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Chapter 1

Introduction

In recent years, there has been a wide variety of work on random reinforcement models of

various kinds [26, 55, 47, 41, 5, 34, 48, 54, 14, 22, 25, 23, 44, 20, 17]. Urn models form an

important class of random reinforcement models, with numerous applications in engineering

and informatics [60, 42, 50] and bioscience [19, 30, 31, 5, 44]. In recent years there have been

several works on different kinds of urn models and their generalizations [41, 5, 34, 14, 25, 23,

45, 20, 44, 17]. For occupancy urn models, where one considers recursive addition of balls into

finite or infinite number of boxes, there are some works which introduce models with infinitely

many colors, typically represented by the boxes [29, 37, 39].

As observed in [51], the earliest mentions of urn models are in the post-Renaissance period

in the works of Huygen, de Moivre, Laplace and other noted mathematicians and scientists. The

rigorous study of urn models began with the seminal work of Pólya [57, 56], where he introduced

the model to study the spread of infectious diseases. We will refer to this model as the classical

Pólya urn model. Since then, various types of urn schemes with finitely many colors have been

widely studied in literature [36, 35, 3, 4, 53, 38, 40, 41, 5, 34, 14, 15, 25, 18, 17]. See [54] for

an extensive survey of the known results. However, other than the classical work by Blackwell

and MacQueen [13], there has not been much development of infinite color generalization of the

Pólya urn scheme. In this thesis, we introduce and analyze a new Pólya type urn scheme with

countably infinite number of colors.

1



2 Chapter 1: Introduction

1.1 Model description

A generalized Pólya urn model with finitely many colors can be described as follows:

Consider an urn containing finitely many balls of different colors. At any time

n ≥ 1, a ball is selected uniformly at random from the urn, the color of the selected

ball is noted, the selected ball is returned to the urn along with a set of balls of

various colors which may depend on the color of the selected ball.

The goal is to study the asymptotic properties of the configuration of the urn. Suppose there

are K ≥ 1, different colors and we denote the configuration of the urn at time n by Un =

(Un,1, Un,2 . . . , Un,K), where Un,j denotes the number of balls of color j, 1 ≤ j ≤ K. The

dynamics of the urn model depend on the replacement policy. The replacement policy can be

described by a K ×K matrix, say R with non negative entries. The (i, j)-th entry of R is the

number of balls of color j which are to be added to the urn if the selected color is i. In literature,

R is termed as the replacement matrix. Let Zn denote the random color of the ball selected at

the (n+ 1)-th draw. The dynamics of the model can then be written as

Un+1 = Un +RZn (1.1.1)

where RZn is the Zn-th row of the replacement matrix R.

A replacement matrix is said to be balanced, if the row sums are constant. In this case,

after every draw a constant number of balls are added to the urn. For such an urn, a standard

technique is to divide each entry of the replacement matrix by the constant row sum, thus

without loss of generality, one may assume that the row sums are all 1, that is, the replacement

matrix is a stochastic matrix. In that case, it is also customary to assume U0 to be a probability

distribution on the set of colors, which is to be interpreted as the probability distribution of

the selected color of the first ball drawn from the urn. Note that, in this case the entries of

Un = (Un,1, Un,2 . . . , Un,K) are no longer the number of balls of different colors, instead the

entries of Un/ (n+ 1) are the proportion of balls of different colors. We will refer to it as the

(random) configuration of the urn. It is useful to note here that the random probability mass
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function Un/ (n+ 1) represents the probability distribution of the random color of the (n+ 1)-th

selected ball given the n-th configuration of the urn. In other words, if Zn is the color of the ball

selected at the (n+ 1)-th draw, then,

P
(
Zn = i

∣∣∣U0, U1, . . . , Un

)
=

Un,i
n+ 1

, 1 ≤ i ≤ K. (1.1.2)

Since R is a stochastic matrix and U0 a probability distribution on the set of colors, we can

now consider a Markov chain on the set of colors with transition matrix R and initial distribution

U0. We call such a chain, a chain associated with the urn model and vice-versa. In other words,

given a balanced urn model we can associate with it a Markov chain on the set of colors and

conversely, given a Markov chain there is an associated urn model with colors indexed by the

state space.

1.1.1 Urn models with infinitely many colors

The above formulation can now be easily generalized for infinitely many colors. Let the colors

be indexed by a finite or countably infinite set S, and the replacement matrix R, be a stochastic

matrix suitably indexed by S. Let Un := (Un,v)v∈S ∈ [0,∞)S , where Un,v is the weight of the

v-th color in the urn after n-th draw. In other words,

P
(

(n+ 1)−th selected ball has color v
∣∣∣Un, Un−1, · · · , U0

)
∝ Un,v, v ∈ S. (1.1.3)

Starting withU0 as a probability vector, the dynamics of (Un)n≥0 is defined through the following

recursion

Un+1 = Un + χn+1R (1.1.4)

where χn+1 = (χn+1,v)v∈S is such that χn+1,Zn = 1 and χn+1,u = 0 if u 6= Zn, where Zn is

the random color chosen from the configuration Un. In other words,

Un+1 = Un +RZn

where RZn is the Zn−th row of the matrix R.

It is important to note here that in general Un,v is not necessarily an integer. When S is
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infinite, Un,v can be made an integer after suitable multiplication only for certain restrictive cases.

One such case is when each row of R is finitely supported with all entries rational. However,

as discussed in Section 1.1, Un/ (n+ 1) will always denote the proportion of balls of various

colors.

When S is infinite we will call such a process an urn model with infinitely many colors.

The associated Markov chain is on the state space S, with transition probability matrix R and

initial distribution U0. As observed in the finite color case, in general, the random probability

mass function Un/ (n+ 1) represents the probability distribution of the random color of the

(n+ 1)-th selected ball given the n-th configuration of the urn. Recall that Zn denotes the

(n+ 1)-th selected color. Thus for any v ∈ S,

P
(
Zn = v

∣∣∣Un, Un−1, · · · , U0

)
=

Un,v
n+ 1

, (1.1.5)

which implies

P (Zn = v) =
E [Un,v]

n+ 1
. (1.1.6)

In other words, the distribution of Zn is given by the expected proportion of the colors at time n.

It is worthwhile to note here, (1.1.3) and (1.1.4) imply that
(
Un
n+1

)
n≥0

is a time inhomogeneous

Markov chain with state space as the set of all probability measures on S.

It is to be noted here, that we write all vectors as row vectors, unless otherwise stated.

1.2 Motivation

Our main motivations to study such a process have been twofold. It is known in the literature

[38, 40, 14, 15, 25], that the asymptotic properties of a finite color urn depend on the qualitative

properties of the underlying Markov chain. For example, for an irreducible aperiodic chain with

K colors, it is shown in [38, 40] that, as n→∞,

Un,j
n+ 1

−→ πj a.s. (1.2.1)
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for all 1 ≤ j ≤ K, where π = (πj)1≤j≤K is the unique stationary distribution of the associated

Markov chain. It is also known [40, 41] that if the chain is reducible and j is a transient state

then, as n→∞,
Un,j
n+ 1

−→ 0 a.s. (1.2.2)

Further non-trivial scalings have been derived for the reducible case [40, 41, 14, 15, 25]. So one

may conclude that asymptotic properties of an urn model depend on the recurrence/transience of

the underlying states. We want to investigate this relation when there are infinitely many colors.

In [7], we studied the infinite color model, with colors indexed by Zd, where R is the transition

matrix of a bounded increment random walk on Zd. The bounded increment random walks on

Zd, is a rich class of examples of Markov chains on infinite states covering both the transient and

null recurrent cases. Needless to state, that for the finite color case, the associated Markov chain

can posses no null recurrent state. As we shall see later, our study will indicate a significantly

different phenomenon for the infinite color urn models associated with the bounded increment

random walks on Zd. In fact, we shall show that the asymptotic configuration is approximately

Gaussian, irrespective of whether the underlying walk is transient or recurrent.

Another motivation comes from the work of Blackwell and MacQueen [13], where the

authors introduced a possibly infinite color generalization of the Pólya urn scheme. In fact, their

generalization even allowed uncountably many colors; the set of colors typically taken as some

Polish space. The model then describes a process whose limiting distribution is the Ferguson

distribution [12, 13], also known as the Dirichlet process prior in the Bayesian statistics literature

[33]. The replacement mechanism in [13] is a simple diagonal scheme, that is, it reinforces only

the chosen color. As in the classical finite color Pólya urn scheme, where R is the identity matrix,

this leads to exchangeable sequence of colors. We complement the work of [13], by considering

replacement mechanisms with non-zero off-diagonal entries. We would like to point out that

due to the presence of off-diagonal entries in the replacement matrix, our models do not exhibit

exchangeability and hence the techniques used to study our model are entirely different and new.

We will present a coupling of the urn model with the associated Markov chain, which will be our

most effective method in analyzing the urn models introduced in this work.
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1.2.1 A simple but useful example

We present a simple example to motivate the study of urn models with infinitely many colors.

Let the colors be indexed by N ∪ {0}, and U0 = δ0. The replacement matrix R is given by

R(i, j) =


1 if j = i+ 1 for all i, j ∈ N ∪ {0},

0 otherwise.
(1.2.3)

Note that R has non-zero off diagonal entries. Since R is given by (1.2.3), after every draw a

new color is introduced with positive probability. Hence, even though the urn contains only

finitely many colors after every draw, we require to index the set of colors by the infinite set

N ∪ {0}, to define the process.

The associated Markov chain (Xn)n≥0 on the state space N ∪ {0}, with transition matrix R

given by (1.2.3), is a deterministic chain always moving one step to the right. Therefore, we call

this Markov chain the right shift and the corresponding urn process (Un)n≥0 as the urn model

associated with the right shift. Note that, the right shift is trivially a transient chain.

Theorem 1.2.1. Consider an urn model (Un)n≥0 associated with the right shift, such that the
process starts with a single ball of color 0. If Zn denotes the (n+ 1)-th selected color then, as
n→∞,

Zn − log n√
log n

⇒ N(0, 1). (1.2.4)

To prove Theorem 1.2.1 we use the following lemma.

Lemma 1.2.1. Let (Ij)j≥1 be a sequence of independent Bernoulli random variables with
E [Ij ] = 1

j+1 , j ≥ 1. If τn =
∑n

j=1 Ij , and τ0 ≡ 0, then as n→∞,

τn − log n√
log n

⇒ N (0, 1) . (1.2.5)

Proof. E [τn] =
∑n

j=1 E [Ij ] =
∑n

j=1
1
j+1 . Therefore,

E [τn] ∼ log n, as n→∞, (1.2.6)

where for any two sequences (an)n≥1 and (bn)n≥1 of positive real numbers, we write an ∼ bn
to denote lim

n→∞

an
bn

= 1.
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Similar calculations show that

s2
n = Var (τn) =

∑n
j=1

1
j+1 −

1
(j+1)2

∼ log n, as n→∞. (1.2.7)

Since Ij can possibly take only two values, namely 0, and 1, so for any ε > 0, we have

1

s2
n

n∑
j=1

E
[∣∣∣Ij − 1

j + 1

∣∣∣21{|Ij− 1
j+1
|>εsn}

]
−→ 0, as n→∞.

Therefore, the Lindeberg-Feller Central Limit theorem (see page 129 of [28]) implies that as
n→∞,

τn − E [τn]√
log n

⇒ N (0, 1) , (1.2.8)

since the variance of τn is given by (1.2.7). Observe that,

τn − log n√
log n

=
τn − E [τn]√

log n
+

E [τn]− log n√
log n

.

It is easy to see that E [τn]− log n =
∑n

j=1
1
j+1 − log n −→ γ − 1, as n→∞, where γ is the

Euler’s constant (see page 192 of [2]). Therefore, from (1.2.8) and Slutsky’s theorem (see page
105 of [28]), we get as n→∞,

τn − log n√
log n

⇒ N (0, 1) . (1.2.9)

Proof of Theorem (1.2.1). As observed earlier in (1.1.6), we know that

P (Zn = v) =
E [Un,v]

n+ 1
. (1.2.10)

Therefore, the moment generating function E
[
eλZn

]
for Zn is given by

1

n+ 1

∑
j∈N∪{0}

E [Un,j ] e
λj , for λ ∈ R. (1.2.11)

For every λ ∈ R, let x (λ) =
(
eλj
)T
j∈N∪{0}. It is easy to see that eλ and x (λ) satisfy

Rx (λ) = eλx (λ) ,
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where the equality holds coordiante-wise. Define the vector scalar product

Unx (λ) =
∑

j∈N∪{0}

Un,je
λj . (1.2.12)

From (1.1.4) and (1.1.6), we know that

E
[
χn
∣∣Un−1

]
=
Un−1

n
.

Therefore, it follows that

E
[
Unx (λ)

∣∣Un−1

]
=

(
1 +

eλ

n

)
Un−1x (λ) .

This implies,

1

n+ 1
E [Unx (λ)] =

1

n+ 1

∑
j∈N∪{0}

E [Un,j ] e
λj =

1

n+ 1

(
1 +

eλ

n

)
E [Un−1]x (λ) .

Repeating the same iteration, we obtain

1

n+ 1
E [Unx (λ)] =

1

n+ 1

n∏
j=1

(
1 +

eλ

j

)

=
n+1∏
j=1

(
1− 1

j + 1
+

eλ

j + 1

)
. (1.2.13)

Observe that the right hand side of (1.2.13) gives the moment generating function of τn, where τn
is as in Lemma 1.2.1. Note that τn is a non-negative random variable for every n ≥ 0. Therefore,
from Theorem 1 on page 430 of [32] it follows that for all n ≥ 0,

Zn
d
= τn, (1.2.14)

where for any two random variables X and Y , the notation X d
= Y denotes that X and Y have

the same distribution. Hence (1.2.5) implies (1.2.4). This completes the proof.

Later, in Chapters 2 and 5, we will further improve the representation (1.2.14) for urn models

with general replacement matrices. This representation is new and will serve as the key tool in

deriving the asymptotic properties of the urns with more general replacement matrices.
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1.3 Outline and brief sketch of the results

The rest of this work is broadly divided into five chapters. The first three chapters, Chapters 2,

3 and 4 discuss the various asymptotic properties of the urn models associated with bounded

increment random walks on Zd. Chapters 5 and 6 consider urn models with general replacement

matrices.

1.3.1 Central limit theorems for the urn models associated with random walks

Based on [7] and [8], in Chapter 2, we study an urn process when S = Zd, and R is the transition

matrix of a bounded increment random walk on Zd. This is a novel generalization of the Pólya

urn scheme, which combines perhaps the two most classical models in probability theory, namely

the urn model and the random walk. We prove central limit theorems for the random color of the

n-th selected ball and show that, irrespective of the null recurrent or transient behavior of the

underlying random walks, the asymptotic distribution is Gaussian after appropriate centering

and scaling. In fact, we show that the order of any non-zero centering is always O (log n) and

the scaling is O
(√

log n
)
. In this chapter, we also prove Berry-Essen type bounds and show that

the rate of convergence of the central limit theorem is of the order O
(

1√
logn

)
.

1.3.2 Local limit theorems for the urn models associated with random walks

In Chapter 3, we further consider urn models associated with bounded increment random walks

on Zd. In this chapter, we obtain finer asymptotes for the distribution of the randomly selected

color. We derive the local limit theorems for the probability mass function of the randomly

selected color, [7].

1.3.3 Large deviation principle for the urn models associated with random walks

Based on [8], in Chapter 4, we study further asymptotic properties of urn models associated with

bounded increment random walks on Zd. Here, we show that for the expected configuration a

large deviation principle (LDP) holds with a good rate function and speed log n. Moreover, we

prove that the rate function is the same as the rate function for the large deviation of the random
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walk sampled at random stopping times, where the stopping times follow Poisson distribution

with mean 1.

1.3.4 Representation theorem

In Chapter 5 we consider general urn models. Here S may be any countable set and the

replacement matrix R is any stochastic matrix suitably indexed by S. For this model, we present

a representation theorem (see Theorem 5.1.1), [6]. This theorem provides a coupling of the

marginal distribution of the randomly selected color with the associated Markov chain, sampled

at independent, but random times. We show some immediate applications of the representation

theorem by rederiving a few known results for finite color urn models.

1.3.5 General replacement matrices

In Chapter 6, based on [6], we consider urn models with infinite but countably many colors and

general replacement matrices. In this chapter, we consider several different types of general

replacement matrices and apply the representation theorem to deduce the asymptotic properties

of the corresponding urn models. In Section 6.1, we consider an urn model with an irreducible,

aperiodic R. If R is positive recurrent, with a stationary distribution π, then we show that the

distribution of the randomly selected color converges to π. In Sections 6.2 and 6.3, we further

generalize the model studied in Chapter 2. Here, we study urn models associated with general

random walks, not necessarily with bounded increments, and derive the central limit theorem for

the randomly selected color.

1.4 Notations

We mostly follow notations and conventions that are standard in the literature of urn models. For

the sake of completeness, we provide a list below.

• As mentioned earlier, for any two sequences (an)n≥1 and (bn)n≥1 of positive real numbers,

we will write an ∼ bn, if lim
n→∞

an
bn

= 1.
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• As mentioned earlier, all vectors are written as row vectors, unless otherwise stated. For

x ∈ Rd, we write x =
(
x(1), x(2), . . . , x(d)

)
where x(i) denotes the ith coordinate. The

infinite dimensional vectors are written as y = (yj)j∈J where yj is the jth coordinate and

J is the indexing set. To be consistent, column vectors are denoted by xT , where x is a

row vector.

• For any vector x, x2 will denote a vector with the coordinates squared. That is, if

x = (xj)j∈J for some indexing set J , then

x2 =
(
x2
j

)
j∈J .

• The inner product of any two row vectors x and y is denoted by 〈x, y〉.

• The symbol Id will denote the d× d identity matrix.

• ByNd (µ,Σ) we denote the d-dimensional Gaussian distribution with mean vector µ ∈ Rd,

and variance-covariance matrix Σ. For d = 1, we simply write N(µ, σ2), where σ2 > 0.

• The standard Gaussian measure on Rd will be denoted by Φd. Its density φd is given by

φd (x) :=
1

(2π)d/2
e−
‖x‖2

2 , x ∈ Rd.

For d = 1, we will simply write Φ for the standard Gaussian measure on R and φ for its

density.

• The symbol⇒ will denote weak convergence of probability measures.

• The symbol
p−→ will denote convergence in probability.

• For any two random variables/vectors X and Y , we will write X d
= Y , to denote that X

and Y have the same distribution.



12 Chapter 1: Introduction



Chapter 2

Central limit theorems for the urn
models associated with random walks1

The main focus in this chapter is to study the urn models associated with bounded increment

random walks on Zd, d ≥ 1. Urn models associated with more general random walks are

discussed in Section 6.2 of Chapter 6. Here, we derive the central limit theorems for the

randomly selected colors, and its rate of convergence. In Section 2.4, we will further generalize

the model when the associated random walk takes values in general d-dimensional discrete

lattices.

Let (Yj)j≥1 be i.i.d. random vectors taking values in Zd with probability mass function

p (u) := P (Y1 = u) , u ∈ Zd. We assume that the distribution of Y1 is bounded, that is there

exists a non-empty finite subset B ⊂ Zd, such that p (u) = 0 for all u 6∈ B. We shall always

write

µ := E [Y1]

Σ = ((σij))1≤i,j≤d := E
[
Y T

1 Y1

]
e (λ) := E

[
e〈λ,Y1〉

]
, λ ∈ Rd.

(2.0.1)

It is easy to see that Σ is a positive semi definite matrix, that is, for all a ∈ Rd,

aΣaT = E
[(
aY T

1

)2] ≥ 0.

1This chapter is based on the papers entitled “Pólya Urn Schemes with Infinitely Many Colors” [7] and “ Rate
of Convergence and Large Deviation for the Infinite Color Pólya Urn Schemes” [8]. The paper [8] is published in
Statistics and Probability Letters, Vol. 92, 2014.

13
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Observe that

Σ = D + µµT ,

where D is the the variance-covariance matrix of Y1.

In this chapter, we assume that Σ is positive definite. This will hold, if and only if, the set B

contains d linearly independent vectors. Later, in Section 6.2 we will relax the assumption that

Σ is positive definite. The matrix Σ1/2 will denote the unique positive definite square root of Σ,

that is, Σ1/2 is a positive definite matrix such that Σ = Σ1/2Σ1/2. When the dimension d = 1,

we will denote the mean and second moment (and not the variance) of Y1 simply by µ and σ2

respectively, that is

µ := E [Y1]

σ2 := E
[
Y 2

1

]
.

