
GENERIC CONSTRUCTIONS OF
DIFFERENT CRYPTOGRAPHIC
PRIMITIVES OVER VARIOUS

PUBLIC KEY PARADIGMS

Thesis submitted to Indian Statistical Institute

by

Sumit Kumar Pandey

2014

GENERIC CONSTRUCTIONS OF DIFFERENT
CRYPTOGRAPHIC PRIMITIVES OVER

VARIOUS PUBLIC KEY PARADIGMS

Thesis submitted to Indian Statistical Institute in partial fulfillment

of the requirements for the award of the degree of Doctor of

Philosophy

by

Sumit Kumar Pandey

CR RAO AIMSCS

UOH Campus, Gachibowli

Hyderabad - 500046, INDIA

under the supervision of

Prof. Rana Barua

Stat-Math Unit

Indian Statistical Institute

203, B.T. Road, Kolkata - 700108, INDIA

Acknowledgements

With great pleasure and sense of obligation I express my heartfelt gratitude to my guide
and supervisor Prof. Rana Barua. I am highly indebted to him for their invaluable guidance
and ever ready support. Their persisting encouragement, perpetual motivation, everlasting
patience and excellent expertise in the field of knowledge, have benefited to an extent, which
is beyond expression.

Several people have inspired and motivated me in these long years. I would like to express
my gratitude to Dr. Kishan Chand Gupta of ASU and Dr. Mahavir Prasad Jhanwar for
their constant support and valuable suggestions given to me throughout my research work.
My sincere thanks to Dr. Mahavir Prasad Jhanwar who spared his valuable time to teach
me some basic lessons on cryptography and motivated me to work in my research field.

I express my gratitude to Dr. Suchismita Roy and Soumyottam Chatterjee who never left
me alone when I was in distress for a long period. If they were not in my life, I would have
quit my research career and done something else. They always stood by me during both
good and bad times.

I completed my research work as a research scholar at Applied Statistical Unit (ASU), In-
dian Statistical Institute (ISI), Kolkata. I would like to thank Indian Statistical Institute
for financial and institutional support. I also thank to all my friends and all members of
Applied Statistics Unit, Indian Statistical Institute for their friendly interactions and to all
the staff of ASU for providing all kinds of facilities whenever required.

I must say thanks to all research scholars, faculties and staffs of CR RAO Advanced Institute
of Mathematics, Statistics and Computer Science (AIMSCS), Hyderabad for their constant
support and encouragement. They always helped me not only like my friends or colleagues
but also like my family members to reduce my stress whenever I felt alone and distressed.

Finally, I express my heartiest thanks to my parents and my family members for their love
and encouragement.

i

Contents

1 Introduction 1
1.1 Need for Security Notions . 2
1.2 Combination of Different Functionalities . 4
1.3 Organisation of the Thesis . 5

2 Definitions and Preliminaries 7
2.1 Negligible Functions : . 7
2.2 Hash Functions : . 7

2.2.1 Security Notions of Hash Functions 7
2.2.2 Random Oracle Model . 8

2.3 Public Key Encryption Schemes : . 8
2.3.1 Security Notions of Encryption Schemes 8

2.4 Public Key Signature Schemes : . 10
2.4.1 Security Notions of Signature Schemes 10

2.5 Public Key Signcryption Schemes : . 11
2.5.1 Security Notions of Signcryption Schemes 12

2.6 Commitment Schemes : . 18
2.6.1 Security Notions of Commitment Schemes 19

2.7 Identity Based Encryption Schemes : . 20
2.7.1 Security Notions of IBE Schemes . 21

2.8 Identity Based Signature Schemes : . 22
2.8.1 Security Notions of IBS Schemes . 22

2.9 Identity Based Signcryption Schemes : . 23
2.9.1 Security Notions of IBSC Schemes . 23
2.9.2 Identity Collision Resistant Signcryption Schemes 26

2.10 Ring Signature Schemes . 26
2.10.1 Security Notions of Ring Signature Schemes 27

3 Relaxing IND-CCA: Indistinguishability against Chosen Ciphertext Ver-
ification Attack 28
3.1 Introduction . 29
3.2 IND-CCVA: Indistinguishability against Chosen Ciphertext Verification Attack 31
3.3 The Separating Scheme: IND-CCVA secure but not IND-CCA secure 32

3.3.1 Cramer-Shoup light version . 32
3.3.2 IND-CCVA Security . 33

ii

3.4 The Separating Scheme (Known): IND-CPA secure but not IND-CCVA secure 34
3.4.1 Security . 35

3.5 Separating Schemes: Generic Constructions 36
3.5.1 Generic Construction: IND-CPA secure but not IND-CCVA secure . 36
3.5.2 Generic Construction: IND-CCVA secure but not IND-CCA secure . 37
3.5.3 Generic Construction: IND-CCA1 secure but not IND-CCVA secure . 38

4 Construction of Identity Based Signcryption Schemes 39
4.1 Introduction . 39
4.2 Proposed Scheme : IBSC-Scheme1 . 41
4.3 Security . 42

4.3.1 Message Confidentiality . 42
4.3.2 Ciphertext Unforgeability . 46

4.4 Efficiency . 48
4.5 Comparisons . 49
4.6 Extension of An-Dodis-Rabin Construction 50

4.6.1 ID-Based An-Dodis-Rabin Construction 50
4.7 A Modified Scheme : IBSC-Scheme2 . 51
4.8 Security of the Modified Scheme . 52

4.8.1 Message Confidentiality . 52
4.8.2 Ciphertext Unforgeability . 58

4.9 Efficiency . 61
4.10 Comparisons . 61

5 Achieving CCA-secure Signcryption Schemes from OWE-secure Encryp-
tion Schemes 63
5.1 Introduction . 63
5.2 Proposed Scheme : Scheme 1 . 64
5.3 Security of Scheme 1 . 65

5.3.1 Confidentiality . 65
5.3.2 Unforgeability . 74

5.4 Proposed Scheme : Scheme 2 . 76
5.5 Security of Scheme 2 . 76

5.5.1 Confidentiality . 76
5.5.2 Unforgeability . 77

6 Ring Signature with Designated Verifier for Signer-Identity 78
6.1 Introduction . 78

6.1.1 Motivation and Our Contribution . 79
6.2 Ring Signature with Designated Verifier for Signer-Identity (RS-DVSI) . . . 81
6.3 Security . 82

6.3.1 Anonymity 83
6.3.2 Unforgeability 83
6.3.3 Uniqueness of Signer and Designated Verifier 84
6.3.4 Signer’s Privacy 84

iii

6.3.5 Designated Verifier’s Privacy 85
6.4 Generic Construction of RS-DVSI . 85

6.4.1 Correctness of the Scheme . 86
6.5 Security . 86

7 Conclusion 92

iv

Chapter 1

Introduction

In this thesis, we study the generic construction of some cryptographic primitives over var-
ious public key paradigms like traditional Public Key Cryptosystems and Identity Based
Cryptosystems. It can be broadly divided into two categories-

1. Generic construction of some highly secure cryptographic primitives from less secure
cryptographic primitives, and

2. Generic construction of some complex cryptographic primitives from basic crypto-
graphic primitives.

Mathematical tools provide a way to achieve cryptographic functionality like confidentiality,
authentication, data-integrity, non-repudiation etc., but in the case of complex cryptographic
functionality like achieving confidentiality and authentication at the same time or confiden-
tiality, authentication and non-repudiation at the same time etc., proper combination of basic
cryptographic tools is desired. Achieving complex cryptographic primitives using mathemat-
ical tools directly leads to a tedious job whereas breaking the combination of functionalities
into smaller and basic functionalities and then using the basic primitives and then joining
them in a proper manner for achieving the desired functionality is somewhat more method-
ical approach which, in result, helps in analysing the security in better and easier manner.
Being a more methodical way, it has not only the theoretical importance but also has a vast
practical utility. It can be analogously compared as constructing a structure using bricks,
cement and steel rods.

Public Key cryptosystem took birth from the seminal paper by Diffie and Hellman [36] in
the year 1976. It is also known as Asymmetric Key cryptosystem due to the nature of keys.
In this cryptosystem, both parties which are communicating have different keys in contrast
to Symmetric Key cryptosystem in which both parties have the same key. Although one key
exchange protocol was proposed based on one hard assumption that is known as computa-
tional Diffie-Hellman assumption derived from the names of proposer, no public key scheme
was proposed. Crypto community had to wait till 1978 when Rivest, Shamir and Adleman
(RSA) [81] proposed the first public key encryption (PKE) and signature (PKS) scheme
which is popularly known as RSA encryption and RSA signature scheme respectively which
were based upon another hard assumption which is known as RSA assumption. In the same

1

year, McEliece [70] proposed another PKE using Goppa code which is known as McElice
encryption scheme based on McEliece assumption. But the simplicity of RSA gave it much
more popularity than McElice. Again in the year 1985, ElGamal [39] proposed another PKE
based on computational Diffie-Hellman assumption which is known as ElGamal encryption
scheme. Since then, many encryption and signature schemes have been proposed. In com-
mercial purpose protocols like secure socket layer (SSL) [42], PKE is used for exchanging
the session keys. Amongst all public key encryption schemes, RSA is the most popular and
widely used.

The issue of online key exchange, an essential step in the symmetric key cryptosystem, was
solved by the advent of public key cryptosystem, but it required a proper key management [4].
In the year 1984, to simplify key management, Shamir proposed Identity based cryptosystem
[85]. In this cryptosystem, the unique identity (such as email-id, social security number
etc.) of user is used as the public key whereas the secret key is generated by a trusted
third party called Private Key Generator (PKG). Along with the proposal of Identity Based
cryptosystem, Shamir proposed one Identity Based Signature (IBS) scheme also [85]. But,
it was a long journey for Identity Based Encryption (IBE) scheme when, in the year 2001,
Sakai, Ohghishi & Kasara [83] and Boneh & Franklin [15] proposed the first IBE scheme
independently based on bilinear maps. Same year, Clifford Cocks [29] solved the problem
of constructing an IBE without bilinear maps. His scheme was based on the quadratic
residuosity assumption. Since then, many IBE [91, 22, 5, 45, 71, 16, 56, 57] and IBS [78, 27,
7, 63] schemes have been proposed.

1.1 Need for Security Notions

The idea of security is the central point of cryptography. The design of a cryptographic
scheme is followed by either security arguments (heuristic) or security proofs. Thus the no-
tion of security must be clearly defined. It is defined with two important parameters - (a)
goal of adversary and (b) type of attack. Goal of adversary is to break the functionality of
cryptographic scheme. Depending upon the purpose and sensitive demand of the applica-
tion, the notion of security changes [9, 10, 20]. For example, for general user, leakage of the
message partially may not cause a severe damage but in defence, it may be a serious issue.
Hence, a cryptographic scheme (in this example, encryption scheme) which guarantees the
hiding of complete message (not partial) may be useful for general user but not for defence.
Ultimately, varied scenarios lead to different goals of adversary.

The second important factor for defining security notions is type of attack [9, 10, 20]. It
refers to the amount of information an adversary may have. The simplest scenario is when
adversary does not have any extra information other than the ciphertext. But, it does not
capture the full picture. For example, an adversary may trap many ciphertexts from the
communication channel and hence have extra information. Not only that, sometimes, he/she
can have access to the machine like encryption machine, decryption machine, signature ma-
chine etc. and can use this (these) for a period of time for his/her own purpose. Henceforth,
a proper analysis of type of attacks is required while designing any cryptographic scheme for

2

given scenario. In brief, where goal of adversary is to break the functionality of cryptographic
scheme, type of attack refers to the amount of information adversary may gather. Thus, the
need of security notion becomes obvious as it gives the correct view of the security achieved
by the proposed cryptographic scheme.

The security of a protocol depends not only on the cryptographic primitives but also how
they are combined. Improper combination of even highly secure cryptographic primitives
may result in a less secure protocols; whereas even less cryptographic primitives may give a
highly secure protocols [20]. In theory, it is always desirable to use these primitives which
achieve the highest level of security, but in practice, apart from security there are two other
important aspects - communication and computational overhead - which run parallel to the
security. Those protocols or cryptographic schemes are practically of no use whose compu-
tational or communication overhead is exponential. It is an observational fact (not mathe-
matical) that as the level of security increases, computational and communication overhead
increase [81, 39, 73, 31, 12, 30]. Hence, to seek for the exact security requirement is a better
choice than choosing always the most secure cryptographic primitives.

The security requirement of a protocol or cryptographic primitive is modelled mathemat-
ically and then it is analysed to check the achieved security level [20]. The mathematical
model should simulate the real threat model as close as possible. Security model of any
cryptographic primitive is modelled as a game between an adversary and a challenger [8].
Depending upon the the real threat, in the security model (notion), the adversary is provided
some oracle which responds in the constant time for each query given by the receiver [8, 10].
Some models (notions) put restriction upon the type of queries [20, 53, 79] also. In brief, (a)
behaviour of oracle and (b) restriction upon queries give the structure for type of attack.

By behaviour of oracle, we mean whether it is computational or decisional. By computa-
tional we mean, the response of oracle is neither true nor false (1/0), but it simulates any
computational machine like Decryption or Signature or Signcryption or Designcryption
machine etc. We raise the question and ask what if the behaviour of oracle is decisional -
response is either true or false. Such behaviour of oracle is not new in the literature like
plaintext checking [74] oracle which is decisional in nature. Given a message-ciphertext pair
to the plaintext checking oracle, it returns true (1) if that message is the decryption of the
given ciphertext else it returns false (0). In a similar fashion, we asked a natural question -
“What happens when oracle decides whether a given ciphertext is a valid ciphertext or an
invalid ciphertext”? We name this oracle, Chosen Ciphertext Verification Oracle. Exploring
the answer to the above mentioned question, we encounter one new security notion, IND-
CCVA, and we show that it lies between IND-CPA and IND-CCA2. Although it appears
that this oracle is a completely theoretical oracle, it is quite not true. Bleichenbacher [14]
has shown an attack on PKCS #1 using Chosen Ciphertext Verification Oracle supplying
full relevance in favour of such notion. Chapter 3 deals with this new security notion where
formal definition of IND-CCVA and its relation with existing security notions like IND-CPA,
IND-CCA1 and IND-CCA2 have been discussed.

3

1.2 Combination of Different Functionalities

Cryptography is not new to the world. From the time of Julius Ceaser, it has been used
as an art of hiding the secret [87]. Confidentiality was the main functionality, but as time
grew, its goal has become wider. Other functionalities like authentication, data-integrity and
non-repudiation have been added into the list [87]. Now, when the application is not limited
to a specific role, these functionalities alone are not sufficient. However, the combination of
functionalities in many cases give the desired solution [12, 8, 94, 21, 18, 43]. For example,
the security of mail does not rely upon the confidentiality of message only but also upon
the data-integrity and authentication of the sender. Although simple patching of different
schemes corresponding to different functionalities may be one of the solutions, yet the de-
sired security may not be achieved. In case of achieving confidentiality and authentication,
three different and obvious paradigms are (a) sign then encrypt (b) encrypt then sign and
(c) encrypt and sign. Although all paradigms yield confidentiality and authentication both,
latter two paradigms do not provide the desired security [3]. Keeping view of the needs
of applications, the proper study and analysis of different combinations of various crypto-
graphic primitives become essential to provide both security and efficiency.

Use of simple cryptographic primitives is one of the two approaches to build complex crypto-
graphic primitives. Another approach is to use a set of assumed hard mathematical problems
and then to use this set to construct desired schemes. Efficiency is the main advantage of
the later approach, but as the complexity of scheme grows, building such scheme becomes
a tedious task. Where the construction from the former approach gives many instantiations
of the scheme, later approach gives only one construction at a time. Besides it, the former
approach has two more advantages - (a) easier to construct (b) easier to do security analysis.
The former is in general less efficient than the later approach. However, the former approach
gives a much more clear understanding about the behaviour of simple cryptographic primi-
tives and its behaviour with the built complex primitives.

Following the first approach, in this thesis, we give (a) two different generic constructions
of Identity Based Signcryption schemes using Identity based Encryption and Identity based
Signature schemes (b) two different generic constructions of Signcryption schemes from En-
cryption and Signature schemes and (c) a new variant of Ring Signature called Ring Signa-
ture with Designated Verifier for Signer’s Identity and its generic construction using Ring
Signature and Identity Based Signcryption schemes. There are paradigms to construct one
signcryption scheme like Commit-then-Encrypt-and-Sign paradigm [3] which can be lifted to
construct Identity Based Signcryption schemes. There are other generic constructions also
[26, 69] for constructing signcryption schemes using Tag-Based Key Encapsulation Mecha-
nisms or Data Encapsulation Mechanisms [69] which give efficient constructions. Our pro-
posed constructions of signcryption schemes or identity based signcryption schemes may
not be efficient than many existing schemes. However, these are very much efficient con-
structions using encryption and signature schemes or identity based encryption and identity
based signature schemes compared to Sign-then-Encrypt approach or other existing generic
constructions which use encryption and signature schemes to construct signcryption schemes.

4

1.3 Organisation of the Thesis

Chapter 1 contains the introduction. In chapter 2, we provide the necessary preliminary
material required in later chapters.

In chapter 3 [77], we provide a new security notion called Indistinguishability against Cho-
sen Ciphertext Verification Attack (IND-CCVA). In existing security notions for public key
encryption schemes, adversary may or may not be given access to a decryption oracle. The
nature of this oracle is computational, i.e., for a given query on any ciphertext, it returns
the message which is the decryption of the queried ciphertext. In IND-CCVA, adversary has
access to a different oracle called Chosen Ciphertext Verification Oracle which is decisional
in nature. Upon querying over any ciphertext, this oracle returns boolean value, i.e., 1 if
ciphertext is valid, else 0.

Motivation of this notion comes from Bleichenbacher’s [14] attack on PKCS #1 which was,
at that time, termed as a chosen ciphertext attack. But our investigation shows that, in a
stricter manner, this attack can be termed as a chosen ciphertext verification attack. Chap-
ter 3 formalizes the notion of IND-CCVA and then shows that Cramer-Shoup light version
[31] is an example of IND-CCVA secure encryption scheme.

Trivially, IND-CCVA secure public key encryption schemes are IND-CPA secure also and
IND-CCA secure schemes are IND-CCVA secure also. We, in this chapter, investigated and
showed the existence of IND-CCVA secure schemes which are not IND-CCA secure and then
the existence of IND-CPA secure scheme which are not IND-CCVA secure and thus showed
a gap between IND-CPA and IND-CCVA and then the same between IND-CCVA and IND-
CCA.

The next two chapters contain the generic construction of signcryption schemes from encryp-
tion and signature schemes in identity based setting and traditional public key. In the year
1997, Yulian Zheng [94] proposed a new primitive viz signcryption in which confidentiality
and authentication are achieved simultaneously at low communication and computational
overhead. An-Dodis-Rabin [3] proposed a generic construction of signcryption schemes in
public key setting using Commit then Encrypt and Sign paradigm. It was efficient in both
signcrypt and designcrypt phases but it would not provide dM-IND-iCCA secure signcryp-
tion schemes. Lifting this paradigm in identity based setting would also result in IND-IBSC-
gCCA secure signcryption schemes, a less secure than IND-IBSC-CCA secure signcryption
schemes.

In an attempt to construct IND-IBSC-CCA secure signcryption schemes, chapter 4 [75, 76]
provides two generic constructions of achieving IND-IBSC-CCA secure identity based sign-
cryption schemes from IND-ID-CCA secure identity based encryption schemes. The differ-
ence between these constructions lies in the computational efficiency. The first construction
is efficient in signcrypt phase in which encrypt and sign algorithms can be run in parallel.
Whereas the second construction is efficient in both signcrypt and designcrypt phases due
to possible parallelisation of encrypt and sign algorithms during signcrypt phase and that of

5

decrypt and verify algorithms during designcrypt phase. Both constructions use one IND-ID-
CCA secure identity based encryption scheme and one SUF-ID-CMA secure identity based
signature scheme. Where first construction uses three hash functions, second construction
uses only two. Both constructions result in IND-IBSC-CCA and ESUF-IBSC-CMA secure
signcryption schemes in the random oracle model.

Chapter 5 provides the generic constructions of achieving dM-IND-iCCA secure signcryp-
tion schemes from (a) OWE-CPA secure and (b) OWE-PCA secure encryption schemes.
OWE-CPA is the minimum security required for any public key encryption scheme whereas
dM-IND-iCCA is the highest known level of security for any signcryption scheme in public key
setting. Another construction using relatively more secure public key encryption scheme than
OWE-CPA, viz OWE-PCA secure, gives different but almost similar signcryption scheme
which achieves the same level of security. Both these constructions are computationally ef-
ficient because encrypt and sign algorithms can be run in parallel during signcrypt phase as
well as decrypt and verify algorithms can be run in parallel during designcrypt phase.

In chapter 6, we propose a new variant of Ring Signature called Ring Signature with Des-
ignated Verifier for Signer-Identity and provide one generic construction. Ring signature
enables a user to sign a message so that a “ring” of possible signers (of which the user is
a member) is identified, without revealing the actual signer. Our proposed variant addi-
tionally enables the signer to reveal its identity to a designated verifier at later stage. The
whole algorithm can be divided into three phases - (a) Signer first generates a ring signature
designated for a verifier on some chosen message and publishes them on public domain so
that anybody can verify the ring signature, then (b) Signer then reveals a secret value viz
trapdoor publicly and (c) Once trapdoor is published, only designated verifier may know the
identity of actual signer. Such variants are useful in those scenarios where user (signer) may
seek for reward at later stage.

This chapter describes the same variant of Ring Signature which was proposed in [84],
however [84] lacks the proper formalization of the security notion of Ring Signature with
Designated Verifier for Signer-Identity. This chapter formalizes the definition of the pro-
posed variant and its security notions and moreover proposed a generic construction which
is different from the construction proposed in [84]. The proposed construction achieves de-
sired security properties in the random oracle model using an unconditionally anonymous
and unforgeable ring signature, an identity based collision resistant (defined in chapter 2,
subsection 2.9.2) and ANON-IBSC-CCA secure identity based signcryption schemes and two
hash functions.

6

Chapter 2

Definitions and Preliminaries

2.1 Negligible Functions :

A function f : N → R is said to be a negligible function if for every c ∈ N, there exists
Nc ∈ N such that for all n > Nc,

f(n) <
1

nc

For example, 2−n and n−log2n are negligible functions. Functions which are not negligible are
called non-negligible functions.

2.2 Hash Functions :

A hash function H is a function from {0, 1}∗ (arbitrary finite length string) to {0, 1}n (fixed
length string), where n ∈ Z+. For cryptographic purpose, H should be easily computable.

2.2.1 Security Notions of Hash Functions

1. Pre-image resistance - A hash function H is called pre-image resistant if for al-
most all pre-specified outputs, it is computationally infeasible to find any input which
maps to the specified output, i.e., for a given input y ∈ {0, 1}n, it should be difficult
(computationally infeasible) to find x ∈ {0, 1}∗ such that H(x) = y.

2. Second Pre-image resistance - A hash function H is called second pre-image re-
sistant if it is computationally infeasible to find second input which maps to the same
output, i.e., for a given input x1 ∈ {0, 1}∗, it should be difficult (computationally
infeasible) to find second input x2 ∈ {0, 1}∗ and x1 6= x2 such that H(x1) = H(x2).

3. Collision resistance - A hash function H is called collision resistant if it is com-
putationally infeasible to two inputs which map to the same output, i.e., it should be
difficult (computationally infeasible) to find two inputs x1 and x2 ∈ {0, 1}∗ and x1 6= x2

such that H(x1) = H(x2).

7

2.2.2 Random Oracle Model

Random oracle model tries to capture the notion of an ideal hash function. For an ideal
hash function, the only way to determine the value of H(x) is to actually calculate the value
of H at x and it should be true even if many other values (x1, H(x1)), (x2, H(x2)), . . . are
known or computed. This model was proposed by Bellare and Rogaway [11] which gives a
mathematical model to capture the notion of an ideal hash function. In this model, a hash
function H : {0, 1}∗ → {0, 1}n is chosen at random from the set of all functions which map
from {0, 1}∗ to {0, 1}n and then an oracle access is provided to compute the values of H.
In other words, in this model, no formula or algorithm is provided to compute the values of
function H; the only way to know is to query the oracle. It can be thought of as looking
the value of H(x) in a giant list of random numbers such that there is a random value of
H(x) for each x. Although there is no true random oracle in the existing life, we hope
that a well designed function will behave like a random oracle model. This model provides
a bridge between cryptographic theory and cryptographic practice. This paradigm yields
protocols much more efficient than standard ones while retaining many of the advantages of
the provable security.

2.3 Public Key Encryption Schemes :

A public key encryption scheme SE is given by the following algorithms:

• KG(1λ): A probabilistic polynomial time algorithm which takes security parameter
1λ as input and outputs a public-private key pair (PK, SK).

• ENC(m,PK): A probabilistic polynomial time algorithm which takes a message m
and public key PK as input and returns ciphertext C.

• DEC(C, SK, PK): A deterministic polynomial time algorithm which takes ciphertext
C, secret key SK and public key PK as input and returns a message m if C is a valid
ciphertext else ⊥.

For consistency, it is required that for all (PK, SK)← KG(1λ) and all messages m,
m = DEC(ENC(m,PK), SK, PK).

The random string for the probabilistic encryption algorithm ENC can be generated inter-
nally or can be provided externally. If the random string r = r1||r2|| . . . ||rk where k ∈ Z+∪{0}
(may be an empty string if k = 0) is provided externally for encryption algorithm, we denote
it by ENCr, else by simply ENC. It can be easily observed that for a given random string r
and a message m, the encryption algorithm outputs a unique ciphertext c.

2.3.1 Security Notions of Encryption Schemes

A public key encryption scheme is said to be OWE (One Way Encryption) secure if no
probabilistic polynomial time algorithm A has a non-negligible advantage, where the advan-
tage of A is defined as

8

Adv(A) = Pr[(PK, SK)← KG(1λ); C ← ENC(m,PK);A(C, PK) = DEC(C, SK, PK)].

OWE-PCA : An OWE secure encryption scheme SE is said to be OWE-PCA secure if
no probabilistic polynomial time algorithm A = (A1,A2) has a non-negligible advantage
in the following game. In this game, A has access to a plaintext checking oracle O =
{Plaintext Checking}.

• Plaintext Checking: Given a message-ciphertext pair, (m, C), the oracle returns 1 if
m = DEC(C, SK, PK) else 0.

GameOWE−PCA
SE ,A

(1λ)

• (PK,SK)← KG(1λ)

• (st)← AO1 (PK)

• CC ← ENC(mC , PK)

• m′ ← AO2 (CC , PK, st)

The advantage of A is defined as Adv(A) = Pr[mC = m′].

Informally, no adversary can invert the ciphertext easily to get back the original message even
if he/she has access to an oracle that verifies the validity of different message-ciphertext pairs.
In the above game, adversary has access to this oracle before and after getting the challenged
ciphertext. It should be noted that there is no restriction over the queried message-ciphertext
pair, i.e., adversary can query over the message-challenged ciphertext pair also.

IND-CPA : A public key encryption scheme SE is said to be IND-CPA (indistinguish-
able against chosen plaintext attack) secure if no probabilistic polynomial time algo-
rithm A = (A1,A2) has a non-negligible advantage in the following game.

GameIND−CPASE ,A
(1λ)

• (PK,SK)← KG(1λ)

• (m0,m1, st)← A1(PK) ; |m0| = |m1|

• b
R← {0, 1}

• Cb ← ENC(mb, PK)

• b′ ← A2(Cb, PK, st)

The advantage of A is defined as Adv(A) = |Pr[b = b′]− 1
2
|.

9

IND-CCA1/CCA2 : A public key encryption scheme SE is said to be IND-CCA1/CCA2
(indistinguishable against chosen ciphertext attack (/adaptive chosen ciphertext
attack)) secure if no probabilistic polynomial time algorithm A = (A1,A2) has a non-
negligible advantage in the following game. In this game, A has access to a decryption
oracle O = {Decryption}.

• Decryption: Given a ciphertext C, except the challenge ciphertext, the oracle returns
m/ ⊥← DEC(C, SK, PK).

GameIND−CCA1
SE ,A

(1λ)

• (PK,SK)← KG(1λ)

• (m0,m1, st)← AO1 (PK) ; |m0| = |m1|

• b
R← {0, 1}

• Cb ← ENC(mb, PK)

• b′ ← A2(Cb, PK, st)

GameIND−CCA2
SE ,A

(1λ)

• (PK,SK)← KG(1λ)

• (m0,m1, st)← AO1 (PK) ; |m0| = |m1|

• b
R← {0, 1}

• Cb ← ENC(mb, PK)

• b′ ← AO2 (Cb, PK, st)

The advantage of A is defined as Adv(A) = |Pr[b = b′] − 1
2
|. It is easy to observe that in

IND-CCA1 game, adversary A does not have access to decryption oracle once the challenged
ciphertext Cb is obtained whereas in IND-CCA2, A has access to this oracle throughout the
game resulting IND-CCA2 a stronger notion than IND-CCA1.

2.4 Public Key Signature Schemes :

A public key signature scheme SS is given by the following algorithms:

• KG(1λ): A probabilistic polynomial time algorithm which takes security parameter
1λ as input and outputs a public-private key pair (PK, SK).

• SIG(m,SK,PK): A probabilistic polynomial time algorithm which takes a message
m, a secret key SK, public key PK as input and outputs a signature σ.

• VER(m,σ, PK): A deterministic polynomial time algorithm which takes a message
m, a signature σ, and public key PK as input and outputs true if σ is a valid signature
on message m, else it returns false.

2.4.1 Security Notions of Signature Schemes

A signature scheme SS is said to be EUF/SUF-CMA (existentially/strongly unforge-
able against chosen message attack) secure if no probabilistic polynomial time algorithm
has a non-negligible advantage in the following game. In this game, A has access to a sig-
nature oracle O = {Signature}.

10

• Signature: Given a message m, the oracle returns σ ← SIG(m,SK,PK) and adds
(m,σ) to the list L.

GameEUF−CMA
SS ,A

(1λ)

• L← φ

• (PK,SK)← KG(1λ)

• (mC , σC)← AO(PK)

• x← VER(mC , σC , PK)

GameSUF−CMA
SS ,A

(1λ)

• L← φ

• (PK,SK)← KG(1λ)

• (mC , σC)← AO(PK)

• x← VER(mC , σC , PK)

Advantage of A is defined as Adv(A) = Pr[x = true ∧ (mC , σ
′) /∈ L]. In EUF-CMA, σ′ can

be any string but in SUF-CMA σ′ = σC .

2.5 Public Key Signcryption Schemes :

A public key signcryption scheme SSC is given by the following algorithms:

• Setup(1λ): A probabilistic polynomial time algorithm which takes a security param-
eter 1λ as input and outputs the public parameters Params.

• KGRec(Params): A probabilistic polynomial time algorithm which takes Params as
input and outputs the public-private (secret) receiver key pair (PKRec, SKRec).

• KGSen(Params): A probabilistic polynomial time algorithm which takes Params as
input and outputs the public-private sender key pair (PKSen, SKSen).

• SC(m,SKSen, PKRec, PKSen, Params): A probabilistic polynomial time algorithm
which takes a message m, a sender’s secret key SKSen, a receiver’s public key PKRec,
sender’s public key PKSen and public parameters Params as input and returns cipher-
text C.

• DSC(C, SKRec, PKRec, PKSen, Params): A deterministic polynomial time algorithm
which takes a ciphertext C, a receiver’s secret key SKRec, a receiver’s public key PKRec,
a sender’s public key PKSen and public parameters Params and returns either a
message m if C is a valid ciphertext, else it returns ⊥.

For consistency, it is required that for all Params ← Setup(1λ), for all identities of re-
ceiver Rec and sender Sen and for all messages m, if (PKRec, SKRec) ← KGRec(Params),
(PKSen, SKSen)← KGSen(Params), then
m = DSC(SC(m,SKSen, PKRec, PKSen, Params), SKRec, PKRec, PKSen, Params).

11

2.5.1 Security Notions of Signcryption Schemes

The security of signcryption schemes can be viewed in two settings-‘two-user’ and ‘multi-
user’. In two-user setting, there is only one sender and receiver whereas in multi-user setting,
there can be more than one sender and receiver. In real scenario, adversary can sniff the
channel and he/she can get ciphertexts corresponding to different senders and different re-
ceivers. This is the multi-user setting scenario. Then the question arises - ‘why two-user
setting?’. Although the two-user setting does not capture the real scenario, it may be help-
ful in building any signcryption scheme which is secure in the multi-user setting. The idea
is to build a scheme which is secure in the two-user setting and then do some minor but
proper modifications to make it secure in the multi-user setting. The general idea (which is
neither necessary nor sufficient) to make a scheme secure in the multi-user setting from
the two-user setting is:

1. During encryption, include the identity of the sender IDSen together with the encrypted
message.

2. During signature generation, include the identity of the receiver IDRec together with
the signed message.

3. At the receiver’s end, output ⊥, if any of expected sender’s or receiver’s identity does
not match.

Moreover, one can consider two security models - (i) outsider (weaker) (ii) insider (stronger).
In the insider security model, the sender or the receiver can act as an adversary but in the
outsider security model, adversary can neither be a sender nor a receiver. From the model
itself, it is clear that the insider security model is stronger than the outsider security model.

