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Preface

A foliation on a manifold M can be informally thought of as a partition of M

into injectively immersed submanifolds, called leaves. In this thesis we study

foliations whose leaves carry some specific geometric structures.

The thesis consists of two parts. In the first part we classify foliations on

open manifolds whose leaves are either locally conformal symplectic or contact

manifolds. These foliations can be described by some higher geometric struc-

tures - namely the Poisson and the Jacobi structures. In the second part of

the thesis, we consider foliations on open contact manifolds whose leaves are

contact submanifolds of the ambient space.

Theory of h-principle plays the central role in deriving the main results of

the thesis. It is a theory rich in topological techniques to solve partial differ-

ential relations which arise in connection with topology and geometry. All the

geometric structures mentioned above satisfy some differential conditions and

that brings us into the realm of the h-principle theory.
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CHAPTER 1

Introduction

A foliation F on a manifold M can be thought of as a partition of the man-

ifold into injectively immersed submanifolds of M called leaves of the foliation.

The tangent spaces of the leaves combine together to define the tangent bundle

of the foliation F which we denote by TF . The quotient bundle TM/TF is

referred as the normal bundle of the foliation and is denoted by νF , which plays

an important role in the study of foliations. The simplest type of foliations on

a manifold are defined by submersions. In this case the level sets of the sub-

mersions define the leaves of regular foliations on a manifold. More generally, if

a map f : M → N is transverse to a foliation FN on N then the inverse image

of FN under f is a foliation on M . If M is an open manifold, then it follows

from Gromov-Phillips Transversality Theorem ([14],[30],[31]) that the homo-

topy classes of maps M → N transversal to FN are in one to one correspondence

with the homotopy classes of epimorphisms TM → ν(FN).

Gromov-Phillips Theorem can be translated into the language of h-principle

and can be deduced from a general theorem due to Gromov ([15]). In the

vocabulary of h-principle, a subset R of Jr(M,N), the space of r-jets of maps

from a manifold M to N , is called an r-th order partial differential relation or

simply a relation. If R is open then it is called an open relation. A (continuous)

section σ : M → Jr(M,N) of the r-jet bundle whose image is contained in R is

referred as a section of R. A solution of R is a smooth map f : M → N whose

r-jet extension jrf : M → Jr(M,N) is a section of R. The space of solutions,

Sol(R), has the C∞-compact open topology, whereas the space of sections of R,

Γ(R), has the C0-compact open topology. The relation R is said to satisfy the

9



10 1. INTRODUCTION

parametric h-principle if the r-jet map jr : Sol(R)→ Γ(R) is a weak homotopy

equivalence. Thus the h-principle reduces a differential topological problem to

a problem in algebraic topology.

The diffeomorphism group of M acts on the space of maps M → N by pull-

back operation. This extends to an action of Diff (M), the pseudogroup of local

diffeomorphisms of M , on the space of r-jets. If R is invariant under this action

then we say that R is Diff (M)-invariant. Gromov proved in [14] that if M is an

open manifold then every open, Diff (M)-invariant relation on M satisfies the

parametric h-principle. We shall refer to this result as Open Invariant Theorem

for future reference. Using the full strength of the hypothesis on R, one first

proves that R satisfies the parametric h-principle near any submanifold K of

positive codimension. A key point about an open manifold M is that it has

the homotopy type of a CW complex K of dimension strictly less than that of

M . Furthermore, M admits deformations into arbitrary open neighbourhood of

K. As a result, open manifolds exhibit tremendous amount of flexibility. This

allows the h-principle to be lifted from an open neighbourhood of K to all of M .

Since transversality is a differential condition on the derivative of a function,

these are solutions to a first order differential relation RT . Transversality being

a stable property, the relation RT is open. Furthermore, the relation is clearly

Diff (M)-invariant since the pull-back of a map M → N transverse to a foliation

FN on N by a diffeomorphism of M is also transverse to FN . Thus the Gromov-

Phillips Theorem says that RT satisfies the parametric h-principle.

The transversality theorem mentioned above plays a central role in the clas-

sification of foliations on open manifolds. Formally, the codimension q foli-

ations on a manifold M are defined by local submersions fi : Ui → Rq for

some open covering U = {Ui, i ∈ I}, such that there are diffeomorphisms

gij : fi(Ui) → fj(Uj) satisfying the relations gijfi = fj and cocycle condi-

tions. The germs of the diffeomorphisms gij at points fi(x), x ∈ Ui, define
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maps γij : Ui ∩ Uj → Γq, where Γq is the topological groupoid of germs of local

diffeomorphisms of Rq. For any topological groupoid Γ, there is a notion of Γ-

structure ([18],[16]). Following Milnor’s topological join construction ([20]) to

define classifying space of principal G-bundles, one can construct a topological

space BΓ with universal Γ-structure Ω such that [M,BΓ], the homotopy classes

of maps M → BΓ classifies the Γ-structures up to homotopy ([18], [16]). In

particular, when Γ = Γq, the derivative map d : Γq → GLq(R) induces a con-

tinuous map Bd : BΓq → BGLq(R) into the classifying space BGLq(R) of real

vector bundles of rank q. If f̃ is a classifying map of a Γq structure ω, then

Bd ◦ f̃ classifies the normal bundle ν(ω) associated to ω. Furthermore, there

is a vector bundle νΩq over BΓq which is ‘universal’ for the bundles ν(ω) as

ω runs over all Γq structures on M . Haefliger cocycles of a foliation F on M

naturally give rise to a Γq-structure ωF on M . It is a general fact that ν(ωF)

is isomorphic to the normal bundle of the foliation F . Hence, ν(ωF) admits

an embedding into the tangent bundle TM and consequently, the classifying

map f̃ can be covered by an epimorphism F : TM → νΩq. Haefliger observed,

that any Γq-structure on M can indeed be defined as the inverse image of a

foliation by an embedding e : M → (N,FN) into a foliated manifold N . The

Γq structure is a foliation if and only if e is transverse to FN . Thus, he reduced

the homotopy classification of foliations on open manifolds to Gromov-Phillips

Theorem and showed that the ‘integrable’ homotopy classes of codimension q

foliations on an open manifold M are in one-one correspondence with the homo-

topy classes of epimorphism F : TM → νΩq ([16]). In particular, it shows that

if a map f : M → BGL(q) classifying the normal bundle of a codimension q

distribution D on M lifts to a map f̃ : M → BΓq, then the distribution D is ho-

motopic to one which is integrable, provided M is open. Soon after the work of

Haefliger, Thurston extended the classification of foliations to closed manifolds

thereby completing the classification problem ([35],[34]). Thurston showed that
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the ‘concordant classes’ of foliations are in one to one correspondence with the

homotopy classes of Γq structures H together with the ‘concordance classes’ of

bundle monomorphisms ν(H)→ TM . The proof of these results are very much

involved and beyond the scope of our study.

In the thesis, we study foliations whose leaves carry some specific geomet-

ric structures. In particular we are interested in foliations whose leaves are

symplectic, locally conformal symplectic or contact manifolds. In his seminal

thesis, Gromov had shown that the obstruction to the existence of a contact or

a symplectic form on open manifolds is purely topological. Gromov obtained

these results as applications to Open Invariant Theorem mentioned above. In a

recent article ([7]), Fernandes and Frejlich proved that a foliation with a leaf-

wise non-degenerate 2-form is homotopic through such pairs to a foliation with

a leafwise symplectic form. Symplectic foliations on a manifold M can be ex-

plained in terms of regular Poisson structures on the manifold ([36]). Recall

that a Poisson structure π is a bivector field satisfying the condition [π, π] = 0,

where the bracket denotes the Schouten bracket of multivector fields ([36]).

