB of estimated parameters in case (i) a=11,8=13,7=3 and
case (i) a=10,=12 n=5

7 = 50 7 = 500 7 = 1000
Estimator| Property | Case a B 7 a B n a ] 7
MLE Bias 7302 —0.103 - | 0047 0.002 — 10499 0001 -
from Stdev 13.67 0519 - 1361 0.149 0923 0104 -
Status MSE 239.9 0280 - |22711 0022 - |11 oooim -
quo CRLB 14.135 0217 - | 1672 0021 - 0.850  0.010
MLE Bias 2788 0.103 - | 1410 0223 = 1337 0220
from Stdev () | 4528 0318 - |0854 0.102 - | 0589 0.069
Interval | MSE 28.26  0.138 - | 2721 0.062 - | 2122 0053
censoring | CRLB 1.933 0.043 - 0.255 0.004 — 0.126 0.003 -

Bias 1563 0016 0058 | 0325 0008 -0.005 | 0.250 0006 -0.0002
Proposed | Stdev 4100 0310 0875|0777 0100 0.242 | 0.545 0.069 0.169
MLE MSE 19.239  0.096 0.769 | 0709 0.010 0.058 | 0.360 0005 0.028
CRLB 5.266  0.043 0619 | 0.566 0.004 0.062 | 0.288 0.004 0.030
MLE Bias 8580 0047 - | 1083 0048 — 0938 0032
from Stdev 95290 0507 - |1239 0148 - los8m 0100
Status MSE 164.6 0259 - |2707 0.024 1.641 0011
quo CRLB 68.83 0121 - |1571 0019 - | 0757 0010
MLE Bias 2391  0.198 - | 1360 0217 1317 0213
from Stdev | (i) | 2.667 0287 - |0614 0.088 - | 0431 0061 -
Interval | MSE 12.83 0121 - | 2250 0.055 1919 0.049
censoring | CRLB 2.327 0.027 ~ 0.195 0.003 - 0.096  0.003
Bias 1581 0.003 0166|0619 0046 0.009 | 0570 0042 0.003
Proposed | Stdev 2,500 0.281 1392|0585 0086 0.391 | 0411 0060 0.284
MLE MSE 8747  0.088 1963|0726 0009 0.152 | 0.493 0005 0.081
CRLB 4366 0.014 7062|0369 0002 0.693 | 0.166 0.003 0.080
non-recall function for data generation.
7!'7](17) = 0-O5I(O<z§2.5) + 0-351(2.5<z£4.5) + 0.95[(4'5<z<00). (218)
We generate the data from two different models.
(iii) The ‘time-to-event’ from Weibull distribution with parameters o« = 11 and

B = 13 and the 7, function defined in (2.18),

(iv) The ‘time-to-event’ from Weibull distribution with parameters o = 10 and

B = 12 and the m, function defined in (2.18).

We run 1000 simulations for each of the above combinations of parameters, for

sample sizes n = 50, 500 and 1000. Table 2.2 shows the performance of MLE's

based on the status quo likelihood (2.1), the interval censoring likelihood (2.2) and

the recall data likelihood (2.5) based on the incorrect model (2.17). We compute

the bias, the standard deviation and the MSE for the MLE’s of the parameters of

interest, based on the three likelihoods, for the combination of parameter values

in cases (iii) and (iv).
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TABLE 2.2
Bias, Stdev and MSE of estimated parameters in case (iii) o« = 11 and 3 = 1'3 and the Ty
function defined in (2.18) and case (iv) a =10 and B = 12 and the m, function defined in

(2.18)
n =50 n = 500 n = 1000

Estimator Property | Case a E] a ] a 3
MLE from Bias 8.666 —0.100 | 0.692 -0.009 | 0.484 0.005
Status Stdev 14.945  0.515 1.330 0.152 0.928 0.102
quo MSE 298.2 0.275 2.259 0.023 1.095 0.010
MLE from Bias 2.544 0.262 1.401 0.254 1.311  0.237
Interval Stdev (443) 3.221 0.306 | 0.734 0.096 | 0.547 0.068
censoring MSE 16.839 0.162 2.502 0.074 2.019 0.061
Proposed Bias 2.014 0.117 0.899 0.111 0.812 0.101
MLE Stdev 3.091 0.293 0.706 0.093 0.523  0.066

MSE 13.602  0.099 1.308 0.021 | 0.933 0.014
MLE from Bias 9.039 -0.066 1.158 0.045 0.881 0.040
Status Stdev 14.846  0.514 1.292 0.151 0.814 0.103
quo MSE 301.9 0.268 3.010 0.024 1.439 0.012
MLE from Bias 2.644 0287 | 1.598 0.286 | 1.486 0.269
Interval Stdev (iv) 2.677 0.301 0.675 0.096 | 0.463 0.066
censoring MSE 14.15 0.173 3.011 0.091 2.423 0.077
Proposed Bias 2.169 0.351 1.147 0.142 1.038  0.140
MLE Stdev 2.583 0.289 0.655 0.092 0.450  0.063

MSE 11.37 0.207 1.745 0.029 1.281  0.024

In both cases, the MSE of the MLEs based on our method is generally smaller

than the same obtained from the two other methods, but somewhat larger than
the MSE reported in Table 2.1.

We now check the robustness of the method against the basic assumption that
the non-recall probability function depends only on the time
event. In view of the possibility
age may

since the landmark
that some subjects having had that event in early
remember the date even after a long time, we consider the alternative
form of the non-recall probability function as follows.

sy~ d 050 =) T <
T) —= e (2.19)
(I1-e)  ifT >0
Under the above model, those who had that event in

ber it more often, making these cases account for
(ases. as compared to the mode] (2.17).

We generate data from two differen

(v) The

very early ages would remem-

a larger share of exact recall

t models.

‘ti _ 9 . .
ime-to-event’ from Weibull distribution with parameters o = 11 and

B3 = .
(vi) T} % and the 1 function defined in (2.19) when n=3
vl 1€ “time-to-event’ from Wei i v
eibull ibuti ;
8- 12, ull distribution with Parameters o = 10 and

= and the 7 function defined in (2.19) when n=35
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TABLE 2.3

Bias, Stdev and MSE of estimated parameters of interest in case (v) a =11 and 8 = 13, and
the © function defined in (2.19) when n = 3

Sample size | Property MLE « B P(T'<9)
Status quo 8.306 —0.112  0.001
Bias Interval censoring | 2.348 0.175 -0.005
Proposed model | 1.313 —0.035 0.003
Status quo 15.46 0.511 0.026
n = 50 Stdev Interval censoring | 4.852 0.341 0.012
Proposed model | 4.951 0.335 0.019
Status quo 304.9 0.273 0.0007
MSE Interval censoring | 29.21 0.147 0.0002
Proposed model | 26.21 0.114 0.0003
Status quo 2.449  -0.006  0.0004
Bias Interval censoring | 0.789 0.206 -0.006
Proposed model | -0.209 —0.023 0.002
Status quo 1.349 0.147 0.008
n = 500 Stdev Interval censoring | 0.806  0.103 0.004
Proposed model | 0.743 0.103 0.005
Status quo 1.878  0.022  0.00006
MSE Interval censoring | 1.272  0.053  0.00005
Proposed model | 0.595 0.011  0.00004
Status quo 0.136 0.0002 -0.0001
Bias Interval censoring | 0.764 0.206 -0.006
Proposed model | -0.191 -0.019 0.002
Status quo 0.854 0.101 0.005
n = 1000 Stdev Interval censoring | 0.546  0.072 0.002
Proposed model | 0.498 0.071 0.003
Status quo 0.747 0.010  0.00003
MSE Interval censoring [ 0.883 0.048  0.00004
Proposed model | 0.284 0.005  0.00001

We run 1000 simulations for each of the above combinations of parameters, for
sample sizes n = 50, 500 and 1000. Tables 2.3 and 2.4 show the performance of
MLE’s based on the status quo likelihood (2.1), the interval censoring likelihood
(2.2) and the recall data likelihood (2.5) under the model (2.17), for the combi-
nation of parameter values in cases (v) and (vi) respectively. In addition to the
original parameters « and 3, we consider the derived parameter P(T < 9) rep-
resenting the probability of having the event very early, which is expected to be

overestimated when the exponential model (2.17) is assumed instead of (2.19). We

compute the bias, the standard deviation and the MSE for the MLE’s based on

the three likelihoods.
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TABLE 2.4 ]
Bias, Stdev and MSE of estimated parameters of interest in case (vi) o =10 and 3=12, =35
y and the w function defined in (2.19) when n =5
Sample size | Property MLE o B P(T <9)
Status quo 7.425 -0.103  -0.002
Bias Interval censoring | 1.211 0.222 -0.012
Proposed model | 0.558  —0.046 0.004

Status quo 14.59 0.519 0.058

n=>50 Stdev Interval censoring | 2.220 0.294 0.025
Proposed model | 2.094 0.291 0.032

Status quo 267.7 0.280 0.003

MSE Interval censoring | 6.391 0.136 0.0007
Proposed model | 4.694 0.087 0.001

Status quo 0.286 0.023 -0.001
Bias Interval censoring | 0.528 0.155 -0.012
Proposed model { -0.135 -0.022 0.003

Status quo 1.288 0.151 0.019

n=>500 Stdev Interval censoring | 0.806 0.103 0.004
Proposed model | 0.540 0.089 0.010

Status quo 1.739 0.023 0.0004

MSE Interval censoring | 0.603 0.032 0.0002

Proposed model 0.309 0.008 0.0001

Status quo 0.129 0.010 -0.001

Bias Interval censoring | 0.478 0.155 -0.012
Proposed model -0.088 -0.021 0.003
Status quo 0.845 0.102 0.013
Interval censoring | 0.401 0.064 0.006
Proposed model 0.383 0.062 0.007
Status quo 0.731 0.010 0.0002
MSE Interval censoring | 0.389 0.028 0.0002
Proposed model 0.154 0.004 0.00006

n=1000 Stdev
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In both cases, the bias, the standard deviation and the MSE of the MLEs based
on our method is smaller than the same, computed from the two other methods.
Further, the proposed estimator of P(T < 9) is found to have a positive bias as
expected. The amount of bias is not very large. Performances of the MLEs of «
and B are in line with that reported in Table 2.1, where there was no specification
error in the non-recall probability function.

2.7 Adequacy of the model

In order to check how well the assumed parametric model actually fits the data, one
can use the chi-square goodness of fit test (Gibbons and Chakraborti, 2003). For
this purpose, the data may be transformed to the trivariate vector Y = (S, V,9),
and the support of the joint distribution of this vector may be appropriately
partitioned, depending on the availability of data. An example is given in the
next section.

Modeling of the non-recall function can be a critical issue. There would be a
trade off between a flexible model with many parameters (nuisance parameters in
the present context) on the one hand, and a parsimonious but restrictive model
on the other. The following exploratory technique may be used as a guideline for
selecting the functional form of the non-recall probability 7. Assume 7 has the
form

ﬂ'(l‘) = bll(a:1<z§zg) + bQI(z2<z§za) +...+ bkl(zk<z<oo), (220)

where k is large integer, T, T2, - . . , Zx are a chosen set of time-points in increasing
order and by, by, ..., b are unspecified parameters taking values in the range [0, 1].
In view of (2.20), the likelihood (2.5) reduces to

Lid k 1—e;
L= [{Zbl(F0(Si —x1) — Fy(Si — $l+1))}
=1

=1

k s,
{fe(ﬂ) (1 =Y bI(Si—mn <L < Si— mz)) } } Fa(S)]H %

=1

(2.21)
If the distribution of T is known, one can obtain the MLE of the parameters
b1, bo, . .., bg. The Hessian matrix with respect to the b’s (I = 1,2,....k) can easily

be shown to be nonnegative definite. Therefore, there is a unique maximum of the
likelihood function for these parameters. One can use Newton-Raphson iterative

steps to determine the conditional MLE of the piecewise constant function 7, for



30 Chapter 2: Parametric estimation of time-to-event distribution

any given Fy. While using a parametric form 7,, one can first estimate the MLEs
g and /) and then compare the plot of m; with the plot of the conditional MLE of
the piecewise constant version of m with large k, with Fp held fixed at F;. This

graphical comparison can be used to judge the suitability of the function m,.

2.8 An example

For the data set described in Subsection 1.3, the landmark event is the onset
of menarche in young and adolescent females. We used the Weibull model for
menarcheal age and the exponential model for non-recall probability, as in the
previous section, and used the three different methods mentioned in that section
to estimate the parameters as well as the median of age at menarche. Table 2.5
gives a summary of the findings. Figure 2.2 shows the plot of the survival functions
corresponding to the three sets of estimates.

The median estimated from our method is close to the median estimated from
the status quo likelihood, but the confidence interval based on our estimate is
narrower. ‘I'he standard errors of the distributional parameters are also smaller.
Itis seen that the median estimated from the interval censoring likelihood, which
ignores the informative nature of censoring, is quite different from the other two
estimates. T'he corresponding 95% confidence interval does not have any overlap

with other two confidence intervals. The survival functions estimated from the

three models, shown in Figure 2.2, also show that the MLE based on interval

censoring likelihood is very different from the other two MLE’s. This occurrence
may be attributed to the bias of this MLE, which is expected even when the
sample size is large (see Sections 4.1 and 5).

Figure 2.3 shows the loci of upper and lower confidence limits for the probability

of 1?0 menarche based on status quo MLE and recall data, MLE. The latter pair
of limits correspond to a narrower interval for any given age.

Estimated 28
stimate .parameters and median age at menarch from different methods for real data
Estimator Estimate (standard error) Median | 959 Confidence Interval
E : nce Inte
/’] ] e

MLE from 10.74 12.17 11.76 - Mcdld“
status quo (0.320) (0.005) . (11.62.11.90)

~ MLETfrom 11.80 12.65 1225 1 (12201230

terval censoring (0.061) (0.001) - (12:20.1230)
MLE from 10.19 1237 347 | 1178 ]

Dopoved model | (00%)  (0.001)  (o.140) ‘ i
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Fig 2.4: Plots of exponential and piecewise constant MLE of 7.

In order to check how well the assumed parametric model fits the data, we use
the chi-square goodness of fit test, by categorizing the triplet (.S, V,d) as follows.
The range of S is split into the two sets {7,8,9,10, 11} and
{12,13.14,15,16,17,18,19, 20, 21}
the range of V' is split into the three sets {0}, (0, L5] and (1.5,11];

the range of § has two points, O and 1, in any case.

The combinations of these categories produce 12 bins, while, there are three
parameters to estimate. Thus, the null di
freedom. The

Therefore, the

stribution should be y2 with 8 degrees of
p-value of the test statistics for the given data happens to be 0.11.
model can be said to be appropriate.

