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Preface

By a family we shall mean a family of finite sets. For a family F , the members of F are

called its blocks and the elements of the blocks are called its points. A family F is said to

be uniform if all its blocks have the same size. If F is a uniform family we shall denote

its common block size by k(F). A blocking set of a family F is a set which intersects

every block of F . We define a transversal of F to be a blocking set of F with the smallest

possible size – in case F has a finite blocking set. In this case we denote by tr(F) the

common size of its transversals. If F has no finite blocking set we may put tr(F) = ∞.

(Please note that, many authors use the word transversal as a synonym for a blocking

set.) If tr(F) < ∞, we denote the family of transversals of F by F>. Note that F> is a

uniform family with k(F>) = tr(F). Now we introduce:-

Definition. A family F is said to be a maximal intersecting family (in short MIF) if

tr(F) <∞ and F = F>. We use MIF(k) as a generic name for MIF’s with k(F) = k.

We say that a family F is an intersecting family if any two blocks of F have non

empty intersection. Clearly any MIF(k) is an intersecting family. Indeed, the MIF(k)’s

are characterised among all k−uniform intersecting families as those families which are

maximal with respect to the property of being intersecting. Thus, an intersecting family F
of k−sets is a MIF(k) if and only if there is no k−set outside F (anywhere in the universe

of all sets!) which is a blocking set of F . In the hypergraph literature these are known as

the maximal k−cliques.

Paul Erdős and László Lovász proved in [7] that, for any positive integer k, up to

isomorphism there are only finitely many maximal intersecting families of k−sets. So they

posed the problem of determining or estimating the largest number N(k) of the points and

the largest number M(k) of blocks in such a family. Today these two problems remain

more or less where Paul Erdős, László Lovász, Zsolt Tuza, Péter Frankl, Katsuhiro Ota

and Norihide Tokushige left them. For instance, it is not known for large k which MIF(k)

has N(k) points and which MIF(k) has M(k) blocks. This thesis work mainly deals with

these two problems of finding a MIF(k) with N(k) points and finding a MIF(k) with M(k)

blocks. We put our best effort to keep this work self contained and self explanatory. We

now outline the contents of the thesis briefly.

In Chapter 1, we present a review of the literature on maximal intersecting families

along with some proofs and constructions.
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Paul Erdős and László Lovász proved by means of an example that

N(k) ≥ 2k − 2 +
1

2

(
2k − 2

k − 1

)
.

Much later, Zsolt Tuza proved that the bound is best possible up to a multiplicative

constant by showing that asymptotically N(k) is at most 4 times this lower bound. In

Chapter 2, we reduce the gap between the lower and upper bound by showing that

asymptotically N(k) is at most 3 times the Erdős-Lovász lower bound.

We find that each maximal intersecting family has a “core” which generates it. We call

this core a closed intersecting family. In Chapter 3, we introduce the notion of closed

intersecting families, some of its properties and examples.

In Chapter 4, we classify all the maximal intersecting families of 3−sets. We prove

that there are 8 non isomorphic maximal intersecting families of 3−sets.

In Chapter 5, we study constructions over the cyclic graph. Erdős and Lovász showed

by means of an example that there exists a MIF(k) with approximately (e− 1)k! blocks.

This example is constructed by a recursive procedure. Lovász conjectured in [17], that

the MIF(k) thus constructed was the extremal one. In this chapter, we present simpler

constructions (see G(k, t) and F(k, t) in Construction 5.2.1) to prove that there exist at

least two MIF(k) with at least (approximately) (k2 )k−1 blocks. (More precisely, we present

an alternative proof of [9, § 2, Theorem 1], see Corollary 5.3.6 below). In [9], Frankl et

al. conjectured that the maximal intersecting family of k−sets constructed by them has

the largest number of blocks, and it is the only such family (up to isomorphism) with

these many blocks. We use the theory developed in this chapter to prove that both these

conjectures are false, at least for small k. Specifically, the uniqueness part is incorrect for

k = 4, while the optimality part is incorrect for k = 5. We close this chapter by posing

some interesting conjectures.

In the appendices, we study two extremal questions about ISP(k, t). The first is

called the Bollobás Inequality. It deals with the problem of finding maximum number

of pairs in an ISP(k, t). The second theorem mentioned here is based on the problem

of finding maximum number of points in an ISP(k, t). These two theorems played an

essential role in Chapter 2. In the final appendix, we re-investigate the transversal size of

the family F(k, t) as described in Chapter 5, with a different approach. Here we are able to

show that tr(F(k, t)) = t for t ≤ 10. Finally, we present a new proof of the fact that F(k, 2)

is the unique intersecting family of k−sets with the maximum number of transversals of

size 2. This result was originally proved by Frankl et al. in [8].
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Chapter 1

Introduction to

Maximal Intersecting Families of finite sets

In this chapter, we survey the literature on maximal intersecting families and recall some

important theorems and examples. An effort has been given to keep it self contained. The

definitions and notations given here will be used throughout this work.

1.1 Introduction

By a family we mean a family (set) of finite sets. Such a family is called intersecting if any

two of its members have non empty intersection. A maximal intersecting family of k−sets

is an intersecting family which can not be embedded properly into any larger intersecting

family of k−sets.

Definition. Let G be a non empty family of non empty sets. Any B ∈ G is called a block

of G. The point set of the family G is defined as ∪
B∈G

B and is denoted by PG . Any x ∈ PG

is called a point of G. In case G is finite, we denote its number of points (size of the point

set) by v(G). A family G is said to be uniform if all its blocks have the same size. If G is

a uniform family we denote its common block size by k(G).

Definition. A family G is said to be isomorphic to the familyH if there exists a one-to-one

and onto function φ : PG → PH such that φ(B) ∈ H if and only if B ∈ G.

Definition. A blocking set of a family G is a set C which intersects every block of G. In

case G has a finite size blocking set, a blocking set of G of the smallest possible size is

called a transversal of G. In this case, we denote the common size of its transversals by

tr(G). If G has no finite blocking set, we may put tr(G) =∞. If tr(G) <∞, we denote the

family of transversals of G by G>. Note that G> is a uniform family with k(G>) = tr(G).

Warning: Many authors use the word transversal as a synonym for a blocking set.

Definition. A family F is said to be a maximal intersecting family (in short MIF) if

tr(F) < ∞ and F = F>. We use MIF(k) as a generic name for uniform MIF’s with

k(F) = k.

Clearly any MIF(k) is an intersecting family. In fact, the MIF(k)’s are characterised

among all k−uniform intersecting families as those families which are maximal with respect

1



1.1. INTRODUCTION CHAPTER 1.

to the property of being intersecting. In the hypergraph literature the intersecting families

of k−sets are called the k−cliques and the MIF(k)’s are known as the maximal k−cliques.

Let us give the following characterisation. In this thesis work we mostly use (c) and

(d) of this proposition.

Proposition 1.1.1. Let F be an intersecting family of k−sets with tr(F) ≤ k. Then the

following statements are equivalent:

(a) There is no k-set outside F (anywhere in the universe of all sets!) which can be added

to the family without violating the property that F is an intersecting family of k−sets.

(b) There is no k−set outside F (anywhere in the universe of all sets!) which is a blocking

set of F .

(c) For any set C, consisting of at most k points of F , if C is a blocking set of F , then

C itself is a block of F .

(d) F = F>.

Proof : Firstly we prove (a)⇔ (b), secondly we prove (b)⇔ (c) and finally we prove (c)

⇔ (d).

Suppose (a) holds. Let C be a blocking k−set of F but C /∈ F . Then F t {C} is

an intersecting family of k−sets. It contradicts the assumption (a). Hence (b) holds.

Conversely suppose (b) holds. Let C be a k−set but C /∈ F and it can be added to the

family F without violating the property that F is an intersecting family of k−sets. It

means that C is a blocking k−set of F . It contradicts the assumption (b). Hence (a)

holds.

Suppose (b) holds. Let C be a blocking set of F , with |C| ≤ k. Suppose C is not

a block of F , i.e. C /∈ F . Let us choose a k−set C
′
, with C j C

′
such that (C

′ r C)

is disjoint from PF . Then C
′

is a blocking k−set of F but C
′
/∈ F . It contradicts the

assumption (b). Hence (c) holds. Conversely suppose (c) holds, if (b) is false, then there

exists at least one blocking k−set of F stays outside F , call it C. But by assumption (c)

we have C ∈ F , a contradiction. Hence (b) holds.

Suppose (c) holds. Since F is an intersecting family of k−sets, tr(F) ≤ k. Suppose

tr(F) ≤ k − 1, then T ∈ F>. By assumption (c) we have T ∈ F , with |T | ≤ k − 1, a

contradiction. Therefore tr(F) = k, consequently F j F>. Let T ∈ F>, then |T | = k,

by assumption (c) we have T ∈ F . Therefore, F> j F . Hence (d) holds. Conversely

suppose (d) holds, let C be a blocking set of F , with |C| ≤ k. Now (d) implies tr(F) = k,

therefore |C| = k, consequently C ∈ F . Hence (c) holds.
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CHAPTER 1. 1.1. INTRODUCTION

Construction 1.1.2. Let k be positive integers and P be a (2k − 1)−set. Construct the

family F :=
(
P
k

)
, i.e. F is the family of all possible k−subsets of P . We denote this family

by β(k).

Theorem 1.1.3. β(k) is a MIF(k).

Proof : Let B, B
′ ∈ F then B intersects B

′
for otherwise |P | ≥ |B t B′ | ≥ 2k, a

contradiction. Hence F is an intersecting family of k−sets. Let C ⊂ P with |C| ≤ k and

C is not a block of F , hence |C| ≤ k − 1. We show that there exists a block of F , which

is disjoint from C. But |P r C| ≥ k and any k−subset of P r C is the required block of

F which is disjoint from C.

Theorem 1.1.4. Any MIF(k) has at least 2k − 1 points. β(k) is the only MIF(k) with

2k − 1 points.

Proof : Let A be a MIF(k). Since A is non empty, it has at least one block say B. We

choose any (k − 1)−subset C of B. Then there is a block B
′

disjoint from C. So B
′ t C

contains 2k− 1 points. Suppose A has exactly 2k− 1 points. We show that each set C of

k points of A is a block of A. If not, then exists a block B disjoint from C. Then B t C
contains 2k > (2k − 1) points, a contradiction.

A projective plane of order k is a family of (k+ 1)−sets so that (a) for any two points

there exists a unique block containing those two points and (b) any two blocks intersect

in a unique point. It can be shown that, every point is in k + 1 blocks and every block

contains k + 1 points. It has k2 + k + 1 blocks and k2 + k + 1 points.

Theorem 1.1.5. Any projective plane of order k (if it exists) is a MIF(k + 1).

Proof : Let P be a projective plane of order k. Since any two blocks intersect in a unique

point, P is an intersecting family. Let C be a blocking set of P, with |C| ≤ k + 1. We

show that C is a block (or line) of P. We observe that there are at least k2 points not

in C, we choose one such point x /∈ C. The k + 1 blocks through x are pairwise disjoint

outside x and each of them intersects C in at least one point. Hence |C| ≥ k + 1. Then

|C| = k + 1 and each block through x meets C in a unique point. Now take two points

y 6= z in C (as |C| = k + 1 ≥ 3). Let l be the block joining y and z.

Claim : l ⊂ C

Proof of claim : Suppose not, then there exists p ∈ (lrC). Then p /∈ C, but the block

l through p meets C in at least two points y and z. This contradicts what we discussed

in the previous paragraph. Hence the claim is established.

3



1.2. EXAMPLES CHAPTER 1.

But |l| = k + 1 = |C|. So C = l is a block .

1.2 Examples

In this section we present some examples. These examples are important because they

shed light on some extremal questions.

Construction 1.2.1 (§ 3, Construction (b), [7]). Let k be positive integers with k ≥ 2.

Let P be a (2k−2)−set. For each bi-partition (A,P rA) of P with |A| = |P rA| = k−1,

we introduce a new symbol xa. We consider the family of all k−subsets of P together with

all k−sets of the forms {xa} tA and {xa} t (P rA). We denote this family of k−sets by

βg(k).

Theorem 1.2.2. βg(k) is a MIF(k).

Proof : Clearly βg(k) is an intersecting family of k−sets. Let C be a blocking k−set of

βg(k). We show that C ∈ βg(k). If |C ∩ P | ≤ k − 2, then any k−subset of P r C is

disjoint from C, a contradiction. Hence |C ∩ P | ≥ k − 1. If |C ∩ P | = k then C ∈ βg(k)

and we are done this case. Otherwise, we assume |C ∩ P | = k − 1. Since |C| = k and

|C ∩ P | = k − 1, C contains exactly one new symbol. Since |C ∩ P | = k − 1, it induces a

natural bi-partition of P , namely (A,PrA), with A = C∩P . If C 6= At{xa}, where xa is

the new symbol corresponds to the bi-partition (A,P rA), then (P rA)t{xa} is disjoint

from C. Therefore C 6= A t {xa} is not possible. So C = A t {xa}, i.e. C ∈ βg(k).

An affine plane of order k is a family of k−sets so that (a) for any two points there

exists a unique block containing those two points; (b) given a point x and a block B with

x /∈ B, there exists a unique block B
′
, containing x and disjoint from B and (c) there are

three distinct points not on a block.

Let B and B
′

be two blocks of an affine plane. We say B is parallel to B
′

if and only

if B = B
′

or B ∩ B′ = ∅. This relation is an equivalence relation. Any equivalence class

with respect to this relation is called a parallel class. In an affine plane of order k there

are k2 points, k2 + k blocks and k + 1 parallel classes. Each such parallel class contains k

blocks and each block contains k points.

Notation : Let G and H be two non empty families of non empty sets. Suppose PG and

PH are disjoint. Then G ~H denotes the collection of all sets of the form A t B, where

A ∈ G and B ∈ H. If G consists of a single k−set B, then we denote G ~H by B ~H. If

G consists of a single 1−set {α}, then we denote G ~H by α~H.

4



CHAPTER 1. 1.2. EXAMPLES

Lemma 1.2.3. Let F be an affine plane of order k (assuming it exists) and F0, F1, . . .,

Fk be its parallel classes. Fix an n0, with 0 ≤ n0 ≤ k. If C is a blocking k−set of Fn for

each n 6= n0, with 0 ≤ n ≤ k, then C ∈ Fn0.

Proof : Let L∞ := {αi : 0 ≤ i ≤ k} be a set disjoint from PF . Then

P(F) := {L∞} t (
k
t
i=0

(αi ~ Fi))

is a projective plane of order k and C t {αn0} is a blocking set of P(F). Hence by

Theorem 1.1.5, C t {αn0} is a block of P(F). Consequently by the construction of P(F),

we have C ∈ Fn0 .

Construction 1.2.4 (§ 2, [11]). Let F , G and H be affine planes of order k (provided

they exist) with pairwise disjoint point sets. Let F0, F1, . . ., Fk; G0, G1, . . ., Gk and H0,

H1, . . ., Hk be the parallel classes of F , G and H respectively. Let F0 = {Fi : 1 ≤ i ≤ k},
G0 = {Gi : 1 ≤ i ≤ k} and H0 = {Hi : 1 ≤ i ≤ k}. Let A(k) be the union of all families of

the form Fn ~ Gn, Gn ~Hn and Hn ~ Fn, where 1 ≤ n ≤ k.

Theorem 1.2.5. Let k be a positive integer such that affine planes of order k exist. Then

A(k) is a MIF(2k).

Proof : Clearly A(k) is an intersecting family of 2k−sets. Let C be a blocking set of

A(k), with |C| ≤ 2k. We show that C ∈ A(k). Suppose |C ∩ PF | ≤ k − 1. Then there

exists Fn0 ∈ F0 for some n0, with 1 ≤ n0 ≤ k, disjoint from C ∩ PF . But C is a blocking

set of Fn0 ~Gn0 . Since Gn0 consists of k mutually disjoint k−sets, |C ∩PG | ≥ k. Similarly,

|C ∩ PG | ≤ k − 1 implies |C ∩ PH| ≥ k and |C ∩ PH| ≤ k − 1 implies |C ∩ PF | ≥ k.

Together we have if |C ∩PF | ≤ k−1, then |C ∩PG | ≥ k and |C ∩PH| ≥ k. Since |C| ≤ 2k,

|C∩PF | ≤ k−1 implies |C∩PG | = k and |C∩PH| = k, consequently C∩PF is empty. But

C is a blocking set of A(k) and C ∩PF is empty, so C ∩PG is a blocking set of Fn~Gn for

each n, with 1 ≤ n ≤ k. By using Lemma 1.2.3, we have C ∩ PG ∈ G0 say C ∩ PG = Gm0

for some m0, with 1 ≤ m0 ≤ k. Also C ∩PH is a blocking set of Hn~Fn for each n, with

1 ≤ n ≤ k. Since C∩PG = Gm0 , C∩PH is a blocking set of Gn~Hn for each n 6= m0, with

1 ≤ n ≤ k. In other words, C∩PH is a blocking set of Hn for each n 6= m0, with 0 ≤ n ≤ k.

Therefore, by using Lemma 1.2.3, we have C∩PH ∈ Hm0 . Hence C ∈ Gm0 ~Hm0 ⊂ A(k).

Similarly, |C ∩PG | ≤ k−1 implies C ∈ A(k) and |C ∩PH| ≤ k−1 implies C ∈ A(k). Since

|C| = 2k, either |C ∩ PF | ≤ k − 1 or |C ∩ PG | ≤ k − 1 or |C ∩ PH| ≤ k − 1. Therefore in

any case C ∈ A(k).

5



1.3. ON THE NUMBER OF POINTS AND BLOCKS CHAPTER 1.

1.3 Extremal questions on the number of points and blocks

The chromatic number of a family is the smallest number of colours needed to colour the

points in such a way that no monochromatic block occurs. It is trivial to see that the

chromatic number of any uniform intersecting family (clique) F is at most 3. (Let us choose

x ∈ B ∈ F . Assign the first colour to x, the second colour to the other points of B and

the third colour to the remaining points.) Thus any such family is either 2−chromatic or

3−chromatic. Every k−uniform 3−chromatic intersecting family is a maximal intersecting

family of k−sets. But the converse is not true. Any projective plane of order q ≥ 3 (if it

exists) is an example of a 2−chromatic maximal intersecting family of (q+ 1)−sets. Also,

it is easy to see that a k−uniform intersecting family is 3−chromatic if and only if its

blocks are the only minimal (as opposed to just minimum sized) blocking sets. Paul Erdős

and László Lovász [7] were mainly concerned with k−uniform 3−chromatic intersecting

families. This is a proper subclass of the class of maximal intersecting families of k−sets.

They proved the surprising result that any MIF(k) is finite; indeed it has at most kk blocks.

Therefore, we define the integers N(k), M(k) and m(k) as follows. Here we present a brief

sketch of the results from the literature.

N(k) := max {|PF | : F is a MIF(k)} ,

M(k) := max {|F| : F is a MIF(k)} ,

m(k) := min {|F| : F is a MIF(k)} .

Theorem 1.3.1 ([5]). Let k ≥ 4 be a positive integer. Then m(k) ≥ 3k.

Proof : Fix a block B of a MIF(k) A. Note that through each point x ∈ B there is

a block B
′

of A which is tangent to B (i.e., such that B ∩ B′ = {x}). For i ≥ 1, let

mi be the number of points of B through which exactly i tangents to B pass. Thus at

least 1 ·m1 + 2 ·m2 + 3(k −m1 −m2) = 3k − 2m1 −m2 blocks are tangent to B. If x

is one of the m1 points of B through which a unique tangent B
′

to B passes, then, for

each y ∈ B′ r {x}, (B r {x}) t {y} is (a transversal and hence) a block of A. So we get

(k − 1)m1 blocks intersecting B in k − 1 points.

If x1 6= x2 are two of the m2 points of B through each of which two tangents pass, then

either there is a block intersecting B in {x1, x2} or ( letting C1 and C2 be the tangents

through x1, D1 and D2 be the tangents through x2, and choosing y1 ∈ C1 ∩ D1 and

y2 ∈ C2 ∩ D2) the set (B r {x1, x2}) t {y1, y2} is a (transversal and hence) block of A
intersecting B in k − 2 points. Thus

(
m2

2

)
distinct blocks intersect B in 2 or k − 2 points.

Thus including B we get 1+3k−2m1−m2+m1(k−1)+
(
m2

2

)
distinct blocks of A. So m(k)

6
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is at least the minimum of this expression (over all m1 ≥ 0, m2 ≥ 0 with m1 + m2 ≤ k)

which is 3k.

In [23], it was proved that m(4) = 12 and there is a unique MIF(4) with 12 blocks.

We note that, Jeff Kahn [16, Conjecture 5.1] made a conjecture on the numbers m(k):

Conjecture 1.3.2 (Kahn). lim
k→∞

m(k)
k exists.

In [11], it is shown that if an affine plane of order k exists, then m(2k) ≤ 3k2. This

upper bound is produced through an example (namely, A(k) in Construction 1.2.4), which

we discussed in Theorem 1.2.5. In [6] and [3], it is established respectively that if a

projective plane of order k exists, then m(kn + kn−1) ≤ k2n + k2n−1 + k2n−2 for every

positive integer n, and if k − 1 is a prime power, then m(k) ≤ k2

2 + 5k + o(k). However

in [1], we have the strongest known result which is applicable to all positive integers k, it

states that m(k) ≤ k5.

This thesis work mainly deals with the problems of finding or estimating the numbers

N(k) and M(k). Here we briefly discuss the previous and new results on N(k) and M(k).

Theorem 1.3.3 (Theorem 8, Erdős-Lovász, [7]).

2k − 2 +
1

2

(
2k − 2

k − 1

)
≤ N(k) ≤ k

2

(
2k − 1

k

)
.

From Theorem 1.2.2, we have βg(k) is a MIF(k) with 2k − 2 + 1
2

(
2k−2
k−1

)
points. Hence

the lower bound follows. In [25], Tuza improved the upper bound by showing:

Theorem 1.3.4. N(k) ≤
(

2k−1
k

)
−
(

2k−3
k

)
+ 3

2

t−1∑
i=1

(
2i
i

)
.

However, we prove in Chapter 2 that

lim sup
k→∞

N(k)(
2k−2
k−1

) ≤ 3

2
.

Theorem 1.3.5 (§ 3, Construction (c), [7]). Let k ≥ 2 be a positive integer. Let A be a

MIF(k − 1) and let B be a k-set disjoint from PA. Define

Â = {B} ∪ {A t {x} : A ∈ A, x ∈ B} .

Then Â is a MIF(k).