Security Notions in Two-User Setting

Now, we define the security notions in two-user insider and two-user outsider security model.
In both models, the sender and the receiver will be fixed at the beginning of the game. For
elaborate discussion on security for signcryption, one can refer to chapter 2 of [35].

Confidentiality: A signcryption scheme SSC is said to be T-IND-o/iCCA (indistin-
guishable against outsider/insider chosen ciphertext attack under two-user set-
ting) secure if no probabilistic polynomial time adversary A = (A1,A2) has a non-negligible
advantage in the following game. In this game, the adversary has access to a designcryption
oracle O = {Designcryption}.

• Designcryption : Given a ciphertext C, except the challenge ciphertext, the oracle
returns m/ ⊥← DSC(C, SKRec, PKRec, PKSen, Params), where SKRec, PKRec and
PKSen are generated in the beginning of the game and they are fixed.

12

GameT−IND−oCCASSC ,A
(1λ)

• Params← Setup(1λ)

• (PKRec, SKRec)← KGRec(Params)

• (PKSen, SKSen)← KGSen(Params)

• (m0,m1, st)← AO1 (PKRec, PKSen, Params);
|m0| = |m1|

• b
R← {0, 1}

• Cb ← SC(mb, SKSen, PKRec, PKSen, Params)

• b′ ← AO2 (Cb, PKRec, PKSen, Params, st)

GameT−IND−iCCASSC ,A
(1λ)

• Params← Setup(1λ)

• (PKRec, SKRec)← KGRec(Params)

• (PKSen, SKSen)← KGSen(Params)

• (m0,m1, st)← AO1 (PKRec, PKSen, SKSen, Params);
|m0| = |m1|

• b
R← {0, 1}

• Cb ← SC(mb, SKSen, PKRec, PKSen, Params)

• b′ ← AO2 (Cb, PKRec, PKSen, SKSen, Params, st)

The advantage of A is defined as Adv(A) = |Pr[b = b′]− 1
2
|

Unforgeability: A signcryption scheme SSC is said to be T-EUF-o/iCMA (existentially
unforgeable against outsider/insider chosen message attack under two-user set-
ting) secure if no probabilistic polynomial time adversary A has a non-negligible advantage
in the following game. In this game, the adversary has access to a signcryption oracle
O = {Signcryption}.

• Signcryption : Given a messagem, the oracle returns C ← SC(m,SKSen, PKRec, PKSen,
Params) where SKSen, PKRec and PKSen are generated in the beginning of the game.
The oracle then adds m to the list L.

GameT−EUF−oCMA
SSC ,A

(1λ)

• L← φ

• Params← Setup(1λ)

• (PKRec, SKRec)← KGRec(Params)

• (PKSen, SKSen)← KGSen(Params)

• C ← AO(PKRec, PKSen, Params)

• m← DSC(C, SKRec, PKRec, PKSen, Params)

GameT−EUF−iCMA
SSC ,A

(1λ)

• L← φ

• Params← Setup(1λ)

• (PKRec, SKRec)← KGRec(Params)

• (PKSen, SKSen)← KGSen(Params)

• C ← AO(PKRec, PKSen, SKRec, Params)

• m← DSC(C, SKRec, PKRec, PKSen, Params)

The advantage of A is defined as Adv(A) = Pr[m 6=⊥ ∧m /∈ L]

A signcryption scheme SSC is said to be T-SUF-o/iCMA (strongly unforgeable against
outsider/insider chosen message attack under two-user setting) secure if no proba-
bilistic polynomial time adversary A has a non-negligible advantage in the following game.
In this game, the adversary has access to a signcryption oracle O = {Signcryption}.

13

• Signcryption : Given a messagem, the oracle returns C ← SC(m,SKSen, PKRec, PKSen,
Params) where SKSen, PKRec and PKSen are generated in the beginning of the game.
The oracle then adds (m, C) to the list L.

GameT−SUF−oCMA
SSC ,A

(1λ)

• L← φ

• Params← Setup(1λ)

• (PKRec, SKRec)← KGRec(Params)

• (PKSen, SKSen)← KGSen(Params)

• C ← AO1 (PKRec, PKSen, Params)

• m← DSC(C, SKRec, PKRec, PKSen, Params)

GameT−SUF−iCMA
SSC ,A

(1λ)

• L← φ

• Params← Setup(1λ)

• (PKRec, SKRec)← KGRec(Params)

• (PKSen, SKSen)← KGSen(Params)

• C ← AO1 (PKRec, PKSen, SKRec, Params)

• m← DSC(C, SKRec, PKRec, PKSen, Params)

The advantage of A is defined as Adv(A) = Pr[m 6=⊥ ∧(m, C) /∈ L]

Security Notions in Multi-User Setting

Now, we define the security notions in multi-user setting. It can be further divided into
two different settings - (a) fixed multi-user and (b) dynamic multi-user setting. In fixed
multi-user setting, the receiver and sender are fixed at the beginning of the game whereas
in dynamic multi-user setting only receiver (in confidentiality) or sender (in unforgeability)
is fixed. Then what is difference between two-user and fixed multi-user setting? The dif-
ference lies at oracle query. In two-user setting, adversary is allowed to query only over
fixed receiver’s and sender’s identities (fixed at the beginning of the game). Whereas in
fixed multi-user setting, in the game of confidentiality, adversary can query the designcryp-
tion oracle over different ciphertexts and different sender’s identities (except the challenge
ciphertext and the fixed sender’s identity) but fixed identity of receiver that is fixed at the
beginning of the game. In the same way, in the game of unforgeability, adversary can query
the signcryption oracle over different messages and different receiver’s identities but fixed
identity of sender that is fixed at the beginning of the game.

The difference in the two-user setting lies at the challenge phase. In the fixed multi-user,
at the beginning of the game, the sender’s and receiver’s identities are fixed on which the
attacker will mount an attack whereas in the dynamic multi-user, only one identity is fixed,
namely, the receiver’s identity in the game of confidentiality and the sender’s identity in the
game of unforgeability. Then, at the challenge phase, in the fixed multi-user model, the
adversary will take those sender’s and receiver’s identities which are fixed at the beginning
of the game. Whereas in the dynamic multi-user setting, in the game of confidentiality,
the adversary chooses the sender’s identity and similarly in the game of unforgeability, the
receiver’s identity is chosen at the challenge phase.

14

Now, we define the security notions in the fixed multi-user outsider/insider security model.
In the fixed multi-user model, the public-private key pair of the receiver and the sender are
generated at the beginning of the game. In the insider security model, the adversary knows
the private key of the sender (in the game of confidentiality) or the receiver (in the game of
unforgeability). For more discussions on security for signcryption in multi-user setting, one
can refer to chapter 3 of [35].

Confidentiality: A signcryption scheme SSC is said to be fM-IND-o/iCCA (indistin-
guishable against outsider/insider chosen ciphertext attack under fixed multi-
user model) secure [69] if no probabilistic polynomial time adversary A = (A1,A2) has a
non-negligible advantage in the following game. In this game, the adversary A has access to
a designcryption oracle O = {Designcryption}.

• Designcryption : Given a ciphertext C, the sender’s identity Sen∗, the oracle returns
m/ ⊥← DSC(C, SKRec, PKRec, PKSen∗ , Params), where SKRec and PKRec are gen-
erated in the beginning of the game. Query over (Cb,Sen) are not allowed. Here Cb
refers to the challenge ciphertext and Sen refers to the sender’s identity generated at
the beginning of the game.

GamefM−IND−oCCASSC ,A
(1λ)

• Params← Setup(1λ)

• (PKRec, SKRec)← KGRec(Params)

• (PKSen, SKSen)← KGSen(Params)

• (m0,m1, st) ← AO1 (PKRec, PKSen, Params);
|m0| = |mb|

• b
R← {0, 1}

• Cb ← SC(mb, SKSen, PKRec, PKSen, Params)

• b′ ← AO2 (Cb, PKRec, PKSen, Params, st)

GamefM−IND−iCCASSC ,A
(1λ)

• Params← Setup(1λ)

• (PKRec, SKRec)← KGRec(Params)

• (PKSen, SKSen)← KGSen(Params)

• (m0,m1, st)← AO1 (PKRec, PKSen, SKSen, Params)
|m0| = |mb|

• b
R← {0, 1}

• Cb ← SC(mb, SKSen, PKRec, PKSen, Params)

• b′ ← AO2 (Cb, PKRec, PKSen, SKSen, Params, st)

The advantage of A is defined as Adv(A) = |Pr[b = b′]− 1
2
|

Unforgeability: A signcryption scheme SSC is said to be fM-EUF-o/iCMA (existen-
tially unforgeable against outsider/insider chosen message attack under fixed
multi-user model) secure [69] if no probabilistic polynomial time adversary A has a non-
negligible advantage in the following game. In this game, the adversary A has access to a
signcryption oracle O = {Signcryption}.

• Signcryption : Given a message m and receiver’s identity Rec∗, the oracle returns
C ← SC(m,SKSen, PKRec∗ , PKSen, Params) where PKRec and SKSen are generated
in the beginning of the game. The oracle then adds m to the list L.

15

GamefM−EUF−oCMA
SSC ,A

(1λ)

• L← φ

• Params← Setup(1λ)

• (PKRec, SKRec)← KGRec(Params)

• (PKSen, SKSen)← KGSen(Params)

• C ← AO(PKRec, PKSen, Params)

• m← DSC(C, SKRec, PKRec, PKSen, Params)

GamefM−EUF−iCMA
SSC ,A

(1λ)

• L← φ

• Params← Setup(1λ)

• (PKRec, SKRec)← KGRec(Params)

• (PKSen, SKSen)← KGSen(Params)

• C ← AO(PKRec, PKSen, SKRec, Params)

• m← DSC(C, SKRec, PKRec, PKSen, Params)

The advantage of A is defined as Adv(A) = Pr[m 6=⊥ ∧m /∈ L]

A signcryption scheme SSC is said to be fM-SUF-o/iCMA (strongly unforgeable against
outsider/insider chosen message attack under fixed multi-user model) secure if no
probabilistic polynomial time adversary A has a non-negligible advantage in the following
game. In this game, the adversaryA has access to a signcryption oracleO = {Signcryption}.

• Signcryption : Given a message m and receiver’s identity Rec∗, the oracle returns
C ← SC(m,SKSen, PKRec∗ , PKSen, Params) where PKRec and SKSen are generated
in the beginning of the game. The oracle then adds (m, C) to the list L.

GamefM−SUF−oCMA
SSC ,A

(1λ)

• L← φ

• Params← Setup(1λ)

• (PKRec, SKRec)← KGRec(Params)

• (PKSen, SKSen)← KGSen(Params)

• C ← AO(PKRec, PKSen, Params)

• m← DSC(C, SKRec, PKRec, PKSen, Params)

GamefM−SUF−iCMA
SSC ,A

(1λ)

• L← φ

• Params← Setup(1λ)

• (PKRec, SKRec)← KGRec(Params)

• (PKSen, SKSen)← KGSen(Params)

• C ← AO(PKRec, PKSen, SKRec, Params)

• m← DSC(C, SKRec, PKRec, PKSen, Params)

The advantage of A is defined as Adv(A) = Pr[m 6=⊥ ∧(m, C) /∈ L]

Similarly, we can define the security notions in the dynamic multi-user outsider/insider se-
curity model. In the dynamic multi-user model, public-private key pair of receiver (in the
game of confidentiality) or sender (in the game of unforgeability) only is generated at the
beginning of the game. In the insider security model, the adversary knows the private key
of the sender (in the game of confidentiality) or the receiver (in the game of unforgeability).

16

Confidentiality: A signcryption scheme SSC is said to be dM-IND-o/iCCA (indis-
tinguishable against outsider/insider chosen ciphertext attack under dynamic
multi-user model) secure [69] if no probabilistic polynomial time adversary A = (A1,A2)
has a non-negligible advantage in the following game. In this game, the adversary A has
access to a designcryption oracle O = {Designcryption}.

• Designcryption : Given a ciphertext C, the sender’s identity Sen∗, the oracle returns
m/ ⊥← DSC(C, SKRec, PKRec, PKSen∗ , Params), where SKRec and PKRec are gener-
ated in the beginning of the game. Query over (Cb,Sen) is not allowed. Here Cb refers
to the challenge ciphertext and Sen refers to the sender’s identity chosen by adversary
at the challenge phase.

GamedM−IND−oCCASSC ,A
(1λ)

• Params← Setup(1λ)

• (PKRec, SKRec)← KGRec(Params)

• (m0,m1, Sen, st)← AO1 (PKRec, Params);
|m0| = |m1|

• b
R← {0, 1}

• Cb ← SC(mb, SKSen, PKRec, PKSen, Params)

• b′ ← AO2 (Cb, PKRec, PKSen, Params, st)

GamedM−IND−iCCASSC ,A
(1λ)

• Params← Setup(1λ)

• (PKRec, SKRec)← KGRec(Params)

• (m0,m1, Sen, st)← AO1 (PKRec, PKSen, Params);
|m0| = |m1|

• b
R← {0, 1}

• Cb ← SC(mb, SKSen, PKRec, PKSen, Params)

• b′ ← AO2 (Cb, PKRec, PKSen, SKSen, Params, st)

The advantage of A is defined as Adv(A) = |Pr[b = b′]− 1
2
|

Unforgeability: A signcryption scheme SSC is said to be dM-EUF-o/iCMA (existen-
tially unforgeable against outsider/insider chosen message attack under dynamic
multi-user model) secure [69] if no probabilistic polynomial time adversary A has a non-
negligible advantage in the following game. In this game, the adversary A has access to a
signcryption oracle O = {Signcryption}.

• Signcryption : Given a message m and receiver’s identity Rec∗, the oracle returns
C ← SC(m,SKSen, PKRec∗ , PKSen, Params) where PKSen and SKSen are generated
in the beginning of the game. The oracle then adds m to the list L.

17

GamedM−EUF−oCMA
SSC ,A

(1λ)

• L← φ

• Params← Setup(1λ)

• (PKSen, SKSen)← KGSen(Params)

• (C, Rec)← AO1 (PKRec, PKSen, Params)

• m← DSC(C, SKRec, PKRec, PKSen, Params)

GamedM−EUF−iCMA
SSC ,A

(1λ)

• L← φ

• Params← Setup(1λ)

• (PKSen, SKSen)← KGSen(Params)

• (C, Rec)← AO1 (PKRec, PKSen, SKRec, Params)

• m← DSC(C, SKRec, PKRec, PKSen, Params)

The advantage of A is defined as Adv(A) = Pr[m 6=⊥ ∧m /∈ L]

A signcryption scheme SSC is said to be dM-SUF-o/iCMA (strongly unforgeable
against outsider/insider chosen message attack under dynamic multi-user model)
secure if no probabilistic polynomial time adversary A has a non-negligible advantage in
the following game. In this game, the adversary A has access to a signcryption oracle
O = {Signcryption}.

• Signcryption : Given a message m and receiver’s identity Rec∗, the oracle returns
C ← SC(m,SKSen, PKRec∗ , PKSen, Params) where PKSen and SKSen are generated
in the beginning of the game. The oracle then adds (m, C) to the list L.

GamedM−SUF−oCMA
SSC ,A

(1λ)

• L← φ

• Params← Setup(1λ)

• (PKSen, SKSen)← KGSen(Params)

• (C, Rec)← AO(PKRec, PKSen, Params)

• m← DSC(C, SKRec, PKRec, PKSen, Params)

GamedM−SUF−iCMA
SSC ,A

(1λ)

• L← φ

• Params← Setup(1λ)

• (PKSen, SKSen)← KGSen(Params)

• (C, Rec)← AO(PKRec, PKSen, SKRec, Params)

• m← DSC(C, SKRec, PKRec, PKSen, Params)

The advantage of A is defined as Adv(A) = Pr[m 6=⊥ ∧(m, C) /∈ L]

2.6 Commitment Schemes :

Throughout this thesis, by a Commitment Scheme we mean a non-interactive Commitment
Scheme. A Commitment Scheme consists of three algorithms:

• Setup(1λ): A probabilistic polynomial time algorithm that takes security parameter
1λ as input and outputs a commitment key CK.

18

• Commit(m,CK): A probabilistic polynomial time algorithm which takes a message
m, the commitment key CK and outputs a pair (c, d), where c is the commitment and
d is the decommitment.

• Open((c, d), CK): A deterministic polynomial time algorithm which takes commitment-
decommitment pair (c, d) and the commitment key CK as input and returns m if (c, d)
is a valid pair for m, else ⊥.

For consistency, it is required that Open(Commit(m,CK),CK) = m for all message m ∈M.

2.6.1 Security Notions of Commitment Schemes

Hiding Property : A commitment scheme SCOMM is said to have the hiding property if
no probabilistic polynomial time adversary A = (A1,A2) has a non-negligible advantage in
the following game.

GamehideSCOMM ,A(1λ)

• CK ← Setup(1λ)

• (m0,m1, st)← A1(CK)

• b
R← {0, 1}

• (cb, db)← Commit(mb, CK)

• b′ ← A2(cb, CK, st)

The advantage of A is defined as Adv(A) = |Pr[b = b′]− 1
2
|

Binding Property : A commitment scheme SCOMM is said to have binding property if no
probabilistic polynomial time adversary A has a non-negligible advantage in the following
game.

GamebindSCOMM ,A(1λ)

• CK ← Setup(1λ)

• ((c, d, d′))← A(CK)

• m← Open((c, d), CK)

• m′ ← Open((c, d′), CK)

The advantage of A is defined as Adv(A) = Pr[m 6= m′ ∧ (m,m′) 6=⊥]

19

Relaxed Binding Property : A commitment scheme SCOMM is said to have the relaxed
binding property if no probabilistic polynomial time adversary A = (A1,A2) has a non-
negligible advantage in the following game.

Gamer−bindSCOMM ,A(1λ)

• CK ← Setup(1λ)

• (m, st)← A1(CK)

• (c, d)← Commit(m,CK)

• d′ ← A2((c, d), CK, st)

• m′ ← Open((c, d′), CK)

The advantage of A is defined as Adv(A) = Pr[m 6= m′ ∧ (m,m′) 6=⊥]

2.7 Identity Based Encryption Schemes :

An Identity Based Encryption IBE scheme consists of four algorithms:

• Setup(1λ) : A probabilistic polynomial time algorithm run by a private key generator
(PKG) that takes security parameter 1λ as input and outputs a master secret key
MSK and public parameters Params.

• KeyGen(ID,MSK,Params) : A probabilistic polynomial time algorithm run by the
PKG which takes identity ID, master secret key MSK and public parameters Params
as input and outputs a secret key SKID associated to the identity ID.

• Encrypt(m, IDRec, Params) : A probabilistic polynomial time algorithm that takes
a message m, the recipient’s identity IDRec and public parameters Params as input
and outputs a ciphertext C.

• Decrypt(C, SKIDRec , IDRec, Params) : A deterministic polynomial time algorithm
that takes a ciphertext C, the recipient’s identity IDRec, the recipient’s secret key
SKIDRec and public parameters Params as input and outputs m if C is a valid cipher-
text of message m else ⊥.

For consistency, it is required that for all (MSK,Params)← Setup(1λ), all messages m and
for all receiver’s identity IDRec,

Decrypt(Encrypt(m, IDRec, Params), IDRec, SKIDRec , Params) = m.

20

2.7.1 Security Notions of IBE Schemes

An IBE scheme SIBE is said to be IND-ID-CCA (indistinguishable against adaptively
chosen-ciphertext attack under identity based setting) secure if no probabilistic poly-
nomial time adversary A = (A1,A2) has a non-negligible advantage in the following game.
In this game, A has access to two oracles, O1 = {KeyGeneration} and O2 = {Decryption}.

• KeyGeneration : Given an identity ID, except the challenge identity, the oracle returns
SKID ← KeyGen(ID,MSK,Params).

• Decryption : Given a ciphertext C and the receiver’s identity IDRec∗ , the oracle returns
m/ ⊥← Decrypt(C, SKIDRec∗ , IDRec∗ , Params). Query over (Cb, IDRec) is not allowed
where Cb is the challenge ciphertext and IDRec is the identity chosen by the adversary
at the challenge phase.

GameIND−ID−CCASIBE ,A
(1λ)

• (MSK,Params)← Setup(1λ)

• (m0,m1, IDRec, st)← AO1,O2
1 (Params); |m0| = |m1|

• b
R← {0, 1}

• Cb ← Encrypt(mb, IDRec, Params)

• b′ ← AO1,O2
2 (Cb, IDRec, Params, st)

The advantage of A is defined as Adv(A) = |Pr[b = b′]− 1
2
|

We define an IBE scheme SIBE to be IND-ID-gCCA secure if no probabilistic polynomial
time adversary has a non-negligible advantage in the game which is the same as that of
IND-ID-CCA (described above) except that while querying the Decryption oracle O2, the
adversary is not allowed to query on ciphertext C with the same identity IDR such that
Decrypt(Cb, IDR, SKR, Params) = Decrypt(C, IDR, SKR, Params).

Note that in the game of IND-ID-gCCA, IDR may or may not be equal to IDRec. In
response to queries on the Decryption oracle, the restriction is on all the decryption queries
on ciphertext C with IDR which gives the same message as queried on the challenge ciphertext
Cb with IDR. It is straightforward that IND-ID-CCA secure IBE schemes will be IND-ID-
gCCA secure also. If the IBE scheme is malleable in the sense that the ciphertext C can be
modified to another ciphertext C ′ such that C and C ′ yields different messages, say m and m′,
upon decryption with the relation R known between the messages (i.e. R(m,m′) is known),
then that IBE scheme cannot be IND-ID-gCCA secure.

21

2.8 Identity Based Signature Schemes :

An Identity Based Signature (IBS) scheme consists of four algorithms:

• Setup(1λ) : A probabilistic polynomial time algorithm run by a private key generator
(PKG) that takes a security parameter 1λ as input and outputs a master secret key
MSK and public parameters Params.

• KeyGen(ID,MSK,Params) : A probabilistic polynomial time algorithm run by
PKG which takes identity ID, master secret key MSK and public parameters Params
as input and outputs a secret key SKID associated to the identity ID.

• Sign(m,SKIDSen , IDSen, Params) : A probabilistic polynomial time algorithm that
takes a message m, the sender’s secret key SKIDsen , the sender’s identity IDSen and
public parameters Params as input and outputs a signature σ.

• Verify(m,σ, IDSen, Params) : A deterministic polynomial time algorithm that takes
a message m, a signature σ, the sender’s identity IDSen and public parameters Params
as input and outputs true if σ is a valid signature of the message m, else outputs false.

2.8.1 Security Notions of IBS Schemes

An IBS SIBS scheme is said to be SUF-ID-CMA (strongly unforgeable against cho-
sen message attack under identity based setting) if no probabilistic polynomial time
adversary A has a non-negligible advantage in the following game. In this game, A has
access to two oracles, O1 = {KeyGeneration} and O2 = {Signature}.

• KeyGeneration : Given an identity ID, except the challenge identity, the oracle returns
SKID ← KeyGen(ID,MSK,Params).

• Signature : Given a message m and the sender’s identity IDSen∗ , the oracle returns
σ ← Sign(m,SKIDSen∗ , IDSen∗ , Params) and adds (m,σ, IDSen∗) to the list L.

GameSUF−ID−CMA
SIBS ,A

(1λ)

• L← φ

• (MSK,Params)← Setup(1λ)

• (mC , σC , IDSen)← AO1,O2
1 (Params)

• x← Verify(mC , σC , IDSen, Params)

The advantage of A is defined as Adv(A) = Pr[x = true ∧ (mC , σC , IDSen) /∈ L]

22

2.9 Identity Based Signcryption Schemes :

An Identity Based Signcryption IBSC scheme consists of four algorithms (chapter 10 of [35];
chapter 2, page 151 of [63]):

• Setup(1λ) : A probabilistic polynomial time algorithm run by a private key generator
(PKG) that takes security parameter 1λ as input and outputs a master secret key
MSK and public parameters Params.

• KeyGen(MSK,Params) : A probabilistic polynomial time algorithm run by the
PKG which takes the master secret key MSK, an identity ID and public parameters
Params as input and outputs a secret key SKID associated to the identity ID.

• Signcrypt(m,SKIDSen , IDRec, IDSen, Params) : A probabilistic polynomial time al-
gorithm that takes a message m, the sender’s secret key SKIDSen , the receiver’s identity
IDRec, the sender’s identity IDSen and public parameters Params as input and outputs
a ciphertext C.

• Designcrypt(C, SKIDRec , IDRec, IDSen, Params) : A deterministic polynomial time
algorithm that takes a ciphertext C, the receiver’s secret key SKIDRec , the receiver’s
identity IDRec, the sender’s identity IDSen and public parameters Params as input
and outputs either a tuple (m, s) if C is a valid ciphertext of m, else an error symbol
⊥. Here, s is an additional information that allows the receiver to convince a third
party that the message actually emanated from the sender.

For consistency, it is required that if

C = Signcrypt(m,SKIDSen , IDRec, IDSen, Params)

then the output of the Designcrypt(C, SKIDRec , IDRec, IDSen, Params) should be (m, s)
where s is an additional information that allows the receiver Rec to convince a third party
that the message m actually emanated from the sender Sen.

2.9.1 Security Notions of IBSC Schemes

Confidentiality

An IBSC is said to be IND-IBSC-CCA (indistinguishable against chosen ciphertext
attack under identity based setting) (chapter 10 of [35]; chapter 2, page 152 of [63]) if
no probabilistic polynomial time adversary A = (A1,A2) has a non-negligible advantage in
the following game. In this game, A has access to three oracles O1 = {KeyGeneration},
O2 = {Signcryption} and O3 = {Designcryption}.

• KeyGeneration : Given an identity ID, except the challenge receiver’s identity, the
oracle returns SKID ← KeyGen(ID,MSK,Params).

• Signcryption : Given a message m, the sender’s identity IDSen∗ and the receiver’s iden-
tity IDRec∗ , the oracle returns C ← Signcrypt(m,SKIDSen∗ , IDSen∗ , IDRec∗ , Params).

23

• Designcryption : Given a ciphertext C, the receiver’s identity IDRec∗ and the sender’s
identity IDSen∗ , the oracle returns (m, s)← Designcrypt(C, SKIDRec∗ , IDRec∗ , IDSen∗ ,
Params). Query over (Cb, IDRec, IDSen) is not allowed, where Cb is the challenge
ciphertext, IDRec and IDSen are the challenge identity of receiver and sender respec-
tively.

GameIND−IBSC−CCASIBSC ,A
(1λ)

• (MSK,Params)← Setup(1λ)

• (m0,m1, IDRec, IDSen, st)← AO1,O2,O3
1 (Params); |m0| = |m1|

• b
R← {0, 1}

• Cb ← Signcrypt(mb, SKIDSen
, IDRec, IDSen, Params)

• b′ ← AO1,O2,O3
2 (Cb, IDRec, IDSen, SKIDSen

, Params, st)

The advantage of A is defined as Adv(A) = |Pr[b′ = b]− 1
2
|.

We define an IBSC scheme to be IND-IBSC-gCCA secure if no probabilistic polynomial
time adversary has a non-negligible advantage in the game which is the same as that of
IND-IBSC-CCA except that while querying the Designcryption oracle, the adversary is
not allowed to query on ciphertext C on the same receiver’s identity IDRec and some other
sender’s identity IDSen∗ (may be different from IDSen) such that the first string of the
output of the Designcryption(Cb, SKIDRec , IDRec, IDSen, Params), i.e, message mb and the
first string of the output of the Designcryption(C, SKIDRec , IDRec, IDSen∗ , Params), i.e.,
message m are same.

An IBSC is said to be ANON-IBSC-CCA (anonymous against chosen ciphertext at-
tack under identity based setting) (chapter 10, page 210 of [35]; chapter 2, page 156 of
[63]) if no probabilistic polynomial time adversary A = (A1,A2) has a non-negligible advan-
tage in the following game. In this game,A has access to three oraclesO1 = {KeyGeneration},
O2 = {Signcryption} and O3 = {Designcryption}.

• KeyGeneration : Given an identity ID, except the challenge receiver’s identities, the
oracle returns SKID ← KeyGen(ID,MSK,Params).

• Signcryption : Given a message m, the sender’s identity IDSen∗ and the receiver’s iden-
tity IDRec∗ , the oracle returns C ← Signcrypt(m,SKIDSen∗ , IDSen∗ , IDRec∗ , Params).

• Designcryption : Given a ciphertext C, the receiver’s identity IDRec∗ and the sender’s
identity IDSen∗ , the oracle returns (m, s)← Designcrypt(C, SKIDRec∗ , IDRec∗ , IDSen∗ ,
Params). Queries over (Cb,b̂, IDRec0 , IDSen) and (Cb,b̂, IDRec0 , IDSen) are not allowed,
where Cb,b̂ is the challenge ciphertext, IDRec0 , IDRec1 are challenge identities of receivers
and IDSen is any identity of sender.

24

GameANON−IBSC−CCASIBSC ,A
(1λ)

• (MSK,Params)← Setup(1λ)

• (m, IDRec0 , IDRec1 , IDSen0
, IDSen1

, st)← AO1,O2,O3
1 (Params)

• b, b̂
R← {0, 1}

• Cb,b̂ ← Signcrypt(m,SKIDSenb
, IDRec

b̂
, IDSenb

, Params)

• (b′, b̂′)← AO1,O2,O3
2 (Cb,b̂, IDRec0 , IDRec1 , IDSen0

, IDSen1
, SKIDSen0

, SKIDSen1
, Params, st)

The advantage of A is defined as Adv(A) = |Pr[(b′, b̂′) = (b, b̂)]− 1
4
|.

Note that in the game of ANON-IBSC-CCA, the ciphertext conveys no information either
about the sender or the receiver. This game is same as IND-IBSC-CCA except this fact
that challenge is on identities instead of the message (see chapter 10, page 210 of [35]). It is
obvious from the definition that even if the ciphertext leaks information about the message,
the security of ANON-IBSC-CCA may be satisfied unless it is disproved theoretically.

Unforgeability

An IBSC is said to be ESUF-IBSC-CMA (signature unforgeable against chosen
message attack under identity based setting) (chapter 10, page 207 of [35]) if no prob-
abilistic polynomial time adversary A has a non-negligible advantage in the following game.
In this game, A has access to three oracles O1 = {KeyGeneration}, O2 = {Signcryption}
and O3 = {Designcryption}.

• KeyGeneration : Given an identity ID, except the challenge sender’s identity, the
oracle returns SKID ← KeyGen(ID,MSK,Params).

• Signcryption : Given a message m, the sender’s identity IDSen∗ and the receiver’s iden-
tity IDRec∗ , the oracle returns C ← Signcrypt(m,SKIDSen∗ , IDSen∗ , IDRec∗ , Params).
Let (m, s) ← Designcrypt(C, SKIDRec∗ , IDRec∗ , IDSen∗ , Params). Oracle then adds
(m, s, IDSen∗) to the list L.

• Designcryption : Given a ciphertext C, the receiver’s identity IDRec∗ and the sender’s
identity IDSen∗ , the oracle returns (m, s)← Designcrypt(C, SKIDRec∗ , IDRec∗ , IDSen∗ ,
Params).

25

GameESUF−IBSC−CMA
SIBSC ,A

(1λ)

• L← φ

• (MSK,Params)← Setup(1λ)

• (CC , IDRec, IDSen)← AO1,O2,O3 (Params)

• (m, s)← Designcrypt(C, SKIDRec
, IDRec, IDSen, Params)

The advantage of A is defined as Adv(A) = Pr[m 6=⊥ ∧(m, s, IDSen) /∈ L]

2.9.2 Identity Collision Resistant Signcryption Schemes

We define an IBSC scheme to be identity collision-resistant (defined for this thesis; does not
exist in the literature) if with negligible probability there exists two different sets of identities
{IDRec, IDSen} 6= {IDRec′ , IDSen′} such that Signcrypt(m,SKIDSen , IDRec, IDSen, Params)
= Signcrypt(m,SKIDSen′

, IDRec′ , IDSen′ , Params) for randomly chosen message m and all
random coins used in the algorithm ’Signcrypt’.