The bivector field π induces a vector bundle morphism π# : T ∗M → TM by

π#(α)(β) = π(α, β) for all α, β ∈ T ∗xM , x ∈ M . The characteristic distri-

bution D = Image π# is, in general, a singular distribution which, however,

integrates to a foliation. The restriction of the Poisson structure to a leaf of

the foliation has the maximum rank and so we obtain a symplectic form on the

leaf by dualizing π. Thus, the characteristic foliation is a (singular) symplectic

foliation. A Poisson bivector field π is said to be regular if the rank of π# is

constant. In this case the characteristic foliation is a regular symplectic foliation

on M . On the other hand, given a regular symplectic foliation F on M one

can associate a Poisson bivector field π having F as its characteristic foliation.

Since a symplectic form on a manifold corresponds to a non-degenerate Poisson

structure, Gromov’s result on the existence of symplectic form is equivalent to
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saying that a non-degenerate bivector field on an open manifold is homotopic to

a non-degenerate Poisson structure. In the same light, the result of Fernandes

and Frejlich [7] can be translated into the statement that a regular bivector

field π0 is homotopic to a Poisson bivector field, provided the manifold is open

and the characteristic distribution of π0 is integrable. However, this can not be

done without deforming the underlying characteristic foliation Imπ#
0 . It would

be pertinent to recall a result of Bertelson which preceded [7]. She showed that

a leafwise non-degenerate 2-form on a foliation need not be homotopic to a leaf-

wise symplectic form on the same foliation even if M is open ([3]) - in order to

keep the underlying foliation constant during homotopy, one needs to impose

some additional ‘open-ness’ condition on the foliation itself.

Poisson structures have further generalisations to Jacobi structures which

are given by pairs (Λ, E) consisting of a bivector field Λ and a vector field E on

M satisfying the following conditions:

[Λ,Λ] = 2E ∧ Λ, [Λ, E] = 0.

If E = 0 then clearly Λ is a Poisson structure on M . A Jacobi structure, as

in the case of Poisson, is associated with an integrable singular distribution

namely, D = Im Λ# + 〈E〉, where 〈E〉 denotes the distribution generated by

the vector field E. The leaves of D inherit the structures of locally conformal

symplectic or contact manifolds according as the dimension of the leaf is even or

odd ([21]). In particular, if the characteristic distribution D is regular then we

obtain either a locally conformal symplectic foliation or a contact foliation onM .

Motivated by a comment in [7], we extend the work of Fernandes and Frejlich

to give a homotopy classification of contact and locally conformal symplectic

foliations. We prove that if an open manifold admits a foliation with a leafwise

non-degenerate 2-form then it admits a locally conformal symplectic foliation

with its foliated Lee class defined by a given cohomology class ξ ∈ H1
deR(M).

In the same footing, we show that if there is a foliation on an open manifold
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with a leafwise almost contact structure then the manifold must admit a contact

foliation. We also interprete these results in terms of regular Jacobi structures.

In the second part of the thesis, following the steps of Haefliger we study

foliations on open manifolds M in the presence of a contact form α such that

the leaves of the foliations are contact submanifolds of (M,α). We first classify

those foliations which are obtained by means of maps into a foliated manifold,

as in Gromov-Phillips Theorem. To state it explicitly, let Trα(M,FN) denote

the space of maps f : M → N which are transversal to a given foliation FN on

N and for which the inverse foliations f ∗FN are contact foliations on M . Since

the contactness property of 1-forms is a stable property, the space Trα(M,FN)

is realised as the space of solutions to some first order open differential relation

Rα. The space Trα(M,FN) is clearly not invariant under Diff (M), though it is

invariant under the action of contact diffeomorphisms of M . This suffices for the

h-principle ofRα near a core K of M . In order to lift the h-principle to all of M ,

we can not use the ordinary deformations of M into OpK - since the relation is

not invariant under Diff (M) it would not give a homotopy within Trα(M,FN).

We would have liked to get deformations of M into OpK which would keep

the contact form invariant. We can, however, only show that if M is an open

manifold, then there exists a regular homotopy ϕt of isocontact immersions

into itself such that ϕ0 = idM and ϕ1(M) is contained in an arbitrary small

neighbourhood of K. In fact, we prove a weaker version of Gray’s Stability

Theorem for contact forms on open contact manifolds which is one of the main

results of the thesis. It may be recalled that a similar result for open symplectic

manifolds was earlier obtained by Ginzburg in [11]. Now coming back to contact

set-up, since the composition of an f ∈ Trα(M,FN) with a contact immersion

ϕ of M is again an element of Trα(M,FN), we can lift the h-principle near

K to a global h-principle on M using the homotopy ϕt. More generally, we

prove an extension of Open Invariant Theorem of Gromov on open contact
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manifolds (M,α). A similar result was obtained for open symplectic manifolds

in [4]. Proceeding as in Haefliger, we then prove that the ’integrable’ homotopy

classes of contact foliations are in one-to-one correspondence with the homotopy

classes of epimorphisms F : TM → νΓq such that kerF ∩ kerα is a symplectic

subbundle of kerα relative to the symplectic form defined by dα.

The thesis is organised as follows. We discuss the preliminaries in Chapter

2. This consists of five parts - In the first two sections we recall the preliminaries

of symplectic and contact manifolds and review the basic definitions and exam-

ples of foliations. In the third section we introduce foliations with geometric

structures and review the basic theory of Poisson and Jacobi structures. In the

last two section we discuss the language of h-principle and some major results

including Haefliger’s classification theorem which serves as a background of the

problems treated in the thesis. In Chapter 3, we give a classification of con-

tact and locally conformal symplectic foliations and then interpret these results

in terms of regular Jacobi structures. Chapter 4 is again divided into several

sections. In Section 1 we recall a homotopy classification of submersions with

symplectic fibres on open symplectic manifolds ([4]) and note that a general-

isation of this result leads to homotopy classification of symplectic foliations

on open symplectic manifolds. In Section 2 we prove a ‘stability theorem’ for

contact forms on open contact manifolds. In section 3 we obtain an extension of

Open Invariant Theorem of Gromov in the contact set-up. In sections 4 and 5

we prove a contact version of Gromov-Phillips Theorem and discuss some of its

special cases. In the final section we obtain a homotopy classification of contact

foliations on open contact manifolds.





CHAPTER 2

Preliminaries

2.1. Preliminaries of symplectic and contact manifolds

In this section we review various geometric structures on manifolds which are

defined by differential forms. These are already standard in the Mathematics

literature and can be found in [22] and [10].

2.1.1. Symplectic manifolds.

Definition 2.1.1. An antisymmetric bilinear form ω on a vector space V

defines a linear map ω̃ : V → V ∗ given by ω̃(v)(v′) = ω(v, v′) for all v, v′ ∈ V .

The dimension of the image of ω̃ (which is an even integer) is called the rank of

ω. A 2-form ω is said to be non-degenerate if ω̃ is an isomorphism; equivalently,

if ω(v, w) = 0 for all w ∈ V implies that v = 0. A vector space V is called a

symplectic vector space if there exists a nondegenerate 2-form ω on it.

Since rank of a 2-form is an even integer, a symplectic vector space is even

dimensional. If dimV = 2n, then ω is non-degenerate if and only if ωn 6= 0.