Proof : Clearly Â is an intersecting family of k−sets. Let C be a blocking set of Â, with

|C| ≤ k. We show that C ∈ Â, i.e. we show that C = B or C = A t {x} for some x ∈ B

7



1.3. ON THE NUMBER OF POINTS AND BLOCKS CHAPTER 1.

and A ∈ A. Suppose C 6= B, then BrC is non empty and we choose x0 ∈ BrC. Since C

intersects B, we have the natural decomposition C = (C ∩PA)t (C ∩B) and C ∩PA is a

block of A. (If not, then there exists A ∈ A disjoint from C ∩PA. Consequently At {x0}
is disjoint from C.) Hence |C ∩ PA| = k − 1 and |C ∩B| = 1. Therefore C ∈ Â.

In this context, we mention that an alternative proof of Theorem 1.3.5 can be found

by applying Theorem 3.2.3 (taking F = {B}).

Theorem 1.3.6 (Theorem 7, Erdős-Lovász, [7]).

b(e− 1)k!c ≤ M(k) ≤ kk.

Starting with β(2) and applying repeatedly Theorem 1.3.5, we construct a MIF(k)

with approximately (e− 1)k! blocks and this gives the lower bound of the Theorem 1.3.6.

However, using Construction 5.2.1 (namely, G(k, k − 1) and F(k, k − 1)), we construct

at least two MIF(k)s with at least (approximately) (k2 )k−1 blocks. The upper bound of

Theorem 1.3.6 is a special case of Theorem 2.2.2 (namely, case t = k).

8



Chapter 2

Maximum number of points

in a Maximal Intersecting Family of finite sets

Paul Erdős and László Lovász proved in a landmark article that, for any positive integer

k, up to isomorphism there are only finitely many maximal intersecting families of k−sets

(maximal k−cliques). So they posed the problem of determining or estimating the largest

number N(k) of the points in such a family. They also proved by means of an example

that N(k) ≥ 2k − 2 + 1
2

(
2k−2
k−1

)
. Much later, Zsolt Tuza proved that the bound is best

possible up to a multiplicative constant by showing that asymptotically N(k) is at most

4 times this lower bound. In this chapter we reduce the gap between the lower and upper

bound by showing that asymptotically N(k) is at most 3 times the Erdős-Lovász lower

bound. A related conjecture of Zsolt Tuza, if proved, would imply that the explicit upper

bound obtained in this chapter is only double the Erdős-Lovász lower bound. Most of the

results in this chapter are from [19].

2.1 Introduction

In [7] Erdős and Lovász proved the surprising result that any MIF(k) is finite; indeed

it has at most kk blocks. In Theorem 2.2.2 we point out that, more generally, for any

k−uniform family F with finite transversal size tr(F) = t, the family F> is finite. Indeed,

|F>| ≤ kt.

In view of the result of Erdős and Lovász quoted above, we see that, for any fixed

k ≥ 1, there are only finitely many MIF(k)’s, up to isomorphism. This led Erdős and

Lovász to ask for the determination of the maximum possible number N(k) of points

among all MIF(k)’s. By means of an explicit construction in [7] (see Constriction 1.2.1),

it was proved that

N(k) ≥ 2k − 2 +
1

2

(
2k − 2

k − 1

)
. (2.1.1)

Note that the lower bound in (2.1.1) is asymptotically 1
2

(
2k−2
k−1

)
. In 1985, Tuza [25] proved

that, up to a multiplicative constant, this is best possible. In order to explain Tuza’s

contribution, we recall

Definition. An intersecting set pair system (in short ISP) is a collection {(Ai, Bi) : 1 ≤
i ≤ l} of pairs of finite sets with the property that, for 1 ≤ i, j ≤ l, Ai∩Bj = ∅ if and only

9



2.1. INTRODUCTION CHAPTER 2.

if i = j. Clearly, in such a system, the sets Ai (as well as the sets Bi) are distinct. The

set
l
∪
i=1

(Ai tBi) is called the point set of the ISP. We denote by v(I) the number of points

of an ISP I. If in I, |Ai| = k and |Bi| = t for 1 ≤ i ≤ l, then we say that I is an ISP with

parameter (k, t). We use ISP(k, t) as a generic name for an ISP with parameter (k, t).

In [2], Bollobás proved the following inequality for arbitrary ISP’s. If {(Ai, Bi) : 1 ≤
i ≤ l} is an ISP, then

l∑
i=1

1(|Ai|+|Bi|
|Ai|

) ≤ 1. (2.1.2)

In particular, for any ISP(k, t) consisting of l pairs, we have Bollobás’s inequality

l ≤
(
k + t

k

)
. (2.1.3)

This inequality shows that, for any two positive integers k and t, there are only finitely

many ISP(k, t), up to isomorphism. This raises the question of determining or estimating

the number

n(k, t) := max {v(I) : I is an ISP(k, t)} .

Notice that we have n(k, t) = n(t, k).

In Theorem 6(a) of [25], Tuza used an extremely elegant argument to deduce the

following bound from Inequality (2.1.2). (The sum here is a simplification of the sum

given by Tuza. See Theorem A.3.1 in Appendix A.)

For k ≥ t, n(k, t) ≤
(
k + t

t+ 1

)
−
(

2t− 1

t+ 1

)
+

3

2

t−1∑
i=1

(
2i

i

)
. (2.1.4)

A family F is 1−critical if for any x ∈ B ∈ F , there is a B
′ ∈ F such that B∩B′ = {x}

(see [25, ν−critical family]). Notice that any MIF(k) is 1−critical (else Br {x} would be

a blocking set). In Corollary 12 of [25], Tuza observes that n(k, k − 1) is an upper bound

on the number of points in any k−uniform 1−critical family. In particular this applies to

MIF(k)’s. So we have

N(k) ≤ n(k, k − 1). (2.1.5)

Substituting t = k − 1 in (2.1.4) we therefore get

N(k) ≤3

2

k−1∑
i=1

(
2i

i

)
∼ 2

(
2k − 2

k − 1

)
, (2.1.6)

where the asymptotics is determined by Lemma 2.2.1 below. Thus, as k → ∞, Tuza’s

upper bound is 4 times the lower bound given by Erdős and Lovász.

10
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The main objective of this chapter is to improve the estimate (2.1.6) on N(k). The

method adopted here is inspired by that of Tuza [25]. We introduce the problem of finding

or estimating the number

N>(k, t) := max {|PF> | : F is a uniform family with k(F) = k and tr(F) = t} .

(Note that we are trying to maximise the size of the point set of the family of transversals

of F , which in general is a subset of the point set of F .) This number is finite in view of

Theorem 2.2.2 below. In Theorem 2.2.5 we prove:

N>(k, t) ≤ n(k, t− 1). (2.1.7)

In Theorem 2.2.7, we show that, given any MIF(k) F that has two points α and β such

that {α, β} is not contained in any block of F , one can construct another MIF(k), denoted

F [β 7→ α], with one less point. Among the blocks of the new MIF(k) are included the

sets {α} t (B r {β}), β ∈ B ∈ F ; hence the name. One might imagine that a method to

reduce the number of points in a MIF(k) can not have much to do with the problem of

estimating the largest possible number of points in a MIF(k). However, our final result

(Theorem 2.2.8) is a new upper bound on N(k) obtained by combining Theorem 2.2.5 and

Theorem 2.2.7 with Inequality (2.1.3). Here we prove

N(k) ≤ 1

2

(
2k − 2

k − 1

)
+ n(k, k − 2). (2.1.8)

In view of Tuza’s inequality (2.1.4), this yields the bound

N(k) ≤3

2

k−1∑
i=1

(
2i

i

)
− 1

2

(
2k − 2

k − 1

)
∼ 3

2

(
2k − 2

k − 1

)
. (2.1.9)

Again, the asymptotic value here follows from Lemma 2.2.1. Thus as k → ∞, N(k) is at

most 3 times the lower bound (2.1.1) of Erdős and Lovász.

In [13], Hanson and Toft proved that, actually, N(k) = 2k− 2 + 1
2

(
2k−2
k−1

)
for 2 ≤ k ≤ 4.

In conjunction with Tuza’s bound (2.1.6) and its improvement (2.1.9), this result leads us

to pose:

Conjecture 2.1.1. For k ≥ 2, N(k) = 2k − 2 + 1
2

(
2k−2
k−1

)
.

It may be noted that Tuza constructed ([25, Construction 11]) a k−uniform 1−critical

family with 2k−4+2
(

2k−4
k−2

)
points. This number is larger than 2k−2+ 1

2

(
2k−2
k−1

)
for k ≥ 5.

However, as already noted, the class of 1−critical uniform families is larger than that of

MIF’s. Indeed, the families constructed by Tuza are not MIF’s. So this construction does

not disprove the above conjecture.

11



2.2. MAXIMUM NUMBER OF POINTS IN A MIF(K) CHAPTER 2.

Finally, we note that, Tuza [25] made a precise conjecture on the numbers n(k, t):

Conjecture 2.1.2 (Tuza). For k ≥ t+ 2,

n(k, t) =

⌈
k

t+ 1

⌉(
b ktt+1c+ t

t

)
+

⌊
kt

t+ 1

⌋
+ t.

If this is correct, then, in particular, n(k, k − 2) = 2k − 4 + 2
(

2k−4
k−2

)
for k ≥ 3, so that

our bound (2.1.8) becomes

N(k) ≤ 1

2

(
2k − 2

k − 1

)
+ 2

(
2k − 4

k − 2

)
+ 2k − 4 ∼

(
2k − 2

k − 1

)
,

which is asymptotically double the precise value of N(k) we conjectured above.

2.2 On the maximum number of points in a MIF(k)

Recall that, for any finite uniform family F , k(F) is its common block size. F> is the

family of transversals of F and tr(F) is the common size of the transversals. N(k) is the

maximum of |PF | over all MIF(k) F . N>(k, t) is the maximum of |PF> | over all F with

k(F) = k and tr(F) = t. Also n(k, t) is the maximum of v(I) over all ISP(k, t) I.

We begin by establishing the asymptotic values claimed in (2.1.6) and (2.1.9).

Lemma 2.2.1. As m→∞,
m∑
i=1

(
2i

i

)
∼ 4

3

(
2m

m

)
.

Proof : Stirling’s famous asymptotic formula for the factorial implies the following

equally well known result: (
2m

m

)
∼ 1√

π
· 4m√

m
.

Therefore we get
m∑
i=1

(
2i

i

)
∼ 1√

π

m∑
i=1

4i√
i
·

So, to complete the proof, it suffices to show that

m∑
i=1

4i√
i
∼ 4

3
· 4m√

m
. (2.2.1)

But we have:

m∑
i=1

4i√
i

=
1

3

m∑
i=1

4i+1 − 4i√
i

12



CHAPTER 2. 2.2. MAXIMUM NUMBER OF POINTS IN A MIF(K)

=
4

3
· 4m√

m
− 4

3
+

1

3

{
m∑
i=2

4i
(

1√
i− 1

− 1√
i

)}
.

We observe that 0 ≤ 1√
i−1
− 1√

i
≤ 1

2 ·
1

(i−1)
3
2

. Therefore,

0 ≤
m∑
i=2

4i
(

1√
i− 1

− 1√
i

)
≤ 1

2

m∑
i=2

4i

(i− 1)
3
2

.

An elementary estimate shows that the right hand sum is of smaller order of growth than

4m√
m

. Hence (2.2.1) follows.

Theorem 2.2.2. If k(F) = k and tr(F) = t , then |F>| ≤ kt.

Proof : This is the s = 0 case of the following.

Claim : For 0 ≤ s ≤ t, any set of s points of F are together contained in at most kt−s

transversals of F .

Proof of claim : We prove this claim by backward induction on s. It is trivial for s = t.

So suppose the claim holds for some s, with 1 ≤ s ≤ t. Take any set A of s − 1 points.

Since tr(F) = t > |A|, A is not a blocking set of F . So there is a block B ∈ F disjoint from

A. Therefore each transversal containing A contains at least one of the k sets A t {x},
x ∈ B. By induction hypothesis, A t {x} is contained in at most kt−s transversals for

each x ∈ B. Therefore A is contained in at most k · kt−s = kt−(s−1) transversals. This

completes the induction.

Corollary 2.2.3. Let k, t be positive integers. Then up to isomorphism, there are only

finitely many families G with k(G) = t such that G is isomorphic to F> for some uniform

family F with k(F) = k.

Proof : By Theorem 2.2.2, any such G has at most kt blocks; hence it has at most t.kt

points. Therefore up to isomorphism, we may assume that all such families G are contained

in the power set of a fixed set of size tkt. So there are only finitely many G’s.

This corollary is the central attraction to study intersecting families with finite transver-

sal size. It shows that N(k) and N>(k, t) are both finite.

Construction 2.2.4. Let 2 ≤ t ≤ k − 1 and let S be a set of k + t− 2 symbols. Let
(
S
i

)
denote the family consisting of all i−subsets of S. Take a new symbol xA (from outside

S) for each A ∈
(
S
k−1

)
. Let

F =

(
S

k

)
t
{
{xA} tA : A ∈

(
S

k − 1

)}
.

13
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We shall discuss this construction in detail in Chapter 3 [Construction 3.1.5]. In brief, we

have tr(F) = t and

F> =

(
S

t

)
t
{
{xA} t (S rA) : A ∈

(
S

k − 1

)}
.

Theorem 2.2.5. For 2 ≤ t ≤ k − 1,

k + t− 2 +

(
k + t− 2

t− 1

)
≤ N>(k, t) ≤ n(k, t− 1).

Proof : Construction 2.2.4 yields a k−uniform family F such that tr(F) = t and F> has

k + t− 2 +
(
k+t−2
t−1

)
points. Hence we get the lower bound.

Let F be a k−uniform family with tr(F) = t. We show that |PF> | ≤ n(k, t− 1). Let

E = {Bi : 1 ≤ i ≤ n}

be a minimal subfamily of F such that tr(E) = t. Then, for 1 ≤ i ≤ n, Ei := E r {Bi} has

tr(Ei) = t − 1. Let us choose a transversal Ti of Ei, where 1 ≤ i ≤ n. Since tr(E) = t, it

follows that Ti ∩Bi = ∅. Thus

I = {(Bi, Ti) : 1 ≤ i ≤ n}

is an ISP(k, t − 1). Therefore, to complete the proof, it suffices to show that each point

x of F> is a point of I. Let us choose a transversal T of F such that x ∈ T . Then T

intersects all the Bi’s. If x was not a point of E , then T r {x} would be a blocking set of

E , of size t− 1, contradicting the choice of E . So x is a point of E and hence of I.

Since, clearly, N(k) ≤ N>(k, k), Theorem 2.2.5 includes Tuza’s upper bound (2.1.5)

on N(k).

Construction 2.2.6. Let F be a MIF(k) and suppose α 6= β are two points of F such

that no block of F contains {α, β}. Let G := {B ∈ F : α /∈ B, β /∈ B}. Put

F [β 7→ α] := G t {T t {α} : T ∈ G>}.

Theorem 2.2.7. Let α, β be two points of a MIF(k) F such that no block of F contains

both α and β. Then the family F [β 7→ α] (given by Construction 2.2.6) is a MIF(k) with

point set PF r {β}.

Proof : Let G be as in Construction 2.2.6. If T is a transversal of G with |T | ≤ k − 2,

then T t {α, β} is a blocking set of F of size at most k. Since F is a MIF(k), it follows

that T t{α, β} is a block of F . This is a contradiction since no block of F contains both α

14
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and β. Thus tr(G) ≥ k−1. Since, for β ∈ B ∈ F , Br{β} is a blocking set of G, it follows

that tr(G) = k − 1. Thus F̂ := F [β 7→ α] is uniform with k(F̂) = k. This argument also

shows that if β /∈ B ∈ F , then B is a block of F̂ . Also if β ∈ B ∈ F , then {α}t (Br {β})
is a block of F̂ . We have the following.

Claim : For each T ∈ G> there exists T
′ ∈ G> such that T ∩ T ′ = ∅.

Proof of claim : Suppose the claim is false. Then there exists T ∈ G> such that T

is a blocking set of G>. So T is a blocking set of G t G>, and hence of F . This means

tr(F) ≤ |T | = k − 1, a contradiction.

Let C be a blocking set of F̂ . Then in particular it is a blocking set of G. Since

tr(G) = k − 1, it follows that |C| ≥ k − 1. If |C| = k − 1, then C ∈ G>, so that

α /∈ C. By the above claim, there exists a T ∈ G> such that T ∩ C = ∅. Hence C is

disjoint from T t {α} ∈ F̂ , a contradiction. Hence |C| ≥ k. Therefore tr(F̂) = k. Since

F is an intersecting family, the construction of F̂ shows that F̂ is an intersecting family.

Consequently F̂ j (F̂)>. If T is a transversal of F̂ and α ∈ T , then Tr{α} is a transversal

of G, so that T = (T r {α}) t {α} ∈ F̂ . If T is a transversal of F̂ and α /∈ T , then (as

all the blocks of F with β /∈ B are blocks of F̂ and for β ∈ B ∈ F , (B r {β}) t {α} is a

block of F̂) T is a transversal of F . Hence T ∈ F and β, α /∈ T , so that T ∈ G ⊆ F̂ . Thus

(F̂)> j F̂ , so that F̂ is a MIF(k).

Clearly the point set of F̂ is contained in PF r {β}. Take any γ ∈ PF r {β}. Take a

block B of F such that γ ∈ B. If β /∈ B, then we have γ ∈ B ∈ F̂ and hence γ is a point

of F̂ . If β ∈ B, then, as |B| = k = tr(F), there is a block B
′

of F such that B∩B′ = {γ}.
Then γ ∈ B′ ∈ F̂ , hence again γ is a point of F̂ . Thus the point set of F̂ is PF r {β}.

Theorem 2.2.8. For k ≥ 2,

N(k) ≤ 1

2

(
2k − 2

k − 1

)
+ n(k, k − 2).

Proof : Let F be a MIF(k). We show that |PF | ≤ 1
2

(
2k−2
k−1

)
+ n(k, k − 2). Fix a point

α of F . We inductively define two finite sequences: a sequence {βn : 0 ≤ n ≤ M − 1}
of distinct points of F and a sequence {Fn : 1 ≤ n ≤ M} of MIF(k)’s. Define β0 = α,

F1 = F . Suppose we have already defined βm for 0 ≤ m ≤ n− 1, and Fm for 1 ≤ m ≤ n.

If for each point β of Fn there is a block of Fn containing both α and β, then put n = M

and terminate the construction. Otherwise, we choose a point βn of Fn such that no block

of Fn contains both α and βn and construct Fn+1 := Fn[βn 7→ α]. By construction and

Theorem 2.2.7, for n ≥ 1 each Fn+1 is a MIF(k) with PFn+1 = PFn r {βn}.

15



2.2. MAXIMUM NUMBER OF POINTS IN A MIF(K) CHAPTER 2.

Notice that this construction must end in finitely many steps, since by Theorem 2.2.2,

F1 = F is finite. Since induction has terminated at the M−th step, FM has the property

that for each point β of FM there is a block of FM containing both α and β. Put

G = {B ∈ FM : α /∈ B} .

For α ∈ B ∈ FM , B r {α} is a blocking set of G of size k − 1. So tr(G) ≤ k − 1. If T is

a transversal of G with |T | ≤ k − 1, then T t {α} is a blocking set of FM of size at most

k. Since FM is a MIF(k), it follows that T t {α} is a block of FM . Thus tr(G) = k − 1

and consequently, G> = {B r {α} : α ∈ B ∈ FM}. As M−th step is the terminal step so

PG = PG> = PF r {βn : 0 ≤ n ≤M − 1}. Therefore, by Theorem 2.2.5,

|PF | = M + |PG> | ≤M + N>(k, k − 1) ≤M + n(k, k − 2). (2.2.2)

Let us choose two blocks B0, B
′
0 of F = F1 such that B0 ∩ B

′
0 = {β0}. Also, for 1 ≤

n ≤ M − 1, we choose two blocks Bn, B
′
n of Fn such that Bn ∩ B

′
n = {βn}. (As already

remarked, any point of a MIF(k) lies in such a pair of blocks.) Put Tn = Bn r {βn},
T
′
n = B

′
n r {βn}. Thus Tn ∩ T

′
n = ∅ for 0 ≤ n ≤M − 1.

Claim : For 0 ≤ m < n ≤M − 1, Tm t {α} and T
′
m t {α} are blocks of Fn.

Proof of claim : This claim may be proved by finite induction on n.

If n = m+ 1, then Fn = Fm[βm 7→ α] and Tm t{βm}, T
′
m t{βm} ∈ Fm implies Tm t{α},

T
′
mt{α} ∈ Fm+1 = Fn. If m < n ≤M−1, and the claim is correct for this value of n, then

Tm t {α}, T
′
m t {α} ∈ Fn and Fn+1 = Fn[βn 7→ α] implies Tm t {α}, T

′
m t {α} ∈ Fn+1.

Now for 0 ≤ m < n ≤ M − 1, Tm t {α}, T
′
m t {α}, Tn t {βn} and T

′
n t {βn} are

blocks of the intersecting family Fn. Therefore these four sets intersect pairwise. Since

βn 6= α, it follows that Tm ∩ Tn 6= ∅, T
′
m ∩ Tn 6= ∅, Tm ∩ T

′
n 6= ∅ and T

′
m ∩ T

′
n 6= ∅ for

0 ≤ m < n ≤M − 1. Therefore,

I :=
{

(Tn, T
′
n) : 0 ≤ n ≤M − 1

}
t
{

(T
′
n, Tn) : 0 ≤ n ≤M − 1

}
is an ISP(k − 1, k − 1) containing 2M pairs. Therefore by Inequality (2.1.3), we get

M ≤ 1

2

(
2k − 2

k − 1

)
. (2.2.3)

From (2.2.2) and (2.2.3), we conclude that |PF | ≤ 1
2

(
2k−2
k−1

)
+ n(k, k − 2).
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Corollary 2.2.9.

N(k) ≤ 3

2

k−1∑
i=1

(
2i

i

)
− 1

2

(
2k − 2

k − 1

)
∼ 3

2

(
2k − 2

k − 1

)
.

Proof : Follows from Theorem 2.2.8 and Theorem A.3.1 (with t = k − 2). The asymp-

totics is now immediate from Lemma 2.2.1.
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Chapter 3

Closed Intersecting Families of finite sets

This chapter introduces closed intersecting families, some of its properties and examples.

We present results of an ab initio study on closed intersecting families. Most of the results

in this chapter are from [20].