(2.0.2)

In that case we assume σ2 > 0.

Let Sn := Y0 + Y1 + · · · + Yn, n ≥ 0, be the random walk on Zd starting at Y0 and with

increments (Yj)j≥1 which are independent. Needless to say, that (Sn)n≥0 is a Markov chain,

with initial distribution given by the distribution of Y0 and the transition matrix

R := ((p (v − u)))u,v∈Zd . (2.0.3)

For the rest of this chapter, we consider the urn process (Un)n≥0, with replacement matrix

given by (2.0.3). Since the associated Markov chain is a random walk, we will call the urn

process as the urn process associated with a bounded increment random walk. The urn model

associated with the right shift as discussed in Subsection 1.2.1 of Chapter 1, is an example of an

urn model associated with a bounded increment random walk, which as discussed earlier, is a

deterministic walk always moving one step to the right.

We would like to note here that this model is a further generalization of a subclass of models

studied in [20], namely the class of linearly reinforced models. In [20], the authors prove that

for such models the number of balls of each color grows to infinity. As we will see in the next

section, our results will not only show that the number of balls of each color grows to infinity,

but will also provide the exact rates of their growths.
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2.1 Central limit theorem for the expected configuration

We present in this subsection the central limit theorem for the randomly selected color, [7]. The

centering and scaling of the central limit theorem (Theorem 2.1.1) are of the order O (log n)

and O
(√

log n
)

respectively. Such centering and scalings are available because the marginal

distribution of the randomly selected color behaves like that of a delayed random walk, where

the delay is of the order O (log n), see Theorem 2.1.2.

For simplicity, in Sections 2.1 and 2.2 we will assume that the initial configuration of the

urn consists of a single ball of color 0, that is, U0 = δ0. We will see at the end of Section 2.2

(Remark 2.2.1) that this assumption can be easily removed.

Theorem 2.1.1. Let Λn be the probability measure on Rd corresponding to the probability
vector

(
E[Un,v ]
n+1

)
v∈Zd

, and let

Λ
cs
n (A) := Λn

(√
log nAΣ1/2 + µ log n

)
,

where A is a Borel subset of Rd. Then, as n→∞,

Λ
cs
n ⇒ Φd. (2.1.1)

If Zn denotes the (n+ 1)-th selected color then, its probability mass function is given by(
E[Un,v ]
n+1

)
v∈Zd

. Thus Λn is the probability distribution of Zn, and Λ
cs
n is the distribution of the

scaled and centered random vector Zn−µ logn√
logn

. So the following result is a restatement of (2.1.1).

Corollary 2.1.1. Consider the urn model associated with the random walk (Sn)n≥0 on Zd, d ≥
1, then as n→∞,

Zn − µ log n√
log n

⇒ Nd(0, Σ). (2.1.2)

We begin by constructing a martingale which we will be need in the proof of Theorem 2.1.1.

Define Πn (z) =
n∏
j=1

(
1 +

z

j

)
for z ∈ C. It is known from Euler product formula for

gamma function, which is also referred to as Gauss’ formula (see page 178 of [21]), that

lim
n→∞

Πn(z)

nz
Γ(z + 1) = 1, (2.1.3)
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where the convergence is uniform on compact subsets of C \ {−1,−2, . . .}.

Recall for every λ ∈ Rd, e (λ) :=
∑

v∈B e
〈λ,v〉p(v) is the moment generating function of

Y1. Define x (λ) :=
(
e〈λ,v〉

)T
v∈Zd . It is easy to see that

Rx (λ) = e (λ)x (λ) ,

where the equality holds coordinate-wise.

Let Fn = σ (Uj : 0 ≤ j ≤ n) , n ≥ 0, be the natural filtration. Define

Mn (λ) :=
Unx (λ)

Πn (e (λ))
.

From the fundamental recursion (1.1.4), we get,

Un+1x (λ) = Unx (λ) + χn+1Rx (λ) .

Thus,

E
[
Un+1x (λ)

∣∣∣Fn] = Unx (λ) + e (λ)E
[
χn+1x (λ)

∣∣∣Fn] =
(

1 + e(λ)
n+1

)
Unx (λ) .

Therefore, Mn (λ) is a non-negative martingale for every λ ∈ Rd. In particular, E
[
Mn (λ)

]
=

M0 (λ). We now present a representation of the marginal distribution of Zn, in terms of the

increments (Yj)j≥1, where the distribution of Yj is given by p (·) for every j ≥ 1.

Theorem 2.1.2. For each n ≥ 1,

Zn
d
= Z0 +

n∑
j=1

IjYj , (2.1.4)

where (Ij)j≥1 are independent random variables such that Ij ∼ Bernoulli
(

1
j+1

)
, j ≥ 1 and

are independent of (Yj)j≥1; and Z0 is a random vector taking values in Zd distributed according

to the probability vector U0 and is independent of
(

(Ij)j≥1 ; (Yj)j≥1

)
.

The representation in (2.1.4) is interesting and non-trivial, as it necessarily demonstrates that

the marginal distribution of the randomly selected color behaves like a delayed random walk.

Proof. As noted before, the probability mass function for Zn is
(
E[Un,v ]
n+1

)
v∈Zd

. So, for λ ∈ Rd,
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the moment generating function of Zn is given by

1

n+ 1

∑
v∈Zd

e〈λ,v〉E [Un,v] =
Πn (e(λ))

n+ 1
E
[
Mn(λ)

]
=

Πn (e(λ))

n+ 1
M0(λ) (2.1.5)

= M0(λ)

n∏
j=1

(
1− 1

j + 1
+
e(λ)

j + 1

)
. (2.1.6)

The right hand side of (2.1.6) is the moment generating function of Z0 +
∑n

j=1 IjYj . This proves
(2.1.4).

Proof of Theorem 2.1.1. Since the initial configuration of the urn consists of a single ball of
color 0, that is, U0 = δ0, hence Z0 ≡ 0. It follows from (2.1.4) that

Zn
d
=

n∑
j=1

IjYj . (2.1.7)

Now, we observe that,

E

 n∑
j=1

IjYj

− µ log n =
n∑
j=1

1

j + 1
µ− µ log n −→ (γ − 1)µ, (2.1.8)

where γ is the Euler’s constant.

Case I: Let d = 1. Let s2
n = Var

(∑n
j=1 IjYj

)
. It is easy to note that

s2
n =

n∑
j=1

1

j + 1
E
[
Y 2

1

]
− µ2

(j + 1)2
∼ σ2 log n.

The cardinality of B is finite, so for any ε > 0, we have

1

s2
n

n∑
j=1

E
[∣∣∣IjYj − µ

j + 1

∣∣∣21{|IjYj− µ
j+1
|>εsn}

]
−→ 0 as n→∞.

Therefore, by the Lindeberg Central Limit theorem (see page 129 of [28]), we conclude that as
n→∞,

Zn − µ log n

σ
√

log n
⇒ N(0, 1).

This completes the proof in this case.
Case II: Now suppose d ≥ 2. Let Σn := ((σk,l(n)))d×d denote the variance-covariance matrix
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for
∑n

j=1 IjYj . Then by calculations similar to those in one-dimension, it is easy to see that for
all k, l ∈ {1, 2, . . . d},

σk,l(n)

σk,l log n
−→ 1 as n→∞.

Therefore, for every θ ∈ Rd, by Lindeberg Central Limit Theorem in one dimension,

〈θ,
n∑
j=1

IjYj〉 − 〈θ, µ log n〉√
log n (θΣθT )

⇒ N(0, 1) as n→∞.

Now using Cramer-Wold device (see Theorem 29.4 on page 383 of [11]), it follows that as
n→∞,

n∑
j=1

IjYj − µ log n

√
log n

⇒ Nd (0, Σ) .

So we conclude that, as n→∞,

Zn − µ log n√
log n

⇒ Nd (0, Σ) .

This completes the proof.

The following corollary is an immediate consequence of Corollary 2.1.1 .

Corollary 2.1.2. Consider the urn model associated with the simple symmetric random walk on
Zd, d ≥ 1. Then, as n→∞,

Zn√
log n

⇒ Nd(0, d
−1Id),

where Id is the d× d identity matrix.

The above result essentially shows that irrespective of the recurrent or transient behavior

of the under lying random walk, the associated urn models have similar asymptotic behavior.

In particular, the limiting distribution is always Gaussian with universal centering and scaling

orders, namely, O (log n) and O
(√

log n
)

respectively.
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2.2 Weak convergence of the random configuration

In this section we will present an asymptotic result for the random configuration of the urn. Let

M1 be the space of probability measures on Rd, d ≥ 1, endowed with the topology of weak

convergence. Let Λn be the random probability measure on Zd ⊂ Rd corresponding to the

random probability vector Un
n+1 . It is easy to see that Λn is measurable.

Theorem 2.2.1. Consider the random measure

Λcsn (A) = Λn

(√
log nAΣ1/2 + µ log n

)
,

for any Borel subset A of Rd. Then, as n→∞,

Λcsn
p−→ Φd onM1. (2.2.1)

We note that Theorem 2.2.1 is a stronger version of Theorem 2.1.1, as the later follows from

the former by taking expectation.

We first present the results required to prove Theorem 2.2.1. We have already introduced

the martingales
(
Mn (·)

)
n≥0

in Section 2.1. The next theorem states that on a non-trivial

closed subset of Rd with 0 in its interior, the martingales
(
Mn (λ)

)
n≥0

are uniformly (in λ)

L2-bounded.

Theorem 2.2.2. There exists δ > 0, such that

sup
λ∈[−δ,δ]d

sup
n≥1

E
[
M

2
n (λ)

]
<∞. (2.2.2)

Proof. From (1.1.4), we obtain

E
[
(Un+1x (λ))2

∣∣∣Fn] = (Unx (λ))2 + 2e (λ)Unx (λ)E
[
χn+1x (λ)

∣∣∣Fn]
+e2 (λ)E

[
(χn+1x (λ))2

∣∣∣Fn] .
It is easy to see that,

E
[
χn+1x (λ)

∣∣∣Fn] =
1

n+ 1
Unx (λ) ,

and
E
[
(χn+1x (λ))2

∣∣∣Fn] =
1

n+ 1
Unx (2λ) .
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Therefore, we get the recursion

E
[
(Un+1x (λ))2

]
=

(
1 +

2e (λ)

n+ 1

)
E
[
(Unx (λ))2

]
+
e2 (λ)

n+ 1
E [Unx (2λ)] . (2.2.3)

Let us write

Π2
n+1 (e (λ)) :=

n+1∏
j=1

(
1 +

e (λ)

j

)2

.

Dividing both sides of (2.2.3) by Π2
n+1 (e (λ)),

E
[
M

2
n+1 (λ)

]
=

(
1 + 2e(λ)

n+1

)
(

1 + e(λ)
n+1

)2E
[
M

2
n (λ)

]
+
e2 (λ)

n+ 1
× E [Unx (2λ)]

Π2
n+1 (e (λ))

. (2.2.4)

The sequence
(
Mn (2λ)

)
n≥0

being a martingale, we obtain E [Unx (2λ)] = Πn (e (2λ))M0 (2λ).
Therefore, from (2.2.4), we get

E
[
M

2
n (λ)

]
=

Πn (2e (λ))

Πn (e (λ))2M
2
0 (λ)

+
n∑
k=1

e2 (λ)

k


n∏
j>k

(
1 + 2e(λ)

j

)
(

1 + e(λ)
j

)2

 Πk−1 (e (2λ))

Π2
k (e (λ))

M0 (2λ) .(2.2.5)

Recall that e (λ) =
∑

v∈B e
〈λ,v〉p(v). We observe that, as e (λ) > 0, so

1+
2e(λ)
j(

1+
e(λ)
j

)2 < 1 and

hence Πn(2e(λ))
Π2
n(e(λ))

< 1. Thus,

E
[
M

2
n (λ)

]
≤M2

0 (λ) + e2 (λ)M0 (2λ)
n∑
k=1

1

k

Πk−1 (e (2λ))

Π2
k (e (λ))

. (2.2.6)

Using (2.1.3), we know that

Π2
n (e (λ)) ∼ n2e(λ)

Γ2 (e (λ) + 1)
. (2.2.7)

Note that e (0) = 1, and e (λ) is continuous as a function of λ. So given η > 0, there exists
0 < K1,K2 <∞, such that for all λ ∈ [−η, η]d, K1 ≤ e (λ) ≤ K2. Since the convergence in
(2.1.3) is uniform on compact subsets of [0,∞) , given ε > 0, there exists N1 > 0, such that for
all n ≥ N1 and λ ∈ [−η, η]d,

(1− ε) Γ2 (e (λ) + 1)

Γ (e (2λ) + 1)

n∑
k≥N1

1

k1+2e(λ)−e(2λ)
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≤
n∑

k≥N1

1

k

Πk−1 (e (2λ))

Π2
k (e (λ))

≤ (1 + ε)
Γ2 (e (λ) + 1)

Γ (e (2λ) + 1)

n∑
k≥N1

1

k1+2e(λ)−e(2λ)
.

Since the setB is finite, λ 7→ e (λ), and λ 7→ 2e (λ)−e (2λ) are clearly continuous functions, that
take value 1 at λ = 0. Hence there exists a δ0 > 0, such that minλ∈[−δ0,δ0]d 2e (λ)− e (2λ) > 0.

Choose δ = min{η, δ0} and λ0 ∈ [−δ, δ]d so that minλ∈[−δ,δ]d 2e (λ) − e (2λ) = 2e (λ0) −
e (2λ0) > 0. Therefore,

∞∑
k=1

1

k1+2e(λ)−e(2λ)
≤
∞∑
k=1

1

k1+2e(λ0)−e(2λ0)
.

Now find N2 > 0, such that ∀λ ∈ [−δ, δ]d,

∞∑
k>N2

1

k1+2e(λ)−e(2λ)
≤

∞∑
k>N2

1

k1+2e(λ0)−e(2λ0)
< ε.

The functions Γ2(e(λ)+1)
Γ(e(2λ)+1) , e2 (λ) and M0 (2λ) are continuous in λ. Therefore, these are bounded

on [−δ, δ]d. Choose N = max{N1, N2}. From (2.2.6), we obtain for all n ≥ N ,

E
[
M

2
n (λ)

]
≤M2

0 (λ) + C1

N∑
k=1

1

k

Πk−1 (e (2λ))

Π2
k (e (λ))

+ C2ε (2.2.8)

for appropriate positive constants C1, C2.
The functions

∑N
k=1

1
k

Πk−1(e(2λ))

Π2
k(e(λ))

and M2
0 (λ) are continuous in λ, and hence bounded on

[−δ, δ]d. Therefore, from (2.2.8) we obtain that there exists C > 0, such that for all λ ∈ [−δ, δ]d

and for all n ≥ 1,

E
[
M

2
n (λ)

]
≤ C.

This proves (2.2.2).

Lemma 2.2.1. Let δ be as in Theorem 2.2.2, then for every λ ∈ [−δ, δ]d, as n→∞,

Mn

(
λ√

log n

)
p−→ 1. (2.2.9)
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Proof. Since U0 = δ0, from equation (2.2.5), we get

E
[
M

2
n (λ)

]
=

Πn (2e(λ))

Π2
n (e(λ))

+
Πn (2e(λ))

Π2
n (e(λ))

n∑
k=1

e2(λ)

k

Πk−1 (e(2λ))

Πk (2e(λ))
.

Replacing λ by λn = λ√
logn

, we obtain,

E
[
M

2
n (λn)

]
=

Πn (2e (λn))

Π2
n (e (λn))

+
Πn (2e (λn))

Π2
n (e (λn))

n∑
k=1

e2 (λn)

k

Πk−1 (e (2λn))

Πk (2e (λn))
. (2.2.10)

We observe that
lim
n→∞

e (λn) = 1. (2.2.11)

Since the convergence in formula (2.1.3) is uniform on compact sets of [0,∞), using (2.2.11)
we observe that for λ ∈ [−δ, δ]d , and every fixed k

lim
n→∞

Πn (2e (λn))

Π2
n (e (λn))

=
Γ2 (2)

Γ (3)
=

1

2
. (2.2.12)

Using (2.2.11) and (2.2.12), we obtain

lim
n→∞

Πn (2e(λn))

Π2
n (e(λn))

e2 (λn)

k

Πk−1 (e (2λn))

Πk (2e (λn))
=

1

2

1

k

Πk−1(1)

Πk (2)

=
1

(k + 2)(k + 1)
.

Now using Theorem 2.2.2 and the dominated convergence theorem, we get

lim
n→∞

Πn (2e (λn))

Π2
n (e (λn))

n∑
k=1

e2 (λn)

k

Πk−1 (e (2λn))

Πk (2e (λn))
=

∞∑
k=1

1

(k + 2)(k + 1)
=

1

2
.

Therefore, from (2.2.10) we obtain

E
[
M

2
n (λn)

]
−→ 1 as n→∞. (2.2.13)

Observing that E
[
Mn (λn)

]
= 1, we get

Var
(
Mn (λn)

)
→ 0, as n→∞. (2.2.14)

This implies
Mn (λn)

p−→ 1 as n→∞,

completing the proof of the lemma.
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We will now present an elementary but technical result (Theorem 2.2.3) which we will use

in the proof of Theorem 2.2.1. It is really a generalization of the classical result for Laplace

transform, namely, Theorem 22.2 of [11], a slightly weaker version appears as Theorem 5 in

[43]. However, in the proof of Theorem 2.2.3 presented below, some of the arguments are similar

to that of Theorem 5 in [43]. It is important to note here that though Theorem 5 of [43] is stated

for d = 2, the author in [43] observes at the beginning of Section 3 in [43] that similar result can

be obtained for any dimensions d ≥ 1.

Theorem 2.2.3. Let νn be a sequence of probability measures on
(
Rd,B(Rd)

)
and let mn(· )

be the corresponding moment generating functions. Suppose there exists δ > 0, such that

mn(λ) −→ e
‖λ‖2

2 , as n→∞, for every λ ∈ [−δ, δ]d ∩Qd, then, as n→∞,

νn ⇒ Φd. (2.2.15)

Proof. Let δ′ ∈ Q, such that 0 < δ′ < δ. Observe that for every a > 0,

νn

((
[−a, a]d

)c)
≤

d∑
i=1

e−δ
′a
(
mn(−δ′ei) +mn(δ′ei)

)
, (2.2.16)

where (ei)
d
i=1 are the d-unit vectors. Now for our assumption, we get, mn(δ′ei) → e

δ′2
2 and

mn(−δ′ei)→ e
δ′2
2 as n→∞, for every 1 ≤ i ≤ d. Thus, we get

sup
n≥1

νn

((
[−a, a]d

)c)
−→ 0 as a→∞.

So the sequence of probability measures (νn)n≥1 is tight. Therefore, Helly selection theorem
(see Theorem 2 on page 270 of [32]) implies that for every subsequence (nk)k≥1 there exists a
further subsequence

(
nkj
)
j≥1

and a probability measure ν such that as j →∞,

νnkj ⇒ ν. (2.2.17)

We will show that
mnkj

(λ) −→ m∞ (λ) , ∀ λ ∈ (−δ, δ)d ∩Qd (2.2.18)

where m∞ is the moment generating function of ν. It follows from Theorem 5 of [43] that to
prove (2.2.18) it is enough to show that for 1 ≤ i ≤ d, and for any |λi| < δ

lim
a→∞

e|λi|a sup
j≥1

νnkj ,i (([−a, a])c) = 0, (2.2.19)
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where νnkj ,i denotes the i-th dimensional marginal for νnkj .
For any |λi| < δ, we can choose δ′ ∈ Q, such that 0 < |λi| < δ′ < δ. Observe that a

calculation similar to (2.2.16) implies that for any a > 0, and for the chosen δ′

νnkj ,i (([−a, a])c) ≤ e−δ′a
((
mnkj

(−δ′ei) +mnkj
(δ′ei)

))
. (2.2.20)

Now using the assumption mn(λ) −→ e
‖λ‖2

2 , as n → ∞, for every λ ∈ [−δ, δ]d ∩ Qd, we
obtain,

e|λi|a sup
j≥1

νnkj ,i (([−a, a])c) ≤ Ke(|λi|−δ′)a, (2.2.21)

for an appropriate constant K > 0. This proves (2.2.19) and hence, (2.2.18) holds. But from our
assumption

mnkj
(λ)→ e

‖λ‖2
2 , ∀ λ ∈ [−δ, δ]d ∩Qd.

So, we conclude that

m∞ (λ) = e
‖λ‖2

2 , ∀ λ ∈ (−δ, δ)d ∩Qd.