The symplectic complement of a subspace W in a symplectic vector space

(V, ω), denoted by W⊥ω , is defined as

W⊥ω = {v ∈ V : ω(v, w) = 0 for all w ∈ W}

A subspace W of a symplectic vector space (V, ω) is said to be symplectic if the

restriction of ω to W is symplectic. The symplectic complement of a symplectic

subspace W is also a symplectic subspace of V and V = W ⊕W⊥ω .

17



18 2. PRELIMINARIES

Definition 2.1.2. A 2-form ω on a manifold M is said to be an almost

symplectic form if its restrictions to the tangent spaces TxM , x ∈ M , are non-

degenerate. An almost symplectic form which is also closed is called a symplectic

form on the manifold. Manifolds equipped with such forms are called almost

symplectic and symplectic manifolds respectively.

Example 2.1.3.

(1) The Euclidean space R2n has a canonical symplectic form given by ω0 =

Σidxi ∧ dyi, where (x1, . . . , xn, y1, . . . , yn) is the canonical coordinate

system on R2n.

(2) All oriented surfaces are symplectic manifolds.

(3) The 2-sphere S2 is a symplectic manifold but S2n are not for n > 1.

(4) The 6 dimensional sphere S6 is an example of an almost symplectic

manifold which is not symplectic.

(5) The total space of the cotangent bundle has a canonical symplectic

form which is exact.

Definition 2.1.4. Let p : E → B be a vector bundle over a topological

space B. Let ∧k(E∗) denote the k-th exterior bundle associated with the dual

E∗. A section ω of ∧2(E∗) is called a symplectic form on E if ωb is a symplectic

form on the fiber Eb for all b ∈ B. The pair (E,ω) is then called a symplectic

vector bundle.

Clearly, the tangent bundle of a symplectic manifold is a symplectic vector

bundle.

Definition 2.1.5. Let (M,ω) and (N,ω′) be two symplectic manifolds. A

diffeomorphism f : M → N is said to be a symplectomorphism if it pulls back

the form ω′ onto ω.

The following theorem implies that there is no local invariant for symplectic

manifolds.
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Theorem 2.1.6. (Darboux) Any symplectic manifold (M2n, ω) is locally

symplectomorphic to the Euclidean manifold (R2n, ω0), where ω0 is the stan-

dard symplectic form defined as in Example 2.1.3.

Definition 2.1.7. Two symplectic forms ω0, ω1 on a manifold M are said

to be isotopic if there is an isotopy δt, t ∈ [0, 1], such that δ∗1ω0 = ω1.

Therefore, if ω0 and ω1 are isotopic they can be joined by a path ωt in the

space of symplectic forms such that the cohomology class of ωt is independent

of t. Explicitly, one can take ωt = δ∗tω for t ∈ I. The following theorem due to

Moser says that the converse of this is true on a closed manifold.

Theorem 2.1.8. (Moser’s Stability Theorem [27]) Let M be a closed mani-

fold (that is, compact and without boundary) and let ωt, t ∈ I = [0, 1] be a family

of symplectic forms belonging to the same de Rham cohomology class. Then

there exists an isotopy {φt}t∈I of M such that φ0 = idM and φ∗tωt = ω0.

A version of Moser’s stability theorem for open manifolds was proved by

Ginzburg in [11]. Here we give a version due to Eliashberg.

Theorem 2.1.9. ([5]) Let (M̃, ω̃) be a symplectic manifold without boundary

and let M be an equidimensional submanifold of M̃ with boundary. Suppose

that ωt, t ∈ I, is a family of symplectic forms on M representing the same

cohomology class. If ω̃|M = ω0, then there exists a regular homotopy ft : M →

M̃ (that is, a homotopy of immersions) such that f0 is the inclusion M → M̃

and f ∗t ω̃ = ωt, t ∈ I.

We shall obtain a contact analogue of this result in Chapter 4.

2.1.2. Locally Conformal Symplectic manifolds.

Definition 2.1.10. A non-degenerate 2-form ω on a manifold M is said to

be conformal symplectic if there is a nowhere vanishing C∞ function f on M

such that fω is a symplectic form.
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Definition 2.1.11. A locally conformal symplectic structure on a manifold

M is given by a pair (ω, θ), where ω is a non-degenerate 2-form and θ is a closed

1-form on M satisfying the relation

dω + θ ∧ ω = 0. (1)

The form θ is called the Lee form of ω. If dimM ≥ 4 then ω ∧ − : Ω1(M) →

Ω3(M) is injective because of the non-degeneracy of ω. In this case, θ is uniquely

determined by the relation (1).

If ω is a locally conformal symplectic form, then there is an open covering

{Ui}i∈I of M such that dω = dfi∧ω on Ui for some smooth functions fi defined

on Ui. This implies that d(e−fiω) = 0, that is, ω is conformal symplectic on

each Ui. This can be taken as the alternative definition of locally conformal

symplectic structure if dimM ≥ 4.

Lichnerowicz cohomology. A closed 1-form θ on a manifold M defines a

coboundary operator dθ : Ω∗(M)→ Ω∗+1(M) by

dθ = d+ θ∧ ,

where d is the exterior differential operator on differential forms. Indeed, it is

easy to verify that d2
θα = dθ∧α for any differential form α and therefore d2

θ = 0

if and only if θ is closed. The resulting cohomology is called the Lichnerowicz

cohomology which depends only on the cohomology class of θ. A locally con-

formal symplectic form with Lee form θ is therefore a dθ-closed non-degenerate

2-form on M .

2.1.3. Contact manifolds. A hyperplane distribution ξ on a manifold M

can be locally written as ξ = kerα for some local 1-form α on M . The form

α is only unique upto multiplication by a nowhere vanishing function. If ξ is

coorientable i.e. when the quotient bundle TM/ξ is a trivial line bundle, then

ξ is obtained as the kernel of a global 1-form on M given by the following
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composition

TM
q→ TM/ξ ∼= M × R p1→ R,

where q is the quotient map and p1 is the projection onto the first factor.

Definition 2.1.12. Let M be a 2n+1 dimensional manifold. A hyperplane

distribution ξ is called a contact structure if α ∧ (dα)n is nowhere vanishing for

any local 1-form α defining ξ. A global 1-form α for which α∧ (dα)n is nowhere

vanishing is called a contact form on M . The distribution kerα is then called

the contact distribution of α.

Example 2.1.13.

(1) Every odd dimensional Euclidean space R2n+1 has a canonical contact

form given by α = dz +
∑n

i=1 xi dyi, where (x1, . . . , xn, y1, . . . , yn, z) is

the canonical coordinate system on R2n+1.

(2) Every even dimensional Euclidean space R2n has a canonical 1-form

λ =
∑n

i=1(xidyi−yidxi) which is called the Liouville form of R2n, where

(x1, . . . , xn, y1, . . . , yn) is the canonical coordinate system on R2n. The

restriction of λ on the unit sphere in R2n defines a contact form.

(3) For any manifoldM , the total space of the vector bundle T ∗M×R→M

has a canonical contact form.

If α is a contact form then

d′α = dα|kerα

defines a symplectic structure on the contact distribution ξ = kerα. Also, there

is a global vector field Rα on M defined by the relations

α(Rα) = 1, iRα .dα = 0, (2)

where iX denotes the interior multiplication by the vector field X. Thus, TM

has the following decomposition:

TM = kerα⊕ ker dα, (3)
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where kerα is a symplectic vector bundle and ker dα is the 1-dimensional sub-

bundle generated by Rα. The vector field Rα is called the Reeb vector field of

the contact form α.