3.1 Introduction

Our idea is to decompose a maximal intersecting family into some suitable subfamilies and

study these subfamilies to gain a better understanding of the original family. Using this

idea we are able to locate a similarity between the recursive Erdős-Lovász construction

in [7, Construction (c), Page 620] and non recursive Frankl-Ota-Tokushige constructions

in [9, § 2]. We find that each maximal intersecting family has a “core” which generates

it. We call this core a closed intersecting family. In [9], Frankl et al. conjectured that

the maximal intersecting family of k−sets constructed by them has the largest number of

blocks, and it is the only such family (up to isomorphism) with these many blocks. We

use the theory developed here to prove that both these conjectures are false, at least for

small k (see Example 5.3.1 and Example 5.3.2). Before going into the technicalities let us

recall some notations. Let G and H be two non empty families of non empty sets. A tB
denotes the union of two disjoint sets A and B. G t H denotes the union of two disjoint

families G and H. For any set A, |A| will denote the cardinality of A. Suppose PG and

PH are disjoint, then G ~ H denotes the collection of all sets of the form A t B, where

A ∈ G and B ∈ H. If G consists of a single k−set B, then we denote G ~H by B ~H. If

G consists of a single 1−set {α}, then we denote G ~H by α~H.

Definition. Let F be a uniform family with k(F) = k and tr(F) = t. F is said to be a

closed intersecting family (in short CIF) if tr(F) ≤ k(F) − 1 and F = (F t F>)>. We

use CIF(k, t) as a generic name for CIF’s F with k(F) = k and tr(F) = t. Note that any

closed intersecting family is necessarily an intersecting family.

We have the following characterisation.

Proposition 3.1.1. Let F be an intersecting family of k−sets with tr(F) ≤ k − 1. Then

the following statements are equivalent:

(a) Any k−set which is a blocking set of F t F> is a block of F .
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3.1. INTRODUCTION CHAPTER 3.

(b) If a k−set is a blocking set of F , but not a block of F , then it is not a blocking set of

F>.

(c) F = (F t F>)>.

Proof : Firstly we prove (a) ⇔ (b) and then we prove (c) ⇔ (a).

Let C be a k−set which is a blocking set of F and C /∈ F . Suppose C is a blocking

set of F>, then by (a) C ∈ F , a contradiction. Hence C is not a blocking set of F>.

Conversely, let C be a k−set which is a blocking set of F tF>. Suppose C /∈ F , then by

(b) C is a not blocking set of F>, a contradiction to the assumption. So our supposition

C /∈ F was wrong. Hence C ∈ F .

From (c) it follows that tr(F tF>) = k. Let C be a blocking k−set of F tF>. Then

C is transversal of the family F tF>. Hence C ∈ F . Conversely, let C be a transversal of

F t F>. Suppose |C| ≤ k − 1. Consider a set X, of size k − |C|, disjoint from PF . Then

X tC is a blocking k−set of F tF> and it is not a block of F , a contradiction to (a). So

|C| = k and hence by (a) C ∈ F , which proves (c).

Henceforth, by closure property we refer any one of (a), (b) and (c) in our study.

Construction 3.1.2. Let k, t be positive integers with t ≤ k − 1. Fix a (k + t − 1)−set

and let β(k, t) denote all k−subsets of the set. So any two k−sets in β(k, t) has non empty

intersection. Therefore β(k, t) is an intersecting family of k−sets.

Theorem 3.1.3. tr(β(k, t)) = t and β(k, t) is a CIF(k, t). Its transversals are all

t−subsets of Pβ(k,t). β(k, t) has k + t − 1 points,
(
k+t−1
k

)
blocks and

(
k+t−1
t

)
transver-

sals.

Proof : Let C be a set of size at most t−1. Therefore |C∩Pβ(k,t)| ≤ t−1 and consequently

|Pβ(k,t)rC| ≥ k. If we choose a k−set B ⊂ Pβ(k,t)rC, then B is disjoint from C. Since C

is chosen arbitrarily, tr(β(k, t)) ≥ t. We observe that any t−subset of Pβ(k,t) is a blocking

set of β(k, t). Therefore tr(β(k, t)) = t.

Let C be a k−set with the property that C /∈ β(k, t) but C is a blocking set of β(k, t).

Then |C ∩ Pβ(k,t)| ≤ k − 1, as all k−sets from Pβ(k,t) are blocks of β(k, t). So any t−set

from Pβ(k,t) r C does not intersect C; i.e the closure property is satisfied.

Theorem 3.1.4. Any CIF(k, t) has at least k+ t− 1 points. Moreover, β(k, t) is the only

CIF(k, t) which contains exactly k + t− 1 points.
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Proof : Let F be such a family. Let T ∈ F>. We observe that for each x ∈ T there

exists B ∈ F disjoint from T r {x}. Hence |PF | ≥ |B|+ |T r {x}| = k + t− 1.

Let F be a such a family with exactly k + t− 1 points. Suppose there exists a k−set

B ⊂ PF but B /∈ F .

Case A : B is not a blocking set of F .

In this case there exists B
′ ∈ F disjoint from B. Hence |PF | ≥ 2k, a contradiction.

Case B : B is a blocking set of F .

In this case, using the closure property of F there exists T ∈ F> disjoint from B. Hence

|PF | ≥ k + t, a contradiction.

Since both cases lead to a contradiction, our supposition that there exists a k−set

B ⊂ PF such that B /∈ F was wrong. Consequently, each k−set from PF is a block.

Hence F is isomorphic to β(k, t).

Construction 3.1.5. Let k, t be positive integers with 2 ≤ t ≤ k − 1. Let P be a

(k + t − 2)−set. For each bi-partition (A,P r A) of P with |A| = t − 1, we introduce a

new symbol xA. We consider the family of all k−subsets of P together with all k−sets of

the form {xA} t (P rA). We denote this family of k−sets by βg(k, t).

Theorem 3.1.6. tr(βg(k, t)) = t and βg(k, t) is a CIF(k, t). Its transversals are all

t−subsets of P and all t−sets of the form {xA} t A, for any bi-partition (A,P r A) of

P with |A| = t − 1. It has k + t − 2 +
(
k+t−2
k−1

)
points,

(
k+t−2
k

)
+
(
k+t−2
k−1

)
blocks and(

k+t−2
t

)
+
(
k+t−2
t−1

)
transversals.

Proof : Since |P | = k + t − 2 and 2 ≤ t ≤ k − 1, therefore βg(k, t) is an intersecting

family of k−sets. Let C be a set of size at most t− 1. We show that there exists at least

one B ∈ βg(k, t), which is disjoint from C. If any one of the new symbols xA ∈ C, where

xA corresponds to the bi-partition (A,P r A), then |C ∩ P | ≤ t− 2. So any k−subset of

P r C (note that, any such k−subset is a block of βg(k, t)) is disjoint from C. Without

loss of generality we assume that C does not contain any such new symbols. Again if

|C ∩P | ≤ t−2, then again any k−subset of P rC is disjoint from C. So if |C ∩P | = t−1,

then we note that {xA}t(PrC), where xA /∈ C corresponds to the bi-partition (A,PrA)

of P with A = C∩P and P rA = P rC, is the required block of βg(k, t), which is disjoint

from C. Therefore tr(βg(k, t)) = t.

Let C be a blocking k−set of βg(k, t) such that C /∈ βg(k, t). We show that there

exists at least one T ∈ β>g (k, t), which is disjoint from C. If |C ∩ P | ≤ k − 2, then any

t−subset of P r C (note that, any such t−subset is a transversal of βg(k, t)) is disjoint
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from C. Without loss of generality we assume that k−1 ≤ |C∩P | ≤ k. Since C /∈ βg(k, t),
|C ∩ P | 6= k. Hence |C ∩ P | = k − 1. Then, there exists a bi-partition (A,P r A), with

|A| = t − 1 and P r A = C ∩ P . Now {xA} t (C ∩ P ), where xA is the new symbol

corresponds to the bi-partition (A,P r A) of P , is a block of βg(k, t). Since we assume

that C /∈ βg(k, t), xA /∈ C. Hence C is disjoint from {xA} t A, which is the required

transversal.

We present some immediate properties of closed intersecting families.

Proposition 3.1.7. Let F be a CIF(k, t).

(a) For each T ∈ F> there exists at least one T
′ ∈ F> disjoint from T .

(b) 2 ≤ tr(F>) ≤ k.

(c) If tr(F>) = k, then F ⊂ F>>.

(d) For each x ∈ PF>, there exists T ∈ F> and B ∈ F such that T ∩B = {x}.

(e) If PF> 6= PF , then tr(F>) ≤ k − 1.

(f) If tr(F>) ≤ k − 1, then for each A ∈ F>> there exists B ∈ F disjoint from A.

(g) k ≤ tr(F) + tr(F>).

Proof : Let T ∈ F>. Then by assumption |T | ≤ k − 1. Since tr(F t F>) = k, there

exists T
′ ∈ F t F> disjoint from T . Since T ∈ F> such T

′
/∈ F . Hence T

′ ∈ F>. This

immediately implies (a) and (b). We observe that each B ∈ F is a blocking set of F>. So

if tr(F>) = k, then B ∈ F>> and the part (c) follows.

Let x ∈ PF> . Then there exists a block T ∈ F> such that x ∈ T . Since |Tr{x}| = t−1,

T r {x} is not a blocking set of F . In other words, there exists a block B ∈ F disjoint

from T r {x}. But T intersects B; hence T ∩B = {x} and the part (d) follows.

To establish (e), we observe that PF> ⊂ PF . So PF> 6= PF means that there exists a

point α ∈ PFrPF> and consequently there exists a block B such that α ∈ B. We observe

that B r {α} is a blocking set of F>. Hence tr(F>) ≤ k − 1.

Let tr(F>) ≤ k − 1 and A ∈ F>>. Suppose A is a blocking set of F . Then by the

closure property of F , we have |A| ≥ k, which is a contradiction to the assumption. Hence

the part (f) follows.

To establish (g), we observe that the result is obvious if tr(F>) = k. Without loss of

generality let tr(F>) ≤ k − 1. Now let A ∈ F>> and construct the following non-empty
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subfamily of F ,

FA = {B ∈ F : A ∩B = ∅}.

Let C ∈ F>A . Then AtC is a blocking set of F and F>. Also we observe that |C| ≤ tr(F).

Hence by the closure property of F , k ≤ |A|+ |C| = tr(F>) + |C| ≤ tr(F>) + tr(F).

3.2 Correspondence between closed and maximal

intersecting families

Theorem 3.2.1. Let F be a subfamily of a MIF(k) X such that t := tr(F) ≤ k − 1

and X r F = A ~ F> for some family A. Then F is a CIF(k, t) if and only if A is a

MIF(k − t).

Proof : Let F be a CIF(k, t) and let T ∈ F>. Then, by (a) of Proposition 3.1.7 there

exists at least one T
′ ∈ F> disjoint from T . Since A ~ F> is an intersecting family of

k−sets, it follows that A is an intersecting family of (k − t)−sets.

Let C ∈ A>. Then, for each T ∈ F>, CtT is a blocking set of X and hence |CtT | ≥ k.

Thus |C| ≥ k − t, with equality if C t T ∈ X for all T ∈ F>. Since each block of A is a

blocking set of size k − t, it follows that tr(A) = k − t and A j A>. Also if C ∈ A and

T ∈ F>, then CtT ∈ X . The argument in the previous paragraph shows that CtT is not

a blocking set of F> and hence C tT /∈ (F tF>)> = F . Thus C tT ∈ X rF = A~F>.

Hence C ∈ A. Thus A> j A and hence A = A>. Thus A is a MIF(k − t).

Conversely, suppose A is a MIF(k − t). Since F is an intersecting family of k−sets,

every block of F is a blocking k−set of F t F> and hence tr(F t F>) ≤ k. We show

that F is a CIF(k, t). It suffices to show that if C is a blocking set of size k for F which

is not a block of F , then C is not a blocking set of F>. If C /∈ A ~ F>, then C is not

a block of X and hence there is a block B ∈ X disjoint from C. But C is a blocking set

of F . So B ∈ A ~ F>. Then B ∩ PF is a block of F> disjoint from C, so that C is not

a blocking set of F> in this case. On the other hand, if C ∈ A ~ F>, then we choose a

point α ∈ C ∩ PA. (It exists since k = |C| > t = k(F>).) Since C is a block of a MIF(k)

X , there exists at least one B ∈ X such that B ∩ C = {α}. Since α /∈ PF , it follows that

B ∈ A~ F> and hence B ∩ PF is a block of F> disjoint from C. So C is not a blocking

set of F> in this case also.

The following immediate corollary of Theorem 3.2.1 shows the existence of a closed

intersecting family inside any maximal intersecting family.
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Corollary 3.2.2. Let X be a MIF(k), then there exists at least one CIF(k, k − 1) F and

α ∈ PX r PF such that X = F t (α~ F>).

Proof : Let α ∈ PX . Define F = {B ∈ X : α /∈ B}. Then F> = {Br{α} : α ∈ B ∈ X}.
The conclusion follows as an application of Theorem 3.2.1.

The following theorem is a sort of converse to Theorem 3.2.1. Together, Theorem 3.2.1

and Theorem 3.2.3 show that closed intersecting families are the cores which may be used

to obtain maximal intersecting families via recursive construction.

Theorem 3.2.3. Let A and F be a MIF(k− t) and a CIF(k, t) respectively where A and

F have disjoint point sets. Then F t (A~ F>) is a MIF(k).

Proof : Let C be a blocking k−set of F t (A~F>). It is enough to prove C ∈ F t (A~

F>). If C ∈ F we are done. Assume C /∈ F . By the closure property of F , C is not a

blocking set of F tF>. This implies C is not a blocking set of F>. Hence there exists at

least one T ∈ F> which is disjoint from C. Since C is a blocking set of T ~A, it follows

that C ∩ PA is a blocking set of A. So |C ∩ PA| ≥ k − t. Also C ∩ PF is a blocking set of

F , and hence |C ∩ PF | ≥ t. But |C| = k, so |C ∩ PA| = k − t and |C ∩ PF | = t. Hence

C ∩ PA ∈ A and C ∩ PF ∈ F>. So C ∈ A ~ F>. This shows that every blocking k−set

of the family F t (A~ F>) is a block of that family.

We recall that M(k) is the maximum of |F| over all MIF(k) F . The following immediate

corollary of Theorem 3.2.3 helps to estimate M(k).

Corollary 3.2.4. For each integer k ≥ t + 1, if F is a CIF(k, t) with b blocks and b>

transversals, then M(k) ≥ b+ b>M(k − t).

Proof : We choose a MIF(k− t) with M(k− t) blocks so that its point set is disjoint from

PF . Call it A. Hence by Theorem 3.2.3, F t (A~ F>) is a MIF(k) with b+ b>M(k − t)
blocks.

In the following theorem, we use three copies of closed intersecting families in a circular

way to obtain a maximal intersecting family.

Theorem 3.2.5. Let k ≤ 2t − 1 and let F , G and H be three CIF(k, t)’s with mutually

disjoint point sets and tr(F>) = tr(G>) = tr(H>) = k. Then

(F ~ G>) t (G ~H>) t (H~ F>)

is a MIF(k + t).
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Proof : Let A := (F ~ G>) t (G ~H>) t (H ~ F>). Let C ⊂ PF t PG t PH such that

|C| ≤ k + t and C is a blocking set of A. We show that C ∈ A. Since k ≤ 2t− 1 we have

|C| ≤ k + t ≤ 3t− 1, hence at least one of C ∩PF , C ∩PG and C ∩PH contains less than

t points.

Claim 1 : If |C ∩ PF | ≤ t − 1, then |C ∩ PG | ≥ k. Similarly, if |C ∩ PG | ≤ t − 1, then

|C ∩ PH| ≥ k and if |C ∩ PH| ≤ t− 1, then |C ∩ PF | ≥ k.

Proof of claim : Due to similarity, it is enough to prove only the first statement. Sup-

pose |C ∩PF | ≤ t− 1 and tr(F) = t. Then there exists at least one BF ∈ F disjoint from

C ∩ PF . But C is a blocking set of BF ~ G>. This implies C is a blocking set of G>.

Hence |C ∩ PG | = |C ∩ PG> | ≥ k and the claim is established.

Claim 2 : If |C ∩ PF | ≤ t − 1, then C ∈ G ~ H>. Similarly, if |C ∩ PG | ≤ t − 1, then

C ∈ H~ F> and if |C ∩ PH| ≤ t− 1, then C ∈ F ~ G>.

Proof of claim : Due to similarity, it is enough to prove only the first statement. Sup-

pose |C ∩ PF | ≤ t− 1. Therefore |C ∩ PH| ≥ t. (If not, then |C ∩ PH| ≤ t− 1 and by the

above claim |C∩PF | ≥ k ≥ t+1, a contradiction.) Again by the above claim |C∩PG | ≥ k.

Since |C| ≤ k + t, we have |C ∩ PF | = 0, |C ∩ PH| = t and |C ∩ PG | = k. Since C is a

blocking set of H~F> and C∩PF is empty therefore C∩PH is a blocking set of H. Since

|C ∩ PH| = t we have C ∩ PH ∈ H>. Since C ∩ PF is empty, C ∩ PG is a blocking k−set

of G t G>. Therefore, by the closure property of G we have C ∩ PG ∈ G. Consequently,

C = (C ∩ PG) t (C ∩ PH) ∈ G ~H> and the claim is established.

From the above two claims, it follows that C ∈ A.

Remark 3.2.6. The inequality in the statement of Theorem 3.2.5 is necessary. For k ≥ 2t,

we conclude with a similar proof that

tr(F ~ G>) t (G ~H>) t (H~ F>) = 3t.

3.3 Construction of maximal intersecting families using

closed intersecting families

Proposition 3.3.1. Let F be a CIF(k, t). Suppose for each i, with 1 ≤ i ≤ n, Ai is a

MIF(k − t) and Ci is a subfamily of F> with the following properties:

(a) each Ai and F have disjoint point sets;
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(b) F> =
n
t
i=1
Ci;

(c) each t−set of Ci is a blocking set of F> r Ci.

Then F t (
n
t
i=1
Ai ~ Ci) is a MIF(k). Moreover, n ≤ 1

2

(
2t
t

)
.

Proof : Let G := F t (
n
t
i=1
Ai ~ Ci). Clearly it is an intersecting family of k−sets. Let C

be a blocking set of G with size at most k. To prove C is a block of G. If C ∈ F we are

done. So assume C /∈ F . By the closure property of F there exists at least one T ∈ F>

such that C ∩PF is disjoint from T and T ∈ Ci for a unique i. Since C is a blocking set of

T ~Ai, we have |C ∩PAi | ≥ k− t. Also C ∩PF is a blocking set of F . Hence |C ∩PF | ≥ t.
This implies |C ∩ PAi | = k − t and |C ∩ PF | = t, hence C ∈ Ai ~ Ci.

For the next part, by assumption (c) we observe that, for each i with 1 ≤ i ≤ n there

exists at least one pair (Ti, T
′
i ), where Ti, T

′
i ∈ Ci with Ti ∩ T

′
i = ∅. Also for each i, j

with 1 ≤ i < j ≤ n, we have Ti ∩ T
′
j 6= ∅ and T

′
i ∩ Tj 6= ∅. Hence by using (A.2.3) of

Theorem A.2.1, we have {(Ti, T
′
i ) : 1 ≤ i ≤ n} is an ISP(t, t). Therefore n ≤ 1

2

(
2t
t

)
.

Remark 3.3.2. The proof of Theorem 3.2.3 follows from Proposition 3.3.1 corresponding

to the case n = 1. The above proposition is of interest, since there is no restriction on the

choice of Ai, where 1 ≤ i ≤ n.

Proposition 3.3.3. Let F be a CIF(k, k − n). Suppose F> =
n+1
t
i=1
Ci, where for each i,

with 1 ≤ i ≤ n+ 1, the subfamily Ci satisfies the following properties.

(a) Each Ci is an intersecting family of (k − n)−sets.

(b) If i 6= j, then for each T ∈ Ci there exists at least one T
′ ∈ Cj disjoint from T .

Let A1, A2, . . ., An+1 be the (n+1)−parallel classes of an affine plane of order n (assuming

it exists), whose point set is disjoint from PF . Then F t (
n+1
t
i=1
Ai ~ Ci) is a MIF(k).

Proof : Let G := F t (
n+1
t
i=1
Ai ~ Ci). Clearly it is an intersecting family of k−sets. Let

P be the point set of this affine plane. Let C be a blocking set of G with size at most k.

To prove, C is a block of G. If C ∈ F we are done. So assume C /∈ F . By the closure

property of F there exists at least one T ∈ F> such that C ∩PF is disjoint from T . Then

there exists at least one i, with 1 ≤ i ≤ n + 1, such that T ∈ Ci. But C is a blocking set

of T ~Ai hence |C ∩P | ≥ n. Also C ∩PF is a blocking set of F ; hence |C ∩PF | ≥ k− n.

This implies |C ∩P | = n and |C ∩PF | = k−n and hence C ∩PF ∈ F>. So by assumption

(a) and (b), C ∩ PF ∈ Cj for some j 6= i. Then again by assumption (b) there exists at
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least one Tl ∈ Cl such that C ∩PF is disjoint from Tl, for each l with l 6= j. So C ∩ P is a

blocking set of each such Tl ~Al. Hence, by using Lemma 1.2.3 we have, C ∩ P is a line

of Aj . Therefore C ∈ Aj ~ Cj .

3.4 Recursive constructions of closed intersecting families

Theorem 3.4.1. Let A be a MIF(l) and let Fx, x ∈ PA, be uniform families with pairwise

disjoint point sets. Suppose k(Fx) = k and tr(Fx) = t for all x. Put

G =

{
t
x∈A

Fx : A ∈ A, Fx ∈ Fx for all x ∈ A
}
.

Then we have the following.

(a) G> =

{
t
x∈A

Tx : A ∈ A, Tx ∈ F>x for all x ∈ A
}

. In particular, k(G) = kl and tr(G) =

tl.

(b) If, further, each Fx is a CIF(k, t) with tr(F>x ) = k, then G is a CIF(kl, tl).

Proof : If A ∈ A and Tx ∈ F>x for all x ∈ A, then clearly t
x∈A

Tx is a blocking set of G of

size tl. Thus, tr(G) ≤ tl. Let B be a blocking set of G of size at most tl. For x ∈ PA, put

Tx = B ∩ PFx . Let A = {x ∈ PA : |Tx| ≥ t}. We have∑
x∈PA

|Tx| = |B| ≤ tl (3.4.1)

and hence |A| ≤ l. If A is not a block of the MIF(l) A, then there is a block A
′

of A
disjoint from A. Hence |Tx| ≤ t− 1 for all x ∈ A′ . So, for each x ∈ A′ there is a block Fx

of Fx disjoint from Tx. Hence t
x∈A′

Fx is a block of G disjoint from B, a contradiction. So

A ∈ A and |A| = l. Then (3.4.1) implies that |Tx| = 0 for x /∈ A and |Tx| = t for x ∈ A.