Since both sides of the above identity are continuous functions on their respective domains,

we get that m∞ (λ) = e
‖λ‖2

2 for every λ ∈ (−δ, δ)d. We know from (21.22) and Theorem
30.1 of [11] for d = 1, the standard Gaussian is characterized by the values of its moment
generating function in an open neighborhood of 0. For d ≥ 2, we can conclude that the standard
Gaussian distribution is characterized by the values of its moment generating function in an open
neighborhood of 0, by using Theorem 30.1 of [11] and the Cramer-Wold device. So we conclude
that every sub-sequential limit is standard Gaussian. This proves (2.2.15).

Proof of Theorem 2.2.1. Λn is the random probability measure on Zd ⊂ Rd, corresponding to
the random probability vector Un

n+1 . That is, for any Borel subset A of Rd,

Λn (A) =
1

n+ 1

∑
v∈A

Un,v.

For λ ∈ Rd, the corresponding moment generating function is given by

1

n+ 1

∑
v∈Zd

e〈λ,v〉Un,v =
1

n+ 1
Unx (λ) =

1

n+ 1
Mn (λ) Πn (e(λ)) . (2.2.22)

The moment generating function corresponding to the scaled and centered random measure Λcsn
is ∑

v∈Zd
e
〈λ, v−µ logn√

logn
Σ−1/2〉 Un,v

n+ 1
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=
1

n+ 1
e−〈λ,µ

√
lognΣ−1/2〉Unx

(
λΣ−1/2

√
log n

)
(2.2.23)

=
1

n+ 1
e−〈λ,µ

√
lognΣ−1/2〉Mn

(
λΣ−1/2

√
log n

)
Πn

(
e

(
λΣ−1/2

√
log n

))
. (2.2.24)

To show (2.2.1), it is enough to show that for every subsequence (nk)k≥1, there exists a
further subsequence

(
nkj
)
j≥1

such that, as j →∞,

e
−〈λ,µ

√
lognkj 〉

nkj + 1
Mnkj

(
λ√

log nkj

)
Πnkj

(
e

(
λ√

log nkj

))
−→ e

λΣλT

2 (2.2.25)

for all λ ∈ [−δ, δ]d, a.s. , where δ is as in Theorem 2.2.2. From Theorem 2.1.1, we know that

Zn − µ log n√
log n

⇒ Nd (0, Σ) as n→∞.

Therefore, using (2.1.6), we obtain as n→∞,

e−〈λ,µ
√

logn〉E
[
e
〈λ, Zn√

logn
〉
]

=
1

n+ 1
e−〈λ,µ

√
logn〉Πn

(
e

(
λ√

log n

))
−→ e

λΣλT

2 .

Now using Theorem 2.2.3, it is enough to show (2.2.25) only for λ ∈ Qd ∩ [−δ, δ]d. This is
equivalent to proving that for every λ ∈ Qd ∩ [−δ, δ]d, as j →∞,

Mnkj

(
λ√

log nkj

)
−→ 1 a.s.

From Lemma 2.2.1 we know that for all λ ∈ [−δ, δ]d

Mn

(
λ√

log n

)
p−→ 1 as n→∞.

Therefore, using the standard diagonalization argument we can say that given a subsequence
(nk)k≥1, there exists a further subsequence

(
nkj
)
j≥1

, such that for every λ ∈ Qd ∩ [−δ, δ]d,

Mnkj

(
λ√

log nkj

)
−→ 1 a.s.

This completes the proof.

Remark 2.2.1. It is worth noting here that the proofs of Theorems 2.1.1 and 2.2.1 go through
if we assume U0 to be non random probability vector such that there exists r > 0, with
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∑
v∈Zd e

〈λ,v〉U0,v < ∞, whenever ‖λ‖ < r. Further, if U0 is random and there exists r > 0,
such that for any ‖λ‖ < r, ∑

v∈Zd
e〈λ,v〉U0,v <∞, a.s.

then (2.1.1) and (2.2.1) holds a.s.ẇith respect to U0.

2.3 Rate of convergence of the central limit theorem: the Berry-
Essen bound

In this section, we obtain the rate of convergence for the central limit theorem as discussed in

Theorem 2.1.1. We show that the rate of convergence is of the order O
(

1√
logn

)
, by deducing

the classical Berry-Essen type bound for any dimension d ≥ 1. The results discussed in this

section are available in [8].

2.3.1 Berry-Essen Bound for d = 1

We first consider the case when the associated random walk is a one dimensional walk and the

set of colors are indexed by the set of integers Z.

Theorem 2.3.1. Suppose U0 = δ0, then

sup
x∈R

∣∣∣∣P(Zn − µhn√
nρ2

≤ x
)
− Φ (x)

∣∣∣∣ ≤ 2.75× ρ3
√
nρ

3/2
2

= O
(

1√
log n

)
, (2.3.1)

where hn :=
n∑
j=1

1

j + 1
, Φ is the standard normal distribution function and

ρ2 :=
1

n

σ2hn − µ2
n∑
j=1

1

(j + 1)2

 (2.3.2)

and

ρ3 :=
1

n

 n∑
j=1

1

j + 1
E

[∣∣∣∣Y1 −
µ

j + 1

∣∣∣∣3
]

+ |µ|3
n∑
j=1

j

(j + 1)4

 . (2.3.3)

Proof. We first note that when U0 = δ0, then (2.1.4) can be written as

Zn
d
=

n∑
j=1

IjYj (2.3.4)
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where (Yj)j≥1 are i.i.d. increments of the random walk (Sn)n≥0, (Ij)j≥1 are independent

Bernoulli variables such that Ij ∼ Bernoulli
(

1
j+1

)
and are independent of (Yj)j≥1. Now

observe that

nρ2 =

n∑
j=1

E
[
(IjYj − E [IjYj ])

2
]

and nρ3 =

n∑
j=1

E
[
|IjYj − E [IjYj ]|3

]
.

Thus from the Berry-Essen Theorem for the independent but non-identical increments (see
Theorem 12.4 of [10]), we get

sup
x∈R

∣∣∣∣∣P
(∑n

j=1 IjYj − µhn√
nρ2

≤ x

)
− Φ (x)

∣∣∣∣∣ ≤ 2.75× ρ3
√
nρ

3/2
2

. (2.3.5)

The identities (2.3.4) and (2.3.5) imply the bound in (2.3.1).
Finally to prove the last part of the equation (2.3.1), we note that from definition nρ2 ∼

C1 log n, and nρ3 ∼ C2 log n, where 0 < C1, C2 <∞, are some constants. Thus,

ρ3
√
nρ

3/2
2

= O
(

1√
log n

)
.

This completes the proof of the theorem.

The next result follows easily from the above theorem by observing the facts hn ∼ log n,

and nρ2 ∼ C1 log n, where C1 > 0 is a constant.

Theorem 2.3.2. Suppose U0,k = 0, for all but finitely many k ∈ Z, then there exists a constant
C > 0, such that

sup
x∈R

∣∣∣∣P(Zn − µ log n

σ
√

log n
≤ x

)
− Φ (x)

∣∣∣∣ ≤ C × ρ3
√
nρ

3/2
2

= O
(

1√
log n

)
, (2.3.6)

Φ is the standard normal distribution function and ρ2 and ρ3 are as defined in (2.3.2) and (2.3.3)
respectively.

It is worth noting that unlike in Theorem 2.3.1 the constant C, which appears in (2.3.6)

above, is not a universal constant, it may depend on the increment distribution, as well as on U0.

Proof. Observe that

sup
x∈R

∣∣∣∣P(Zn − µ log n

σ
√

log n
≤ x

)
− Φ (x)

∣∣∣∣ ≤ sup
x∈R

Jn(x) + sup
x∈R

Kn(x),
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where
Jn(x) =

∣∣∣∣P(Zn − µhn√
nρ2

≤ xn
)
− Φ(xn)

∣∣∣∣ ,
and xn = µ (logn−hn)√

nρ2
+ xσ

√
logn√
nρ2

and

Kn(x) =

∣∣∣∣Φ(µ(log n− hn)
√
nρ2

+ x
σ
√

log n
√
nρ2

)
− Φ (x)

∣∣∣∣ .
From Theorem 2.3.1, we observe that

sup
x∈R

Jn(x) ≤ 2.75× ρ3
√
nρ

3/2
2

= O
(

1√
log n

)
. (2.3.7)

For a suitable choice of C1 > 0, we have

Kn(x) =

∣∣∣∣∣∣∣∣
1√
2π

µ
(logn−hn)√

nρ2
+xσ

√
logn√
nρ2∫

x

e
−t2
2 dt

∣∣∣∣∣∣∣∣
≤ C1e

−x
2

2

∣∣∣∣µ(log n− hn)
√
nρ2

+ x
σ
√

log n
√
nρ2

− x
∣∣∣∣

≤ C1

∣∣∣∣µ(log n− hn)
√
nρ2

∣∣∣∣+ C1e
−x

2

2 |x|
∣∣∣∣σ√log n
√
nρ2

− 1

∣∣∣∣
Observe that hn = log n + γ + εn, where εn −→ 0, as n → ∞, and γ is the Euler constant.
Also

√
nρ2 ∼

√
log n. Therefore, there exists a constant C2 > 0, such that for all n ∈ N,

C1

∣∣∣∣µ(log n− hn)
√
nρ2

∣∣∣∣ ≤ C2
ρ3

√
nρ

3/2
2

= O
(

1√
log n

)
. (2.3.8)

Note that the function e−
x2

2 |x| attains its maximum at x = 1. Therefore,

C1e
−x

2

2 |x|
∣∣∣∣σ√log n
√
nρ2

− 1

∣∣∣∣ ≤ C1e
− 1

2

∣∣∣∣σ√log n
√
nρ2

− 1

∣∣∣∣ .
Since |

√
x− 1| ≤

√
|x− 1| for all x ∈ R, we obtain

C1e
− 1

2

∣∣∣∣σ√log n
√
nρ2

− 1

∣∣∣∣ ≤ C3

√∣∣∣∣σ2 log n− nρ2

nρ2

∣∣∣∣ (2.3.9)
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for an appropriate constant C3 > 0. Observe that for some constant C4 > 0,

nρ2 − σ2 log n
√
nρ2

=

σ2

 n∑
j=1

1

j + 1
− log n

− µ2
n∑
j=1

1

(j + 1)2

√
nρ2

≤ C4
ρ3

√
nρ

3/2
2

= O
(

1√
log n

)
. (2.3.10)

Therefore, combining (2.3.8), (2.3.9) and (2.3.10) we can choose an appropriate constant C > 0,
such that (2.3.6) holds.

2.3.2 Berry-Essen bound for d ≥ 2

Now, we consider the case when the associated random walk is two or higher dimensional and

the colors are indexed by Zd. Before we present our main result, we introduce a few notations.

For a matrix A = ((aij))1≤i,j≤d we denote by A (i, j), the (d− 1)× (d− 1) sub-matrix of

A, obtained by deleting the i-th row and j-th column. Let

ρ
(d)
2 :=

1

n

n∑
j=1

1

(j + 1)

det
(
Σ − 1

j+1M
)

det
(
Σ(1, 1)− 1

j+1M(1, 1)
) , (2.3.11)

where M :=
((
µ(i)µ(j)

))
1≤i,j≤d and

ρ
(d)
3 :=

1

nd

d∑
i=1

γ3
n (i)

 n∑
j=1

βj (i)

 , (2.3.12)

where

γ2
n(i) := max

1≤j≤n

det
(
Σ(i, i)− 1

(j+1)M(i, i)
)

det
(
Σ(1, 1)− 1

j+1M(1, 1)
)

and

βj(i) =
1

j + 1
E

∣∣∣∣∣Y (i)
1 − µ(i)

j + 1

∣∣∣∣∣
3
+

j

(j + 1)4

∣∣∣µ(i)
∣∣∣3 .

For any two vectors x and y ∈ Rd, we will write x ≤ y, if the inequality holds coordinate wise.

Theorem 2.3.3. Suppose U0 = δ0, then there exists a universal constant C (d) > 0, which may
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depend on the dimension d, such that,

sup
x∈Rd

∣∣∣P((Zn − µhn)Σ−1/2
n ≤ x

)
− Φd (x)

∣∣∣ ≤ C (d)
ρ

(d)
3

√
n
(
ρ

(d)
2

)3/2
= O

(
1√

log n

)
,

(2.3.13)
where Σn :=

∑n
j=1

1
j+1

(
Σ − 1

j+1M
)

and Φd is the distribution function of a standard d-
dimensional normal random vector.

Proof. As in the one dimensional case, we start by observing that when U0 = δ0, then (2.1.4)
can be written as

Zn
d
=

n∑
j=1

IjYj (2.3.14)

where (Yj)j≥1 are i.i.d. increments of the random walk (Sn)n≥0, (Ij)j≥1 are independent

Bernoulli variables such that Ij ∼ Bernoulli
(

1
j+1

)
and are independent of (Yj)j≥1.

Now the proof of the inequality in (2.3.13) follows from equation (D) of [9] which deals with
d-dimensional version of the classical Berry-Essen inequality for independent but non-identical
summands, which in our case are the random variables (IjYj)j≥1. It is sufficient to observe that

βj(i) = E
[∣∣∣IjY (i)

1 − E
[
IjY

(i)
j

]∣∣∣3] ,
and

Σn =
n∑
j=1

E
[
(IjYj − E [IjYj ])

T (IjYj − E [IjYj ])
]
.

Finally, to prove the last part of the equation (2.3.13) as in the one dimensional case, we note
that from definition nρ(d)

2 ∼ C ′1 log n and nρ(d)
3 ∼ C ′2 log n, where 0 < C ′1, C

′
2 <∞, are some

constants. Thus,
ρ

(d)
3

√
n
(
ρ

(d)
2

)3/2
= O

(
1√

log n

)
.

This completes the proof of the theorem.

Remark 2.3.1. If we define Σ (1, 1) = 1, and M (1, 1) = 0, when d = 1, then Theorem 2.3.1
follows from the above theorem except in Theorem 2.3.1 the constant is more explicit.

Just as in the one dimensional case, the following result follows easily from the above

theorem by observing hn ∼ log n.

Theorem 2.3.4. Suppose U0 = (U0,v)v∈Zd , is such that U0,v = 0 for all but finitely many
v ∈ Zd, then there exists a constant C > 0, which may depend on the increment distribution,
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such that

sup
x∈Rd

∣∣∣∣P((Zn − µ log n√
log n

)
Σ−1/2 ≤ x

)
− Φd (x)

∣∣∣∣ ≤ C × ρ
(d)
3

√
n
(
ρ

(d)
2

)3/2
= O

(
1√

log n

)
,

(2.3.15)
where Φd is the distribution function of a standard d-dimensional normal random vector.

Proof. Observe that

sup
x∈Rd

∣∣∣∣P((Zn − µ log n√
log n

)
Σ−1/2 ≤ x

)
− Φd (x)

∣∣∣∣ ≤ sup
x∈Rd

Jn(x) + sup
x∈Rd

Kn(x),

where

Jn(x) =
∣∣∣P((Zn − µhn)Σ−1/2

n ≤ xn
)
− Φd (xn)

∣∣∣ , (2.3.16)

where xn = µ (log n− hn)Σ
−1/2
n + x

√
log nΣ1/2Σ

−1/2
n and

Kn(x) = |Φd (xn)− Φd (x)| . (2.3.17)

It follows from Theorem 2.3.3, that

sup
x∈Rd

Jn(x) ≤ C (d)
ρ

(d)
3

√
n
(
ρ

(d)
2

)3/2
= O

(
1√

log n

)
.

Further, writing xn :=
(
x

(1)
n , x

(2)
n , . . . , x

(d)
n

)
, we get

Kn(x) ≤
d∑
i=1

1√
2π

∣∣∣∣∣∣∣
x
(i)
n∫

x(i)

e
−t2
2 dt

∣∣∣∣∣∣∣ .
Note that Σn = hnΣ −

(∑n
j=1

1
(j+1)2

)
M , so h−1

n Σn −→ Σ. The rest of the argument is
exactly similar to that of the one dimensional case. This completes the proof.

2.4 Urns with Colors Indexed by other lattices on Rd

So far in this chapter, we have discussed urn models with colors indexed by Zd. We can further

generalize the urn models with colors indexed by certain countable lattices in Rd. Such a

model will be associated with the corresponding random walk on the lattice. To state the results
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rigorously we consider the following notations.

Let (Yi)i≥1 be a sequence of random d-dimensional i.i.d. vectors with non empty support set

B ⊂ Rd, and probability mass function p. We assume that B is finite. Consider the countable

subset

Sd :=
{∑k

i=1 nibi : n1, n2, . . . , nk ∈ N, b1, b2, . . . , bk ∈ B
}

of Rd, which will index the set of colors.

As earlier, we consider Sn := Y0 + Y1 + · · · + Yn, n ≥ 0, the random walk starting at Y0

and taking values now in Sd. The transition matrix for this walk is given by

R := ((p (u− v)))u,v∈Sd .

In this section, we consider an urn model (Un)n≥0 with colors indexed by Sd and replacement

matrix R. We will call this process (Un)n≥0, an infinite color urn model associated with the

random walk (Sn)n≥0 on Sd. Naturally, when Sd = Zd, this is exactly the process which is

discussed earlier.

We will use same notations as earlier for the mean, non-centered second moment matrix and

the moment generating function for the increment Y1 (see (2.0.1) for the definitions).

We will still denote by Zn, the (n+ 1)-th selected color and the expected configuration of

the urn at time n will be given by the distribution of Zn, but now on Sd.

We first note that Theorem 2.1.2 is still valid with exactly the same proof. This enable us to

generalize Theorem 2.1.1 and Theorem 2.2.1 as follows.

Theorem 2.4.1. Let Λn be the probability measure on Rd, corresponding to the probability
vector 1

n+1 (E[Un,v])v∈Sd and let

Λ
cs
n (A) := Λn

(√
log nAΣ1/2 + µ log n

)
,

where A is a Borel subset of Rd. Then, as n→∞,

Λ
cs
n ⇒ Φd. (2.4.1)

Theorem 2.4.2. Let Λn ∈M1 be the random probability measure corresponding to the random
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probability vector Un
n+1 . Let

Λcsn (A) = Λn

(√
log nAΣ1/2 + µ log n

)
.

where A is a Borel subset of Rd. Then, as n→∞,

Λcsn
p−→ Φd inM1. (2.4.2)

The proofs of these theorems are similar to their counter part for the walks on Zd, and hence

are omitted.

We now consider a specific example, namely, the triangular lattice in two dimensions (see

Figure 2.1). For this the support set for the i.i.d. increment vectors is given by

B =
{

(1, 0), (−1, 0), ω,−ω, ω2,−ω2
}
,

where ω, ω2 are the complex cube roots of unity. The law of Y1 is uniform on B. This gives the

random walk on the triangular lattice in two dimensions.

Figure 2.1: Triangular Lattice

Following is an immediate corollary of Theorem 2.4.1.

Corollary 2.4.1. Consider the urn model associated with the random walk on two dimensional
triangular lattice, then, as n→∞

Zn√
log n

⇒ N2

(
0,

1

2
I2
)
. (2.4.3)

Proof. Since 1 + ω + ω2 = 0, therefore it is immediate that µ = 0. Also we know that
ω = 1

2 + i
√

3
2 , where i is the imaginary square root of −1. Writing ω = Re (ω) + iIm (ω),
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observe that E
[(
Y

(1)
1

)2
]

= 2
6

(
1 + (Re (ω))2 +

(
Re
(
ω2
))2).

Since Re (ω) = Re
(
ω2
)
, therefore, E

[(
Y

(1)
1

)2
]

= 2
6

(
1 + 2 (Re (ω))2

)
= 1

2 . Similarly,

Im (ω) = −Im
(
ω2
)
, and hence E

[(
Y 2

1

)2]
= 2

6

(
(Im (ω))2 +

(
Im
(
ω2
))2)

= 1
2 . Finally,

E
[
X

(1)
1 X

(2)
1

]
= −2

6Im
(
1 + ω + ω2

)
= 0. So Σ = 1

2I2. The rest is just an application of
(2.4.1).



Chapter 3

Local limit theorems for the urn
models associated with random walks 1

In this chapter, we obtain finer asymptotic properties for the distribution of the randomly

selected color and derive the local limit theorems. The local limit theorems derived here use

the representation (2.1.4). The proofs of the local limit theorems follow techniques similar to

that used in the classical case with i.i.d. increments. However, in our case the increments are

independent, but not identically distributed.