An IND-IBSC-CCA secure scheme naturally satisfies this property as otherwise in the game
of IND-IBSC-CCA, given the challenge ciphertext Cb on identities IDRec and IDSen, an ad-
versary A can query on the ciphertext Cb with a different set of identities {IDRec′ , IDSen′} 6=
{IDRec, IDSen} and will get the correct message mb with non-negligible probability. More-
over, it can also be seen that the converse is not true and hence the set of identity collision
resistant IBSC schemes is strictly the superset of IND-IBSC-CCA secure schemes. This
property has been used in the construction of one RS-DVSI scheme in the chapter 6.

2.10 Ring Signature Schemes

A Ring Signature scheme SR is given by the following algorithms:

• Setup(1λ): A probabilistic polynomial time algorithm which takes a security param-
eter 1λ as an input and returns public parameters Params.

• KeyGen(IDu, Params): A probabilistic polynomial time algorithm which takes an
identity IDu corresponding to user u and public parameters Params as input and
returns a public key PKu and a private (secret) key SKu corresponding to the user u.

• RSign(m,R, SKu, Params): A probabilistic polynomial time algorithm which takes
a message m, a ring R = ∪ni=1{PKui}, a secret key corresponding to some user u
(PKu ∈ R) and public parameters Params as input and returns a signature σ on the
message m corresponding to the ring R.

26

• RVerify(m,σ,R, Params): A deterministic polynomial time algorithm which takes
a message m, a signature σ, a ring R and public parameters Params as input and
returns true if σ is a valid signature on the message m corresponding to the ring R
else it returns false.

2.10.1 Security Notions of Ring Signature Schemes

Unconditional Anonymity: The adversary with unbounded computation power is given
a signature computed by a randomly-chosen signer from theh ring R, with the requirement
that the adversary should be unable to guess the actual signer with the probability better
than 1

|R| + ε, where ε is a negligible function of the security parameter.

A ring signature scheme SR is said to be unforgeable if no probabilistic polynomial time
adversary A has a non-negligible advantage in the following game. In this game, A has
access to an oracle O = {OSign}.

• OSign : Given a message m, a ring R′ ⊆ R = ∪ni=1{PKui} (R is generated at the
beginning of the game) and signer us, the oracle returns a signature σ on meassage m
signed by the signer us corresponding to ring R′. Oracle then adds (m,R′) to the list
L.

GameunforgeableSR,A
(1λ)

• L← φ

• Params← Setup(1λ)

• (PKui , SKui)← KG(IDui , Params) for i = {1, . . . , n}

• (mC , σC , R̂)← AO(PK,R = ∪ni=1{PKui})

• x← RVerify(mC , σC , R̂, Params)

Advantage of A is defined as Adv(A) = Pr[x = true ∧ (mC ,R′) /∈ L ∧ R̂ ⊆ R]

27

Chapter 3

Relaxing IND-CCA:
Indistinguishability against Chosen
Ciphertext Verification Attack

The definition of IND-CCA security model for public key encryption allows an adversary to
obtain (adaptively) decryption of ciphertexts of its choice. That is, the adversary is given
oracle access to the decryption function corresponding to the decryption key in use. The
adversary may make queries that do not correspond to a valid ciphertext, and the answer
will be accordingly (i.e., a special “failure” symbol).

In this chapter, we investigate the case where we restrict the oracle to only determine if the
query made is a valid ciphertext or not. That is, the oracle will output 1 if the query string
is a valid ciphertext (do not output the corresponding plaintext) and output 0 otherwise.
We call this oracle as “ciphertext verification oracle” and the corresponding security model
as indistinguishability against chosen ciphertext verification attack (IND-CCVA). We point
out that this seemingly weaker security model is meaningful, clear and useful to the extent
where we motivate that certain cryptographic functionalities can be achieved by ensuring
the IND-CCVA security where as IND-CPA is not sufficient and IND-CCA provides more
than necessary. We support our claim by providing nontrivial construction (existing/new)
of:

• public key encryption schemes that are IND-CCVA secure but not IND-CCA secure,

• public key encryption schemes that are IND-CPA secure but not IND-CCVA secure.

• public key encryption schemes that are IND-CCA1 secure but not IND-CCVA secure.

Our discoveries are another manifestation of the subtleties that make the study of security
notions for public key encryption schemes so attractive and are important towards achieving
the definitional clarity of the target security.

28

3.1 Introduction

The IND-CCA security (security against adaptive chosen ciphertext attacks [73, 80, 9, 38,
86]) is nowadays considered the de facto level of security required for public key encryption
schemes used in practice. Some approaches are known for constructing encryption schemes
that meet this notion of security. But, in practice, there are certain cryptographic function-
alities for which the security requirement is apparently less stronger than IND-CCA. There
had been wide variety of research to quantify the gap between the IND-CPA and IND-CCA
security (see [30, 53, 52]).

The most common threat to IND-CCA security is that of a query on a malformed cipher-
text causing the decryption oracle to leak damaging information, either about the private
key, or about the plaintext. Understanding, the explicit behaviour of the decryption oracle
could be the keypoint. In the IND-CCA model, the decryption oracle provides decryption
of the ciphertexts of our choice. In this work, we limit the output of the decryption oracle:
it will only verify whether or not a query string is a valid ciphertext or not. Consider a
setting where a server has the secret key, receives and decrypts ciphertext and sends to the
client an accept/reject message depending on whether the ciphertext was valid or not. This
setting actually occurs in real life, some schemes can be broken in this setting, and Bleichen-
bacher’s [14] attack is an example of this.

The security for public key encryption was first formally defined by Goldwasser and Micali
[49]. Their notion of semantic security, roughly speaking, requires that observation of a ci-
phertext does not enable an adversary to compute anything about the underlying plaintext
message that it could not have computed on its own (i.e., prior to observing the ciphertext).
Goldwasser and Micali (see also [46, 47]) proved that semantic security is equivalent to the
notion of indistinguishability that requires (roughly) the following: given a public key pk,
a ciphertext C, and two possible plaintexts m0,m1, it is infeasible to determine if C is an
encryption of m0 or an encryption of m1. We refer to these notions using the commonly
accepted term “IND-CPA” security.

IND-CPA security does not guarantee any security against chosen ciphertext attacks by
which an adversary may obtain decryption of ciphertexts of its choice. Indistinguishability
based definitions appropriate for this setting were given by Naor and Yung [73] and Rackoff
and Simon [80]. Naor and Yung consider non-adaptive chosen ciphertext attack in which the
adversary may request decryptions only before it obtains the challenge ciphertext. Rackoff
and Simon define the stronger notion of security against adaptive chosen ciphertext attacks
whereby the adversary may request decryptions even after seeing the challenge ciphertext,
under the natural limitation that the adversary may not request decryption of the challenge
ciphertext itself. We will refer to the later notion as “IND-CCA” security. Lots of research
have been done in this direction (see [89] and references there in). Loffus et al. [68] have
studied IND-CCA and showed the importance of CCA-like notions in the security of cloud
computing. Recently, in [90], CCA has been extended where adversary can not only exploit
the decryption oracle queries but also the intermediate calculations stored in hardware (es-
pecially RAM). This new notion, where decryption oracle is referred as glass box decryption

29

oracle, is known as Glass-Box-CCA.

In the literature the paradigms that construct IND-CCA secure cryptosystems are few in
number. Among them, the paradigms introduced by Naor and Yung in [73] and by Cramer
and Shoup in [31, 32] are very famous. The proofs of well-formedness of ciphertexts have been
shown to underlie the constructions that were instantiated by both of the above paradigms.
Informally it speaks of a validity check step for ciphertexts in the decryption algorithm.
Infact, Elkind and Sahai have observed [40] that both the above approaches for constructing
CCA-secure encryption schemes can be viewed as special cases of a single paradigm. In this
paradigm one starts with a CPA-secure cryptosystem in which certain ill-formed ciphertexts
are indistinguishable from honestly-generated ciphertexts. A CCA-secure cryptosystem is
then obtained by having the sender honestly generate a ciphertext using the underlying
CPA-secure scheme, and then append a proof of well-formedness (satisfying certain crite-
ria) to this ciphertext. Thus having a validity check seems a sufficient condition to achieve
IND-CCA security and became a common practice until Bleichenbacher’s [14] attack showed
that this is not the case; the attack broke the IND-CCA security of the underlying scheme
using a oracle that confirms just the validity of the ciphertext. Thus for the class of public
key encryption schemes with validity check in the decryption could give rise to a meaningful
security model (less stronger than IND-CCA) where the adversary has access to a oracle of
the above nature. We name this security model as IND-CCVA.

In this chapter, we search for IND-CCVA secure public key encryption schemes. Beside
its theoretical importance, there are some practical benefits as well. For example, consider
the scenario where one has to pick a encryption scheme between E1 and E2, where both are
IND-CPA secure but not IND-CCA and both of them are efficient. Suppose E2 differs with
E1 by having a validity checking step in its decryption algorithm. In this case one may tend
to prefer E2 over E1, but our findings will show that this may not be a wiser decision always.
In the definition of IND-CCA security model for public key encryption, the adversary is given
oracle access to the decryption function corresponding to the decryption key in use. The
adversary may make queries that do not correspond to a valid ciphertext, and the answer
will be accordingly (i.e., a special “failure” symbol). In this chapter, we investigate the case
where we restrict the oracle to only verify if the query made is a valid ciphertext or not.
That is, the oracle will output 1 (not the corresponding plaintext) if the query string is a
valid ciphertext and output 0 otherwise. We will denote this oracle by the name “ciphertext
verification oracle” and the corresponding security model by the name Indistinguishability
against chosen ciphertext verification attack (IND-CCVA). We point out that this seemingly
weaker security model is meaningful, clear and useful to the extent where we observe that
certain cryptographic functionalities can be achieved by ensuring the IND-CCVA security
where IND-CPA is not sufficient and IND-CCA provides more than necessary. We further
support our claim by providing generic construction of:

• public key encryption schemes that are IND-CCVA secure but not IND-CCA secure,

• public key encryption schemes that are IND-CPA secure but not IND-CCVA secure,

• public key encryption schemes that are IND-CCA1 secure but not IND-CCVA secure.

30

3.2 IND-CCVA: Indistinguishability against Chosen Ci-

phertext Verification Attack

We now present a formal definition of security against chosen ciphertext verification attacks.
This is a weaker form of attack when compared to a full CCA attack: the adversary has access
to an oracle which is weaker than a decryption oracle. We name this oracle as ciphertext
verification oracle and denoted it by OCV . The oracle is described as follows:

OCV : {0, 1}∗ → {0, 1}

The output is 1 if and only if the input string is a valid ciphertext. We now describe this new
attack model formally as follows. For a public key encryption scheme

∏
and an adversary

A, consider the following experiment:

The IND-CCVA Experiment

• KG(1λ) is run to obtain keys (PK, SK).

• Beside the public key PK, the adversary A is given access to the ciphertext verification
oracle OCV .

• The adversary outputs a pair of messages m0,m1 of the same length from the message
space.

• A random bit b← {0, 1} is chosen at random, and then a ciphertext Cb ← ENC(mb, PK)
is computed and given to A.

• A continues to interact with OCV .

• Finally, A outputs a bit b′.

We define the advantage of A in the IND-CCVA experiment as follows:

Adv(A) = |Pr[b = b′]− 1

2
| (3.1)

Note that our oracle may become constant (always output 1) for certain class of public key
encryption schemes. Let

∏
be a public key encryption scheme with K as key space, M as

message space, and C as ciphertext space. In general, we have

∪k∈KENC(M) (C.

The equality between ∪k∈KENC(M) and C means that any element from C is a valid cipher-
text (encryption of some message under some key). Thus in this case, the verification oracle
will always output 1 for any random query from C. This will imply that the IND-CPA and
IND-CCVA security are both equivalent for such public key encryption schemes (as oracle
is of no use), for example, ElGamal.

31

In this chapter we consider public keys encryption schemes with ∪k∈KENC(M) (C. Infact,
achieving IND-CCA security requires this kind of setup in general.

Remark: One may note that the security model of IND-CCVA immediately confirms the
following:

• IND-CCA implies IND-CCVA and

• IND-CCVA implies IND-CPA

3.3 The Separating Scheme: IND-CCVA secure but

not IND-CCA secure

In this section we describe a public key encryption scheme which was originally proposed by
Cramer and Shoup [31] as the light version of their main scheme (the first practical IND-
CCA secure scheme). The scheme was shown to be IND-CPA secure by Cramer and Shoup
and not IND-CCA secure. We observed that this scheme is in-fact IND-CCVA secure, thus
settling the claim of this section.

3.3.1 Cramer-Shoup light version

• KG(1λ): The key generation algorithm runs as follows.

– Choose a group G of prime order p, where 2λ−1 < p < 2λ

– Choose g1, g2
R← G and x1, x2, z ∈ Zp.

– Compute c = gx11 g
x2
2 and h = gz1.

– The public key, PK, for this scheme is tuple (g1, g2, c, h), with corresponding
secret key, SK, is (x1, x2, z).

– message space = G.

• ENC(m,PK): To encrypt a message m ∈ G, the encryption algorithm runs as follows.

– Choose r
R← Zp.

– Compute u1 = gr1, u2 = gr2, e = hrm, v = cr.

– The ciphertext, C, is (u1, u2, e, v).

• DEC(C, SK, PK): Decryption works in the following way: given the ciphertext (u1, u2, e, v)
and secret key (x1, x2, z),

– It first tests if ux11 u
x2
2

?
= v.

– If this condition does not hold, the decryption algorithm outputs ⊥; otherwise, it
outputs

m =
e

uz1
.

32

Correctness. If (u1, u2, e, v) is a valid ciphertext, then we have:

ux11 u
x2
2 = gr1

x1gr2
x2 = gx11 g

x2
2
r = cr = v and

e

uz1
=
hrm

gr1
z =

gz1
rm

grz1

=
grz1 m

grz1

= m.

3.3.2 IND-CCVA Security

We show that this scheme is IND-CCVA secure based on the hardness of the Decisional
Diffie-Hellman (DDH) problem in G.

DDH problem can be formulated as follows. Let D be an algorithm that takes triples of
group elements as input and outputs a bit. The DDH-advantage of D is defined as∣∣∣Pr[x, y

R← Zp : D(gx, gy, gxy) = 1]− Pr[x, y, z
R← Zp : D(gx, gy, gz) = 1]

∣∣∣
Then DDH assumption for G assumes that for any efficient algorithm D, its DDH-advantage
is negligible.

Theorem 1 The scheme described in Section 3.3.1 is IND-CCVA secure assuming that the
DDH assumption holds in G.

Proof : The proof goes by reduction which shows that if an adversary is able to break
the IND-CCVA security, it can be used to solve the DDH problem. Let us assume, there is
an adversary A which can break the IND-CCVA security of the scheme. Using A, we can
construct an algorithm B that solves the DDH problem.

B is given as input a 4-tuple (g, ga, gb, Z), where a, b are chosen randomly from Zp. The task
of B is to determine whether Z is equal to gab or Z is a random element of G. B solves this
problem by interacting with A in the IND-CCVA game as follows.

• Simulation of Key Generation (KG): B proceeds as follows:

– Sets g1 = g.

– Chooses s
R← Zp and sets g2 = gs1.

– Chooses x1, x2
R← Zp and sets c = gx11 g

x2
2 .

– Sets h = gb.

– Finally the 4-tuple (g1, g2, c, h) is made available as public key to A by B.

• Simulation of Ciphertext Verification Oracle for Ciphertext Validity Check:

– Knowledge of (x1, x2) ensures that B can perfectly answer the ciphertext verifica-
tion queries asked by A.

33

• Simulation of Challenge Ciphertext:

– In Challenge Phase, A chooses and outputs two messages m0 and m1 to B.

– B then chooses a bit τ
R← {0, 1} and it proceeds to encrypt mτ .

– B sets
u1 = ga, u2 = (ga)s, e = Z ·mτ and v = (ga)x1(ga)sx2 .

– The challenge ciphertext (u1, u2, e, v) is given to A by B.

Finally in the Guess Phase, A answers a bit τ ′. If τ = τ ′ then B announces the input
instance to be a valid DDH tuple, else (τ 6= τ ′) B announces invalid tuple. This completes
the description of B. We show that

Adv(B) = Adv(A).

For this it is enough to show that simulation of challenge ciphertext is perfect given a valid
DDH instance. This is true as for valid DDH tuple (i.e., Z = gab) we have

• u1 = ga = ga1 .

• u2 = (ga)s = (gs)a = ga2 .

• e = Z ·mτ = gab ·mτ = (gb)a ·mτ = ha ·mτ .

• v = (ga)x1(ga)sx2 = (gx1gsx2)a = ca.

Thus the simulation of challenge ciphertext is perfect. This proves the theorem.

Lemma 1 The scheme described in Section 3.3.1 is not IND-CCA secure.

Proof : In IND-CCA game, if C = (u1, u2, e, v) be the challenge ciphertext, adver-
sary A chooses any message m′ 6= 1 (identity in G) and creates another ciphertext C ′ =
(u1, u2,m

′e, v) which is indeed different than challenge ciphertext. Decryption oracle re-
turns m′m if C ′ is queried to it. A then easily calculates the original message by calculating
m′mm′−1 = m. Hence, the lemma.

3.4 The Separating Scheme (Known): IND-CPA se-

cure but not IND-CCVA secure

It is well-known that textbook RSA does not hide partial information about the plaintext,
is malleable, and is also insecure against chosen ciphertext attack. Indeed, textbook RSA
is never used in practice, precisely because of these well-known weaknesses. Instead, what
people actually use is textbook RSA with a few modifications attempt to fix these problems.

One idea that is often advocated to improve the security of textbook RSA is to use a ran-
domized “encoding” or “padding” scheme. That is, we encrypt m as C = f(m, r)e, where

34

f(m, r) encodes the message m using some random bits r. Note that f is not a crypto-
graphic encoding: it is easy for anyone to compute m from f(m, r). The hope is that this
enhancement improves the security of RSA. However, if one is not extremely careful, the
resulting scheme may become insecure.

One simple way to define f(m, r) is just to concatenate the two bit strings m and r. This is
a popular idea. RSA, Inc. has a very popular encryption function, called PKCS #1, which
did essentially this until the well-known attack by Bleichenbacher [14] had surfaced. This
encryption function is used by the security protocol SSL over internet.

In literature, Bleichenbacher’s attack on SSL has been termed as chosen ciphertext attack on
RSA’s PKCS #1. But we observe that, his attack is actually a chosen ciphertext verification
attack. We first describe briefly the RSA encryption standard PKCS #1; refer to [54] for
details. It has three block formats: Block types 0 and 1 are reserved for digital signatures,
and block type 2 is used for encryption. As we are interested in encryption only, we describe
the block 2.

• KG(1λ): Choose primes p, q (4k bit each) and compute n = pq (n is k byte number).
Choose e, d, such that ed ≡ 1 (mod φ(n)). The public key, PK, is (n, e) and the secret
key, SK, is (p, q, d).

• ENC(m,PK): A data block D, consisting of |D| bytes, is encrypted as follows:

– First, a padding string PS, consisting of k − 3− |D| nonzero bytes, is generated
pseudo-randomly (the byte length of PS is atleast 8).

– Now, the encryption block EB = 00||02||PS||00||D is formed, is converted into
an integer x, and is encrypted with RSA, giving the ciphertext c = xe (mod n).

• DEC(c, SK, PK) A Ciphertext c is decrypted as follows:

– Compute x′ = cd (mod n).

– Converts x′ into an encryption block EB′.

– Check, if the encryption block is PKCS conforming (An encryption block EB
consisting of k bytes, EB = EB1|| . . . ||EBk, is called PKCS conforming, if it
satisfies the following conditions: EB1 = 00, EB2 = 02, EB3 through EB10 are
nonzero and at least one of the bytes EB11 through EBk is 00).

– If the encryption block is PKCS conforming, then output the data block; otherwise
an error sign.

3.4.1 Security

It is well-known that the least significant bit of textbook RSA encrypted message is as secure
as the whole message [48, 2]. In particular, there exists an algorithm that can decrypt a
ciphertext if there exists another algorithm that can predict the least significant bit of a
message given only the corresponding ciphertext and the public key. H̊astad and Näslund

35

extended this result to show that all individual RSA bits are secure [50].

Bleichenbacher’s attack assumes that the adversary has access to an oracle that, for every
ciphertext, returns whether the corresponding plaintext is PKCS conforming. If the plain-
text is not PKCS conforming, the oracle outputs an error sign. Given just these error signs,
because of specific properties of PKCS #1, Bleichenbacher showed how a very clever pro-
gram can decrypt a target ciphertext (the oracle answer will reveal the first two bytes of the
corresponding plaintext of the chosen ciphertext). Though, at this point the algorithm of
H̊astad and Näslund can use this oracle to decrypt the target ciphertext, Bleichenbacher’s
attack, different from H̊astad and Näslund, was aimed at minimizing the number of oracle
queries; thus, showing the practicality of the attack.

Hence, all the attacker needs is the verification about the validity of the chosen cipher-
text (and not the corresponding whole plaintext). Thus this is clearly a chosen ciphertext
verification attack.

3.5 Separating Schemes: Generic Constructions

In this section we provide generic constructions of public key encryption schemes that are

• IND-CPA secure but not IND-CCVA secure,

• IND-CCVA secure but not IND-CCA secure,

• IND-CCA1 secure but not IND-CCVA secure.

The constructions are based on the existence of (enhanced) trapdoor permutations (see
Appendix C in [47]). We refer the reader to [47] (pages 413-422) for the encryption schemes,
based on the existence of trapdoor permutations, that are IND-CPA secure but not IND-
CCA secure with the property that ∪k∈KENC(M) = C. Constructions, based on enhanced
one-way trapdoor permutation, that are IND-CCA1 secure but not IND-CCA secure are also
given in [47] (pages 452-461).

3.5.1 Generic Construction: IND-CPA secure but not IND-CCVA
secure

Let ECPA be a public key encryption scheme described by the key generation algorithm
KGCPA, encryption algorithm ENCCPA and decryption algorithm DECCPA. Now define a
new public key encryption E as follows

• KG: Same as KGCPA.

• ENC: Encryption of a message m under a public key PK is give as

c = c1||c2 = ENCCPA(m,PK)||ENCCPA(m,PK)

36

• DEC: Decryption of a ciphertext c = c1||c2 with the corresponding secret key SK will
proceed as follows:

– m′1 ← DECCPA(c1, SK, PK)

– m′2 ← DECCPA(c2, SK, PK)

– If m′1 = m′2, return m′1, else

– return ⊥

Theorem 2 If ECPA is IND-CPA secure then E is also IND-CPA secure.

Proof : Straightforward.

Lemma 2 Encryption scheme E is not IND-CCVA secure.

Proof : We construct an efficient IND-CCVA adversary A against E . In the challenge
phase of the IND-CCVA security game, A outputs two equal length messages m0,m1 and
request the challenger to encrypt one of the message. The challenger picks a challange
bit b ∈ {0, 1} at random, encrypts mb under the public key PK, and returns the challenge
ciphertext cb = cb1||cb2 . The adversaryA now picks one of the message, say m1, and computes
c1 = ENCCPA(m1, PK). A now submits the modified ciphertext c̄ = c1||cb2 to the Chosen
Ciphertext Verification Oracle. Now A will return 1 if and only if the oracle returns 1. It is
easy to verify that A’s guess is correct with probability 1. Hence the encryption scheme E
is not IND-CCVA secure.

3.5.2 Generic Construction: IND-CCVA secure but not IND-
CCA secure

In [47] (pages 413-422), the one way trapdoor permutation based constructions that are
IND-CPA secure but not IND-CCA secure also possesses the following property

∪k∈KENC(M) = C.

Let us denote this scheme by E = (KG,ENC,DEC). The IND-CCVA adversary against E
will not gain anything new by using the verification oracle and thus E is IND-CCVA secure
but not IND-CCA secure. But we assumed in this article to work on schemes that satisfy
∪k∈KENC(M) 6= C. We now give such a construction.

Let us build a new public key encryption Ê = (KGÊ ,ENCÊ ,DECÊ) based on E as follows.

• KGÊ : Same as KG.

• ENCÊ : Encryption of a message m under a public key PK is give as

ĉ = 1||c, where c = ENC(m,PK).

37

• DECÊ : Decryption of a ciphertext ĉ with the corresponding secret key SK will proceed
as follows:

DECÊ(ĉ, SK, PK) = DEC(c, SK, PK) if ĉ = 1||c, otherwise return ⊥.

It is easy to check that Ê is IND-CPA secure but not IND-CCA secure with the added
property that every ciphertext need not be valid. Since it is trivial to distinguish valid
ciphertexts from invalid ciphertexts (by just looking at the most significant bit), CCVA
oracle does not give any extra advantage to the adversary and thus Ê is IND-CCVA secure.

3.5.3 Generic Construction: IND-CCA1 secure but not IND-CCVA
secure

In this section, we give a generic construction of IND-CCA1 secure encryption scheme which
is not IND-CCVA secure. Let ECCA1 be a IND-CCA1 secure encryption scheme. Let
(PK, SK) be the public key-secret key pair, ENCCCA1 be the encryption algorithm and
DECCCA1 be the decryption algorithm of ECCA1. We construct an encryption scheme, say E
from ECCA1 whose public key-secret key pair is (PK, SK). Encryption algorithm of E , say
ENC, takes a message m and outputs ciphertext c.

• c = c1||c2 ← ENC(m,PK)

where c1 ← ENCCCA1(m,PK), c2 ← ENCCCA1(m,PK), and PK = PK1. Decryption
algorithm of E , say DEC, for an input c = c1||c2 is defined as following:

• m′1 ← DECCCA1(c1, SK, PK)

• m′2 ← DECCCA1(c2, SK, PK)

• If m′1 = m′2, return m′1, else

• return ⊥

Theorem 3 If ECCA1 is IND-CCA1 secure then E is also IND-CCA1 secure.

Proof : Straightforward.

Lemma 3 The Encryption scheme E is not IND-CCVA secure.

Proof : Similar to the proof of lemma 2.

38

Chapter 4

Construction of Identity Based
Signcryption Schemes

In this chapter, we show how to construct an Identity Based Signcryption (IBSC) scheme
using an Identity Based Encryption (IBE) and an Identity Based Signature (IBS) schemes.
We show that the security of the IBSC scheme–indistinguishability as well as unforgeability–
is derived from the security of the underlying IBE and IBS schemes. We have proposed two
schemes, IBSC-Scheme1 and IBSC-Scheme2. Both schemes achieve the same level of security,
however, the difference lies at the computational efficiency. Compared to Sign-then-Encrypt
approach, IBSC-Scheme1 is efficient during signcryption phase only whereas IBSC-Scheme2
is efficient in both phases viz signcryption and designcryption. We obtain IBSC-Scheme2
by first extending the An-Dodis-Rabin construction to the Identity Based setting. We then
further modify the construction to obtain an efficient construction.

4.1 Introduction

In order to simplify the key management, Shamir proposed an Identity Based Cryptosystem
[85] in 1984. In this cryptosystem, unambiguous identity of a user(such as email address,
social security number etc.) is used as a public key and the secret key corresponding to a
user is issued by a third party called the Private Key Generator (PKG). Since 1984, although
Shamir proposed the first Identity Based Signature (IBS) scheme in his proposal of Identity
Based Cryptosystem, a satisfactory solution for Identity Based Encryption (IBE) eluded
cryptographers till the turn of the millennium [23]. The posed demand was unfulfilled until
2000 when Sakai-Ohgishi-Kashara [83] and 2001 when Boneh and Franklin [15] proposed an
IBE scheme from bilinear pairing on Elliptic Curves. In 2001 again, Cocks [29] proposed an
IBE scheme based on quadratic residuosity problem modulo an RSA composite modulus.

In 1997, Zheng [94] proposed a new primitive viz signcryption in which encryption and sig-
nature are done simultaneously at a much lower computational cost and communication
overhead than the Sign-then-Encrypt approach. The scheme in [94] was not formally proved
to be secure since no formal notion of security was proposed then. It was only in PKC 2002
that Baek, Steinfeld and Zheng [6] introduced a formal notion of security for signcryption.

39

Since the introduction of the primitive, several schemes have been proposed [3, 65, 64, 7,
25, 34, 33, 69, 26]. In 2009, Matsuda-Matsuura-Schuldt [69] gave several simple but efficient
constructions of signcryption schemes using existing primitives. In one of the constructions,
they introduced the notion of signcryption composable and show how, in this case, a sig-
nature scheme and an encryption scheme, if they use shared randomness, can be combined
to achieve higher efficiency than a simple composition. Signcryption composability finally
yields efficient insider secure schemes in the standard model. Moreover, they proposed other
efficient constructions using tag-based Key Encapsulation (tag-based KEM) mechanism and
Data Encapsulation Mechanism (DEM). These constructions also are efficient and insider
secure in the standard model. (Also, [69, 35] gives a nice account of some previous work
on signcryption and has an extensive bibliography.) In 2011, Chiba et. al. [26] proposed
some generic constructions which were insider secure in the standard model. They used
Sign-then-Encrypt paradigm which relies upon chosen-ciphertext-secure tag-based KEM, a
chosen-ciphertext-secure DEM that has a one-to-one property, and a strongly unforgeable
signature scheme.

In this chapter, we consider an efficient construction of an Identity Based Signcryption
scheme. We will show how to construct an Identity Based Signcryption (IBSC) scheme using
any Identity Based Encryption (IBE) scheme and Identity Based Signature (IBS) scheme.
Our construction differs from those of [69, 26] in the sense that we do not use the sign-
then-encrypt or encrypt-then-sign paradigm. In fact, our first construction IBSC-Scheme1
allows signature and encryption to be done in parallel during signcryption for increased ef-
ficiency. Whereas our second construction allows signature and encryption to be done in
parallel during signcryption while decryption and verification can be done in parallel during
designcryption. IBSC-Scheme2 security of the resulting IBSC scheme is inherited from the
security results of the underlying IBE and IBS schemes in the random oracle model. We
then compare these schemes with the existing schemes which are known to be efficient and
secure and show how the resulting schemes compare with the existing ones.

In the public key setting, An, Dodis and Rabin [3] proposed a generic construction of Sign-
cryption scheme using Commit then Encryption and Signature paradigm (CtE&S) . Their
construction is efficient in the sense that Encryption and Signature can be done in parallel.
In this chapter, we show that that their construction can easily be lifted to the Identity Based
setting to yield an Identity Based Signcryption scheme. However, like the An-Dodis-Rabin
construction, we only obtain a generalized IND-CCA secure IBSC scheme from an IND-ID-
CCA secure IBE. In fact, we show that this scheme is not IND-CCA secure. To obtain
an IND-IBSC-CCA secure Identity Based Signcryption scheme, we modify the preceding
construction. We show that this modification viz IBSC-Scheme2 yields an IND-IBSC-CCA
secure signcryption scheme, provided the underlying IBE is IND-ID-CCA secure. Finally,
we show that our construction yields an efficient identity based signcryption schemes when
compared with existing ones.

40

4.2 Proposed Scheme : IBSC-Scheme1

Let SIBE = (SetupIBE,KeyGenIBE,Encrypt,Decrypt) and SIBS = (SetupIBS,KeyGenIBS,Sign,
Verify) be an Identity Based Encryption scheme and an Identity Based Signature scheme re-
spectively. Let l1 be the bit-length of any message m from the message space M. We require
that the bit-length of a random number r from the random space R also be l. Moreover, let
l2 be the bit-length of the signature s generated by the algorithm ‘Sign’ of SIBS.

The construction of an Identity Based Signcryption scheme from Identity Based Encryption
and Signature schemes has been described in Table 4.1.

Proposed Scheme: IBSC-Scheme1

Setup(1λ)

• Choose three cryptographically secure hash func-
tions
H1 : {0, 1}∗ → {0, 1}l1 ,
H2 : {0, 1}∗ → {0, 1}l2 ,
H3 : {0, 1}∗ → {0, 1}l1 .

• (MSKIBE , ParamsIBE)← SetupIBE(1λ)

• (MSKIBS , ParamsIBS)← SetupIBS(1λ)

• MSK ← (MSKIBE ,MSKIBS) and

• Params← (ParamsIBE , ParamsIBS , H1, H2, H3)

• return (MSK,Params)

Signcrypt(m,SKIDSen
, IDRec, IDSen, Params)

• Choose r randomly from R.

• Let c′ ← Encrypt(r, IDRec, Params
IBE).

• Compute h1 = H1(r, c′, IDSen).

• Compute h2 = H2(m, c′, h1, IDRec, IDSen).

• Compute c = H3(h1, IDSen)⊕m.

• Let SKIDSen
= (SKIBE

IDSen
, SKIBS

IDSen
).

(m, s)← Sign(m,SKIBS
IDSen

, IDSen, Params
IBS).