Thus, |B| = tl, so that tr(G) = tl and B ∈ G>. Since B = t
x∈A

Tx ∈ G> and |Tx| = t, it

follows that Tx ∈ F>x for all x ∈ A. This proves part (a).

Now we assume each Fx is a CIF(k, t). Since A, as well as each Fx, is an intersecting

family it follows that G is an intersecting family. Using the description of G> from part

(a) and applying part (a) to the families F>x , x ∈ PA, we see that

G>> =

{
t
x∈A

Sx : A ∈ A, Sx ∈ F>>x for all x ∈ A
}
.

Thus tr(G t G>) ≥ tr(G>) = kl. Since all the blocks of G are blocking sets of G t G> of

size kl, it follows that tr(G t G>) = kl and G ⊆ (G t G>)>. Let C be a transversal of
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G t G>. Then C ∈ G>> and hence C = t
x∈A

Sx, for some A ∈ A and Sx ∈ F>>x for all

x ∈ A. If we can show that C ∈ G, then we are done. Otherwise, there exists at least

one y ∈ A such that Sy /∈ Fy = (Fy t F>y )>. Since Sy ∈ F>>y it follows that Sy is not a

blocking set of Fy. So there exists at least one Uy ∈ Fy disjoint from Sy. Since y ∈ A ∈ A
and A is a MIF(l), there is a B ∈ A such that A ∩ B = {y}. For each x ∈ B r {y}, we

choose arbitrary Ux ∈ Fx. Then t
x∈B

Ux is a block of G disjoint from the blocking set C,

a contradiction. Thus C ∈ G. Hence (G t G>)> ⊆ G. Therefore G = (G t G>)> and this

proves part (b).

Theorem 3.4.2. Let F and G be two uniform families with disjoint point sets. Let

k(F) = k, k(G) = k + t, tr(F) = t
′

and tr(G) = t. Suppose tr(G>) > t + t
′
. Let

H = G t (F ~ G>). Then,

(a) H> = F> ~ G>. In particular k(H) = k + t, tr(H) = t+ t
′
.

(b) If, further, both F and G are closed intersecting families, then H is a closed intersecting

family.

Proof : Since every member of F>~G> is a blocking set of H of size t+t
′
, tr(H) ≤ t+t′ .

Let C be a transversal of H. Then |C| ≤ t+ t
′
. If C ∩PF is not a blocking set of F , then

there is a block A ∈ F disjoint from C ∩ PF . Since |C| ≤ t + t
′ ≤ tr(G>) − 1, there is

a B ∈ G> disjoint from C ∩ PG . Then A t B ∈ H is disjoint from the blocking set C, a

contradiction. Thus, C ∩PF is a blocking set of F . Clearly C ∩PG is a blocking set of G.

Therefore |C ∩ PF | ≥ t
′

and |C ∩ PG | ≥ t. Since |C| ≤ t + t
′

and PF , PG are disjoint, it

follows that |C ∩ PF | = t
′

and |C ∩ PG | = t. Therefore C ∩ PF ∈ F> and C ∩ PG ∈ G>.

Thus C ∈ F> ~ G>. This proves part (a).

Now suppose F and G are closed intersecting families. In particular they are intersect-

ing families. Hence H is an intersecting family. Thus the blocks of H are blocking sets of

H t H> of size k + t. So tr(H t H>) ≤ k + t. Let C be a transversal of H t H>. Thus

|C| ≤ k + t. If we can show that C ∈ H, then H is a closed intersecting family and we

are done. If C ∈ G we are done. So suppose C /∈ G. But C is a blocking set of G. Since

G is a closed intersecting family, it follows that there is a T ∈ G> disjoint from C. Since

C is a blocking set of F ~ G> ⊆ H and also of F> ~ G> = H>, it follows that C ∩ PF is

a blocking set of F t F>. Since F is a closed intersecting family with k(F) = k, we get

|C ∩ PF | ≥ k. Also, as C ∩ PG is a blocking set of G and tr(G) = t, |C ∩ PG | ≥ t. Since

PF and PG are disjoint, |C| ≥ k+ t. But |C| ≤ k+ t. Therefore |C| = k+ t, C ∩PF ∈ F ,

C ∩ PG ∈ G>. Consequently, C ∈ F ~ G> ⊆ H. Hence C ∈ H. This proves part (b).
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Chapter 4

Classification of

Maximal Intersecting Families of 3−sets

4.1 Introduction

This chapter is meant to classify maximal intersecting families of 3−sets. We prove that

there are 8 non isomorphic maximal intersecting families of 3−sets. The elementary

constructions and various extremal bounds are given in [7], where the authors studied

3−chromatic intersecting families of k−sets. Any intersecting family of k−sets is either

2−chromatic or 3−chromatic. Any 3−chromatic intersecting family of k−sets is a MIF(k)

but the converse is not true in general. But the converse is true for k = 3; i.e. any MIF(3)

is a 3−chromatic intersecting family of 3−sets. In this chapter we list all the MIF(3)s.

We observe that [14, Theorem 5] gives a classification theorem for MIF(3). This chapter

provides an independent proof of that theorem. The results in this chapter are from [21].

We fix the following notations, which are used throughout this chapter. Let G be a

family of k−sets. For each x ∈ PG , the number |{B ∈ G : x ∈ B}| is defined as degG(x).

xyz denotes the 3−set {x, y, z} and xy denotes the 2−set {x, y}. Let A be an MIF(3) and

α be a point of A. By using Theorem 3.2.3, we decompose A in the form F t (α ~ F>),

where F is CIF(3, 2). Here F> is realised as a graph with vertex set PF and edge set F>.

In fact, the vertex set is PF> but by property (d) of Proposition 3.1.7 we have PF> ⊂ PF

so we can assume the vertices from PF r PF> remain isolated. We denote this graph by

F. Let T ∈ F>. Then {α} t T is a block of MIF(3) A. Therefore there exists at least one

block B ∈ A such that B ∩ ({α} t T ) = {α}. Hence there exists at least one transversal

of F , namely T
′

:= B r {α}, disjoint from T . This induces the following property on the

graph F.

Lemma 4.1.1. For each edge e of the graph F there exists another edge e
′

disjoint from

e.

4.2 Classification of MIF(3)s with 6 points

This section classifies MIF(3)s with 6 points through Theorem 4.2.8. Here we let A to be

an MIF(3) with 6 points and α to be a point of A such that degA(α) is minimum. So here

F has 5 vertices and degA(α) edges. The proof of Theorem 4.2.8 is dependent on degA(α).
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Lemma 4.2.1. F =
{

PF r T : T ∈
(

PF
2

)
r F>

}
.

Proof : Let T ∈
(

PF
2

)
r F>. Then T is not a blocking set of F . So there exists at least

one B ∈ F disjoint from T . Since |PF | = 5 and tr(F) = |T | = 2, so B = PF r T is the

unique block disjoint from T . Therefore,
{

PF r T : T ∈
(

PF
2

)
r F>

}
⊆ F . Since we have

a unique association T 7→ PF r T from
(

PF
2

)
r F> to F , this proves the other inclusion

F ⊆
{

PF r T : T ∈
(

PF
2

)
r F>

}
.

Lemma 4.2.2. For each x ∈ PF , degA(α)−3 ≤ degF(x) ≤ 3. Moreover, 2 ≤ degA(α) ≤ 5.

Proof : Let x ∈ PF> . Then there exists at least one block of A which contains both α

and x. Since tr(A) = 3, there exists at least one block B ∈ A disjoint from {α, x}. Hence

there are at most 3 blocks which contain both α and x. Consequently degF(x) ≤ 3. By

using the unique association T 7→ PF r T from
(

PF
2

)
r F> to F in Lemma 4.2.1 we have

the following.

degF (x) = |{B ∈ F : x ∈ B}|

= |{PF r T : x /∈ T /∈ F>}|

= |{T /∈ F> : x /∈ T}|

=

∣∣∣∣{T ∈ (PF
2

)
: T /∈ F>

}∣∣∣∣− ∣∣∣∣{T ∈ (PF
2

)
: T /∈ F> and x ∈ T

}∣∣∣∣
=

(
5

2

)
− |F>| − {4− degF(x)}. (4.2.1)

We already assumed that α ∈ PA is a point such that degA(α) is minimum. Therefore for

each x ∈ PA r {α} we have

|F>| = degA(α) ≤ degF (x) + degF(x)

=

(
5

2

)
− |F>| − {4− degF(x)}+ degF(x)

= 6− |F>|+ 2 degF(x). (4.2.2)

Thus we have the lower bound since degA(α) = |F>|. This completes the first part.

From the first part it follows that |F>| ≤ 6. If |F>| = 6, then again using the first

part of the lemma it follows that the graph F is regular of degree 3 and it has 5×3
2 = 71

2

edges, a contradiction. Hence degA(α) ≤ 5. By Lemma 4.2.1 we have there are at least 2

transversals of F . Hence degA(α) ≥ 2. This completes the proof of the second part of the

lemma.

Lemma 4.2.3. For each x ∈ PF , degF(x) ≤ 2.
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Proof : Let x ∈ PF . Using Lemma 4.2.2 we have degF(x) ≤ 3. Suppose for some x ∈ PF

we get degF(x) = 3. Let PF = {x1, x2, x3, x4, x5}. Without loss of generality, let x = x1

and x1x2, x1x3 and x1x4 be only edges through x1 in the graph F. This implies x2x3x4 ∈ F .

Suppose deg(x5) = 0, then from Lemma 4.2.1, it follows that F contains a complete sub

graph on 4 vertices namely x1, x2, x3 and x4. Therefore by using Lemma 4.2.1, we have(
4
2

)
= |F>| = degA(α) ≤ 5, a contradiction. So degF(x5) ≥ 1. Thus there exists at least

one edge of the form x5x, where x ∈ {x2, x3, x4} without loss of generality let it be x2x5.

But there exists at least one edge disjoint from x1x2 so it is either x4x5 or x3x4. Since

|F>| ≤ 5, both of x4x5, x3x4 can not be edges. Thus the following two cases exhaust all

the possibilities.

Case A. F> = {x1x2, x1x3, x1x4, x2x5, x4x5}.

Case B. F> = {x1x2, x1x3, x1x4, x2x5, x3x4}.

But in each of the above cases there exists at least one x ∈ PF such that degF(x) = 1.

(For Case A x = x3 and for Case B x = x5.) Since from Lemma 4.2.1 we have F ={
PF r T : T ∈

(
PF
2

)
r F>

}
, degF (x) = 2. Hence degA(x) = degF (x) + degF(x) = 3. A

contradiction arises since degA(α) is minimum and 5 = degA(α) ≤ degA(x) = 3.

Lemma 4.2.4. If degA(α) = 2, then the graph F is isomorphic to the following graph.

Consequently, A is isomorphic to {234, 235, 245, 246, 256, 345, 346, 356}t{123, 145}. (Here

A is expressed in the form F t (α~ F>).)

Proof : Since degA(α) = 2, F has two edges. By using Lemma 4.2.3 and the first part

of Lemma 4.2.2 we have for each x ∈ PF , 0 ≤ degF(x) ≤ 2. But there does not exist any

x ∈ PF with degF(x) = 2. If for some x ∈ PF degF(x) = 2, then it follows that the graph

F is isomorphic to

.

It contradicts Lemma 4.1.1. So for each x ∈ PF , 0 ≤ degF(x) ≤ 1. It proves the first part

of this result. Using Lemma 4.2.1 we get the consequent part.
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Lemma 4.2.5. If degA(α) = 3, then the graph F is isomorphic to the following graph.

Consequently, A is isomorphic to {235, 236, 245, 246, 345, 346, 356}t{123, 134, 156}. (Here

A is expressed in the form F t (α~ F>).)

Proof : Since degA(α) = 3, F has three edges. By using Lemma 4.2.3 and the first part

of Lemma 4.2.2 we have for each x ∈ PF , 0 ≤ degF(x) ≤ 2. But there does not exist any

x ∈ PF with degF(x) = 0. If for some x ∈ PF degF(x) = 0, then it follows that the graph

F is isomorphic to

.

It contradicts Lemma 4.1.1. So for each x ∈ PF , 1 ≤ degF(x) ≤ 2. It proves the first part

of this result. Using Lemma 4.2.1 we get the consequent part.

Lemma 4.2.6. If degA(α) = 4, then the graph F is isomorphic to either of the following

graphs.

Consequently, A is isomorphic to

{235, 236, 245, 246, 345, 346} t {123, 124, 134, 156} and

{235, 245, 246, 345, 346, 356} t {123, 134, 145, 156}

respectively. (Here A is expressed in the form F t (α~ F>).)

Proof : Since degA(α) = 4, F has four edges. By using Lemma 4.2.3 and the first part

of Lemma 4.2.2 we have for each x ∈ PF , 1 ≤ degF(x) ≤ 2. It proves the first part of this

result. Using Lemma 4.2.1 we get the consequent part.

Lemma 4.2.7. If degA(α) = 5, then the graph F is isomorphic to the following graph.
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Consequently, A is isomorphic to {235, 245, 246, 346, 356} t {123, 126, 134, 145, 156}.

Proof : Since degA(α) = 5, F has five edges. By using Lemma 4.2.3 and the first part of

Lemma 4.2.2 we have for each x ∈ PF , degF(x) = 2. It proves the first part of this result.

Using Lemma 4.2.1 we get the consequent part.

Combining Lemma 4.2.4, Lemma 4.2.5, Lemma 4.2.6 and Lemma 4.2.7, we prove the

following classification theorem.

Theorem 4.2.8. Any MIF(3) with 6 points A is isomorphic to one of the following:

(a) {123, 145, 234, 235, 245, 246, 256, 345, 346, 356},

(b) {123, 134, 156, 235, 236, 245, 246, 345, 346, 356},

(c) {123, 124, 134, 156, 235, 236, 245, 246, 345, 346},

(d) {123, 134, 145, 156, 235, 245, 246, 345, 346, 356},

(e) {123, 126, 134, 145, 156, 235, 245, 246, 346, 356}.

4.3 Classification of MIF(3)s with at least 7 points

In this section, we classify all MIF(3)s with at least 7 points in Theorem 4.3.5. Here F

has at least 6 vertices and degA(α) edges. Suppose that the graph F has N vertices, i.e.

PF = PA r {α} = {xi : 1 ≤ i ≤ N}, where N ≥ 6.

Lemma 4.3.1. For each x ∈ PF , degF(x) ≤ 3. Moreover, degF(x) 6= 2 for each x ∈ PF .

Proof : Let x ∈ PF . If x /∈ PF> , then degF(x) = 0 and we are done this case.

Now let x ∈ PF> i.e. there exists at least one block B in A such that {α, x} ⊂ B.

Therefore there exists at least one block B
′

disjoint from {α, x}. Hence there exists at

most three blocks B in A such that {α, x} ⊂ B, namely {α, x, y} where y ∈ B′ . Since

|B′ | = 3, degF(x) ≤ 3. This proves the first part of this result.

Suppose, if possible, degF(x) = 2 for some x ∈ PF . Without loss of generality, let

x = x1 and let x1x2, x1x3 be only edges through x1. So x1x2, x1x3 ∈ F> and x1x /∈ F>
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for each x ∈ {xi : 4 ≤ i ≤ N}. Since A is a MIF(3), there exists at least one block B ∈ A
disjoint from {α, x1} but {x2, x3} ⊂ B. Hence B ∈ F .

Claim : |{B ∈ F : x2, x3 ∈ B, x1 /∈ B}| = 2

Proof of claim : Using the same argument as in the previous paragraph, we conclude

that |{B ∈ F : x2, x3 ∈ B, x1 /∈ B}| ≤ 3. Suppose |{B ∈ F : x2, x3 ∈ B, x1 /∈ B}| = 3. So

let

{B ∈ F : x2, x3 ∈ B, x1 /∈ B} = {x2x3x, x2x3y, x2x3z}

where x, y, z ∈ {xi : 4 ≤ i ≤ N}, this implies xyz is a block of F but x1x2 ∈ F> does

not intersect it, a contradiction. Hence |{B ∈ F : x2, x3 ∈ B, x1 /∈ B}| ≤ 2. Now let for

some x ∈ {xi : 4 ≤ i ≤ N}, x2x3x ∈ F . Since x1x /∈ F>, there exists at least one block

B ∈ F disjoint from it. Again since x1x2, x1x3 ∈ F>, such a B is of the form x2x3y,

where y ∈ {xi : 4 ≤ i ≤ N}r {x}. Hence the claim is established.

We assume without loss of generality that x2x3x4, x2x3x5 ∈ F . Using the same argu-

ment as before there exists at least one block B ∈ A such that x4, x5 ∈ B and x2, x3 /∈ B.

We observe that such a B is in either of the form αx4x5 or of the form xx4x5, where

x = x1 or x ∈ {xi : 6 ≤ i ≤ N}. Since x1x2 and x1x3 ∈ F>, therefore we have either

x4x5 ∈ F> or x1x4x5 ∈ F .

Case x4x5 ∈ F>. Here we observe that for each x ∈ {xi : 6 ≤ i ≤ N} there exist at least

2 blocks Bx
1 , B

x
2 ∈ A with Bx

1 ∩ Bx
2 = {x}. So at most one of them contains α and hence

at least one of Bx
1 or Bx

2 belongs to F . So without loss of generality let Bx
1 ∈ F . Hence

x1x2, x1x3 and x4x5 intersects Bx
1 , and this implies Bx

1 = xx1y where y ∈ {x4, x5}. But

this block does not intersect both blocks x2x3x4 and x2x3x5 of F , a contradiction.

Case x1x4x5 ∈ F. For this case also we observe that for each x ∈ {xi : 6 ≤ i ≤ N} there

exist at least 2 blocks Bx
1 , B

x
2 ∈ A with Bx

1 ∩ Bx
2 = {x} so at most one of them contains

x1 and hence at least one of Bx
1 or Bx

2 does not contain x1. Without loss of generality let

Bx
1 do not contain x1. Hence Bx

1 is of the form xyz where y ∈ {x4, x5} and z is a common

point among the blocks αx1x2, αx1x3, x2x3x5 or αx1x2, αx1x3, x2x3x4, according as

y = x4 or y = x5 respectively, a contradiction, since there is no such common point.

Since we are lead to contradictions in both cases, the supposition degF(x) = 2 for some

x ∈ PF was wrong. This completes the proof.

Lemma 4.3.2. If for some x ∈ PF degF(x) = 3, then
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(a) F contains a sub graph which is isomorphic to the following graph,

,

(b) F is isomorphic to {123, 234, 246, 345},

(c) A is isomorphic to {123, 234, 246, 345} t {147, 237, 247, 257, 347, 367}. (Here A is

expressed in the form F t (α~ F>).)

Proof : Without loss of generality let degF(x1) = 3; also let x1x2, x1x3 and x1x4 be the

only edges through x1. This immediately implies that x2x3x4 ∈ F .

Claim : Exactly one of x2x3, x2x4 and x3x4 is a transversal of F .

Proof of claim : Suppose all the above three belong to F>. Since all the above three

form a MIF(2), tr(F>) = 3. As a result we have x1x2x3, x1x3x4, x1x2x4 ∈ F . So A
contains x1x2x3, x1x3x4, x1x2x4, x2x3x4, αx1x2, αx1x3, αx1x4, αx2x3, αx2x4, αx3x4. It

means A is isomorphic to the MIF(3) β(3). But A is a MIF(3) with at least 7 points, a

contradiction.

So suppose two the above belong to F>. Without loss of generality let x2x3 and

x2x4 ∈ F>. This implies x1x3x4 ∈ F . Using Lemma 4.3.1 there exists another transversal

of F through x3 other than x1x3, x2x3, similarly through x4 other than x1x4, x2x4. Again

using Lemma 4.3.1 we let x3x5, x4x ∈ F>, where x ∈ {xi : 5 ≤ i ≤ N}. If possible suppose

x3x5, x4x5 ∈ F>. Then by using Lemma 4.3.1 there exists at least one x5x ∈ F> where

x ∈ {xi : 6 ≤ i ≤ N}. This is impossible since x5x does not intersect x1x3x4 ∈ F . So

without loss of generality we let x3x5, x4x6 ∈ F> and consequently x1x2x5, x1x2x6 ∈ F .

This is impossible since x3x5 ∈ F> does not intersect x1x2x6 ∈ F and similarly x4x6 ∈ F>

does not intersect x1x2x5 ∈ F .

So suppose none of the above belongs to F>. From Lemma 4.1.1 there exists at least

one edge e disjoint from x1x2 and intersects x2x3x4. Hence e contains at least one of x3

or x4. By assumption e 6= x3x4. So let e = x3x, where x ∈ {xi : 5 ≤ i ≤ N}. Without loss

of generality we assume e = x3x5. By Lemma 4.3.1 there exists at least one edge through

x3 other than x1x3 and x3x5. Without loss of generality suppose it is x3x6. This implies

x1x5x6 ∈ F . This is impossible since x2x3x4 ∈ F and it does not intersect x1x5x6. Hence

only remaining possibility is the statement of this claim, so the claim is established.
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Therefore without loss of generality let x3x4 ∈ F>. But by Lemma 4.3.1 there exists

at least one edge through x3 other than x1x3 and x3x4. Without loss of generality let it be

x3x5, similarly there exists at least one edge through x4 other than x1x4 and x3x4. Let it

be x4x, where x ∈ {xi : 5 ≤ i ≤ N}. But such an x 6= x5, if so, then by Lemma 4.3.1 there

exists at least one edge x5y other than x3x5 and x4x5. Hence yx3x4 ∈ F and intersects

x1x2 ∈ F>. Thus y ∈ {x1, x2}. But x1x2, x1x3 and x1x4 are only edges through x1. Hence

y = x2 and x2x3x4 ∈ F . Now from Lemma 4.3.1 there exists at least one edge through x2

other than x1x2 and x2x5. By the above claim x2z, where z ∈ {xi : 6 ≤ i ≤ N}, is only

possible edge. This implies x1x5z ∈ F which is disjoint from x2x3x4 ∈ F , a contradiction.