3.1 Local limit theorems for the expected configuration

Throughout this section, we consider an urn model associated with the bounded increment random

walk on Zd, d ≥ 1. In Theorem 2.1.1, it is shown that the sequence of random variables/vectors

(Zn)n≥0 satisfy the central limit theorem. In this section, we show that (Zn)n≥0 also satisfies

the local limit theorems. We first prove the local limit theorems for one dimension, and then

prove the same for dimensions higher than or equal to 2. As introduced in Chapter 2, let

Sn = Y0 +
∑n

j=1 Yj , denote a random walk on Zd, with bounded increments (Yj)j≥1. For the

urn model (Un)n≥0, associated with the random walk (Sn)n≥0, the replacement matrix R is

given by (2.0.3). This section is based on [7].
1This chapter is partially based on the paper entitled “Pólya Urn Schemes with Infinitely Many Colors”, [7].

35
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3.1.1 Local limit theorems for one dimension

In this subsection, we present the local limit theorems for urns with colors indexed by Z. As in

Chapter 2, µ, σ and e (·), will denote the mean, non-centered second moment and the moment

generating function of Y1 respectively. Note that, for Y1 a lattice random variable, we can write

P (Y1 ∈ a+ hZ) = 1, (3.1.1)

where a ∈ R and h > 0, is maximum value such that (3.1.1) holds. h is called the span for Y1

(see Section 3.5 of [28] for details on lattice random variables). We define

L(1)
n :=

{
x : x =

n

σ
√

log n
a− µ

σ

√
log n+

h

σ
√

log n
z, z ∈ Z

}
. (3.1.2)

Theorem 3.1.1. Consider the urn model associated with a bounded increment random walk on
Z. Assume that P (Y1 = 0) > 0. Then, as n→∞

sup
x∈L(1)n

∣∣∣∣σ√log n

h
P
(
Zn − µ log n

σ
√

log n
= x

)
− φ(x)

∣∣∣∣ −→ 0. (3.1.3)

Proof. From Theorem 2.1.2, we know thatZn
d
= Z0+

∑n
j=1 IjYj . Yj is a lattice random variable,

therefore, IjYj is also a lattice random variable. Now by our assumption, P (Y1 = 0) > 0, we
have 0 ∈ B, where B is the support of Y1. Therefore, IjYj and Yj are supported on the same
lattice.

Observe that Zn is a lattice random variable. Therefore, applying Fourier inversion formula,
for all x ∈ L(1)

n , we obtain

P
(
Zn − µ log n

σ
√

log n
= x

)
=

h

2πσ
√

log n

πσ
h

√
logn∫

−πσ
h

√
logn

e−itxψn(t) dt (3.1.4)

where ψn (t) = E
[
e
itZn−µ logn

σ
√
logn

]
. Also, by Fourier inversion formula,

φ(x) =
1

2π

∞∫
−∞

e−itxe
−t2
2 dt, for all x ∈ R. (3.1.5)
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Given ε > 0, there exists N, large enough, such that, for all n ≥ N,

∞∫
σπ
h

√
logn

φ(t) dt < ε.

Therefore, for all n ≥ N ,∣∣∣σ√log n

h
P
(
Zn − µ log n

σ
√

log n
= x

)
− φ(x)

∣∣∣
≤ 1

2π

σπ
h

√
logn∫

−σπ
h

√
logn

∣∣∣ψn(t)− e
−t2
2

∣∣∣dt+
1

π

∞∫
σπ
h

√
logn

φ(t) dt

<
1

2π

σπ
h

√
logn∫

−σπ
h

√
logn

∣∣∣ψn(t)− e
−t2
2

∣∣∣dt+
ε

π
.

This implies that it is enough to prove that as n→∞

σπ
h

√
logn∫

−σπ
h

√
logn

∣∣∣ψn(t)− e
−t2
2

∣∣∣dt −→ 0. (3.1.6)

Given M > 0, we can write for all n

σπ
h

√
logn∫

−πσ
h

√
logn

∣∣∣ψn(t)− e
−t2
2

∣∣∣dt ≤ M∫
−M

∣∣∣ψn(t)− e
−t2
2

∣∣∣ dt+ 2

σπ
h

√
logn∫

M

∣∣∣ψn(t)
∣∣∣ dt

+2

σπ
h

√
logn∫

M

e
−t2
2 dt. (3.1.7)

We know from Theorem 2.1.1, that as n → ∞, Zn−µ logn
σ
√

logn
⇒ N(0, 1). Hence, for all t ∈ R,

ψn(t) −→ e
−t2
2 . Therefore, for any fixed M > 0, by bounded convergence theorem, we get as

n→∞,

M∫
−M

∣∣∣ψn(t)− e
−t2
2

∣∣∣dt −→ 0.
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Let

I(n,M) =

σπ
h

√
logn∫

M

∣∣∣ψn(t)
∣∣∣dt. (3.1.8)

We will show that for any ε > 0, we can choose M > 0, such that for all n large enough

I(n,M) < ε. (3.1.9)

Since Zn
d
= Z0 +

∑n
j=1 IjYj , therefore,

ψn (t) = e−it
µ logn
σ E

[
e
it

Z0
σ
√
logn

]
E

[
e
it

∑n
j=1 IjYj

σ
√

logn

]
. (3.1.10)

Let us denote by

gn (t) := E

[
e
it

∑n
j=1 IjYj

σ
√
logn

]
. (3.1.11)

It is easy to see from (3.1.10) that for all t ∈ R,∣∣∣ψn(t)
∣∣∣ ≤ ∣∣∣gn (t)

∣∣∣. (3.1.12)

Therefore, from (3.1.8) we obtain

I(n,M) ≤

σπ
h

√
logn∫

M

∣∣∣gn (t)
∣∣∣dt.

Applying a change of variables t√
logn

= w, we obtain,

I(n,M) ≤
√

log n

πσ
h∫

M/
√

logn

∣∣∣gn (w√log n
) ∣∣∣ dw. (3.1.13)

Observe that,

E
[
eit
∑n
j=1 IjYj

]
=

n∏
j=1

(
1− 1

j + 1
+
e (it)

j + 1

)
=

1

n+ 1
Πn (e (it))
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where e (it) = E
[
eitY1

]
. Therefore,

gn (t) =
1

n+ 1
Πn

(
e

(
it

σ
√

log n

))
. (3.1.14)

Now, there exists δ > 0, such that for all t ∈ (0, δ) (see page 133 of [28])

|e (it)| ≤ 1− t2

4
. (3.1.15)

Therefore, using the inequality 1− x ≤ e−x, we obtain 1− 1
j+1 + |e(it)|

j+1 ≤ e
− 1
j+1

t2

4 . Hence, for
all t ∈ (0, δσ)

1

n+ 1

∣∣∣Πn

(
e

(
it

σ

)) ∣∣∣ ≤ e−
t2

4σ2

n∑
j=1

1

j + 1
. (3.1.16)

Let us write

√
log n

πσ
h∫

M/
√

logn

∣∣∣gn (w√log n
) ∣∣∣ dw = I1(n,M) + I2(n),

where

I1(n,M) :=
√

log n

σδ∫
M/
√

logn

∣∣∣gn (w√log n
) ∣∣∣dw

and

I2(n) :=
√

log n

πσ
h∫

σδ

∣∣∣gn (w√log n
)∣∣∣ dw.

From (3.1.14), we obtain

gn

(
w
√

log n
)

=
1

n+ 1
Πn

(
e

(
iw

σ

))
.

From (3.1.16), for a suitable constant C1 > 0, we obtain

I1(n,M) ≤ C1

√
log n

δσ∫
M/
√

logn

e−
w2

4σ2
logn dw.
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Applying a change of variables w
√

log n = t, we obtain

I1(n,M) ≤ C1

δσ
√

logn∫
M

e−
t2

4σ2 dt. (3.1.17)

Observe that for ε > 0, we can choose M > 0, such that

C1

∞∫
M

e−
t2

4σ2 dt < ε. (3.1.18)

This implies that

C1

δσ
√

logn∫
M

e−
t2

4σ2 dt ≤ C1

∞∫
M

e−
t2

4σ2 dt < ε. (3.1.19)

This implies that for the chosen M ,

I1(n,M) < ε. (3.1.20)

Observe, that the span of Y1 is h. Therefore, for all t ∈
[
δ, 2π

h

)
, |e (it)| < 1. The charac-

teristic function being continuous in t, there exists 0 < η < 1, such that |e
(
it
σ

)
| ≤ η, for all

t ∈
[
δσ, πσh

]
. Therefore,

1− 1

j + 1
+
|e
(
it
σ

)
|

j + 1
≤ 1− 1

j + 1
+

η

j + 1
≤ e−

1−η
j+1 .

It follows that,

1

n+ 1

∣∣∣Πn

(
e

(
it

σ

)) ∣∣∣ ≤ e−
n∑
j=1

1− η
j + 1

≤ C2e
−(1−η) logn

where C2 is some positive constant. So, as n→∞,

I2(n) ≤ C2σe
−(1−η) logn (π − δ)

√
log n −→ 0. (3.1.21)

Given ε > 0, choose M large enough, such that (3.1.18) holds and

∞∫
M

e
−t2
2 dt < ε.
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Therefore,

πσ
√
logn
h∫

M

e−
t2

2 dt ≤
∞∫
M

e
−t2
2 dt < ε. (3.1.22)

Since (3.1.20) holds, and I2(n) −→ 0 as n→∞, therefore from (3.1.7) we obtain

lim
n→∞

σπ
h

√
logn∫

−πσ
h

√
logn

∣∣∣ψn(t)− e
−t2
2

∣∣∣dt < 4ε. (3.1.23)

Theorem 3.1.1 covers the case when P (Y1 = 0) > 0. Suppose now, P (Y1 = 0) = 0 and let

h̃ be the span for Y1. We can now write P (I1Y1 ∈ a+ hZ) = 1, where a ∈ R and h > 0 is the

span for I1Y1. It is easy to note that h ≤ h̃. The following result gives a local limit theorem for

the case when h̃ < 2h. An example of such a walk is when P (Y1 = 1) = P (Y1 = 2) = 1/2.

Then, h̃ = 1. The support for I1Y1 is {0, 1, 2} and h = 1. This example illustrates the case

when h̃ < 2h holds.

Theorem 3.1.2. Assume that h̃ < 2h, then, as n→∞

sup
x∈L(1)n

∣∣∣∣σ√log n

h
P
(
Zn − µ log n

σ
√

log n
= x

)
− φ(x)

∣∣∣∣ −→ 0, (3.1.24)

where L(1)
n =

{
x : x = n

σ
√

logn
a− µ

σ

√
log n+ h

σ
√

logn
z z ∈ Z

}
.

Proof. The proof is similar to the proof of Theorem 3.1.1. So we omit certain details. Since for
j ∈ N, the span of IjYj is h, for all x ∈ L(1)

n , we obtain by Fourier inversion formula,

P
(
Zn − µ log n

σ
√

log n
= x

)
=

h

2πσ
√

log n

πσ
√
logn
h∫

−πσ
√
logn
h

e−itxψn(t) dt

where ψn (t) = E
[
e
itZn−µ logn

σ
√

logn

]
.

Also, by Fourier inversion formula, for all x ∈ R,

φ(x) =
1

2π

∞∫
−∞

e−itxe
−t2
2 dt.
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The bounds for
∣∣∣σ√logn

h P
(
Zn−µ logn
σ
√

logn
= x

)
−φ(x)

∣∣∣ are similar to those in the proof of Theorem
3.1.1 except for that of I2(n), where

I2(n) =
√

log n

σπ
h∫

σδ

∣∣∣gn (w√log n
)∣∣∣ dw

and δ is chosen as in (3.1.15) and gn(·) is as in (3.1.11). We have to show

I2(n) −→ 0 as n→∞.

The span of Y1 being h̃, for all t ∈
[
δ, 2π

h̃

)
, |e (it)| < 1. We have assumed that h̃ < 2h. The

characteristic function being continuous in t, there exists 0 < η < 1, such that, |e
(
it
σ

)
| ≤ η for

all t ∈
[
δσ, πσh

]
⊂
[
δσ, 2πσ

h̃

)
. So, as n→∞,

I2(n) ≤ C2σe
−(1−η) logn (π − δ)

√
log n −→ 0. (3.1.25)

Remark 3.1.1. Observe that in the proof of Theorem 3.1.2, the assumption h̃ < 2h is required
only to obtain the bound in (3.1.25). This assumption implies that

[
δσ, πσh

]
⊂
[
δσ, 2πσ

h̃

)
, which

guarantees the existence of 0 < η < 1, such that |e
(
it
σ

)
| ≤ η for all t ∈

[
δσ, πσh

]
.

The next theorem is stated for the special case when the urn is associated with simple

symmetric random walk on Z, which is not covered by Theorem 3.1.1 or its generalization given

by Theorem 3.1.2.

Theorem 3.1.3. Assume that P (Y1 = 1) = P (Y1 = −1) = 1
2 . Then, as n→∞

sup
x∈L(1)n

∣∣∣∣√log nP
(

Zn√
log n

= x

)
− φ(x)

∣∣∣∣ −→ 0 (3.1.26)

where L(1)
n is given by (3.1.2) with µ = 0 = a and σ = 1 = h.

The following result is immediate from Theorem 3.1.3.

Corollary 3.1.1. Assume that P (X1 = 1) = P (X1 = −1) = 1
2 . Then, as n→∞

P (Zn = 0) ∼ 1√
2π log n

. (3.1.27)
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Proof of Theorem 3.1.3. In this case P (Y1 = 1) = P (Y1 = −1) = 1
2 . Thus the span of Y1 is 2.

The random variables I1Y1 is supported on the set {0, 1,−1} and it has span 1. We have µ = 0

and σ = 1, so from (3.1.2), we get L(1)
n = 1√

logn
Z.

For all x ∈ L(1)
n , we obtain by Fourier Inversion formula,

P
(

Zn√
log n

= x

)
=

1

2π
√

log n

π
√

logn∫
−π
√

logn

e−itxψn(t) dt

where ψn (t) = E
[
e
it Zn√

logn

]
. Furthermore, by Fourier inversion formula, for all x ∈ R,

φ(x) =
1

2π

∞∫
−∞

e−itxe
−t2
2 dt.

The proof of this theorem is also very similar to that of Theorem 3.1.1. The bounds for∣∣∣√log nP
(

Zn√
logn

= x
)
− φ(x)

∣∣∣ are similar to those in the proof of Theorem 3.1.1 except for
that of I2(n), where

I2(n) =
√

log n

π∫
δ

∣∣∣ψn (w√log n
)∣∣∣ dw,

and δ is chosen as in (3.1.15). To show that I2(n) −→ 0 as n→∞, we observe that

E
[
eitZn

]
=

n∏
j=1

(
1− 1

j + 1
+

cos t

j + 1

)
=

1

n+ 1
Πn (cos t)

since E
[
eitY1

]
= cos t. Therefore,

ψn(w
√

log n) = E
[
eiwZn

]
=

1

n+ 1
Πn (cosw) .

We note that cosw is decreasing in
[
π
2 , π

]
and for all w ∈

[
π
2 , π

]
,−1 ≤ cosw ≤ 0. Therefore,

there exists η > 0 (small enough), such that, [π − η, π) ⊂
(
π
2 , π

]
and for all w ∈ [π − η, π), we

have −1 < cos(π − η) < 0, and∣∣∣ψn(w
√

log n)
∣∣∣ ≤ 1

n+ 1
Πn (cos(π − η)) .
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Since −1 < cos(π − η) < 0, so for all j ≥ 1,
(

1 + cos(π−η)
j

)
< 1. Therefore,

Πn (cos(π − η)) ≤ 1. (3.1.28)

Let us write
I2(n) = J1(n) + J2(n),

where

J1(n) =
√

log n

π−η∫
δ

∣∣∣ψn (w√log n
)∣∣∣ dw, (3.1.29)

and

J2(n) =
√

log n

π∫
π−η

∣∣∣ψn (w√log n
)∣∣∣ dw.

It is easy to see from (3.1.28) that

J2(n) ≤ η

n+ 1

√
log n −→ 0 as n→∞.

For all t ∈ [δ, π − η] , 0 ≤ |cos t| < 1, so there exists 0 < α < 1, such that, 0 ≤ |cos t| ≤ α for
all t ∈ [δ, π − η]. Recall that

ψn(w
√

log n) =
n∏
j=1

(
1− 1

j + 1
+

cosw

j + 1

)
.

Using the inequality 1− x ≤ e−x, it follows that for all t ∈ [δ, π − η]

1− 1

j + 1
+
|cos t|
j + 1

≤ 1− 1

j + 1
+

α

j + 1
≤ e−

1−α
j+1 ,

and hence,

1

n+ 1
|Πn (cos t)| ≤ e

−

n∑
j=1

1− α
j + 1

≤ Ce−(1−α) logn

where C is some positive constant. Therefore, from (3.1.29) we obtain as n→∞,

J1(n) ≤ Ce−(1−α) logn (π − η − δ)
√

log n −→ 0.
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3.1.2 Local limit theorems for higher dimensions

Now, we consider the case d ≥ 2. As in (2.0.1), µ, Σ and e (·), will denote the mean, non-

centered second moment matrix and the moment generating function of Y1 respectively. For Y1 a

lattice random vector taking values in Zd, let L be its minimal lattice, that is, P (Y1 ∈ x+ L) = 1

for every x ∈ Zd, such that, P (Y1 = x) > 0. We refer to the pages 226 – 227 of [10] for a

formal definition of the minimal lattice of a d-dimensional lattice random variable. If L′ is any

closed subgroup of Rd, such that P (Y1 ∈ y + L′) = 1 for some y ∈ Zd, then from the definition

of minimal lattice it follows that L ⊆ L′. We assume Y1 to be non-degenerate. This implies that

the rank of L is d. Let l = |det (L)| (see the pages 228 – 229 of [10] for more details). Now, x0

be such that, P (Y1 ∈ x0 + L) = 1 and we define

L(d)
n :=

{
x : x =

n√
log n

x0Σ
−1/2 −

√
log nµΣ−1/2 +

1√
log n

zΣ−1/2 : z ∈ L
}
.

(3.1.30)

Theorem 3.1.4. Assume that P (Y1 = 0) > 0. Then, as n→∞

sup
x∈L(d)n

∣∣∣∣∣det(Σ1/2)
(√

log n
)d

l
P
(
Zn − µ log n√

log n
Σ−1/2 = x

)
− φd(x)

∣∣∣∣∣ −→ 0. (3.1.31)

Proof. From Theorem 2.1.2, we obtain Zn
d
= Z0 +

∑n
j=1 IjYj . The random vector Yj is a

lattice random vector. Therefore, IjYj is also a lattice random vector. By our assumption,
P (Y1 = 0) > 0, so 0 ∈ B, therefore, Yj and IjYj are supported on the same lattice.

Observe that Zn is a lattice random vector, for every n ∈ N. For A ⊂ Rd and x ∈ R, we
define

xA := {xy : y ∈ A},

and
AΣ1/2 := {yΣ1/2 : y ∈ A}.

By Fourier inversion formula (see 21.28 on page 230 of [10]), we get for x ∈ L(d)
n ,

P
(
Zn − µ log n√

log n
Σ−1/2 = x

)
=

l

(2π
√

log n)ddet(Σ1/2)

∫
(
√

lognF∗Σ1/2)

ψn(t)e−i〈t,x〉 dt

where ψn(t) = E
[
e
i〈t,Zn−µ logn√

logn
Σ−1/2〉

]
, l = |det (L)| and F∗ is the fundamental domain for Y1



46 Chapter 3: Local limit theorems for the urn models associated with random walks

as defined in equation (21.22) on page 229 of [10]. Also, by Fourier inversion formula

φd(x) =
1

(2π)d

∫
Rd

e−i〈t,x〉e−
‖t‖2
2 dt.

Given ε > 0, there exists N > 0 such that n ≥ N ,

∣∣∣det(Σ1/2)
(√

log n
)d

l
P
(
Zn − µ log n√

log n
Σ−1/2 = x

)
− φd(x)

∣∣∣
≤ 1

(2π)d

∫
(
√

lognF∗Σ1/2)

∣∣∣ψn(t)− e−
‖t‖2
2

∣∣∣dt+
1

(2π)d

∫
Rd\
√

lognF∗Σ1/2

e−
‖t‖2
2 dt

≤ 1

(2π)d

∫
(
√

lognF∗Σ1/2)

∣∣∣ψn(t)− e−
‖t‖2
2

∣∣∣dt+ ε.