As we mentioned in the last section, one can check adequacy of the functional

with the conditional ML of a piecewise constant

1 We obtain the conditj
the different segments. Whenever x;

function of b, and is maximized at b,

onal MLE of the values of 7 in

= 11, the likelihood (2.21) is an increasing

= 1. Therefore, the maximization is needed
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with respect to by,...,b only. Figure 2.4 shows the plot of the exponential 7,
and the conditional MLE of the piecewise constant 7 in the range 0 to 14 years.

The two plots are found to be close to each other. This supports the choice of the
exponential form of 7.

2.9 Concluding remarks

The thrust of this chapter has been to offer a realistic model for recall data on
time-to-event, so that informative censoring can be handled. As the MLE obtained
from the usual interval censoring likelihood is not consistent, and the MLE under
the proposed model has performance in accordance with theoretical analysis , the
latter should be preferred.

While the development of Section 2.4 has been on the basis of the joint dis-
tribution of the observable vector (S,V,d), where V is as defined in (2.8), one
could have alternatively worked with the conditional distribution of (V,4), given
S. The conditional density, which is proportional to (2.10), would have led to
the same MLE. Also, the asymptotic results would continue to hold, with the
additional condition that as the sample size goes to infinity, the proportion of
observations with any particular value of the observation time goes to a fraction
in the interval (0,1).

In many situations, data come from a heterogeneous population. Consider a

subject having time of occurrence of the landmark event Tj, which is a single

sample from a distribution F;(¢;6) with density f;(t; @) and compact support, for

i=1,...,n. Let these subjects be interviewed at times Sj,...,Sy, respectively.
Then the likelihood (conditional on the times of observation) is
s
n S; 1—€4 i
TLIE(S: )% | {£i(T:0)(A — 7 (Si — )} (/0 fi(ws; 0)mn (S —“)du> ]
= (2.22)

The heterogeneity may be attributed to a set of covariates. Let Z; be the 7
dimensional vector of covariates for the ith subject, assumed to be independent of
the censoring mechanism and the observation time. The distribution of 7; would
depend on Z;. Under an additive régression model, the distribution of T; for an

individual with covariate vector Z; is

Fi(t;0) = F(t:0,6"Z), (2.23)
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where 8 is the regression parameter. Substitution of (2.2:3) in (2.22) produces the
conditional likelihood, given times of observation and covariate values. As for the
properties of the MLE, note that in this case, instead of the triplet Y, (S5,.1,.4,)
considered in Section 2.4, we have the 4-tuple Y; = (S;.1}.4,.Z,) which contains
all the information. The maximization of the product of the joint distribution of
the Y;’s with respect to §, n and £ is equivalent to maximizing the said conditional
likelihood with respect to the same. Therefore, we can use the standard asymptotic
results for the MLE’s.

There may also be heterogeneity in the function 7 for different individuals.
possibly explained through covariates. Appropriate parametric modeling of the
dependence on covariates can be done, and the ensuing inference problem can be
handled in a similar manner.

As mentioned in Section 1.3, the recalled time-to-event can sometimes be erro-
neous. Skinner and Humphreys (1999), while working with data without instances
of non-recall, has modeled erroneously recalled time-to-event as t; 4k, where t,

is the correct time-to-event and k; is a multiplicative error of rec
dent of t¢,.

all that is indepen-

H bl
Since ks are unobservable, they have used a mixed-effects regression

n - .
odel to account for erroneous recalls. A similar adjustiment may be made in the

term fi(T%; 6) of the likelihood (2.22), so that the situation of error in exact recall
can be handled.

The data s .
et analyzed here includes some cases, where the respondents recalled

the i i -
event time with some uncertainty, that is, in the form of a range of dates.

In the pre i
present analysis, we have treated these cases as instances of no recall. A

more s isti i i
! ophisticated modeling of partial recal] may be contemplated. This issue is
discussed in Chapter 5

The esti i .
mation and the regression problems can also be considered without anv

distribut :
‘ onal ass ; .
umption. We consider the Issues of non-parametric estimation
and semi-parametr; ;
etric regression i
in Chapters 3 ;
3 and 4 respe
) ctively.



Chapter 3

Nonparametric estimation of time-to-event distri-

bution

3.1 Introduction

Consider recall based interval censored data on the time of occurrence of a land-
mark event, arising from a retrospective study. We have seen in Chapter 2 how
the time-to-event distribution can be estimated parametrically in this situation.
If no distributional assumption is made, it is tempting to use the likelihood for
interval censored data, leading to the NPMLE obtained by Turnbull (1976). In
fact, there are instances when the Turnbull estimator has actually been used for
this type of data, where the object of study had been the distribution of age at
reaching a developmental landmark (Aksglaede et al., 2009). However, as we have
also noted in Section 1.2, the censoring mechanism for such data is likely to be
informative. It may be recalled that the Turnbull estimator is not meant for in-
formatively censored data, and its consistency in this situation is not guaranteed.
The model (2.5) introduced in Chapter 2 provides a realistic framework for han-
dling the special type of interval censored data in the present context. Therefore,
a more meaningful non-parametric alternative to the Turnbull estimator would
be the NPMLE obtained by maximizing (2.5), without using any distributional
assumption. This is exactly what we propose to do in this chapter.

As in the parametric case, the performance benchmarks for the proposed esti-

35
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mation problem would be set by nonparametric maximizers of the current status
likelihood (2.1) and the non-informative interval censoring likelihood (2.2), the
latter being known as the Turnbull estimator.

In Section 3.2, we check the identifiability of the parameter of interest, namely
the distribution function. In Section 3.3, the likelihood (2.5) is simplified. after a
specific form of the nop-recall function is assumed. In Section 3. 1. we derive the
NPMLE under the model, establish its existence and asymptotic uniqueness. In
Section 3.5, we provide a self-consistency algorithm for computing the NPMLE.
In Section 3.6, we present a computationally simpler alternative estimator that
is asymptotically equivalent to the NPMLE. In Section 3.7. we discuss how the
variance of the NPMLE can be estimated. In Section 3.5, we show that both
the NPMLE and its approximation are consistent estimators of the underlving
distribution under general conditions. Results of Monte Carlo simulations and an
illustrative data analysis are reported in Sections 3.9 and 3.10. respectively. Some

concluding remarks are provided in Section 3.11.

3.2 Identifiability of time-to-event distribution

Before em i 1 i
barking on developing a method of estimation, we need to visit the issue

of identifiability of the function of interest. We rewrite the joint density of the ob-

2.10), without assuming any particular family of distributions
for the underlying time-to-event, as follows,

servables given in (

g(S)F(S) fv=0andé=0

h(s,v,d) = 9(s) Jo f(w)myls —u)du if v = 0 and o = 1.
9(s)f (s — v)(1 - m,(v))
0

) 3.1
ifv>0andé =1, @1

otherwise.

N g iS h d i y i 3 ~
- t e enSlt Of G (dlstrlbutl()n Of ObSeI Vati on LlIIleS) } iS the deIISIt

|

} ( ]. g ] ]. .] . f . F)

leCa“ pl Oba«blllty eXpIesSe(i as a fllllCthIl Of the tlllle ela Se(l S1
p

Here

and 7, is the non-

of the e nce the occurrence
vent. Note that G can be g continuous, discrete
' or

mixed distribution,.
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and g represents its Radon-Nikodym derivative with respect to an appropriate
dominating measure. The parameter of interest is the function F. We address the

question as to whether the functions F, 7, and G are identifiable from A, in the

next theorem.

Theorem 3.1. (o) The distribution G is completely identifiable from h.
(b) If G has an absolutely continuous component over the support of F, then Ty
and F are identifiable from h.
(c) If G has probability mass only over the space of integers and the function m,
comes from a family P satisfying the condition: ‘my, wy € P implies that (1 —
mwa)/(1 — m) is not periodic with period one’, then m, and F are identifiable

Jrom h.

Proof. (a) We have, from (3.1) (withv>0and 0 = 1),

h(s,v,1) = g(s)f(s — v)(1 — my(v)),
that is,
h(s,v,1)
g(s)f(s—v)

By substituting the above expression in (3.1) for v = 0 and § = 1 and

1—mp(v) = Vs, v s.t. v <s. (3.2)

simplifying the equation, we have

Fs) — h(s,0,1) +f§(l;()s, s —u, l)du. (3.3)

By substituting the above expression of F(s) in (3.1) withv=0and 6 =0,

we obtain
g(s) = h(s,0,0) + h(s,0,1) + / h(s,s — u,1)du. (3.4)
0

The above identity holds over the support of G irrespective of whether G is
a discrete, continuous or mixed distribution. The identifiability of G follows.
(b) By substituting (3.4) in (3.3), we have

h(s,0,1)+ [; h(s, s — u, 1)du

= S . (3.5)
h(s,0,0) + h(s,0,1) + fo h(s,s —u,1)du

F(s)
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If G has an absolutely continuous component over the support of F, for

every s and all real valued v < s, we have from (3.2),

_hsvl)
9(s)f(s —v)’

Thus, (3.6) together with (3.4) and (3.5) identifies 7" and 7, completely.

(0) = 1— (3.6)

(c) For the sake of contradiction, let us assume there are two pairs of choices of
f and m,, say (fi,m) and (fa, m3), such that their substitution in the right
hand side of (3.1) produces the same function. If we follow the steps leading
to (3.2) for these two pairs of functions, then we have, for all integers s and
all v < s,

hls = 0)(1 = m1(v)) = fo(s = v)(1 — 73 (v)).

Hence,

fl(v) 1 —ma(s—w
m = Tgs_v; Vs,vs.t. v < s. (3.7)

Since the above identity holds for all integers s, we can write

1—71‘2(3"1))‘1“71‘2(1—7]) )
g o o) =1 - ) for all Integer s and all v < s, (3.8)

The above equation implies that the function (1—m)/(1 - ) is periodic
over the relevant domain with period 1, which contradicts the assumption.

Therefore, the pair (f,7,) is uniquely defined for any given h.

a

I'he following example shows that if ¢ is a discrete distribution over the set

£ .. . .
of integers and yet the condition given in part (c) of the above theorem does not

hold, then J may not be identifiable from p,

Example 1. Let T =05and 7, be a periodic fu

over the interval (0,1] by the equation 7y (v)
for v e ¢

nction with period one, defined

=wv,and . Let, fa(v) = 1/(t
min - tmaa:]v and fl = f2 ((1 - 772)/(1 — 7I'1))
Let g be any

mazr 2fmin)

, defined over the same interval.
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when substituted in (3.1), produce the following A:

9(s)(1 — 5==%—) ifv=10and § =0,

0.5s : — _
h(1,v,0) = UG e ifv=0andd=1,
g(s) =kl ifo>0andé=1,

0 otherwise.

The above counterexample involves a forgetting function, which is not a mono-
tonically non-decreasing function. In Section (2.9), we have observed that it is
possible to interpret m, as a distribution function in a restrictive model, where
the probability of forgetting increases with time. Specifically, 7, would then be the
distribution of the time taken to forget the event. We now present another coun-
terexample to show that F' can be non-identifiable even when m, is a continuous

distribution function.

Example 2. Let 7 be the distribution function of the uniform distribution over

[tmin» tmaz], f2 be the density of the same distribution,

4 e41)2] .
f1(t) = 1+(_1)[2f+1/2]'(—_2_)_ . (t_maz—_)

tmaz - tmin

and ma(t) = 1 — (1 —m () f1(t)/ f2(t). Let g be any probability mass function over
the space of positive integers. It can be verified that either of triplets of functions
(g, f1,m) and (g, f2,m2), produce the same h. In this example, m and m can be
interpreted as distribution functions of the forgetting time. Figures 3.1 and 3.2
show the plots of the two density functions of time-to-event and the corresponding
forgetting time distribution functions, in the special case when tnim, = 8 and

tmez = 16.

We now proceed with the problem of estimation, after assuming that either of

the conditions given in part (b) and (¢) of Theorem 3.1 are satisfied.

3.3 Reduction of the problem

. BRT 2.6 h
It is known that nonparametric maximization of the likelihood (2.6) leads to the

. . - f (2.2
Kaplan-Meier estimator (Kaplan and Meier, 1958), while maximization 0 (2.2)
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Fig 3.1: Density functions of time-to-event.
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Fig 3.2: Forgett;ing probability functions.
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or (2.1) produces the Turnbull estimator (Turnbull, 1976) or a special case of it.
On the other hand, the likelihood (2.5) is difficult to maximize because of the
integral contained in the expression. In order to simplify it, we assume that the

function 7, in (2.5) is piecewise constant, having the form
7Tn($) = bl[(z1 <z<Lra) + bZI(:cz<z§zg) +...+ bkl(zk<z<oo)a (39)

where 0 = x1 < z9 < -+ < xg; 0 < by, by,..., 0y < 1. We also assume that £ and
Z1,Za,...,Tr are known, while by, by, ..., b, constitute the unknown parameter 1.
Note that it is possible to constrain the elements of the vector parameter 1 to be
in increasing order, so that 7, is a non-decreasing function. Such a choice would
correspond to the general perception that memory fades with time. However, we
do not use this constraint here.

When (3.9) holds, and the parametric functions Fp, Fy and f, are replaced by
the general distribution F', its survival function F and its density f, respectively,

the likelihood (2.5) reduces to

n k &
L= H[F(S,—)]l"s" [{f(Ti) (1 - szf(wlﬂ(si)crigw,(s,)))}
i=1

I=1
k 1—€iq 6;
-{Zbl(F(Wl(Sn)—F(vle(Si)))} } : (3.10)
=1

where W(S;) = (S;—x;)VEmen for L =1,... Jkand Wiy 1(S;) = tpin, i = 1,2, ..., 10
Note that

Wist(S) < Wi(S:) < Wi—1(S;) < -+ - < W1i(S)) < bz (3.11)

Depending on the value of \S;, some of the above inequalities may in fact be
equalities. Specifically, if { is an index such that S; — Tip1 < tmin < Si — T
then tmin = Win(Si) = -+ = Wi41(S:). Further, if I is an index such that
S; — 141 < tmar < S;— 1, then wWi(S)=-=W1 (S;). The remaining equalities
would be strict.

Anticipating point masses at T; whenever d;¢; = 1, the likelihood (3.10) can be



2 Chapter 3: Nonparametric estimation of time-to-event distribution
4 :

rewritten as

{f: by (F(Wi(S1) = F(Wi41(S1))) }
=1

L =T JiFE)>

€76
k
: {(F(Ti) - F(Y’i—)) (1 - Zbzf(wl+1<sl><T1sw,(S.»)} ] : (3.12)

I=1
The simple form of the above likelihood paves the way for estimation.