• Compute d = h2 ⊕ s.

The Ciphertext will be C ≡ (c, c′, d).

KeyGen(ID,MSK)

• SKIBE
ID ← KeyGenIBE(ID,MSKIBE)

• SKIBS
ID ← KeyGenIBS(ID,MSKIBS).

• SKID ← (SKIBE
ID , SKIBS

ID).

Designcrypt(C, SKIDRec
, IDRec, IDSen, Params)

• Let SKIDRec
= (SKIBE

IDRec
, SKIBS

IDRec
).

Let r′ ← Decrypt(c′, SKIBE
IDRec

, ParamsIBE).

• If r′ is ⊥, return ⊥, else goto next step

• Compute h′1 = H1(r′, c′, IDSen).

• Compute m′ = H3(h′1, IDSen)⊕ c.

• Compute h′2 = H2(m′, c′, h′1, IDRec, IDSen).

• Compute s′ = h′2 ⊕ d.

• Let x← Verify(m′, s′, IDSen, Params
IBS).

• If x is true, return (m′, s′), else ⊥.

Table 4.1: Construction of IBSC from IBE and IBS schemes

41

4.3 Security

4.3.1 Message Confidentiality

We will prove our scheme to be IND-IBSC-CCA secure under the random oracle model if
the underlying Identity Based Encryption scheme is IND-ID-CCA secure.

Theorem 4 In the random oracle model, if there exists an IND-IBSC-CCA adversary A
which is able to distinguish ciphertexts during the game of definition 2.9.1 with an advantage
ε, then there exists an IND-ID-CCA adversary B that has advantage ε

2
against the underlying

Identity Based Encryption scheme SIBE.

Proof : Let there be a PPT challenger CH which runs the SetupIBE algorithm of SIBE.
We shall show how to construct an IND-ID-CCA adversary B that uses A to gain ad-
vantage ε

2
against SIBE. Suppose B receives public parameters ParamsIBE from CH. B

chooses an Identity Based Signature scheme SIBS whose public parameters ParamsIBS are
independently generated from the public parameters of SIBE. We can safely assume that
ParamsIBE∩ParamsIBS = φ. B maintains lists L1, L2 and L3 for queries on hash functions
H1, H2 and H3. Besides these, B maintains two other lists S1 and S2 for queries on secret
keys of different identities corresponding to SIBE and SIBS .

We now explain how requests from A are treated by B who plays the role of a challenger to
A.

• H1 queries : For inputs r(i), c′(i) and ID(i) ∈ {0, 1}∗ from A, B searches list L1 for tuple

(r(i), c′(i), ID(i), h
(i)
1). If such tuple exists, B returns h

(i)
1 to A, else B chooses a string

uniformly at random from {0, 1}l1 , say h
(i)
1 . B then adds the tuple (r(i), c′(i), ID(i), h

(i)
1)

into the list L1 and returns h
(i)
1 to A.

• H2 queries : For input m(i), c′(i), h(i) ∈ {0, 1}l1 , and ID
(i)
1 , ID

(i)
2 ∈ {0, 1}∗ from A, B

searches the list L2 for tuple (m(i), c′(i), h(i), ID
(i)
1 , ID

(i)
2 , h

(i)
2). If such a tuple exists, B

returns h
(i)
2 to A, else B chooses a string uniformly at random from {0, 1}l2 , say h

(i)
2 .

B then adds the tuple (m(i), c′(i), h(i), ID
(i)
1 , ID

(i)
2 , h

(i)
2) to the list L2 and returns h

(i)
2 to

A.

• H3 queries : For inputs h(i) ∈ {0, 1}l1 and ID(i) ∈ {0, 1}∗ from A, B searches the list

L3 for a tuple (h(i), ID(i), h
(i)
3). If such a tuple exists, B returns h

(i)
3 to A, else B chooses

a string h
(i)
3 uniformly at random from {0, 1}l1 . B then adds the tuple (h(i), ID(i), h

(i)
3)

to the list L3 and returns h
(i)
3 to A.

• KeyGeneration queries : For an input ID(i) from A, algorithm B responds to A in
two steps:

1. B sends ID(i) to CH. Let CH returns the corresponding secret key SKIBE
ID(i) . B

then adds (ID(i), SKIBE
ID(i)) into the list S1.

42

2. As the constituent Identity Based Signature scheme, SIBS, is chosen by B, so B
generates the secret key SKIBS

ID(i) corresponding to ID(i), then adds (ID(i), SKIBS
ID(i))

into the list S2.

B finally returns (SKIBE
ID(i) , SK

IBS
ID(i)) to A.

• Signcryption queries : The response to signcryption query for message m(i) corre-
sponding to the receiver’s identity IDRec(i) and the sender’s identity IDSen(i) is as
follows :

1. B searches the list S2 for the secret key corresponding to identity IDSen(i) . If
it does not exist, B generates the secret key corresponding to IDSen(i) using
KeyGenIBS algorithm of SIBS. Let SKIBS

ID(i) be the corresponding secret key.

2. B then chooses a random number r(i) and runs c′(i) ← Encrypt(r(i), IDRec(i) ,
ParamsIBE).

3. B then searches the list L1 for tuple (r(i), c′(i), IDSen(i) , h
(i)
1). If such a tuple does

not exist, B chooses uniformly at random a string h
(i)
1 from {0, 1}l1 and adds

(r(i), c′(i), IDSen(i) , h
(i)
1) to the list L1.

4. Then, B searches the list L2 for tuple (m(i), c′(i), h
(i)
1 , IDRec(i) , IDSen(i) , h

(i)
2). If such

a tuple does not exist, B chooses a random string, say h
(i)
2 , uniformly at random

from {0, 1}l2 and adds (m(i), c′(i), h
(i)
1 , IDRec(i) , IDSen(i) , h

(i)
2) to the list L2.

5. Now, B searches the list L3 for a tuple (h
(i)
1 , IDSen(i) , h

(i)
3). If such a tuple does not

exist, B chooses h
(i)
3 uniformly at random from {0, 1}l1 and adds (h

(i)
1 , IDSen(i) , h

(i)
3)

to the list L3. B then computes c(i) = h
(i)
3 ⊕m(i).

6. B then computes s(i) ← Sign(m(i), SKIBS
ID

Sen(i)
, IDSen(i) , ParamsIBS).

7. Now, B computes d(i) = h
(i)
2 ⊕ s(i).

B finally sends C(i) = (c(i), c′(i), d(i)) to A.

Note that, to signcrypt the message corresponding to the receiver’s identity IDRec, the
secret key of IDRec is not required. Hence a valid ciphertext can be generated without
any secret key query for the receiver’s identity to CH.

• Designcryption queries : For input C(i) = (c(i), c′(i), d(i)) and IDRec(i) , IDSen(i) (re-
ceiver’s and sender’s identities are IDRec(i) and IDSen(i) respectively), B responds as
follows:

1. B sends (c′(i), IDRec(i)) to CH to decrypt. Let r(i) be the output from the Decrypt
algorithm of SIBE.

2. Then B searches the list L1 for tuple (r(i), c′(i), IDSen(i) , h
(i)
1). If such a tuple does

not exist, B chooses uniformly at random a string h
(i)
1 from {0, 1}l1 and adds

(r(i), c′(i), IDSen(i) , h
(i)
1) to the list L1.

43

3. Now, B searches the list L3 for a tuple (h
(i)
1 , IDSen(i) , h

(i)
3). If such a tuple does not

exist, B chooses h
(i)
3 uniformly at random from {0, 1}l1 and adds (h

(i)
1 , IDSen(i) , h

(i)
3)

to the list L3.

4. B then computes m(i) = h
(i)
3 ⊕ c(i).

5. Then, B searches the list L2 for tuple (m(i), c′(i), h
(i)
1 , IDRec(i) , IDSen(i) , h

(i)
2). If such

a tuple does not exist, B chooses a random string, say h
(i)
2 , uniformly at random

from {0, 1}l2 and adds (m(i), c′(i), h
(i)
1 , IDRec(i) , IDSen(i) , h

(i)
2) to the list L2.

6. B then calculates s(i) = d(i)⊕h(i)
2 and runs Verify(m(i), s(i), IDSen(i) , ParamsIBS).

If the output of Verify algorithm is true then B sends (m(i), s(i)), else ⊥, to A.

Once A decides to enter the challenge phase, it chooses two messages m0,m1 of same length
and two identities IDR and IDS corresponding to the receiver’s and sender’s identity re-
spectively and sends them to B which is responded as follows:

1. B chooses two random strings r0, r1 ∈ {0, 1}l1 and the receiver’s identity IDR and
sends them to CH.

2. CH then chooses a bit, say b, uniformly at random from {0, 1} and computes the
ciphertext c′b ← Encrypt(rb, IDR, Params

IBE) associated to the receiver’s identity
IDR.

3. CH then sends the ciphertext c′b to B.

4. B then chooses a bit v ∈ {0, 1} uniformly at random. B then searches the list L1 for the
tuple (rv, c

′
b, IDS, h1). If such a tuple does not exist, B chooses uniformly at random

h1 from {0, 1}l1 and adds (rv, c
′
b, IDS, h1) to the list L1.

5. Now, B searches the list L2 for tuple (mv, c
′
b, h1, IDR, IDS, h2). If such a tuple does

not exist, B chooses a random string, say h2, uniformly at random from {0, 1}l2 and
adds (mv, c

′
b, h1, IDR, IDS, h2) to the list L2.

6. Then B searches the list L3 for the tuple (h1, IDS, h3). If such a tuple doesn’t exist,
B chooses a string, say h3 uniformly at random from {0, 1}l1 and adds (h1, IDS, h3) to
the list L3.

7. Then B searches the list S2 for the secret key corresponding to the identity IDS. If
the secret key does not exist, B then runs KeyGen algorithm of SIBS . Let the secret
key be SKIBS

IDS
.

8. After that B runs the Sign algorithm of SIBS on message mv and identity IDS to get
a signature s′ ← Sign(m,SKIBS

IDSen
, IDSen, Params

IBS).

9. Now, B computes cv = h3⊕mv and d = h2⊕s′ and sends the ciphertext Cb,v = (cv, c
′
b, d)

to A.

44

A then performs a second series of queries. Queries over KeyGeneration (except secret key
query on identity IDR), and Signcryption are treated in the same way as it was done before
challenge phase. H1, H2, H3 and Designcryption queries are treated as follows:

• H1 queries : For query of the form (r(j), c′(j), IDSen(j)), if (r(j), c′(j)) = (rb′ , c
′
b) where

b′ ∈ {0, 1}, B outputs b′ and sends it to CH and then aborts the game. Else, it is
responded in the same way as it was done before the challenge phase.

• H2 queries : For query of the form (m(j), c′(j), h
(j)
1 , IDRec(j) , IDSen(j)) where (c′(j), h

(j)
1 ,

IDRec(j)) = (c′b, h1, IDR), B outputs v and sends it to CH and then aborts the game.
Else, it is responded in the same way as it was done before the challenge phase.

• H3 queries : For query of the form (h
(j)
1 , IDSen(j)), if h

(j)
1 = h1, B outputs v and sends

it to CH and then aborts the game. Else, it is responded in the same way as it was
done before the challenge phase.

• Designcryption queries : For queries of the form C(j) = (c(j), c′(j), d(j)), if (c′(j), IDRec(j))
= (c′, IDR), B sends ⊥ to the adversary A. Else, it is responded in the same way as it
was done before the challenge phase.

Note that in the above game, B interacts with CH as in the real game. Moreover, the game
between A and B also is simulated correctly.

At the end of the simulation, B will use the bit guessed by A to guess the challenge bit with
CH. If A guesses b′ ∈ {0, 1}, B will also output the same bit viz b′ to CH. At challenge
phase,

• If b = v (the bit chosen by B), the simulation is perfect and the ciphertext, C, produced
by B will be a valid ciphertext of message mv corresponding to IDR (receiver’s identity)
and IDS (sender’s identity). Consequently,

Pr[B wins | b = v] = Pr[A wins | C is a valid ciphertext]

• If b 6= v, then rv can be thought of as chosen uniformly at random from {0, 1}l1 \ {rb}.
To A’s view rv and c′ are independent. Hence, the output from H1 and hence from
H2 and H3 are, to A’s view, strings uniformly chosen at random from {0, 1}l2 and
{0, 1}l1 respectively. Thus XOR of h2 and h3 with s′ and message mv, i.e. d = h2⊕ s′
and c = h3 ⊕mv, results in strings with uniformly distribution in {0, 1}l2 and {0, 1}l1
respectively. Thus to A’s view, C = (c, c′, d) is a random ciphertext chosen uniformly
from the ciphertext space. Hence, in this case

Pr[B wins | b 6= v] = Pr[A wins | C is a random ciphertext] = 1/2

Therefore,
Pr[B wins] = Pr[B wins |b = v]× Pr[b = v] + Pr[B wins|b 6= v]× Pr[b 6= v]

= 1
2
(Pr[B wins |b = v]) + 1

2
(1

2
)

= 1
2
(Pr[B wins |b = v] + 1

2
)

Hence, advantage of B = Adv(B) = |Pr[B wins]− 1
2
|

= 1
2
(|(Pr[B wins |b = v)− 1

2
]|) = 1

2
(|Pr[A wins]− 1

2
|) = 1

2
(Adv(A)) = ε

2

45

4.3.2 Ciphertext Unforgeability

We can similarly prove signature unforgeability. We show that our scheme is ESUF-IBSC-
CMA secure under the random oracle model provided the underlying IBS scheme is strongly
unforgeable under adaptive chosen message attack.

Theorem 5 In the random oracle model, if there exists an ESUF-IBSC-CMA forger A
which is able to produce a forged ciphertext during the game of definition 2.9.1 with an
advantage ε, then there exists an SUF-ID-CMA adversary B which can forge the IBS scheme
SIBS with advantage ε.

Proof : Let there be a PPT challenger CH which runs the SetupIBS algorithm of SIBS.
We shall show how to construct an SUF-ID-CMA adversary B that uses A to gain ad-
vantage ε

2
against SIBS. Suppose B receives public parameters ParamsIBS from CH. B

chooses an Identity Based Encryption scheme SIBE whose public parameters ParamsIBE

are independently generated from the public parameters of SIBS. We can safely assume that
ParamsIBE∩ParamsIBS = φ. B maintains lists L1, L2 and L3 for queries on hash functions
H1, H2 and H3. Besides these, B maintains two other lists S1 and S2 for queries on secret
keys of different identities corresponding to SIBE and SIBS .

We now explain how requests from A are treated by B. The response to H1, H2 and H3

queries are exactly as in the proof of Theorem 4.

• KeyGeneration queries : For an input ID(i) from A, algorithm B responds to A in
two steps:

1. B sends ID(i) to CH. Let CH returns the corresponding secret key SKIBS
ID(i) . B

then adds (IDi, SK
IBS
ID(i)) into the list S2.

2. As the constituent Identity Based Encryption scheme, SIBE, is chosen by B,
so B generates the secret key SKIBE

ID(i) corresponding to ID(i). B then adds

(ID(i), SKIBE
ID(i)) into the list S1.

B finally returns (SKIBE
ID(i) , SK

IBS
ID(i)) to A.

• Signcryption queries : The response to signcryption query for message m(i) corre-
sponding to the receiver’s identity IDRec(i) and the sender’s identity IDSen(i) is as
follows :

1. B chooses a random number r(i) and runs c′(i) ← Encrypt(r(i), IDRec(i) , Params
IBE).

2. B then searches the list L1 for the tuple (r(i), c′(i), IDSen(i) , h
(i)
1). If such a tuple

does not exist, B chooses uniformly at random a string h
(i)
1 from {0, 1}l1 and adds

(r(i), c′(i), IDSen(i) , h
(i)
1) to the list L1.

3. Then, B searches the list L2 for the tuple (m(i), c′(i), h
(i)
1 , IDRec(i) , IDSen(i) , h

(i)
2).

If such a tuple does not exist, B chooses a random string, say h
(i)
2 , uniformly at

random from {0, 1}l2 and adds (m(i), c′(i), h
(i)
1 , IDRec(i) , IDSen(i) , h

(i)
2) to the list L2.

46

4. Now, B searches the list L3 for a tuple (h
(i)
1 , IDSen(i) , h

(i)
3). If such a tuple does not

exist, B chooses h
(i)
3 uniformly at random from {0, 1}l1 and adds (h

(i)
1 , IDSen(i) , h

(i)
3)

to the list L3. B then computes c(i) = h
(i)
3 ⊕m(i).

5. B sends (m(i), IDSen(i)) to the challenger CH. Let s(i) be the output from the Sign
algorithm of SIBS. CH then sends s(i) to B.

6. Now, B computes d(i) = h
(i)
2 ⊕ s(i).

B finally sends C(i) = (c(i), c′(i), d(i)) to A.

• Designcryption queries : For input C(i) = (c(i), c′(i), d(i)) and IDRec(i) , IDSen(i) (re-
ceiver’s and sender’s identities are IDRec(i) and IDSen(i) respectively), B responds as
follows:

1. B searches the list S1 for the secret key corresponding to identity IDRec(i) . If
it does not exist, B generates the secret key corresponding to IDRec(i) using
KeyGenIBE algorithm of SIBE. Let SKIBE

ID
Rec(i)

be the corresponding secret key.

2. B then runs r(i) ← Decrypt(c′(i), SKIBE
ID

Rec(i)
, ParamsIBE).

3. Then B searches the list L1 for tuple (r(i), c′(i), IDSen(i) , h
(i)
1). If such a tuple does

not exist, B chooses uniformly at random a string h
(i)
1 from {0, 1}l1 and adds

(r(i), c′(i), IDSen(i) , h
(i)
1) to the list L1.

4. Now, B searches the list L3 for a tuple (h
(i)
1 , IDSen(i) , h

(i)
3). If such a tuple does not

exist, B chooses h
(i)
3 uniformly at random from {0, 1}l1 and adds (h

(i)
1 , IDSen(i) , h

(i)
3)

to the list L3.

5. B then computes m(i) = h
(i)
3 ⊕ c(i).

6. Then, B searches the list L2 for tuple (m(i), c′(i), h
(i)
1 , IDRec(i) , IDSen(i) , h

(i)
2). If such

a tuple does not exist, B chooses a random string, say h
(i)
2 , uniformly at random

from {0, 1}l2 and adds (m(i), c′(i), h
(i)
3 , IDRec(i) , IDSen(i) , h

(i)
2) to the list L2.

7. B then calculates s(i) = d(i)⊕h(i)
2 and runs Verify(m(i), s(i), IDSen(i) , ParamsIBS).

If the output of Verify algorithm is true then B sends (m(i), s(i)), else ⊥, to A.

Note that, to designcrypt the ciphertext corresponding to the sender’s identity IDSen,
the secret key of IDSen is not required. Hence a ciphertext can be designcrypted
without any secret key query for the receiver’s identity to CH.

Once this game is over, A submits a ciphertext C = (c, c′, d) corresponding to the receiver’s
identity IDR and the sender’s identity IDS such that the secret key corresponding to IDS

have not been queried earlier. B then responds as follows:

1. B decrypts c′ corresponding to the receiver’s identity IDR. Let r be the output of the
decryption algorithm.

47

2. B then searches the list L1 for a tuple of the form (r, c′, IDS, h1). If no such tuple exists,
B chooses a uniformly at random a string, say h1, from {0, 1}l1 and adds (r, c′, IDS, h1)
to the list L1.

3. Then B searches the list L3 for tuple (h1, IDS, h3). If such a tuple does not exist, B
chooses h3, say, uniformly at random from {0, 1}l1 and adds (h1, IDS, h3) to the list
L3 and then computes m = c⊕ h3.

4. B then searches the list L2 for a tuple (m, c′, h1, IDR, IDS, h2). If such a tuple does not
exist, B chooses h2 uniformly at random from {0, 1}l2 and adds (m, c′, h3, IDR, IDS, h2)
to the list L2 and computes s = d⊕ h2.

Finally, B submits (m, s) corresponding to the sender’s identity IDS to the challenger CH.

It is clear if C = (c, c′, d) is a valid ciphertext corresponding to receiver’s identity IDR and
sender’s identity IDS, then (m, s) is a valid message-signature pair for the sender’s identity
IDSen. Note that, the validity of ciphertext C in the game of ESUF-IBSC-CMA ensures that
A has not queried on (m, IDS) such that s is a valid signature on message m and hence
B also has not queried on (m, IDS) to the challenger CH whose output is s. Therefore,
whenever A produces a forged ciphertext, B also produces a forged message-signature pair
in the SUF-ID-CMA game against SIBS.

Hence, advantage of B = Adv(B) = Pr[B wins] = ε.

4.4 Efficiency

1. Time Efficiency : Our proposed scheme is based upon “Encrypt and Sign” paradigm,
where a random number is encrypted instead of a message. Hence, Encrypt and Sign
can be run in parallel in the Signcrypt algorithm. Let tE, tS, tD, tV and tH be the
time taken by the Encrypt, Sign, Decrypt, Verify and Hash algorithms respectively.
Then, assuming that the Sign and Encrypt are run concurrently, the time taken by our
scheme in Signcrypt will be TSC = max(tE, tS)+3tH ; whereas in the Sign-then-Encrypt
approach, the total time taken will be tE + tS. Moreover, the time taken by our scheme
in Designcrypt will be TDSC = tD + tV + 3tH . In general, tH << (tE or tS).

2. Space Efficiency : In many cases, in practice, the ciphertext length bears (approx.) a
constant ratio with the plaintext. This is also the case with many signature schemes.
Let the output length of the Encrypt algorithm be (at most) αl1, where l1 is the bit
length of message m. Let the output length of the signature corresponding to an l1
bit message be (at most) l2 = βl1. Hence, the total length of ciphertext will be (at
most) (α+β+ 1)l1. But in the Sign-then-Encrypt approach, ciphertext length will be,
roughly, α(β + 1)l1. Hence, our scheme is likely to produce a shorter ciphertext length
compared to the Sign-then-Encrypt approach if α ≥ 1

β
+ 1.

48

4.5 Comparisons

Using our generic method, we composed two IBSC scheme - first one by composing Boneh-
Franklin Identity Based Encryption (BF-IBE) [15] with Shamir’s Identity Based Signature
(SH-IBS) [85] scheme and the second one by composing Boneh-Franklin IBE [15] with
Kurosawa-Heng Identity Based Signature (KH-IBS) ([59], page 113 of [63]) scheme. We
compared these schemes with the Identity Based Signcryption (IBSC) schemes proposed
by Boyen [18], Chen-Malone-Lee [25] and Barreto et. al. [7]. BF-IBE + SH-IBS (Boneh-
Franklin IBE and Shamir IBS) has more than double ciphertext overhead and BF-IBE +
KH-IBS (Boneh-Franklin IBE and Kurosawa-Heng IBS) has almost double ciphertext over-
head than IBSC schemes proposed by Boyen, Chen-Malone-Lee and Barreto. In case of
time efficiency, both schemes (BF-IBE + SH-IBS and BF-IBE + KH-IBS) take less time in
Signcrypt (note to remember that in our method, in Signcrypt, Encrypt and Sign algorithm
can be run in parallel) and Designcrypt compared to Boyen and Chen-Malone-Lee IBSC
scheme. Barreto’s scheme has lower cost of computation in Signcrypt than that of BF-IBE
+ SH-IBS and BF-IBE + KH-IBS but in Designcrypt, BF-IBE + SH-IBS has lower and
BF-IBE + KH-IBS has almost equal cost of computation than that of Barreto. Summary of
the efficiency comparisons has been given in table 4.2.

Table 4.2: Efficiency Comparisons

Scheme Signcrypt Designcrypt Ciphertext Overhead

E P SM E P SM

Boyen IBSC [18] 1 1 3 0 4 2 2|G1|+ |ID|+ |M |
Chen-Malone-Lee IBSC [25] 0 1 3 0 3 1 2|G1|+ |ID|+ |M |

Barreto et. al. IBSC [7] 1 0 3 1 2 1 2|G1|+ |M |
Different IBSC constructed using our generic method

BF-IBE [15] + SH-IBS [85] 1 1 1 2 1 1 |G1|+ 2|Z∗N |+ 3|M |
BF-IBE [15] + KH-IBS ([59], [63]) 1 1 2 1 2 1 2|G1|+ |Z∗q |+ 3|M |

• E denotes number of exponentiation.

• P denotes number of pairing. We assume e : G1 ×G1 → GT , if e is a symmetric bilinear map, else e : G1 ×G2 → GT ,
in case of asymmetric bilinear map.

• SM denotes number of scalar multiplication of a point on elliptic curve.

• |G1| denotes the bit length of an element in group G1 used in pairing.

• |G2| denotes the bit length of an element in group G2 used in pairing.

• |GT | denotes the bit length of an element in group GT used in pairing.

• |ID| denotes the bit length of an identity.

• |M | denotes the message length.

• |Z∗N | denotes the length of an element in Z∗N where N = pq is the product of two prime numbers p and q.

• |Z∗q | denotes the length of an element of Z∗q . Here q is a prime number.

49

4.6 Extension of An-Dodis-Rabin Construction

In [3], An-Dodis-Rabin gave a generic construction of signcryption using Commitment, En-
cryption and Signature algorithms. Their scheme is in the traditional PKC setting. It can
easily been seen that their construction can be lifted to construct an Identity Based Sign-
cryption. Using Commitment, Identity Based Encryption and Identity Based Signature in
their construction, we show that similar to the construction in [3] one can obtain an Identity
Based Signcryption scheme.

4.6.1 ID-Based An-Dodis-Rabin Construction

Let SCOMM = (SetupCOMM ,Commit,Open) be a non-interactive Commitment scheme,
SIBE = (SetupIBE,KeyGenIBE,Encrypt,Decrypt) be an Identity Based Encryption scheme,
SIBS = (SetupIBS,KeyGenIBS, Sign,Verify) be an Identity Based Signature scheme and m
be the message.

Construction Using Commit then Encrypt and Sign Paradigm

Setup(1λ)

• CK ← SetupCOMM (1λ)

• (ParamsIBE ,MSKIBE)← SetupIBE(1λ)

• (ParamsIBS ,MSKIBS)← SetupIBS(1λ)

• Params = (CK,ParamsIBE , ParamsIBS)

• MSK = (MSKIBE ,MSKIBS)

• return (Params,MSK)

Signcrypt(m,SKIDSen
, IDRec, IDSen, Params)

• (c, d)← Commit(m,CK)

• e← Encrypt(d, IDRec, Params
IBE)

• σ ← Sign(c, SKIBS
Sen , IDSen, Params

IBS)

• C = (e, (c, σ))

• return C

KeyGen(ID,MSK)

• SKIBE
ID ← KeyGenIBE(ID,MSKIBE)

• SKIBS
ID ← KeyGenIBS(ID,MSKIBS)

• SKID = (SKIBE
ID , SKIBS

ID).

• return SKID

Designcrypt(C, SKIDRec
, IDRec, IDSen, Params)

• Let SKIDRec
= (SKIBE

IDRec
, SKIBS

IDRec
).

• d′ ← Decrypt(e, SKIBE
IDRec

, IDRec, Params
IBE)

• x← Verify(c, σ, IDSen, ParamsIBS)

• If x is false or d′ is ⊥, return ⊥ else

• m′ ← Open((c, d′), CK)

• if m′ is ⊥, return ⊥, else

• return (m′, (c, d′, σ)).

Table 4.3: Construction of IBSC from IBE and IBS schemes using CtE&S Paradigm

50

As in [3], one can prove the following. The proofs are similar and are omitted.

Theorem 6 If Commitment has the hiding property and the Identity Based Encryption
scheme is IND-ID-gCCA secure, then the Identity Based Signcryption scheme obtained by
the extended An-Dodis-Rabin method is IND-IBSC-gCCA secure.

Remark: See chapter 2, sections 2.7 and 2.9 for the definitions of IND-ID-gCCA secure
IBE scheme and IND-IBSC-gCCA secure IBSC schemes.

Theorem 7 If Commitment has the relaxed binding property and the Identity Based Sig-
nature scheme is SUF-ID-CMA secure, then the Identity Based Signcryption scheme con-
structed above is also ESUF-IBSC-CMA secure.

We will now show that the IBSC scheme obtained above using the An-Dodis-Rabin con-
struction is not IND-IBSC-CCA secure in the insider security model.(This was also observed
for the original scheme in [3])

• Attack on Confidentiality in the Insider Security Model
Consider the IND-CCA game between the challenger and the adversary A. Let (C =
(e, (c, σ))) be the challenge ciphertext obtained during the IND-IBSC-CCA game cor-
responding to the receiver’s identity IDRec and sender’s identity IDSen. In the insider
security model, we may assume that the adversary A knows the sender’s secret key
SKIBS

IDSen
. Hence, assuming the signature algorithm be probabilistic, A can obtain a

different signature on c, say σ′. Now, designcryption of (C ′ = (e, (c, σ′))) corresponding
to the receiver’s identity IDRec and the sender’s identity IDSen will yield the same
message, say m, that is obtained from the designcryption of (C = (e, (c, σ))) corre-
sponding to IDRec and IDSen. By querying the designcryption oracle, A easily wins
the game.

4.7 A Modified Scheme : IBSC-Scheme2

As observed above, the construction in subsection 4.6.1 yields only an IND-IBSC-gCCA se-
cure scheme from an IND-ID-CCA secure IBE scheme. Thus to obtain an IND-IBSC-CCA
secure IBSC scheme we need to modify the construction. This is done below. The modified
scheme is no longer an instantiation of the extended An-Dodis-Rabin construction.

Let SIBE = (SetupIBE,KeyGenIBE,Encrypt,Decrypt) and SIBS = (SetupIBS,KeyGenIBS,Sign,
Verify) be an Identity Based Encryption scheme and Identity Based Signature scheme re-
spectively. Let l1 be the bit-length of any message m from the message space M. We require
that the bit-length of a random number r from the random space R also be l. Moreover, let
l2 be the bit-length of the signature s generated by the algorithm ‘Sign’ of SIBS.

The construction of an IBSC scheme from IBE and IBS schemes is described in Table 4.4.

51

Proposed Scheme: IBSC-Scheme2

Setup(1λ)

• Choose two cryptographically secure hash
functions
H1 : {0, 1}∗ → {0, 1}l1 ,
H2 : {0, 1}∗ → {0, 1}l1

• (ParamsIBE ,MSKIBE)← SetupIBE(1λ)

• (ParamsIBS ,MSKIBS)← SetupIBS(1λ)

• Params = (ParamsIBE , ParamsIBS , H1, H2)

• MSK = (MSKIBE ,MSKIBS)

• return (Params,MSK)

Signcrypt(m,SKIDSen
, IDRec, IDSen, Params)

• Choose r ∈ R

• h1 = H1(m, r, IDRec, IDSen)

• c′ = Encrypt(r, IDRec, Params
IBE)

• σ = Sign(h1, SKIDSen
, IDSen, Params

IBS)

• h2 = H2(r, c′, h1, σ, IDRec, IDSen)

• c = h2 ⊕m

• C ≡ (c, c′, h1, σ)

KeyGen(ID,MSK)

• SKIBE
ID ← KeyGenIBE(ID,MSKIBE)

• SKIBS
ID ← KeyGenIBS(ID,MSKIBS).

• SKID = (SKIBE
ID , SKIBS

ID).

• return SKID

Designcrypt(C, SKIDRec
, IDRec, IDSen, Params)

• Let SKIDRec
= (SKIBE

IDRec
, SKIBS

IDRec
).

• r′ = Decrypt(c′, SKIDRec
, IDRec, Params

IBE)

• x← Verify(h1, σ, IDSen, Params
IBS)

• If r′ is ⊥ or x is false, return ⊥, else

• compute h′2 = H2(r′, c′, h1, σ, IDRec, IDSen)

• compute m′ = h′2 ⊕ c

• check h1
?
= H1(m′, r′, IDRec, IDSen)

• If the above step is not correctly verified, return ⊥, else

• return (m′, s) = (m′, (r′, h1, σ)).

Table 4.4: Construction of IBSC from IBE and IBS schemes.

Remark: Note that, Encrypt and Sign can be run in parallel in Signcrypt. Moreover,
Decrypt and Verify also can be run in parallel in Designcrypt. As a result, this construction
is more efficient than the previous construction proposed in section 4.2.

4.8 Security of the Modified Scheme

4.8.1 Message Confidentiality

Theorem 8 Let A be a probabilistic polynomial time (PPT) adversary which can break our
scheme in the IND-IBSC-CCA game with an advantage ε in the random oracle model. Then
there exists a PPT adversary B which can break SIBE (Identity Based Encryption scheme
used) in the IND-ID-CCA game with an advantage at least ε

2
.

Proof : Let there be a PPT challenger CH which runs the SetupIBE algorithm of SIBE.