Therefore, it is enough to prove that as n→∞∫
(
√

lognF∗Σ1/2)

∣∣∣ψn(t)− e−
‖t‖2
2

∣∣∣ dt −→ 0. (3.1.32)

Given any compact set A ⊂ Rd, we have∫
(
√

lognF∗Σ1/2)

∣∣∣ψn(t)− e−
‖t‖2
2

∣∣∣ dt ≤ ∫
A

∣∣∣ψn(t)− e−
‖t‖2
2

∣∣∣ dt+

∫
(
√

lognF∗Σ1/2)\A

∣∣∣ψn(t)
∣∣∣ dt

+

∫
Rd\A

e−
‖t‖2
2 dt. (3.1.33)

By Theorem 2.1.1, we know that Zn−µ logn√
logn

Σ−1/2 ⇒ Nd(0, Id) as n→∞. Therefore, for any
compact set A ⊂ Rd, by bounded convergence theorem,∫

A

∣∣∣ψn(t)− e−
‖t‖2
2

∣∣∣dt −→ 0 as n→∞.

Let us write

I(n,A) =

∫
(
√

lognF∗Σ1/2)\A

∣∣∣ψn(t)
∣∣∣dt. (3.1.34)

We will show that for any ε > 0, we can choose a compact subset A of Rd, such that for all n
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large enough

I(n,A) < ε.

Since Zn
d
= Z0 +

∑n
j=1 IjYj , calculations similar to (3.1.10) show that for every t ∈ Rd, and

each n ∣∣∣ψn(t)
∣∣∣ ≤ ∣∣∣gn(t)

∣∣∣,
where

gn (t) := E

[
e
〈it,

∑n
j=1 IjYj√

logn
Σ−1/2〉

]
. (3.1.35)

Therefore, from (3.1.34) we obtain

I(n,A) ≤
∫

(
√

lognF∗Σ1/2)\A

∣∣∣gn(t)
∣∣∣ dt. (3.1.36)

Observe that

E
[
ei〈t,

∑n
j=1 IjYj〉

]
=

n∏
j=1

(
1− 1

j + 1
+
e (it)

j + 1

)
=

1

n+ 1
Πn (e (it))

where e (it) = E
[
ei〈t,Y1〉

]
. So, from (3.1.35)

gn(t) =
1

n+ 1
Πn

(
e

(
1√

log n
itΣ−1/2

))
.

Applying a change of variables t = 1√
logn

w, to (3.1.34), we obtain

I(n,A) ≤ (
√

log n)d
∫

F∗Σ1/2\ 1√
logn

A

∣∣∣gn (√log nw
) ∣∣∣ dw. (3.1.37)

We can choose δ > 0, such that for all w ∈ B(0, δ) \ {0}, there exists b > 0, such that

|e(iw)| ≤ 1− b‖w‖2

2
, (3.1.38)

(see Lemma 2.3.2(a) of [46] for a proof). Therefore, using the inequality 1− x ≤ e−x,

|gn(
√

log nw)| =
1

n+ 1
|Πn

(
e(iwΣ−1/2)

)
|
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≤
n+1∏
j=1

(
1− 1

j + 1
+
|e
(
iwΣ−1/2

)
|

j + 1

)

≤ e

−

n∑
j=1

b

j + 1

‖w‖2

2
≤ C1e

−bwΣw
T

2
logn (3.1.39)

for some positive constant C1. We write

(
√

log n)d
∫

F∗Σ1/2\ 1√
logn

A

∣∣∣gn (√log nw
) ∣∣∣ dw = I1(n,A) + I2(n)

where

I1(n,A) := (
√

log n)d
∫

(
B(0,δ)Σ1/2\ 1√

logn
A
)
∩F∗Σ1/2

|gn
(√

log nw
)
|dw

and

I2(n) = (
√

log n)d
∫

F∗Σ1/2\B(0,δ)Σ1/2

|gn
(√

log nw
)
|dw.

From (3.1.39), we obtain

I1(n) ≤ C1(
√

log n)d
∫

B(0,δ)Σ1/2\ A√
logn

e−b
wΣwT

2
logn dw, (3.1.40)

for an appropriate positive constant C1. Applying a change of variables w
(√

log n
)

= t, we
obtain

I1(n,A) ≤ C1

∫
B(0,δ

√
logn)Σ1/2\A

e−b
wΣwT

2 dw. (3.1.41)

Given ε > 0, choose a compact subset A of Rd, such that

C1

∫
Ac

e−b
wΣwT

2 dw < ε. (3.1.42)

Therefore, for this choice of A,
I1(n,A) < ε. (3.1.43)

Since the lattices for Y1 and I1Y1 are same, for all w ∈ F∗ \ B(0, δ), we get |e(iw)| < 1, so
there exists an 0 < η < 1, such that, |e(iwΣ−1/2)| ≤ η, for all w ∈ F∗Σ1/2 \ B(0, δ)Σ1/2
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Therefore, using the inequality 1− x ≤ e−x, we obtain

|gn(
√

log nw)| ≤ e−
∑n
j=i

1
j+1

(1−η) ≤ C2e
−(1−η) logn (3.1.44)

for some positive constant C2. Therefore, using equation (21.25) on page 230 of [10], we obtain

I2(n) ≤ C ′2(
√

log n)de−(1−η) logn −→ 0 as n→∞ (3.1.45)

where C ′2 is an appropriate positive constant.
Given ε > 0, choose A, such that, (3.1.42) holds and∫

Ac

e−
‖t‖2
2 dt < ε. (3.1.46)

From (3.1.33), (3.1.43), (3.1.45) and (3.1.46), we get

lim
n→∞

∫
(
√

lognF∗Σ1/2)

∣∣∣ψn(t)− e−
‖t‖2
2

∣∣∣dt < 2ε. (3.1.47)

Observe that as in the one dimensional case, Theorem 3.1.4 covers only the case when

P (Y1 = 0) > 0. The next theorem is stated for the special case when the urn is associated with

simple symmetric random walk on Zd, d ≥ 2, which is not covered by the Theorem 3.1.4.

Theorem 3.1.5. Assume that P (Y1 = ±ei) = 1
2d , for 1 ≤ i ≤ d, where ei is the i-th unit vector

in direction i. Then, as n→∞,

sup
x∈L(d)n

∣∣∣∣∣(d)
d
2

(√
log n

)d
P

( √
d√

log n
Zn = x

)
− φd(x)

∣∣∣∣∣ −→ 0, (3.1.48)

where L(d)
n is as defined in (3.1.30) with µ = 0 = x0, Σ = Id and L =

√
dZd.

Similar to the one dimensional case, the next result is immediate from the above theorem.

Corollary 3.1.2. Assume that P (X1 = ±ei) = 1
2d , for 1 ≤ i ≤ d, where ei is the i-th unit

vector in direction i. Then, as n→∞,

P (Zn = 0) ∼ 1(√
2πd log n

)d . (3.1.49)

Proof of Theorem 3.1.5. In this case, P (Y1 = ±ei) = 1
2d , for 1 ≤ i ≤ d, where ei is the i-th

unit vector in direction i, thus µ = 0 and Σ = 1
dId.
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For notational simplicity, we prove (3.1.48) for d = 2. The proof for general d can be written
similarly.

Now for each j ∈ N, IjYj is a lattice random vector with the minimal lattice Z2. It is easy to
see that 2πZ × 2πZ is the set of all periods for IjYj , and its fundamental domain is given by
(−π, π)2. To prove (3.1.48), it is enough to show

sup
x∈ 1√

2
L(2)n

∣∣∣∣(log n)P
(

Zn√
log n

= x

)
− φ2, 1

2
I2(x)

∣∣∣∣ −→ 0 as n→∞,

where φ2, 1
2
I2(x) = 1

πe
−‖x‖2 is the bivariate normal density with mean vector 0 and variance-

covariance matrix 1
2I2 and 1√

2
L(2)
n = 1√

logn
Z2. By Fourier inversion formula (see 21.28 on page

230 of [10]), we get for x ∈ 1√
2
L(2)
n

P
(

Zn√
log n

= x

)
=

1

(2π)2 log n

∫
(−
√

lognπ,
√

lognπ)
2

ψn(t)e−i〈t,x〉 dt

Also, by Fourier inversion formula,

φ2, 1
2
I2(x) =

1

(2π)2

∫
R2

e−i〈t,x〉e−
‖t‖2
4 dt.

Let us write Hn =
(
−
√

log nπ,
√

log nπ
)2
. Given ε > 0, there exists N > 0, such that, for

n ≥ N ,∣∣∣ log nP
(

Zn√
log n

= x

)
− φ2, 1

2
I2(x)

∣∣∣ ≤ 1

(2π)2

∫
Hn

∣∣∣ψn(t)− e−
‖t‖2
4

∣∣∣dt+
1

(2π)2

∫
R2\Hn

e−
‖t‖2
4 dt

<
1

(2π)2

∫
Hn

∣∣∣ψn(t)− e−
‖t‖2
4

∣∣∣dt+ ε.

Given any compact set A ⊂ R2, for all n large enough, we have∫
Hn

∣∣∣ψn(t)− e−
‖t‖2
4

∣∣∣ dt ≤ ∫
A

∣∣∣ψn(t)− e−
‖t‖2
4

∣∣∣ dt+

∫
Hn\A

∣∣∣ψn(t)
∣∣∣ dt+

∫
Ac

e−
‖t‖2
4 dt.

By Theorem 2.1.1, we know that Zn√
logn
⇒ N2(0, 1

2I2), as n→∞. Therefore, for any compact
set A ⊂ R2, by bounded convergence theorem,∫

A

∣∣∣ψn(t)− e−
‖t‖2
4

∣∣∣dt −→ 0 as n→∞.
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Let us write

I(n,A) =

∫
Hn\A

∣∣∣ψn(t)
∣∣∣dt.

We will show that for any ε > 0, we can choose a compact subset A of R2, such that, for all
n large enough ∫

Ac

e−
‖t‖2
4 dt < ε,

and

I(n,A) < ε.

Applying a change of variables t = 1√
logn

w, we obtain

I(n,A) = logn

∫
(−π,π)2\ 1√

logn
A

∣∣∣ψn (√log nw
) ∣∣∣dw.

We can write

I(n,A) = I1(n,A) + I2(n)

where

I1(n,A) = log n

∫
(
B(0,δ)\ 1√

logn
A
)
∩(−π,π)2

|ψn
(√

log nw
)
| dw

and

I2(n) = log n

∫
(−π,π)2\B(0,δ)

|ψn
(√

log nw
)
|dw.

where δ is as in (3.1.38). Using arguments similar to (3.1.43), we can show that for any ε > 0,

we can choose a compact subset A of R2, such that for all n large enough

I1(n,A) < ε.

Therefore, it is enough to show that I2(n) −→ 0, as n → ∞. To do so, we first ob-
serve that for t =

(
t(1), t(2)

)
∈ R2, the characteristic function for Y1 is given by
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e (it) = 1
2

(
cos t(1) + cos t(2)

)
. So, if t ∈ [−π, π]2, be such that, |e (it)| = 1, then

t ∈ {(π, π), (−π, π), (π,−π), (−π,−π)}. The function cos θ is continuous and decreasing
as a function of θ for θ ∈

[
π
2 , π

]
. Choose η > 0, such that for t ∈ A1 = (−π, π)2 ∩

Bc(0, δ) ∩ Dc, we have |e (it)| < 1, where D = [π − η, π)2 ∪ [−π + η,−π) × [π − η, π) ∪
[−π + η,−π)2 ∪ [π − η, π)× [−π + η,−π). Let us write

I2(n) = J1(n) + J2(n),

where

J1(n) = log n

∫
A1

|ψn
(√

log nw
)
|dw

and

J2(n) = logn

∫
D

|ψn
(√

log nw
)
|dw.

It is easy to note that,

J1(n) ≤ log n

∫
A1

|ψn
(√

log nw
)
|dw,

where A1 denotes the closure of A1. For w ∈ A1, there exists some 0 < α < 1, such that,
|e (it)| ≤ α. Therefore, using bounds similar to that in (3.1.44), we can show that

J1(n) −→ 0 as n→∞.

We observe that
J2(n) ≤ 4 log n

∫
[π−η,π]2

|ψn
(√

log nw
)
|dw.

Hence, it is enough to show that

log n

∫
[π−η,π]2

|ψn
(√

log nw
)
|dw −→ 0 as n→∞.

For w ∈ [π − η, π]2, we have 0 < |
(

1 + e(iw)
j

)
| ≤

(
1 + cos(π−η)

j

)
≤ 1. Therefore,

|ψn
(√

log nw
)
| = 1

n+ 1

n∏
j=1

∣∣∣ (1 +
e(iw)

j

) ∣∣∣ ≤ 1

n+ 1
.
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So,

log n

∫
[π−η,π]2

|ψn
(√

log nw
)
|dw ≤ η2

n+ 1
log n −→ 0 as n→∞.
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Chapter 4

Large deviation principle for the urn
models associated with random walks1

Urn models associated with bounded increment random walks were introduced in Chapter 2. Let

Sn = Y0 +
∑n

j=1 Yj , denote a random walk on Zd, with bounded increments (Yj)j≥1. For the

urn model (Un)n≥0, associated with the random walk (Sn)n≥0, we consider the replacement

matrix R given by (2.0.3). As in (2.0.1), µ, Σ and e (·), will denote the mean, non-centered

second moment matrix and the moment generating function of Y1 respectively. For this model,

as shown in Theorem 2.1.1, if Zn is the randomly selected color at the (n+ 1)-th draw, then

Zn − µ log n√
log n

⇒ Nd (0, Σ) as n→∞. (4.0.1)

It is easy to see that (4.0.1) implies

Zn
log n

p−→ µ as n→∞. (4.0.2)

In the following section, we show that the sequence of probability measures
(
P
(
Zn

logn ∈ ·
))

n≥2

satisfy a large deviation principle (LDP) with a good rate function and speed log n. A character-

ization of the rate function is also provided.

The large deviation principle discussed here uses the representation (2.1.4). Since the

increments (IjYj)j≥1 are independent, but not identically distributed, we require techniques

1This chapter is based on the paper “ Rate of convergence and large deviation for the infinite color Pólya urn
schemes, Statist. Probab. Lett., 92:232-240, 2014, [8].
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different from the classical case. For this we use the Gärtner-Ellis Theorem (see Remark (a) on

page 45 of [27] or page 66 of [16]).

4.1 Large deviation principles for the randomly selected color

The following standard notation is used in this section. For any subset A ⊆ Rd, we write A◦ to

denote the interior of A and Ā to denote the closure of A, under the usual Euclidean topology.

We present a few definitions (for more details see [27]), which are standard in the literature.

Definition 4.1.1. A sequence of probability measures (νn)n≥2 is said to satisfy a LDP with a
rate function I , and speed vn, if for all Borel subset A of Rd,

− inf
x∈A◦

I(x) ≤ lim
n→∞

log νn (A)

vn
≤ lim

n→∞

log νn (A)

vn
≤ − inf

x∈Ā
I(x).

Definition 4.1.2. A rate function I is a lower semicontinuous function I : Rd → [0,∞]. A rate
function is said to be good, if all the level sets {x : I(x) ≤ a} are compact subsets of Rd.

In the next theorem, we discuss the asymptotic behavior of the tail probabilities of Zn
logn .

Theorem 4.1.1. The sequence of probability measures
(
P
(
Zn

logn ∈ ·
))

n≥2
satisfy a LDP with

rate function I (·) and speed log n, where I(·) is the Fenchel-Legendre dual of e (·)− 1, that is,
for x ∈ Rd,

I(x) = sup
λ∈Rd
{〈x, λ〉 − e(λ) + 1}. (4.1.1)

Moreover, I(·) is a good rate function which is also convex.

Proof. Let us define

αn (λ) :=
1

log n
logE

[
e〈λ,Zn〉

]
. (4.1.2)

From (2.1.4), we know that

Zn
d
= Z0 +

n∑
j=1

IjYj .

Therefore, it follows from calculations similar to (2.1.5)

E
[
e〈λ,Zn〉

]
=

1

n+ 1
E
[
e〈λ,Z0〉

]
Πn (e (λ))

where Πn (z) =
∏n
j=1

(
1 + z

j

)
, z ∈ C. From (2.1.3), we get

αn (λ) −→ e (λ)− 1 <∞, ∀ λ ∈ Rd. (4.1.3)
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Thus the LDP now follows from the Gärtner-Ellis Theorem (see Remark (a) on page 45 of [27]
or page 66 of [16]).

We next note that I(·) is a convex function because it is the Fenchel-Legendre dual of
e (λ)− 1, which is finite for all λ ∈ Rd.

Finally, we will show that I (·) is good rate function, that is, the level sets A (a) =

{x : I(x) ≤ a} are compact for all a > 0. The function I is a rate function. Hence by
definition, it is lower semicontinuous. So, it is enough to prove that, A(a) is bounded for all
a ∈ R. Observe that, for all x ∈ Rd,

I(x) ≥ sup
‖λ‖=1

{〈x, λ〉 − e(λ) + 1} .

Now the function λ 7→ e (λ) is continuous and {λ : ‖λ‖ = 1} is a compact set. So ∃ λ0 ∈
{λ : ‖λ‖ = 1}, such that sup‖λ‖=1 e (λ) = e (λ0). Therefore, for ‖x‖ 6= 0, choosing λ = x

‖x‖ ,
we have I(x) ≥ ‖x‖ − e (λ0) + 1. So, if x ∈ A(a), then,

‖x‖ ≤ (a+ e (λ0)− 1) .

This proves that the level sets are bounded, which completes the proof.

Our next result is an easy consequence of (4.1.1) which can be used to compute explicit

formula for the rate function I .

Theorem 4.1.2. The rate function I is same as the rate function for the large deviation of the
empirical means of i.i.d. random vectors with distribution corresponding to the distribution of
the following random vector

W =

N∑
i=1

Yi, (4.1.4)

where N ∼ Poisson (1) and is independent of (Yj)j≥1, which are the i.i.d. increments of the
associated random walk.

Proof. We first observe that logE
[
e〈λ,W 〉

]
= e (λ)− 1. The rest then follows from (4.1.1) and

Cramér’s Theorem (see Theorem 2.2.30 of [27]).

For d = 1, one can get more information about the rate function I , in particular the following

result is a consequence of Theorem 4.1.2 and Lemma 2.2.5 of [27].

Proposition 4.1.1. Suppose d = 1, then I(x) is non-decreasing when x ≥ µ and non-increasing
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when x ≤ µ. Moreover,

I(x) =


sup
λ≥0
{xλ− e(λ) + 1} if x ≥ µ,

sup
λ≤0
{xλ− e(λ) + 1} if x ≤ µ.

(4.1.5)

In particular, I(µ) = infx∈R I(x).

The following is an immediate corollary of the above result and Theorem 4.1.1.

Corollary 4.1.1. Let d = 1, then for any ε > 0,

lim
n→∞

1

log n
logP

(
Zn

log n
≥ µ+ ε

)
= −I (µ+ ε) , (4.1.6)

and
lim
n→∞

1

log n
logP

(
Zn

log n
≤ µ− ε

)
= −I (µ− ε) . (4.1.7)

We end the chapter with explicit computations of the rate functions for two examples of

infinite color urn models associated with random walks on one dimensional integer lattice.

Example 4.1.1. Our first example is the case when the random walk is the right shift as
introduced in Subsection 1.2.1, which moves deterministically one step to the right at a time. In
other words, Y1 = 1, with probability one. In this case µ = 1 and σ2 = 1. Also the moment
generating function of Y1, is given by e (λ) := eλ, λ ∈ R. By Theorem 4.1.2, the rate function
for the associated infinite color urn model is same as the rate function for a Poisson random
variable with mean 1 (see page 96 of [28]), that is,

I(x) =


∞ if x < 0,

1 if x = 0,

x log x− x+ 1 if x > 0.

(4.1.8)

Example 4.1.2. Our next example is the case when the random walk is the simple symmetric
random walk on the one dimensional integer lattice. For this case, we note that µ = 0, σ2 = 1

and the moment generating function Y1 is e (λ) = coshλ, λ ∈ R. Therefore, from (4.1.5), we
have

I(x) =


sup
λ≥0
{xλ− coshλ+ 1} if x ≥ 0,

sup
λ≤0
{xλ− coshλ+ 1} if x ≤ 0.