Thus x ∈ {xi : 6 ≤ i ≤ N}. Without loss of generality let it be x4x6. Hence

F> ⊇ {x1x2, x1x3, x1x4, x3x4, x3x5, x4x6}

and (a) follows. This immediately implies x1x3x6, x1x4x5, x2x3x4 ∈ F . Only remain to

show x1x3x4 ∈ F . We decompose A = G t (x1 ~G>), where G is a CIF(3, 2) and x1 /∈ PG .

Thus from the previous conclusions this implies

{αx2, αx3, αx4, x3x6, x4x5} ⊂ G>.

By using the similar claim as above, we have exactly one of x2x3, x2x4 and x3x4 is a

transversal of G. But x2x3 is disjoint from αx4x6 ∈ G and x2x4 is disjoint from αx3x5 ∈ G.

This implies x3x4 ∈ G>. Hence x1x3x4 ∈ A and therefore x1x3x4 ∈ F . This proves (b).

Now from (a) and (b) we get A contains a subfamily H isomorphic to

{123, 234, 246, 345} t {147, 237, 247, 257, 347, 367}.

But H is a MIF(3). Hence A = H and this proves (c).

Lemma 4.3.3. For each x ∈ PF , if degF(x) 6= 0 or degF(x) 6= 3, then A is a finite

projective plane of order 2.

Proof : We first observe that if for each x ∈ PF , 0 ≤ degF(x) ≤ 1, then any two

transversal of F are mutually disjoint. (If possible, suppose there exist T and T
′ ∈ F>

such that T ∩ T ′ = {x} for some x ∈ PF , so degF(x) ≥ 2, a contradiction.) As F is a

3−uniform family, hence there are at most 3 transversals of F . Here using Lemma 4.3.1

we have for each x ∈ PF , degF(x) = 1. Hence there exists exactly 3 transversals of F .

Without loss of generality let

F> = {x1x2, x3x4, x5x6}. (4.3.1)
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Therefore any block of F is of the form xyz where x ∈ {x1, x2}, y ∈ {x3, x4} and z ∈
{x5, x6}. Without loss of generality let x1x3x5 ∈ F . We decompose A = G t (x1 ~ G>)

where G is a CIF(3, 2) and x1 /∈ PG . We observe that {αx2, x3x5} ⊂ G>.

Claim 1 : x4x6 ∈ G> and x3x6, x4x5 /∈ G>.

Proof of claim : If x4x6 /∈ G>, then x1x4x6 /∈ F . Since F is a CIF(3, 2), there exists

at least one T ∈ F> disjoint from x1x4x6. It is impossible by (4.3.1). So x4x6 ∈ G>.

Suppose, if possible, x3x6 ∈ G>. Consequently x1x3x6 ∈ F . Since x1x3 /∈ F>, there

exists at least one block B ∈ F disjoint from {x1, x3}. Hence by (4.3.1), B = x2x4x where

x ∈ {x5, x6}. But such a B does not intersect both x1x3x5 and x1x3x6, a contradiction.

By a similar reasoning x4x5 /∈ G>. Hence the claim is established.

Claim 2 : G> = {αx2, x3x5, x4x6}.

Proof of claim : From Claim 1 we have {αx2, x3x5, x4x6} j G>. Since x3x4 ∈ F>,

αx3x4 ∈ G. Let pq ∈ G> r {αx2, x3x5, x4x6}, then p ∈ {α, x3, x4}.

Suppose p = α. Since x1 /∈ PG> and αx2 ∈ G>, so q ∈ {xi : 3 ≤ i ≤ N}, hence

αx1q ∈ A and consequently x1q ∈ F>, which violates (4.3.1). Now suppose p = x3.

Then from the previous arguments we have q 6= α. But αx5x6 ∈ G and x3x5 ∈ G>.

Hence q = x6, which violates Claim 1. Similarly suppose p = x4, then from the previous

arguments we have q 6= α and q 6= x3. But αx5x6 ∈ G and x4x6 ∈ G>. Hence q = x5,

which violates Claim 1. This proves Claim 2.

Claim 3 : x2x3x6, x2x4x5 ∈ G

Proof of claim : By Claim 1 we have x4x5 /∈ G>. So there exists at least one block

B ∈ G such that B disjoint from x4x5. Hence using Claim 2 either B = αx3x6 or

B = x2x3x6. Due to (4.3.1) we have B 6= αx3x6. Therefore B = x2x3x6. By a similar

argument x2x4x5 ∈ G and the claim is established.

Thus A contains a subfamily H isomorphic to

{αx1x2, αx3x4, αx5x6, x1x3x5, x1x4x6, x2x3x6, x2x4x5}.

We observe that H is a MIF(3) with 7 points which is also the example of finite projective

plane of order 2. Hence A is a MIF(3) and is a finite projective plane of order 2.

Lemma 4.3.4. Suppose A is not isomorphic to a finite projective plane of order 2 and

for each x ∈ PF 0 ≤ degF(x) ≤ 1. Then there exists at least one point β(6= α) ∈ PA such
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that if A = G t (β ~ G>), where G is a CIF(3, 2) and β /∈ PG, then there exists at least

one vertex y in the graph G := (PG ,G>) such that degG(y) = 3.

Proof : Using an argument in Lemma 4.3.3, we observe that if for each x ∈ PF , 0 ≤
degF(x) ≤ 1, then any two transversals of F are disjoint. As F is a 3−uniform family,

there exists at most 3 transversals of F . But if there exists exactly 3 mutually disjoint

transversals, then N ≥ 6.

If N ≥ 7, then there exists at least one x ∈ PF r PF> . So there exists at least one

B ∈ F such that x ∈ B and Br{x} is a blocking set of F> with size 2. It contradicts that

tr(F>) = 3. Hence N = 6 and consequently all the conditions of Lemma 4.3.3 are satisfied.

Therefore, A is isomorphic to a finite projective plane of order 2 which contradicts the

assumption. Thus |F>| ≤ 2. Since A is a MIF(3), each point belongs to at least 2 blocks

hence |F>| = 2. Without loss of generality, let F> = {x1x2, x3x4}. Note that A is a

MIF(3) and x1x2 intersects all the members of A except αx3x4. Hence x1x2x ∈ A where

x ∈ {x3, x4}. By a similar reasoning x3x4y ∈ F where y ∈ {x1, x2}. Therefore

{x1x2x3, x1x2x4, x1x3x4, x2x3x4} t (α~ {x1x2, x3x4}) ⊂ F t (α~ F>) ⊂ A.

So we choose β = x1. Then {αx2, x2x3, x2x4, x3x4} ⊂ G> and using Lemma 4.3.1 we have

degG(x2) = 3, i.e. required vertex y is x2.

Theorem 4.3.5. Any MIF(3) with at least 7 points is isomorphic to one of the following:

(a) {123, 145, 167, 246, 257, 347, 356} i.e. finite projective plane of order 2,

(b) {123, 124, 127, 145, 147, 167, 246, 247, 257, 347}.

Proof : Let A be a MIF(3) with at least 7 points. We decompose A in the form F t (α~

F>), where F is a CIF(3, 2) and α /∈ PF . Let F := (PF ,F>) be the graph as we mentioned

in the introduction. By using Lemma 4.3.1, we have for each x ∈ PF , degF(x) ≤ 3. If for

some x ∈ PF we get degF(x) = 3, then by using part (c) of Lemma 4.3.2 we have A is

isomorphic to {123, 124, 127, 145, 147, 167, 246, 247, 257, 347}.

Now we assume that for each x ∈ PF , degF(x) 6= 3. Again by using Lemma 4.3.1 we

have for each x ∈ PF , 0 ≤ degF(x) ≤ 1. If for each x ∈ PF we get degF(x) = 1, then

by using Lemma 4.3.3 we have A is isomorphic to {123, 145, 167, 246, 257, 347, 356} (i.e.

finite projective plane of order 2).

Now we assume A is not isomorphic to finite projective plane of order 2 and for each

x ∈ PF , 0 ≤ degF(x) ≤ 1. Therefore all the conditions of Lemma 4.3.4 are satisfied.
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Lemma 4.3.4 ensures that there exists another decomposition of A in the form G t
(β ~ G>), where G (6= F) is a CIF(3, 2) and β /∈ PG . With respect to this (new) de-

composition there exists at least one vertex y in the graph G := (PG ,G>) such that

degG(y) = 3. Therefore by using (c) of Lemma 4.3.2, we have A is isomorphic to

{123, 124, 127, 145, 147, 167, 246, 247, 257, 347}.

We observe that Theorem 4.3.5 ensures, any MIF(3) with at least 7 points has exactly

7 points. Therefore as a consequence we have the following corollary.

Corollary 4.3.6. There does not exist any MIF(3) with v points, where v ≥ 8.

4.4 Conclusion: The classification result

Any MIF(3) contains at least 5 points and β(3) is the only MIF(3)s with 5 points, so the

complete list of MIF(3) is the following.

(i) Up to isomorphism there is a unique MIF(3) with 5 points, namely β(3).

(ii) Up to isomorphism there are five MIF(3)s with 6 points, namely

(a) {123, 145, 234, 235, 245, 246, 256, 345, 346, 356},

(b) {123, 134, 156, 235, 236, 245, 246, 345, 346, 356},

(c) {123, 124, 134, 156, 235, 236, 245, 246, 345, 346},

(d) {123, 134, 145, 156, 235, 245, 246, 345, 346, 356},

(e) {123, 126, 134, 145, 156, 235, 245, 246, 346, 356}.

(iii) Up to isomorphism there are two MIF(3)s with 7 points, namely

(a) {123, 145, 167, 246, 257, 347, 356},

(b) {123, 124, 127, 145, 147, 167, 246, 247, 257, 347}.

(iv) There does not exist any MIF(3) with 8 or more points.
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Chapter 5

Constructions over the Cyclic Graph

and their applications

In this chapter, we study constructions over the cyclic graph. In Section 5.3 it is shown

that Example 5.3.1 and Example 5.3.2 are counter examples to [9, § 3, Conjecture 4] in

certain cases. In the final section we close this chapter by stating some conjectures. Most

of the results in this chapter are from [20, 22].

5.1 Introduction

Erdős and Lovász established, in their landmark article [7], that any MIF(k) has at most

kk blocks. They showed by means of an example that there exists a MIF(k) with approxi-

mately (e−1)k! blocks. They constructed it by a recursive procedure [7, Construction (c),

Page 620] starting with the unique MIF(1). Lovász conjectured in [17], that the MIF(k)

thus constructed was the extremal one. Later in [9], an extremely elegant and compli-

cated example was given to show that there exists a MIF(k) with at least (approximately)

(k2 )k−1 blocks (i.e. it has more blocks) and it disproves Lovász conjecture. In this chapter,

we present two comparatively simpler constructions (see G(k, t) and F(k, t) in Construc-

tion 5.2.1) to prove that there exists at least two MIF(k)’s with at least (approximately)

(k2 )k−1 blocks. (More precisely, we present an alternative proof of [9, § 2, Theorem 1], see

Corollary 5.3.6 below). In [9], it is conjectured that the construction of Frankl et al. yields

the unique MIF(k) with the largest number of blocks. Here we show that both parts of

this conjecture are false. Specifically, the uniqueness part is incorrect for k = 4, while the

optimality part is incorrect for k = 5.

5.2 Constructions over the Cyclic Graph

Construction 5.2.1. Let k and t be positive integers with t ≤ k. Let Xn, 0 ≤ n ≤ t− 1,

be t pairwise disjoint sets with

|Xn| =

 k − b t2c if 0 ≤ n ≤ b t−1
2 c

k − b t−1
2 c if b t−1

2 c+ 1 ≤ n ≤ t− 1

say Xn = {xnp : 0 ≤ p ≤ |Xn| − 1}.
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(a) Let G(k, t) be the family of all the k−sets of the form

Xn t
{
xn+i
pi : 1 ≤ i ≤ k − |Xn|

}
,

where 0 ≤ n ≤ t− 1, 0 ≤ pi ≤ |Xn+i| − 1 and addition in the superscript is modulo t.

(b) Let F(k, t) be the family of all the k−sets of the form

Xn t
{
xn+i
pi : 1 ≤ i ≤ k − |Xn|

}
,

where 0 ≤ n ≤ t− 1, addition in the superscript is modulo t and {pm : m ≥ 0} varies

over all finite sequences of non negative integers satisfying,

p0 = 0 and for m ≥ 1, pm = pm−1 or 1 + pm−1. (?)

Clearly, both the families F(k, t) and G(k, t) are examples of intersecting families of

k−sets (since the t−cycle is a graph with diameter b t2c). Also the family F(k, t) is a

subfamily of G(k, t). In this context, we mention that there are similar type of families,

namely G in [9, § 2]. However, the compact description given here is amenable to rigorous

arguments.

Theorem 5.2.2. tr(G(k, t)) = t.

Proof : We prepare a t−set B by choosing one element from each Xn, with 0 ≤ n ≤ t−1,

then B is a blocking set of G(k, t). Therefore tr(G(k, t)) ≤ t. Let C be an arbitrary but

fixed set of size t − 1. To show that tr(G(k, t)) ≥ t, it is enough to show there exists a

block of G(k, t) which is disjoint from C. We divide our arguments in the following two

exhaustive cases.

Case A : For each n, with 0 ≤ n ≤ t− 1, |C ∩Xn| ≤ |Xn| − 1.

Since |C| = t − 1, there exists a set Xn, with 0 ≤ n ≤ t − 1, which is disjoint

from C. Without loss of generality let n = 0. In this case we have, for each m, with

1 ≤ m ≤ k−|X0|, XmrC is non empty. Now we choose one element namely xmpm ∈ XmrC.

Therefore, X0t{xmpm ∈ XmrC : 1 ≤ m ≤ k−|X0|} is the required block of G(k, t), which

is disjoint from C.

Case B : For some n, with 0 ≤ n ≤ t− 1, C ∩Xn = Xn. (This case will arise for k, with

t ≤ k ≤ t− 1 + b t−1
2 c.)

Since |C| = t−1, there exists at most one n, with 0 ≤ n ≤ t−1, such that C∩Xn = Xn.

We observe that

|C rXn| = t− 1− |Xn| ≤ t+

⌊
t

2

⌋
− 1− k.
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Since k ≥ t we have,

|C rXn| = t− 1− |Xn| ≤
⌊
t

2

⌋
− 1.

So there exists at least one m, with n + 1 ≤ m ≤ n + b t2c, such that (C r Xn) ∩ Xm is

empty; call such an m = m0. Therefore, for 1 ≤ i ≤ k− |Xm0 |, we have Xm0+irC is non

empty and choose one element say xm0+i
pm0+i

∈ Xm0+i r C. Therefore,

Xm0 t {xm0+i
pm0+i

∈ Xm0+i r C : 1 ≤ i ≤ k − |Xm0 |}

is the required block of G(k, t), which is disjoint from C.

Theorem 5.2.3. For k ≥ t + 1, G(k, t) is a CIF(k, t). Moreover, each transversal of

G(k, t) intersects each Xn in exactly one point, where 0 ≤ n ≤ t− 1.

Proof : Let C be a k−set. If for each n, with 0 ≤ n ≤ t−1, C∩Xn $ Xn then XnrC is

non empty and T (C) := {xn ∈ XnrC : 0 ≤ n ≤ t−1} is a transversal of G(k, t), which is

disjoint from C. Now suppose for some n, with 0 ≤ n ≤ t−1, C ∩Xn = Xn; since |C| = k

and k ≥ t+ 1, there exists at most one such n; call it n0. Therefore |CrXn0 | = k−|Xn0 |.
We observe that for each m 6= n0, with 0 ≤ m ≤ t − 1, C ∩ Xm $ Xm, hence Xm r C

is non empty and choose xmqm ∈ Xm r C. If for some m, with n0 + 1 ≤ m ≤ n0 + b t2c,
|Xm∩C| ≥ 2, then there exists m0, with n0 +1 ≤ m0 ≤ n0 +b t2c such that Xm0 is disjoint

from C. Consequently, Xm0 t {xm0+i
qm0+i

∈ Xm0+i r C : 1 ≤ i ≤ k − |Xm0 |} is disjoint from

C. So for each m, with n0 + 1 ≤ m ≤ n0 + b t2c, |Xm ∩C| = 1. Therefore in such a case C

is a block of G(k, t) containing Xn0 . This implies that, for an arbitrary k−set C which is

not a block of G(k, t), there exists a transversal T (C) of G(k, t) which is disjoint from C.

Let T be a transversal of G(k, t). Here k ≥ t+1. Arguing similarly as in Case B, while

proving Theorem 5.2.2, we have for each n, with 0 ≤ n ≤ t− 1, Xn ∩ T 6= Xn. Therefore

Xn r T is non empty and we choose xnqn ∈ Xn r T . If for some m, with 0 ≤ m ≤ t − 1,

Xm is disjoint from T , then Xm t {xm+i
qm+i

∈ Xm+i r T : 1 ≤ i ≤ k− |Xm|} is disjoint from

T , a contradiction. Therefore for each n, with 0 ≤ n ≤ t − 1, |Xn ∩ T | ≥ 1. Hence the

second part of the result follows from pigeonhole principle.

The following remarkable lemma is essentially the case n = 1 of [24, Theorem 2.1].

Since the original proof is obscured by many hypotheses and technical terms, we include

a simpler proof for the sake of completeness.

Recall that, for any finite sequence (r1, . . . , rt) its cyclic shifts are the t sequences

(ri+1, . . . , ri+t) where 0 ≤ i ≤ t− 1 and the addition in the subscripts is modulo t.
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Lemma 5.2.4 (Raney). Let (r1, r2, . . . , rt) be a finite sequence of integers such that
t∑
i=1
ri =

1. Then, exactly one of the t cyclic shifts of this sequence has all its partial sums strictly

positive.

Proof : For 1 ≤ n ≤ t, let sn = r1 + . . .+ rn − n
t . Let µ be an index such that sµ is the

minimum of these t numbers. Now, for µ+ 1 ≤ m ≤ t,

rµ+1 + . . .+ rm = (sm − sµ) +
m− µ
t

> 0

and for 1 ≤ m ≤ µ,

rµ+1 + . . .+ rt + r1 + . . .+ rm = 1− (sµ +
µ

t
) + (sm +

m

t
)

= (sm − sµ) + 1− µ−m
t

> 0.

Thus, the partial sums of (rµ+1, . . . , rµ+t) are all strictly positive. This proves the exis-

tence.

Conversely, let µ be an index for which the partial sums of (rµ+1, . . . , rµ+t) are all

strictly positive. Then each of these partial sums is at least 1, so that if we subtract a

proper fraction from one of them, then the result remains positive. For µ+ 1 ≤ m ≤ t,

sm − sµ = (rµ+1 + . . .+ rm)− m− µ
t

> 0

and for 1 ≤ m < µ,

sm − sµ = (rµ+1 + . . .+ rt + r1 + . . .+ rm)− (1− µ−m
t

) > 0

Thus µ is the unique index for which sµ = min{si : 1 ≤ i ≤ t}. This proves the uniqueness.

Theorem 5.2.5. tr(F(k, t)) = t.

Proof : If C is any t−set which intersects each Xn in a singleton, then C is a blocking

set of F(k, t). So tr(F(k, t)) ≤ t. So, it suffices to show that F(k, t) has no blocking set C

of size t− 1. Assume the contrary. For 0 ≤ n ≤ t− 1, |C ∩Xn| is a non negative integer

and
t−1∑
i=0
|C ∩Xi| = t − 1. Therefore, if we define the integers rn+1 = 1 − |C ∩Xn|, where

0 ≤ n ≤ t− 1, then
t∑
i=1
ri = 1. So applying Lemma 5.2.4 to this sequence, we get a unique

0 ≤ µ ≤ t − 1 such that
n∑
i=0
rµ+i ≥ 1, i.e. |C ∩ (

n
t
i=0
Xµ+i)| ≤ n, for 0 ≤ n ≤ t − 1. In

particular, C is disjoint from Xµ. For 1 ≤ n ≤ k − |Xµ|, let ln = n−
n∑
i=1
|C ∩Xµ+i|. Thus
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ln ≥ 0. Let Pn be the set of all integers p ≥ 0 for which there is a sequence (p1, . . . , pn)

satisfying (?) such that pn = p and for 1 ≤ i ≤ n, xµ+i
pi /∈ C.

Claim : |Pn| ≥ 1 + ln for 1 ≤ n ≤ k − |Xµ|.

Proof of Claim : We prove it by finite induction on n. When n = 1,

|Pn| = 2− |C ∩Xµ+n|

= 1 + ln.

So the claim is true for n = 1.

Now let 1 ≤ m ≤ k − 1 − |Xµ| and suppose that the claim is true for m. Since

|C ∩Xµ+m+1| = 1 + lm − lm+1 and clearly

Pm+1 k (Pm ∪ {1 + p : p ∈ Pm})r (C ∩Xµ+m+1),

we have

|Pm+1| ≥ |Pm ∪ {1 + p : p ∈ Pn}| − |C ∩Xµ+m+1|

≥ 1 + |Pm| − |C ∩Xµ+m+1|

≥ 2 + lm − (1 + lm − lm+1)

= 1 + lm+1

This completes the induction and proves the claim.

By the case n = k−|Xµ| of the claim, Pk−|Xµ| is non empty. Hence there is a sequence

{p1, . . . , pk−|Xµ|} satisfying (?) and such that {xµ+i
pi : 1 ≤ i ≤ k− |Xµ|} is disjoint from C.

Therefore, the block Xµ t {xµ+i
pi : 1 ≤ i ≤ k − |Xµ|} is disjoint from C. Thus C is not a

blocking set of F(k, t). Since C is an arbitrary set of size t−1, this shows tr(F(k, t)) ≥ t.

Theorem 5.2.6. For k ≥ t+ 1, F(k, t) is a CIF(k, t).

Proof : Let C be a blocking k−set of F(k, t) such that C /∈ F(k, t). It is enough to

show that there exists at least one T ∈ F>(k, t) disjoint from C. If for each integer n, with

0 ≤ n ≤ t−1, there exists at least one xn ∈ Xn such that xn /∈ C, then {xn : 0 ≤ n ≤ t−1}
is the required T and we are done in this case. Suppose there exists at least one integer

n, with 0 ≤ n ≤ t − 1, such that Xn $ C. Notice that for each m with m 6= n and

0 ≤ m ≤ t − 1, there exists at least one xm ∈ Xm such that xm /∈ C. (If not, then there

exists at least one such integer m with Xm $ C. This implies that Xn t Xm ⊂ C; a

contradiction arises since k ≥ t+ 1.) When t = 2r − 1, then without loss of generality we
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can assume X0 ⊂ C. When t = 2r, then without loss of generality we can assume either

X0 ⊂ C or Xb t−1
2
c+1 = Xr ⊂ C.