52

We shall show how to construct an IND-ID-CCA adversary B that uses A to gain ad-
vantage ε

2
against SIBE. Suppose B receives public parameters ParamsIBE from CH. B

chooses an Identity Based Signature scheme SIBS whose public parameters ParamsIBS are
independently generated from the public parameters of SIBE. We can safely assume that
ParamsIBE ∩ ParamsIBS = φ. B maintains lists L1 and L2 for queries on hash functions
H1, H2. Besides these, B maintains two other lists S1 and S2 for queries on secret keys of
different identities corresponding to SIBE and SIBS .

We now explain how requests from A are treated by B who plays the role of a challenger to
A.

• H1 queries : For inputs m(i), r(i), IDRec(i) , IDSen(i) fromA, B searches the list L1 for the

tuple (m(i), r(i), IDRec(i) , IDSen(i) , h
(i)
1). If such a tuple exists, B returns h

(i)
1 to A, else B

randomly selects h
(i)
1 from {0, 1}l1 and adds the tuple (m(i), r(i), IDRec(i) , IDSen(i) , h

(i)
1)

to the list L1 and returns h
(i)
1 to A.

• H2 queries : For inputs r(i), c′(i), h
(i)
1 , σ(i), IDRec(i) , IDSen(i) from A, B searches the

tuple (r(i), c′(i), h
(i)
1 , σ

(i), IDRec(i) , IDSen(i) , h
(i)
2) in the list L2. If such a tuple exists,

B returns h
(i)
2 to A, else B randomly selects h

(i)
2 from {0, 1}l1 and adds the tuple

(r(i), c′(i), h
(i)
1 , σ

(i), IDRec(i) , IDSen(i) , h
(i)
2) to the list L2. B then returns h

(i)
2 to A.

• KeyGeneration queries : For an input ID(i) from A, algorithm B responds to A in
two steps:

1. B sends ID(i) to CH. Let CH returns the corresponding secret key SKIBE
ID(i) . B

then adds (ID(i), SKIBE
ID(i)) into the list S1.

2. As the constituent Identity Based Signature scheme, SIBS, is chosen by B, so B
generates the secret key SKIBS

ID(i) corresponding to ID(i), then adds (ID(i), SKIBS
ID(i))

into the list S2.

B finally returns (SKIBE
ID(i) , SK

IBS
ID(i)) to A.

• Signcryption queries : The response to the signcryption query for the message m(i)

corresponding to the receiver’s identity IDRec(i) and the sender’s identity IDSen(i) is as
follows :

1. B searches the list S2 for the secret key corresponding to identity IDSen(i) . If
it does not exist, B generates the secret key corresponding to IDSen(i) using
KeyGenIBS algorithm of SIBS. Let SKIBS

ID(i) be the corresponding secret key.

2. B then chooses a random number r(i) and runs c′(i) ← Encrypt(r(i), IDRec(i) ,
ParamsIBE).

3. B searches the list L1 for the tuple (m(i), r(i), IDRec(i) , IDSen(i) , h
(i)
1). If such a

tuple does not exist, B chooses a string h
(i)
1 uniformly at random from {0, 1}l1

and adds (m(i), r(i), IDRec(i) , IDSen(i) , h
(i)
1) to the list L1.

53

4. B runs σ(i) ← Sign(h(i), SKIBS
ID

Sen(i)
, IDSen(i) , ParamsIBS).

5. Then, B searches the list L2 for the tuple (r(i), c′(i), h
(i)
1 , σ

(i), IDRec(i) , IDSen(i) , h
(i)
2).

If such a tuple does not exist, B chooses a random string, say h
(i)
2 , uniformly at

random from {0, 1}l2 and adds (r(i), c′(i), h
(i)
1 , σ

(i), IDRec(i) , IDSen(i) , h
(i)
2) to the list

L2.

6. B then computes c(i) = h
(i)
2 ⊕m(i).

B finally sends C(i) = (c(i), c′(i), h(i), σ(i)) to A.

• Designcryption queries : For input C(i) = (c(i), c′(i), h
(i)
1 , σ

(i)) and IDRec(i) , IDSen(i)

(receiver’s and sender’s identities are IDRec(i) and IDSen(i) respectively), B responds
as follows:

1. B first runs x← Verify(h
(i)
1 , σ

(i), IDSen(i) , Params(i)). If x is false, return ⊥, else

2. B sends (c′(i), IDRec(i)) to CH to decrypt. Let r(i) be the output from the Decrypt
algorithm of SIBE.

3. Then B searches the list L2 for tuple (r(i), c′(i), h
(i)
1 , σ

(i), IDRec(i) , IDSen(i) , h
(i)
2). If

such a tuple does not exist, B chooses uniformly at random a string h
(i)
2 from

{0, 1}l1 and adds (r(i), c′(i), h
(i)
1 , σ

(i), IDRec(i) , IDSen(i) , h
(i)
2) to the list L1.

4. B then computes m(i) = h
(i)
2 ⊕ c(i).

5. Now, B searches the list L1 for the tuple (m(i), r(i), IDRec(i) , IDSen(i) , h
′(i)
1). If such

a tuple exists and h
′(i)
1 = h

(i)
1 , then B returns (m(i), (r(i), h

(i)
1 , σ

(i))), else ⊥. If such

a tuple does not exist, then B chooses a string h
′(i)
1 uniformly at random from

{0, 1}l1 and adds (m(i), r(i), IDRec(i) , IDSen(i) , h
′(i)
1) to the list L1. If h

′(i)
1 = h

(i)
1 ,

then B returns (m(i), (r(i), h
(i)
1 , σ

(i))), else ⊥.

Once A decides to enter the challenge phase, it chooses two messages m0,m1 of same length
and two identities IDR and IDS corresponding to the receiver’s and sender’s identities
respectively and sends them to B which is responded as follows:

1. B then chooses two random strings r0, r1 ∈ {0, 1}l1 and the receiver’s identity IDR and
sends them to CH.

2. CH then chooses a bit, say b, uniformly at random from {0, 1} and computes the
ciphertext c′b ← Encrypt(rb, IDR, Params

IBE).

3. CH then sends the ciphertext c′b to B.

4. B then searches the list L1 for the tuple (m0, r0, IDR, IDS, h1,0). If such a tuple does
not exist, B chooses a string h1,0 uniformly at random from {0, 1}l1 and adds the tuple
(m0, r0, IDR, IDS, h1,0).

5. B searches the list S2 for the secret key corresponding to the identity IDS. If the
secret key does not exist, B then runs KeyGen algorithm of SIBS. Let the secret key
be SKIBS

IDS
.

54

6. After that B runs the Sign algorithm of SIBS on h1,0 and identity IDS to get signature
σ0 ← Sign(h1,0, SK

IBS
IDS

, IDS, Params
IBS).

7. B then searches the tuple (r0, c
′
b, h1,0, σ0, IDR, IDS, h2,0) in the list L2. If such a tuple

does not exist. B chooses a string uniformly at random, say h2,0 from {0, 1}l1 and adds
the tuple (r0, cb, h1,0, σ0, IDR, IDS, h2,0) to the list L2.

8. B then computes c0 = h2,0 ⊕m0. Let C0 ≡ (c0, c
′
b, h1,0, σ0).

9. B repeats the above 5 steps taking r1 and m1. Let C1 ≡ (c1, c
′
b, h1,1, σ1).

Finally, B chooses a bit v ∈ {0, 1} uniformly at random and returns Cv to A.

A then performs a second series of queries which is treated in the same way for H1, H2,
Secret Key (except secret key query on identity IDR) and Signcryption queries. For

Designcryption queries, given an input C(j) = (c(j), c′(j), h
(j)
1 , σ(j)) for IDRec(j) & IDSen(j) , B

responds as follows:

1. If (c′(j), IDRec(j)) 6= (c′b, IDR), B responds in the same way as it does forDesigncryption
queries before the challenge phase.

2. If (c′(j), h
(j)
1 , σ(j), IDRec(j) , IDSen(j)) = (c′b, h1,v, σv, IDR, IDS), then we assume c(j) 6= cv

(otherwise (c(j), c′(j), h
(j)
1 , σ(j)) will be the same as the challenge ciphertext for the cor-

responding receiver’s identity IDRec(j) and sender’s identity IDSen(j)). Since (c′b, IDR)
= (c′(j), IDRec(j)), decryption of c(j) for identity IDRec(j) will yield r(j) which will be

the same as rb. B then searches the tuple (r0, c
′(j), h

(j)
1 , σ(j), IDRec(j) , IDSen(j) , h2,0) in

the list L2 and computes m
(j)
0 by taking ⊕ of c(j) and h2,0, i.e., m

(j)
0 = c(j)⊕ h2,0. Sim-

ilarly, B searches the tuple (r1, c
′(j), h

(j)
1 , σ(j), IDRec(j) , IDSen(j) , h2,1) in the list L2 and

computes m
(j)
1 = c(j) ⊕ h2,1. B then searches the tuple (m

(j)
0 , r0, IDRec(j) , IDSen(j) , h

(j)
1)

and (m
(j)
1 , r1, IDRec(j) , IDSen(j) , h

(j)
1) in the list L1. If either of the tuples exists, then

B aborts the game and returns the corresponding bit as the final guess bit to the chal-
lenger. If no such tuples exist, then B chooses two strings uniformly at random, say
h
′(j)
1 and h̄

′(j)
1 from {0, 1}l1 such that h

′(j)
1 6= h

(j)
1 and h̄

′(j)
1 6= h

(j)
1 . B then adds the

tuples (m
(j)
0 , r0, IDRec(j) , IDSen(j) , h

′(j)
1) and (m

(j)
1 , r1, IDRec(j) , IDSen(j) , h̄

′(j)
1) to the list

L1 and returns ⊥ to the adversary A.

3. Suppose (c′(j), IDRec(j)) = (c′b, IDR), but (h
(j)
1 , σ(j), IDSen(j)) 6= (h1,v, σv, IDS). As

(c′b, IDR) = (c′(j), IDRec(j)), decryption of c′(j) for identity IDRec(j) will yield r(j) which

will be the same as rb. B then searches the tuple (r0, c
(j), h

(j)
1 , σ(j), IDRec(j) , IDSen(j) , h

(j)
2,0)

in the list L2. If such a tuple doesn’t exist, then B chooses a string uniformly at ran-
dom, say h

(j)
2,0 ∈ {0, 1}l1 and adds the tuple (r0, c

′(j), h
(j)
1 , σ(j), IDRec(j) , IDSen(j) , h

(j)
2,0)

in the list L2. B then computes m
(j)
0 = cj ⊕ h

(j)
2,0. Similarly, B searches the tuple

(r1, c
′(j), h

(j)
1 , σ(j), IDRec(j) , IDSen(j) , h

(j)
2,1) in the list L2. If such a tuple doesn’t exist,

then B chooses a string uniformly at random, say h
(j)
2,1 ∈ {0, 1}l1 and adds the tuple

(r1, c
′(j), h

(j)
1 , σ(j), IDRec(j) , IDSen(j) , h

(j)
2,1) in the list L2. B then computes m

(j)
1 = cj ⊕

55

h
(j)
2,1. B then searches the tuple (m

(j)
0 , r0, IDRec(j) , IDSen(j) , h

(j)
1) and (m

(j)
1 , r1, IDRec(j) ,

IDSen(j) , h
(j)
1) in the list L1. If either of the tuples exists, then B aborts the game

and returns the corresponding bit as the final guess bit to the challenger. If no
such tuple exists, then B chooses two strings uniformly at random, say h

′(j)
1 and

h̄
′(j)
1 from {0, 1}l1 such that h

′(j)
1 6= h

(j)
1 and h̄

′(j)
1 6= h

(j)
1 . B then adds the tuples

(m
(j)
0 , r0, IDRec(j) , IDSen(j) , h

′(j)
1) and (m

(j)
1 , r1, IDRec(j) , IDSen(j) , h̄

′(j)
1) in the list L1 and

returns ⊥ to the adversary A.

In the above designcryption queries, B aborts the game if the following two cases arise:

1. A queries for (m
(j)
0 , r0, IDRec(j) , IDSen(j) , h

(j)
1) or (m

(j)
1 , r1, IDRec(j) , IDSen(j) , h

(j)
1) ran-

domly to H1 oracle. Since, the choice of r0 and r1 by B is completely random from the
adversary A’s point of view, this case occurs with negligible probability.

2. A correctly decrypts c′ corresponding to the receivers identity IDR. Hence, in this
case, the probability of winning the game by B will be 1.

Note that in the above game, B interacts with CH as in the real game. Secret key query
for identity IDR has not been asked by A to B, hence by B to CH. Besides it, B has not
queried on the challenge ciphertext to CH.

At the end of the simulation, B will use the bit guessed by A to guess the challenge bit
with SIBE. If A guesses w ∈ {0, 1}, B will output the same bit viz w to CH. We divide the
analysis of the success probability of B into two cases:

• B does not abort the game.

1. If b = v, the simulation is perfect and the ciphertext, Cv, produced by B will be
a valid ciphertext of the message mv corresponding to IDR (receiver’s identity)
and IDS (sender’s identity). Let

– E1 denote the event that B wins.

– E2 denote the event that b = v.

– E3 denote the event that A wins.

– E4 denote the event that Cv is a valid ciphertext.

Then
Pr[E1|E2] = Pr[E3|E4]

2. Suppose b 6= v.

(a) Suppose A recognizes Cv as an invalid ciphertext. In that case, B will guess
the bit b = v̄, i.e., the complement of v. In this case, B will guess correctly.
Let

– E5 denote the event that b 6= v.

– E6 denote the event that A recognizes Cv as an invalid ciphertext.

56

Then
Pr[E6|E2] = 0

and
Pr[E1|E5 ∩ E6] = 1

Let
Pr[E6|E5] = p

(b) Now assume that A doesn’t recognize Cv as an invalid ciphertext. In this
case, from A′s point of view, Cv will appear as a random ciphertext unless A
queries H2 on input (rv, c

′
b). Since, rv was chosen uniformly at random from

{0, 1}l1 by B, hence the probability that A will query H2 on input (rv, c
′
b) is

negligible. So, from A′s point of view, Cv will appear as a random ciphertext.
Let,

– E7 denote the event that A recognizes Cv as a random ciphertext.

Then
Pr[E7|E5] = 1− p

Pr[E1|E5 ∩ E7] = 1
2

Note that

– E5 = EC
2

– Pr[E2] = Pr[E5] = 1/2

– (E5 ∩ E6) ∪ (E5 ∩ E7) = E5

– E2 ∩ (E5 ∩ E6) = φ

– E2 ∩ (E5 ∩ E7) = φ

– (E5 ∩ E6) ∩ (E5 ∩ E7) = φ

– Pr[E5 ∩ E6] = Pr[E6|E5]Pr[E5] = 1
2
p

– Pr[E5 ∩ E7] = Pr[E7|E5]Pr[E5] = 1
2
(1− p)

Therefore,

Pr[E1] = Pr[E1|E2]Pr[E2] + Pr[E1|E5 ∩ E6]Pr[E5 ∩ E6] + Pr[E1|E5 ∩ E7]Pr[E5 ∩ E7]
(4.1)

⇒ Pr[E1] = 1
2
Pr[E1|E2] + 1

2
p + 1

2
.1
2
(1− p) ≥ 1

2
Pr[E1|E2] + 1

4

Since,
Pr[E1|E2] = Pr[E3|E4] (4.2)

⇒ Pr[E1] ≥ 1
2
Pr[E3|E4] + 1

4

• B aborts the game.
Let

– E8 denotes the event that A correctly decrypts the ciphertext c′.

57

Then
Pr[B aborts the game] = Pr[E8]. (4.3)

In this case,
Pr[B wins] = 1. (4.4)

Using equations (3) and (4), we get
Pr[B wins] = Pr[B wins | B aborts the game]Pr[B aborts the game] + Pr[B wins | B doesn’t
abort the game]Pr[B doesn’t abort the game]
⇒ Pr[B wins] = 1.Pr[E8] + Pr[E1](1 − Pr[E8])
⇒ Pr[B wins] = Pr[E1] + Pr[E8](1 − Pr[E1])
⇒ Pr[B wins] ≥ Pr[E1]

Hence,
Advantage of B = Adv(B) = |Pr[B wins]− 1

2
|

≥ |(Pr[E1]− 1
2
)| ≥ 1

2
(|Pr[E3|E4]− 1

2
|) = 1

2
(Adv(A)) = ε

2

4.8.2 Ciphertext Unforgeability

We can similarly prove ciphertext unforgeability. We show that our scheme is ESUF-IBSC-
CMA secure under the random oracle model provided the underlying IBS scheme is SUF-
ID-CMA secure.

Theorem 9 Let A be a probabilistic polynomial time (PPT) adversary which can break
our scheme in the ESUF-IBSC-CMA game with an advantage ε in the random oracle model.
Then there exists a PPT adversary B which can break SIBS (Identity Based Signature scheme
used) in the SUF-ID-CMA game with an advantage ε.

Proof : Let there be a PPT challenger CH which runs the SetupIBS algorithm of SIBS.
We shall show how to construct an SUF-ID-CMA adversary B that uses A to gain ad-
vantage ε against SIBS. Suppose B receives public parameters ParamsIBS from CH. B
chooses an Identity Based Encryption scheme SIBE whose public parameters ParamsIBE

are independently generated from the public parameters of SIBS. We can safely assume that
ParamsIBE ∩ ParamsIBS = φ. B maintains lists L1 and L2 for queries on hash functions
H1, H2. Besides these, B maintains two other lists S1 and S2 for queries on secret keys of
different identities corresponding to SIBE and SIBS .

We now explain how requests from A are treated by B. The response to H1 and H2 queries
are exactly as in the proof of Theorem 8.

• KeyGeneration queries : For an input ID(i) from A, algorithm B responds to A in
two steps:

1. B sends ID(i) to CH. Let CH returns the corresponding secret key SKIBS
ID(i) . B

then adds (ID(i), SKIBS
ID(i)) into the list S2.

58

2. As the constituent Identity Based Encryption scheme, SIBE, is chosen by B,
so B generates the secret key SKIBE

ID(i) corresponding to ID(i). B then adds

(ID(i), SKIBE
ID(i)) into the list S1.

B finally returns (SKIBE
ID(i) , SK

IBS
ID(i)) to A.

• Signcryption queries : The response to signcryption query for message m(i) corre-
sponding to the receiver’s identity IDRec(i) and sender’s identity IDSen(i) is as follows
:

1. B first chooses a number, say r(i) ∈ R.

2. B then runs c′(i) ← Encrypt(r(i), IDRec(i) , Params
IBE).

3. B then checks the tuple (m(i), r(i), IDRec(i) , IDSen(i) , h
(i)
1) in the list L1. If such a

tuple doesn’t exist, then B chooses a string, say h
(i)
1 ,uniformly at random from

{0, 1}l1 and adds the tuple (m(i), r(i), IDRec(i) , IDSen(i) , h
(i)
1) to the list L1.

4. B then sends (h
(i)
1 , IDSen(i)) to CH. CH runs σ(i) ← Sign(h

(i)
1 , SK

IBS
ID

Sen(i)
) and

sends σ(i) to B.

5. Then, B searches the list L2 for tuple (r(i), c′(i), h
(i)
1 , σ

(i), IDRec(i) , IDSen(i) , h
(i)
2). If

such a tuple does not exist, B chooses a random string, say h
(i)
2 , uniformly at

random from {0, 1}l2 and adds (r(i), c′(i), h
(i)
1 , σ

(i), IDRec(i) , IDSen(i) , h
(i)
2) to the list

L2.

6. B then computes c(i) = h
(i)
2 ⊕m(i).

B finally sends C(i) = (c(i), c′(i), h
(i)
1 , σ

(i)) to A.

• Designcryption queries : For input C(i) = (c(i), c′(i), h
(i)
1 , σ

(i)) and IDRec(i) , IDSen(i)

(receiver’s and sender’s identities are IDRec(i) and IDSen(i) respectively), B responds
as follows:

1. B searches the list S1 for the secret key corresponding to the identity IDRec(i) . If
it does not exist, B generates the secret key corresponding to IDRec(i) using the
KeyGenIBE algorithm of SIBE. Let SKIBE

ID
Rec(i)

be the corresponding secret key.

2. B first runs x← Verify(h
(i)
1 , σ

(i), IDSen(i) , ParamsIBS). If x is false, return ⊥, else

3. B runs r(i) ← Decrypt(c′(i), SKIBE
ID

Rec(i)
.IDRec(i) , Params

IBE).

4. Then B searches the list L2 for tuple (r(i), c′(i), h
(i)
1 , σ

(i), IDRec(i) , IDSen(i) , h
(i)
2). If

such a tuple does not exist, B chooses uniformly at random a string h
(i)
2 from

{0, 1}l1 and adds (r(i), c′(i), h
(i)
1 , σ

(i), IDRec(i) , IDSen(i) , h
(i)
2) to the list L2.

5. B then computes m(i) = h
(i)
2 ⊕ c(i).

6. Now, B searches the list L1 for the tuple (m(i), r(i), IDRec(i) , IDSen(i) , h
′(i)
1). If such

a tuple exists and h
′(i)
1 = h

(i)
1 , then B returns (m(i), (r(i), h

(i)
1 , σ

(i))) else ⊥. If such

59

a tuple does not exist, then B chooses a string h
′(i)
1 uniformly at random from

{0, 1}l1 and adds (m(i), r(i), IDRec(i) , IDSen(i) , h
′(i)
1) to the list L1. If h

′(i)
1 = h

(i)
1 ,

then B returns (m(i), (r(i), h
(i)
1 , σ

(i))), else ⊥.

Once this game is over, A submits a ciphertext C = (c, c′, h1, σ) corresponding to the re-
ceiver’s identity IDR and the sender’s identity IDS such that the secret key corresponding
to IDS has not been queried earlier. B then submits (h1, σ) to CH. Regarding (h1, σ, IDS),
the following cases arise:

1. B has not queried to CH on h1 corresponding to the sender’s identity IDS. In this
case, B wins the game.

2. B has queried to CH on h1 corresponding to the sender’s identity IDS. Hence, A
has obtained some ciphertext Ci = (ci, c

′
i, h1i, σi) after Signcryption query over some

receiver’s identity IDReci and sender’s identity IDSeni where (h1i, IDSeni) = (h1, IDS).
If σi 6= σ, B wins the game.

3. (h1, σ) corresponding to the sender’s identity has been obtained by B from the CH;

hence, A has obtained some ciphertext C(i) = (c(i), c′(i), h
(i)
1 , σ

(i)) from the Signcryp-
tion oracle for some receiver’s identity IDRec(i) and IDSen(i) . Let σ(i) = σ. Then

(h
(i)
1 , σ

(i), IDSen(i)) = (h1, σ, IDS). Since h
(i)
1 = h1, with negligible probability, two

different input value on H1 will yield the same output (assuming H1 as a random
function). Hence, designcryption of C = (c, c′, h1, σ), say m, corresponding to the
receiver’s identity IDR and the sender’s identity IDS, and the designcryption of
C(i) = (c(i), c′(i), h

(i)
1 , σ

(i)), say m(i), corresponding to the receiver’s identity IDRec(i)

and sender’s identity IDSen(i) will be same, i.e. m = m(i). Again decryption of c′,
say r, corresponding to the receiver’s identity IDR and decryption of c′(i), say r(i),
corresponding to the receiver’s identity IDRec(i) will also be the same, i.e. r = r(i).

Moreover, IDR = IDRec(i) . Hence in this case, (m, r, h(i), σ) = (m(i), r(i), h
(i)
1 , σ

(i)) cor-
responding to the sender’s identity IDS. So, this case will not arise as per the definition
of ESUF-IBSC-CMA’s security game.

Case 1 and 2 implies that whenever C = (c, c′, h1, σ) is a valid forged ciphertext submitted
by A defined in the security game of ESUF-IBSC-CMA, the forged message-signature pair
(h1, σ) submitted by B to CH will be a valid message-signature pair according to the defini-
tion of security game of SUF-ID-CMA.

Hence, whenever A is able to submit a valid ciphertext to B, B will also be able to submit
a valid forged message-signature pair to CH.

So, advantage of B = Adv(B) = Pr[B wins] = Pr[A wins] = Adv(A) = ε.

60

4.9 Efficiency

1. Time Efficiency : In our proposed scheme, Encrypt and Sign can be done in paral-
lel in the Signcrypt algorithm and Decrypt and Verify can be done in parallel in the
Designcrypt algorithm. Let tE, tS, tD, tV and tH be the time taken by the Encrypt,
Sign, Decrypt, Verify and Hash algorithms respectively. Then, assuming that the Sign
and Encrypt are run concurrently in Signcrypt, the time taken by our scheme in Sign-
crypt will be TSC = max(tE, tS) + 2tH and assuming that Decrypt and Verify are
run concurrently in Designcrypt, the time taken by our scheme in Designcrypt will
be TDSC = max(tD, tV) + 2tH ; whereas in the Sign-then-Encrypt approach, the total
time taken in signcryption will be (tE + tS) and in designcryption will be (tD + tV). In
general, tH << (tE or tS or tD or tV).

2. Space Efficiency : In many cases, in practice, the ciphertext length bears (approx.) a
constant ratio with the plaintext. This is also the case with many signature schemes.
Let the output length of the Encrypt algorithm be (at most) αl1, where l1 is the bit
length of message m. Let the output length of the signature corresponding to an l1
bit message be (at most) l2 = βl1. Hence, the total length of ciphertext will be (at
most) (α+β+ 2)l1. But in the Sign-then-Encrypt approach, ciphertext length will be,
roughly, α(β + 1)l1. Hence, our scheme is likely to produce a shorter ciphertext length
compared to the Sign-then-Encrypt approach if α ≥ 2

β
+ 1.

4.10 Comparisons

Using our generic method, we composed two IBSC scheme - first one by composing Boneh-
Franklin Identity Based Encryption (BF-IBE) [15] with Shamir’s Identity Based Signature
(SH-IBS) [85] scheme and the second one by composing Boneh-Franklin IBE [15] with
Kurosawa-Heng Identity Based Signature (KH-IBS) ([59], page 113 of [63]) scheme. We
compared these schemes with the Identity Based Signcryption (IBSC) schemes proposed
by Boyen [18], Chen-Malone-Lee [25] and Barreto et. al. [7]. BF-IBE + SH-IBS (Boneh-
Franklin IBE and Shamir IBS) has more than double ciphertext overhead and BF-IBE +
KH-IBS (Boneh-Franklin IBE and Kurosawa-Heng IBS) has almost double ciphertext over-
head than IBSC schemes proposed by Boyen, Chen-Malone-Lee and Barreto. In case of
time efficiency, both schemes (BF-IBE + SH-IBS and BF-IBE + KH-IBS) take less time in
Signcrypt and Designcrypt (note to remember that in our method, in Signcrypt, Encrypt
and Sign algorithm can be run in parallel and in Designcrypt, Decrypt and Verify can be
run in parallel) compared to Boyen and Chen-Malone-Lee IBSC scheme. Barreto’s scheme
has lower cost of computation in Signcrypt than that of BF-IBE + SH-IBS and BF-IBE +
KH-IBS but in Designcrypt, both schemes, BF-IBE + SH-IBS has lower cost of computation
than that of Barreto. Summary of the efficiency comparisons has been given in table 4.5.

61

Table 4.5: Efficiency Comparisons

Scheme Signcrypt Designcrypt Ciphertext Length

E P SM E P SM

Boyen IBSC [18] 1 1 3 0 4 2 2|G1|+ |ID|+ |M |
Chen-Malone-Lee IBSC [25] 0 1 3 0 3 1 2|G1|+ |ID|+ |M |

Barreto et. al. IBSC [7] 1 0 3 1 2 1 2|G1|+ |M |
Different IBSC constructed using IBSC-Scheme1 generic method

BF-IBE [15] + SH-IBS [85] 1 1 1 2 1 1 |G1|+ 2|Z∗N |+ 3|M |
BF-IBE [15] + KH-IBS ([59], [63]) 1 1 2 1 2 1 2|G1|+ |Z∗q |+ 3|M |

Different IBSC constructed using IBSC-Scheme2 generic method

BF-IBE [15] + SH-IBS [85] 1 1 1 0 1 1 |G1|+ 2|Z∗N |+ 4|M |
BF-IBE [15] + KH-IBS ([59], [63]) 1 1 2 0 1 1 2|G1|+ |Z∗q |+ 4|M |

• E denotes number of exponentiation.

• P denotes number of pairing. We assume e : G1 ×G1 → GT , if e is a symmetric bilinear map, else e : G1 ×G2 → GT ,
in case of asymmetric bilinear map.

• SM denotes number of scalar multiplication of a point on elliptic curve.

• |G1| denotes the bit length of an element in group G1 used in pairing.

• |G2| denotes the bit length of an element in group G2 used in pairing.

• |GT | denotes the bit length of an element in group GT used in pairing.

• |ID| denotes the bit length of an identity.

• |M | denotes the message length.

• |Z∗N | denotes the length of an element in Z∗N where N = pq is the product of two prime numbers p and q.

• |Z∗q | denotes the length of an element of Z∗q . Here q is a prime number.

• BF-IBE denotes Boneh-Franklin Identity Based Encryption scheme [15].

• SH-IBS denotes Shamir Identity Based Signature scheme [85].

• KH-IBS denotes Kurosawa-Heng Identity Based Signature scheme ([59],[63]).

62

Chapter 5

Achieving CCA-secure Signcryption
Schemes from OWE-secure
Encryption Schemes

In this chapter, we show how to obtain a signcryption scheme that is dM-IND-iCCA se-
cure even when the underlying Encryption scheme is One-Way secure or One-Way secure
against plaintext checking attack. We have proposed two signcryption schemes, Scheme 1
and Scheme 2. Scheme 1 achieves dM-IND-iCCA security when the underlying encryp-
tion scheme is One-Way secure while Scheme 2 achieves dM-IND-iCCA security when the
underlying encryption scheme is One-Way secure against plaintext checking attack. The
transformation made to construct Scheme 1 is reminiscent to Fujisaki-Okamoto transforma-
tion.

5.1 Introduction

Confidentiality and Authentication are two of the major goals in cryptography. One obvious
way to achieve both is to use encryption and signature as black boxes. Some of the ways by
which it is achieved are Encrypt and Sign, Encrypt then Sign and Sign then Encrypt. It can
be easily shown that the first two are not secure since they do not achieve confidentiality
(not indistinguishable) in two-user and multi-user setting respectively. Sign then Encrypt
approach achieves both confidentiality and unforgeability but at the expense of higher com-
putational cost and ciphertext overhead.

The simplest security model for a signcryption scheme considers the two two-user setting
[3, 34] in which the interaction takes place between sender and receiver only. But this setting
does not incorporate the real setting, as pointed out by [33], in which multiple senders may
interact with the same receiver and multiple receivers may interact with the same sender.
Hence, a more realistic setting is multi-user setting. Security of signcryption schemes can
be further seen into two different attack models, namely insider and outsider attack model.
In the outsider security model, adversary is not allowed to possess the secret keys of the
sender and receiver but in the insider security model, attacker may possess the secret keys

63

of one of the parties. Currently, the strongest security model is insider attack model in the
multi-user setting. Libert et. al. [64] proposed first fully insider secure signcryption scheme
in the multi-user setting. Now, there are several schemes [65, 64, 33] which achieve the
strongest security in the random oracle model [11]. There are several schemes [3, 88, 69]
which are secure secure in the standard model but does not achieve the strongest security
notion. In 2011, Chiba-Matsuda-Schuldt-Matsuura [26] have given a generic construction of
signcryption scheme which achieves the strongest security (insider security in the multi-user
setting) in the standard model. They used Sign-then-Encrypt paradigm which relies upon
chosen-ciphertext-secure tag-based KEM, a chosen-ciphertext-secure DEM that has a one-
to-one property, and a strongly unforgeable signature scheme.

Earlier, An, Dodis and Rabin [3] have proposed a Commit-then-Encrypt& Sign paradigm
(CtE&S) to construct a signcryption scheme. The main feature of this approach is that both
Encryption and Signature can be done in parallel in the Signcryption phase and Decryption
and Verification can be done in parallel in the Designcryption phase. But from the point
of security, this scheme achieves generalized indistinguishability against chosen ciphertext
attack if Commit has the hiding property and Encryption is (generalized) IND-CCA secure(
a slightly weaker notion); while it is unforgeable against chosen message attacks if Commit
achieves the relaxed binding property and Signature is EUF-CMA secure i.e. existentially
unforgeable under chosen message attacks.