Fixing x ∈ R, define fx (λ) := xλ − coshλ + 1. Differentiating fx (λ) with respect to λ, we
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obtain
dfx (λ)

dλ
= x− sinhλ, (4.1.9)

and
d2fx (λ)

dλ2
= − coshλ < 0 for all λ ∈ R. (4.1.10)

λ = sinh−1 x, solves the equation dfx(λ)
dλ = 0, for every fixed x ∈ R. Therefore, the function

fx (λ) attains its maximum at λ = sinh−1 x. Hence, the rate function for the associated infinite
color urn model turns out to be

I(x) = x sinh−1 x−
√

1 + x2 + 1. (4.1.11)
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Chapter 5

Representation theorem 1

In this chapter, we present a coupling of the urn model with the associated Markov chain,

which will improve the representation given in (2.1.4). This method is novel and useful in

deriving several results for the expected configuration of the urn. There are a few standard

methods for analyzing finite color urn models which are mainly based on martingale techniques

[38, 55, 14, 15, 25], stochastic approximations [44] and embedding into continuous time pure

birth processes [3, 40, 41, 5]. Typically, the analysis of a finite color urn is heavily dependent on

the Jordan decomposition [24] of matrices and the Perron-Frobenius theory [58] of matrices with

positive entries, [3, 38, 40, 41, 5, 14, 25]. The absence of such theories for infinite dimensional

matrices makes the analysis of urns with infinitely many colors quite difficult and challenging.

The improved representation derived here will help us bypass this difficulty.

5.1 Representation theorem

Theorem 5.1.1. Consider an urn model with colors indexed by a set S, replacement matrix R
and initial configuration U0. Let (Xn)n≥0 be the associated Markov chain. Then, there exists an
increasing non negative sequence of stopping times (τn)n≥0 with τ0 = 0, which are independent
of the Markov chain (Xn)n≥0, such that, if Zn denotes the color of the (n+ 1)-th selected ball,
then, for any n ≥ 0,

Zn
d
= Xτn . (5.1.1)

1This chapter is based on the paper entitled “A New Approach to Pólya Urn Schemes and Its Infinite Color
Generalization”, [6].
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Moreover, as n→∞,
τn

log n
−→ 1 a.s. (5.1.2)

and
τn − log n√

log n
⇒ N (0, 1) . (5.1.3)

Remark 5.1.1. Theorem 5.1.1 will be referred to as the representation theorem. It is worthwhile
to note here that (5.1.1) gives only a marginal representation of Zn, for each n ≥ 0. The
following need not be true:

(Zn)n≥0
d
= (Xτn)n≥0 . (5.1.4)

This is because (Xτn)n≥0 is a Markov chain, but (Zn)n≥0 is not necessarily Markov.

Observe that the probability mass function for Zn is
(
E[Un,v ]
n+1

)
v∈S

. Therefore (5.1.1) will be

useful in deriving results about the expected configuration of the urn. However, the representation

theorem may not be useful in deriving asymptotic properties of the random configuration of

the urn. It is worthwhile to note here that Theorem 5.1.1 holds for any S, be it finite or infinite.

Consequently, (5.1.1) will be used in the next section to rederive several known results for finite

colors. In the next chapter, we will apply Theorem 5.1.1 to derive new results for the infinite

color case.

Proof of Theorem 5.1.1. It is clear that the probability mass function for Zn is given by(
E[Un,v ]
n+1

)
v∈S

. From (1.1.4), we have

Un = Un−1 + χnR.

Denote by R (u, v) the v-th entry of the u-th row of the matrix R, for all u, v ∈ S. So,

Un
n+ 1

=
n

n+ 1

Un−1

n
+

1

n+ 1
χnR

=
n

n+ 1

Un−1

n
+

1

n+ 1
R (Zn−1, ·) . (5.1.5)

We will prove this theorem by induction on n ∈ N. Let (Xn)n≥0 be the Markov chain associated
with the urn process. Then the initial distribution of (Xn)n≥0 is given by U0. Let us denote by
PU0 the law of the Markov chain (Xn)n≥0. We know that the distribution of Z0 is given by U0.
Therefore, (5.1.1) is trivially true for n = 0.

Let (Ij)j≥1 be a sequence of independent Bernoulli random variables, with E [Ij ] = 1
j+1 ,

such that (Ij)j≥1 is independent of (Xn)n≥0 . Define τn =
∑n

j=1 Ij , and τ0 ≡ 0. Observe that,
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the law of τn is same as in Lemma 1.2.1. It is easy to see that,

PU0 (Xτ1 = v) = PU0 ((1− I1)X0 + I1X1 = v)

=
1

2
PU0 (X0 = v) +

1

2
PU0 (X1 = v) (5.1.6)

The distribution of Z0 is given by (U0,v)v∈S , therefore

E [R (Z0, v)] = PU0 (X1 = v) . (5.1.7)

Using equations (5.1.5), (5.1.6) and (5.1.7), we have proved (5.1.1) for n = 1. Let us assume
that the result is true for n, that is,

Zn
d
= Xτn . (5.1.8)

We want to show
Zn+1

d
= Xτn+1 .

We know that the distribution of Zn+1 is given by 1
n+2 (E [Un+1,v])v∈S . For v ∈ S, we have

PU0

(
Xτn+1 = v

)
= PU0 ((1− In+1)Xτn + In+1Xτn+1 = v)

=
n+ 1

n+ 2
PU0 (Xτn = v) +

1

n+ 2
PU0 (Xτn+1 = v) .

By assumption (5.1.8), we have

R (Zn, v) = P (Xτn+1 = v|Xτn) .

Therefore,
E [R (Zn, v)] = PU0 (Xτn+1 = v) .

This proves (5.1.1).
Now we will show (5.1.2) and (5.1.3). As observed in (1.2.6),

E [τn] ∼ log n as n→∞. (5.1.9)

From (1.2.7), we obtain

Var (τn) =
∑n

j=1
1
j+1 −

1
(j+1)2

∼ log n as n→∞. (5.1.10)

Observe that,

∑
n≥1

Var(In)

(log n)2 ≤
∑
n≥1

1

(n+ 1) (log n)2 <∞.
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Therefore, by the Strong Law of Large Numbers for independent random variables (see Theorem
2 on page 364 of [59]), we obtain as n→∞,

τn − E [τn]

log n
−→ 0 a.s. (5.1.11)

From (1.2.6), we have E[τn]
logn −→ 1 as n → ∞. This together with (5.1.11) implies that as

n→∞,

τn
log n

−→ 1 a.s.

This proves (5.1.2). The conclusion in (5.1.3) follows from Lemma 1.2.1.

The following proposition is immediate from the proof of Theorem 5.1.1.

Proposition 5.1.1. Under the assumptions made in Theorem 5.1.1, it is possible to choose
(τn)n≥1, such that, for all n ≥ 1,

τn =

n∑
j=1

Ij . (5.1.12)

where (Ij)j≥1 is a sequence of independent Bernoulli random variables, with E [Ij ] = 1
j+1 , and

(Ij)j≥1 is independent of (Xn)n≥0.

5.2 Color count statistics

For every v ∈ S, and n ≥ 0, let

Nn,v :=

n∑
m=0

1{Zm=v}

denote the color count statistics for v. Note that for every n ≥ 0,

∑
v∈S

Nn,v = n+ 1.

Here, we present some results for the color count statistics, for both finite and infinite color

urn models.

Lemma 5.2.1. Consider an urn model with colors indexed by a set S, replacement matrix R
and initial configuration U0. If Zn denotes the color of the (n + 1)-th selected ball, then for
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every v ∈ S,

lim
n→∞

(
Un,v
n+ 1

− 1

n+ 1

∑
u∈S

Nn,uR(u, v)

)
= 0, a.s. (5.2.1)

where R(u, v) denotes the v-th element of the u-th row of R.

Proof. For n ≥ 0, the following is obvious from (1.1.4)

Un+1 = Un + χn+1R = U0 +

n+1∑
k=1

χkR.

Writing χn = (χn,u)u∈S , we observe that χn,u = 1{Zn−1=u} for every u ∈ S. Therefore, it
follows that

Un,v = U0,v +
∑
u∈S

n∑
m=0

1{Zm=u}R(u, v) = U0,v +
∑
u∈S

Nn,uR(u, v). (5.2.2)

This implies that, as n→∞,(
Un,v
n+ 1

− 1

n+ 1

∑
u∈S

Nn,uR(u, v)

)
=

U0,v

n+ 1
−→ 0 a.s. (5.2.3)

Remark 5.2.1. It is worthwhile to note that the identity (5.2.2) imply that (5.2.1) holds for every
realization.

Corollary 5.2.1. Consider an urn model with colors indexed by a set S, replacement matrix R
and initial configuration U0. Let π = (πu)u∈S be a solution to πR = π, such that πu ≥ 0, for
each u ∈ S. If for all v ∈ S,

Nn,v

n+ 1
−→ πv a.s. as n→∞, (5.2.4)

then, for every v ∈ S,
Un,v
n+ 1

−→ πv a.s. as n→∞. (5.2.5)

Remark 5.2.2. For infinitely many colors, it is well known from the standard theory of Markov
chains (see page 130 of [11]) that there exists a unique solution π = (πu)u∈S , with πu > 0, for
each u ∈ S and

∑
u∈S πu = 1 to

πR = π,

if and only if, R is irreducible and positive recurrent. However, if R is irreducible and null
recurrent, then πu = 0, for all u ∈ S.
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Proof of Corollary 5.2.1. Assume (5.2.4) holds, then to prove (5.2.5), we observe that from
(5.2.1), it is enough to prove that, for every v ∈ S,

lim
n→∞

1

n+ 1

∑
u∈S

Nn,uR(u, v) = πv a.s. (5.2.6)

From (5.2.4), we know that for every u ∈ S, as n→∞,

Nn,u

n+ 1
−→ πu a.s.

Therefore, by dominated convergence theorem, it follows that, as n→∞,

1

n+ 1

∑
u∈S

Nn,uR(u, v) −→ πv a.s. (5.2.7)

for every v ∈ S.

Corollary 5.2.2. Consider an infinite color urn model with colors indexed by a set S, replace-
ment matrix R and initial configuration U0. Let R be irreducible. Then, the following are
equivalent:

(i) For every v ∈ S, lim
n→∞

Un,v
n+ 1

= 0 a.s.;

(ii) For every v ∈ S, lim
n→∞

Nn,v

n+ 1
= 0 a.s.

Proof. First we prove that (i) implies (ii). Fix v ∈ S. Since R is irreducible, given v ∈ S, there
exists u ∈ S, such that R(v, u) > 0. Since we have assumed (i) holds, we have

lim
n→∞

Un,u
n+ 1

= 0.

Therefore, (5.2.1) implies that for this chosen u ∈ S,

lim
n→∞

1

n+ 1

∑
w∈S

Nn,wR(w, u) = 0 a.s. (5.2.8)

Since, for every w ∈ S, Nn,wR(w, u) ≥ 0, therefore, (5.2.8) implies that,

lim
n→∞

1

n+ 1
Nn,wR(w, u) = 0. (5.2.9)

Since R(v, u) > 0, (5.2.9) implies that,

lim
n→∞

Nn,v

n+ 1
= 0 a.s. (5.2.10)
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This proves that (i) implies (ii).
The proof that (ii) implies (i) is similar to the proof of Corollary 5.2.1.

Remark 5.2.3. It is worthwhile to note here that if R is reducible, then it may happen that

lim
n→∞

Un,v
n+ 1

= 0 a.s. for some but not all v. (5.2.11)

Consider the following example where the S = N and R = ((R(i, j)))i,j∈N, such that

R(i, j) =

1 if i = 1, j ∈ N,

0 otherwise.

In this case, it follows trivially that

lim
n→∞

Un,1
n+ 1

= 1, a.s.

and for all j ≥ 2,

lim
n→∞

Un,j
n+ 1

= 0, a.s.

5.3 Applications of the representation theorem for finite color urn
models

We will now present some applications of the representation theorem for finite color urn models.

These results are already available in literature, we will give alternative proofs as applications

of the representation theorem. More applications leading to new results for infinite color urn

models are available in Chapter 6.

5.3.1 Irreducible and aperiodic replacement matrices

Theorem 5.3.1. Consider an urn model with colors indexed by {1, 2, . . . ,K}. Let R be ir-
reducible, and aperiodic, with a unique stationary distribution π = (πj)1≤j≤K . Then, as
n→∞,

P (Zn = j) −→ πj , for every j ∈ {1, 2, . . . ,K} . (5.3.1)

The proof (5.3.1) is available in [3, 38, 40, 5] using techniques different from the representa-

tion (5.1.1). Here, we present the proof as an application of (5.1.1).
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Proof. Since (Xn)n≥0 is irreducible and aperiodic, therefore using the standard limit theorems
for Markov chains, see [11], we have as n→∞,

P (Xn = j) −→ πj , for every j ∈ {1, 2, . . . ,K} . (5.3.2)

From (5.1.1), we know that Zn
d
= Xτn , where (τn)n≥1 is independent of (Xn)n≥0 . From (5.1.2),

we know that τn −→∞, as n→∞. This together with (5.3.2) implies that, as n→∞,

P (Zn = j) = P (Xτn = j) −→ πj , (5.3.3)

j ∈ {1, 2, . . . ,K}. This completes the proof.

Corollary 5.3.1. Consider an urn model with colors indexed by {1, 2, . . . ,K}. Let R be
irreducible, and aperiodic, with a unique stationary distribution π = (πj)1≤j≤K . Then, as
n→∞,

E [Nn,j ]

n+ 1
−→ πj , for all 1 ≤ j ≤ K. (5.3.4)

Proof.

E [Nn,j ] =

n∑
m=0

P (Zm = j) .

Therefore, from (5.3.1), it follows that for every 1 ≤ j ≤ K,

E [Nn,j ]

n+ 1
=

1

n+ 1

n∑
m=0

P (Zm = j) −→ πj as n→∞. (5.3.5)

If R be irreducible, and aperiodic, with unique stationary distribution π = (πj)1≤j≤K , then,

it is well known in literature [3, 38, 40, 5], as n→∞,

Un,j
n+ 1

−→ πj a.s. for all j ∈ {1, 2, . . . ,K} . (5.3.6)

The proof of (5.3.6) is available in [38, 5], which uses the Perron-Frobenius theory and the

Jordan decomposition of matrices. The same is available in [40, 3], using the Athreya-Karlin

embedding of the urn processes into continuous time multi-type Markov branching processes.

The key to all these techniques is the existence of a dominant eigenvalue, as obtained from

Perron-Frobenius theory of matrices with positive entries [58] and the Jordan decomposition of

matrices [24]. Here we provide a simplification of the proof given in [5].
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If R is irreducible, then by the Perron-Frobenius theory, 1 is a simple eigenvalue of R, and if

λ is any other eigenvalue of R, then Re (λ) < 1. As R is irreducible, there exists a non-singular

matrix T , such that R admits the following Jordan decomposition

T−1RT =



1 0 0 . . . 0

0 J1 0 . . . 0

. . . . . . . . . . . .

0 0 0 . . . Js


(5.3.7)

with

Jt =



λt 1 0 . . . 0

0 λt 1 . . . 0

... . . .
. . . . . .

...

0 0 . . . λt 1

0 0 0 . . . λt


(5.3.8)

where 1, λ1, λ2, . . . , λs are the eigenvalues of R, with Re (λt) < 1, for all 1 ≤ t ≤ s. Let

α := max {Re (λt) : 1 ≤ t ≤ s},

and

β := max {βt : 1 ≤ t ≤ s},

where βt denotes the order of the matrix Jt. Observe that α < 1. It is shown in [5] that for all

n ≥ 0, and for all 1 ≤ j ≤ K,

Var (Un,j) ≤ CV 2
n , (5.3.9)

for a suitable constant C > 0, where

Vn =



√
n if α < 1

2 ,

√
n logβ−

1
2 n if α = 1

2 ,

nα logβ−1 n if α > 1
2 .

(5.3.10)
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Using (5.3.9) and (5.3.10), the authors in [5] showed that, for every j ∈ {1, 2, . . . ,K},

Un,j − E [Un,j ]

n+ 1
−→ 0 a.s. as n→∞.

From (5.3.1) it is immediate that, for all j ∈ {1, 2, . . . ,K},

E [Un,j ]

n+ 1
−→ πj as n→∞. (5.3.11)

This implies (5.3.6).

5.3.2 Reducible replacement matrices

Consider an urn model with finitely many colors, indexed by the set {1, 2, . . . ,K}. Suppose the

replacement matrix is reducible without isolated blocks, and can be written in an upper triangular

form, given by

R =


r11 r12 . . . r1k

...
. . .

...

0 . . . Qqq

 (5.3.12)

where Qqq is a q × q irreducible, aperiodic sub-matrix with a stationary distribution πq. The

block Qqq consists of the colors, indexed by Sq ⊂ {1, 2, . . . ,K}. Observe that if (Xn)n≥0 is the

associated Markov chain with transition probability matrixR, then Sq denotes the collection of all

its recurrent states. Furthermore, ifXm ∈ Sq for somem ≥ 0, then P (Xn ∈ Sq) = 1 for all n ≥

m. It has been proved in Proposition 4.3 of [38], that limn→∞
Un
n+1 = (0, 0, . . . , πq) a.s. Here,

we prove the expected version of this result using Theorem 5.1.1.

Corollary 5.3.2. Consider an urn model with replacement matrix given by (5.3.12) and station-
ary distribution (0, 0, . . . , πq), where πq = (πq,j)j∈Sq . Then, as n→∞,

P (Zn = j) −→ 0, for j 6∈ Sq (5.3.13)

and

P (Zn = j) −→ πq,j , for j ∈ Sq. (5.3.14)
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Proof. Since R is upper triangular matrix, given by (5.3.12), it follows that,

PU0 (Xn ∈ Sq for some n ≥ 0) = 1, (5.3.15)

where X0 ∼ U0. This implies that for every j 6∈ Sq,

PU0 (Xn = j) −→ 0 as n→∞. (5.3.16)

From (5.1.1), we know that Zn
d
= Xτn , where (τn)n≥1 is independent of (Xn)n≥0 . From (5.1.2),

we know that τn −→∞, as n→∞. Hence, (5.3.16) implies (5.3.13). Since, Qqq is irreducible
and aperiodic, (5.3.14) follows immediately from (5.3.1).

We will now present a particular example to illustrate an application of Theorem 5.1.1.

Example 5.3.1. Consider an urn model with colors indexed by {0, 1}, with one “dominant”
color. Let the replacement matrix be given by

R =

(
s 1− s
0 1

)
(5.3.17)

where 0 < s < 1.

The associated Markov chain is on the state space S = {0, 1}. The color corresponding to

the absorbing state is the dominant color. The rate of growth for the non-dominant color has

been calculated [41] and [55, 14], and it is shown that

Un,0
ns
−→W a.s. (5.3.18)

whereW is some random variable. In [41], the author embedded the urn process into a continuous

time multi-type Markov branching process to obtain the distribution of W . In [14], the authors

have proved that W is non-degenerate using L2 bounded martingales. We will show that as

n→∞,

E [Un,0]

ns
−→ 1

Γ (s+ 1)
. (5.3.19)

Though (5.3.19) is weaker than (5.3.18), our approach is simple and avoids martingale techniques

as well as the embedding into branching processes. We essentially use the representation (5.1.1).
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To prove (5.3.19), note that from (5.1.1), we know that

P (Zn = 0) = P (Xτn = 0) .

Let us define T := inf{n ≥ 1: Xn = 1}. Then

P (Xτn = 0| τn) = P (T ≥ τn|τn) = sτn .

Therefore, P (Xτn = 0) = E [sτn ]. It follows from (5.1.12) that, τn =
∑n

j=1 Ij , where (Ij)j≥1

is a sequence of independent Bernoulli random variables, with E [Ij ] = 1
j+1 , independent of

(Xn)n≥0. Therefore,

E [sτn ] =

n∏
j=1

(
1− 1

j + 1
+

s

j + 1

)

=
1

n+ 1

n∏
j=1

(
1 +

s

j

)
=

1

n+ 1
Πn (s) , (5.3.20)

where Πn (s) =
∏n
j=1

(
1 + s

j

)
. We know that P (Zn = 0) =

E[Un,0]
n+1 . Therefore, from (5.3.20),

we have E [Un,0] = Πn (s). From (2.1.3), it follows that limn→∞
Πn(s)
ns = 1

Γ(s+1) . This implies

that, as n→∞,

E [Un,0]

ns
=

Πn (s)

ns
−→ 1

Γ (s+ 1)
.