A contact form α also defines a canonical isomorphism φ : TM → T ∗M

between the tangent and the cotangent bundles of M given by

φ(X) = iXdα + α(X)α, for X ∈ TM. (4)

It is easy to see that the Reeb vector field Rα corresponds to the 1-form α under

φ.

Definition 2.1.14. Let (N, ξ) be a contact manifold. A monomorphisn

F : TM → (TN, ξ) is called contact if F is transversal to ξ and F−1(ξ) is a

contact structure on M . A smooth map f : M → (N, ξ) is called contact if its

differential df is contact.

If M is also a contact manifold with a contact structure ξ0, then a monomor-

phism F : TM → TN is said to be isocontact if ξ0 = F−1ξ and F : ξ0 → ξ is

conformal symplectic with respect to the conformal symplectic structures on ξ0

and ξ. A smooth map f : M → N is said to be isocontact if df is isocontact.

A diffeomorphism f : (M, ξ) → (N, ξ′) is said to be a contactomorphism if

df is isocontact.

If ξ = kerα for a globally defined 1-form α on N , then f is contact if f ∗α

is a contact form on M . Furthermore, if ξ0 = kerα0 then f is isocontact if

f ∗α = ϕα0 for some nowhere vanishing function ϕ : M → R.

Definition 2.1.15. A vector field X on a contact manifold (M,α) is called a

contact vector field if it satisfies the relaion LXα = fα for some smooth function

f on M , where LX denotes the Lie derivation operator with respect to a vector

field X.
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Every smooth functionH on a contact manifold (M,α) gives a contact vector

field XH = X0 + X̄H defined as follows:

X0 = HRα and X̄H ∈ Γ(ξ) such that iX̄Hdα|ξ = −dH|ξ, (5)

where ξ = kerα; equivalently,

α(XH) = H and iXHdα = −dH + dH(Rα)α. (6)

The vector field XH is called the contact Hamiltonian vector field of H.

If φt is a local flow of a contact vector field X, then

d

dt
φ∗tα = φ∗t (iX .dα + d(α(X))) = φ∗t (fα) = (f ◦ φt)φ∗tα.

Therefore, φ∗tα = λtα, where λt = e
∫
f◦φt dt. Thus the flow of a contact vector

field preserves the contact structure.

Theorem 2.1.16. Every contact form α on a manifold M of dimension 2n+

1 can be locally represented as dz −
∑n

i=1 pi dqi, where (z, q1, . . . , qn, p1, . . . , pn)

is a local coordinate system on M .

Theorem 2.1.17. (Gray’s Stability Theorem ([13]) If ξt, t ∈ I is a smooth

family of contact structures on a closed manifold M , then there exists an isotopy

ψt, t ∈ I, of M such that

dψt(ξ0) = ξt for all t ∈ I

Next we shall give some examples of compact domains U with piecewise

smooth boundary in a contact manifold which contracts into itself by isocontact

embeddings. We shall first recall the formal definition of such domains ([5]).

Definition 2.1.18. Let U be a compact domain with piecewise smooth

boundary in a contact manifold (M,α); U is called contactly contractible if there
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exists a contact vector field X which is inward transversal to the boundary of

U and is such that its flow ψt satisfies the following property:

ψ∗tα = htα, where ht → 0 as t→ +∞.

Example 2.1.19.

(1) The Euclidean ball in (R2n+1, dz − Σn
1 (xjdyj − yjdxj)) centered at the

origin;

(2) the semi-ball centred at the origin i.e, one half of the Euclidean ball

cut by a hyperplane;

(3) the image of a contactly contractible domain under a C1-small diffeo-

morphism.

Remark 2.1.20. In Chapter 4, we shall see an extension of 2.1.17 for non-

closed contact manifold, which is one of the main results in the thesis (see

Theorem 4.2.6).

We end this section with the concept of a contact submanifold.

Definition 2.1.21. A submanifold N of a contact manifold (M, ξ) is said

to be a contact submanifold if the inclusion map i : N →M is a contact map.

Lemma 2.1.22. A submanifold N of a contact manifold (M,α) is a contact

submanifold if and only if TN is transversal to ξ|N and TN∩ξ|N is a symplectic

subbundle of (ξ, d′α).
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2.2. Preliminaries of foliations

In this section we recall definitions of foliations and some primary examples

for which our main reference is [26]. We also review the notion of Γq-structures

and its relations with foliations following [18].

2.2.1. Foliations. Foliations on n-dimensional manifolds are modelled on

the product structure Rq × Rn−q of Rn for some q > 0. We will call a diffeo-

morphism f : Rq ×Rn−q → Rq ×Rn−q admissible if there are smooth functions

g : Rq → Rq and h : Rq × Rn−q → Rn−q such that

f(x, y) = (g(x), h(x, y)) for all (x, y) ∈ Rq × Rn−q.

Definition 2.2.1. A codimension q foliation atlas on a manifold M is de-

fined by an atlas {Ui, φi}i∈I , where {Ui} is an open cover of M and

φi : Ui → φi(Ui) ⊂ Rq × Rn−q

are homeomorphisms such that the transition maps

φjφ
−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)

are admissible maps. A codimension q foliation on a manifold is a maximal

foliation atlas on it.

For any foliation chart (Ui, φi), the sets φ−1
i (x × Rn−q) are called plaques.

Since the transition maps are admissible, the plaques through a point p ∈ Ui∩Uj
defined by φi and φj coincide on the open set Ui∩Uj. We define an equivalence

relation on M as follows: Two points p and q in M are equivalent if there is a

sequence of points p = p0, p1, . . . , pk = q such that any two consecutive points

pi and pi+1 lie on a plaque. The equivalence classes of this relation are called

leaves of the foliation. These are injectively immersed submanifolds of M .
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2.2.2. Foliations as involutive distribution. The tangent spaces of the

plaques (or leaves) of a foliation F define a subbundle TF of TM , called the

tangent bundle of F , which is clearly an involutive distribution. A subbundle D

of TM is said to be involutive if the space of sections of D is closed under the Lie

bracket of vector fields, that is, if X, Y ∈ Γ(D) then so is [X, Y ] = XY − Y X.

Conversely, if D is an involutive distribution on a manifold M , then Frobenius

Theorem ([37]) says that D is integrable; that is, through any point x ∈ M

there exists a maximal integral submanifold of D. The integral submanifolds of

D are the leaves of some foliation F on M .

2.2.3. Foliations as Haefliger Cocycle. A foliation F on a manifold can

also be defined by the following data:

(1) An open covering {Ui, i ∈ I} of M

(2) submersions si : Ui → Rq for each i ∈ I

(3) local diffeomorphisms hij : si(Ui ∩ Uj)→ sj(Ui ∩ Uj) for all i, j ∈ I for

which Ui ∩ Uj 6= ∅

satisfying the commutativity relations

hijsi = sj on Ui ∩ Uj for all (i, j)

and the cocycle conditions

hjkhij = hik on si(Ui ∩ Uj ∩ Uk).

The diffeomorphisms {hij} are referred as Haefliger cocycles .

Since si’s are submersions, s−1
i (x) are submanifolds of Ui of codimension q.