3.4 Nonparametric MLE

The likelihood (3.12) involves probabilities assigned to intervals of the type [t. tynaz)
or (¢, tinax), as per the baseline probability distribution. Since these intervals have
overlap, we try to write them as unions of some disjoint intervals. Let Z,. Z, and
I3 be sets of indices i (between 1 and n) that satisfy the conditions §; = 0. d,e; = 1

and 8;(1 — ¢;) = 1, respectively. Consider the intervals

Ai = (Sitmag) for z € Z;;
Ai - [T;\tmaz} for ¢ S 1-2:
Al = (T tmas) for i € I,: (3.13)

LV i) maxs == 3
A, — (Wi(S), tinaa) l=1,... k,

’

for 7 S IQ UI’;
[LVI(S‘L)’tma:E], l:k+1.

and the sets

A = {A;: e I}
A= {AN\ A ieTy),

Ay = {A): e L}, B
Ay = {Ai(l+1) \NAy: 1< <kandie I;}
As the underlying distribution £ is abs

olutely continuous, the elements of A,

et n; be the cardinality of 7;, i = 1,2, 3.

, and denote them

.....

B,,. We also arrange the

elements of Ajz
der and denote them as B

in the corresponding or-
na2+1, Bn2+2, - ,B2n2_

“/e then C()lleCt the unique el'
ements Of Al @] A4 that are dist inCl |10m Bl

B, .., Bo,,, and denote them as
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Bony+1, Bangy2,. .., By. Observe that the collection By, Bo, . .

., By consists of the
distinct elements of 4; U. A3 U A3 U Ay, arranged in a particular order. Denote the

non-empty subsets of the index set {1,2,...,M} by s1, sg,...,8m_,. Define

I,:{ﬂB,}ﬂ{ﬂBf} forr=1,2,...,24 1, (3.15)

1€8y i¢sr

Some of the I,’s may be empty sets, denoted here by ¢. Let

C = {sp: I.#£¢1<r<2M —1}, (3.16)
A = {I

I £ 1<r<2™ — 1} (3.17)

It can be verified that the elements of A are distinct and disjoint.

Note that each of the intervals Bj,..., By is a union of disjoint sets that are
members of A. For any Borel set A, suppose P(A) is the probability assigned to
A as per the probability distribution F. Let p, = P(1,), for I, € A. Then the

likelihood (3.12) reduces to

k
L - H Z pr | % H (1 - Z blI(TieAi(tH)\An))

i€y \ rI.CA; i€ly =1
sreC

Sol-| =a
riI,CA; ril . CA,
sr€C 8r€C
k
XH Zbl Z Pr Z Dr (3'18)
i€ls | =1 r:ICAyrny rI.CAy
sreC sr€
which simplifies to
k
L= pr | < I |2t > Pr
i€y r A 163 =1 ‘r:IrQAl(Hl)\Axl
ec sr€C
k 3.19
<1 (1 > bl meapm\A) 2w (3-19)
i€lo

=1

r:I-CA\A]
sr€C
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Thus, maximizing the likelihood (3.12) is equivalent to maximizing the likelihood
(3.19) with respect to p, for s, € C.
There is a partial order among the members of C in the sense that some sets

are contained in others. We consider the [ollowing subsets of C.

C1 = {s:s€C; there is another element s’ € C, such that s C s'},
Co = {s:s€(; there is another element s’ € C, such that
s'\(s Ns) consists of a singleton j and s\(s N s') = {7 +na}},
Co = C\(C1UG). (3.20)

Our next result shows that the maximization of the likelihood can be restricted

to Co.

Theorem 3.2. Mazimizing the likelihood (3.19) with respect to p, for s, € C is

equivalent to mazimizing it with respect to p, for s, € Cy, i.e.,

max

max a
pr:pre[o,l],ZS,ec pr=1 p,;p,e[0,1],ZS1_€(,o pr=1

Proof. By definitions of C and Co, we can rewrite the likelihood (3.19) as follows.

L=1]] zk:bl > ety Pr

€13 | I=1 r:IrgAi(H,l)\A,[ r:],gA,([+1)\A”
sr€C\Co sreCo

k
X L= oI .
ig < < I (EeAi(Hl)\Au)) Z br + Z Dr

<11 X »+ > p

€ \ LG4, rI,.CA,
sr€C\Cqy STTG—CQ *

(3.21)
For any 5, ¢ C\Co, let 4, — {I,.

A LS € CQ,ST C Spr

r 1S & non-empty set, The elementg of A

of intervals, Which are subget of |

}- By the construction of Cg,

- are disjoint sets Consisting of unions

tmina mi
tmaz). Let I,. be that member of A, which
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satisfies the condition ‘there is a € I,» such that o < 8 whenever 8 € I+ for any
I+ € A,’. We shall show that by shifting mass from any I, to ., there will be
no reduction in the contribution of any individual to the likelihood (3.21).

We now check the effect of shifting mass on the likelihood (3.21). The change
in the likelihood would only be through the sets B; such that j € s.\s,. Further,
it is easy to see that two such sets cannot affect the contribution of the same

individual to the likelihood.

CASE (i). For any j € s,-\s,, let i; be such that B; = A;, and i; € Z;. Since I« C
A;, but I, g A;,, the factor contributed by individual z; in the likelihood is
increased when mass is shifted from I, to I,«.

CASE (ii). For any j € s,+\8,, let i; be such that B; = A;\A; and i; € Z3. In
this case, I,» C A;; but I, g Agj. By construction, Bp,;; = AQJ, which is
disjoint with B;. Since I~ is not a null set, we must have ny + j ¢ s,» and
hence ny +j ¢ s,.. It follows that I is not contained in B; or By,4;. Thus,
I, € A, and I, € A} and any shift of mass from I, to I increases the
contribution of the i;th individual to the likelihood.

Caskg (iii). For any j € s,+\8,, let 4; be such that B; = Ajju)\Aij for some
l=1,...,kand i; € Z3. Any transfer of mass from I, to I,- increases the
contribution of the ¢;th individual to the likelihood, since I+ € Ay (+1) and

I« ¢ A;,, whereas I, is not in either of them.

It may be concluded that maximizing L can be restricted to {p, : s, € Co} O

It follows from the above theorem that the likelihood has the same maximum
value whether s, is chosen from the class C or Co. Therefore, we can replace C by
Co in (3.19).

Let us relabel the intervals I;, s; € Co, by Ji, Ja, ..., Jy. Further, let Ao =
(J1,Jo, .., Ju) and ¢ = P(J;) for j = 1,2,...,v. If the likelihood (3.19) is
rewritten with the condition s, € C replaced by the equivalent condition I, € A,

then Theorem 3.2 shows that the latter condition can be replaced by I, € Ao. In
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6

O ] er w )I(IS MaxImizix kel (o]0} l equl Valellt tO maxinm lng
the 11 lh d (3 9) 1S q 1 12
r i g

Len=][1 D «| <] [D_ > g

i€y \j:J,C Az i€Ts | 1=1 33 CA 1)\ Au
i€y WJ;CA;
k
: 4q;
— > bilmeny i >
" g (1 =1 ( o F:J; S ANA;
i€l =
1[Seun) oo
= X355 | »
=1 \j=1
T =(b..... bi)T.
with respect to the vector parameters p = (@1,92,- - ., qu)T and 5 = (b,

icti = <1l,and0<b <---b < 1.
subject to the restrictions 21 G =1,0<q,...,q, <

where if 1eT;
Iican :
| i i (3.23)
@iy =4 1-37 bi-Igenympandu,canay if i €1,
Z;czl bl'I(Jngi(l+l)\Ail) if €1,
fori=1,... n, andj=1,..., v.

Now consider the set 4, — {{T:}, i € T,} as defined in (3.1.1). The cardinality of

this set is the same as that of Z,, which is n, (see notation defined after equation

(3.14)). The task of maximizing the above likelihood can be simplified further

through the following result, which is interesting by its own right.

Theorem 3.3. The set Az is contained in the set Ao almost surely. Further. if G
s a discrete distribution with finite support, then the

probability of Ay being equal
to Ay goes to one qs n—=o00.

Proof. Let i ¢ Z, and the index 7
each time-to-

T;

be such that, 55, = {j : T, € B;}. Since

event has an absolutely continuous distribution, the recalled times

.1 € I, are distinct with probability 1. Therefore, {T;}

{BI7B27' . 7Bn2}
almost surely. It follows that 7} < I;, € {1}, Le., I,

= {73} with probability 1. It

is also €asy to see s;, € Cy and hence As C 4, almost surely.



3.4 Nonparametric MLE AT

N) of distinct sets of the form

4 ={NBI{ N B,

i€s i€ UI3\s
where s C 7, UZ;. Denote by s, M, ... s™ the index sets corresponding to
the IV distinct sets described above.
Consider a member of Ag, say I,, where s is a subset of {1,2,....n}. It s C I,
then it is already a singleton. If not, it can be written as s U (s\s¥)), with
s¥) C T, UZ; and s\sY) C Z, for some j € {1,2,..., N}. Let us consider three

further special cases.

CASE (i). Let s = sV U {r} for r € Z,. In this case, I, is either a singleton or a
null set. If it is a null set, then it cannot be a member of Ay. Thus, Case (a)
contributes only singletons to Aj.

CASE (ii). Let s =sWU{ry, 7o, ... ,1p}, forry,ro, ..., 75 € Iy when p> 1. In this
case I, is either a singleton or a null set. Since the absolute continuity of the
time-to-event distribution almost surely precludes coincidence of two sample
values (say, T, and T}, ), I is a null set with probability 1. In summary, Case
(ii) cannot contribute anything other than a singleton to Ay.

CASE (iii). Let s = s¥). The probability that a specific individual (say, the 7-th

one) has the landmark event at an age contained in A,y is
P(n S As(;‘),i S IQ)

Since this quantity is strictly positive, the probability that none of the n

individuals have had the landmark event in A ;) and recalled the date is
(1 — P(T2 € As(]),i € IQ))n y

which goes to zero as . — 0. Thus, the probability that there is 1 €1,
such that 7, € A,y goes to one asn — 0. ‘Therefore, Loy = Lo N {T:}

is non-null. It follows that P[I, ¢ Ao goes to one.

The statement of the theoremn follows by combining the three cases.
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We are now ready for the next result regarding the existence and uniqueness of
the NPMLE. The uniqueness is established probabilistically under the condition

that ns, the number of cases with exact recall, goes to infinity.

Theorem 3.4. The likelihood (3.22) has a mazimum. Further, if G is a discrete
distribution with finite support, then the probability that it has a unique mazimum

goes to one, as na — 0.

Proof. From (3.22), the log-likelihood is given by

tp,m) = i (ln (iaqu)) (3.24)

7=

Consider maximization of £(p, 7) periodically with respect to p and 7. Given

(™, 9™, the iterate at the nth stage, define the next iterate (p+ ;(+)) by

n(m if n is even, p(™) if n is odd

(n+1) _ (n+1)

U =

argmax é(p(”),n) if 2 is odd, b

e argmax £(p, 7'} if n is even,

pPe S
(3.25)

] X = : v —
where S {p: Zj:lqj =1L 0< q,...,¢, < 1} and S, = n:0<b <

- S b < 1}. We shall show that the functions #(p, -) and £(-, 1) are concave over

the convex s 3
ets Sy and Sy, respectively, so that there exists a maximum at each

iteration. Thus, i s am i
eration. Thus, in each stage there is an increase in the likelihood (3.22), which is

bounde o)
ounded by (kv)", and the Sequence of partially maximized likelihoods converges.

Under t iti ;
‘nder the conditions stated ip the theorem, we shall also show that the objective

Let B be a i i
N 1L X v matrix with Bij in the ijth position. For fixed n

_ the partial
with respect to pis

derivative of (3.29)
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where B; is the ith row of B matrix. The second derivative or the Hessian is
of ", B,BT '
S L 3.26
opdpT ; (B"p)? (3.26)

which is a non-positive definite matrix. Hence £ is a concave function over a convex
and bounded domain, which ensures the existence of a maximum (de la Fuente,
2000; Simon and Blume, 1994). Now, we need to show that the probability of the

Hessian matrix being negative definite goes to one. 1t is enough to show for any

vector u #£ 0,

i Br-Tu2
P(Zlé—&%%:o)—m.

In other words, we need to show that for any arbitrary vector « # 0,
P(BTu =0 Vi)=P(Bu=0)—0. (3.27)

It is clear from (3.23) that for an individual (say i) having exactly recalled age at
landmark event, B; has only one non-zero element. In this situation, the equation
BTu = 0 implies that the corresponding element of u is zero. Further, Theorem 3.3
shows that, with probability tending to one, the columns of B correspond only to
singleton members of Ag associated with individuals recalling age at event exactly.
Therefore, with probability tending to one, the event Bu =0 coincides with the
event u = 0.

For fixed p, the first derivative of (3.24) with respect to 7 is

ot ~ Ap
o7 &y

. . 0B:;
where A is the k x v matrix with the (I, §) element. given by .

The Hessian with respect to 7 is

P %e = =3 (BIn) T ApT AT (3.28)
nom

i=1
. : 3 i over a
which is non-positive definite matrix. Hence ¢ is a concave function
. : ; 2000;
convex domain, it ensures the existence of a maximum (de la Fuente, ;

Simon and Blume, 1994).
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In order to prove the negative definiteness of the Hessian with probability tend-

ing to one, we need to show that for any arbitrary vector v # 0,
P(@WTA;p=0 Vi)—0. (3.29)

From (3.23), it follows that for i € Zs,
. T
Ap=— (qu~1(Jj - Ai)) (I(T € An),. .., I(T; € Ay))". (3.30)
j=1

which is a vector with a non-zero element exactly at one place. The condition
vIA;p = 0 is equivalent to the requirement that the element of v corresponding
to the non-zero element of A;p is zero. On the other hand, as n, = o0,

P(S21((S: = 1) € [ miga]) = o) - [P((SiJI‘Z—) € [, Tis |[dses = 1)}"2 S0 WL
i€Tp

Thus, for all [ = L,...,k, there is at least one i I, such that T, € A;, with
probability tending to one. Therefore, the condition vTAp=0 Vie T, reduces.

with probability tending to one, to the requirement that all the elements of v are

zero. 'T'herefore, for v + 0, we have
P(Ap=0, Vi)<p (\"Ap=0, Viez,) o

Thus, the probability that the Hessian matrix defined in (3.28) is negative definite

a

goes to one. This completes the proof.

3.5 Self-consistency approach for estimation

Followi .

ollowing the work of Efron (1967) on computing the Kaplan-Meier estimator
Kaplan . ier
(Kaplan and Neier, 1958) through s self consistency algorithm and similar work
by Tur ; .
vy Turnbull (1976) in the case of interval censored data, we seek to obtain an

estimator based on the self consistency approach

For ¢ = 1,2,... n, let

1 if Tiey,

0 otherwise,
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When ¢ € Iy, the value of L;; is known. Otherwise, its expectation with respect

to the probability vector p is given by
Qiig;
E(Lij) = 5" = py(p), say. (3.31)
_Zl 54
iz

Thus, p;;(p) represents the probability that the i-th observation lies in J;. The

average of these probabilities across the n individuals,

o> (o) = m). s, (3.32

should indicate the probability of the interval J;. Thus, it is reasonable to expect

that the vector p would satisfy the equation
gi = m(p) for 1<j<w. (3.33)

An estimator of p may be called self consistent if it satisfies the simultaneous

equations (3.33).