Case A : Let X0 $ C.

Here C = X0 t Y . We observe that if Y is disjoint from Tn := {xni : 0 ≤ i ≤ n}, for

some n with 1 ≤ n ≤ b t2c, then Tn t {xi : xi ∈ Xi r C, n+ 1 ≤ i ≤ t− 1} is the required

transversal disjoint from C and we are done. So we assume that Y ∩ Tn 6= ∅ for each n

with 1 ≤ n ≤ b t2c. Since |Y | = b t2c and Tn, 1 ≤ n ≤ b t2c, are b t2c pairwise disjoint sets, so

Y intersects Tn in exactly one point for each n. Since C /∈ F(k, t) so Y is not of the form

{xipi : 1 ≤ i ≤ b t2c}. In the next paragraph, under these assumptions on Y , we produce a

transversal T ∈ F>(k, t) which is disjoint from both Y and X0. (Consequently, such a T

is disjoint from both C and X0.)

We have |Y ∩ {x1
0, x

1
1}| = 1 suppose x1

ε1 ∈ Y and x1
1−ε1 /∈ Y , where ε1 ∈ {0, 1}. Set

c1 = ε1. If Y is disjoint from {x2
c1 , x

2
1+c1
}, then

{x1
1−ε1 , x

2
c1 , x

2
1+c1} t {xi : xi ∈ Xi r C, 3 ≤ i ≤ t− 1}

is the required transversal and we are done. So let |Y ∩ {x2
c1 , x

2
1+c1
}| = 1. Suppose

x2
c1+ε2 ∈ Y and x2

c1+1−ε2 /∈ Y , where ε2 ∈ {0, 1}. Set c2 = c1 + ε2. In general our

construction procedure is as follows: suppose we have already constructed a sequence

c1, c2, . . . , cm with the following properties.

(a) For each n with 1 ≤ n ≤ m, cn = cn−1 + εn and εn ∈ {0, 1}.

(b) {xncn : 1 ≤ n ≤ m} ⊂ Y .

(c) Sm := {x1
1−ε1} t {x

n
cn−1+1−εn : 2 ≤ n ≤ m} is disjoint from Y .

Now we construct cm+1 if necessary. If Y is disjoint from {xm+1
cm , xm+1

1+cm
}, then

Sm t {xm+1
cm , xm+1

1+cm
} t {xi : xi ∈ Xi r C,m+ 2 ≤ i ≤ t− 1}

is the required transversal and we are done. Now let |Y ∩ {xm+1
cm , xm+1

1+cm
}| = 1, suppose

xm+1
cm+εm+1

∈ Y and xm+1
cm+1−εm+1

/∈ Y , where εm+1 ∈ {0, 1}. Set cm+1 = cm + εm+1. This

yields {xncn : 1 ≤ n ≤ m + 1} ⊂ Y and Sm+1 is disjoint from Y . Since Y is not of the

form {xipi : 1 ≤ i ≤ b t2c}, this sequence contains at most b t2c − 1 terms. If this sequence

contains exactly M terms, then Y is disjoint from {xM+1
cM

, xM+1
1+cM

}. Consequently,

SM t {xM+1
cM

, xM+1
1+cM

} t {xi : xi ∈ Xi r C,M + 2 ≤ i ≤ t− 1}

is the required transversal.

46



CHAPTER 5. 5.2. CONSTRUCTIONS OVER THE CYCLIC GRAPH

Case B : Let Xb t−1
2
c+1 $ C.

Here C = Xb t−1
2
c+1 t Y . This case is similar to the above case. (Precisely, we need to

replace b t2c by b t−1
2 c, x

(•)
p by x

b t−1
2
c+1+(•)

p and x(•) by xb t−1
2
c+1+(•).)

Now we investigate the transversal size of G>(k, t) and F>(k, t). The answers are given

in Theorem 5.2.9 and Theorem 5.2.8.

Lemma 5.2.7. Let G and H be two families with finite transversal size. Let tr(H) = 1 and

suppose that no transversal of G is a blocking set of H. Then tr(G ∪ H) = tr(G) + tr(H).

Consequently, G> ~H> j (G ∪ H)>.

Proof : Let T1 ∈ G> and T2 ∈ H>. Then T1 ∪ T2 is a blocking set of G ∪ H with size

at most |T1|+ |T2| ≤ tr(G) + tr(H). Hence tr(G ∪ H) ≤ tr(G) + tr(H) = tr(G) + 1. Note

that, if we prove equality here then it follows that |T1 ∪ T2| = |T1| + |T2|. Hence T1 and

T2 are disjoint. Therefore T1 ∪ T2 ∈ G> ~H>, showing that G> ~H> j (G ∪H)>. So, to

complete the proof, it is enough to show that tr(G ∪ H) � tr(G). Otherwise, if T ∈ G>,

then any transversal of G ∪ H is a blocking set of H, contrary to assumption.

Theorem 5.2.8. tr(G>(k, t)) = k.

Proof : We establish this result by using induction on k. From Theorem 5.2.2 we have

tr(G>(t, t)) = t i.e. the result is true for k = t. Suppose the result is true for k = n ≥ t, i.e.

tr(G>(n, t)) = n. We show that the result is true for k = n+1, i.e. tr(G>(n+1, t)) = n+1.

We construct the following t−sets.

|Tn| :=

 {xin−r : 0 ≤ i ≤ 2r − 2} if t = 2r − 1

{xin−r : 0 ≤ i ≤ r − 1} t {xjn−r+1 : r ≤ j ≤ 2r − 1} if t = 2r.

We observe that Tn+1 is a transversal of G(n+1, t) and it consists of the “new points” from

each Xi, where 0 ≤ i ≤ t − 1. Therefore it is disjoint from PG>(n,t). Let G := G>(n, t) t
{Tn+1}. Then by using Lemma 5.2.7 we have tr(G) = n+ 1. By definition of transversal

each B ∈ G(n+1, t) is a blocking set ofG>(n+1, t), therefore tr(G>(n+1, t)) ≤ |B| = n+1.

But G ⊂ G>(n+ 1, t). Hence tr(G>(n+ 1, t)) = n+ 1.

We use the same approach as in Theorem 5.2.8, to prove the same result for F>(k, t).

But we prove it by combining the previous results.

Theorem 5.2.9. tr(F>(k, t)) = k.
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Proof : We observe firstly that each B ∈ F(k, t) is a blocking set of F>(k, t). Therefore

tr(F>(k, t)) ≤ |B| = k. Secondly, F(k, t) $ G(k, t). So by using Theorem 5.2.2 and

Theorem 5.2.5 we have G>(k, t) ⊂ F>(k, t). Consequently tr(G>(k, t)) ≤ tr(F>(k, t)).

Finally, the result follows from Theorem 5.2.8.

5.3 Some applications

In this section, it is shown that Example 5.3.1 and Example 5.3.2 are counter examples

to [9, § 3, Conjecture 4] in special cases. In the following examples we continue with the

notations of Construction 5.2.1.

Example 5.3.1. By using Theorem 5.2.6, we have for k ≥ 2, tr(F(k, 2)) = 2. So by

Theorem 5.2.6 we have, for k ≥ 3, F(k, 2) is a CIF(k, 2). We observe that, the transversals

of F(k, 2) are {x0
p, x

1
q}; {x1

0, x
1
1}, where 0 ≤ p ≤ k − 2 and 0 ≤ q ≤ k − 1. Hence there

are k2 − k + 1 transversals and 3 blocks in F(k, 2). So if we take k = 4 we have a

CIF(4, 2) with 3 blocks and 13 transversals. Let A be the unique MIF(2) isomorphic to

{{a, b}, {b, c}, {a, c}} and PA ∩ PF(4,2) = ∅. Therefore by Theorem 3.2.3, F(4, 2) t (A ~

F>(4, 2)) is a MIF(4) with 42 blocks and 10 points. In this MIF(4) there are 3 points in

26 blocks, 5 points in 14 blocks and 2 points in 10 blocks.

Example 5.3.2. By using Theorem 5.2.6, we have for k ≥ 3, tr(F(k, 3)) = 3. So by

Theorem 5.2.6 we have, for k ≥ 4, F(k, 3) is a CIF(k, 3). We observe that the transversals

of F(k, 3) are {x0
p, x

1
q , x

2
r}; {x0

0, x
0
1, x

1
p}; {x1

0, x
1
1, x

2
p} and {x2

0, x
2
1, x

0
p}, where 0 ≤ p, q, r ≤

k − 2. Hence there are (k − 1)3 + 3(k − 1) transversals and 6 blocks in F(k, 3). So

if we take k = 4 and k = 5 respectively, we have a CIF(4, 3) and CIF(5, 3) with 6

blocks and 36 & 76 transversals respectively. Let A be the unique MIF(1) (respectively,

unique MIF(2) isomorphic to {{a, b}, {b, c}, {a, c}}) and PA ∩ PF(4,3) = ∅(respectively,

PA ∩ PF(5,3) = ∅). By Theorem 3.2.3, F(4, 3) t (A~ F>(4, 3)) is a MIF(4) with 42 blocks

(respectively, F(5, 3) t (A~ F>(5, 3)) is a MIF(5) with 234 blocks). In this MIF(4) there

are 1 point in 36 blocks, 6 points in 16 blocks and 3 points in 12 blocks.

Remark 5.3.3. Example 5.3.1 and Example 5.3.2 proves the existence of two non iso-

morphic MIF(4) with 42 blocks. It disproves a special case (case k = 4) of Conjecture 4

in [9], which claims such MIF(4) is unique up to isomorphism.

Remark 5.3.4. Example 5.3.2 proves the existence of a MIF(5) with 234 blocks. So we

have M(5) ≥ 234. It disproves a special case (case k = 5) of Conjecture 4 in [9], which

claims M(5) = 228.
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Lovász conjectured that, for large positive integer k, M(k) is asymptotic to (e− 1)k!.

Disproving this was the prime object of article [9]. Here we present an alternative and

simpler construction to prove M(k) is at least (k2 )k−1.

Theorem 5.3.5. Let k ≥ t+ 1. Then

M(k) ≥

 (2r − 1)(k − r + 1)r−1 + (k − r + 1)2r−1M(k − 2r + 1) if t = 2r − 1

2r(k − r)r−1 + (k − r)r(k − r + 1)rM(k − 2r) if t = 2r.

(5.3.1)

Proof : LetA be a MIF(k−t) with M(k−t) blocks. By Theorem 5.2.3 and Theorem 3.2.3,

it follows that G(k, t) t (A ~ G>(k, t)) is a MIF(k). Here we observe that any block of

G(k, t) is of the form

Xn t {xn+i
p ∈ Xn+i : 1 ≤ i ≤ k − |Xn|},

where 0 ≤ n ≤ t − 1. It means that for each Xn, with 0 ≤ n ≤ t − 1, and for each i,

with 1 ≤ i ≤ k − |Xn|, there are |Xn+i| number of choices for xn+i
p . Therefore there are

k−|Xn|∏
i=1
|Xn+i| choices for such blocks. Hence,

|G(k, t)| ≥

 (2r − 1)(k − r + 1)r−1 if t = 2r − 1

2r(k − r)r−1 if t = 2r.

Also by using Theorem 5.2.3, we have

|G>(k, t)| =

 (k − r + 1)2r−1 if t = 2r − 1

(k − r)r(k − r + 1)r if t = 2r.

Therefore the results follow from Corollary 3.2.4.

If we take t = k−1 in (5.3.1), we obtain the following corollary (Theorem 1 of [9, § 2]),

which shows that M(k) grows like at least (k2 )k−1 and it disproves Lovász Conjecture.

Corollary 5.3.6 (Frankl-Ota-Tokushige).

M(k) ≥

 (k2 + 1)k−1 if k is even

(k+1
2 )

k−1
2 (k+3

2 )
k−1
2 if k is odd .

The problem of interest is to find a MIF(k) with M(k) blocks. Using Theorem 3.2.3,

we observe that this problem actually boils down to find a CIF(k, t) F and a MIF(k − t)
A, so that |F|+ |A||F>| is maximum for some suitable choice of t ≤ k−1. So we formulate

the following conjecture.
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Conjecture 5.3.7. For any large positive integer k, any MIF(k) with M(k) blocks con-

tains a CIF(k, t), for some t ≤ k − 1, which is isomorphic to a subfamily of G(k, t).

Our future interest is to resolve Conjecture 5.3.7. Currently, we do not have any

approach to solve it. But we feel that there are a lot of intermediate questions which need

to be addressed first. Our prediction is the following.

Conjecture 5.3.8.

M(k) = |F(k, k − 1)|+ |F>(k, k − 1)| for every large positive integer k. (5.3.2)

But F(k, k−1) is not the unique CIF(k, k−1) for which (5.3.2) holds. So we formulate

the following conjectures and close this chapter.

Conjecture 5.3.9. For every sufficiently large positive integer t and every integer k with

k ≥ t+ 1,

(a) There exist at least two non-isomorphic subfamilies of G(k, t), say F1 and F2 such

that

|F>1 | = |F>2 | = |F>(k, t)|.

(b) We define the integer

M>(k, t) := max
{
|F>| : F is an intersecting family with k(F) = k and tr(F) = t

}
.

Then

M>(k, t) = |F>(k, t)|.

Acknowledgement. Theorem 5.2.5 is a joint work with Mr. Satyaki Mukherjee.
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Appendix

A.1 Introduction

In this chapter we study two extremal questions about ISP(k, t)s. The first is known

as Bollobás Inequality. It deals with the problem of finding the maximum number of

members (pairs) in an ISP(k, t). The second theorem mentioned here is based on the

problem of the finding maximum number of points in an ISP(k, t). These two theorems

played an essential role to solve the problem of getting the maximum number of points

in a maximum intersecting family in Chapter 2. Before going into the theorems let us

quickly recall the definitions of an intersecting set pair system and an ISP(k, t).

Definition.

(a) An intersecting set pair system S (in short ISP) is a collection of pairs of sets of the

form (B, T ), with the property that if (B1, T1), (B2, T2) ∈ S, then Bi ∩ Tj = ∅ if and

only if i = j.

(b) Let k, t be positive integers, with t ≤ k. An ISP(k, t) is an intersecting set pair system

S, where each pair (B, T ) has the property that |B| = k and |T | = t.

Example A.1.1. Let k, t be positive integers. Let P be a set of k+ t symbols. All pairs

of sets of the form (B,P rB), where B is a k−set from P , form an ISP(k, t). Denote this

ISP(k, t) by B(k, t), which contains
(
k+t
k

)
pairs.

A.2 Bollobás inequality

In this section we prove Theorem A.2.1. The proof idea is due to Lubell [18] and it is

based on counting permutation.

Theorem A.2.1 (Bollobás Inequality). Let S = {(Bi, Ti) : 1 ≤ i ≤ n} be an intersect-

ing set pair system. Suppose |Bi| = ki and |Ti| = ti, where 1 ≤ i ≤ n. Then the following

inequality holds:
n∑
i=1

1(
ki+ti
ki

) ≤ 1. (A.2.1)

Moreover the following inequalities hold.
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(a) If k = max{ki : 1 ≤ i ≤ n} and t = max{ti : 1 ≤ i ≤ n}, then

n ≤
(
k + t

k

)
. (A.2.2)

Equality in (A.2.2) is uniquely attained by B(k, t).

(b) If both {B : (B, T ) ∈ S}, {T : (B, T ) ∈ S} are intersecting families, then

n∑
i=1

1(
ki+ti
ki

) ≤ 1

2
. (A.2.3)

(i) Moreover in this case, if k = max{ki : 1 ≤ i ≤ n} and t = max{ti : 1 ≤ i ≤ n},
then

n ≤ 1

2

(
k + t

k

)
.

(ii) Let S be an ISP(k, k) with the property that both {B : (B, T ) ∈ S}, {T : (B, T ) ∈
S} are intersecting families. If S contains exactly 1

2

(
2k
k

)
pairs then S is isomorphic

to B(k, k).

Proof : Suppose |PS| = N and let P be the set of all linear orders on PS. Hence |P | = N !.

Let A and B be mutually disjoint subsets of PS and ≤ be a linear order on it. By A ≤ B
we mean (with respect to the linear order ≤) for each a ∈ A and b ∈ B a ≤ b. Fix

(B, T ) ∈ S. We define the following sets

Q(B, T ) = {≤∈ P : B ≤ T} ,

R(B, T ) = {≤∈ P : T ≤ B} ,

Q(B, T, x, i) =


x ∈ B,

≤∈ Q(B, T ) x occurs in the ith position and

y ≤ x for each y ∈ B

 .

Claim 1 : Q(B, T ) = t
x∈B

n
t
i=1

Q(B, T, x, i) and Q(B, T ) contains exactly N !

(k+tk )
linear orders,

where |B| = k and |T | = t.

Proof of claim : It is easy to see that

Q(B, T, x, i) ∩Q(B, T, x, j) = ∅

for i 6= j and Q(B, T, x, i) ∩Q(B, T, y, i) = ∅ for x 6= y. So let i 6= j and x 6= y. Suppose

≤∈ Q(B, T, x, i) ∩ Q(B, T, y, j), then x occurs in the ith position and y occurs in the

jth position with respect to ≤. Since i 6= j, either x ≤ y or y ≤ x. Without loss of

52



CHAPTER A. A.2. BOLLOBÁS INEQUALITY

generality assume that x ≤ y. Here ≤∈ Q(B, T, x, i) so y ≤ x. This implies that y = x, a

contradiction arises since we assume y 6= x. Hence the first part of the claim is established.

For the next part we observe that,

|Q(B, T, x, i)| =
(
i− 1

k − 1

)
(k − 1)!

(
N − i
t

)
t!(N − k − t)!

= (i− 1)!(N − i)!
(
N − k − t
i− k

)
.

From the first part we have,

|Q(B, T )| =
∑
x∈B

N∑
i=1

(i− 1)!(N − i)!
(
N − k − t
i− k

)

=

{
N∑
i=1

(i− 1)!(N − i)!
(
N − k − t
i− k

)}(∑
x∈B

1

)

=

{
N !

N−t∑
i=k

(
N − k − t
i− k

)
β(i,N − i+ 1)

}
(k)

= k

{
N !

k
(
k+t
k

)}

=
N !(
k+t
k

) .
Hence the claim is established.

Claim 2 : Q(B, T ) ∩Q(B
′
, T
′
) = ∅, for each distinct (B, T ), (B

′
, T
′
) ∈ S.

Proof of claim : Suppose ≤∈ Q(B, T ) ∩ Q(B
′
, T
′
). Let x ∈ B ∩ T ′ and y ∈ B′ ∩ T .

Then x ≤ y and y ≤ x since B ≤ T and B
′ ≤ T ′ respectively. Therefore x = y and hence

x ∈ B ∩ T . This contradicts that B ∩ T = ∅. Hence the claim is established.

From Claim 2 we have,

t
(B,T )∈S

Q(B, T ) j P. (A.2.4)

Now using Claim 1 we get,
n∑
i=1

N !(
ki+ti
ki

) ≤ N !.

Hence the inequality (A.2.1) follows.

For the next part, we are associating for each i two mutually disjoint sets B
′
i and T

′
i

of size (k − ki) and (t− ti) respectively, so that they are disjoint from PS. Then{
(Bi tB

′
i, Ti t T

′
i ) : 1 ≤ i ≤ n

}
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is an ISP(k, t). Denote it by S′ and proceeding similarly for S′ as we did for S up to (A.2.4)

in the above argument, we conclude that

n∑
i=1

N !(
k+t
k

) ≤ N !.

Hence the inequality (A.2.2) follows.

Claim 3 : If the equality in (A.2.4) holds for some ISP(k, t) S

i.e. t
(B,T )∈S

Q(B, T ) = P,

then S is isomorphic to B(k, t).

Proof of claim : Fix a k−set C from PS. Let ≤ be a linear order, which keeps the

elements of C as first k terms of the order followed by the elements of PS r C. Then the

equality in (A.2.4) implies that there exists (B, T ) ∈ S such that ≤∈ Q(B, T ), this also

implies that C = B. It means that any k−set from PS is a member of {B : (B, T ) ∈ S}.
Arguing similarly, we can conclude that any t−set from PS is a member of {T : (B, T ) ∈ S}.

Suppose |PS| ≥ k+ t+1. Fix a k−set B from PS. Then there exists at least two t−sets

T1 and T2 disjoint from B. We deduced in the earlier paragraph that S has the following

property.

Any k − set from PS is a member of {B : (B, T ) ∈ S}.

Any t− set from PS is a member of {T : (B, T ) ∈ S}.
(A.2.5)

Therefore, B ∈ {B : (B, T ) ∈ S}. Since S is an ISP(k, t), exactly one of (B, T1) or (B, T2)

is a pair of S. It means at least one of T1 and T2 is not a member of {T : (B, T ) ∈ S}. It

contradicts property (A.2.5) of S. Hence PS is a (k+t)−set and the claim is established.

Claim 4 : Suppose both {B : (B, T ) ∈ S} and {T : (B, T ) ∈ S} are intersecting families;

then for each (B
′
, T
′
) ∈ S,

R(B, T ) ∩Q(B
′
, T
′
) = ∅ and R(B, T ) ∩R(B

′
, T
′
) = ∅.

Proof of claim : Suppose ≤∈ R(B, T ) ∩ Q(B
′
, T
′
) for some (B

′
, T
′
) ∈ S. From the

hypothesis of this claim, there exists x ∈ B ∩B′ and y ∈ T ∩T ′ . Now T ≤ B and B
′ ≤ T ′

imply y ≤ x and x ≤ y respectively. Therefore x = y and hence x ∈ B′ ∩T ′ – Contradicts

that B
′ ∩ T ′ = ∅. The proof of the second part of this claim is similar to Claim 2. Hence

the claim is established.
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From Claim 4 we have,

t
(B,T )∈S

{Q(B, T ) tR(B, T )} j P.

Now using Claim 1 we get,

2
n∑
i=1

N !(
ki+ti
ki

) ≤ N !.

Hence the inequality (A.2.3) follows by taking ki = ti = k, for each i with 1 ≤ i ≤ n.

Claim 5 : Let S be an ISP(k, k) with the property that both {B : (B, T ) ∈ S}, {T :

(B, T ) ∈ S} are intersecting families. Suppose S contains exactly 1
2

(
2k
k

)
pairs,

i.e. t
(B,T )∈S

{Q(B, T ) tR(B, T )} = P,

then S is isomorphic to B(k, k).