Furthermore, since

s−1
i (x) = s−1

j (hij(x)) for all x ∈ si(Ui ∩ Uj),

the sets s−1
i (x) patch up to define a decomposition of M into immersed sub-

manifolds of codimension q. These submanifolds are the leaves of a foliation F

on M . The tangent distribution TF is given by the local data ker dsi, i ∈ I.
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On the other hand, if the foliation data is given by {Ui, φi} as in Defini-

tion 2.2.1 then si : Ui → Rq defined by si = p1 ◦ φi are submersions, where

p1 : Rq × Rn−q → Rq is the projection onto the first factor. Since φjφ
−1
i is an

admissible map, hij : si(Ui ∩ Uj) → sj(Ui ∩ Uj) given by hij(si(x)) = sj(x) is

well-defined on si(Ui ∩ Uj). Furthermore, {hij} satisfy the cocycle conditions.

Definition 2.2.2. Let F be a foliation on a manifold M . The quotient

bundle TM/TF is defined as the normal bundle of the foliation F and is denoted

by νF .

If a foliation is given by the Haefliger data {Ui, si, hij} then note that (dsi)x :

TxM → Rq are surjective linear maps and ker(dsi)x = TxF for all x ∈ Ui.

Therefore, si induces an isomorphism s̃i : ν(F)|Ui → Ui × Rq given by

s̃i(v + TxF) = (dsi)x(v) for all v ∈ TxM.

Noting that (dsj)x ◦ (dsi)
−1
x is well defined for all x ∈ Ui ∩ Uj, the transition

maps of the normal bundle of F are given as follows:

s̃j(x)s̃i(x)−1 = dsj ◦ (dsi)
−1
x = (dhij)si(x),

where the second equality follows from the relation hijsi = sj.

Definition 2.2.3. A smooth map f : (M,F) → (M ′,F ′) between foliated

manifolds is said to be a foliation preserving map if the derivative map of f

take TF into TF ′.

2.2.4. Maps transversal to a foliation. The simplest type of foliations

on manifolds are defined by submersions. Indeed, if f : M → N is a submersion

then the fibres f−1(x) define (the leaves of) a foliation on the manifold M . In

this case the leaves turn out to be embedded submanifolds of M . Now let N

itself be equipped with a foliation FN of codimension q. In general, the inverse

images of the leaves of a foliation on N under a smooth map f : M → N need
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not give a foliation on M . We require some additional condition on the maps

and this brings us to the notion of maps transversal to a foliation.

Let N be a manifold with a foliation FN and let q : TN → ν(FN) denote

the quotient map. A smooth map f : M → N is said to be transversal to the

foliation FN if q ◦ df : TM → ν(FN) is an epimorphism; in other words,

dfx(TxM) + (TFN)f(x) = Tf(x)N for all x ∈M

If FN is represented by the Haefliger data {Ui, si, hij}, then {f−1(Ui), si ◦f, hij}

gives a Haefliger structure on M . The associated foliation is referred as the

inverse image foliation of FN under f and is denoted by f ∗FN . The leaves of

f ∗FN are the preimages of the leaves of FN under f . Hence codimension of

f ∗FN is the same as that of FN .

2.2.5. Γq structures. In this section we review some basic facts about

Γ-structures for a topological groupoid Γ following [18]. We also recall the

connection between foliations on manifolds and Γq structures, where Γq is the

groupoid of germs of local diffeomorphisms of Rq). For preliminaries of topo-

logical groupoid we refer to [26].

Definition 2.2.4. Let X be a topological space with an open covering

U = {Ui}i∈I and let Γ be a topological groupoid over a space B. A 1-cocycle

on X over U with values in Γ is a collection of continuous maps

γij : Ui ∩ Uj → Γ

such that

γik(x) = γij(x)γjk(x), for all x ∈ Ui ∩ Uj ∩ Uk.

The above conditions imply that γii has its image in the space of units of Γ

which can be identified with B via the unit map 1 : B → Γ. We call two 1-

cocycles ({Ui}i∈I, γij) and ({Ũk}k∈K , γ̃kl) equivalent if for each i ∈ I and k ∈ K,
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there are continuous maps

δik : Ui ∩ Ũk → Γ

such that

δik(x)γ̃kl(x) = δil(x) for x ∈ Ui ∩ Ũk ∩ Ũl

γji(x)δik(x) = δij(x) for x ∈ Ui ∩ Uj ∩ Ũk.

An equivalence class of a 1-cocycle is called a Γ-structure. These structures

have also been referred as Haefliger structures in the later literature.

For a continuous map f : Y → X and a Γ-structure Σ = ({Ui}i∈I , γij) on

X, the pullback Γ-structure f ∗Σ is defined by the covering {f−1Ui}i∈I together

with the cocycles γij ◦ f .

If f, g : Y → X are homotopic maps and Σ is a Γ-structure on X then the

pull-back structures f ∗Σ and g∗Σ are not the same. They are homotopic in the

following sense.

Definition 2.2.5. Two Γ-structures Σ0 and Σ1 on a topological space X

are called homotopic if there exists a Γ-structure Σ on X×I, such that i∗0Σ = Σ0

and i∗1Σ = Σ1, where i0 : X → X×I and i1 : X → X×I are canonical injections

defined by it(x) = (x, t) for t = 0, 1.

Definition 2.2.6. Let Γ be a topological groupoid with space of units B,

source map s and target map t. Consider the infinite sequences

(t0, x0, t1, x1, ...)

with ti ∈ [0, 1], xi ∈ Γ such that all but finitely many ti’s are zero and t(xi) =

t(xj) for all i, j. Two such sequences

(t0, x0, t1, x1, ...)

and

(t′0, x
′
0, t
′
1, x
′
1, ...)
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are called equivalent if ti = t′i for all i and xi = x′i for all i with ti 6= 0. Denote

the set of all equivalence classes by EΓ. The topology on EΓ is defined to be

the weakest topology such that the following set maps are continuous:

ti : EΓ→ [0, 1] given by (t0, x0, t1, x1, ...) 7→ ti

xi : t−1
i (0, 1]→ Γ given by (t0, x0, t1, x1, ...) 7→ xi.

There is also a ‘Γ-action’ on EΓ as follows: Two elements (t0, x0, t1, x1, ...) and

(t′0, x
′
0, t
′
1, x
′
1, ...) in EΓ are said to be Γ-equivalent if ti = t′i for all i, and if there

exists a γ ∈ Γ such that xi = γx′i for all i with ti 6= 0. The set of equivalence

classes with quotient topology is called the classifying space of Γ, and is denoted

by BΓ.

Let p : EΓ → BΓ denote the quotient map. The maps ti : EΓ → [0, 1]

project down to maps ui : BΓ → [0, 1] such that ui ◦ p = ti. The classifying

space BΓ has a natural Γ-structure Ω = ({Vi}i∈I , γij), where Vi = u−1
i (0, 1] and

γij : Vi ∩ Vj → Γ is given by

(t0, x0, t1, x1, ...) 7→ xix
−1
j

We shall refer to this Γ structure as the universal Γ-structure.

For any two topological groupoids Γ1,Γ2 and for a groupoid homomorphism

f : Γ1 → Γ2 there exists a continuous map

Bf : BΓ1 → BΓ2,

defined by the functorial construction.

Definition 2.2.7. (Numerable Γ-structure) Let X be a topological space.

An open covering U = {Ui}i∈I of X is called numerable if it admits a locally

finite partition of unity {ui}i∈I , such that u−1
i (0, 1] ⊂ Ui. If a Γ-structure can

be represented by a 1-cocycle whose covering is numerable then the Γ-structure

is called numerable.
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It can be shown that every Γ-structure on a paracompact space is numerable.