The form of the above equations suggests the following iterative procedure.

STEP 1. Obtain a set of initial estimates ¢) (1 <j < m).

STEP II. At the nth stage of iteration, use current estimate, p", to evaluate 1t;; (p™)
fori —1,2,...,n, j = 1,2,...,v and 7;(p") for j = 1,2,...,v from (3.31)
and (3.32), respectively.

: 1
STEP ITI. Obtain updated estimates p™*' by setting gt = "),

STEP IV. Return to Step 11 with p™*! replacing p™.
STEP V. Iterate; stop when the required accuracy has been achieved.
The following theorem shows that equation (3.33) defining a self consistent
estimator must be satisfied by an NPML estimator of p.
Theorem 3.5. An NPML estimator of p must be self consistent.
Proof. We can incorporate the constraint iq]— — 1, by using the Lagrange mul-

j=1
tiplier, to maximize

L= i (log ( -” aijqj>> + )\(j;qj —-1) (3.34)

=1
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By setting the derivative of ¢ with respect to A equal to O, we have

of ke ;
X = > gi-1=0. (3.35)
j=1
On the other hand, by setting the derivative of £ with respect to gj’s equal to 0.
we obtain
(9[ i Oéij -
— = - ~A=0 Vi=1,2,..., 0. (3.36)

=1 Z Qirgr
r=1

By multiplying both sides of (3.36) by ¢; and adding them over all values of J.we
get,
v n al q v
2D =Yg, (3.37)

7=1i=1 3 g, =1
r=1

which simplifies, after interchange of the summations and utilization of (3.35). to

A=n. (3.38)

By substituting into (3.36) the optimum value of A obtained

s
gt = dwj-1.

above, we have

bl

Let p = (g1,...,4,) and ) = (by,... b)

denote values of p and 1), respectively.
for which L(p.n)

attains its maximum over the set,

R = o
{(P»U)l;q]‘l, OSql,...,qvgl, 0§b15"'3bk31}.

Then a maximum likelihood estimator F
n

of F'is given by

EO= Y g (3.39)

J:4;€[0,¢]

Ill the Seque], we Ielel tO thlS eStlIIlatOI as an IJI MLE Of 1 .
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3.6 A computationally simpler estimator

The computational complexity of the NPMLE depends on the number of seg-
ments (k) used in the piecewise constant formulation of the function 7. It follows
from equations (3.16) and (3.20) that the cardinality of the class C can increase
exponentially with k, though the cardinality of the sub-class Cy is smaller. One
can conceive of a computational simplification on the basis of Theorem 3.3. Ac-
cording to this theorem, the NPMLE has mass only at points of exact recall of
the event, when n is large. In such a case, the likelihood (3.22) involves J;’s that
are singletons only. Hence, the crucial task of identifying the appropriate J;’s
becomes redundant. Therefore, irrespective of the value of n, one can maximize
(3.22) with respect to point masses restricted to the time points of exact recall of
the event. This method would produce a computationally simpler estimator that
is equivalent to the unique NPMLE for large n.

Formally, let t1,...,t,, be the ordered set of distinct ages at event that have
been perfectly recalled, and g7, . . - , g;;, be the probability masses allocated to them.
The likelihood (3.22), subject to the constraint that g; = 0 whenever J; ¢ As, is
equivalent to the unconstrained maximization of

Lomm =11 [Z aijq;} , (3.40)

i=1 Lj=1

* * * \T
with respect to the parameters p* = (4i,- .- ;) and 7, over the set

n2
* * * * * < <<b Sl .
R = {(P»n)lzqul, 03(11’---aqn2§1, O_bl = > Uk }
=1

A Ak Ak ot T.
Let the likelihood (3.40) be maximized at (p",1*), where p* = (G- Ghp)" - We
define an approximate NPMLE (AMLE) of F' as
R =Y 4 (3-41)

jit;<t
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3.7 Estimation of variance

The variance of the NPMLE and the AMLE may be estimated through boot-
strap resampling. Sen. Banerjee and Woodroofe (2010) have argued that some
bootstrap methods for constructing non-parametric confidence intervals of distri-
bution function are not guaranteed to be consistent. In view of the argument
given by them, we estimate the variances of (3.39) and (3.11) through m out of
n bootstrapping of Bickel, Gotze and van Zwet (1997) with selection of m as in
Bickel and Sakov (2008), so that consistency is ensured. Bickel. Gotze and van Zwet
(1997) discussed a number of resampling schemes in which m = o(n) observa-
tion were resampled. They showed how using bootstrap samples of size m, where
m — oo and m/n — 0, typically resolves the problem of inconsistency. The choice
of m is a key point. Bickel and Sakov (2008) considered an adaptive rule to pick

m, and gave general sufficient conditions for validity of the rule.

3.8 Consistency of the estimators

Consider the estimator Fo. Let © be the set of all distribution functions over the

support (tmin. tmaz), L€,

O ={F : [tmimtmaz] — [0,1]; F right continuous, nondecreasing; (3.42)

F(tmin) =0 F(t7naz) = 1}

and © be the set of al] sub-distribution functions, i.e.

6 ={F . [t PO .
{ Emin: tmaz] — [0, 1]; F right continuous, nondecreasing;  (3.43)

F(tmin) =0 F(tmam) < 1}

, O is compact by

of oce Fo denote the true distribution of the time
currence of landmark events with density f, and F (tmin) =0
’ O\lmin) = U,

V’s selection theorem. Further, let

having masses i
{ti,.. .t }, the log of ) restricted to the set
Vo tnaf, Lhe th ; .
2 g e likelihood (3.40) can be rewritten as a function of
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F (instead ¢y, ...,q},) as

(F)=> log [Z a; {F(t;) — F(t;-)}] . (3.44)
i=1 j=1

Define the set
E={F : F €0, E{(F)-{Fp)| = 0}, (3.45)

which is an equivalence class of the true distribution Fg.

Strong consistency of the AMLE is established by the following theorem.

Theorem 3.6. In the above set-up, the AMLE {Fn} converges almost surely to the

equivalence class € of the true distribution Fy, in the topology of vague convergence.

Proof. The proof relies on an application of Theorem 3.1 of Wang (1985), in the
manner it was used by Gentleman and Geyer (1994). The said theorem makes use
of five assumptions.

The first assumption requires a separable compactification of the parameter
space ©. In the present case, the set © serves this purpose. The Lévy distance can
be used as metric, and the compactness follows by the Helley selection theorem.
Homeomorphic mapping of [tmin, tmaz] to [0,1] can be used to establish separability
(Billingsley, 1968, p.239). The equivalence class £ defined by (3.45) is regarded as
a single point in ©. This takes care of the issue of non-identifiability.

Let, for 7 = 1,2,..., V,(F') be the Lévy neighborhood of F € © with radius
1/r. For such a sequence of decreasing open neighborhoods, Wang (1985)’s second
assumption requires that, for any Fo in ©, there is a function F; : 0 — V,.(Fp)
such that (a) ¢(F) — ¢(F»(F)) is locally dominated on © and (b) F.(F) is in © if
F € ©. We define F,(F) = ;i—1F+ 5 Fo. Since | F(F) — Foll = r-lT1HF — Foll,
and the Lévy distance is dominated by the Kolmogorov-Smirnov distance, it is

clear that F,(F) € V,(Fp). Condition (b) is obviously satisfied. As for condition
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(a), note that

sup [¢(F) — £(FF,)]

- S0z (Fty) — F(¢5-))
TR IO8 s () — F)] 5 [, ag (Folty) — Fot,))]
< log(r + 1),

which has finite expectation. Thus, ¢(F) — {(F,(F)) is globally dominated on ©.

The third assumption requires that E[{(F)—¢(F.(F))] < Ofor [ €O, F € ©.
F # Fy. Here, Fj needs to be interpreted as &, and the result follows along the
lines of the proof of Lemma 4.4 of Wang (1985).

The fourth and fifth assumptions require that ¢( F) — ¢( F.(F)) is lower and upper
semicontinuous for F € 8 except for a null set of points (which may depend on F
only in the case of upper semicontinuity). Both the conditions follow from the port-
manteau theorem (Billingsley, 1968, p. 11), as argued by Cientleman and Gever
(1994). No null set needs to be invoked.

Since all the assumptions hold, the stated result follows from Theorem 3.1 of

Wang (1985). O

The following theorem establishes consistency of the N PMLE.

Theorem 3.7. In the set-up described before Theorem .3, 6, the NPMLE {Fn}

converges in probability to the equivalence class £ of the true distribution Fy, in
terms of the Lévy distance.

Proof. 'T'heorem 3.6 says that the Lévy distance of {F,.} from the equivalence class

€ goes to zero almost surely as n goes to infinity, that is,

Ilrrét; dr(Fo,F) = 0 as n — oo with probability 1.

It follows that Plinfree d(F,, F) > €) — 0.

Using the fact that Pw: F‘n(w) = Fn(w)) — 1, we conclude

P(Ii:,léf‘;,dL(Fn’F) >¢€)— 0.

which proves the statement.
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The last theorem of this section ensures that under some conditions the equiv-

alence class used in Theorems 3.6 and 3.7 includes only Fp.

Theorem 3.8. If either the condition given in part (b) of Theorem 3.1 or the pair

of conditions given in part (c¢) holds, then the equivalence class defined in (3.45)

is the singleton class {Fp}.

Proof. Note that the equivalence class defined in (3.45) is the class of all dis-
tribution functions that have Kullback-Liebler ‘distance’ zero from the true un-
known distribution. Let H be the probability measure corresponding to the den-
sity h, (which is determined by g, m, and F through (3.1)). Let Ho be the
‘true’ value of H. The Kullback-Liebler ‘distance’ between H and Hp is de-
fined as D(H||Hy) = p(h log(ﬁho—)). By Jensen’s inequality, it is easy to see that
D(H||Hp) = 0. The equality in Jensen’s inequality holds if and only if the argu-

ment of the log function is a constant, i.e.,
D(H||Hy) =0 iff H= Hy. (3.46)

Under the conditions given in part (b) or (c) of Theorem 3.1, H completely iden-
tifies F. Hence, H = Hy implies F' = Fy. It follows that the true distribution of

the time-to-event, Fy, is the only member of the equivalence class £. ad

3.9 Simulation results

For the purpose of simulation, we generate sample times to landmark event from

the Weibull distribution with shape and scale parameters o = 11 and 8 = 13,

respectively, and truncate the generated samples to the interval [8,16]. This trun-

cated distribution has median of 11.57. The corresponding ‘time of interview’ is

generated from the discrete uniform distribution over {7,8,... ,21}. These choices

. . . : k
are in line with the data set described in Section 1.3, where the time to landmar

event is the age at menarche in years. As for the forgetting probability, we use (3.9)

with & — 8. intervals of equal length and three sets of values of the parameters

described in Table 3.1.
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; ; Tge]?;}fzsd lresulting proportion of deta with different
Values of by buin fhree sszIaZ/Osznj)(])‘ incompleteness

Simulation model Case (a) | Case (b) | Case (c)

Value of b1 and b2 0.1 0.05 0.40

Value of b3 0.40 0.15 0.40

Value of by, . . ., bg 0.95 0.3;5 0.40

Percentage of cases with §; =0 39% 39% 39%

Percentage of cases with §;¢; = 1 36% 51% 27%

Percentage of cases with &;(1 — ¢;) =1 25% 10% 34%

Case (a) corresponds to rapid forgetting with the passage of time, while Case {(b)
represents progressively better retention. The choice of constant m, function in
Case (c) makes the censoring non-informative. Case (a) should favour the pro-
posed methods, as the chosen function 7, induces informative censoring. Case (¢)
is ideal for the Turnbull estimator based on censored duration data, as the censor-
ing is non-informative, while the proposed estimators are burdened with unnec-

essary nuisance parameters. Case (b) may not favour any method decisively. as

the forgetting probability, though informative, is relatively small and consequently

the informativeness of the censoring is mild. The proposed methods, on the other

hand, have the handicap of nuisance parameters.

The NPMLE and AMLE of I are implemented by assuming that k.z;.z,. .. ..

Tk in (3.9) are known, while 7 = (b1, by, ..., b)T is estimated. The NPMLE and the

AMLE are obtained by maximizing the likelihoods (3.22) and (3.10), respectively.

Recursive maximization is carried out alternately with respect to the probability

parameter p and the nuisance parameter n. Since k is chosen as 8, there are eight

different b,’s to be estimated along with NPMLE and AMLE, even t

hough many
of the b;’s have equal values,

We compare the performances of the N

PMLE (3.39) and the AMLE (3.41) with
the two MLEs based on (

» described here ag the Turnbull estimator
uratjon)
also evaluate the performance of the empiri

2.1) and (2.2)
(Status) and the Tubull estimator (d » fespectively. As a benchmark, we

hypother ‘ cal distribution function (EDF), a
Ypothetical estimator tomputed from the underlying complete data. The results
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reported here are based on 500 simulation runs for sample sizes n = 100, 300
and 1000. The simulations for the threé cases are run parallely. For each run, the
complete data as well as the observation times for the three cases are the same,
while the events of forgetting are simulated subsequently according to the chosen
forgetting probability.

The Turnbull estimator (status) is uniquely defined only at integer ages. There-
fore, in all the plots, we represent it through a set of unconnected points at integer
ages.

Figure 3.3 shows plots of the bias, the variance and the mean square error
(MSE) of the five estimators for different ages, for n = 100 and parameters of
the forgetting function (3.9) chosen as in Case (a). The NPMLE is found to have
smaller bias than the Turnbull estimator {duration), smaller variance than the
Turnbull estimator (status), and smaller MSE than both the Turnbull estimators.
The bias of the AMLE is only marginally worse than that of the NPMLE, and
their MSE’s are comparable.

The large negative bias of the Turnbull estimator (duration) is noteworthy. The
simulation model induces greater chance of forgetting when the gap between the
time of event and the interview time is longer. Thus, for a case of non-recall, the
actual time of the event is generally earlier than what it would have been if the
memory had not been assumed to fade with time. The Turnbull estimator (dura-
tion) corresponds to the latter assumption (constant 7,), and therefore it generally
produces an under-estimate of the time-to-event distribution, which corresponds
to larger time-to-event, i.e., smaller gap between the times of event and interview.