In this chapter, we have proposed two schemes for building secure signcryption schemes.
In the first scheme, Scheme 1, an encryption scheme which is OWE-CPA secure and a
signature scheme which is EUF-CMA secure yield dM-IND-iCCA and dM-EUF-iCMA secure
signcryption scheme in the random oracle model whereas in the second scheme, Scheme 2, an
encryption scheme which is OWE-PCA secure and a signature scheme which is EUF-CMA
secure yield dM-IND-iCCA and dM-EUF-iCMA secure signcryption scheme again in the
random oracle model. Scheme 1 and Scheme 2 do not just only provide ways to construct
signcryption schemes but also it shows how to construct a highly secure signcryption scheme
from the less secure parent encryption schemes. The construction of Scheme 1 is familiar to
Fujisaki-Okamoto transformation [43].

5.2 Proposed Scheme : Scheme 1

Let E = (KGE,ENC,DEC) and S = (KGS, SIG,VER) be encryption and signature schemes
respectively. If the encryption algorithm ENC is supplied with a random string r, externally,
we denote it by ENCr, else by ENC. Let l1 be the bit-length of the signing message used in
the algorithm SIG of S. Let l2 be the bit-length of any message m from the message space
M. Moreover, let l3 be the bit-length of a random number r from the random space R.

The construction of Scheme 1 is described in Table 5.1.

64

Scheme 1

Setup(1λ)

• Choose two cryptographically secure hash
functions
H1 : {0, 1}∗ → {0, 1}l1 and
H2 : {0, 1}∗ → {0, 1}l2+l3
where
l1 = length of the signing message used in
the signature scheme.
l2 = length of the message m.
l3 = length of the random string used in
the encryption scheme.

Params← (H1, H2, 1λ)

SC(m,PKRec, PKSen, SKSen, Params)

• r, r′ ← R

• h1 = H1(m, r, r′, IDRec)

• c′ ← ENCr(r′, PKE
Rec)

• σ ← SIG(h1, SKS
Sen, PK

S
Sen)

• h2 = H2(r′, c′, h1, σ, IDSen)

• c = h2 ⊕m||r

Ciphertext C ≡ (c, c′, h1, σ)

KGRec(Params) & KGSen(Params)

• (PKE , SKE)← KGE(1λ)

• (PKS , SKS)← KGS(1λ)

• PKRec = (PKE
Rec, PK

S
Rec)

• SKRec = (SKE
Rec, SK

S
Rec)

• PKSen = (PKE
Sen, PK

S
Sen)

• SKSen = (SKE
Sen, SK

S
Sen)

DSC(C ≡ (c, c′, h1, σ), SKRec, PKRec, PKSen, Params)

• r′ ← DEC(c′, SKE
Rec, PK

E
Rec)

• x← VER(h1, σ, PKS
Sen).

If r′ is ⊥ or x is false, return ⊥; else go to the next step.

• h2 = H2(r′, c′, h1, σ, IDSen)

• m||r = h2 ⊕ c

• if h1 6= H1(m, r, r′, IDRec), return ⊥, else go to next
step

• if ENCr(r′, PKE
Rec) = c′, return m, else ⊥.

Table 5.1: Construction of Scheme 1

5.3 Security of Scheme 1

5.3.1 Confidentiality

Theorem 10 In the random oracle model, if there exists a dM-IND-iCCA adversary A
which can distinguish ciphertexts during the relevant game with a non-negligible advantage,
then there exists an algorithm B which can break the OWE security of the parent encryption
scheme E with a non-negligible advantage. Formally,

Pr[B wins] = Adv(B) ≥


2Adv(A) if qH2 = 0,

2Adv(A)

qH2

otherwise;

where qH2 is the number of H2 oracle queries.

Proof : We shall show how to construct an OWE adversary B that uses A to gain a
non-negligible advantage against E .

65

Let there be a PPT challenger CH which runs the Setup algorithm of Scheme 1. For fixed
receiver, Rec, suppose algorithm B receives the public key, PKE

Rec, of the encryption scheme
E from CH. As the proof is in the insider security model, we further assume that signature
scheme(s) is(are) known to A and public key-secret key of signature scheme(s) for all user(s)
is(are) also known to A. B then sends PKE

Rec to the adversary A.

B maintains three lists LH1 , LH2 and LInDec to maintain the consistency while replying to the
query asked by the adversary A. LH1 contains the entries of the form (m(j), r(j), r′(j), IDRec,

h
(j)
1) in response to the H1 queries. LH2 contains the entries of the form (r′(k), c′(k), h

(k)
1 , σ(k),

h
(k)
2 , IDSen(k)) in response to the H2 queries and LInDec contains the entries of invalid cipher-

texts of the form (c(l), c′(l), h
(l)
1 , σ

(l), IDRec, IDSen(l)) which have been responded by B after
querying by A to the Designcryption oracle. B additionally maintains a temporary list LT
to store different entries used at intermediate step while responding to the different queries
made by A. Initially, all lists are empty.

First query can be either on H1 or H2 or Designcryption.

• For H1 query of the form (m(1), r(1), r′(1), IDRec), B chooses a string h
(1)
1 uniformly at

random from {0, 1}l1 and adds the tuple (m(1), r(1), r′(1), IDRec, h
(1)
1) into LH1 . B then

returns h
(1)
1 to A.

• ForH2 query of the form (r′(1), c′(1), h
(1)
1 , σ(1), IDSen(1)), B chooses a string h

(1)
2 uniformly

at random from {0, 1}l2 and adds the tuple (r′(1), c′(1), h
(1)
1 , σ(1), IDSen(1) , h

(1)
2) into LH2 .

B then returns h
(1)
2 to A.

• For Designcryption query of the form (c(1), c′(1), h
(1)
1 , σ(1)) for receiver’s identity IDRec

and sender’s identity IDSen(1) , B returns ⊥ to A and then adds the entry of the form

(c(1), c′(1), h
(1)
1 , σ(1), IDRec, IDSen(1)) into LInDec.

We now explain how B responds to various queries made by A before the challenge phase.
Suppose, till the (i− 1)th queries, B responds in the following manner:

1. H1 query: For any query of the form (m(p), r(p), r′(p), IDRec) where 2 ≤ p ≤ (i− 1), B
searches in the list LH1 for entry of the form (m(p), r(p), r′(p), IDRec, h

(p)
1). If such an

entry exists, B returns h
(p)
1 to A. If such entry does not exist, B returns a string h

(p)
1

such that (a) it looks like a random string from A’s point of view, (b) the previously
declared invalid ciphertexts remain invalid and (c) the consistency of valid ciphertexts

is preserved. Finally, B adds the entry (m(p), r(p), r′(p), IDRec, h
(p)
1) into the list LH1 .

2. H2 query: In a similar manner, for any query of the form (r′(p), c′(p), h
(p)
1 , σ(p), IDSen(p))

where 2 ≤ p ≤ (i−1), B searches in the list LH2 for entry of the form (r′(p), c′(p), h
(p)
1 , σ(p),

IDSen(p) , h
(p)
2). If such an entry exists, B returns h

(p)
2 to A. If such an entry does not

exist, B returns a string h
(p)
2 such that (a) it looks like a random string from A’s point

of view, (b) the previously declared invalid ciphertexts remain invalid and (c) the con-

sistency of valid ciphertexts is preserved. Finally, B adds the entry (r′(p), c′(p), h
(p)
1 , σ(p),

IDSen(p) , h
(p)
2) into the list LH2 .

66

3. Designcryption query: For any query of the form (c(p), c′(p), h
(p)
1 , σ(p)), for receiver’s

identity IDRec and sender’s identity IDSen(p) where 2 ≤ p ≤ (i − 1), B returns m(p)

if and only if there exist entries of the form (m(p), r(p), r′(p), IDRec, h
(p)
1) in the list LH1

and (r′(p), c′(p), h
(p)
1 , σ(p), IDSen(p) , h

(p)
2) in the list LH2 such that

• VER(h
(p)
1 , σ(p), PKS

Sen(p)) = true, and

• m(p)||r(p) = c(p) ⊕ h(p)
2 , and

• ENCr(p)(r
′(p), PKE

Rec) = c′(p).

If (c(p), c′(p), h
(p)
1 , σ(p)) is declared an invalid ciphertext, i.e., B returns ⊥ toA for queried

ciphertext (c(p), c′(p), h
(p)
1 , σ(p)), B then adds the entry of the form (c(p), c′(p), h

(p)
1 , σ(p),

IDRec, IDSen(p)) into the list LInDec.

Claim 1: Whenever B returns m(p) in the simulated game in response to a Designcryption
query on the ciphertext (c(p), c′(p), h

(p)
1 , σ(p)) by A on receiver’s identity IDRec and sender’s

identity IDSen(p) , Designcrypt algorithm returns the same message m(p) in the real game
also. Moreover, whenever B returns ⊥ in the simulated game, queried ciphertext is either
invalid or A cannot prove the validity of the ciphertext anyhow.

Proof of Claim 1: It can be easily verified that in the real game also, Designcrypt algo-
rithm returns the same message (m(p)) whenever B returns m(p) for any queried ciphertext

(c(p), c′(p), h
(p)
1 , σ(p)) for receiver’s identity IDRec and sender’s identity IDSen(p) in this simu-

lated game.

Now, we show that in this simulated game, if B returns ⊥, then either the queried ciphertext
is indeed an invalid ciphertext or the adversary A cannot prove the validity of the ciphertext
in any way whatsoever. If VER(h

(p)
1 , σ(p), PKS

Sen(p)) = false, then the queried ciphertext is an

invalid ciphertext. Else, let DEC(c′(p), SKE
Rec, PK

E
Rec) = r′(p). B then searches the list LH2

for entries of the form (r′(p), c′(p), h
(p)
1 , σ(p), IDSen(p) , h

(p)
2). If such an entry does not exist, B

returns ⊥. In this case, A cannot prove the validity of the ciphertext as B can choose a ran-
dom string h

(p)
2 in such a way that h

(p)
2 ⊕ c(p) = m(p)||r(p) and ENCr(p)(r

′(p), PKE
Rec) 6= c′(p).

Else, if (r′(p), c′(p), h
(p)
1 , σ(p), IDSen(p) , h

(p)
2) exists in LH2 , then B computes h

(p)
2 ⊕ c(p). Let

h
(p)
2 ⊕ c(p) = m(p)||r(p). If ENCr(p)(r

′(p), PKE
Rec) 6= c′(p), B returns ⊥. In this case, the queried

ciphertext is indeed an invalid ciphertext. Else, if ENCr(p)(r
′(p), PKE

Rec) = c′(p), then B
searches the entry of the form (m(p), r(p), r′(p), IDRec, h

(p)
1). If such an entry does not exist, B

returns ⊥. In this case also, A cannot prove the validity of the ciphertext as B can choose
a random string h̄

(p)
1 such that h̄

(p)
1 6= h

(p)
1 . Hence, unless all of the above conditions satisfy,

either the queried ciphertext is an invalid ciphertext or A cannot prove the validity of the
ciphertext. �

Now, we explain how B responds to A in the ith query. The ith query can be either H1 or
H2 or Designcryption query.

67

H1 query: For any query of the form (m(i), r(i), r′(i), IDRec), B follows Algorithm 1:

Algorithm 1

1. B searches in the list LH1 for entries of the form (m(i), r(i), r′(i), IDRec, h
(i)
1). If it exists,

B returns h
(i)
1 to A, else go to next step.

2. B empties the list LT .

3. B then searches the list LH2 for entries of the form (r′(i), c′(in), h
(in)
1 , σ(in), IDSen(in) , h

(in)
2).

If such an entry exists, go to the next step, else B chooses a string h
(i)
1 uniformly at

random from {0, 1}l1 and returns h
(i)
1 to the adversary A. B then adds the entry of the

form (m(i), r(i), r′(i), IDRec, h
(i)
1) into the list LH1 .

4. For each entry of the form (r′(i), c′(in), h
(in)
1 , σ(in), IDSen(in) , h

(in)
2), B searches the list

LInDec for entries of the form (c(int), c′(in), h
(in)
1 , σ(in), IDRec, IDSen(in)). If such an entry

exists, go to the next step; else B chooses a random string h
(i)
1 uniformly at random

from {0, 1}l1 and returns h
(i)
1 to the adversary A. B then adds the entry of the form

(m(i), r(i), r′(i), IDRec, h
(i)
1) into the list LH1 .

5. For each entry of the form (c(int), c′(in), h
(in)
1 , σ(in), IDRec, IDSen(in)), B computes

m(int)||r(int) = c(int) ⊕ h(in)
2 . B then checks VER(h

(in)
1 , σ(in), PKS

Sen(in))
?
= true,

ENCr(i)(r
′(i), PKE

Rec)
?
= c′(in), m(int)

?
= m(i) and r(int)

?
= r(i). If all four hold, then B

adds h
(in)
1 into the list LT .

6. B finally chooses a string h
(i)
1 uniformly at random from {0, 1}l1 such that h

(i)
1 /∈ LT . B

then returns h
(i)
1 to the adversaryA and adds the entry of the form (m(i), r(i), r′(i), IDRec,

h
(i)
1) into the list LH1 .

Claim 2: The way B responds to the H1 query made by A, it is ensured that the string,
h

(i)
1 , returned by B looks like a random string from A’s point of view. It is also ensured that

previously declared invalid ciphertexts remain invalid. Moreover, consistency of previously
queried ciphertext is also maintained.

Proof of Claim 2: It is easy to see from Algorithm 1 that the response given by B appears
random from A’s point of view.

Now, we show that previously declared invalid ciphertexts remain invalid. Let (c(p), c′(p), h
(p)
1 ,

σ(p), IDRec, IDSen(p)) ∈ LInDec, where p < i, be the pth queried ciphertext to Designcryption

oracle. If VER(h
(p)
1 ,σ(p),PKS

Sen(p)) = false, ciphertext remains invalid (Claim 1). If not, let

r′(p) = DEC(c′(p), SKE
Rec, PK

E
Rec). If r′(p) 6= r′(i), then the response from B does not affect the

invalidity of the ciphertext (c(p), c′(p), h
(p)
1 , σ(p)) (Claim 1). If r′(p) = r′(i), then B searches in

the list LH2 for the entry (r′(i), c′(p), h
(p)
1 , σ(p), IDSen(p) , h

(p)
2) (Algorithm 1, step (3)). Again,

the absence of such entry does not affect the invalidity of the ciphertext (Claim 1). If such

68

entry exists, B computes m(p)||r(p) = c(p) ⊕ h(p)
2 . B then checks ENCr(i)(r

′(i), PKE
Rec)

?
= c′(p),

m(p) ?
= m(i), r(p) ?

= r(i) (Algorithm 1, step (5)). If any one of conditions fails, the response
from B does not affect the invalidity of the ciphertext (Claim 1). If all conditions satisfy,

B then chooses a string h
(i)
1 such that h

(i)
1 6= h

(p)
1 (Algorithm 1, step (6)) preserving the

invalidity of the previously declared invalid ciphertexts (Claim 1).

Now, we show that the way B responds, the consistency of previously queried valid cipher-
texts is also maintained. Let (c(p), c′(p), h

(p)
1 , σ(p)), where p < i, be the pth queried valid

ciphertext. Let the Designcrypt of the queried ciphertext outputs m(p). Then, there must
be previously queried entry of the form (m(p), r(p), r′(p), IDRec, h

(p)
1) in LH1 , where r′(p) =

DEC(c′(p), SKE
Rec, PK

E
Rec) and ENCr(p)(r

′(p), PKE
Rec) = c′(p). Hence, if (m(p), r(p), r′(p)) =

(m(i), r(i), r′(i)), then B returns h
(p)
1 which preserves the consistency of the previous queried

valid ciphertext (Algorithm 1, step (1)), else if, (m(p), r(p), r′(p)) 6= (m(i), r(i), r′(i)), then the

returned value h
(i)
1 from B does not affect the validity of the ciphertext (c(p), c′(p), h

(p)
1 , σ(p)). �

Now, we show how B responds when the ith query is on H2.

H2 query: For any query of the form (r′(i), c′(i), h
(i)
1 , σ

(i), IDSen(i)), B follows Algorithm 2:

Algorithm 2

1. B searches in the list LH2 for entries of the form (r′(i), c′(i), h
(i)
1 , σ

(i), IDSen(i) , h
(i)
2). If it

exists, B returns h
(i)
2 to A, else go to next step.

2. B empties the list LT .

3. B then searches the list LH1 for entries of the form (m(in), r(in), r′(i), IDRec, h
(i)
1). If such

an entry exists, go to the next step, else B chooses a string h
(i)
2 uniformly at random

from {0, 1}l2+l3 and returns h
(i)
2 to the adversary A. B then adds the entry of the form

(r′(i), c′(i), h
(i)
1 , σ

(i), IDSen(i) , h
(i)
2) into the list LH2 .

4. B then searches the list LInDec for entries of the form (c(iq), c′(i), h
(i)
1 , σ

(i), IDRec, IDSen(i)).

If such an entry exists, go to the next step, else B chooses a string h
(i)
2 uniformly at

random from {0, 1}l2+l3 and returns h
(i)
2 to the adversary A. B then adds the entry of

the form (r′(i), c′(i), h
(i)
1 , σ

(i), IDSen(i) , h
(i)
2) into the list LH2 .

5. For each entries of the form (m(in), r(in), r′(i), IDRec, h
(i)
1) and (c(iq), c′(i), h

(i)
1 , σ

(i), IDRec,

IDSen(i)), B computes h
(inq)

2 = m(in)||r(in)⊕c(iq), then checks VER(h
(in)
1 , σ(in), PKS

Sen(in))
?
= true and ENCr(in)(r′(i), PKE

Rec)
?
= c′(i). If both satisfy, then B adds h

(inq)

2 into the
list LT .

6. B finally chooses a string h
(i)
2 uniformly at random from {0, 1}l2 such that h

(i)
2 /∈ LT . B

then returns h
(i)
2 to the adversary A and adds the entry of the form (r′(i), c′(i), h

(i)
1 , σ

(i),

IDSen(i) , h
(i)
2) into the list LH2 .

69

Claim 3: The way B responds to the H2 query made by A, it is ensured that the string,
h

(i)
2 , returned by B looks like a random string from A’s point of view. It is also ensured that

previously declared invalid ciphertexts remain invalid. Moreover, consistency of previously
queried ciphertext is also maintained.

It is easy to prove the Claim 3. Proof goes along in a similar way as in Claim 2. Now we
show how B responds to the ith query if the ith query is on Designcryption.

Designcryption query: For any query of the form (c(i), c′(i), h
(i)
1 , σ

(i)) for receiver’s identity
IDRec and sender’s identity IDSen(i) , B follows the following algorithm to respond to A.

Algorithm 3

1. If VER(h
(i)
1 , σ

(i), PKS
Sen(i)) = false, return ⊥, else go to next step.

2. B searches the list LH2 for entries of the form (r′(in), c′(i), h
(i)
1 , σ

(i), IDSen(i) , h
(in)
2). If

such an entry exists, go to next step, else return ⊥.

3. For each entry of the form (r′(in), c′(i), h
(i)
1 , σ

(i), IDSen(i) , h
(in)
2), B searches in the list

LH1 for entries of the form (m(int), r(int), r′(in), IDRec, h
(i)
1). If such an entry exists, go

to next step, else return ⊥.

4. B empties the list LT

5. For each entry of the form (m(int), r(int), r′(in), IDRec, h
(i)
1), B checks

ENCr(int)
(r′(in), PKE

Rec)
?
= c′(i) and m(int)||r(int)

?
= c(i) ⊕ h(in)

2 . If both conditions hold,

add m(int) into LT .

6. If LT is empty, return ⊥, else choose one m(int) ∈ LT and return m(int) to A.

Claim 4: The way B responds to A, it is ensured that if the queried ciphertext is a valid
ciphertext, B returns a unique message. Moreover, when ⊥ is returned, the queried cipher-
text is either invalid or A cannot prove the validity of the ciphertext anyhow.

It is easy to prove Claim 4. Once this stage is over, A enters into the challenge phase.
A submits two equal length messages m0 and m1 along with receiver’s identity IDRec and
sender’s identity IDSen(ch) to B. B gets a challenged ciphertext, c′(ch), randomly generated
from the encryption scheme E by CH. B then chooses two random strings, c(ch) ∈ {0, 1}l2+l3

and h
(ch)
1 ∈ {0, 1}l1 and computes σ(ch) = SIG(h

(ch)
1 , SKE

Sen(ch) , PK
E
Sen(ch)). B then returns

(c(ch), c′(ch), h
(ch)
1 , σ(ch)) to A. Now, A again make queries on H1, H2 and Designcryption

oracles. In this phase, A is not allowed to make a query on the challenged ciphertext
(c(ch), c′(ch), h

(ch)
1 , σ(ch)) for receiver’s identity IDRec and sender’s identity IDSen(ch) to

Designcryption oracle. We show how B responds to A during this phase.

H1 query: For a given query on (m(j), r(j), r′(j), IDRec), B follows the following algorithm
to respond to A:

70

Algorithm 4

1. If ENCr(j)(r
′(j), PKE

Rec) = c′(ch), return r′(j) to CH and abort the game. Else, follow
the Algorithm 1.

Claim 5: Algorithm 4 ensures that B either correctly decrypts the challenged ciphertext
c′(ch) or if not, correctly simulates the game.

Proof of Claim 5: It is trivial to check that if ENCr(j)(r
′(j), PKE

Rec) = c′(ch), then r′(j) =
r′(ch) = DEC(c′(ch), SKE

Rec, PK
E
Rec). If not, the queried tuple cannot affect the validity or

invalidity of the challenged ciphertext (c(ch), c′(ch), h
(ch)
1 , σ(ch)). Hence, Algorithm 1 then en-

sures that the simulated game is correct. �

H2 query: For a given query on (r′(j), c′(j), h
(j)
1 , σ(j), IDSen(j)), B follows the following algo-

rithm to respond to A:

Algorithm 5

1. If (r′(j), c′(j), h
(j)
1 , σ(j), IDSen(j) , h

(j)
2) exists in LH2 , B returns h

(j)
2 to A, else goes to next

step.

2. If (c′(j), h
(j)
1 , σ(j), IDSen(j)) = (c′(ch), h

(ch)
1 , σ(ch), IDSen(ch)), B chooses a string, h

(j)
2 , uni-

formly at random from {0, 1}l2+l3 and puts the entry of the form (r′(j), c′(j), h
(j)
1 , σ(j),

IDSen(j) , h
(j)
2) into the list LH2 , else follows Algorithm 2.

Claim 6: If (c′(j), h
(j)
1 , σ(j), IDSen(j)) = (c′(ch), h

(ch)
1 , σ(ch), IDSen(ch)), then B correctly simu-

lates the game if r′(j) 6= DEC(c′(ch), SKE
Rec, PK

E
Rec). Moreover, B can correctly simulate the

game with probability 2
2(l2+l3)

if DEC(c′(ch), SKE
Rec, PK

E
Rec) = r′(j).

Proof of Claim 6: If (c′(j), h
(j)
1 , σ(j), IDSen(j)) = (c′(ch), h

(ch)
1 , σ(ch), IDSen(ch)), query on

(r′(j), c′(j), h
(j)
1 , σ(j), IDSen(j)) to H2 can affect the validity of the ciphertext of the form

(c, c′(ch), h
(ch)
1 , σ(ch)) only where c may or may not be equal to c(ch). Designcryption of

the ciphertext (c, c′(ch), h
(ch)
1 , σ(ch)) requires H2 query on (r′(j), c′(j), h

(j)
1 , σ(j), IDSen(j)) where

DEC(c′(ch), SKE
Rec, PK

E
Rec) = r′(j). If r′(j) is not the decryption of c′(ch), any returned value

will not affect the validity of the ciphertext of any form.

If DEC(c′(ch), SKE
Rec, PK

E
Rec) = r′(j), then for any previously queried ciphertext of the form

(c, c′(ch), h
(ch)
1 , σ(ch)) where c 6= c(ch), any returned value for H2 query on (r′(j), c′(j), h

(j)
1 , σ(j),

IDSen(j)) will not affect the invalidity of the ciphertext unless there is a query on H1 of
the form (m(j), r(j), r′(j), IDRec), where ENCr(j)(r

′(j), PKE
Rec) = c′(j) = c′(ch) (Claim 1). If

there were H1 query on (m(j), r(j), r′(j), IDRec), B would have returned r′(j) earlier to CH.

If c = c(ch), then there could only be two such values, namely h
(j)
2 = m0||r(j) ⊕ c(ch) or

h
(j)
2 = m1||r(j) ⊕ c(ch), where ENCr(j)(r

′(j), PKE
Rec) = c′(j) = c′(ch) for which the challenged

ciphertext can remain a valid ciphertext. In such a case, the probability that B correctly
simulates the game is 2

2(l2+l3)
. �

71

It can be easily seen that if (c′(j), h
(j)
1 , σ(j), IDSen(j)) 6= (c′(ch), h

(ch)
1 , σ(ch), IDSen(ch)), Algo-

rithm 2 then correctly simulates the game. Now, we show how B responds if the ith query is
a Designcryption query.

Designcryption query: For a given query on (c(j), c′(j), h
(j)
1 , σ(j)) for receiver’s identity IDRec

and sender’s identity IDSen(j) , B follows the following algorithm to respond to A:

Algorithm 6

1. If (c′(j), h
(j)
1 , σ(j), IDSen(j)) = (c′(ch), h

(ch)
1 , σ(ch), IDSen(ch)), return ⊥ to A and put (c(j),

c′(j), h
(j)
1 , σ(j), IDRec, IDSen(j)) into the list LInDec, else follow Algorithm 3.

Claim 7: Algorithm 6 ensures that B correctly simulates the game.

Proof of Claim 7: We prove it by contradiction. Let (c′(j), h
(j)
1 , σ(j), IDSen(j)) = (c′(ch), h

(ch)
1 ,

σ(ch), IDSen(ch)) and (c(j), c′(j), h
(j)
1 , σ(j)), where c(j) 6= c(ch), be a valid ciphertext. It can be

easily verified from the designcryption algorithm that both (c(j), c′(j), h
(j)
1 , σ(j)) and (c(ch), c′(ch),

h
(ch)
1 , σ(ch)) cannot yield the same message after designcryption. Let the designcryption of

the ciphertext (c(j), c′(j), h
(j)
1 , σ(j)) be m(j). Then A must have made H1 query earlier over

(m(j), r(j), r′(j)), where ENCr(j)(r
′(j), PKE

Rec) = c′(j) = c′(ch) (Claim 1). In such a case, B
would have returned r′(j) earlier and aborted the game.

If (c′(j), h
(j)
1 , σ(j), IDSen(j)) 6= (c′(ch), h

(ch)
1 , σ(ch), IDSen(ch)), then Algorithm 3 ensures the cor-

rect simulation of the game. �

Now, A guesses a bit b̂. B ignores the bit and searches the list LH1 for the entry of the form

(m(j), r(j), r′(j), IDRec, h
(j)
1) such that ENCr(j)(r

′(j), PKE
Rec) = c′(ch). If such an entry exists, B

returns the value r′(j). If not, B then chooses randomly a value r′(j) from entry of the form
(r′(j), c(ch), h

(ch)
1 , σ(ch), IDSen(ch)) stored in the list LH2 .

Claim 8: Let DEC(c′(ch), SKE
Rec, PK

E
Rec) = r′(ch) and ENCr(ch)(r

′(ch), PKE
Rec) = c′(ch), then

from A’s point of view, challenge ciphertext (c(ch), c′(ch), h
(ch)
1 , σ(ch)) can yield any of m0 or

m1 upon designcryption unless there is an H1 query on either (m0, r
(ch), r′(ch), IDRec) or

(m1, r
(ch), r′(ch), IDRec) or an H2 query on (r′(ch), c′(ch), h

(ch)
1 , σ(ch), IDSen(ch)).

Proof of Claim 8: Suppose A has not made H1 query on either (m0, r
(ch), r′(ch), IDRec) or

(m1, r
(ch), r′(ch), IDRec) or H2 query on (r′(ch), c′(ch), h

(ch)
1 , σ(ch), IDSen(ch)). Then,

1. IfH1(m0, r
(ch), r′(ch), IDRec) = h

(ch)
1 andH2(r′(ch), c′(ch), h

(ch)
1 , σ(ch), IDSen(ch)) = m0||r(ch)

⊕c(ch), then the challenge ciphertext (c(ch), c′(ch), h
(ch)
1 , σ(ch)) yields m0 upon designcryp-

tion.

2. IfH1(m1, r
(ch), r′(ch), IDRec) = h

(ch)
1 andH2(r′(ch), c′(ch), h

(ch)
1 , σ(ch), IDSen(ch)) = m1||r(ch)

⊕c(ch), then the challenge ciphertext (c(ch), c′(ch), h
(ch)
1 , σ(ch)) yields m1 upon designcryp-

tion.

72

�

Now, we prove that B guesses the decryption of c′(ch) with probability at least
2Adv(A)

qH2

,

where qH2 is the number of H2 oracle queries.

From the simulation of the game and Claim 8, it is evident that unless A makes an H1 query
over (mb, r

(ch), r′(ch), IDRec), where b ∈ {0, 1} and ENCr(ch)(r
′(ch), PKE

Rec) = c(ch) , or an H2

query over (r′(ch), c′(ch), h
(ch)
1 , σ(ch), IDSen(ch)), where DEC(c′(ch), PKE

Rec, SK
E
Rec) = r′(ch), the

challenged ciphertext (c(ch), c′(ch), h
(ch)
1 , σ(ch)) appears to be a random ciphertext from A’s

point of view. Hence B finds the decryption of c′(ch) in either LH1 or LH2 . If it exists in LH1 ,
B finds the correct decryption of c′(ch) with probability 1. Else, if it exists in the list LH2 , B
finds the correct decryption with probability at least 1

qH2
as at least one of the entry in LH2

will yield the correct decryption of c′(ch).

Now, let

• ER be the event that A guesses the bit randomly, i.e., without making any H1 query on
either (m0, r

(ch), r′(ch), IDRec) or (m1, r
(ch), r′(ch), IDRec) orH2 query on (r′(ch), c′(ch), h

(ch)
1 ,

σ(ch), IDSen(ch)). In this case, Pr[A wins] = 1
2

• EH be the event that A guesses the bit after making any H1 query on either (m0, r
(ch),

r′(ch), IDRec) or (m1, r
(ch), r′(ch), IDRec) orH2 query on (r′(ch), c′(ch), h

(ch)
1 , σ(ch), IDSen(ch)).

Then,
Pr[A wins] = Pr[A wins|ER]× Pr[ER] + Pr[A wins|EH]× Pr[EH]
= 1

2
× Pr[ER] + Pr[A wins|EH]× Pr[EH]

= 1
2
× (1− Pr[EH]) + Pr[A wins|EH]× Pr[EH] (since Pr[ER] + Pr[EH] = 1)

Now,
Adv(A) = |Pr[A wins]− 1

2
| = |1

2
× (1− Pr[EH]) + Pr[A wins|EH]× Pr[EH]− 1

2
|

= |Pr[EH]
2

(2Pr[A wins|EH]− 1)| = |Pr[EH]
2
||(2Pr[A wins|EH]− 1)|

Hence,

2Adv(A) = Pr[EH]|(2Pr[A wins|EH]− 1)| (5.1)

Now since, 0 ≤ Pr[A wins|EH] ≤ 1

0 ≤ |(2Pr[A wins|EH]− 1)| ≤ 1 (5.2)

Combining equations 5.1 and 5.2, we get

2Adv(A) ≤ Pr[EH] (5.3)

Now,
Pr[B wins] = Pr[B wins|ER]×Pr[ER] + Pr[B wins|EH]×Pr[EH] ≥ Pr[B wins|EH]×Pr[EH]

73

From equation 5.3, we get

Pr[B wins] ≥ 2Pr[B wins|EH]Adv(A) (5.4)

If EH occurs, then B can find the decryption of c′(ch) in either LH1 with probability 1 or
in LH2 with probability 1

qH2
provided qH2 6= 0. Hence, in this case, probability that B wins

with probability at least 1
qH2

. If qH2 = 0, then B finds the decryption of c′(ch) in LH1 with

probability 1. In this case, B wins with probability 1. Hence, putting these value in equation
5.4, we get

Pr[B wins] = Adv(B) ≥


2Adv(A) if qH2 = 0,

2Adv(A)

qH2

otherwise

♣

5.3.2 Unforgeability

Theorem 11 If there exists an dM-EUF-iCMA adversary A which is able to produce a
forged ciphertext during the game with a non-negligible advantage, then there exists an algo-
rithm B which can forge the signature scheme S in the EUF-CMA game or finds a collision
on hash function H1 with a non-negligible probability. Formally,

Adv(A) ≤ Pr[forging S] + Pr[collision on H1]

Proof : We shall show how to construct an EUF-CMA adversary B that uses A to gain a
non-negligible advantage against S.