Definition 2.2.8. LetX be a topological space. Two numerable Γ-structures

are called numerably homotopic if there exists a homotopy of numerable Γ-

structures joining them.

Haefliger proved that the homotopy classes of numerable Γ-structures on a

topological space X are in one-to-one correspondence with the homotopy classes

of continuous maps X → BΓ.

Theorem 2.2.9. ([16]) Let Γ be a topological groupoid and Ω be the universal

Γ structure on BΓ. Then

(1) Ω is numerable.

(2) If Σ is a numerable Γ-structure on a topological space X, then there

exists a continuous map f : X → BΓ such that f ∗Ω is homotopic to Σ.

(3) If f0, f1 : X → BΓ are two continuous functions, then f ∗0 Ω is numerably

homotopic to f ∗1 Ω if and only if f0 is homotopic to f1.

2.2.6. Γq-structures and their normal bundles. We now specialise to

the groupoid Γq of germs of local diffeomorphisms of Rq. The source map

s : Γq → Rq and the target map t : Γq → Rq are defined as follows: If φ ∈ Γq

represents a germ at x, then

s(φ) = x and t(φ) = φ(x)

The units of Γq consists of the germs of the identity map at points of Rq. Γq is

topologised as follows: For a local diffeomorphism f : U → f(U), where U is an

open set in Rq, define U(f) as the set of germs of f at different points of U . The

collection of all such U(f) forms a basis of some topology on Γq which makes it

a topological groupoid. The derivative map gives a groupoid homomorphism

d̄ : Γq → GLq(R)
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which takes the germ of a local diffeomorphism φ of Rq at x onto dφx. Thus,

to each Γq-structure ω on a topological space M there is an associated (iso-

morphism class of) q-dimensional vector bundle ν(ω) over M which is called

the normal bundle of ω. In fact, if ω is defined by the cocycles γij then the

cocycles d̄ ◦ γij define the vector bundle ν(ω). Moreover, two equivalent co-

cycles in Γq have their normal bundles isomorphic. Thus the normal bundle

of a Γq structure is the isomorphism class of the normal bundle of any repre-

sentative cocycle. If two Γq structures Σ0 and Σ1 are homotopic then there

exists a Γq structure Σ on X × I such that i∗0Σ = Σ0 and i∗1Σ = Σ1, where

i0 : X → X × {0} ↪→ X × I and i1 : X → X × {1} ↪→ X × I are canonical

injective maps. Then ν(i∗0Σ0) ∼= i∗0ν(Σ) ∼= i∗1ν(Σ) ∼= ν(i∗1Σ1). Hence, normal

bundles of homotopic Γq structures are isomorphic.

In particular, we have a vector bundle νΩq on BΓq associated with the

universal Γq-structure Ωq on BΓq.

Proposition 2.2.10. If a continuous map f : X → BΓq classifies a Γq-

structure ω on a topological space X, then Bd ◦ f classifies the vector bundle

ν(ω). In particular, νΩq
∼= Bd∗E(GLq(R)) and hence ν(ω) ∼= f ∗νΩq.

2.2.7. Γq-structures vs. foliations. If a foliation F on a manifold M is

represented by the Haefliger data {Ui, si, hij}, then we can define a Γq structure

on M by {Ui, gij}, where

gij(x) = the germ of hij at si(x) for x ∈ Ui ∩ Uj.

In particular, gii(x) is the germ of the identity map of Rq at si(x) and hence

gii takes values in the units of Γq. If we identify the units of Γq with Rq, then

gii may be identified with si for all i. Thus, one arrives at a Γq-structure ωF

represented by 1-cocycles (Ui, gij) such that

gii : Ui → Rq ⊂ Γq
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are submersions for all i. The functions τij : Ui ∩ Uj → GLq(R) defined by

τij(x) = (d̄◦gij)(x) for x ∈ Ui∩Uj, define the normal bundle of ωF . Furthermore,

since τij(x) = dhij(si(x)), ν(ωF) is isomorphic to the quotient bundle ν(F).

Thus a foliation on a manifold M defines a Γq-structure whose normal bundle

is embedded in TM .

As we have noted above, foliations do not behave well under the pullback

operation, unless the maps are transversal to foliations. However, in view of the

relation between foliations and Γq structures, it follows that the inverse image

of a foliation by any map gives a Γq-structure. The following result due to

Haefliger says that any Γq structure is of this type.

Theorem 2.2.11. ([16]) Let Σ be a Γq-structure on a manifold M . Then

there exists a manifold N , a closed embedding s : M ↪→ N and a Γq-foliation

FN on N such that s∗(FN) = Σ and s is a cofibration.
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2.3. Foliations with geometric structures

2.3.1. Foliated de Rham cohomology. Let Ωr(M) denote the space of

differential r-forms on a manifold M . For any foliation F on a manifold M ,

let Ir(F) denote the subspace of Ωr(M) consisting of all r-forms which vanish

on the r-tuple of vectors from TF . In other words, Ir(F) consists of all forms

whose pull-back to the leaves of F are zero. Define

Ωr(M,F) =
Ωr(M)

Ir(F)

and let q : Ωr(M) → Ωr(M,F) be the quotient map. Since the leaves are

integral submanifolds of M , the exterior differential operator d maps Ir(F)

into Ir+1(F) for all r > 0, and thus we obtain a coboundary operator dF :

Ωr(M,F)→ Ωr+1(M,F) defined by dF(ω+ Ir(F)) = dω+ Ir+1(F) so that the

following diagram commutes:

Ωr(M)
d //

q

��

Ωr+1(M)

q

��

Ωr(M,F)
dF

// Ωr+1(M,F)

The cohomology groups of the cochain complex (Ωr(M,F), dF) are called fo-

liated de-Rham cohomology groups of (M,F) and are denoted by Hr(M,F),

r ≥ 0.

Definition 2.3.1. Let M be a manifold with a foliation F . A differential

form ω on M will be called F -leafwise closed (resp. leafwise exact or leafwise

symplectic) if the pull-back of ω to the leaves of F are closed forms (resp. exact

forms, symplectic forms).

Let T ∗F denote the dual bundle of TF . The space Ωr(M,F) can be iden-

tified with the space of sections of the exterior bundle ∧r(T ∗F) by the corre-

spondence ω + Ir(F) 7→ ω|Λr(TF), ω ∈ Ωr(M). The induced coboundary map
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Γ(∧r(T ∗F))→ Γ(∧r+1(T ∗F)) will also be denoted by the same symbol dF . The

sections of ∧r(T ∗F) will be referred as tangential r-forms or foliated r-forms,

or simply, r-forms on F . on (M,F).

Definition 2.3.2. Let F be a foliation on a manifold M . A foliated k-form

α is said to be a foliated closed or dF -closed if dFα = 0. It is foliated exact or

dF -exact if there exists a foliated (k − 1) form τ on (M,F) such that α = dFτ .

Definition 2.3.3. Let F be an even-dimensional foliation on a manifold

M . A smooth section ω of ∧2(T ∗F) will be called a symplectic form on F if the

following conditions are satisfied:

(1) ω is non-degenerate (i.e., ωx is non-degenerate on the tangent space

TxF for all x ∈M ,) and

(2) ω is dF -closed.

The pair (F , ω) will be called a symplectic foliation on M .

Definition 2.3.4. Let F be an even-dimensional foliation on a manifold

M . A smooth section ω of ∧2(T ∗F) will be called a locally conformal symplectic

form on F if the following conditions are satisfied:

(1) ω is non-degenerate and

(2) there exists a dF -closed foliated 1-form θ satisfying the relation dFω +

θ ∧ ω = 0.