Figure 3.4 shows these plots for n = 100 and parameters of the forgetting
function (3.9) chosen as in Case (b). Even though the bias of the estimators reduce,
the overall pattern of performances remains the same. The Turnbull estimator
(duration) appears to have smaller bias in this case, where there is slower fading
of memory with passage of time. The performance of the AMLE is almost identical
to that of the NPMLE. The similarity of performances of the Turnbull estimator
(duration), the NPMLE and the AMLE may be explained by the fact that the
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Fig 3.3: Comparison of bias, variance and MSE of the four estimator in case (a)
and n = 100

n
nature of treatment of the cases with forgotten dates of events matters less whe

there is less forgetting. The EDF and the Turnbull estimator (status) have exactly

the same performance as depicted in Figure 3.3, since the data required for these

estimators remain unchanged.
Figure 3.5 shows these plots for n — 100 and parameters of the forgetting func-

tion (3.9) chosen as in Case (¢). The performances of the EDF and the Turnbull

estimator (status) continye to be as seen in Figures 3.3 and 3.1. The Turnbull

estimator (duration), the NPMLE and the A)
variance and MSE. Note that the consta,

the Turnbu]) estimator (

though the NPMLE and

ILE have similar patterns of bias.

ncy of the forgetting probability makes
duration) the appropriate NPMLE in this case. Even

the AMLE are handicapped with the nuisance parame-
s, bg, their performances are not inferior to that of the Turnbul] estimator

(durat‘ion) in any way.

In all the cases, the performa

nees of the Turnbuy]] estimator (
NPMLE and the AMLE are no

duration), the

ticeably worse than that of the EDF. This is
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Fig 3.4: Comparison of bias, variance and MSE of the four estimator in case (b)
and n = 100

because of the substantial number of right censored observations (with §; = 0), as
seen from Table 3.1. The superior performance of the NPMLE and the AMLE in
comparison with the Turnbull (status) shows how gainfully the recall data can be
utilized. |

Figures 3.6, 3.7 and 3.8 show plots similar to Figures 3.3, 3.4 and 3.5 for n = 300.
There is a marked reduction in the bias and the variance of the NPNLE, the
AMLE and the Turnbull estimator (status). The previously observed pattern of
relative performances continues to prevail. The bias of the Turnbull estimator
(duration) observed in Figure 3.8 is smaller in comparison with the same case
with n = 100 (Figure 3.5). This is expected, as the interval censoring associated
with forgetting the date of event is chosen to be non-informative in this case.
< 3.6 and 3.7 though. The patterns of bias of

There is no such reduction in Figure

the Turnbull (duration) estimator observed in these two figures are of the same

order as observed in Figures 3.3 and 3.4 respectively. This occurrence underscores

the cost of inadequate handling of the cases of non-recall.
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Fig 3.9: Comparison of bias, variance and MSE of the four estimator in case (a)
and n = 1000

Simulations for n = 1,000 in Cases (a), (b) and (c), leading to Figures 3.9, 3.10

and 3.11, show that the bias and the variance of the Turnbull estimator (status),

the NPMLE and the AMLE continue to reduce with sample size. The same can

be said about the Turnbull estimator (duration) in Case (c), as observed from

Figure 3.11. In contrast, the bias of the Turnbull estimator (

duration) appears to
have stagnated in Cases (

a) and (b), as observed in Figures 3.9 and 3.10.

On the basis of the above simulations, the AMLE may be regarded as a reason-
able substitute for the NPMLE.

We now turn to the performance of the bootstrap estimator of variance. For

this study, we choose n = 1,000 and the parameters of the forgetting function as
in Case (b). We choose the ™ out of n bootstrap of Bickel, Gotze and van Zwet
(1997), with m = n08 (see Bickel

and Sakov, 2008). Figure 3.12 shows the plots of

the average (across 500 runs) of the bootstrap estimate of variance of the NPMLE

and the AMLE shown in pa

nel (I) and the sample variance (across 500 runs) of
the two estimators in panel

(IT). The corresponding plots for the other estimators
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Fig 3.12: (1) Average of bootstrap variance estimator and (1) Sample variance of
the four estimators of F.

are also shown. The two sets of the plots show comparable patterns, and mild

overestimation of variance on the average. Figure 3.13 shows the standard error

(across 500 runs) of the bootstrap estimator of variance, alongside the average

(across 500 runs) of the same. It is seen that the standard error is generally much

smaller than the average. Thus, the bootstrap estimator of variance appears to be

a reasonable one.

Plots for other sample sizes and other values of parameters, which show similar

patterns, are omitted for the sake of brevity.

3.10 An example
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Fig 3.13: (I) Average and (1I) Standard error of bootstrap variance estimator using
four methods.

the Turbull estimator (Status) of the distribution function of the age at menar-
che. It can be seen that the NPMLE and the AMLE are indistinguishable. The
NPMLE, the AMLE and the Turnbull (status) estimator are closer to one another
as compared to the Turnbull (duration) estimator, which is expected to be biased.
Since the Turnbull estimator (status) is not uniquely defined at non-integer ages,
the NPMLE or the AMLE may be preferred.

In order to get an idea about the estimation error, we estimate the vari-
ances of the NPMLE, the AMLE and the two Turnbull estimators through boot-
strap resampling. As in the previous section, we use m out of n bootstrap of
Bickel. Gotze and van Zwet (1997), with m = n®8, i.e., m = 472, and 500 replica-
tions. Plots of the bootstrap estimators of variance of the three estimators, shown
in Figure 3.15, reveal that the Turnbull (status) estimator has a much larger vari-
ance compared to the NPMLE and the AMLE. The proposed methods appear to
produce a more accurate and precise estimate than the other two methods.

i i i ideri arser and
The chosen value of k for estimation was obtained after considering a co
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afiner partition for the piecewise constant model of 7,,. Specifically, the range 0 to
13 years was split experimentally into k equal intervals, with k£ =4, 8 and 16, and
the resulting estimated distribution functions were compared. Figure 3.16 shows
plots of the estimated distribution function for different values of k. It is seen that
by increasing k from 4 to 8, one observes a substantial change in the estimated
distribution function, though the change is much less when k is increased from 8
to 16. The integrated mean square difference between the distribution functions
(scaled by the integral of the square of the function for the lower value of k) is
0.85 when one compares k = 4 with k = 8. The same criterion produces the value
0.019 when the comparison is between the curves for k = 8 and k = 16. We have
chosen k = 8, as the alternative choice k = 16 does not produce a substantially

different estimate of the distribution function. Figure 3.17 shows the estimated

function r, for different values of k. Once again, the estimates of m, for k = 8 and

k = 16 differ much less than those for k=4 and k == 8. This finding justifies the

choice k = 8.
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3.11 Concluding remarks

In this chapter, we have offered a realistic model and method for estimating the

time-to-event distribution based on recall data, in the presence of informative

censoring.

As we discussed in Section 2.3, the forgetting function 7, can be regarded as the

distribution function of a hypothetical ‘time-to-forget’. This formulation requires

that 7, should be a non-decreasing function. This constraint can be incorporated

in the proposed estimation procedure as follows. Recall that the likelihood (3.22)

Is maximized alternately with respect to m, and p. In g particular step, after

Maximization is done with respect to m, (with p held fixed), we can use isotonic

through the usua) algorithm of pooling adjacent, v

to obtain a monotonically non-

regression,

iolators, on the esti-
mated 7,

decreasing estimate of 7y Maximization

with respect to P can then proceed after holding T, fixed at this adjusted estimate.
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through bootstrap resampling. A computational formula for the variance is not
available, even for large sample size. This may be appreciated in the context of
the fact that no result on the asymptotic variance of the NPMLE of the dis-
tribution function is available even in the case of general non-informative cen-
soring. Some results for the Turnbull estimator are awvailable in special cases,
e.g., for current status data, deterministic censoring times, discrete distribu-
tion of censoring time/time-to-event, etc. (Huang, 1999; Yu, Wong and Li, 2001;
Chen. Sun and Peace, 2013). However, these resuits do not apply to the general
case of interval censored data of the mixed type, when the underlying time-to-
event distribution is continuous.

For the problem of estimating a function, a nonparametric estimator serves
as a natural tool for assessing the goodness of fit of a parametric model. We
have presented in Section 2.6 a few techniques for checking the adequacy of a
parametric model of the time-to-event distribution. 'The approximate MLE de-
veloped in this chapter can be used as an additional check. As an illustration,
in Figure 3.18, we compare graphically the closeness of the parametric estimator
of time-to-event distribution introduced in Chapter 2 with the AMLE presented
here, for the menarcheal data set. The two estimators are very close to one an-
other, indicating appropriateness of the model described in the first paragraph of
Section 2.8.

The approach of modeling non-recall through a forgetting function may be
adapted to the estimation of the distribution of the time from contracting HIV in-
fection through blood transfusion to the onset of AIDS (Kalbfleisch and Lawless,
1989). Here, the subjects listed in a central registry have a known date of onset of
AIDS, but the date of transfusion is sometimes difficult to ascertain retrospectively.
However, a range of dates may be available. Since the registry does not include
subjects that have had blood transfusion but are yet to develop AIDS, the data

are truncated. If one ignores the issue of truncation, as 1n Kalbfleisch and Lawless

i of
(1989), it is possible to incorporate censored data (i.e., cases where a range

transfusion is available), through modeling of recall uncertainty following the ap-
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Fig 3.18: Comparison of MLE and AMLE of menarcheal age distribution.

proach used in this chapter. Let Y, be the date of transfusion leading to infection

(if the date is known) and (I;,7;) be the range of possible dates of transfusion lead-

ing to infection (if exact date is unknown). Let S; be the date of onset of AIDS

be the indicator of date of transfusion being known for the ith subject.
According to this model, the likelihood is

and ¢,

11 [/ 1Sy, - y)dy} U = (S vy (3

7

where f is the density function of duration from infection to the onset of AIDS

(also known as incubation period). When (3.9)

holds, the likelihood (3.47) simpli-
fies to

k

I:I [Zbl{F((si—m) V ;) —F((Si‘lz‘)/\l’l+l)}:' 1

=1
k €
{f(SZ - }/z) (1 - Zbll(xl<si“},iﬁwl+1))} N (348)
I=1

where F jg the distribution function of the incubation period.
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The likelihood (3.48) involves probabilities assigned to intervals of the type
[t,00] or (t, 0], as per the baseline probability distribution. Since these intervals
have overlap, we will write them as unions of some disjoint intervals. Let Z; and
T, be sets of indices i (between 1 and n) that satisfy the conditions ¢; = 0 and

g; = 1, respectively. Consider the intervals

El — (l'l,oo), | = 1,,k,

A = [Si-Y;, 00 for z € Iy;

A = (S-Y, oo] for 7 € Iy; (3.49)
l_ U

Di = (Sz lu OO), forz € Il'

D: = (Si_rivoo)7

and the sets

B = {A\A] i € LIU{A, i € T}U{D,ie L}U{D;,i € L}U{E,I=1,... kY.

(3.50)
We collect all the distinct elements of B, and call them as By, By,..., Bu. As
in Section 3.4, we can use all non-empty subsets of the index set {1,2,..., M},
denoted by 51,32,...,‘9%’[—1, to define the intervals Iy, ..., Iav_q by (3.15), and
consider the collection A of non-empty intervals defined in @BINUT={j: 1 €
A} and p; is the probability assigned to I;, for j € J, then the likelihood(3.48)

simplifies to

I fl (Zaszj) (3.51)

i=1 \jeJ

subject to the restriction D_;c 7P = 1, where,

k
a?j = zbl I(I]-QEL\E1+1) 'I(li<Sl—zl+1<Sl—:tl<n)
=1

i I(Ij CEN\FEi1) .I(li<51—ﬂl+1<5i"zl<”)

1 (,cpp\0i) T (simscteri<si =)

for ich, jeJ,
+ I(Ingl\Di) 'I(Si—zl+1<li<5i—m<”)j‘ ot 1
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and
k . .
oy =1~ leII(IjQAi\A;) .[(Si“YiEEl\El+1) for 1€ 1o, j€ J.
=1

The likelihood (3.51) is similar to the likelihood (3.22) and it can be maximized
similarly. A reduction of the set of related intervals in the spirit of Theorem 3.2
may also be possible.

When the observations come from a heterogeneous population, covariate infor-
mation may be used to address this issue through a regression model. Such a model
can also allow one to examine the relationship between the survival function and

the covariates. This problem is taken up in Chapter 4.



Chapter 4

Regression under Cox’s model

4.1 Introduction

In the previous two chapters, we focused on the use of either parametric or
nonparametric methods/models for the analysis of informatively censored time-
to-event data arising from uncertainly recalled landmark event in retrospective
study. "The methods require the data to be possibly censored samples from a ho-
mogeneous population. In practice, there may be heterogenity in the population,
and it is important to consider the relation of the time-to-event distribution with
other factors. One way of doing this-is through a regression model, in which the
dependence of time-to-event on concomitant variables is explicitly recognized. As
already mentioned in Chapter 1, the relaiive risk regression model (Cox, 1972) has
been very popular for modeling the relationship of covariates with time-to-event.
It would be of interest to explore whether the model introduced in Chapter 2 and
the nonparametric method developed in Chapter 3 can be adapted to include the
effect of covariates through the Cox model.

In this chapter, we consider regression under Cox’s model for the special type
of informatively censored data arising from uncertainly recalled event times ina
retrospective study. In Section 4.2, we introduce the combined model for the time-
to-event that incorporates the effect of informative censoring as well as covariates.
In Section 4.3, we obtain a simplification of the likelihood that facilitates compu-

tation of the MLE of the baseline survival function and the regression coefficients.
75
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In Section 4.4, we make use of a large sample approximation to simplify the com-
putation further. The performance of the resulting approximate MLE is studied
through Monte Carlo simulations in Section 4.5. In Section 4.6, we illustrate the
proposed method with the data on menarcheal age of adolescent and young adult
females, described in Section 1.3. We conclude the chapter with some remarks

given in Section 1.7

4.2 Model, identifiability and likelihood

Consider, for subjectsi =1, ..., n, the time-to-event 7T; which is assumed to be a
sample from a distribution F; with density f;. Let these subjects be interviewed at
times Sy, ..., Sy, respectively. Let the binary indicator 8, of the event T}, < S;, as
well as the indicator ¢, of the subject i being able to recall the time T}, follow the
model of Section 2.2 with Fy and fp replaced by F; and f;, respectively. Let Z; be
the r-dimensional vector of covariates, assumed to be independent of S;. Note that
the distribution of T; would depend on Z;. Under Cox’s relative risk regression
model, the probability of the individual t, with covariate vector Z;, having the
event after time t is

Fi(t) = [Fy(t)|=et" %) (4.1)

where Fj is the baseline survival function, assumed to have the density fo. Thus
the likelihood for the present regression model is

n

= -8, . Si —e; 0
H[Fi(si)]l s {r:(r)(1 - T (S; — T3)) 1 (/0 filw)m, (S; — u)du)1 } ,  (4.2)

i=1

with F; given by {(1.1).