Remark 5.3.1. Let us consider the Pólya urn model with the set of colors indexed by
{1, 2, . . .K}, K ≥ 2. Here, R = IK . The associated Markov chain is reducible into K
classes, that is, every state is an absorbing state. From the representation theorem, it follows that

E [Un,j ]

n+ 1
= P (Zn = j) = P (Xτn = j) = U0,j . (5.3.21)

Hence, (5.3.21) necessarily illustrates that the representation theorem does not provide any
new information regarding the Pólya urn model from that already available in literature (see
[57, 56, 51]).



Chapter 6

General replacement matrices 1

In the previous chapters, Chapters 2, 3 and 4, we have obtained various asymptotic results for

urn models associated with bounded increment random walks. This chapter will focus on urn

models with countably infinite set of colors and general replacement matrices. We will use the

representation (5.1.1), to derive asymptotic properties for these general urn models.

6.1 Infinite color urn models with irreducible and aperiodic re-
placement matrices

In this section, we assume that R is irreducible and aperiodic, unless stated otherwise. For our

model, the weak convergence for the randomly selected color can be obtained from Theorem

5.1.1.

Theorem 6.1.1. Consider an urn model with colors indexed by a set S, replacement matrix R
and initial configuration U0. Let R be irreducible and aperiodic. Then, as n→∞,

P (Zn = v) −→ πv, for every v ∈ S, (6.1.1)

where (πv)v∈S is the unique stationary distribution if R is positive recurrent, otherwise πv = 0,
for all v ∈ S.

Proof. Since R is irreducible and aperiodic, therefore from the standard limit theorems for
Markov chains, see [11], it follows that, as n→∞,

P (Xn = v) −→ πv, for every v ∈ S, (6.1.2)
1This chapter is based on the paper entitled “A New Approach to Pólya Urn Schemes and Its Infinite Color

Generalization”, [6].
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where (πv)v∈S is the unique stationary distribution if R is positive recurrent, otherwise πv = 0,
for all v ∈ S. The rest of the proof is similar to the proof of (5.3.1).

The following corollary is immediate from Theorem 6.1.1 .

Corollary 6.1.1. Consider an urn model with colors indexed by a set S, replacement matrix R
and initial configuration U0. Let R be irreducible and aperiodic. Suppose there exists a non
random sequence (lv)v∈S , such that 0 ≤ lv ≤ 1, and

lim
n→∞

Un,v
n+ 1

= lv a.s. (6.1.3)

Then, either lv > 0, for every v ∈ S and
∑

v∈S lv = 1, or lv = 0, for every v ∈ S.

Proof. Suppose (6.1.3) holds. Observe that for every v ∈ S, 0 ≤ Un,v
n+1 ≤ 1. Therefore, by the

bounded convergence theorem we know that

lim
n→∞

E [Un,v]

n+ 1
= lv.

Note that P (Zn = v) =
E[Un,v ]
n+1 . Therefore, (6.1.1) implies that πv = lv for all v ∈ S. Hence, it

follows that either lv > 0 for every v ∈ S, and
∑

v∈S lv = 1, or lv = 0, for every v ∈ S.

Recall that the distribution of Zn is given by E[Un]
n+1 . Therefore, when R is irreducible,

aperiodic with stationary distribution π, (6.1.1) implies that

lim
n→∞

E [Un,v]

n+ 1
= πv, for every v ∈ S. (6.1.4)

However, (6.1.4) is a weaker result compared to the finite color case, where we know (see

(5.3.6)) that

lim
n→∞

Un,v
n+ 1

= πv, for every v ∈ S. (6.1.5)

As observed in Section 5.3, the proof of (6.1.5) requires techniques from matrix algebra, that

are mostly unavailable in infinite dimensions. Similar difficulty is observed in discrete time

multi-type Markov branching processes with countably many types, [52]. For infinite S, a

possible path to prove

lim
n→∞

Un,v
n+ 1

= πv, for every v ∈ S, (6.1.6)

is discussed below.
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Note that to prove (6.1.6), from Corollary 5.2.1, it follows that it is enough to prove that for

every v ∈ S,
1

n+ 1

n∑
k=0

1{Zk=v} −→ πv a.s. as n→∞. (6.1.7)

Observe that from (6.1.1), we obtain for every v ∈ S,

1

n+ 1
E

[
n∑
k=0

1{Zk=v}

]
=

1

n+ 1

n∑
k=0

P (Zk = v) −→ πv as n→∞. (6.1.8)

Further observe that, for v ∈ S,

Var
(
1{Zk=v}

)
= P (Zk = v) (1− P (Zk = v)) ≤ 1. (6.1.9)

Therefore, from Theorem 6 of [49], it follows that, if we prove

∑
n≥0

1

n+ 1
Var

(
1

n+ 1

n∑
k=0

1{Zk=v}

)
<∞, (6.1.10)

then, as n→∞,
1

n+ 1

n∑
k=0

1{Zk=v} −→ πv a.s.

It is easy to see that,

Var

(
1

n+ 1

n∑
k=0

1{Zk=v}

)
=

1

(n+ 1)2

n∑
k=0

Var
(
1{Zk=v}

)
+

2

(n+ 1)2

n∑
k=0

n−k∑
m=1

Cov
(
1{Zk=v}1{Zk+m=v}

)
.

Let us denote by

Jn,v(1) :=
1

(n+ 1)2

n∑
k=0

Var
(
1{Zk=v}

)
, (6.1.11)

and

Jn,v(2) :=
2

(n+ 1)2

n∑
k=0

n−k∑
m=1

Cov
(
1{Zk=v}1{Zk+m=v}

)
. (6.1.12)

Therefore, to prove (6.1.10), it is enough to prove that for every v ∈ S,

∑
n≥0

1

n+ 1
Jn,v(1) <∞, (6.1.13)
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and ∑
n≥0

1

n+ 1
Jn,v(2) converges. (6.1.14)

It is easy to see that,

Jn,v(1) =
1

(n+ 1)2

n∑
k=0

P (Zk = v) (1− P (Zk = v)) .

From (6.1.1) 1
(n+1)

∑n
k=0 P (Zk = v) (1− P (Zk = v)) −→ πv (1− πv) as n→∞. Therefore,

for each v ∈ S, there exists a constant Cv > 0, such that,

∑
n≥0

1

n+ 1
Jn,v(1) ≤ Cv

∑
n≥1

1

n2
<∞. (6.1.15)

This proves (6.1.13). Hence, to prove (6.1.10), it is enough to prove (6.1.14) for each v ∈ S.

Note that,

Cov
(
1{Zk=v}1{Zk+m=v}

)
= P (Zk = v, Zk+m = v)− P (Zk = v)P (Zk+m = v) . (6.1.16)

It easy to see that

P (Zk = v, Zk+m = v) = P
(
Zk+m = v

∣∣∣Zk = v
)
P (Zk = v) . (6.1.17)

A possible way to estimate P
(
Zk+m = v

∣∣∣Zk = v
)

is through the following lemma.

Lemma 6.1.1. Consider an urn process (Un)n≥0 with replacement matrix R, where R is any

stochastic matrix. Then, there exists a Markov chain
(
X̃n

)
n≥0

on state space S with transition

matrix R, such that, for every u, v ∈ S,

P
(
Zk+m = u

∣∣Zk = v
)

= P
X̃0

(
X̃τ̃m−1(k+1) = u

)
, (6.1.18)

where τ̃m−1(k + 1)
d
=

k+m∑
l=k+2

Il, for all m ≥ 1 and k ≥ 0, and the distribution of X̃0 is given by

E[Uk]+Rv
k+2 , where Rv is the v-th row of R.

Proof. As observed earlier,
(
Un
n+1

)
n≥0

is a time inhomogeneous Markov chain with state space

as the set of all probability measures on S. Therefore, given (Zk = v), the law of Zk+m is same
as the law of Z̃m−1(k+ 1), for all m ≥ 1, where Z̃n(k+ 1) denotes the random color selected at
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the (n+ 1)-th trial of the urn process
(
Ũn

)
n≥0

with replacement matrix R, and Ũ0 = E[Uk]+Rv
k+2 .

Therefore, the distribution of Z̃0(k + 1) is given by E[Uk]+Rv
k+2 . Observe that the distribution

of Z̃1(k + 1) is given by E
[
Ũ1
k+3

]
, and

E

[
Ũ1

k + 3

]
=

(
k + 2

k + 3

)
E [Uk] +Rv

k + 2
+

(
1

k + 3

)
E [Uk] +Rv

k + 2
R.

Let
(
X̃n

)
n≥0

be the Markov chain associated with
(
Ũn

)
n≥0

. Then the distribution of X̃0 is

given by Ũ0 = E[Uk]+Rv
k+2 . We will prove (6.1.18) by induction on m ≥ 1. Note that,

P
Ũ0

(
X̃τ̃1(k+1) = u

)
=

(
k + 2

k + 3

)
E [Uk,u] +R (v, u)

k + 2
+

(
1

k + 3

)
P
Ũ0

(
X̃1(k + 1) = u

)
.

This proves (6.1.18) for m = 1. If we assume (6.1.18) holds for m ≥ 1, then the proof that
(6.1.18) holds for (m+ 1), follows similar to the proof of (5.1.1).

We would like to note here, that we have been unable to find a general class of examples of

irreducible, and aperiodic replacement matrix R, for which almost sure convergence in (6.1.6)

holds. We could prove the almost sure convergence only for the particular example provided

below. However, we believe that (6.1.6) holds for any irreducible, and aperiodic replacement

matrix R.

Example 6.1.1. Consider an urn with colors indexed by N ∪ {0}, and the replacement matrix
given by R := ((R (i, j)))i,j∈N∪{0}, where

R (0, j) = γj > 0, for j ∈ N ∪ {0},

R (j, 0) = 1.
(6.1.19)

Since γj > 0, for all j ∈ N ∪ {0}, R is irreducible, aperiodic and positive recurrent.

Therefore, there exists a stationary distribution π = (πj)j∈N∪{0}, where

π0 =
1

2− γ0
, and πj =

γj
2− γ0

, for all j ≥ 1.

It follows from (6.1.1), that limn→∞ P (Zn = j) = πj , for all j ∈ N ∪ {0}. In this particular

case, we will prove that for every i ∈ N ∪ {0}, as n→∞,

Un,i
n+ 1

−→ πi a.s. (6.1.20)
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To prove (6.1.20), we first observe that, if we prove

P (Zn = 0 for some n ≥ 0) = 1, (6.1.21)

then, without loss of generality, we may assume that U0 = δ0.

It is easy to see that P (Zn 6= 0 for all n ≥ 0) = limn→∞ P (Zk 6= 0, 1 ≤ k ≤ n). Since,

R is given by (6.1.19), therefore, P (Zk 6= 0, 1 ≤ k ≤ n) =
∏n
k=1

(
1− U0,0+k

k+1

)
U0,0 −→

0, as n→∞. This implies that,

P (Zn 6= 0 for all n ≥ 0) = 0.

Hence,

P (Zn = 0 for some n ≥ 0) = 1− P (Zn 6= 0 for all n ≥ 0) = 1.

As observed earlier, we need to show (6.1.14). Note that,

Cov
(
1{Zk=i}1{Zk+m=i}

)
= P (Zk = i, Zk+m = i)− P (Zk = i)P (Zk+m = i)

= P (Zk = i)
(
P
(
Zk+m = i

∣∣Zk = i
)
− P (Zk+m = i)

) (6.1.22)

Therefore, it follows from (6.1.12), that

Jn,i(2) =
2

(n+ 1)2

n∑
k=0

P (Zk = i)
n−k∑
m=1

(
P
(
Zk+m = i

∣∣Zk = i
)
− P (Zk+m = i)

)
. (6.1.23)

We first prove (6.1.14) for i = 0.

P (Zk+m = 0) = P
(
Zk+m = 0

∣∣Zk = 0
)
P (Zk = 0) +

∑
i≥1

P
(
Zk+m = 0

∣∣Zk = i
)
P (Zk = i)

(6.1.24)

Observe that for every i ≥ 1, R (i, 0) = 1. Hence, it follows that for all i ≥ 1,

P
(
Zk+m = 0

∣∣Zk = i
)

= P
(
Zk+m = 0

∣∣Zk = 1
)
.
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Therefore, from (6.1.24), it follows that,

P (Zk+m = 0) = P
(
Zk+m = 0

∣∣Zk = 0
)
P (Zk = 0)+P

(
Zk+m = 0

∣∣Zk = 1
)

(1− P (Zk = 0)) .

(6.1.25)

Therefore,

P (Zk+m = 0)− P
(
Zk+m = 0

∣∣Zk = 0
)

=
(
P
(
Zk+m = 0

∣∣Zk = 0
)
− P

(
Zk+m = 0

∣∣Zk = 1
))

(1− P (Zk = 0)) . (6.1.26)

Now from (6.1.18) it follows that

P
(
Zk+m = 0

∣∣Zk = 0
)

= P
X̃0

(
X̃τ̃m−1(k+1) = 0

)
,

where
(
X̃n

)
n≥0

is a Markov chain on the state space S, with transition probability ma-

trix R and the distribution of X̃0 is given by
E[Uk]+(γj)j≥0

k+2 . Furthermore, τ̃m−1(k + 1)
d
=∑k+m

l=k+2 Il, for all m ≥ 2. It is easy to see that,

P
X̃0

(
X̃τ̃m−1(k+1) = 0

)
=

(
k +m+ γ0

k +m+ 1

)
P
X̃0

(
X̃τ̃m−2(k+1) = 0

)
+

1

k +m+ 1

∑
i≥1

P
X̃0

(
X̃τ̃m−2(k+1) = i

)
=

1

k +m+ 1
+

(
k +m− 1 + γ0

k +m+ 1

)
P
X̃0

(
X̃τ̃m−2(k+1) = 0

)
.

Repeating the same iteration, we obtain

P
X̃0

(
X̃τ̃m−1(k+1) = 0

)
=

1

k +m+ 1
+

(k +m− 1 + γ0)

(k +m+ 1) (k +m)

+
(k +m− 2 + γ0) (k +m− 1 + γ0)

(k +m+ 1) (k +m) (k +m− 1)
+ . . .

+Am(k)
E [Uk,0] + γ0

k + 2
,

(6.1.27)

where

Am(k) =
(k +m− 1 + γ0) (k +m− 2 + γ0) . . . (k + 1 + γ0)

(k +m+ 1) (k +m) . . . (k + 3)
. (6.1.28)
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Similarly, it is clear that P
(
Zk+m = 0

∣∣Zk = 1
)

= P
X̃0

(
X̃τ̃m−1(k+1) = 0

)
, where(

X̃n

)
n≥0

is a Markov chain on the state space S, with transition probability matrixR and the dis-

tribution of X̃0 is given by E[Uk]+(1,0,0...)
k+2 . Furthermore, τ̃m−1(k+1)

d
=
∑k+m

l=k+2 Il, for all m ≥

2. Iterating in a fashion similar to (6.1.27), we obtain

P
X̃0

(
X̃τ̃m−1(k+1) = 0

)
=

1

k +m+ 1
+

(k +m− 1 + γ0)

(k +m+ 1) (k +m)

+
(k +m− 2 + γ0) (k +m− 1 + γ0)

(k +m+ 1) (k +m) (k +m− 1)
+ . . .

+Am(k)
E [Uk,0] + 1

k + 2
.

(6.1.29)

where Am(k) is as in (6.1.28). From (6.1.27) and (6.1.29), it follows that

P
(
Zk+m = 0

∣∣Zk = 0
)
− P

(
Zk+m = 0

∣∣Zk = 1
)

=
1

k + 2
Am(k) (γ0 − 1) . (6.1.30)

Note that 1
k+2Am(k) ≤ 1

k+m+1 . Hence, for all k sufficiently large, we obtain,

n−k∑
m=1

∣∣∣P (Zk+m = 0
∣∣Zk = 0

)
− P

(
Zk+m = 0

∣∣Zk = 1
) ∣∣∣ =

n−k∑
m=1

Am(k)
1− γ0

k + 2

≤ (1− γ0)
n−k∑
m=1

1

k +m+ 1

≤ C (1− γ0) log(n+ 1),

(6.1.31)

where C > 0 is an appropriate constant. Therefore, from (6.1.26),

|Jn,0(2)| ≤ 2

(n+ 1)2

n∑
k=0

P (Zk = 0)
n−k∑
m=1

∣∣∣P (Zk+m = 0
∣∣Zk = 0

)
− P (Zk+m = 0)

∣∣∣
≤ C ′1

log(n+ 1)

(n+ 1)2

n∑
k=1

P (Zk = 0) (1− P (Zk = 0))

(6.1.32)

for a suitable constant C ′1 > 0. It follows from (6.1.1), that

lim
n→∞

1

n+ 1

∑n
k=1 P (Zk = 0) (1− P (Zk = 0)) = π0 (1− π0) .
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So, for a suitable constant C ′2 > 0,

|Jn,0(2)| ≤ C ′2
log(n+ 1)

n+ 1
, (6.1.33)

which implies that
∑

n≥0
1

n+1Jn,0(2) converges.

We will prove that for every i ≥ 1, there exists a constant Li > 0, such that,

|Jn,i(2)| ≤ Li
log(n+ 1)

n+ 1
. (6.1.34)

This will imply that,

∣∣∑
n≥0

1

n+ 1
Jn,i(2)

∣∣ ≤ Li∑
n≥0

log(n+ 1)

(n+ 1)2 <∞.

It is easy to see that,

P (Zk+m = i) =
∑
j≥0

P
(
Zk+m = i

∣∣Zk = j
)
P (Zk = j) . (6.1.35)

For every j ≥ 1, R (j, 0) = 1. Hence, it follows that, for any fixed i ≥ 0,

P
(
Zk+m = i

∣∣Zk = j
)

= P
(
Zk+m = i

∣∣Zk = 1
)

for every j ≥ 1.

Hence,

P (Zk+m = i) = P
(
Zk+m = i

∣∣Zk = 1
)∑
j≥1

P (Zk = j) + P
(
Zk+m = i

∣∣Zk = 0
)
P (Zk = 0)

= P
(
Zk+m = i

∣∣Zk = 1
)

(1− P (Zk = 0)) + P
(
Zk+m = i

∣∣Zk = 0
)
P (Zk = 0) .

(6.1.36)

Using (6.1.36) and the fact that, P
(
Zk+m = i

∣∣Zk = i
)

= P
(
Zk+m = i

∣∣Zk = 1
)

for every

i ≥ 1, we obtain

P
(
Zk+m = i

∣∣Zk = i
)
− P (Zk+m = i)

=
[
P
(
Zk+m = i

∣∣Zk = 1
)
− P

(
Zk+m = i

∣∣Zk = 0
)]

P (Zk = 0) . (6.1.37)
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Therefore, from (6.1.23) and (6.1.37),

Jn,i(2)

=
2

(n+ 1)2

n∑
k=0

P (Zk = i)P (Zk = 0)
n−k∑
m=1

P
(
Zk+m = i

∣∣Zk = 1
)
− P

(
Zk+m = i

∣∣Zk = 0
)
.

(6.1.38)

It follows from (6.1.18) that,

P
(
Zk+m = i

∣∣Zk = 1
)

= P
X̃0

(
X̃τ̃m−1(k+1) = i

)
where

(
X̃n

)
n≥0

is a Markov chain on the state space S, with transition probability matrix R

and X̃0 ∼ E[Uk]+(1,0,0...)
k+2 . Furthermore, τ̃m−1(k + 1)

d
=
∑k+m

l=k+2 Il, for all m ≥ 2. Therefore,

we have

P
X̃0

(
X̃τ̃m−1(k+1) = i

)
=

k +m

k +m+ 1
P
X̃0

(
X̃τ̃m−2(k+1) = i

)
+

γi
k +m+ 1

P
X̃0

(
X̃τ̃m−2(k+1) = 0

)
.

Therefore, repeating this iteration, we obtain

P
(
Zk+m = i

∣∣Zk = 1
)

=
E [Uk,i]

k +m+ 1
+

γi
k +m+ 1

m−1∑
l=0

P
X̃0

(
X̃τ̃l(k+1) = 0

)
. (6.1.39)

Observe that from (6.1.18) for every l ≥ 0, and

P
X̃0

(
X̃τ̃l(k+1) = 0

)
= P

(
Zk+l+1 = 0

∣∣Zk = 1
)
.