The foliated deRham cohomology class of θ will be referred as the (foliated) Lee

class of ω. The pair (F , ω) will be called a locally conformal symplectic foliation

on M .

Definition 2.3.5. Let F be a foliation of dimension 2k + 1 on a manifold

M . A foliated 1-form α (that is, a section of T ∗F) is said to be a contact form

on F if α ∧ (dFα)k is nowhere vanishing. The pair (F , α) will be referred as a

contact foliation on M .
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A pair (α, β) consisting of a foliated 1-form α and a foliated 2-form β is said

to be an almost contact structure on (M,F) if α∧βk is nowhere vanishing. The

triple (F , α, β) will be called an almost contact foliation on M .

2.3.2. Poisson and Jacobi manifolds. We shall now consider some higher

geometric structures which are given by multi-vector fields in contrast with the

ones described in the previous section, which were defined by differential forms.

These geometric structures are intimately related with foliations for which the

leaves are equipped with locally conformal symplectic or contact forms.

Definition 2.3.6. Let M be a smooth manifold. A (smooth) section of

the vector bundle ∧p(TM) will be called a p-vector field. The space of p-vector

fields for all p ≥ 0 will be referred as the space of multi-vector fields .

If X, Y are two vector fields on M written locally as X =
∑

i ai
∂
∂xi

and

Y =
∑

i bi
∂
∂xi

then the formula for the Lie bracket of X and Y is given as

follows:

[X, Y ] =
∑
i

ai(
∑
j

∂bj
∂xi

∂

∂xj
)−

∑
i

bi(
∑
j

∂aj
∂xi

∂

∂xj
).

If we use the notation ζi for ∂
∂xi

then the vector fields X and Y could be thought

of as functions of xi’s and ζi’s which are linear with respect to ζi’s. So the

formula for the lie bracket turns out to be

[X, Y ] =
∑
i

∂X

∂ζi

∂Y

∂xi
−

∑
i

∂Y

∂ζi

∂X

∂xi

Now let X = Σi1<···<ipXi1,...,ipζi1 ∧ · · · ∧ ζip and Y = Σi1<···<iqYi1,...,iqζi1 ∧ · · · ∧ ζiq
be p and q vector fields respectively. Define the bracket of X and Y , in analogy

with the formula for the Lie bracket of vector fields as

[X, Y ] =
∑
i

∂X

∂ζi

∂Y

∂xi
− (−1)(p−1)(q−1)

∑
i

∂Y

∂ζi

∂X

∂xi
(7)

Theorem 2.3.7. ([36]) The formula (7) satisfies the following
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(1) Let X and Y be p and q vector fields respectively, then

[X, Y ] = −(−1)(p−1)(q−1)[Y,X]

(2) Let X, Y and Z be p, q and r vector fields respectively, then

[X, Y ∧ Z] = [X, Y ] ∧ Z + (−1)(p−1)qY ∧ [X,Z]

[X ∧ Y, Z] = X ∧ [Y, Z] + (−1)(r−1)q[X,Z] ∧ Y

(3)

(−1)(p−1)(r−1)[X, [Y, Z]] + (−1)(q−1)(p−1)[Y, [Z,X]]

+(−1)(r−1)(q−1)[Z, [X, Y ]] = 0

(4) If X is a vector field and f is a real valued function on M then

[X, Y ] = LXY and [X, f ] = X(f)

Definition 2.3.8. The bracket in (7) is called the Schouten-Nijenhuis bracket.

The second assertion in Theorem 2.3.7 implies that the definition of the

Schouten-Nijenhuis bracket given by (7) is independent of the choice of local

coordinates.

Definition 2.3.9. A bivector field π on M is called a Poisson bivector field

if it satisfies the relation [π, π] = 0, where [ , ] is the Schouten-Nijenhuis bracket

([36]).

A Poisson structure on a smooth manifold M can also be defined by a R-

bilinear antisymmetric operation

{, } : C∞(M,R)× C∞(M,R)→ C∞(M,R)

which satisfies the Jacobi identity:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 for all f, g, h ∈ C∞(M);
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and the Leibnitz identity for each f ∈ C∞(M):

{f, gh} = {f, g}h+ g{f, h} for all g, h ∈ C∞(M).

The relation between a Poisson bracket { , } and the associated Poisson bi-

vector field is given as follows: For any two functions f, g ∈ C∞(M)

{f, g} = π(df, dg).

Example 2.3.10. Let M be a 2n-dimensional manifold with a symplectic

form ω. The non-degeneracy condition implies that b : TM → T ∗M , given

by b(X) = iXω is a vector bundle isomorphism, where iX denotes the interior

multiplication by X ∈ TM . Then M has a Poisson structure defined by

π(α, β) = ω(b−1(α), b−1(β)), for all α, β ∈ T ∗xM,x ∈M.

In [21], Kirillov further generalised the Poisson bracket. The underlying

motivation was to understand the geometric properties of all manifolds M which

admit a local lie algebra structure on C∞(M).

Definition 2.3.11. A local lie algebra structure on C∞(M) is an antisym-

metric R bilinear map

{, } : C∞(M)× C∞(M)→ C∞(M)

such that

(1) the bracket satisfies the Jacobi identity namely,

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 for all f, g, h ∈ C∞(M);

(2) supp ({f, g}) ⊂ supp (f) ∩ supp (g) for f, g ∈ C∞(M) (that is, { , } is

local).

The bracket defined above is called a Jacobi bracket .



2.3. FOLIATIONS WITH GEOMETRIC STRUCTURES 39

Definition 2.3.12. A Jacobi structure on a smooth manifold M is given by

a pair (Λ, E), where Λ is a bivector field and E is a vector field on M , satisfying

the following two conditions:

[Λ,Λ] = 2E ∧ Λ, [E,Λ] = 0. (8)

If E = 0 then Λ is a Poisson bivector field on M .

The notion of a local Lie algebra structure on C∞(M) is equivalent to that

of a Jacobi structure on M ([21]). If (Λ, E) is a Jacobi pair, then we can define

the associated Jacobi bracket by the following relation:

{f, g} = Λ(df, dg) + fE(g)− gE(f), for f, g ∈ C∞(M) (9)

Taking E = 0 we get the relation between the Poisson bracket and the Poisson

bivector field.

Example 2.3.13. Every locally conformal symplectic manifold (in short, an

l.c.s manifold) is a Jacobi manifold, where the Jacobi pair is given by

Λ(α, β) = ω(b−1(α), b−1(β)) and E = b−1(θ),

where b : TM → T ∗M is defined as in Example 2.3.10.

Example 2.3.14. Every manifold with a contact form is a Jacobi manifold.

If α is a contact form on M , then recall that there is an isomorphism φ : TM →

T ∗M defined by φ(X) = iXdα + α(X)α for all X ∈ TM . A Jacobi pair on

(M,α) can be defined as follows:

Λ(β, β′) = dα(φ−1(β), φ−1(β′)), and E = φ−1(α),

where β, β′ are 1-forms on M . The bivector field Λ defines a bundle homomor-

phism Λ# : T ∗M → TM by

Λ#(α)(β) = Λ(α, β),
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where α, β ∈ T ∗xM , x ∈ M . The image of the vector bundle morphism Λ# :

T ∗M → TM is kerα and ker Λ# is spanned by Rα. The contact Hamiltonian

vector field XH can then be expressed as XH = HRα + Λ#(dH).