Bef i i
| elore embarking on the task of estimation, we need to consider the identifiabil-
ity of 8, Fy and Ty

We drop the subscript i for simplicity. Following Theorem 2.1,

it can b i i
e seen that a typical factor in the product likelihood is equal to the condi-

tional density of the observable vector (V,4), given S and Z where V is as defined
, s define
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in (2.8). The conditional density is written alternatively as

Fy(s)exe(8"2) ifv=0and § = 0,

fos —% (Fo(u)e"p(ﬁTz)) (s —u)du ifv=0andé =1,
-4 (FO(S - U)exp(ﬂTz)) (1-my(v)) ifv>0andd =1,

0 otherwise.

h*(v,68[s, z; 8) =

(4.3)
Among the unknown parameters 3, F, and 7, the interest lies mainly in 3, and

possibly in Fp. The following theorem throws light on the issue of identifiability.

Theorem 4.1. Suppose, for any number 7 in the support of Fy, the model (4.3)
holds for some s > 7, and for z = 0 as well as for at least r linearly independent
values of the vector z, where v is the dimension of z. Then the parameters 3, Fy

and  are identifiable from h* under this model.

Proof. Without loss of generality, we assume that a possible value of z is the 0
vector (this corresponds to a shift of origin, the effect of which can be absorbed
through the baseline survival function). For the sake of contradiction, let us assume
there are two values of the triplet (8, Fo,7), say (81, Fo1, 1) and (Ba, Foz, m2), such
that their substitutions in the right hand side of (4.3) produce the same function.

Then we have, for all z and s and all positive v < s,

_% (F’m (5 _ U)ﬂp(ﬁ}z)) (1 -m (,U)) _ h(U,lls, )

—Ei% (Fofz(s - U)exp(ﬂgvzo (1= me(v)).

Hence,
d (7 (o exp(ﬂTZ)>
& (ﬁ_ﬂm(s v) IT _1-ml) oy, s ues (4.4)
% (Foals ~ v)xPB D) 1 m(v)

ie.,

exp(BT2) For(s — )BTy (s —v) _1—m(v) o os  (45)
exp (B3 2) Foa(s — p)eR I foo(s —v) 1= (v)

In particular, the above identity holds for z =0, i.e.,

for(s —v) _ l_ﬂv_) Vs, v<s, (4.6)
Joa(s —v)  1-mv)
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After combining the above equation with (4.5), we obtain
Fyy (5 — v)eseld] 21
F02(3 — 1))37‘9(5'2"2)_1

By taking the limit of the left hand side as v goes to s, we obtain exp((—51)T2) =

= exp((B: — ) 2) Yz, 8 v<s. (4.7)

1, ie.,

Since the above equation holds for r linearly independent values of the vector z

(as assumed in the statement of the theorem), we have

Br = Ba. (4.9)
It follows from equations (4.7) and (4.8) that

{Fm(s - U)] SP(Ef )1

Foals —0) =1 Vz 8 v<s. (4.10)

Therefore,
Foy = Fy. (4.11)
From equations (1.4), (4.9) and (4.11), we have

m(v) = m(v) Vo, (4.12)

(51, F017 7T1) = (ﬁQ»F‘O% 7T2),

which is a contradiction.

O

We now assume that the distribution of the covariate vector ensures the identi-
fiabils
ability of all the unknown parameters, and proceed with the estimation problem

using the likelihood (1.2), updated as per (3.9) and (4.1) as

- » exp(8T -4, — T
L= H[FO(Si) P Z')}l & l:{ (FO(T;—)"XP(BI Z) __ F‘O(T‘i)exp(ﬁTZl))

i=]
k .
W1 blI(Wl+1(Sz‘)<T7:SWl(Sz‘))) }
=1

k
. L 7 _ 1-¢; 8
{gb’(Fo(‘Vzﬂ(Si))expw Z»—Fo(vv,(sz-))exp“””)} ] @)
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4.3 Maximum likelihood estimation

For simplifying the likelihood, we use the same set-up as described in Section 3.4.
The likelihood (4.13) involves probabilities assigned to intervals of the type [¢, tmaz]
and (¢, timaz), as per the baseline probability distribution. Since these intervals have
overlap, we express them as unions of some disjoint intervals. Let 71, 7, and Z3 be
sets of indices i (between 1 and n) that satisfy the conditions §; =0, §;¢; = 1 and
0;(1 — &;) = 1, respectively. The set Z; contains indices of subjects for whom the
event is yet to happen till the time of observation, Zs contains indices of subjects
who have experienced the event and remember the date of occurrence, while Z3
is the set of indices of subjects who have experienced the event but forgotten
the date. Consider the intervals A;, A; and A; as defined in (3.13), and the sets
A1, As, A; and A, as defined in (3.14). Also recall the definition of I, and the set
C in (3.15) and (3.16), respectively.

As we have seen in Section 3.4, each of the intervals By,...,By is a union of
disjoint sets that are members of A as defined in (3.17). For any Borel set A,
suppose Pp(A) is the probability assigned to A as per the baseline probability
distribution corresponding to survival function Fp. Let p, = Poll;), for I € A.
Then the likelihood (4.13) reduces to

exp(87 Z:) L
L= H Z Dr X H (l —Zbll(Ti€A1(l+l)\Ail)>
i€y r:I.CA,; i€T2 =1
sr€C .
exp(ﬁTZi) exp(8' Z;)
2 Dr - E Dr
: ; I, CA!
T-g:gAz \T sr€C
exp(”Z:) exp(872,)
: w . (4.14)
I K
i€y | 1=1 r:hg/é,-c(,ﬂ) \r.s:écu
Sr

. - ikelihood
Thus, maximizing the likelihood (4.13) is equivalent to maximizing the likelihoo
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(4.14) with respect to 8, n and p, for s, € C. The p,’s are nuisance parameters
when the main objective is to estimate 8. The number of these parameters can be
very high. This problem is simplified if it can be shown algebraically that some
of the estimated p,’s are zero. With this goal, we consider the sub-class Cy of C,
which is defined in (3.20).

Our next result shows that the maximization of the likelihood can be restricted

to C().

Theorem 4.2. For fized values of B and n, mazimizing the likelihood (4.14) with

respect to p, for s, € C is almost surely equivalent to mazximazing it with respect

to p, for s, € Cy, i.e.,

max L = max
prpr€[0] 3, copr=1 Pr3pr€[0,l],ZST€CO pr=1

Proof. Since C is the union of disjoint sets Cy and C; U C>, we can rewrite the

likelihood (-1.11) as

exp(87 Z,)
k
L=IT| X »+ X >
' prt Dr X H 1 - blI(TzEAll)
i€y ril.CA; rI,CA; 1€Ts =1
sr€Co sr€C1UC2 B
exp (87T Z;) exp(" 2:)
E Dr + § Dr - E Db+ E Pr
r:I.CA,; rl,CA;
A 5 €C1UC, P oo
™ Sr 1UC2
exp(8T z,)

k

<11 > > b+ > on

el = .
3 =1 T.IrgA,([+1) T:ITgAi(H—l)
sr€Co sr€C1UCy
exp(B87 z,)
|2 e Y
2 P Pr . (4.15)
riCAy rI,CAy
sr€Cq 8r€C1UC2

For very e exi
e ry s, € CQ. ther XIsts a unique Spx
r

€ Co such that s.. \ (s.. As.) — {4
and s, \ (s, N $,) = {ny + ;. r \ (s sr) = {Jr}

} for some inte, i
. ger 7, In betw w
M2 1s as defined after (3.14) ' cen 1 and ny, where

. If any probability mass is shifted from I, to I,«, the
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likelihood (4.15) can possibly be affected only through terms that involve the sets
B;, and By, ;,, defined as in (3.15). Given the fact that the baseline distribution
is absolutely continuous, there is almost surely a unique i, € Z, such that B; =
A, \ A} = {T,,} and Bp,,;, = A} . The individual indexed by i, is the only one
whose contribution to the likelihood is affected by the change. For this individual,
I« C B;, C A, but I« € Aj . On the other hand, I, € B4y, = Al C A
Therefore, the first exponentiated term in the second line of (4.15) remains the
same after the shift of mass, while there is a reduction in the subtracted term in
that line. The likelihood increases as a result.

We now turn to shifting of probability mass out of I,., where s, € C;. For any
such s, define the non-empty set Cs, = {s': s' € Co, s, C §'}. If C;, is a singleton,
we denote the only member by s,«. If C;, is not a singleton, we denote by s,+ that
member which satisfies the condition: ‘for all 8 € Uj. s,ec., ;s;#s,+ 1j» there is a real
number « € I,. such that o < f’. Thus, for every s, € C;, we have a uniquely
defined s,. € Cyp.

If p, is increased at the expense of p,., the likelihood (4.15) can possibly change
only through terms that involve sets B; such that j € sy \ s,. We shall show
that for an individual 7, whose contribution to the likelihood involves such sets,
that contribution generally increases due to the said shift of probability mass. In
a particular case (Case (iii) below), where this shift cannot be proved to increase

the likelihood, there is another way of shifting mass out of p, that would definitely

increase the likelihood.

CASE (i). Let j € 5+ \ 5, and B; = A, for some 2; € Z,. Any shift of probability
mass from I, to I~ would increase the contribution of the i;th individual to

the likelihood, since I~ < A;; but I; ¢ A;.
CASE (ii). Let j € s \ s and B; = A, \ A;, for some i; € Ip. In this case,
. which is disjoint

: —_ !
I. C A; but L» ¢ Aj . By construction, B+ = A, )

with B;. In order that I, is not a null set, we must have ng +J € 5r

T ; Al
follows that J, is not contained in Bj or Bua+;- Thus, I, ¢ A, and I & A,
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Clearly, a transfer of probability mass from I, to I« would increase the
contribution of the i;th individual to the likelihood.

Case (iii). Let j € s \ s, and B; = Aj for some ¢; € Z,. Since j ¢ s,, we
have I, C Bf = {tmin, T3;). Therefore, for each of the intervals B; with
I € s, BiN[tmm,Ti;) # ¢. On the other hand, since I~ # ¢, we have
By N (T;;, timas] # ¢ for I € s,.. It follows that each of the intervals B, [ € s,
contains a left- and a right-neighborhood of the point T;,. Consequently, T; ;

is contained in these intervals. Hence, the set s,+ = {l : T, € B} is a

J
superset of s, contained in Co, with I+ = {T} } # ¢. As argued in Case (ii),

a transfer of probability mass from I, to I+ would increase the contribution
of the 4;th individual to the likelihood.

CASE (iv). Let j € s\ 5, and B; = Ai,q41) \ Ai;i for some [ € {1,...,k} and
some ¢; € I3. A transfer of probability mass from I, to I« would increase
the contribution of the 2;th individual to the likelihood, since I, C Aija+1)

and I,. ¢ Aij1, whereas I, is not contained in either of these sets.

It transpires that maximization of L can be achieved even in the presence of

the constraint p, = 0 for 8, € C; U Cy. Thus, L can be fully maximized over the

restricted set {p, :s, € Co}. O

Let us relabel the intervals 1;, s; € Co, by Jy, Jy,

-++»Ju. Further, let ¢; = P(J;)
forj=1,2, .

-+, v. Theorem 4.2 implies that maximizing the likelihood (4.14) is
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83
almost surely equivalent to maximizing
L(p,n, B)
exp(B8T Z,) f
T Xs) <[t tmenam
eIy j:J]ng,- 1€ls I=1
exp(87 Z:) exp(87 Z:)
2 @ | 2w
3:J; S A j:J; C AL
& exp(87 Z;) exp(87Z;)
<11 2o D 4w -1 2 4 . (4.16)
i€l | I=1 3 9C A a1y F:J;C Ay

with respect to p, 7 and B, subject to the restriction > _7_, ¢; = 1.

In order to maximize the likelihood (4.16), we need to identify the sets Jj,
j = 1,...,v, that is, the intervals I}, s; € Cy, defined through (3.15) and (3.20).
This identification involves elaborate combinatorial calculations. In fact, simula-
tions reported in Section 3.9 show (in the case of nonparametric estimation in the
absence of covariates) that these calculations consume much more computational
time than the actual maximization. There it is shown that the set of times of exact
recall can serve as a readily available and approximate solution to the combina-
torial problem, so that the computational speed can be enhanced several times
without sacrificing the quality of the solution substantially. In the next section,

we prove a similar result for the regression problem.

4.4 Approximate MLE
Let Ay = {J1,Ja,..-,Ju}, A2 = {{T;}, i € I} as already defined in (3.11), and

ny is the cardinality of Az, as before. The task of maximizing the above likelihood

can be simplified further through the following result, which is interesting by its

own right.

Theorem 4.3. The set Ay is contained i the set Ap almost surely. Further, if

from a discrete distribution with finite support

the inspection times are samples
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and the range of values of BT Z; in (4.16) is bounded, then the probability of Ao

being equal to Az goes to one as g —> 00.

Proof. Let i € T, and the index j; be such that s;, = {j : T; € B;}. Since
each time-to-event has an absolutely continuous distribution, the recalled times
T, i € Iy are distinct with probability 1. Therefore, {T;} € {Bi,Bs,...,Bn,}
almost surely. It follows that T; € I, C {T3}, ie., I;, = {T;} with probability 1.
It is also easy to see that s; does not belong to C; or Cs, with probability 1.
Therefore, s;, € Cy and hence Ay C Aq almost surely.

Let J; € Ag \ Ap. Therefore, there is an index r such that I, = J; # ¢ and
sr € Cy, even though I, # {T;} for any i € T,. We shall show that the existence

of I, implies an event with probability going to zero.