Therefore, from (6.1.39), we obtain

P
(
Zk+m = i

∣∣Zk = 1
)

=
E [Uk,i]

k +m+ 1
+

γi
k +m+ 1

m−1∑
l=0

P
(
Zk+l+1 = 0

∣∣Zk = 1
)
. (6.1.40)

Similarly, we obtain

P
(
Zk+m = i

∣∣Zk = 0
)

=
E [Uk,i] + γi
k +m+ 1

+
γi

k +m+ 1

m−1∑
l=0

P
(
Zk+l+1 = 0

∣∣Zk = 0
)
. (6.1.41)
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From (6.1.30), it follows from

P
(
Zk+l+1 = 0

∣∣Zk = 0
)
− P

(
Zk+l+1 = 0

∣∣Zk = 1
)

=
1

k + 2
Al+1(k) (γ0 − 1) . (6.1.42)

Recall from (6.1.28) that

Am(k) =
(k +m− 1 + γ0) (k +m− 2 + γ0) . . . (k + 1 + γ0)

(k +m+ 1) (k +m) . . . (k + 3)
.

Also recall from (2.1.3), that for Πn (z) =
n∏
j=1

(
1 +

z

j

)
,

lim
n→∞

Πn(z)

nz
Γ(z + 1) = 1

where the convergence is uniform on compact subsets of C \ {−1,−2, . . .}.

Therefore, there exists a constant C > 0, such that for all k large enough,

1

k + 2
Al+1(k) =

(k + 1)

(k + l + 2) (k + l + 1)

(
1 +

γ0

k + 1

)(
1 +

γ0

k + 2

)(
1 +

γ0

k + l

)
=

(k + 1)

(k + l + 2) (k + l + 1)

Πk+l (γ0)

Πk (γ0)

≤ C
(k + 1)

(k + l + 2) (k + l + 1)

(
k + l

k + 1

)γ0
. (6.1.43)

Hence, for all k large enough and some constant C ′ > 0,

∣∣∣P (Zk+l+1 = 0
∣∣Zk = 0

)
−P
(
Zk+l+1 = 0

∣∣Zk = 1
) ∣∣∣ ≤ C ′ (k + 1)

(k + l + 2) (k + l + 1)

(
k + l

k + 1

)γ0
.

Therefore,

m−1∑
l=0

∣∣∣P (Zk+l+1 = 0
∣∣Zk = 0

)
− P

(
Zk+l+1 = 0

∣∣Zk = 1
) ∣∣∣ ≤ C ′

m−1∑
l=0

(k + 1)1−γ0 (k + l)γ0

(k + l + 2) (k + l + 1)

≤ C1
(k + 1)1−γ0

(k +m+ 1)1−γ0

≤ C2, (6.1.44)
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for a suitable constants C1, C2 > 0. From (6.1.40) and (6.1.41), we obtain

∣∣∣P (Zk+m = i
∣∣Zk = 1

)
− P

(
Zk+m = i

∣∣Zk = 0
) ∣∣∣ ≤ C3

1

k +m+ 1

for some constant C3 > 0. Therefore,

n−k∑
m=1

∣∣∣P (Zk+m = i
∣∣Zk = 1

)
− P

(
Zk+m = i

∣∣Zk = 0
) ∣∣∣ ≤ C3

n−k∑
m=1

1

k +m+ 1

≤ C4 log (n+ 1) .

Putting this bound in (6.1.38), we obtain

∣∣∣Jn,i(2)
∣∣∣ ≤ C4

log (n+ 1)

(n+ 1)2

n∑
k=0

P (Zk = i)P (Zk = 0) . (6.1.45)

It follows from (6.1.1), that for every i ≥ 1,

lim
n→∞

1

n+ 1

∑n
k=1 P (Zk = i)P (Zk = 0) = πiπ0.

This together with (6.1.45) imply that (6.1.34) holds. This completes the proof of (6.1.20)

6.2 Urn models associated with random walks on Zd

Urn models associated with random walks was first studied in Chapter 2, where the replacement

matrix was the transition matrix for a bounded increment random walk. In this section, we

consider urn models associated with random walks on Zd, d ≥ 1, where the increments are

not necessarily bounded. Let (Yj)j≥1 be i.i.d. random vectors taking values in Zd. Let the law

of Y1 be given by P (Y1 = v) = p(v), for v ∈ Zd, where 0 ≤ p(v) ≤ 1 and
∑

v∈Zd p(v) = 1.

Let (Sn)n≥0 be a random walk on Zd, with increments (Yj)j≥1, and initial distribution U0.

Therefore, Sn = S0 +
∑n

j=1 Yj , where S0 ∼ U0. Consider an urn model (Un)n≥0, with colors

indexed by Zd, associated with this random walk (Sn)n≥0. Therefore, the replacement matrix R,

which is the transition matrix for the random walk is given by R := ((R (u, v)))u,v∈Zd , where

R (u, v) = p(v − u)
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for all u, v ∈ Zd.

We assume that Y1 is such that E
[
Y T

1 Y1

]
is a well defined matrix, that is, all its entries are

finite. This implies that E [Y1] is well defined, with all coordinates finite. We shall always write

µ := E [Y1] ,

Σ := E
[
Y T

1 Y1

]
.

(6.2.1)

Σ is assumed to be positive definite. Also Σ1/2 will denote the unique positive definite

square root of Σ, that is, Σ1/2 is a positive definite matrix such that Σ = Σ1/2Σ1/2.

Theorem 6.2.1. Let Λn be the probability measure on Rd corresponding to the probability
vector

(
E[Un,v ]
n+1

)
v∈Zd

, and let

Λ
cs
n (A) := Λn

(√
log nAΣ1/2 + µ log n

)
,

where A is a Borel subset of Rd. Then, as n→∞,

Λ
cs
n ⇒ Φd. (6.2.2)

Theorem 2.1.1, available in Chapter 2 is immediate from Theorem (6.2.1). Recall that

if Zn denotes the (n+ 1)-th selected color, then, its probability mass function is given by(
E[Un,v ]
n+1

)
v∈Zd

. Thus Λn is the probability distribution of Zn, and Λ
cs
n is the distribution of the

scaled and centered random vector Zn−µ logn√
logn

. So the following result is a restatement of (6.2.2).

Corollary 6.2.1. Consider the urn model associated with the random walk (Sn)n≥0 on Zd, d ≥
1, then, as n→∞,

Zn − µ log n√
log n

⇒ Nd(0, Σ). (6.2.3)

Proof of Theorem 6.2.1. LetD denote the variance-covariance matrix of Y1. SinceΣ is assumed
to be positive definite, therefore, D is also positive definite.

Since (Yj)j≥1 are i.i.d. with finite second moments, from the Central Limit Theorem for
i.i.d. random variables (see page 124 of [28]), it follows that

Sn − nµ√
n

⇒ Nd (0, D) . (6.2.4)
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This implies that for all θ ∈ Rd \ {0},

〈θ, Slogn〉 − log n〈θ, µ〉√
log n(θDθT )

⇒ N (0, 1) , as n→∞. (6.2.5)

For every θ ∈ Rd \ {0}, we have,

〈θ, Sτn〉 − log n〈θ, µ〉√
log n(θDθT )

=
〈θ, Sτn〉 − τn〈θ, µ〉√

log n (θDθT )
−
〈θ, Slogn〉 − log n〈θ, µ〉√

log n (θDθT )
+
〈θ, Slogn〉 − log n〈θ, µ〉√

log n(θDθT )

+
〈θ, µ〉√
θDθT

τn − log n√
log n

.

Let us define
In(1) :=

〈θ, Sτn〉 − τn〈θ, µ〉√
log n (θDθT )

−
〈θ, Slogn〉 − log n〈θ, µ〉√

log n (θDθT )
,

In(2) :=
〈θ, Slogn〉 − log n〈θ, µ〉√

log n(θDθT )
,

and
In(3) :=

〈θ, µ〉√
θDθT

τn − log n√
log n

.

We will prove that, as n→∞,

|In(1)| =

∣∣∣∣∣〈θ, Sτn〉 − τn〈θ, µ〉√
log n (θDθT )

−
〈θ, Slogn〉 − log n〈θ, µ〉√

log n (θDθT )

∣∣∣∣∣ p−→ 0. (6.2.6)

For δ > 0,

P (|In(1)| > δ) = P
(
|In(1)| > δ,

∣∣ τn
log n

− 1
∣∣ > ε

)
+ P

(
|In(1)| > δ,

∣∣ τn
log n

− 1| ≤ ε
)
,

(6.2.7)
where ε > 0. From (5.1.2), limn→∞

τn
logn = 1 a.s. Hence,

P
(
|In(1)| > δ,

∣∣ τn
log n

− 1
∣∣ > ε

)
≤ P

(∣∣ τn
log n

− 1
∣∣ > ε

)
−→ 0, as n→∞. (6.2.8)

Observe that,

In(1) =
〈θ, Sτn − Slogn〉 − (τn − log n) 〈θ, µ〉√

log n (θDθT )
.

So,

P
(
|In(1)| > δ,

∣∣ τn
log n

− 1
∣∣ ≤ ε)
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≤ P

(
sup

(1−ε) logn≤m≤(1+ε) logn
|〈θ, Sm〉 −m〈θ, µ〉| > δ

√
log n (θDθT )

)
. (6.2.9)

From Kolmogorov maximal inequality (Theorem 2.5.2 of [28]),

P

(
sup

(1−ε) logn≤m≤(1+ε) logn
|〈θ, Sm〉 −m〈θ, µ〉| > δ

√
log n (θDθT )

)
≤ 1

δ2 log n (θDθT )
Var (〈θ, S2ε logn〉) =

2ε

δ2
. (6.2.10)

Therefore, (6.2.8) and (6.2.10) imply (6.2.6).
From (6.2.5), we know that In(2)⇒ N(0, 1), as n→∞. From (5.1.3), we have In(3)⇒

N (0, 1), as n→∞. Since Sn and τn are independent, it follows that

〈θ, Sτn〉 − log n〈θ, µ〉√
log n(θDθT )

⇒ N

(
0, 1 +

〈θ, µ〉2

θDθT

)
, as n→∞.

Writing µ :=
(
µ(1), µ(2), . . . , µ(d)

)
, it is easy to see that 〈θ, µ〉2 = θMθT , where M =((

µ(i)µ(j)
))

1≤i,j≤d. D is positive definite, so for every θ ∈ Rd \ {0}, we have θDθT > 0.
Therefore, (

θDθT
)(

1 +
〈θ, µ〉2

θDθT

)
= θ (M +D) θT ,

where the matrix addition is taken entry-wise. Observe that M +D = Σ. Therefore, it follows
that as n→∞,

Sτn − µ log n√
log n

⇒ Nd (0, Σ) . (6.2.11)

From (5.1.1), we have Zn
d
= Sτn . Therefore, we can conclude that, as n→∞,

Zn − µ log n√
log n

⇒ Nd (0, Σ) .

Remark 6.2.1. IfΣ is singular, then the proof of Theorem 6.2.1 clearly indicates that as n→∞,

Zn − µ log n√
log n

⇒ Nd (0, Σ) , (6.2.12)

where Nd (0, Σ) is singular Normal (see pages 30-33 of [1] for definition of singular Normal).
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6.3 Urn models associated with bounded increment periodic ran-
dom walk

Fix k ∈ N. For n = mk + r, where m ∈ N ∪ {0}, and 0 ≤ r < k, let

Sn = Smk + Ym+1(1) + Ym+1(2) + . . .+ Ym+1(r + 1), (6.3.1)

where {Yj(i), 1 ≤ i ≤ k, j ≥ 1} is a collection of independent d-dimensional random vectors,

such that, for each fixed i ∈ {1, 2, . . . k}, (Yj(i))j≥1 are i.i.d. We further assume that for each

fixed 1 ≤ i ≤ k, there exists a finite non-empty set Bi ⊂ Rd, such that P (Y1(i) ∈ Bi) = 1. This

implies that the law of Y1(i) is bounded for each i ∈ {1, 2, . . . , k}. We will assume Bi∩Bj = ∅,

for any 1 ≤ i 6= j ≤ k. This ensures that (Sn)n≥0 is a k-periodic random walk with increments

{Yj(i), 1 ≤ i ≤ k, j ≥ 1}. This is because, if V denotes the set of all possible sites that the

random walk (Sn)n≥0 can visit, then we can partition the set V into k disjoint subsets, say

V0, V1, . . . , Vk−1. This partition has the property that for n = mk+ r, where m ∈ N∪ {0}, and

0 ≤ r < k, Sn−1 ∈ Vr and the next increment of the walk is given by Ym+1(r+1). Furthermore,

Sn ∈ Vr+1, if 0 ≤ r < k − 1, and Sn ∈ V0, if r = k − 1. This implies that deterministically the

random walk will periodically visit sites in Vr exactly after k many steps for every 0 ≤ r < k. It

is in this setup that we say that the random walk is k-periodic. Such a partition of V necessarily

guarantees that Sn is a k-periodic Markov chain. A sufficient condition for such a partition of V

is Bi ∩Bj = ∅, for all 1 ≤ i 6= j ≤ k. Otherwise, the walk may be aperiodic.

For 1 ≤ i ≤ k, we shall write

µ(i) := E [Y1(i)] ,

µ := 1
k

k∑
i=1

µ(i),

Σ(i) := E
[
Y T

1 (i)Y1(i)
]
.

(6.3.2)

We further assume thatΣ(i) is positive definite, for each 1 ≤ i ≤ k. Let us denote byΣ1/2(i) the

unique positive definite square root of Σ(i). Note that, then Σ = 1
k

∑k
i=1Σ(i) is also positive

definite. We denote by Σ1/2
, the unique positive definite square root of Σ.
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In the remainder of this subsection, we will consider an urn model (Un)n≥0 associated with

the k-periodic random walk (Sn)n≥0.

Theorem 6.3.1. Let Λn be the probability measure corresponding to the probability vector E[Un]
n+1 ,

and let
Λ
cs
n (A) := Λn

(√
log nAΣ

1/2
+ µ log n

)
,

where A is a Borel subset of Rd. Then, as n→∞,

Λ
cs
n ⇒ Φd (6.3.3)

Λn is the probability distribution of Zn, and Λ
cs
n is the distribution of the scaled and centered

random vector Zn−µ logn√
logn

. So the following corollary is a restatement of (6.3.3) .

Corollary 6.3.1. Consider the urn model associated with the k-periodic random walk (Sn)n≥0,
then as n→∞,

Zn − µ log n√
log n

⇒ Nd(0, Σ). (6.3.4)

Proof of Theorem 6.3.1. For n = mk + r, where m ∈ N ∪ {0}, and 0 ≤ r < k,

E [Sn] = m
k∑
i=1

E [Y1(i)] +
r+1∑
i=1

E [Y1(i)]

= mkµ+
r+1∑
i=1

µ(i). (6.3.5)

Therefore,

E [Sn]

n
−→ µ, as n→∞. (6.3.6)

Similarly, if Dn and D(i) denote the variance-covariance matrix for Sn, and Y1(i), for each
1 ≤ i ≤ k, respectively, then,

Dn

n
−→ D, as n→∞, (6.3.7)

where D = 1
k

∑k
i=1D(i), and the matrix convergence is entry-wise. Therefore, from the

Lindeberg-Feller Central Limit Theorem (see page 129 of [28]), it follows that as n→∞,

Sn − E [Sn]√
n

⇒ Nd

(
0, D

)
. (6.3.8)
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Let us write
Sn − nµ√

n
=
Sn − E [Sn]√

n
− nµ− E [Sn]√

n
. (6.3.9)

Now, it is easy to see from (6.3.5) that, for n = mk + r, and some C > 0,

∣∣∣nµ− E [Sn]√
n

∣∣∣ =
∣∣∣rµ−∑r+1

i=1 µ(i)√
n

∣∣∣ ≤ C√
n
−→ 0, as n→∞. (6.3.10)

Therefore, from Slutsky’s theorem (see page 105 of [28]), we obtain as n→∞,

Sn − nµ√
n

⇒ Nd

(
0, D

)
. (6.3.11)

Furthermore, it can be shown that, as n→∞,

Sτn − µ log n√
log n

⇒ Nd

(
0, Σ

)
. (6.3.12)

The proof of (6.3.12) is similar to (6.2.11). The rest of the proof now follows by observing that
Zn

d
= Sτn .

Example 6.3.1. As an application of Theorem 6.3.1, we present the example of the random walk
on hexagonal lattice. Let H = (V,E) be the hexagonal lattice in R2 (see Figure 6.1). The vertex
set V = V1 ∪ V2, where V1 and V2 are disjoint. V1 and V2 are defined as follows:

V1,1 :=
{

1, ω, ω2
}
, where ω is a complex cube root of unity,

and
V2,1 :=

{
v + 1, v + ω, v + ω2 : v ∈ V1,1

}
.

For any n ≥ 2,
V1,n :=

{
v − 1, v − ω, v − ω2 : v ∈ V2,n−1

}
,

and
V2,n =

{
v + 1, v + ω, v + ω2 : v ∈ V1,n

}
.

Finally, V1 = ∪j≥1V1,j and V2 = ∪j≥1V2,j . For any pair of vertices v, w ∈ V , we draw an edge
between them, if and only if, either of the following two cases occur:

(i) v ∈ V1 and w ∈ V2 and w = v + u for some u ∈ {1, ω, ω2}, or

(ii) v ∈ V2 and w ∈ V1 and w = v + u for some u ∈ {−1,−ω,−ω2}.
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Figure 6.1: Hexagonal Lattice

To define the random walk on H, let us consider {Yj(i) : i = 1, 2, j ≥ 1} to be a sequence

of independent random vectors such that (Yj(i))j≥1 are i.i.d for every fixed i = 1, 2. Let

Y1(1) ∼ Unif
{

1, ω, ω2
}
, and Y1(2) ∼ Unif

{
−1,−ω,−ω2

}
. One can now define a random

walk on H, with the increments {Yj(i) : i = 1, 2, j ≥ 1}. Needless to say, this random walk has

period 2.

Corollary 6.3.2. Consider the urn process associated with the random walk (Sn)n≥0 on the
hexagonal lattice H. If Zn is the color of the randomly selected ball at the (n+ 1)-th trial, then,
as n→∞,

Zn√
log n

⇒ N2

(
0,

1

2
I2
)
,

where I2 is the 2× 2 identity matrix.

Proof of Corollary 6.3.2. Since 1+ω+ω2 = 0, so for the random walk on the hexagonal lattice,
µ(1) = µ(2) = 0. Therefore µ = 0. Let

Σ(1) :=

(
σ1,1 σ1,2

σ2,1 σ2,2

)

Writing Y1(1) :=
(
Y

(1)
1 (1), Y

(2)
1 (1)

)
, observe that

σ1,1 = E
[(
Y

(1)
1 (1)

)2
]

and σ2,2 = E
[(
Y

(2)
1 (1)

)2
]
.
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Also,
σ1,2 = σ2,1 = E

[
Y

(1)
1 (1)Y

(2)
1 (1)

]
.

Writing ω = Re (ω) + iIm (ω), it is easy to see that

σ1,1 =
1

3

(
1 + (Re (ω))2 +

(
Re
(
ω2
))2)

.

Since Re (ω) = Re
(
ω2
)
, therefore,

σ1,1 =
1

3

(
1 + 2 (Re (ω))2

)
.

Since ω = 1
2 + i

√
3

2 , therefore, this implies σ1,1 = 1
2 . Similarly, since Im (ω) = −Im

(
ω2
)
,

σ2,2 =
1

3

(
(Im (ω))2 +

(
Im
(
ω2
))2)

=
2

3
(Im (ω))2 =

1

2
.

Since, Re (ω) = Re
(
ω2
)
, and Im (ω) = −Im

(
ω2
)
,

σ1,2 = σ2,1 =
1

3

(
Re (ω) Im (ω) + Re

(
ω2
)
Im
(
ω2
))

= 0.

This proves that Σ(1) = 1
2I2. Similar calculations show that Σ(2) = 1

2I2. This implies that
Σ = 1

2Σ(1) + 1
2Σ(2) = 1

2I2. This completes the proof.
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[45] Mickaël Launay and Vlada Limic. Generalized Interacting Urn Models. available at

http://arxiv.org/abs/1201.3495, 2012.

[46] Gregory F. Lawler and Vlada Limic. Random walk: a modern introduction, volume 123 of

Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,

2010.

[47] Vlada Limic. Attracting edge property for a class of reinforced random walks. Ann. Probab.,

31(3):1615–1654, 2003.

[48] Vlada Limic and Pierre Tarrès. Attracting edge and strongly edge reinforced walks. Ann.

Probab., 35(5):1783–1806, 2007.

[49] Russell Lyons. Strong laws of large numbers for weakly correlated random variables.

Michigan Math. J., 35(3):353–359, 1988.

[50] Hosam M. Mahmoud. Sorting. Wiley-Interscience Series in Discrete Mathematics and

Optimization. Wiley-Interscience, New York, 2000. A distribution theory.
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