Let there be a PPT challenger CH which runs the Setup algorithm of Scheme1. For fixed
sender, Sen, suppose algorithm B receives the public key, PKS

Sen, of the signature scheme
S from CH. As the proof is in the insider security model, we further assume that encryp-
tion scheme(s) is(are) known to A and public key-secret key of encryption scheme(s) for all
user(s) is(are) also known to A. B then sends PKS

Sen to the adversary A.

B keeps a list LSig to maintain the list of queries made by A to the signcryption oracle. Now,
we explain how signcryption queries made by A are treated by B.

Signcryption query: For a given ith query on message m(i) for receiver’s identity IDRec(i)

and sender’s identity IDSen, B follows the following algorithm to respond to A.

Algorithm 7

1. Choose random strings r(i), r′(i) ∈ R.

2. Compute H1(m(i), r(i), r′(i), IDRec(i)), let its output be h
(i)
1 .

74

3. Give h
(i)
1 to the challenger CH which then runs SIG(h

(i)
1 , SK

S
Sen, PK

S
Sen). Let its output

be σ(i). CH then returns σ(i) to B.

4. Compute ENC(r′(i), PKE
Rec). Let its output be c′(i).

5. Compute H2(r′(i), c′(i), h
(i)
1 , σ

(i), IDSen). Let its output be h
(i)
2 .

6. Compute c(i) = m(i)||r(i) ⊕ h(i)
2 .

7. Add m(i) into the list LSig.

8. Return (c(i), c′(i), h
(i)
1 , σ

(i)) to A.

Once this stage is over, A submits the forged ciphertext (c(fg), c′(fg), h
(fg)
1 , σ(fg)) for receiver’s

identity IDRec(fg) and sender’s identity IDSen to B. Now, the following cases arise:

1. For any c(i), c′(i) and σ(i), (c(i), c′(i), h
(fg)
1 , σ(i)) has not been returned by B to A. In this

case, B will return (h(fg), σ(fg)) to S.

2. (c(i), c′(i), h
(fg)
1 , σ(i)) has been returned by B to A for some c(i), c′(i) and σ(i) (c(i), c′(i)

or σ(i) may be equal to c(fg), c′(fg) or σ(fg)). Let

m(fg) = DSC((c(fg), c′(fg), h
(fg)
1 , σ(fg)), SKE

Rec(fg)
, PKE

Rec(fg)
, PKS

Sen)

m(i) = DSC((c(i), c′(i), h
(i)
1 , σ

(i)), SKE
Rec(i)

, PKE
Rec(i)

, PKS
Sen)

r′(fg) = DEC(c′(fg), SKE
Rec(fg)

, PKE
Rec(fg)

)

r′(i) = DEC(c′(i), SKE
Rec(i)

, PKE
Rec(i)

)

and ENCr(fg)(r
′(fg), PKE

Rec(fg)
) = c′(fg)

ENCr(i)(r
′(i), PKE

Rec(i)
) = c′(i)

Now again, the following two cases arise:

• m(fg) 6= m(i). In this case, H1(m(fg), r(fg), r′(fg), IDRec(fg)) = h
(fg)
1 = H1(m(i), r(i),

r′(i), IDRec(i)). A collision is obtained on H1.

• m(fg) = m(i) implies m(fg) ∈ LSig. Such a case is not allowed as per the definition
of dM-EUF-iCMA.

It is evident from the above analysis that whenever A submits a forged ciphertext, B either
forges a message on S or finds a collision on H1. Hence,

Adv(A) ≤ Pr[forging S] + Pr[collision on H1]

♣

75

5.4 Proposed Scheme : Scheme 2

Let E = (KGE,ENC,DEC) and S = (KGS, SIG,VER) be encryption and signature schemes
respectively. Let l1 be the bit-length of the signing message used in the algorithm SIG of S.
Let l2 be the bit-length of any message m from the message space M. Moreover, let R be
the random space .

The construction of Scheme 2 is described in Table 5.2.

Scheme 2

Setup(1λ)

• Choose two cryptographically secure hash
functions
H1 : {0, 1}∗ → {0, 1}l1 and
H2 : {0, 1}∗ → {0, 1}l2
where
l1 = length of the signing message used in
the signature scheme.
l2 = length of the message m.

Params← (H1, H2, 1λ)

SC(m,PKRec, PKSen, SKSen, Params)

• r′ ← R

• h1 = H1(m, r′, IDRec)

• c′ ← ENC(r′, PKE
Rec)

• σ ← SIG(h1, SKS
Sen, PK

S
Sen)

• h2 = H2(r′, c′, h1, σ, IDSen)

• c = h2 ⊕m

Ciphertext C ≡ (c, c′, h1, σ)

KGRec(Params) & KGSen(Params)

• (PKE , SKE)← KGE(1λ)

• (PKS , SKS)← KGS(1λ)

• PKRec = (PKE
Rec, PK

S
Rec)

• SKRec = (SKE
Rec, SK

S
Rec)

• PKSen = (PKE
Sen, PK

S
Sen)

• SKSen = (SKE
Sen, SK

S
Sen)

DSC(C ≡ (c, c′, h1, σ), SKRec, PKRec, PKSen, Params)

• r′ ← DEC(c′, SKE
Rec, PK

E
Rec)

• x← VER(h1, σ, PKS
Sen).

r′ is ⊥ or x is false, return ⊥; else go to the next step.

• h2 = H2(r′, c′, h1, σ, IDSen)

• m = h2 ⊕ c

• if h1 = H1(m, r′, IDRec), return m, else ⊥.

Table 5.2: Construction of Scheme 2

5.5 Security of Scheme 2

5.5.1 Confidentiality

In this section, we prove the security of Scheme 2. In this scheme, the proof of security
requires the encryption scheme to be OWE-PCA secure. In Scheme 1, during designcryption
phase, there is a step of checking the integrity of the ciphertext c′ by running the encryption
algorithm on r′ using r as a random string, but it is not possible in Scheme 2. Such gap in
the security proof of Scheme 2 can be filled if a plaintext-checking oracle is provided.

76

Theorem 12 In the random oracle model, if there exists a dM-IND-iCCA adversary A
which can distinguish ciphertexts during the relevant game with a non-negligible advantage,
then there exists an algorithm B which can break the OWE-PCA security of the parent en-
cryption scheme E with a non-negligible advantage. Formally,

Pr[B wins] = Adv(B) ≥ 2Adv(A)

Proof : The proof goes in a similar way as it has been done for Scheme 1 in the subsection
of confidentiality (see subsection 5.3.1). In this proof, B interacts with both A and CH. The
differences between this proof and the proof done in subsection 5.3.1 are as follows:

• Instead of checking ENCr(r
′, PKE

Rec)
?
= c′, B, here, gives (r′, c′) to plaintext checking

oracle.

– If the returned value is 1 (r′ is the decryption of c′), B behaves in a similar manner
as if ENCr(r

′, PKE
Rec)=c

′ in the proof of Scheme 1.

– If the returned value is 0 (r′ is not the decryption of c′), B behaves in a similar
manner as if ENCr(r

′, PKE
Rec) 6= c′ in the proof of Scheme 1.

• After the challenge phase, whenever A submits (r′, c′(ch), h
(ch)
1 , σ(ch), IDSen(ch)) to B

while querying on H2, B submits (r′, c′(ch)) to plaintext checking oracle. If the returned
value is 1, B aborts the game and returns r′ to CH else follows the algorithm specified
in the proof of Scheme 1.

5.5.2 Unforgeability

Theorem 13 If there exists an dM-EUF-iCMA adversary A which is able to produce a
forged ciphertext during the game with a non-negligible advantage, then there exists an algo-
rithm B which can forge the signature scheme S in the EUF-CMA game or finds a collision
on hash function H1 with a non-negligible probability. Formally,

Adv(A) ≤ Pr[forging S] + Pr[collision on H1]

Proof : This proof also goes in a similar way as it has been done for Scheme 1 in the
subsection of unforgeability (see subsection 5.3.2).

77

Chapter 6

Ring Signature with Designated
Verifier for Signer-Identity

A ring signature scheme enables a user to sign a message such that a verifier would identify
a “ring” of possible signers (of which the user is a member), but unable to determine the
identity of the actual signer. This is true even if the verifier is a ring member. In this chapter,
we examine a situation in that the signer Alice can produce a ring signature for Bob (may
or may not be a ring member) such that,

• any body can verify the ring signature, and

• only Bob can verify the identity of Alice, provided she outputs a trapdoor information.

• Alice can publicly1 output the trapdoor, i.e., this additional information does not reveal
her identity to the other ring members.

We name this model as “ring signature with designated verifier for signer-identity”. The
existing ring signature variants do not capture the functionality offered by this new model.
We formulate the security requirements for this new ring signature variant and finally propose
a secure ring signature with designated verifier for signer-identity (RS-DVSI) scheme.

6.1 Introduction

Ring signatures enable a user to sign a message so that a “ring” of possible signers (of which
the user is a member) is identified, without revealing exactly which member of that ring
actually generated the signature. This notion was first formalized by Rivest, Shamir and
Tauman [82], and ring signatures, along with several close variants, have been studied ex-
tensively since then [1, 19, 72, 93, 17, 51, 66, 37, 67, 92, 61, 28, 13, 41]. A ring signature
scheme can be considered as a simplified group signature scheme [24] that have only users
and no managers. Both group signatures and ring signatures are signer-ambiguous, but in a
ring signature scheme there are no prearranged group of users, there are no procedures for

1She can sign the trapdoor information with the same ring of users. Thus Bob would know that both
pieces of information, the earlier message and the trapdoor, has been originated from the same set of users.

78

setting, changing, or deleting groups of users, there is no way to distribute specialized keys,
and there is no way to revoke the anonymity of the actual signer.

Ring signatures lend themselves to a variety of applications. The original motivation of ring
signatures was to allow secrets to be leaked anonymously. For example, ring signature scheme
will allow a high-ranking government official to sign certain information with respect to the
ring of similar officials such that the information can later be verified as coming from one of
the officials without exposing the actual signer (Fig 6.1 describes the same for handwritten
documents).

Figure 6.1: Reveals no information about the leader (the one who has signed first !!).

Ring signatures has also application to designated-verifier signatures [55]. A designated
verifier signature scheme is a signature scheme in which signatures can only be verified by a
designated verifier chosen by the signer. This can be easily achieved by using a ring signature
scheme with sender and receiver as the only ring members: the sender sign the message with
respect to the ring containing the sender and the receiver; the receiver is then assured that
the message originated from the sender but cannot prove this to any third party, since the
receiver could have produced this message-ring signature pair by itself.

6.1.1 Motivation and Our Contribution

Ring signatures are signer-ambiguous. However, for certain applications, the signer may
like to claim his authorship on the anonymized ring signature at a later stage. A necessary
requirement for such a realization is an additional input from the signer at a later stage (the
ring signature alone is signer ambiguous). The stage of verification for signer’s identity can
be one of the following:

1. At a later stage, given an additional input from the signer, the identity of the signer
can be verified by anybody2.

2. At a later stage, given an additional input from the signer, the identity of the signer
can only be verified by a designated verifier. The designated verifier can be a ring
member or a third party. This case further yields two important possibilities:

2For example, traceable ring signature is a ring signature scheme where each message is signed not only
with respect to a list of ring members, but also with respect to an issue. If a user signs any two messages
with respect to the same list of ring members and the same issue label, the signer’s identity is revealed by
an efficient public procedure

79

(a) The additional input could reveal the identities of the signer and the designated
verifier to the other ring members.

(b) The additional input still guarantees the privacy of their identities (signer and
designated verifier) to the other ring members.

The subtle differences among the above cases become prominent for the appropriate applica-
tions. The cases 1 and 2(a) were addressed in the literature. To the best of our knowledge,
the functionality of case 2(b) was not discussed earlier. We observe that this functionality
cannot be realized by the existing variants of ring signatures. We first describe a practical
problem to further illustrate the usefulness of 2(b).

Let us suppose, Bob is a layer-2 governing body member (consisting of say n members) of
a company and the layer-1 body features some powerful members (say r, where r < n)
among the members of layer-2 body. Alice happens to be a member of the layer-1 body. A
certain unethical decision has been taken in a layer-1 body meeting and Bob would like to
get this information. We further assume that Alice is aware of this fact and wish to leak the
information to Bob. We assume, no secure channels exists among members; therefore the
communication should take place on authenticated public channels (viz. bulletin boards).
Alice needs to carry out this task in a manner such that Bob gets convinced about the in-
formation being originated from a layer-1 committee member. It is required that identities
of Bob and Alice should not be leaked to any third party. Further, without any help from
Alice, the signature alone should not give any information to Bob about the identity of Alice.
Bob can later verify the identity of Alice (for reward) with an additional input from Alice
(this additional information can be further ring-signed and sent over public channel).

We now discuss several available variants of ring signatures and argue about their inability
to address the above scenario.

• Designated Verifier Signature Scheme [55]: In this primitive, the signature reveals the
identity of the designated verifier.

• Step-Out Ring Signature [58]: This serves as an intermediate between ring and group
signature scheme. In a step-out ring signature scheme, the anonymity status of the
signer can be changed by two procedures - Confession and Step-Out. In Confession
algorithm, the signer can reveal his/her identity by producing another signature that
can be verified publicly. In Step-Out procedure, a member of the ring that is not the
signer can prove that he/she is not the signer. In this procedure, a non-signer produces
a step-out record which is a signature on some message m̄ = “I have not signed m”.
Thus, it is clear that the step-out ring signature will not work.

• Strongly Designated Verifier Ring Signature [60]: In such a scheme the signer desig-
nate the verifier at the time of signature generation. None except the designated
verifier (DV) can verify the signature but the designated verifier can neither break the
anonymity of the scheme nor can convince the third party about the actual signer of
the message.

80

• Universal Designated Verifier Ring Signature [62]: This scheme not allows members of
a group to sign messages on behalf of the group without revealing their identities, but
also allows any holder of the signature to designate the signature to any designated
verifier. In this manner, either it preserves the anonymity of the signer (actual signer
can not reveal his/her identity) or if it can be revealed, it can be done by designated
verifier once the signature is made public.

• Controllable Ring Signature [44]: This is a ring signature scheme with additional prop-
erties - (a) Anonymous identification: the real signer can anonymously prove his au-
thorship to the verifier using an anonymous identification protocol. (b) Linkable signa-
ture: newly generated anonymous signature should be linked to a previously generated
anonymous signature so that it can be verified publicly that both the signatures have
been generated by the same user. (c) the ring signature can be converted to an ordi-
nary signature after the revelation of secret information by the real signer. Thus using
controllable ring signature Alice can leak some secret information anonymously and
publicly, but she can not prove her identity as a signer to Bob at a later stage as

– Anonymous identification allows her to prove her authorship anonymously. There-
fore, Bob can not be convinced at a later stage that Alice is the real signer.

– Convertibility allows her to reveal her identity publicly by converting the ring
signature into an ordinary signature.

RS-DVSI has three stages - (i) The generation of ring signature σ by the signer us designated
for the verifier ud on some message m for some chosen ring of members R (ii) the trapdoor
svus is made public by the actual signer us and (iii) with the help of trapdoor, the desig-
nated verifier ud knows the identity of the actual signer ud. Note that, although anybody
can verify the ring signature σ on message m and R, anonymity of the actual signer is still
preserved until the trapdoor is revealed. Hence, the actual signer, upon his/her discretion
only, can reveal his/her identity. In the case of ”Strongly Designated Verifier Ring Signa-
ture” or ”Universal Designated Verifier Ring Signature”, there is no step (ii). Step-Out Ring
Signature has three stages but it leaks the signer’s identity publicly. Similarly, controllable
ring signature also has three stages but it either maintains the anonymity of the signer or
reveals the identity of the signer publicly. In nutshell, to the best of our knowledge, there
does not exist any scheme in the literature which serves the same purpose as RS-DVSI does.

In this chapter we formalize a variant notion of ring signature that will address the case
2(b). We call this new notion “Ring Signature with Designated Verifier for Signer-
Identity (RS-DVSI)”. We then formulate the appropriate security requirements for a
RS-DVSI scheme. Finally we propose a secure scheme.

6.2 Ring Signature with Designated Verifier for Signer-

Identity (RS-DVSI)

We begin by presenting the definition of a ring signature scheme with designated verifier
for signer-identity. We refer to an ordered list R = (PKu1 , . . . , PKun) of public keys as a

81

ring, and let R[i] = PKui . Let ui be the corresponding user whose public key is PKui :
for example we denote us and ud as the signer and the designated verifier respectively. A
ring signature scheme with designated verifier for signer-identity consists of five algorithms
(Setup, KeyGen, RingSign, RingVerify, RevealTrapdoor, IdentityVerification) that, respectively,
generate public parameters and master secret key, generate keys for a user, sign a message,
verify the signature of a message, reveals a trapdoor information and verify the identity of
the signer by the designated verifier. Formally,

• Setup(1λ): The probabilistic polynomial time algorithm takes as input the security
parameter 1λ and outputs a public parameter Params and a master secret key MSK.
(MSK may be an empty string).

• KeyGen(ID,MSK,Params): The probabilistic polynomial time user key generation
algorithm takes as input the user’s identity ID, the master secret key MSK (if non-
empty) & the public parameter Params and outputs a public key PK and a secret
key SK.

• RingSign(m,R, SKus , PKud , Params): The probabilistic polynomial time ring signing
algorithm takes as input a message m, the ring R that is a set of public keys (such
that PKus ∈ R), signer’s secret key SKus , designated verifier’s public key PKud , public
parameter Params and to return a signature σ on m with respect to the ring R and
the designated verifier with the identity ud.

• RingVerify(m,σ,R, Params): The deterministic polynomial time ring verification al-
gorithm takes as input a message m, a signature σ and the ring R to return a single
bit b ∈ {0, 1}. If σ is a valid signature on message m for the ring R, b is 1 else 0.

• RevealTrapdoor(m,σ,R, SKus , PKud , Params): The probabilistic reveal trapdoor al-
gorithm takes as input a message m, a signature σ for m, the ring R, the secret key
SKus of the signer who have produced σ, and the public key PKud of the designated
verifier to return a trapdoor string svus . The trapdoor string is made public to all the
members of R by the signer.

• IdentityVerification(m,σ,R, PKuj , SKuj , svus , Params): The deterministic polynomial
time signer identity verification algorithm does the exhaustive search over all the public
keys in R. For every public key from R, it takes as input the message m, the signature
σ for m, the public key-secret key pair (PKuj , SKuj) of the user, and the trapdoor
value svus to return either us if σ was generated by us on message m for the ring R
designated for uj, else returns ⊥.

6.3 Security

In this section we formally define all the security notions by means of standard security
games between the challenger and the adversary. In such a game, specific capabilities of the
adversary will become clear.

82

6.3.1 Anonymity

The anonymity condition for a regular ring signature scheme requires, informally that an
adversary should not be able to tell which member of a ring generated a particular signature
with probability greater than 1

|R| . This limited anonymity can be either computational or
unconditional. In the model of ring signatures with designated verifier for signer-identity,
it requires the signature to be both signer and designated verifier-ambiguous. We consider
unconditional anonymity for our proposed scheme. We point out that our anonymity defini-
tion does not allow adversarially-chosen public keys in the ring R, a stronger definition for
anonymity then that has been formulated recently by Bender, Katz, and Morselli [13].

Definition 1 (Unconditional Anonymity) The adversary with unbounded computation
power is given a signature computed by a randomly-chosen signer from the ring R, with the
requirement that the adversary should be unable to guess the actual signer and the designated
verifier (assuming them to be different) with probability better than 1

2(|R|2)
+ ε, where ε is a

negligible function of the security parameter.

6.3.2 Unforgeability

The intuitive notion of unforgeability is, as usual, that an adversary should be unable to
output (m,σ,R) such that RingVerify(m,σ,R, Params) = 1. We now define the unforge-
ability against chosen-subring attacks for a RS-DVSI scheme.

Definition 2 (Unforgeability Against Chosen-Subring Attacks (UF-CSA))

A ring signature scheme with designated verifier for signer-identity is unforgeable against
chosen-subring attacks if for any PPT adversary A and for any polynomial `(·), the proba-
bility that A succeeds in the following game is negligible:

• Key pairs {(PKui , SKui)}
`(λ)
i=1 are generated using KeyGen(ID,MSK,Params), and

the set of public keys R def
= {PKui}

`(λ)
i=1 along with public parameters Params is given

to A.

• A is given access to a signing oracle OSign(·, ·, ·, ·), where OSign(m,R′, us, ud) outputs
the ring signature σ ← RingSign(mR′, SKus , PKud , Params) along with the trapdoor
generated by RevealTrapdoor(m,σ,R′, SKus , PKud , Params) and we require that R′ ⊆
R, PKus ∈ R′ and PKud ∈ R.

• A outputs (m∗, σ∗,R∗) and succeeds if R∗ ⊆ R, RingVerify(m∗, σ∗,R∗, Params) = 1,
and A never queried (m∗,R∗, ?, ?) to its signing oracle.

We define the advantage of A in the above game as Adv(A) = Pr[A wins the game].

83

6.3.3 Uniqueness of Signer and Designated Verifier

Definition 3

An RS-DVSI scheme is said to preserve signer’s and designated identity verifier’s uniqueness if
for any probabilistic polynomial time adversary A, the probability that A wins the following
game is negligible:

• A queries for public and secret key of different users. Then key pairs {(PKui , SKui)}
p(λ)
i=1

are generated using KeyGen(ID,MSK,Params), and the set of public keys R def
=

{PKui}
p(λ)
i=1 , set of secret keys {SKui}

p(λ)
i=1 and public parameters Params are given to

A.

• A outputs (m,σ,R′), (us0 , ud0 , r0) & (us1 , ud1 , r1) and succeeds if, IdentityVerification
algorithm returns us0 for input (m,σ,R′, SKud0

, PKud0
, r0, Params) and returns us1

for input (m,σ,R′, SKud1
, PKud1

, r1, Params) where R′ ⊆ R, {PKus0
, PKus1

} ⊆ R′,
{PKud0

, PKud1
} ⊆ R and {us0 , ud0} 6= {us1 , ud1}.

We define the advantage of A in the above game as Adv(A) = Pr[A wins the game].

6.3.4 Signer’s Privacy

Intuitively, a secure RS-DVSI scheme should hide the signer’s identity from the adversary
who is given both the ring signature and the corresponding trapdoor information.

Definition 4

An RS-DVSI scheme is said to preserve signer’s privacy if for any PPT adversary A and for
any polynomial `(·), the probability that A wins the following game is negligible:

1. Key pairs {(PKui , SKui)}
`(λ)
i=1 are generated using KeyGen(ID,MSK,Params), and

the set of public keys R def
= {PKui}

`(λ)
i=1 along with public parameters Params is given

to A.

2. A is given access to a corrupt oracle Corrupt(·), where Corrupt(ui) outputs SKui .

3. A is given access to a signing oracle OSign(·, ·, ·, ·), where OSign(m,R′, us, ud) outputs
the ring signature σ ← RingSign(m,R′, SKus , PKud , Params) along with the trapdoor
generated by RevealTrapdoor(m,σ,R′, SKus , PKud , Params) and we require that R′ ⊆
R, PKus ∈ R′ and PKud ∈ R.

4. A then outputs a tuple (m,R∗, us0 , us1 , ud), R∗ ⊆ R and {PKus0
, PKus1

} ∈ R∗,
PKud ∈ R. To this, a bit b ∈ {0, 1} is chosen uniformly at random and A is given ring
signature σ = RingSign(m,R∗, SKusb

, PKud , Params) and the corresponding trapdoor
value sv = RevealTrapdoor(m,σ,R∗, SKusb

, PKud , Params).

5. Finally, A returns a bit b̂ ∈ {0, 1}. A wins the game if b = b̂ and A did not query
Corrupt(·) on us0 , us1 and ud.

We define the advantage of A in the above game as Adv(A) = |Pr[b = b̂]− 1
2
|.

84

6.3.5 Designated Verifier’s Privacy

We define the privacy of a designated verifier in a RS-DVSI scheme similar to the Definition
4. The security game is the same as for the Signer’s privacy, except the following changes in
step 5-6.

5. A then outputs a tuple (m,R∗, us, ud0 , ud1), R∗ ⊆ R and {PKud0
, PKud1

} ⊆ R,
PKus ∈ R∗. To this, a bit b ∈ {0, 1} is chosen uniformly at random and A is given ring
signature σ = RingSign(m,R∗, SKus , PKudb

, Params) and the corresponding trapdoor
value sv = RevealTrapdoor(m,σ,R∗, SKus , PKudb

, Params).

6. Finally, A returns a bit b̂ ∈ {0, 1}. A wins the game if b = b̂ and A did not query
Corrupt(·) on ud0 , ud1 and us.

6.4 Generic Construction of RS-DVSI

Let RS = (SetupRS, KeyGenRS, RSign, RVerify) be a ring signature scheme, IBSC =
(SetupIBSC , KeyGenIBSC , Signcrypt, Designcrypt) be an Identity Based Signcryption scheme,
H1 : {0, 1}∗ → {0, 1}l1 and H2 : {0, 1}∗ → {0, 1}l2 be two hash functions. Let Signcrypt
algorithm of IBSC take a k bit message and return an l1 bit ciphertext. The proposed
RS-DVSI scheme is as follows:

• Setup(1λ)

– ParamsRS ← SetupRS(1λ)

– (MSK,ParamsIBSC)← SetupIBSC(1λ)

– Params← (ParamsRS, ParamsIBSC)

• KeyGen(ID,MSK,Params).

– (PKRS, SKRS) ← KeyGenRS(ID, ParamsRS)

– SKIBSC ← KeyGenIBSC(ID,MSK,ParamsIBSC)

– PK = (PKRS, ID) and SK = (SKRS, SKIBSC)

• RingSign(m,R = (R1,R2) = (∪ni=1{PKRS
ui
},∪ni=1{IDui}), SKus , PKud , Params)

– σ1 = RSign(m,R1, SK
RS
us , Params

RS)

– Let M = m||σ1||R = m1||m2||...||mz where |mi| = k for i = 1, . . . , z. (if M is not
a multiple of k then pad it with some string).

– For i = 1 to z

∗ Choose a random string ri.

∗ σ2,i = Signcrypt(mi, SK
IBSC
us , IDud , IDus , Params

IBSC)⊕H1(ri)

– σ3 = H2(r1|| . . . ||rz)

85

– Ring-Signature σ = (σ1, σ2 = (σ2,1|| . . . ||σ2,z), σ3).

• RingVerify(m,σ,R, Params)

– x← RVerify(m,σ1,R1, Params
RS)

• RevealTrapdoor(m,σ,R, SKus , PKud , Params)

– svus ← (r1, . . . , rz)

• IdentityVerification(m,σ,R, PKuj , SKuj , svus , Params)

For l = 1 to n (IDl ∈ R2)

– For i = 1 to z

∗ yi ← Designcrypt((σ2,i ⊕H1(ri)), SK
IBSC
uj

, IDuj , IDul , Params
IBSC)

∗ Check (yi
?
= mi)

– If true for all i ∈ {1, . . . , z} and H2(r1|| . . . ||rz) = σ3 then return ul

Else, Return ⊥

6.4.1 Correctness of the Scheme

Correctness of the scheme trivially follows from the correctness of the ring signature scheme
RS and the consistency of the Identity Based Signcryption scheme IBSC. But to en-
sure that ud only should be able to verify the identity of the signer us with overwhelm-
ing probability if σ is produced by us for ud, one property on IBSC scheme is required,
identity collision-resistant (see chapter 2, subsection 2.9.2), which means with negligible
probability there exists two different sets of identities {us0 , ud0} 6= {us1 , ud1} such that
Signcrypt(m,SKIBSC

us0
, IDud0

, IDus0
, ParamsIBSC) = Signcrypt(m,SKIBSC

us1
, IDud1

, IDus1
,

ParamsIBSC) for randomly chosen message m and all random coins used in the algorithm
’Signcrypt’. In our proposed RS-DVSI scheme, we choose IBSC to be identity collision-
resistant.

6.5 Security

For the sake of simplicity of notations, throughout the security analysis, we denote by C ←
Signcrypt((m||σ||R), SKIBSC

ui
, IDui , IDuj , Params

IBSC) if (m||σ||R) = (m1|| . . . || mz) and
C = C1|| . . . ||Cz where Cl ← Signcrypt(ml, SK

IBSC
ui

, IDui , IDuj , Params
IBSC) for all l ∈

{1, . . . , z}.

Theorem 14 In the random oracle model, assuming that H1 and H2 as random functions,
the proposed RS-DVSI scheme is unconditionally anonymous if the ring signature scheme
RS is unconditionally anonymous.

86

Proof : It is clear from the construction that in ring signature σ = (σ1, σ2, σ3), if ri is chosen
randomly, H(ri) also behaves as a random string (in the random oracle model), hence σ2 =
Signcrypt((m||σ1||R), SKIBSC

us , IDud , IDus , Params
IBSC)⊕H1(r1)|| . . . ||H1(rz) behaves as a

random string i.e. independent of any user’s identities. Similarly, σ3 = H2(r1|| . . . ||rz) also
behaves as a random string. Hence, the anonymity of the σ then depends upon σ1 only.
Hence, if the ring signature RS is unconditionally anonymous, the whole σ = (σ1, σ2, σ3)
preserves unconditional anonymity.

Theorem 15 If there exists an adversary A which can break the UF-CSA security of the
proposed RS-DVSI scheme, then there exists an adversary B which can break the unforge-
ability of the ring signature scheme RS. Moreover, Adv(B) ≥ Adv(A).

Proof : Let there be a PPT challenger CH which runs the SetupRS and KeyGenRS of
the ring signature scheme RS. We shall show how to construct an adversary B that uses A
to break the unforgeability of RS. Suppose B receives public keys R1 = ∪nj=1{PKRS

uj
} from

CH. B then chooses an Identity Based Signcryption scheme IBSC whose public parameters
ParamsIBSC are independently generated from the public parameters of RS. B then sends
R = (∪nj=1{PKRS

uj
, IDuj}) to A.

We now show how requests from A are treated by B who plays the role of challenger to A.

• OSign queries: For ith query on inputs (m(i),R(i), u
(i)
s , u

(i)
d) from A where R(i) ⊆ R,

B gives (m(i), R(i)
1 , u

(i)
s) to CH which after running σ

(i)
1 ← RSign(m(i),R(i), SKRS

u
(i)
s

,

ParamsRS), returns σ
(i)
1 to B. Then, B runs C(i) ← Signcrypt((m(i)||σ(i)

1 ||R(i)),

SKIBSC

u
(i)
s

, ID
u
(i)
d

, ID
u
(i)
s

, ParamsIBSC). Strings r
(i)
1 , . . . , r

(i)
z are chosen uniformly at

random by B and then σ
(i)
2 ← C(i) ⊕H1(r

(i)
1 || . . . ||r

(i)
z) is computed. B then computes

σ
(i)
3 = H2(r

(i)
1 || . . . ||r

(i)
z) and finally returns (σ(i) = (σ

(i)
1 , σ

(i)
2 , σ

(i)
3), (r

(i)
1 , . . . , r

(i)
z)) to A.

Once this stage is over, A outputs (m∗, σ∗,R∗) to B which then B outputs the same to
CH. It is clear from the simulated game above that whenever σ∗ is a forged valid signature
on message m∗ and ring R∗ for our proposed RS-DVSI scheme, the same is a forged valid
signature on the same message m∗ and the ring R∗ for the ring signature scheme RS also.
Hence, Adv(B) ≥ Adv(A).

Theorem 16 The Proposed scheme preserves the uniqueness of the signer and the desig-
nated verifier if H2 is collision resistant and IBSC is identity collision-resistant.

Proof : Let A produce two tuples (m,σ = (σ1, σ2, σ3),R, us0 , ud0 , (r1,1, . . . , r1,z)) and
(m,σ = (σ1, σ2, σ3),R, us1 , ud1 , (r′1,1, . . . , r′1,z)) to B where {us0 , ud0} 6= {us1 , ud1}. Then the
following cases arise:

1. If (r1,1, . . . , r1,z) 6= (r′1,1, . . . , r
′
1,z), then B can find collision on H2 as H2((r1,1, . . . , r1,z)

= H2(r′1,1, . . . , r
′
1,z) = σ3.

87

2. If (r1,1, . . . , r1,z) = (r′1,1, . . . , r
′
1,z), then B can find collision on the identities of IBSC

as in this case Signcrypt(m,SKIBSC
us0

, IDud0
, IDus0

, ParamsIBSC) =

Signcrypt(m,SKIBSC
us1

, IDud1
, IDus1

, ParamsIBSC).

Theorem 17 Let the ring signature scheme RS preserve unconditional anonymity. Then,
if there exists an adversary A which can break the signer’s privacy of the proposed RS-DVSI
scheme, then there exists an adversary B which can break the ANON-IBSC-CCA security of
the identity based signcryption scheme IBSC. Moreover, Adv(B) = Adv(A)/2.