It is easy to see thati ¢ s, for 4 = 1,2,...,n,. Thus, I, can be written as
c{neapn{ns e icm,
i€sy i¢s,
where

I = L,\R., LT:{ﬂBZ}, R.=¢ [\ B
i€sy €S, i>n0

If there is an i € 7, such that, T; € I, then the index set s = s, U {¢}

corresponds to the non-null interval I~ = {T;}. It follows that sy € Cy, which

leads to the contradictory conclusion s, ¢ Co. Therefore T, & I/ for any i € I,
4 .

show that an upper bound of the probability of the above event goes
to zero as ny — oo. Since the set L

We now

r is obtained as an intersection of sets of
the form (St tmaz), (Ti s, (Wi(S)),t

maz] or [tmin7 tmax], the intersection itself
must be an interval of the form (1

7 tmaz)- On the other hand, since the set R, is

obtai . .
aimed as an intersection of sets that are complements of sets of the above type

the intersection itself must be an interval of the form [

o tmin, m,]. Thus, the set I is
m i

erval (I, m,]. By the argument given in the preceding paragraph, neither [

- , "

nor m.. is equal to T} for any ¢ € T, (otherwise s

r

would not be in Cy). Therefore,
both I, and m; are of the form S; for some i I

; or of the form §. —
1€ I3 and some [ ¢ {1,... k}. S; — z; for some
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Let w; < wy < -+ < wg be the feasible values of S; and S; — z; (where
1 <1 < k) that are strictly between t,,;, and t,,.5. Since the baseline distribution
is absolutely continuous, we have 1 > Fy(w;) > Fo(ws) > --- > Fy(wg) > 0. The
values of [, and m, are taken from the set w;, ws, ..., wk.
The probability of the event “T; ¢ I’ for any ¢ € Z,” is
1 [ {F" ) = &0 )}
i€y

=11 [1 - {FE (lr)}exp(ﬁTZi)/B L {FP (mr)}exp(BTzw)/B} ,
i€l

where B is an upper bound on exp(87Z;). Since uePBTZ)/B ig a strictly concave

function of u, we have

-
1-(1-up+ ul)exp(ﬁTZi)/B < ugxp(ﬂTZi)/B _ u?p(ﬂ z)/B

for 0 < u; < up < 1. Using this inequality for u; = FE(m,) and up = FE(l,), we
have

[ [1- {7 ) - F=" 7 mo) }]

i€l

<] 1 - B2 + B (mr

i€z

oxp(87 2:)/B
)]

= = noL/B
<[1— F2Q,) + FEm)]™"7,
where L is a lower bound on exp(8TZ;). Since [1 — F&’(w;,) + FB(wy,)] € (0,1)
. o8
for any j; and j, with 1 < ji1 < ja < K, we have [1 — Ff(l,) + Fg (m,)] €

(0,1). Therefore, the last expression goes to zero as 7z —s oo. This completes the

O
proof.

i i T 4.3.
One can form a computationally simpler estimator on the basis of Theorem

the maximum likelihood estimator has mass only at
e, the likelihood

According to this theorem,

points of exact recall of the event, when n; is large. In such a cas | f
’ i fore, irrespective of the value o
(4.16) involves J;'s that are singletons only. Therefo -

i i the ti
Ny, one can maximize (4.16) with respect to point masses restricted to

of exact recall.
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Formally, let ¢,...,t,, be the ordered set of distinct ages at event that have
been exactly recalled, and g7, . . ., g}, be the probability masses allocated to them,
represented by the vector p*. Maximizing the likelihood (4.16), subject to the
constraint that g; = 0 whenever J; ¢ Ay, is equivalent to maximizing the following

likelihood subject to E;ﬁl g; =1 and ¢; > 0:

exp(ﬁTZ,)
La(p*ﬂ?aﬁ):H( Z q;)

€Ty \jit; 2tm,

k
< I1 (1 - Zbll(T‘ieA,;(l_,_l)\Au))
=1

1€y
exp(ﬂTZz) exp(B’le)
* *
2. g - 20 4
j:tj>tmi j:tj>t7n,,l

exp(8T Z;)

& exp(87Z:)
<1 [>u X & —( > q;) . (4.17)

i€T3 | I=1 Jiti 2t JitiZtm,,

i(l41)

where m,; = inf{j : ¢; € A;} for i e T4 UZ, and, m; = inf{j : t; € Ay},
121,2,...,kf0ri61-3.
In order to remove the range restriction on the parameters for the underlying

baseline survival curve, . the likelihood is Parametrized by

ta=log(~log( > ¢)), d=1,2,. . p, (4.18)

Jiti >ty

Thus, the likelihood (417) can be expressed as

. k
Lavom8) =[] (em<" )= 11 (1 > bzf(TzeA,-,aH)\A,v,))
I=1

€ €1y
k . I:(e_ezlﬂﬂmi) _ (e_ezi/j+7"li+l)}
—Ziftmy, 23 Bty
xig [; b, {(e e +1)) _ (6_67 Bty m)}:l . (4.19)

where =
7 (M- %,41) and Tna+1 = 0. A further simplification of (4.19)
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produces the likelihood

7,8+, Bt
71 77’ Z log [Z Olz] ( € K ) — ( e’ ﬁ+7]+l)] . (420)
where, for j =1,2,...,n2, we have
I(Jngi) if ie1,
k e
;= 1- Zl:l bl'I(TIGA,v(lH)\A“).I(Jngi\A;) if i€, (4.21)
Yt b L, C A\ da) if iel.

The maximum likelihood estimator of the baseline survival curve Fy and the re-
gression parameter {3, is obtained by maximizing the above likelihood. The first

derivatives for the likelihood (4.20) are
a(7, B 219
abl Z 5 g

ot .
(’Ynﬂ Zﬂz] i for j=1,...,na,

é)'y]
Oba(v:m.0) _ 21— Siticilh —honloe oy (a22)
a/Bk Eazlgzl

where gij = [e(_ez,/1+‘rj) . e(_eZi/3+7j+1):| ) i = (aij—l — aij)/zt:aitgit,
€t = —1(Ti € A\ Au) 1 (J; € ANAI(i € To)+1(J; € Aige\Au) 1 (1 € Ts).

and
hy = (e_eZiB+'Yj)(_eZiB+'Yj) for 7=1,2,....m

The MLE’s are obtained by setting the partial derivatives equal to zero. A Newton-
Raphson iteration can be used to compute the AMLEs 4,7, 8. The corresponding
AMLE of the baseline distribution function F, is

-y, (4.23)

Jity >t

where G} g, are obtained from (4.18) by substituting ys = %a-
N
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4.5 Simulation results

For the purpose of simulation, we generate samples of time-to-event from a rel-
ative risk regression model with survival function F;(¢) = [Fb(t)]e"p(ﬁTZi), where
the baseline distribution function Fp(t) is Weibull with shape and scale param-
eters & = 11 and B = 13, respectively, and discard the samples lying outside
the interval [8,16]. This truncated distribution has median 11.57. The vector of
covariates, Z = (Z1,Z,), consists of a binary variable, taking values 1 and 0
with probabilities 0.25 and 0.75, and a continuous variable having the uniform
distribution over the interval [0,5]. We choose the vector of regression coeffi-
cents as 8 = (f1,6,) = (1.5,1.5). The ‘time of interview’ is generated from
the discrete uniform distribution over the set of integers {7,8,...,21}. These
choices are in line with the data analytic example of the next section, where
the time to landmark event is the age at menarche in years. As for the for-
getting probability m,, we use (3.9) with k = 8, z; = 0, zo = 16,73 = 3.2,

T4 = 4.8, rs = 64,16 = 8, 7 = 9.6 and 7g = 11.2 and the vector parameter

n=(b1,ba,..., bg) =(0.01,0.15, 0.15,0.15,0.15,0.15, 0.15, 0.15).
Note that the approximate log-likelihood (4.20)
respect to 7 and (v, 8)

is maximized alternately with

. For the present simulations, we use an isotonic version

of the estimator of Ty in the following way. After each step of maximization with

respect to n (with (v, 8) held fixed), we use isotonic regression, through the usual

algorithm of pooling adjacent, violators, on the estimated 7, to obtain a monoton-

ically non-decreasing estimate of it. Maximization with respect to (

7,0) is then
performed after holding T

fixed. These steps are repeated till convergence.

In the hypothetical situation of all the event, times being perfectly recalled, that
1s, the data are right censored. In this case, one can use the MLE obtained by
maximizing Cox’s partial likelihood. We refer to thig estimator based on ‘complete

recall’ data as the ‘complete recall MLE’. On the other hand, if one uses only the

‘current, st i i
status’ information, namely whether the event of interest has happened
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till the time of interview, then the corresponding likelihood is

n

T[] ™ - mees oo sy)

i=1

which can be maximized with respect to 8 and the values of F, at the possible
times of inspection (namely, the integers 7 to 21). We refer to this estimator as
the ‘current status MLE’. Another option is to use the recalled event time when-
ever available, but to disregard the informativeness of the censoting. A penalized
version of the corresponding likelihood is maximizied in the function shr of the
SmeothHazard package of R, which fits the Cox model by using an approximation
of the hazard function by a linear combination of M-splines. We refer to this
estimator as the ‘SmoothHazard MLE".

We now compare the performance of the proposed AMLE of the regression
coefficients with the three estimators described above. Table 4.1 shows the bias,
the standard deviation (Stdev) and the mean squared error (MSE] of the estimated
regression coefficients. The results reported here are based on 500 simulation runs
for sample sizes n = 50, 200 and 1000. It is clear that the standard deviation
of the proposed AMLE, as well as its mean square error, is larger than those of
the (hypothetical) ‘complete recall MLE’, but smaller than the ‘current status
MLE". The gap between the performances of the first two estimators becomes
small as the sample size increases, though the gap between the AMLE and the
‘current status MLE’ does not reduce as much. The ‘SmoothHazard MLE’ has a
persistent, bias even when n is large. This outcome is expected, as the estimator is
based on the assumption that the censoring is non-informative. Thus, neither the
‘current status MLE” nor the *SmoothHazard MLE’ is able to successfully utilize

the information contained in the recalled time-to-event data, while the proposed

AMLE is able to do so.

Figures 4.1 and 4.2 show the plots of the empirical bias and the empirical

3 : H == 200
standard deviation of the estimated baseline survival functions, for n = 50,

. . ard
and 1000. It is clear that the empirical bias as well as the empirical standar
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TABLE 4.1
Bias, Stdev and MSE of estimated regression coefficients
n = 50 n = 200 n = 1000

Estimator|| Property 51 Bo B1 B2 B1 B2
Complete || Bias 0.2981 —0.0734 | 0.0089 0.0037 -0.0026 0.0008
recall Stdev 0.8321 0.8499 | 0.1293 0.5048 0.0848  0.2271
MLE MSE 0.7812 0.7277 | 0.0168 0.2548 0.0072  0.0515
Proposed || Bias 0.2593 —0.0547 | 0.0105 —0.0047 0.0083 -0.0011
AMLE Stdev 1.3145 1.2913 | 0.1739  0.5057 0.0885 0.2272

MSE 1.7904 1.6658 | 0.0303 0.2553 0.0079  0.0516
Current Bias -0.392 —-0.3316 | -0.026 —-0.0367 | —0.0032 0.0010
status Stdev 1.4048 1.3405 | 03225 0.9847 0.2353 0.6113
MLE MSE 2.1271 1.9069 | 0.1047 0.9709 0.0553 0.3737
Smooth- Bias -0.170 3.551 -0.310 2.841 0.191 1.782
Hazard Stdev 0.740 1.739 0.322 0.850 0.123 0.219
MLE MSE 0.569 15.648 0.198 8.780 0.0505 3.250

deviation of the estimated baseline survival function become smaller as the sample

size increases.

We now turn to the problem of testing for the significance of the estimators of
the regression coefficients. The standard theory of parametric estimation generally
does not hold in the presence of an infinite dimensional nuisance parameter. How-
ever, in the case of the Cox regression model for randomly right censored data, it
has been shown that an asymptotic theory based on partial likelihood works in

an analogous manner to that based on the asymptotic theory of parametric like-

lihood (Andersen and Gill, 1982), and that the partial likelihood may be viewed

as the full likelihood maximized with respect to the baseline hazard subject to

a piecewi i i
p ise linear constraint (Johansen, 1983). We now run some simulations to

check whether the likelihood (4.20) with the nuisance

‘ parameters Fy replaced by
the estimator (1.23)

can be used similarly to obtaip an approximate test of signif-

icance of i i
of the regression coefficients, even though there is no asymptotic theory as
yet to justify such ap approximation.

The ‘se ' ; :
ore vector’ (borrowing terminology of parametric likelihood theory)
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Fig 4.1: Empirical bias of the estimated baseline survival function with n = 50,
200 and 1000
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Fig 4.2: Empirical standard deviation of estimated baseline survival function with

n = 50, 200 and 1000
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TABLE 4.2
The empirical type I error probability of test Ho : 3 =0
Asymtotic n=50 n=200 n = 1000
Type I error 0.041 0.038 0.022

based on %i;’l;ﬂl, can be written as

— (ﬁw,») log(£(t)) — Ft;11) 1og<ﬁ(tj+l>>) z

v-3Y

° » Z i1 g5l
=1 j=1 1

(4.24)

. -1
The relevant, part of the ‘information matrix’ is V = Az — Az AT} Ajg, where

All A12
A21 A22

A:

3L, /OyONT  8%,)0vOnT
824, /Ono~T 8¢, /ononT

Ay =~

A== ( 920,/0708T 24, Jomop" ) = AL,
and

Ago = —8°¢,/0B047,

the quantities being estimated at B=0y=%andn = 7o, the restricted AMLE’s
at 8= 0. The hypothesis B = 0 may be tested by taking UTV -1[J ag an approx-
imate x? statistic with 2 degrees of freedom. In order to check the behavior of
this statistic, we generate data of sizes n — 50, 200 and 1000 for 1000 runs, under
the null hypothesis when the baseline distribution function Fy(t) is the Weibull
distribution with shape and scale parameters @ = 11 and 8 =

truncated to the interval 8,16].

13, respectively,
‘able 4.2 shows the value of empirical type I
error probability of this test for different sizes of data. It can be seen that the

error probability is less than 0.05. ‘This indicates that the ‘score test’

conservative.

is somewhat
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4.6 An example

For the data set explained in Subsection 1.3, the landmark event is the onset
of menarche. There are many studies concerning the effects of socioeconomic
factors on the measures of body shape (anthropometric indices or ratios) and
physical maturation (e.g., biological parameters of the adolescent growth spurt)
of children. Some of the important factors which affect age at menarche (mat-
uration in girls) are diet and physical activities which can be directly related
to parents’ education and monthly family expenditure (Khan et al., 1996; Padez,
2003; Arveetev. Ashinvo and Adjuik, 2011). We considered three socioeconomic
variables: two binary variables indicating whether the father or the mother of the
subject had passed high school, and a real variable representing monthly family
expenditure in Indian Rupees (indexed with respect to 2008 as base year). We
considered a subset of the original data, consisting of 673 respondents who came
from a nuclear family and were the only child of their respective parents. Among
673 samples, 241 individuals did not have menarche, 147 individuals had menarche
and recalled the date of its onset, while 285 individuals had menarche but could
not recall the date. There were 492 individuals with father having passed high
school and 420 individuals with mother having passed high school. The median
of monthly family expenditure was Rupees 7808. As for the forgetting probability

Ty, we modeled it over the interval 0 to 13 years (maximum possible separation
e sample). We used a piece-

er which the

between menarcheal age and age at observation in th

wise constant model, with k = 8 and equal length of the intervals ov

probability is constant. There are two binary covariates indicating whether the

a continuous covariate representing monthly

thod for AMLE was as described

parents had passed high school, and

expenditure of the family. The computational me

in Section 4.5.

esponding p-
Table 4.3 shows the est

imated regression coefficients and the corr

, . ¢ ibution
values. The p-values are computed on the basis of the chi-squared distributio
| i i i e led
with two degrees of freedom, which was seen in the previous section to hav
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TABLE 4.3
Estimated regression coefficients and their p-values
Covariates Estimated value | p—value
Father passed high school 0.091 0.0036
Mother passed high school 0.249 0.0061
Monthly family expenditure 0.0002 0.0047

to conservative decisions. It is found that all the coefficients are significant at the
1% level. The vector of three regression coefficients has p-value 0.00093.
Figure -1.3 shows a plot of the estimated survival functions of four hypothetical

subjects with covariate profiles described below.