Proof of claim : Fix a k−set C from PS. Let ≤ be a linear order, which keeps the

elements of C as first k terms of the order followed by the elements of PS r C. Then the

equality in (A.2.3) implies that there exists a pair (B, T ) ∈ S such that ≤∈ Q(B, T ) or

≤∈ R(B, T ), this also implies that C = B or C = T . It means that any k−set from PS is

a member of {B : (B, T ) ∈ S} t {T : (B, T ) ∈ S}.

Suppose |PS| ≥ 2k+ 1. Fix a k−set Y from PS. Then there exists at least two k−sets

T1 and T2 disjoint from Y . By the property (A.2.5) of S we have

Y ∈ {B : (B, T ) ∈ S} t {T : (B, T ) ∈ S}.

Without loss of generality suppose Y ∈ {B : (B, T ) ∈ S}. Since S is an ISP(k, k),

exactly one of (Y, T1) or (Y, T2) is a pair of S. It means at least one of T1 and T2 is not

a member of {T : (B, T ) ∈ S}. It contradicts the property (A.2.5) of S. Hence PS is a

2k−set and the claim is established.

A.3 On the number of points in an ISP(k, t)

Bollobás inequality shows that, for any two positive integers k and t, there are only finitely

many ISP(k, t), up to isomorphism. This raises the question of determining or estimating

the number

n(k, t) := max {v(I) : I is an ISP(k, t)} .
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Notice that we have n(k, t) = n(t, k).

Theorem A.3.1 (Theorem 6(a), [25]). For k ≥ t,

n(k, t) ≤
(
k + t

t+ 1

)
−
(

2t− 1

t+ 1

)
+

3

2

t−1∑
i=1

(
2i

i

)
.

Proof : Let S be an ISP(k, t) with n pairs. Let S1 be a sub collection of S with respect to

the minimality property PS1 = PS. Suppose it contains m1 ≤ n pairs. Due to minimality

property of S1, each pair (B, T ) ∈ S1 contains a point x(B,T ) such that x(B,T ) /∈ PS1r{(B,T )}.

This implies that

S
′
1 = {(B r x(B,T ), T r x(B,T )) : (B, T ) ∈ S1} (A.3.1)

is an intersecting set pair system such that

|PS1 | = m1 + |PS′1 |. (A.3.2)

Now from (A.2.1) of Lemma A.2.1, it follows that

m1∑
i=1

1(
k+t−1
ki

) ≤ 1 where ki = k − 1 or t− 1.

Proceeding inductively for j ≥ 2, we let Sj be a minimal intersecting set pair subsystem

of S′j−1 with respect to the property PSj = PS′j−1
. Suppose that it contains mj ≤ mj−1

pairs. Due to minimality property of Sj , each pair (B, T ) ∈ Sj contains a point x(B,T )

such that x(B,T ) /∈ PSjr{(B,T )}. This implies that

S
′
j+1 =

{
(B r {x(B,T )}, T r {x(B,T )}) : (B, T ) ∈ Sj

}
is an intersecting set pair system such that

|PSj | = mj + |PS′j |.

Now from Bollobás inequality (A.2.1) it follows that for j ≥ 2,

mj∑
i=1

1(
k+t−j
ki

) ≤ 1 where ki ∈ {k − j, . . . , k − 1} t {t− j, . . . , t− 1},

We observe that, for ki ∈ {k − j, . . . , k − 1} t {t− j, . . . , t− 1}

(
k + t− j

ki

)
≤


(
k+t−j
t

)
if j ≤ k − t( k+t−j

b k+t−j
2
c

)
if j ≥ k − t
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Therefore, we have,

|PS| ≤
∑
j≥1

mj ≤
k+t−1∑
i=2t−1

(
i

t

)
+

2t−2∑
i=1

(
i

b i2c

)

=

k+t−1∑
i=2t−1

(
i

t

)
+

t−1∑
i=1

{(
2i− 1

i− 1

)
+

(
2i

i

)}

=
k+t−1∑
i=2t−1

(
i

t

)
+

t−1∑
i=1

{
1

2

(
2i

i

)
+

(
2i

i

)}

=

k+t−1∑
i=t

(
i

t

)
−

2t−2∑
i=t

(
i

t

)
+

3

2

t−1∑
i=1

(
2i

i

)
.

The result follows since for n ≥ t we have
n∑
i=t

(
i
t

)
=
(
n+1
t+1

)
.

Construction A.3.2. Let k, t and t
′

be non negative integers, with 0 ≤ t′ ≤ t.

(a) Let P be a set of size k + t
′
. For A ∈

(
P
k

)
, let XA be a (t − t′)−set disjoint from P

and for all A, B ∈
(
P
k

)
XA is disjoint from XB. Let I be the following collection.{

(A, (P rA) tXA) : A ∈
(
P

k

)}
.

(b) Let Q be a set of size k + t
′ − 1. For A ∈

(
Q
k−1

)
, let YA be a (t− t′ + 1)−set disjoint

from Q and for all A, B ∈
(
Q
k−1

)
YA is disjoint from YB. Let J be the collection of all

pairs of the form

(A t {y}, (P rA) t (YA r {y})) ,

where A ∈
(
Q
k−1

)
and y ∈ YA.

We observe that I and J are examples of ISP(k, t) with k + t
′
+ (t − t′)

(
k+t
′

k

)
points

and k + t
′ − 1 + (t− t′ + 1)

(
k+t
′−1

k−1

)
points respectively. In [25], Tuza has constructed the

above two examples of ISP(k, t) and made a precise conjecture (see Conjecture 2.1.2) on

the numbers n(k, t). It states that for k ≥ t+ 2,

n(k, t) =

⌈
k

t+ 1

⌉(
b ktt+1c+ t

t

)
+

⌊
kt

t+ 1

⌋
+ t.
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Appendix

B.1 Introduction

We start this chapter by recalling the construction of F(k, t) from Construction 5.2.1.

Construction. Let k, t be positive integers with t ≤ k. Let Xn, 0 ≤ n ≤ t − 1, be t

pairwise disjoint sets with

|Xn| =

 k − b t2c if 0 ≤ n ≤ b t−1
2 c

k − b t−1
2 c if b t−1

2 c+ 1 ≤ n ≤ t− 1

say Xn = {xnp : 0 ≤ p ≤ |Xn| − 1}. Let F(k, t) be the family of all the k−sets of the form

Xn t
{
xn+i
pi : 1 ≤ i ≤ k − |Xn|

}
,

where addition in the superscript is modulo t and {pn} varies over finite sequences of

non-negative integers such that p0 = 0 and for n ≥ 1, pn = pn−1 or 1 + pn−1.

B.2 Stepwise Constructions

Purpose of this section is to present a second proof of Theorem 5.2.5. With this method,

we prove that tr(F(k, t)) = t for t ≤ 10. We expect that this method may be completed

to the cases t ≥ 11.

B.2.1 Construction of Gm

Construction B.2.1. We continue with the notations of the above construction. Let

G1 := {X0} and m ≤ t be a positive integer. Suppose Gm is known. If B ∈ Gm with

|B| = k, then B ∈ Gm+1. Otherwise, if B ∈ Gm with |B| ≤ k − 1 then there exists a

least integer p such that xm−1
p ∈ B, consequently B t {xmp } and B t {xm1+p} ∈ Gm+1. Also

Xm ∈ Gm+1.

By constructing G1,G2, . . . ,Gt recursively, we can see that Gm, for 1 ≤ m ≤ t, is the

family consisting of all sets of the form

Xn t
{
xn+i
pi : 1 ≤ i ≤ min(m− n− 1, k − |Xn|)

}
,
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where 0 ≤ n ≤ m− 1.

Lemma B.2.2. Let 1 ≤ m ≤ t− 1. Let B be a block of Gm+1 such that xmp ∈ B for some

non-negative integer p. Then either B = Xm or B contains exactly one of the two points

xm−1
p and xm−1

p−1 .

Proof : Let such B 6= Xm. Then B is of the form

Xn t
{
xn+i
pi : 1 ≤ i ≤ min(m− n, k − |Xn|)

}
for some non-negative integer n with 0 ≤ n ≤ m − 1. But xmp ∈ B; therefore B is of the

form Xn t
{
xn+i
pi : 1 ≤ i ≤ m− n

}
for some non-negative integer n, with 0 ≤ n ≤ m− 1.

Since xmp ∈ B, we have pm−n = p. It implies p− 1 ≤ pm−n−1 ≤ p. The result follows since

xm−1
pm−n−1

∈ B.

Lemma B.2.3. Let 1 ≤ m ≤ t− 1. Let B be a block of Gm+1 r {Xm} which contains xmp

but does not contain xm−1
p for some non-negative integer p. Then there exists a block B

′

of Gm+1 r {Xm} such that B r {xmp } = B
′ r {xmp−1}.

Proof : First we observe that such a p must be positive integer. If B is such a block

then by a similar argument as in the proof of Lemma B.2.2 we have, B is of the form

Xn t
{
xn+i
pi : 1 ≤ i ≤ m− n

}
for some non-negative integer n with 0 ≤ n ≤ m − 1. By

Lemma B.2.2 we have, {xm−1
p−1 , x

m
p } ⊂ B. So pm−n−1 = p − 1 and pm−n = p. But

Xn t
{
xn+i
pi : 1 ≤ i ≤ m− n− 1

}
t {xmp−1} is also a block of Gm+1 r {Xm}, which is the

required B
′
.

Lemma B.2.4. Let C be a blocking set of Gm+1 which contains a unique element of Xm

say xmp , for some non-negative integer p. Then Cr{xmp } is a blocking set of Gm+1r{Xm}.

Proof : If B is a block of Gm+1 r {Xm} which does not contain xmp then B ∩ (C r

{xmp }) 6= ∅. So let B be a block of Gm+1 r {Xm} which contains xmp . If B is such block

then by a similar argument as in the proof of Lemma B.2.2 we have, B is of the form

Xn t
{
xn+i
pi : 1 ≤ i ≤ m− n

}
for some non-negative integer n, with 0 ≤ n ≤ m − 1. So

pm−n = p. Therefore either Xn t
{
xn+i
pi : 1 ≤ i ≤ m− n− 1

}
t {xmp−1} =: B1 (say) or

Xn t
{
xn+i
pi : 1 ≤ i ≤ m− n− 1

}
t {xmp+1} =: B2 (say) is a block of Gm+1 r {Xm}. None

of the blocks contain xmp , so either B1 ∩ (C r {xmp }) 6= ∅ or B2 ∩ (C r {xmp }) 6= ∅. But

clearly either B1 r {xmp−1} = B r {xmp } or B2 r {xmp+1} = B r {xmp }. Since xmp is the

unique element of C ∩Xm therefore it follows that B ∩ (C r {xmp }) 6= ∅. This completes

the proof.
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Lemma B.2.5. Let C be a blocking set of Gm+1 and p be the least non-negative integer

such that xmp ∈ C. Then C
′

:= (C r {xmp }) ∪ {xm−1
p } is a blocking set of Gm+1 r {Xm}.

Consequently, |C ∩Xm| − |C
′ ∩Xm| = 1 and |C ′ | ≤ |C|. Moreover, |C ′ | = |C| if and only

if xm−1
p /∈ C.

Proof : We observe from Lemma B.2.2 the blocks of Gm+1 r {Xm}, which contains xmp

must also contain exactly one of the two points xm−1
p and xm−1

p−1 . If B is a block of

Gm+1 r {Xm} which does not contain xmp , then (C r {xmp }) ∩B 6= ∅. So let B be a block

of Gm+1 r {Xm} which contains xmp . In this case by Lemma B.2.3, either xm−1
p ∈ B or

there exists B
′ ∈ (Gm+1 r {Xm}) such that B

′ r {xmp−1} = B r {xmp }. Since p is the least

non-negative integer such that xmp ∈ C, xmp−1 /∈ C. Consequently, C ∩ (B
′ r {xmp−1}) 6= ∅,

which implies C ∩ (B r {xmp }) 6= ∅. Therefore in both the cases C
′ ∩ B 6= ∅. Hence C

′

is a blocking set of Gm+1 r {Xm}. The consequence part follows immediately from the

construction of C
′
.

Lemma B.2.6. For 1 ≤ m ≤ t− 1, tr(Gm+1) = 1 + tr(Gm).

Proof : Let F1 = Gm+1 r F2 where F2 consists only of Xm. Firstly we show that

tr(F1) = tr(Gm). Finally we show that each T ∈ F>1 is disjoint from Xm.

Let T ∈ G>m. Then T is a blocking set of F1. Consequently, tr(F1) ≤ tr(Gm). Suppose

tr(F1) ≤ tr(Gm)− 1. With this assumption let T ∈ F>1 . Then T can not be disjoint from

Xm. (If so then T is a blocking set of Gm. Hence tr(F1) = |T | ≥ tr(Gm), a contradiction.)

Therefore by Lemma B.2.5, there exists a transversal T
′

of F1, which contains exactly one

element of Xm. So by Lemma B.2.4 a proper subset of T
′

is again a blocking set of F1,

which violates the minimality property of the transversal T
′
. Hence tr(F1) = tr(Gm).

Let T ∈ F>1 . If possible suppose T is not disjoint from Xm then (by the same argument

as above) by Lemma B.2.5 there exists a transversal T
′

of F1, which contains exactly one

element of Xm. So by Lemma B.2.4 a proper subset of T
′

is again a blocking set of F1,

which violates the minimality property of the transversal T
′
, a contradiction. Hence T is

disjoint from Xm.

Let T ∈ F>1 . Since T∩Xm = ∅, therefore T is a blocking set of Gm and tr(F1) = tr(Gm).

Hence F>1 = G>m. Therefore the result follows due to Lemma 5.2.7.

Therefore we get the following theorem.

Theorem B.2.7. tr(Gt) = t.

61



B.2. STEPWISE CONSTRUCTIONS CHAPTER B.

Proof : Since G1 = {X0}, it has transversal size 1. By Lemma B.2.6, tr(Gm) = m for

1 ≤ m ≤ t. In particular, tr(Gt) = t.

B.2.2 Construction of Hm

Construction B.2.8. Let H0 := Gt and m be a non-negative integer. If B ∈ Hm with

|B| = k then B ∈ Hm+1. Otherwise, if B ∈ Hm with |B| ≤ k− 1, then there exists a least

integer p such that xm−1
p ∈ B; consequently B t {xmp } and B t {xm1+p} ∈ Hm+1.

Note that we constructed recursively, H0,H1, . . . ,Hb t−1
2
c, where Hb t−1

2
c = F(k, t). Any

blocking set of Hm is a blocking set of Hm+1. We identify all blocking sets of Hm+1

interns of various conditions. As a consequence we finally obtain the transversal size of

F(k, t) = Hb t−1
2
c.

We observe that if C is a blocking set of Hm+1 disjoint from Xm, then C is a blocking

set of Hm. Now we assume C is not disjoint from Xm and make the following definitions.

Definition. Let C be a blocking set of Hm+1.

(a) A point xmp ∈ C ∩Xm is said to be an isolated point of Xm in C if C is disjoint from

{xmp−1, x
m
p+1}.

(b) Let n ≥ 2 be a positive integer. A set of n consecutive points {xmp+i ∈ Xm : 0 ≤ i ≤
n−1} j C∩Xm is said to be an isolated consecutive n−set of Xm in C if C is disjoint

from {xmp−1, x
m
p+n}.

(c) An isolated consecutive n−set {xmp+i ∈ Xm : 0 ≤ i ≤ n − 1} j C ∩Xm is said to be

strongly isolated consecutive n−set of Xm in C if C is disjoint from {xm−1
p−1 , x

m−1
p+n−1}.

Lemma B.2.9. Let C be a blocking set of Hm+1. If C contains only isolated points (or a

unique point) of Xm, then C is a blocking set of Hm.

Proof : It is enough to show that C is a blocking set of Hm r Hm+1. Let xmp be an

isolated point (or the unique point) of Xm in C. We observe from the construction of

Hm+1 that all possible blocks B of HmrHm+1 such that B t{xmp } ∈ Hm+1 must contain

either of xm−1
p−1 or xm−1

p . Suppose B contains xm−1
p−1 , since C is a blocking set of Hm+1 and

B t{xmp−1} ∈ Hm+1, so C intersects B t{xmp−1}. But xmp is an isolated point and hence C

intersects B. Similarly suppose B contains xm−1
p . Since C is a blocking set of Hm+1 and

B t {xmp+1} ∈ Hm+1, C intersects B t {xmp+1}. But xmp is an isolated point and hence C

intersects B. Since xmp is an arbitrarily chosen isolated point (or the unique point) in C,

C is a blocking set of Hm.
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By Lemma B.2.9, we can assume if C is a finite blocking set of Hm+1, then C does not

contain any isolated points (or a unique point) of Xm.

Lemma B.2.10. Let C be a blocking set of Hm+1. Let p and q ≥ m + 1 be the least

integer and the greatest integer respectively such that p 6= q and {xmp , xmq } ⊂ C. Then

C
′

:= (C r {xmq }) ∪ {xm−1
q−1 } is a blocking set of Hm+1.

Proof : Note that q ≥ m + 1. Consider the blocks of Hm+1 which contain xmq , except

the blocks containing the set Xm. Such blocks are of the form B
′ t {xmq }, where B

′ ∈
Hm r Hm+1 with either xm−1

q−1 ∈ B
′

or xm−1
q ∈ B

′
, but not both. If xm−1

q−1 ∈ B
′

then

(Cr {xmq })∪{xm−1
q−1 } intersects B

′
at least in the point xm−1

q−1 . On the other hand we have

xm−1
q ∈ B′ . For such a B

′
we observe that B

′ t {xmq+1} ∈ Hm+1. Since q is the greatest

element, xmq+1 /∈ C. Therefore C r {xmq } intersects B
′
. Consequently C

′
is a blocking set

of Hm+1.

Suppose C is a finite blocking set of Hm+1, with 0 ≤ p ≤ m, q ≥ m+1 and {xmp , xmq } ⊂
C. Then by repeated use of Lemma B.2.10, we have a blocking set C

′
of Hm+1, with

|C ′ | ≤ |C|, such that C
′∩Xm is a non empty subset of {xmi : 0 ≤ i ≤ m}. Therefore, we can

assume that if C is a finite blocking set of Hm+1, then C contains an isolated consecutive

n−set, for some suitable positive integer n ≥ 2 and C ∩Xm j {xmi : 0 ≤ i ≤ m}.

Lemma B.2.11. Let C be a blocking set of Hm+1 and {xmp+i ∈ Xm : 0 ≤ i ≤ n− 1} j C

be an isolated consecutive n−set of Xm, but not strongly isolated consecutive n−set, where

n ≥ 2. Then

C
′

:=

 (C r {xmp }) ∪ {xm−1
p } if xm−1

p−1 ∈ C
(C r {xmp+n−1}) ∪ {x

m−1
p+n−2} if xm−1

p+n−1 ∈ C

is a blocking set of Hm+1.

Proof : Consider the blocks of Hm+1 which contain xmp (respectively, xmp+n−1), except the

blocks containing the setXm. Such blocks contain either xm−1
p−1 or xm−1

p (respectively, either

xm−1
p+n−2 or xm−1

p+n−1). Hence (Cr{xmp })∪{xm−1
p } (respectively, (Cr{xmp+n−1})∪{x

m−1
p+n−2})

intersects such blocks if xm−1
p−1 ∈ C (respectively, if xm−1

p+n−1 ∈ C). Therefore, if xm−1
p−1 ∈ C

(respectively, if xm−1
p+n−1 ∈ C) then C

′
= (C r {xmp }) ∪ {xm−1

p } (respectively,C
′

= (C r

{xmp+n−1}) ∪ {x
m−1
p+n−2}) is a blocking set of Hm+1.

By repeated use of Lemma B.2.11, we observe that there exists a blocking set C
′

of

Hm+1, with |C ′ | ≤ |C|, such that C
′

contains an isolated point of Xm (namely, either
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xmp+n−1 or xmp respectively). Therefore, we can assume that if C is a finite blocking set

of Hm+1, then C contains some strongly isolated consecutive n−set, for some suitable

positive integer n ≥ 2 and some isolated points of Xm.

Again, by using Lemma B.2.9, we observe that we can assume C does not contain any

isolated points (or a unique point) of Xm. Therefore, we can assume that if C is a finite

blocking set of Hm+1, then C contains some strongly isolated consecutive n−set, for some

suitable positive integer n ≥ 2.

Now, by using Lemma B.2.10, we can assume that if C is a finite blocking set of

Hm+1, then C contains some strongly isolated consecutive n−set, for some suitable positive

integer n ≥ 2 and C ∩Xm j {xmi : 0 ≤ i ≤ m}.

Lemma B.2.12. Let C be a blocking set of Hm+1, with C ∩Xm j {xmi : 0 ≤ i ≤ m} and

xmp ∈ C, where p 6= 0 or p 6= m. Then

C
′

:=

 (C r {xm0 }) ∪ {x
m−1
0 } if xm0 ∈ C

(C r {xmm}) ∪ {xm−1
m−1} if xmm ∈ C

is a blocking set of Hm+1.

Proof : Let B be a block of Hm+1 which do not contain Xm. If xm0 ∈ B, then xm−1
0 ∈ B.

Therefore if xm0 ∈ C then C
′

= (C r {xm0 }) ∪ {x
m−1
0 } intersects all the blocks B ∈ Hm+1,

which do not contain Xm. Since xmp ∈ C, where p 6= 0, we have C
′

= (Cr{xm0 })∪{x
m−1
0 }

is a blocking set of Hm+1.

Let xmm ∈ B ∈ Hm+1. If |B| = k then X0 ⊂ B and if |B| ≤ k−1, then either xm−1
m ∈ B

or xm−1
m−1 ∈ B. We divide our arguments in two exhaustive cases.

Case A : Suppose |B| = k. Then X0 ⊂ B.

We observe from the construction of Hm+1, that such B is of the form

X0 t {xii : 1 ≤ i ≤ m} t {xm+i
m+qi

: 1 ≤ i ≤ k − |X0| −m},

where {qn} varies over finite sequences of non-negative integers such that q0 = 0 and

for n ≥ 1, pn = pn−1 or 1 + pn−1. We note that all such blocks contain xm−1
m−1. Hence

(C r {xmm}) ∪ {xm−1
m−1} intersects these blocks.

Case B : Suppose |B| ≤ k − 1. Then either xm−1
m ∈ B or xm−1

m−1 ∈ B.