Proof : Let there be a PPT challenger CH which runs the SetupIBSC and KeyGenIBSC of
identity based signcryption scheme IBSC. We shall show how to construct an adversary B
that uses A to break the ANON-IBSC-CCA security of IBSC. B then chooses a ring signa-
ture scheme RS whose public parameters ParamsRS are independently generated from the
public parameters of IBSC. B then runs KeyGen algorithm of RS for users ∪nj=1{uj}. Let

the output be R1 = ∪nj=1{PKRS
uj
}. B stores the secret keys ∪nj=1{SKRS

uj
} in a list L which

will be used during corrupt oracle queries. B then sends R = (∪nj=1{PKRS
uj
, IDuj}) to A.

We now show how requests from A are treated by B who plays the role of challenger to A.

• Corrupt queries: For ith query on u
(i)
j from A, B sends ID

u
(i)
j

to CH which in turn

returns SKIBSC

u
(i)
j

to B. B searches in the list L for the secret key of u
(i)
j and then

returns (SKRS

u
(i)
j

, SKIBSC

u
(i)
j

) to A.

• OSign queries: For ith query on inputs (m(i),R(i), u
(i)
s , u

(i)
d) from A where R(i) ⊆ R,

B runs σ
(i)
1 ← RSign(m(i),R(i), SKRS

u
(i)
s

, ParamsRS). B gives m(i), σ
(i)
1 , R(i)

1 , u
(i)
s and

u
(i)
d to CH which after running C(i) ← Signcrypt((m(i)||σ(i)

1 ||R(i)), SKIBSC

u
(i)
s

, ID
u
(i)
d

,

ID
u
(i)
s

, ParamsIBSC) returns C(i) to B. Strings r
(i)
1 , . . . , r

(i)
z are chosen uniformly at

random by B and then σ
(i)
2 ← C(i) ⊕H1(r

(i)
1 || . . . ||r

(i)
z) is computed. B then computes

σ
(i)
3 = H2(r

(i)
1 || . . . ||r

(i)
z) and finally returns (σ(i) = (σ

(i)
1 , σ

(i)
2 , σ

(i)
3), (r

(i)
1 , . . . , r

(i)
z)) to A.

Once this stage is over, A submits (m,R′, us0 , us1 , ud) to B where R′ ⊆ R. B then computes
σ1 ← RSign(m,R, SKRS

us0
, ParamsRS). B then sends ((m||σ1||R), {us0 , us1}, {ud0 , ud1}) to

CH where d0 = d1 = d. CH then chooses b ∈ {0, 1} and b′ ∈ {0, 1} uniformly at random
and computes Cb,b′ ← Signcrypt((m||σ1||R′), SKIBSC

usb
, IDudb′

, IDusb
, ParamsIBSC). String

r1, . . . , rz is chosen uniformly at random by B and then σ2 ← Cb,b′ ⊕H1(r1)|| . . . ||H1(rz) is
computed. B then computes σ3 = H2(r1|| . . . ||rz) and returns (σ = (σ1, σ2, σ3), (r1, . . . , rz))
to A.

A may perform queries on Corrupt and OSign with the restriction that Corrupt queries on
us0 , us1 and ud will be ignored by B. A then submits a bit b̂. B then chooses a bit b̂′ ∈ {0, 1}
uniformly at random and outputs (b̂, b̂′) to CH.

88

Analysis of the Proof.

We first show that the simulation is correct -

1. If the ring signature scheme RS is unconditionally anonymous, then the ring signature
σ on the message m generated by the signer us0 can be obtained by the signer us1
also, if {PKus0

, PKus1
} ⊆ R. Therefore, in the challenge phase, when A submits

(m,R, us0 , us1 , ud) to B, the signer chosen by B, in this case us0 , is same as us1 . Hence
the bit b chosen by CH while signcrypting the message fits properly with the ring
signature σ1 generated by B. Moreover, it can be easily observed that if RS in not
unconditionally anonymous, signer’s privacy can be broken by breaking the anonymity
of RS only.

2. During the game, B is not allowed to query on the secret keys of us0 , us1 and ud to
CH as per the definition of ANON-IBSC-CCA game. Simultaneously, A also is not
allowed to query on the secret keys of us0 , us1 and ud to B as per the definition of
signer’s privacy. B queries for the secret keys on those identities which are queried by
A only. Hence, A does not query for the secret key for us0 , us1 and ud and so does B.

3. Finally, B is not allowed to query for the designcryption of ciphertext Cb,b′ on the
identity of {us0 , ud} or {us1 , ud} as per the definition of ANON-IBSC-CCA game. It
is clear from the simulation that B never makes any designcryption query on any
ciphertext and hence never makes designcryption query on the challenge ciphertext.

We now prove that Adv(B) = Adv(A)/2. The bit guessed by B, b̂′, will be equal to b′ with
probability 1/2. Let,

E1 denotes the event that A wins the game, i.e., b = b̂.

E2 denotes the event that B wins the game, i.e., (b, b′) = (b̂, b̂′).

E3 denotes the event that b′ = b̂′. Pr[b′ = b̂′] = 1/2.

It is clear that Pr[E2] = Pr[E1 ∧ E3]. Since, E1 and E3 are independent events, Pr[E2] =
Pr[E1 ∧ E3] = Pr[E1]Pr[E3] = 1/2× Pr[E1].

Now, Adv(B) = |Pr[E2]− 1/4| = |Pr[E1]/2− 1/4| = 1
2
|Pr[E1]− 1/2| = Adv(A)/2.

Theorem 18 If there exists an adversary A which can break the designated verifier’s pri-
vacy of the proposed RS-DVSI scheme, then there exists an adversary B which can break
the ANON-IBSC-CCA security of the identity based signcryption scheme IBSC. Moreover,
Adv(B) = Adv(A)/2.

Proof : The proof goes in a similar manner as the proof goes for signer’s privacy. Let
there be a PPT challenger CH which runs the SetupIBSC and KeyGenIBSC of identity based
signcryption scheme IBSC. We shall show how to construct an adversary B that uses A to

89

break the ANON-IBSC-CCA security of IBSC. B then chooses a ring signature scheme RS
whose public parameters ParamsRS are independently generated from the public parame-
ters of IBSC. B then runs KeyGen algorithm of RS for users ∪nj=1{uj}. Let the output be

R1 = ∪nj=1{PKRS
uj
}. B stores the secret keys ∪nj=1{SKRS

uj
} in a list L which will be used

during corrupt oracle queries. B then sends R = (∪nj=1{PKRS
uj
, IDuj}) to A.

We now show how requests from A are treated by B who plays the role of challenger to A.

• Corrupt queries: For ith query on u
(i)
j from A, B sends ID

u
(i)
j

to CH which in turn

returns SKIBSC

u
(i)
j

to B. B searches in the list L for the secret key of u
(i)
j and then

returns (SKRS

u
(i)
j

, SKIBSC

u
(i)
j

) to A.

• OSign queries: For ith query on inputs (m(i),R(i), u
(i)
s , u

(i)
d) from A where R(i) ⊆ R,

B runs σ
(i)
1 ← RSign(m(i),R(i), SKRS

u
(i)
s

, ParamsRS). B gives m(i), σ
(i)
1 , R(i)

1 , u
(i)
s and

u
(i)
d to CH which after running C(i) ← Signcrypt((m(i)||σ(i)

1 ||R(i)), SKIBSC

u
(i)
s

, ID
u
(i)
d

,

ID
u
(i)
s

, ParamsIBSC) returns C(i) to B. Strings r
(i)
1 , . . . , r

(i)
z are chosen uniformly at

random by B and then σ
(i)
2 ← C(i) ⊕H1(r

(i)
1 || . . . ||r

(i)
z) is computed. B then computes

σ
(i)
3 = H2(r

(i)
1 || . . . ||r

(i)
z) and finally returns (σ(i) = (σ

(i)
1 , σ

(i)
2 , σ

(i)
3), (r

(i)
1 , . . . , r

(i)
z)) to A.

Once this stage is over, A submits (m,R′, us, ud0 , ud1) to B where R′ ⊆ R. B then computes
σ1 ← RSign(m,R, SKRS

us , ParamsRS). B then sends ((m||σ1||R), {us0 , us1}, {ud0 , ud1}) to
CH where s0 = s1 = s. CH then chooses b ∈ {0, 1} and b′ ∈ {0, 1} uniformly at random
and computes Cb,b′ ← Signcrypt((m||σ1||R′), SKIBSC

usb
, IDudb′

, IDusb
, ParamsIBSC). Strings

r1, . . . , rz are chosen uniformly at random by B and then σ2 ← Cb,b′ ⊕H1(r1)|| . . . ||H1(rz) is
computed. B then computes σ3 = H2(r1|| . . . ||rz) and returns (σ = (σ1, σ2, σ3), (r1, . . . , rz))
to A.

A may perform queries on Corrupt and OSign with the restriction that Corrupt queries on us,
ud0 and ud1 will be ignored by B. A then submits a bit b̂′. B then chooses a bit b̂ ∈ {0, 1}
uniformly at random and outputs (b̂, b̂′) to CH.

Analysis of the Proof.

We first show that the simulation is correct -

1. During the game, B is not allowed to query on the secret keys of us, ud0 and ud1 to
CH as per the definition of ANON-IBSC-CCA game. Simultaneously, A also is not
allowed to query on the secret keys of us, ud0 and ud1 to B as per the definition of
designated verifier’s privacy. Since B queries for the secret keys on those identities
which are queried by A only. Hence, A does not query for the secret key for us, ud0
and ud1 and so does B.

90

2. Finally, B is not allowed to query for the designcryption of ciphertext Cb,b′ on the
identity of {us, ud0} or {us, ud1} as per the definition of ANON-IBSC-CCA game. It
is clear from the simulation that B never makes any designcryption query on any
ciphertext and hence never makes designcryption query on the challenge ciphertext.

We now prove that Adv(B) = Adv(A)/2. The bit guessed by B, b̂, will be equal to b with
probability 1/2. Let,

E1 denotes the event that A wins the game, i.e., b′ = b̂′.

E2 denotes the event that B wins the game, i.e., (b, b′) = (b̂, b̂′).

E3 denotes the event that b = b̂. Pr[b = b̂] = 1/2.

It is clear that Pr[E2] = Pr[E1 ∧ E3]. Since, E1 and E3 are independent events, Pr[E2] =
Pr[E1 ∧ E3] = Pr[E1]Pr[E3] = 1/2× Pr[E1].

Now, Adv(B) = |Pr[E2]− 1/4| = |Pr[E1]/2− 1/4| = 1
2
|Pr[E1]− 1/2| = Adv(A)/2.

91

Chapter 7

Conclusion

This thesis proposes a new security notion called indistinguishable against chosen cipher-
text verification attack (IND-CCVA), two new identity based signcryption schemes, two new
signcryption schemes in public key setting and a new variant of ring signature called ring
signature with designated verifier for signer’s identity (RS-DVSI).

Chapter 3 proposes a new security notion called IND-CCVA and gives its formal definition.
It then shows a gap between IND-CPA and IND-CCVA as well as a gap between IND-CCVA
and IND-CCA. Further, it shows the existence of IND-CCA1 secure encryption scheme which
is not IND-CCVA secure.

It could be interesting to see the other direction between IND-CCA1 and IND-CCVA. More-
over, from practical side, apart from Cramer-Shoup light version, the search of new and
efficient IND-CCVA secure schemes particularly more efficient than IND-CCA secure en-
cryption schemes could be a significant direction in this area.

Chapter 4 provides two different generic constructions for achieving IND-IBSC-CCA and
ESUF-IBSC-CMA secure identity based signcryption schemes from IND-ID-CCA secure
identity based encryption scheme and SUF-ID-CMA secure identity based signature schemes.
The difference between these constructions lies in the computational efficiency. The first con-
struction is efficient in signcrypt phase in which encrypt and sign algorithms can be run in
parallel. Whereas the second construction is efficient in both signcrypt and designcrypt
phases due to possible parallelisation of encrypt and sign algorithms during signcrypt phase
and that of decrypt and verify algorithms during designcrypt phase.

The further direction in this area could be to find generic construction of IND-IBSC-CCA
and ESUF-IBSC-CMA secure identity based signcryption schemes from less secure (than
IND-ID-CCA and SUF-ID-CMA) identity based encryption and identity based signature
schemes in the standard model.

Chapter 5 provides the efficient generic constructions of achieving dM-IND-iCCA secure
signcryption schemes in the random oracle from (a) OWE-CPA secure and (b) OWE-PCA
secure encryption schemes. OWE-CPA is the minimum security required for any public key

92

encryption scheme whereas dM-IND-iCCA is the highest known level of security for any sign-
cryption scheme in public key setting. Both constructions give different but almost similar
signcryption schemes which achieve the same level of security. Both these constructions are
computationally efficient because encrypt and sign algorithms can be run in parallel during
signcrypt phase as well as decrypt and verify algorithms can be run in parallel during de-
signcrypt phase.

Proposed construction achieves the highest level of security of signcryption schemes from the
least secure encryption schemes. The possibility to construct more efficient dM-IND-iCCA
secure signcryption scheme from OWE-CPA secure encryption and that too in standard
model would be an interesting problem for future in this area.

Chapter 6 proposes a new variant of Ring Signature called Ring Signature with Designated
Verifier for Signer-Identity (RS-DVSI) and provides one generic construction. The appro-
priate motivation behind this variant can be phrased as “How to leak a secret and reap the
reward too?”. Proposed variant enables a user to leak a secret publicly and remain obscure
in the future. User, if wishes, can then reveal its identity in the future to only a specified
user termed as designated verifier; otherwise, it may remain obscure.

The proposed construction uses ring signature and identity based signcryption scheme to
construct RS-DVSI scheme. There could be a possibility of different constructions from
other cryptographic primitives or even more, less secure cryptographic primitives to achieve
more efficient RS-DVSI schemes and thus worth exploring.

93

Bibliography

[1] M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n Signatures from a Variety of Keys. In
Advances in Cryptology - ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer
Science, pages 415–432. Springer-Verlag, 2002.

[2] W. Alexi, B. Chor, O. Goldreich, and C.P. Schnorr. RSA and Rabin Functions: Certain
Parts are as Hard as the Whole. SIAM Journal of Computing, 17(2):194–209, April 1988.

[3] J.H. An, Y. Dodis, and T. Rabin. On the Security of Joint Signature and Encryption.
In Advances in Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 83–107. Springer-Verlag, 2002.

[4] R. Anderson. Security Engineering: A Guide to Building Dependable Distributed Sys-
tems, Second Edition. Wiley Publishing, Inc, 2008.

[5] N. Attrapadung, J. Furukawa, T. Gomi, G. Hanaoka, H. Imai, and R. Zhang. Efficient
Identity-Based Encryption with Tight Security Reduction. In Cryptology and Network
Security, volume 4301 of Lecture Notes in Computer Science, pages 19–36. Springer-
Verlag, 2006.

[6] J. Baek, R. Steinfeld, and Y. Zheng. Formal Proofs for the Security of Signcryption.
In Public Key Cryptography, volume 2274 of Lecture Notes in Computer Science, pages
80–98. Springer-Verlag, 2002.

[7] P.S.L.M. Barreto, B. Libert, N. McCullagh, and J.J. Quisquater. Efficient and Provably-
Secure Identity-Based Signatures and Signcryption from Bilinear Maps. In Advances in
Cryptology - ASIACRYPT 2005, volume 3788 of Lecture Notes in Computer Science,
pages 515–532. Springer-Verlag, 2005.

[8] M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design and
Analysis of Authentication and Key Exchange Protocols. In ACM Symposium on Theory
of Computing, STOC ’98, pages 419–428. ACM, 1998.

[9] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions of
Security for Public-Key Encryption Schemes. In Advances in Cryptology - CRYPTO
’98, volume 1462 of Lecture Notes in Computer Science, pages 26–45. Springer-Verlag,
1998.

94

[10] M. Bellare and C. Namprempre. Authenticated Encryption: Relations among Notions
and Analysis of the Generic Composition Paradigm. In Advances in Cryptology - ASI-
ACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 531–545.
Springer-Verlag, 2000.

[11] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In ACM Conference on Computer and Communications Security,
CCS ’93, pages 62–73. ACM, 1993.

[12] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption. In Advances in Cryptology
- EUROCRYPT ’94, volume 950 of Lecture Notes in Computer Science, pages 92–111.
Springer-Verlag, 1995.

[13] A. Bender, J. Katz, and R. Morselli. Ring Signatures: Stronger Definitions, and Con-
structions without Random Oracles. Journal of Cryptology, 22(1):114–138, 2009.

[14] D. Bleichenbacher. Chosen Ciphertext Attacks Against Protocols Based on the RSA
Encryption Standard PKCS #1. In Advances in Cryptology - CRYPTO ’98, volume
1462 of Lecture Notes in Computer Science, pages 1–12. Springer-Verlag, 1998.

[15] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. In
Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 213–229. Springer-Verlag, 2001.

[16] D. Boneh, C. Gentry, and M. Hamburg. Space-Efficient Identity Based Encryption
Without Pairings. In IEEE Symposium on Foundations of Computer Science, FOCS
2007, pages 647–657. IEEE Computer Society, 2007.

[17] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. In Advances in Cryptology - EUROCRYPT 2003, vol-
ume 2656 of Lecture Notes in Computer Science, pages 416–432. Springer-Verlag, 2003.

[18] X. Boyen. Multipurpose Identity-Based Signcryption - A Swiss Army Knife for Identity-
Based Cryptography. In Advances in Cryptology - CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 383–399. Springer-Verlag, 2003.

[19] E. Bresson, J. Stern, and M. Szydlo. Threshold Ring Signatures and Applications to
Ad-hoc Groups. In Advances in Cryptology - CRYPTO 2003, volume 2442 of Lecture
Notes in Computer Science, pages 465–480. Springer-Verlag, 2002.

[20] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. http://eprint.iacr.org/2000/067, 2000.

[21] R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use for
Building Secure Channels. In Advances in Cryptology - EUROCRYPT 2001, volume
2045 of Lecture Notes in Computer Science, pages 453–474. Springer-Verlag, 2001.

95

[22] S. Chatterjee and P. Sarkar. Trading Time for Space: Towards an Efficient IBE Scheme
with Short(er) Public Parameters in the Standard Model. In Information Security and
Cryptology - ICISC 2005, volume 3935 of Lecture Notes in Computer Science, pages
424–440. Springer-Verlag, 2005.

[23] S. Chatterjee and P. Sarkar. Identity-Based Encryption. Springer, 2011.

[24] D. Chaum and E.V. Heyst. Group Signatures. In Advances in Cryptology - EURO-
CRYPT ’91, volume 547 of Lecture Notes in Computer Science, pages 257–265. Springer-
Verlag, 1991.

[25] L. Chen and J. Malone-Lee. Improved Identity-Based Signcryption. In Public Key
Cryptography - PKC 2005, volume 3386 of Lecture Notes in Computer Science, pages
362–379. Springer-Verlag, 2005.

[26] D. Chiba, T. Matsuda, J.C.N. Schuldt, and K. Matsuura. Efficient Generic Construc-
tions of Signcryption with Insider Security in the Multi-user Setting. In Applied Cryp-
tography and Network Security, volume 6715 of Lecture Notes in Computer Science,
pages 220–237. Springer-Verlag, 2011.

[27] J.C. Choon and J.H. Cheon. An Identity-Based Signature from Gap Diffie-Hellman
Groups. In Public Key Cryptography - PKC 2003, volume 2567 of Lecture Notes in
Computer Science, pages 18–30. Springer-Verlag, 2002.

[28] S.S.M. Chow, V.K.W. Wei, J.K. Liu, and T.H. Yuen. Ring Signatures without Random
Oracles. In ACM Symposium on Information, Computer and Communications Security,
ASIACCS ’06, pages 297–302. ACM, 2006.

[29] C. Cocks. An Identity Based Encryption Scheme Based on Quadratic Residues. In
Cryptography and Coding, volume 2260 of Lecture Notes in Computer Science, pages
360–363. Springer-Verlag, 2001.

[30] R. Cramer, G. Hanaoka, D. Hofheinz, H. Imai, E. Kiltz, R. Pass, A. Shelat, and
V. Vaikuntanathan. Bounded CCA2-Secure Encryption. In Advances in Cryptology
- ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 502–
518. Springer-Verlag, 2007.

[31] R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure against
Adaptive Chosen Ciphertext Attack. In Advances in Cryptology - CRYPTO ’98, volume
1462 of Lecture Notes in Computer Science, pages 13–25. Springer-Verlag, 1998.

[32] R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In Advances in Cryptology - EUROCRYPT
2002, volume 2332 of Lecture Notes in Computer Science, pages 45–64. Springer-Verlag,
2002.

[33] A.W. Dent. Hybrid Signcryption Schemes with Insider Security. In Information Secu-
rity and Privacy, volume 3574 of Lecture Notes in Computer Science, pages 253–266.
Springer-Verlag, 2005.

96

[34] A.W. Dent. Hybrid Signcryption Schemes with Outsider Security. In Information
Security, volume 3650 of Lecture Notes in Computer Science, pages 203–217. Springer-
Verlag, 2005.

[35] A.W. Dent and Y.Zheng (editors). Practical Signcryption. Springer, 2010.

[36] W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory, 22(6):644–654, 1976.

[37] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous Identification in Ad Hoc
Groups. In Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes
in Computer Science, pages 609–626. Springer-Verlag, 2004.

[38] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal on
Computing, 30(2):391–437, 2000.

[39] T. ElGamal. A PUBLIC KEY CRYPTOSYSTEM AND A SIGNATURE SCHEME
BASED ON DISCRETE LOGARITHMS. IEEE Transactions on Information Theory,
31(4):469–472, 1985.

[40] E. Elkind and A. Sahai. A Unified Methodology For Constructing Public-Key Encryp-
tion Schemes Secure Against Adaptive Chosen-Ciphertext Attack. http://eprint.

iacr.org/2002/042, 2002.

[41] M. K. Franklin and H. Zhang. A Framework for Unique Ring Signatures. http:

//eprint.iacr.org/2012/577, 2012.

[42] A.O. Freier, P. Karlton, and P.C. Kocher. The SSL Protocol. Version 3.0. http:

//tools.ietf.org/search/draft-ietf-tls-ssl-version3-00, 1996.

[43] E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric Encryp-
tion Schemes. In Advances in Cryptology - CRYPTO ’99, volume 1666 of Lecture Notes
in Computer Science, pages 537–554. Springer-Verlag, 1999.

[44] W. Gao, G. Wang, X. Wang, and D. Xie. Controllable Ring Signatures. In Information
Security Applications, volume 4298 of Lecture Notes in Computer Science, pages 1–14.
Springer-Verlag, 2007.

[45] C. Gentry. Practical Identity-Based Encryption without Random Oracles. In Advances
in Cryptology - EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science,
pages 445–464. Springer-Verlag, 2006.

[46] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-Knowledge.
Journal of Cryptology, 6(1):21–35, 1993.

[47] O. Goldreich. Foundations of Cryptography, Basic Applications, volume 2. Cambridge
University Press, 2004.

97

[48] S. Goldwasser, S. Micali, and P. Tong. Why and How to Establish a Private Code On
a Public Network. In 23rd Annual Symposium on Foundations of Computer Science,
FOCS 1982, pages 134–144. IEEE Computer Society, 1982.

[49] S. Goldwasser and S. Micalli. Probabilistic Encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984.

[50] J. H̊astad and M. Näslund. The Security of Individual RSA Bits. In 39th Annual
Symposium on Foundations of Computer Science, FOCS 1998, pages 510–521. IEEE
Computer Society, 1998.

[51] J. Herranz and G. Sáez. Forking Lemmas for Ring Signature Schemes. In Progress in
Cryptology - INDOCRYPT 2003, volume 2904 of Lecture Notes in Computer Science,
pages 266–279. Springer-Verlag, 2003.

[52] D. Hofheinz and E. Kiltz. Secure Hybrid Encryption from Weakened Key Encapsulation.
In Advances in Cryptology - CRYPTO 2007, volume 4622 of Lecture Notes in Computer
Science, pages 553–571. Springer-Verlag, 2007.

[53] S. Hohenberger, A. Lewko, and B. Waters. Detecting Dangerous Queries: A New
Approach for Chosen Ciphertext Security. In Advances in Cryptology - EUROCRYPT
2002, volume 7237 of Lecture Notes in Computer Science, pages 663–681. Springer-
Verlag, 2012.

[54] RSA Data Security Inc. PKCS #1: RSA Encryption Standard, Version 1.5. 1993.

[55] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated Verifier Proofs and Their
Applications. In Advances in Cryptology - EUROCRYPT ’96, volume 1070 of Lecture
Notes in Computer Science, pages 143–154. Springer-Verlag, 1996.

[56] M.P. Jhanwar and R. Barua. A Variant of Boneh-Gentry-Hamburg’s Pairing-Free Iden-
tity Based Encryption Scheme. In Information Security and Cryptology, volume 5487
of Lecture Notes in Computer Science, pages 314–331. Springer-Verlag, 2009.

[57] E. Kiltz and Y. Vahlis. CCA2 Secure IBE: Standard Model Efficiency through Authen-
ticated Symmetric Encryption. In Topics in Cryptology - CT-RSA 2008, volume 4964
of Lecture Notes in Computer Science, pages 221–238. Springer-Verlag, 2008.

[58] M. Klonowski, L. Krzywiecki, M. Kutylowski, and A. Lauks. Step-Out Ring Signatures.
In Mathematical Foundations of Computer Science 2008, volume 5162 of Lecture Notes
in Computer Science, pages 431–442. Springer-Verlag, 2008.

[59] K. Kurosawa and S. H. Heng. Identity-Based Identification Without Random Oracles.
In Computational Science and its Applications - ICCSA 2005, volume 3481 of Lecture
Notes in Computer Science, pages 603–613. Springer-Verlag, 2005.

[60] J.S. Lee and J. Chang. Strong Designated Verifier Ring Signature Scheme. In Innova-
tions and Advanced Techniques in Computer and Information Sciences and Engineering,
pages 543–547. Springer, 2007.

98

[61] K.C. Lee, H.A. Wen, and T. Hwang. Convertible ring signature. IEEE Proceedings of
Communications, 152(4):411–414, 2005.

[62] J. Li and Y. Wang. Universal Designated Verifier Ring Signature (Proof) Without
Random Oracles. In Emerging Directions in Embedded and Ubiquitous Computing,
volume 4097 of Lecture Notes in Computer Science, pages 332–341. Springer-Verlag,
2006.

[63] B. Libert. New Secure Applications of Bilinear Maps in Cryptography. In Ph.D. Thesis,
Catholic University, Louvain, 2006.

[64] B. Libert and J. Quisquater. Efficient Signcryption with Key Privacy from Gap Diffie-
Hellman Groups. In Public Key Cryptography - PKC 2004, volume 2947 of Lecture
Notes in Computer Science, pages 187–200. Springer-Verlag, 2004.

[65] B. Libert and J. Quisquater. Improved Signcryption from q-Diffie-Hellman Problems.
In Security in Communication Networks, volume 3352 of Lecture Notes in Computer
Science, pages 220–234. Springer-Verlag, 2004.

[66] J.K. Liu, V.K. Wei, and D.S. Wong. A Separable Threshold Ring Signature Scheme.
In Information Security and Cryptology - ICISC 2003, volume 2971 of Lecture Notes in
Computer Science, pages 12–26. Springer-Verlag, 2004.

[67] J.K. Liu, V.K. Wei, and D.S. Wong. Linkable Spontaneous Anonymous Group Signature
for Ad Hoc Groups. In Information Security and Privacy, volume 3108 of Lecture Notes
in Computer Science, pages 325–335. Springer-Verlag, 2004.

[68] J. Loftus, A. May, N. Smart, and F. Vercauteren. On CCA-Secure Somewhat Homo-
morphic Encryption. In Selected Areas in Cryptography, volume 7118 of Lecture Notes
in Computer Science, pages 55–72. Springer-Verlag, 2011.

[69] T. Matsuda, K. Matsuura, and J.C.N.Schuldt. Efficient Constructions of Signcryption
Schemes and Signcryption Composability. In Progress in Cryptology - INDOCRYPT
2009, volume 5922 of Lecture Notes in Computer Science, pages 321–342. Springer-
Verlag, 2009.

[70] R.J. McEliece. A Public-Key Cryptosystem Based on Algebraic Coding Theory. DSN
progress report, 42(44):114–116, 1978.

[71] D. Naccache. Secure and practical identity-based encryption. IET Information Security,
1(2):59–64, 2007.

[72] M. Naor. Deniable Ring Authentication. In Advances in Cryptology - CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Science, pages 481–498. Springer-Verlag,
2002.

[73] M. Naor and M. Yung. Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In 22nd Annual ACM Symposium on Theory of Computing, STOC
1990, pages 427–437. ACM, 1990.

99

[74] T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-Security Asymmetric Cryp-
tosystem Transform. In Topics in Cryptology - CT-RSA 2001, volume 2020 of Lecture
Notes in Computer Science, pages 159–174. Springer-Verlag, 2001.

[75] S.K. Pandey and R. Barua. Construction of Identity Based Signcryption Schemes. In
Information Security Applications, volume 6513 of Lecture Notes in Computer Science,
pages 1–14. Springer-Verlag, 2011.

[76] S.K. Pandey and R. Barua. Efficient Construction of Identity Based Signcryption
Schemes from Identity Based Encryption and Signature Schemes. Journal of Internet
Services and Information Security, 1(2/3):161–180, 2011.

[77] S.K. Pandey, S. Sarkar, and M.P. Jhanwar. Relaxing IND-CCA: Indistinguishability
against Chosen Ciphertext Verification Attack. In Security, Privacy, and Applied Cryp-
tography Engineering, volume 7644 of Lecture Notes in Computer Science, pages 63–76.
Springer-Verlag, 2012.

[78] K.G. Paterson. ID-based signatures from pairings on elliptic curves. Electronics Letters,
38(18):1025–1026, 2002.

[79] M. Prabhakaran and M. Rosulek. Homomorphic Encryption with CCA Security. http:
//eprint.iacr.org/2008/079, 2008.

[80] C. Rackoff and D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and
Chosen Ciphertext Attack. In Advances in Cryptology - CRYPTO ’91, volume 576 of
Lecture Notes in Computer Science, pages 433–444. Springer-Verlag, 1991.

[81] R.L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[82] R.L. Rivest, A. Shamir, and Y. Tauman. How to Leak a Secret. In Advances in
Cryptology - ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science,
pages 552–565. Springer-Verlag, 2001.

[83] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems Based on Pairing. In SCIS,
2000.

[84] V. Saraswat, and S.K. Pandey. How to Leak a Secret and Reap the Rewards too. In
LATINCRYPT 2014, to appear.

[85] A. Shamir. Identity Based Cryptosystems and Signature Schemes. In Advances in
Cryptology - CRYPTO ’84, volume 196 of Lecture Notes in Computer Science, pages
47–53. Springer-Verlag, 1985.

[86] V. Shoup. Why Chosen Ciphertext Security Matters. Technical Report RZ 3076, IBM
Zurich. 1998.

[87] D.R. Stinson. CRYPTOGRAPHY - THEORY AND PRACTICE. Chapman &
Hall/CRC, 2006.

100

[88] C.H. Tan. Signcryption Scheme in Multi-user Setting without Random Oracles. In Ad-
vances in Information and Computer Security, volume 5312 of Lecture Notes in Com-
puter Science, pages 64–82. Springer-Verlag, 2008.

[89] S. Vivek, S. Deva Selvi, and C. Pandu Rangan. CCA Secure Certificateless Encryption
Schemes based on RSA. In Security and Cryptography - SECRYPT 2011, pages 208–217.
SciTePress, 2011.

[90] S. Vivek, S. Deva Selvi, and C. Pandu Rangan. Stronger Public Key Encryption Schemes
Withstanding RAM Scraper Like Attacks. http://eprint.iacr.org/2012/118, 2012.

[91] B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In Advances
in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science,
pages 114–127. Springer-Verlag, 2005.

[92] J. Xu, Z. Zhang, and D. Feng. A Ring Signature Scheme Using Bilinear Pairings. In
Information Security Applications, volume 3325 of Lecture Notes in Computer Science,
pages 160–169. Springer-Verlag, 2004.

[93] F. Zhang and K. Kim. ID-Based Blind Signature and Ring Signature from Pairings. In
Advances in Cryptology - ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer
Science, pages 533–547. Springer-Verlag, 2002.

[94] Y. Zheng. Digital Signcryption or how to achieve Cost(Signature & Encryption) <<
Cost(Signature)+Cost(Encryption). In Advances in Cryptology - CRYPTO ’97, volume
1294 of Lecture Notes in Computer Science, pages 165–179. Springer-Verlag, 1997.

101