CASE (a) Neither parent passed high school, monthly family income is equal
to the median income of the group (Rs. 7808). We represent this case as
Z = (0,0, 7808).

CasE (b) Only the father passed high school, monthly family income is equal to
the median income of the group. We represent this case as Z — (1,0, 7808).

CASE (c) Both the parents passed high school, monthly family income is equal to
the median income of the group. We represent this case ag Z — (1,1,7808).

CASE (d) Both the parents passed high school, monthly family income is equal

to Rupees 10,000. We represent this case as 2 — (1, 1, 10000).

It is clear that the fact of any parent having passed high school is associated
with earlier maturation, In particular, the mother’s educational status is found to
account for a greater reduction of the survival function. Also, even a small increase
in the monthly family expenditure is found to have a considerable impact on the

survival function of the age at menarche

The chosen i
value of k was obtained after considering a coarser and a finer

iti _
partition for the piecewise constant model of Ty- Specifically, the range 0 to 13
3

years was split experimentally into & equal intervals, with % — 4, 8 and 16. and the

. . . .
esulting estimated baseline survival functions we
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Fig 4.3: Estimated survival function in different cases

from 4 to 8, though the change is much less when & is increased from 8 to 16. When
one compares k = 4 with k& = 8 the integrated mean squared difference between
baseline survival functions (scaled by the integral of the square of the function for
the lower value of k) is 0.92 whereas the same criterion produces the value 0.021
when the comparison is between the curves for & = 8 and k = 16. This finding
justifies the choice of k = 8, as the alternative choice k = 16 does not produce a
substantially different. estimate of the baseline survival function. Figure 4.5 shows
the estimated function m,, for different values of k. It is seen that, the estimates

of m, for k = 8 and k = 16 differ less than those for k = 4 and k= 8.

4.7 Concluding remarks

This chapter presents a method for fitting the Cox regression model to recall-
based time-to-event data with covariates, where there is informative censoring.
Simulation results indicate that the estimators of the regression coefficients are
of consistency of these estimators as of now. It

sistency of MLEs of the Cox

reasonable. There is no proof

may be recalled that there is no known proof of con

regression parameters even in the case of non-informatively interval-censored data.

Some results are available in the special case of status data with fixed and multiple

inspection times (and in particular, for the further special case of current status
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data) (Huang, 1996; Yu, Wong and Kong, 2006; Liu and Shen, 2009).

Fitting of a semi-parametric regression model is generally a more complex infer-
ential problem than that of estimating only a distribution. The complexity in the
present case is even greater, as the informative interval censoring model leads to a
large number of nuisance parameters, including the probability masses allocated,
as per the baseline distribution of the Cox model, to intersections of different in-
tervals. The tasks of formation of these intervals and tracking of their probability
masses are greatly simplified by the approximation inspired by Theorem 4.3. The
Cox regression model appears to be suited to the formulation of the approximate
MLE through probability masses assigned to the times of exactly recalled events.
It is this matching of the models that makes the AMLE computationally tractable.
A different approach may be needed for other regression models.

The proposed approach can be adapted to handle left truncated data. Assuming
that there is a time of left truncation associated with each observation, each term
in the likelihood would have to be divided by the upper tail probability at the point
of truncation. It can be shown that the simplification given through Theorem 4.2
will continue to hold, since the shift of mass envisaged in the proof of that theorem

does not alter the factors in the denominator. The objective function (4.20) would

then be replaced by

n2
- 2 ZiB+j _eZiB+viy1 (—e”i775)
—e“t Y _ (e )] _ E i€ ,
ga(77 777 /3) = § log [E az] [e( € ] lOg l: w]
=1 j=1

j=1
(4.25)

where ;;'s are known constants like a;;’s. The optimization problem is therefore

similar.
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Summary of contributions and future Work

5.1 Summary of contributions

In the existing literature of survival analysis, inference from interval censored
data is typically drawn after assuming that the censoring is non-informative. If
this assumption holds, the likelihood appropriate for this type of censoring can
be used to obtain a parametric MLE or a non-parametric MLE. However, in the
case of recall based data from retrospective studies, the non-observation window
is likely to depend on the time of occurrence of the event. Hence, the censoring
is informative. In this thesis, an appropriate model for the underlying censoring
mechanism has been proposed and a number of inference procedures have been
presented.

After introducing the model connecting the time-to-event distribution with re-
call based duration data in Chapter 2, we have shown how one can form a likeli-
hood for parametric inference under this model. Since the standard large sample
results for the properties of a maximum likelihood estimator based on complete
extend to the case of censored data, we have estab-

y of the MLE under the chosen

data do not automatically

lished the consistency and asymptotic normalit

model for informatively interval censored data. We have illustrated the utility of

the proposed model by showing how oversight of the informativeness in interval

censoring can lead to bias and inconsistency of the resulting estimates. Also, we

have identified the additional information contained in the recall based duration
99
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data and demonstrated theoretically as well as through simulations the advantage
of the maximum likelihood estimator based on duration data over that based on
status data alone.

In Chapter 3, we have revised the inference problem without any distributional
assumption for the time-to-event. Since there is some loss of information through
censoring, the time-to-event distribution may not always be identifiable. We have
looked into the issue of identifiability and given a mild but sufficient condition
for it. We have derived the nonparametric maximum likelihood estimator of the
survival function of the time-to-event under the new model of informative censor-
ing. As the non-parametric MLE turns out to be computationally rather complex,
we have proposed an approximate MLE and established consistency of both the
NPMLE and the approximate MLE under suitable conditions. Monte Carlo simu-
lations indicate that the proposed estimators have smaller bias than the Turnbull
estimator based on incomplete duration data, smaller variance than the Turnbull

estimator based on current status data, and smaller mean squared error than both
of them.

In Chapter 4. w i i i i
P , we have considered semi-parametric regression under Cox’s model

for recall based duration data with covariates, arising from retrospective studies.
We have proved identifiability of the regression parameters as well as the baseline
survival function from the combination of the Cox model and the censoring model
Proposed in Chapter 2. While a, partial likelihood is not available, we have devel-
oped a method of semi-parametric inference of the regression parameters and the
baseline survival function, under the proposed model. Monte Carlo simulations

show reasona i
ble performance of the estimator of the regression parameter, com-
bl
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one that may be used for testing for the significance of the regression parameters.
In all the chapters, the proposed methods have been illustrated through the

analysis of the data set on age at menarche described in Section 1.3.

5.2 Future work

The data set introduced in Section 1.3 also contains ‘partial’ recall data describing
a range of dates for the occurrence of menarche. The intervals specified by the
respondents vary from case to case. The specified interval can be a range of days,
the calendar month, a range of months, the calendar year or even a range of years.
Table 5.1 shows the frequency of these different types of recall, as well as the
frequencies of no recall and no menarche till the date of observation, for different
age groups.

While the age groups represent cohorts with possibly heterogeneous ages at the
onset of menarche, the pattern of heterogeneity is unlikely to differ from one age
group to another. Therefore, a comparison of the incidence of partial or no recall
among the age groups 16 to 21 (for which all the respondents reported having
experienced menarche) is meaningful. The increase in the proportion of cases
of ‘no recall’ with increase in age, seen in the second row of the table from the
bottom, corroborates the assumption of memory fading with time, which has been
used in Chapter 4. However, no pattern is observed in respeet of the incidence of

different types of partial recall. One might conclude that it would not make sense

TABLE 5.1
Frequency of different recalling type for different ages
Total
' . ] Age g T B T 91" |
Dpeotreall | o T T A [ 18 [ 16 [ 16 [T [18 20 [ ‘21 —
y 9
Nonarche nor | 155 [ 155 | 149 | 146 | 103 | 49 | 13 | 4
IEI‘:(I:():I;?(:]] ) g3 [ 28 |52 o7 |52 |58 [ 3; N 7'.‘%24 ! 21:5 32 | 18 42?
Days rocall “T 1 3 [ 28 ]6 ‘ 2
ﬁ?zxstl:o;:‘(l;u 1 2 3 |22 |24 [ 32 | 33 | 26 242 21.; 215 1; 20 1)0
' “' 74| 2 | 1 .
¥()lmm n;fan 1 2 T 20 127 | 16 [ 16 [ 19 ] 26 | 21 19
ear reca 3
1 2 | 1 1 1
o 512 [12 ]2 | 33 =60 | 65 | 77 | (9 | 82 | 487
Sl o1 iar 148 | 135 | 139 | 196 | 16 | 158 | 141 2105

Total 155 1156 | 151 | 161 | 143 145 | 1
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to model the different events of partial recall as functions of time elapsed since the
event of interest. There is need for a different model altogether, where calendar
time (rather than time since the event) would be relevant. Developing methods of
inference under a suitable model would be an interesting research problem.

The possibility of error in recall has been ignored in the models used in
Chapters 2-4. Another direction of future research could be inclusion of the
possibility of error in recall data, noted by several researchers (for example
see Rabe-Hesketh, Yang and Pickles (2001) and Beckett et al. (2001)). The di-
chotomization of the recall information used here, where all ‘partial’ recall data
have been ignored and regarded as cases of no recall, reduces the impact of recall
error. A better handling of the issue through more sophisticated modeling may be
attempted.

As mentioned in Section 3.11 , modeling non-recall through a forgetting function
may be adapted to the estimation of the distribution of the time from contracting
HIV infection through blood transfusion to the onset of AIDS. While modeling
recall uncertainty in that section, we had ignored the issue of truncation in data.

Incorporation of truncation leads to the following likelihood.

e —— i}

. f(Sz — Yz) 1-¢,
{W(l ~ mp(Ss — }/i))} , (5.1)

than the likelihood (3.47) and thus a different co

mputational algorithm may be
needed for its maximization.

uous. In the case of coarsely grouped data (say, for recall data with time measured

in months) a discrete time model and related
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problem is yet to be solved even in the case of non-informatively interval cen-
sored data, except in some special cases (Huang, 1996; Yu, Wong and Kong, 2006;
Liu and Shen, 2009). A study of consistency in the general case would be useful.

The regression model mentioned in Chapter 4 may be extended to include frailty,
i.e., shared or individual random effects. In order to get an idea of the nature of
the problem at hand, consider individual frailty w; included in the Cox regression

model, so that the hazard rate for the ith subject, given the frailty, is of the form
Ai(t) = do(tywi exp(BT Z;), (5.2)

where \(t) is the unspecified baseline hazard rate, Z; is the vector of covariates
for the ith individual, B is the vector of regression coefficients, and w; is the un-
observed frailty for the ith individual. The w;’s are independent and identically
distributed samples from a distribution with mean 1 and some unknown variance.
We make the commonly used assumption that the w;’s are independent and iden-
tically distributed samples from the gamma distribution with density function

w(%_l)exp(—w/é)
9(wi8) = — /e

w >0, £>0

It follows that the survival function can be written as (Klein and Moeschberger,
2003)

n —-1/€

Fi(t) = (1 + €Aty exp(BTZ:)) 7 (5.3)

where, Ag(t) = fot Xo(w)du. Thus, the likelihood (4.2) for the present regression
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model, with 7, as in (3.9), simplifies to

n

L = J 1 + &Ao(Si)exp(B8T Z:)) /4] %

i=

1
H (1 +Eholti-) exp(87 ) ™5 - (14 £80(T3) exp(672)) )

k &
( Zbﬂ (Wi (S1)<T3<Wi(s: )))}

I=1

k
- {Zbl( (14 EA0(Wit1 (S2)) exp(872)) /°

=1
1-&,74;
- (1 +EAo(VW(Si))exp(ﬂTZi))_l/s)} } : (5.4)

The form of likelihood (5.4) is more complicated than likelihood (4.16). While
Ao(-) can be written in terms of the masses allocated to different intervals as
per the baseline distribution, the presence of the additional nuisance parameter
§ complicates the likelihood to the extent that the computational approach of
Chapter 4 does not lead to an elegant iterative procedure. A better solution for
(5.3) and other frailty models would require further research.

It would be interesting to explore other regression models for duration data,

such as the proportional odds ratio model or the additive hazard model. Under
the proportional odds ratio model (Sun, 2006), we have for an individual with
covariate vector Z;

Fi(¢t) . Fy(t)

where Fy is the baseline survival function. Thus, the likelihood (4.2) for the present
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regression model, with 7,, as in (3.9), simplifies to

L(q17 e 1qv76)

exp(-8TZ;) X g k
-1I R (e
e \1Heo(=8Z) —1) > ¢ )", P (Tedigsn\Au)
§:J;CA; i€Zo =1
exp(-8TZ;) Y. g exp(—87Z:) ¥ g
§:J;CA; ~ JICAL
1+ (exp(—ATZ;) — 1) z e T+ exp(—FZZ)-1) 5 a4 )|~
J:J;CAL

k eXp(*‘»BTZi) 2 iidiChieny U
11 [Zbl{(H (exp(—BTZy) e )

€T3 Li=1 -1 erJjQAi(zﬂ) 95

B exp(—BT Z;) 2 5dycan b (5.6)
1+ (exp(—=B8TZ:) — 1) 2oj.0,ca0 O ’ -

where A;, A} and A; are as defined in (3.13). Likewise, under the additive hazards

regression model (Sun, 2006), we have for an individual with covariate vector Z;

Ai(t) = X(t) + BT Zi, (5.7)

where )\ is the baseline hazard. Thus, the likelihood (4.2) with m, as in (3.9)

reduces to

L(ql,‘ .- vQUvﬁ)
’JZCA % ( k
- sice I (->ou
= X 1 !
H ) T 7. (T16A1(1+1)\Au))
ieTy 1+j:J]Zg:AqueXp(’B i) i€Ts =1
gj 2 9
j:JjZ(_:Ai ! _ §:J;CA]
1+ > aqjexp(BTZ) 1+ > gjexp(87Z)
JJiCA i CA]
> 9 > G
k 3:J;CAu+1) _ 7:J;C A i
II (25 1+ o,  gjexp(B7%) 1+ > gep(87Zi)
i€Ts | i=1 7:JiCAiu+1) §:J;CAu

(5.8)

where A;, A, and A; are as defined in (3.13). The forms of likelihoods (5.6)
1] (2

and (5.8) are not as simple as (4.16), and therefore new computational techniques
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have to be devised for analysis under these regression models. For the accelerated

failure time model,
Fi(t) = Fo(texp(67 Zy)), (5.9)

the likelihood (4.2) with 7, as in (3.9) reduces to

L=

=1

[Fo(Siexp(8TZ, ))] l:{ (Fo(Tiexp(8" Z;)—) — Fo(T; exp(87Z:)))

k H

=1

=1

k 1-e96;
: {Z bl(FO(VVHI(Si) eXP(ﬁTZi)) - FO(VVI(Sz‘) eXP(ﬁTZi)))} jl .

(5.10)

This likelihood is even more complicated, as different values of B would produce

different arguments of the function K. Therefore, the strategy of optimization

over masses attached to exactly recalled times of event would not work. A different

approach will be needed for this model.
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