For such blocks we note that C ∩ Xm ⊂ {xmi : 0 ≤ i ≤ m}. Hence C intersects all

such blocks B, with {xm−1
m , xmm} ⊂ B, other than at a point xmm. Therefore, C

′
= (C r

{xmm}) ∪ {xm−1
m−1} intersects such blocks. Otherwise any such B, with {xm−1

m−1, x
m
m} ⊂ B,
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hence C
′

= (C r {xmm}) ∪ {xm−1
m−1} intersects all such blocks.

Since xmp ∈ C, where p 6= m, from the above two cases we conclude that C
′

=

(C r {xmm}) ∪ {xm−1
m−1} is a blocking set of Hm+1.

By using Lemma B.2.12, we can assume that if C is a finite blocking set of Hm+1, then

C contains some strongly isolated consecutive n−set, for some suitable positive integer

n ≥ 2 and C ∩Xm j {xmi : 1 ≤ i ≤ m− 1}.

Lemma B.2.13. Let C be a blocking set of Hm+1. If C contains only strongly isolated

consecutive 2−sets, then C is a blocking set of Hm.

Proof : Let {xmp , xmp+1} be a strongly isolated consecutive 2−set. It is enough to show

that C intersects B
′
, where B

′ ∈ Hm with |B′ | ≤ k−1 and either B
′t{xmp } or B

′t{xmp+1} ∈
Hm+1. Now we divide our arguments in the following two exhaustive cases.

Case A : Let B
′ ∈ Hm with |B′ | ≤ k − 1 and B

′ t {xmp } ∈ Hm+1.

From the construction of Hm, either xm−1
p−1 ∈ B

′
or xm−1

p ∈ B
′
. If xm−1

p−1 ∈ B
′
, then

B
′ t {xmp−1} ∈ Hm+1. Since {xmp , xmp+1} is a strongly isolated consecutive 2−set in C,

therefore xm−1
p−1 , xmp−1 /∈ C. Since C is a blocking set of Hm+1, C intersects B

′
other than

at a point xm−1
p−1 . If xm−1

p ∈ B′ , then such a B
′

contains either xm−2
p−1 or xm−2

p .

We show that C intersects such a B
′

other than at a point xm−1
p . If {xm−2

p−1 , x
m−1
p } ⊂ B

′
,

then (B
′r{xm−1

p })t{xm−1
p−1 } ∈ Hm+1. So by the previous arguments we have C intersects

(B
′ r {xm−1

p }) t {xm−1
p−1 } other than at a point xm−1

p−1 . Hence C intersects such a B
′

other

than at a point xm−1
p . We deal with the particular case {xm−2

p , xm−1
p } ⊂ B′ in Case B.

Case B : Let B
′ ∈ Hm with |B′ | ≤ k − 1 and B

′ t {xmp+1} ∈ Hm+1.

From the construction of Hm, either xm−1
p+1 ∈ B

′
or xm−1

p ∈ B
′
. If xm−1

p+1 ∈ B
′
, then

B
′ t {xmp+2} ∈ Hm+1. Since {xmp , xmp+1} is a strongly isolated consecutive 2−set in C,

therefore xm−1
p+1 , xmp+2 /∈ C. Since C is a blocking set of Hm+1, C intersects B

′
other

than at a point xm−1
p+1 . If xm−1

p ∈ B
′
, then such a B

′
contains either xm−2

p−1 or xm−2
p .

In Case A we already dealt the case {xm−2
p−1 , x

m−1
p } ⊂ B

′
. So let {xm−2

p , xm−1
p } ⊂ B

′
.

We show that C intersects B
′

other than at a point xm−1
p . If {xm−2

p , xm−1
p } ⊂ B

′
, then

(B
′ r {xm−1

p }) t {xm−1
p+1 } ∈ Hm+1. So by the previous arguments we have C intersects

(B
′ r {xm−1

p }) t {xm−1
p+1 } other than xm−1

p+1 . Hence C intersects B
′

other than at a point

xm−1
p .

We do not have any analogous results like Lemma B.2.13 for strongly isolated consec-

utive n−sets, where n ≥ 3. Therefore this method stops here. However there are some

answers due to Lemma B.2.9 and Lemma B.2.13. By using Lemma B.2.12, we can assume
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that if C is an arbitrary finite blocking set ofHm+1, then C contains some strongly isolated

consecutive n−set, for some suitable positive integer n ≤ 2 and C ∩Xm j {xmi : 1 ≤ i ≤
m− 1}. Therefore if |{xmi : 1 ≤ i ≤ m− 1}| = m− 1 < 3, i.e. if m < 4 then tr(Hm+1) = t.

Since F(k, t) = Hb t−1
2
c, we have if m+ 1 ≤ b t−1

2 c, i.e. m ≤ b t−1
2 c − 1, then tr(Hm+1) = t.

Consequently if b t−1
2 c − 1 < 4, i.e. b t−1

2 c < 5, then tr(Hb t−1
2
c) = t. Hence we have the

following theorem.

Theorem B.2.14. tr(F(k, t)) = t, for t ≤ 10.

B.3 An alternative proof of Raney’s Lemma

(Existence Part)

In this section we prove Lemma B.3.4 which is a crucial step in proving Theorem 5.2.5.

We consider the cyclic graph G with t vertices and label the vertices consecutively by

[0], [1], . . ., [t− 1] in a clockwise direction, i.e. vertex set is Zt. Let C = {Colour [i] : 0 ≤
i ≤ t − 1} be the set of “colours”. For each vertex [n] ∈ Zt, we associate the integer c[n]

and the Colour [n] ∈ C such that
t−1∑
i=0
c[i] = t− 1.

We begin by providing an algorithm. This algorithm describes a colouring procedure.

Henceforth, we call this algorithm the Colouring Algorithm. The steps of the algorithm

are indicated by Roman numerals.

I . Set i = 0

II . Set m = c[i], n = i.

III . If m 6= 0, then continue to next step. Otherwise, set i = i + 1. If i = t, then

terminate the algorithm; else (i.e. if i 6= t), return to Step (II).

IV . If vertex [n] is coloured, then set n = n− 1 and redo this step.

V . If vertex [n] is not coloured, then colour vertex [n] with Colour [i] and set m = m−1.

VI . Return to Step (III).

We observe that the Colouring Algorithm can only terminate at Step (III). In the next

lemma, we show that this happens in a finite number of steps. The following flow chart

illustrates the Colouring Algorithm.
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i = 0.Start.

m = c[i],

n = i.

Is m = 0? i = i + 1.

Is i = t?

Stop.

Is vertex

[n]

coloured?

n = n− 1.

Colour

vertex

[n] with

Colour [i].

m = m− 1.
Yes

Yes

No

No

No

Yes

Lemma B.3.1. The Colouring Algorithm terminates in a finite number of steps.

Proof : By Step (III) the value of i increases if and only if m = 0. Further, the previous

step of the algorithm that would have been executed must have been Step (II). Therefore

at Step (III), either we return to Step (II) with the new i or we terminate the algorithm

when i increases to t.

By Step (V), every time a vertex is coloured with Colour [i], the value of m is decreased

by 1. Further, from Step (VI) we see that if m = 0, then the value of i is increased by 1.

If the new i ≤ t− 1, then m is reset to c[i] for the new i by Step (II). Otherwise, i = t and

the algorithm terminates. Hence for every colour Colour [i] there can be a maximum of

c[i] vertices with Colour [i]. Hence at any time there can be a maximum of

t−1∑
i=0

c[i] = t− 1. (B.3.1)

coloured vertices. Hence there will always be at least one vertex with no colour. This

implies that Step (IV) decreases the value of n by 1, until the vertex [n] has no colour.
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This procedure will terminate in finite steps.

Now we see that apart from Step (IV) when we return to a lower numbered step from

a higher numbered step, either the value of m is decreased or the value of i is increased.

But we know that i increases from 0 to t. As long as i remains fixed m decreases from

c[i] to 0. Thus after a finite number of returns i = t and m = 0. As all returns are to

Step (II) or Step (III), Step (III) is always executed after a return. Hence the algorithm

terminates in finite steps.

Now we discuss the outcomes of the Colouring Algorithm.

Lemma B.3.2. For each i, with 0 ≤ i ≤ t − 1, there are exactly c[i] vertices of G which

are coloured with Colour [i].

Proof : Since the algorithm terminates in finite number of steps, all values of i from 0 to

t − 1 must be taken consecutively starting from 0. Further, increment of i only happens

if m = 0 and after the increment m equals c[i] for the new value of i. Thus for each i,

with 0 ≤ i ≤ t − 1, m must decrease from c[i] to 0, at which instance the value of i is

increased. Hence for each i, m is decreased by 1 exactly c[i] times. But as m is decreased

exactly after a vertex is coloured with Colour [i] and no coloured vertex is recoloured [see

Step (IV)], we have exactly c[i] vertices with Colour [i].

Lemma B.3.3. There exists a unique vertex say [µ] of G, which is not coloured and it

satisfies the following properties.

(a) c[µ] = 0.

(b) For each n, with 1 ≤ n ≤ t − 1, all vertices of G with Colour [µ + n] is a subset of

{[µ+ i] : 1 ≤ i ≤ n}.

(c) For each n, with 1 ≤ n ≤ t− 1,
n∑
i=1

(1− c[µ+i]) ≥ 0.

Proof : By using Lemma B.3.2, we have there are c[i] vertices with Colour [i], where

0 ≤ i ≤ t − 1. Hence
t−1∑
i=0
c[i] = t − 1 vertices are coloured. As a consequence, exactly

one vertex of G is not coloured. This proves the existence a unique vertex say [µ] of G,

which is not coloured. At the time when i = s, m = c[i] = c[µ]. If c[µ] 6= 0, then according

to the algorithm, we move from Step (III) to Step (V) and colour the vertex [µ] with

Colour [µ]. This means vertex [µ] receives Colour [µ], a contradiction arises since the

algorithm terminates without colouring that vertex [µ]. Hence (a) follows.
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Fix integers i and j, with 1 ≤ i ≤ t−1 and 1 ≤ j ≤ i. Recall that we started colouring

with Colour [µ + i] at n = [µ + i]. Then we kept on decreasing n by 1 and colouring

whichever vertex was not coloured (until there were c[µ+i] vertices with Colour [µ+ i]) but

as vertex [µ] is not coloured n was never equal to [µ]. Hence n could only have taken the

values [µ+ i], [µ+ i− 1], [µ+ i− 2], ....., [µ+ 1]. Thus all the vertices with Colour [µ+ i]

need to be in this set which proves (b).

c[µ+m] vertices are coloured with the colour Colour [µ+m], where 1 ≤ m ≤ n. Hence
n∑

m=1
c[µ+m] vertices are coloured with the colours Colour [µ + 1], Colour [µ + 2], . . .,

Colour [µ+ n]. Therefore by using part (b) we have,

n∑
m=1

c[µ+m] ≤ n.

This proves (c).

Recall that, for any finite sequence (x0, . . . , xt−1) its cyclic shifts are the t sequences

(xi+1, . . . , xi+t) where 0 ≤ i ≤ t− 1.

Lemma B.3.4 (Raney). Let (r0, r1, . . . , rt−1) be a finite sequence of integers such that
t−1∑
i=0
ri = 1. Then, one of the t cyclic shifts of this sequence has all its partial sums strictly

positive.

Proof : Put rn = 1 − c[n] for each n, with 0 ≤ n ≤ t − 1. We choose µ
′ ∈ [µ] such that

0 ≤ µ
′ ≤ t − 1. Then by Lemma B.3.3, µ

′
is the required index. The next part of the

result follows from (a) and (c) of Lemma B.3.3.

B.4 On the number of transversals of F(k, 2)

We start this section with the following definition.

Definition. A family of k−sets F is said to be a transversally minimal family of k−sets

if tr(F) < ∞ and for each B ∈ F we have tr(F r {B}) = tr(F) − 1. In addition, if F
is an intersecting family then F is said to be transversally minimal intersecting family of

k−sets with transversal size t in short TmIF(k, t).

Fix a block B ∈ F(k, t). Suppose B = Xn0 t
{
xn0+i
pi : 1 ≤ i ≤ k − |Xn0 |

}
, where

addition in the superscript is modulo t. Consider the sets Xj , 0 ≤ j ≤ t− 1, except those

that correspond to j, with j = n0 + i, 0 ≤ i ≤ k− |Xn0 | and the addition is modulo t. Let
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Y be a set consisting of one element from each such Xj . Hence |Y | = t− (k−|Xn0 |+ 1) =

t− 1− (k − |Xn0 |). We observe that for 1 ≤ i ≤ k − |Xn0 |,

pi =
i∑

j=1

εj ,

where for each j, with 1 ≤ j ≤ i, εj ∈ {0, 1}. Now we construct a finite sequence q1, q2,. . .,

qk−|Xn0 | as follows, q1 = 1− ε1 and for i ≥ 2

qi :=

i−1∑
j=1

εj + (1− εi).

Set Z = {xn+i
qi : 1 ≤ i ≤ k − |Xn0 |}, where addition in the superscript is modulo t. Then

Y t Z is a (t − 1)−set disjoint from B. Since by Theorem 5.2.5, tr(F(k, t)) = t it shows

that, F(k, t) is an example of TmIF(k, t). We recall that,

M>(k, t) := max
{
|F>| : F is an intersecting family with k(F) = k and tr(F) = t

}
.

If F is an intersecting family of k−sets with transversal size t, then there exists a TmIF(k, t)

G such that G ⊆ F . As a consequence F> j G>. Therefore, if F itself is a TmIF(k, t),

then it may contain the maximum number of transversals. Our guess is that for large

positive integers t and k, with k ≥ t+ 1 M>(k, t) = |F(k, t)| (see (b) of Conjecture 5.3.9).

In this section we show that

M>(k, 2) = k2 − k + 1 for k ≥ 3.

This result is not new. It appeared in [8, Proposition 1, Page 143]. However the solution

technique used here is independent and completely new. Our answer is a little stronger

(see Theorem B.4.9). Our aim is to give a uniform solution to establish,

M>(k, 3) = (k − 1)3 + 3(k − 1) = |F>(k, 3)| for k ≥ 4.

This problem has a solution for k = 4, 5 in [4, 12] and for k ≥ 9 in [8, Theorem 1]. In [10],

Frankl et al. studied about M>(k, t), where k and t are positive integers with k ≥ t.

We recall the construction of F(k, 2).

Construction. Let k ≥ 3 be an integer. Let X0 = {x0
i : 0 ≤ i ≤ k − 1} and X1 = {x1

i :

0 ≤ i ≤ k − 2}, be 2 pairwise disjoint sets. The family of k−sets F(k, 2) consists of three

k−sets X0, X1 t {x0
0} and X1 t {x0

1}.

The complete list of transversals of F(k, 2) are {x, y} and {x0
0, x

0
1}, where x ∈ X0 and
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y ∈ X1. Therefore there are k2− k+ 1 transversals of F(k, 2). The purpose of this section

is to prove Theorem B.4.9. In this section, we assume k ≥ 3 is a positive integer. Let F
be a TmIF(k, 2). Fix B1, B2 ∈ F and let |B1 r B2| = n, where 1 ≤ n ≤ k − 1. Let G :=

F r {B1, B2}. It is a non empty family with tr(G) = 1. We define X := {x : {x} ∈ G>}.
The proof of Theorem B.4.9 is based on the parameter |X|.

Lemma B.4.1. For each B ∈ G, X ⊆ B.

Proof : Suppose there exists B ∈ G such that X * B. This means there exists x ∈ X
such that x /∈ B. It contradicts that the transversal of G namely {x} intersects B. Hence

the result follows.

Lemma B.4.2. 2 ≤ |X| ≤ k.

Proof : Since G is a non empty family of k−sets therefore the upper bound follows from

Lemma B.4.1.

X is disjoint from B1∩B2. (If not, then x ∈ X ∩ (B1∩B2) and {x} is a blocking set of

F . It contradicts that tr(F) = 2.) Since for i = 1 and i = 2 we have tr(F r {Bi}) = 1, so

(F r {Bi})> ⊂ G>. Therefore X intersects both B1 rB2 and B2 rB1. The lower bound

follows since B1 rB2 is disjoint from B2 rB1.

We prove in Lemma B.4.2 that X is disjoint from B1 ∩ B2 and X intersects both

B1rB2 and B2rB1. Let G1 denote the collection of transversals of F of the form {x, y},
where x ∈ X and y ∈ B1 ∩B2.

Let {x, y} ∈ F>, where x ∈ X and y /∈ B1 ∩ B2. Then y ∈ (B1 ∪ B2) r (B1 ∩ B2).

So if such y ∈ B1 rB2 (respectively, y ∈ B2 rB1) then x ∈ X ∩ (B2 rB1) (respectively,

x ∈ X ∩ (B1 rB2)). Let G2 denote the collection of transversals of F of the form {x, y},
where either x ∈ X ∩ (B1 rB2) and y ∈ B2 rB1 or x ∈ X ∩ (B2 rB1) and y ∈ B1 rB2.

Suppose there exists a blocking set of G which is disjoint from X. Let C be such a

blocking set. Then C ∈ F> if C intersects B1 and B2 and |C| = 2. Let G3 denote the

collection of transversals of F of the form {x, y}, where {x, y} is disjoint from X and it

intersects B1 or B2.

Lemma B.4.3. F> = G1 ∪ G2 ∪ G3.

Proof : We already have G1 ∪ G2 ⊂ F>. If G3 is empty then F> = G1 ∪ G2 and we

are done. Let F> r (G1 ∪ G2) be non empty and T be such a transversal. We show that

T ∈ G3. Let T = {x, y}. If possible suppose T ∩ X 6= ∅. Without loss of generality let
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x ∈ X. Then either y ∈ B1 ∩ B2 or y /∈ B1 ∩ B2. But in both the cases, T ∈ G1 ∪ G2, a

contradiction. Hence T is disjoint from X but T ∈ F>. So T is a a blocking set of G and

intersects both B1 and B2. Hence T ∈ G3.

Lemma B.4.4. If 2 ≤ |X| ≤ k − 2, then F has at most k2 − 2k + 3 transversals.

Proof : Suppose |X| = m. We need to estimate G1, G2 and G3 of Lemma B.4.3. There

are m(k − n) transversals in G1. We use the inclusion-exclusion principle to estimate the

number of transversals in G2. There are at most mn − 1 transversals in G2. Consider

the family of sets which consists of the blocks of the form B r X, where B ∈ G. Call

it GX̄ . By Lemma B.4.1 GX̄ is a family of (k −m)−sets. We observe that each T ∈ G3

is a minimal blocking set of GX̄ . Hence there are at most (k − m)2 transversals in G3.

Therefore there are at most m(k−n) +mn− 1 + (k−m)2 transversals. The result follows

since max{k2 −mk +m2 − 1 : 2 ≤ m ≤ k − 2} = k2 − 2k + 3.

Lemma B.4.5. If |X| = k, then F has at most k2 − k + 1 transversals.

Proof : Since |X| = k then by using Lemma B.4.1 we have G = {X} and (say) A :=

{B1, B2, X} ⊂ F . But tr(A) = 2 and F is a TmIF(k, 2), hence F = A. To count the

number of transversals we need to estimate G1, G2 and G3 of Lemma B.4.3. But G3 is

empty. There are k(k − n) transversals in G1 and there are at most n2 transversals in

G2. Therefore there are at most k(k − n) + n2 transversals. The result follows since

max{k(k − n) + n2 : 1 ≤ n ≤ k − 1} = k2 − k + 1.

Lemma B.4.6. If |X| = k − 1, then for k ≥ 4, F has at most k2 − k − 1 transversals.

Also for k = 3, F has at most 6 transversals.

Proof : Since |X| = k − 1, G contains at least two blocks. Suppose B and C are two

distinct blocks in G. Since tr(F r {C}) = 1, B ∩ B1 ∩ B2 6= ∅. By a similar reasoning

C∩B1∩B2 6= ∅. We recall from Lemma B.4.2 that X is disjoint from B1∩B2. Therefore by

using Lemma B.4.1 we can assume B∩B1∩B2 = {p} and C∩B1∩B2 = {q} and (say) A :=

{B1, B2, X t {p}, X t {q}} ⊂ F . But tr(A) = 2 and F is a TmIF(k, 2), hence F = A. To

count the number of transversals we need to estimate G1, G2 and G3 of Lemma B.4.3. There

are (k− 1)(k− n) transversals in G1 and there is exactly one transversal namely {p, q} in

G3. We observe that if |X ∩ (B1∪B2)| ≥ 3, then by using the inclusion-exclusion principle

G2 has at most n(k − 1) − 2 transversals otherwise G2 has exactly 2n − 1 transversals.

In the respective cases F has at most (k − 1)(k − n) + n(k − 1) − 2 + 1 and at most
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(k − 1)(k − n) + 2n− 1 + 1 transversals. The result follows since

max{k(k − 1)− 1, k2 − (n+ 1)k + 3n : 1 ≤ n ≤ k − 1}

= max{k2 − k − 1, k2 − 2k + 3}

=

 k2 − k − 1 if k ≥ 4

6 if k = 3.

Theorem B.4.7. Let k ≥ 3 be a positive integer. Any TmIF(k, 2) has at most k2− k+ 1

transversals. Moreover, F(k, 2) is the unique TmIF(k, 2) which has k2−k+1 transversals.

Proof : The first part is a direct consequence of Lemma B.4.4, Lemma B.4.5 and

Lemma B.4.6. It also shows that any TmIF(k, 2) which has k2−k+1 transversals contains

3 blocks and satisfies an intersecting pattern 1 and k−1. (i.e. for each different B1, B2 ∈ F
the size of B1 ∩B2 is either 1 or k − 1.) Hence the uniqueness part follows.

Theorem B.4.8. Let k ≥ 4 be a positive integer. Any TmIF(k, 2), which is not isomorphic

to F(k, 2), has at most k2 − k − 1 transversals.

Proof : This is a direct consequence of Theorem B.4.7, Lemma B.4.4 and Lemma B.4.6.

Theorem B.4.9. Let k ≥ 3 be an integer. Any finite intersecting family of k−sets with

transversal size 2 has at most k2 − k + 1 transversals. Moreover, F(k, 2) is the unique

intersecting family of k−sets which has k2 − k + 1 transversals.

Proof : Let F be an intersecting family of k−sets with k2−k+1 transversals. Let A be a

TmIF(k, 2) and it is a subfamily of F . Since F> ⊂ A>, A has at least k2−k+1 transversals.

Then by Theorem B.4.7 A is isomorphic to F(k, 2). Hence by using Theorem 5.2.6, we

have A is a CIF(k, 2). If possible, suppose B ∈ F rA. Then by the closure property of

A there exists T ∈ A> disjoint from B. So F has at most |A>| − 1 = k2 − k transversals,

a contradiction. Therefore A = F .
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