Let (M,Λ, E) be a Jacobi manifold. The Jacobi pair (Λ, E) defines a distri-

bution D, called the characteristics distribution of the Jacobi pair, as follows:

Dx = Λ#(T ∗xM) + 〈Ex〉, x ∈M, (10)

where 〈Ex〉 denotes the subspace of TxM spanned by the vector Ex.

Remark 2.3.15. In general, D is only a singular distribution; however, it is

completely integrable in the sense of Sussman ([36]).

Definition 2.3.16. A Jacobi pair (Λ, E) is called regular if x 7→ dimDx
is a locally constant function on M . It is said to be a non-degenerate Jacobi

structure if D equals TM .

Every C∞ function f on a Jacobi manifold (M,Λ, E) defines a vector field

Xf by Xf = Λ#(df) so that Λ(df, dg) = Xf (g). Then we have the following

relations ([21]):

[E,Xf ] = XEf

[Xf , Xg] = X{f,g} − fXEg + gXEf − {f, g}E
(11)

where [, ] is the usual Lie bracket of vector fields. If D is regular then the

characteristic distribution D is spanned by the vector fields E and Xf , f ∈

C∞(M). Thus, it follows easily from the relations in (11) that D is involutive

and therefore, integrable.

Lemma 2.3.17. A Jacobi structure (Λ, E) restricts to a non-degenerate Ja-

cobi structure on the leaves of its characteristic distribution.
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Proof. Let f, g be two smooth functions on a leaf L of the characteristic

distribution D. The induced Jacobi bracket on a leaf L is given as follows:

{f, g}(x) = {f̃ , g̃}(x) for all x ∈ L

where f̃ and g̃ are arbitrary extensions of f and g respectively on some open

neighbourhood of L. Since E(x) ∈ Dx, Ef̃(x) depends only on the values of

f on the leaf L through x. Also, Xf̃ g̃(x) = dg̃x(Xf̃ (x)) = dgx(Xf̃ (x)) since

Xf̃ (x) ∈ Dx = TxL. This shows that the value of Xf̃ g̃(x) is independent of the

extension of g̃. Similarly, it is also independent of the choice of the extension

f̃ . Thus {f, g} is well-defined by ( 9). It follows through a routine calculation

that the above defines a Jacobi bracket. The non-degeneracy of the bracket on

L is immediate from the definition of {f, g}. �

Theorem 2.3.18. ([21]) Every non-degenerate Jacobi manifold is either lo-

cally conformal symplectic or a contact manifold.

Proof. First suppose that M is of even dimension. Since (Λ, E) is non-

degenerate and the rank of Λ# is even, Λ# : T ∗M → TM must be an isomor-

phism. Define a 2-form ω and a 1-form θ on M as follows:

ω(Λ#(α),Λ#(β)) = Λ(α, β) for all α, β ∈ T ∗xM,x ∈M,

Λ# ◦ θ = E.

We shall show that ω is a locally conformal symplectic form with Lee form θ;

in other words, we need to show that θ is closed and dω + θ ∧ ω = 0. Since the

vector fields Xf = Λ#(df), f ∈ C∞(M), generate TM , it is enough to verify

any relation on Xf ’s only.

In the following we shall use the notation Σ� for cyclic sum over f, g, h.

First note that

(θ ∧ ω)(Xf , Xg, Xh) = −Σ�Ef.Xg(h)
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since θ(Xf ) = −Ef . Next, we have

dω(Xf , Xg, Xh) = Σ�Xfω(Xg, Xh)− Σ�ω([Xf , Xg], Xh)

= Σ�XfXg(h)− Σ�[Xf , Xg]h

= Σ�XfXg(h)− Σ�XfXg(h)− Σ�XgXh(f)

= −Σ�XgXh(f)

= −Σ�Xg[{h, f} − hEf + fEh]

= −Σ�Xg{h, f}+ Σ�Xg(hEf)− Σ�Xg(fEh)

= −Σ�[{g, {h, f} − gE{h, f}+ {h, f}Eg] + Σ�hXg(Ef)

+Σ�EfXg(h)− Σ�fXg(Eh)− Σ�EhXg(f)

= Σ�gE{h, f} − Σ�{h, f}Eg + Σ�hXg(Ef) + Σ�EfXg(h)

−Σ�fXg(Eh)− Σ�EhXg(f)

The second summand in the last expression will cancel the fourth summand, as

it will follow from the identity below:

−Σ�{h, f}Eg = −Σ�[hEf − fEh+Xh(f)]Eg

= −Σ�hEfEg + Σ�fEhEg − Σ�Xhf.Eg

= −Σ�Xh(f).Eg

Furthermore, the first summand can be written as

Σ�gE{h, f} = Σ�gE[hEf − fEh+Xhf ]

= Σ�g[E(hEf)− E(fEh) + E(Xhf)]

= Σ�g[hEEf + EfEh− fEEh− EhEf + E(Xhf)]

= Σ�gEXhf
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Thus we get

dω(Xf , Xg, Xh) = Σ�gEXhf + Σ�hXg(Ef)− Σ�fXg(Eh)− Σ�Eh.Xgf

= −Σ�g[Xh, E]f + Σ�hXg(Ef)− Σ�Eh.Xgf

= Σ�gXEhf + Σ�hXg(Ef)− Σ�Eh.Xgf

= −Σ�Eh.Xgf

= Σ�Eh.Xfg

= −θ ∧ ω(Xf , Xg, Xh)

To show that θ is closed, we observe that

dθ(Xf , Xg) = Xfθ(Xg)−Xgθ(Xf )− θ([Xf , Xg])

= −XfEg +XgEf − θ(X{f,g} − fXEg + gXEf − {f, g}E)

= −XfEg +XgEf + E({f, g})− fEEg + gEEf

and

E({f, g}) = E(fEg − gEf +Xfg)

= fEEg + EgEf − gEEf − EgEf + E(Xfg)

= fEEg − gEEf + E(Xfg)

Combining the above relations we get

dθ(Xf , Xg) = −XfEg +XgEf + fEEg − gEEf + E(Xfg)− fEEg + gEEf

= −[Xf , E]g +XgEf

= XEfg +Xg(Ef)

= 0

Thus, we have proved that M is a locally conformal symplectic manifold when

M is even dimensional. If dimM is odd then E /∈ Im(Λ#). In this case, we can

define a 1-form α by

α(E) = 1, α(Xf ) = 0, for all f ∈ C∞(M).
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Then,

dα(Xf , Xg) = Xfα(Xg)−Xgα(Xf )− α([Xf , Xg])

= −α([Xf , Xg])

= −α(X{f,g} − fXEg + gXEf − {f, g}E)

= {f, g}

= fEg − gEf +Xfg

To show that dα is non-degenerate on Im Λ#, suppose that dα(Xf , Xg) =

0 for all g ∈ C∞(M); that is,

fEg − gEf +Xfg = 0 for all g ∈ C∞(M).

In particular, if we take g = 1 in the above we get Ef = 0. Hence,

Xfg + fEg = (Xf + fE)g = 0 for all g ∈ C∞(M),

which can only happen if f = 0, as Xf and E are linearly independent. Thus,

Xf = 0 proving that dα|Im Λ# is nondegenerate. Finally we observe that

dα(E,Xf ) = Eα(Xf )−Xfα(E)− α([E,Xf ])

= 0

This proves that α is a contact form with Reeb vector field E. �

Combining Lemma 2.3.17 and Theorem 2.3.18 we obtain the following the-

orem.

Theorem 2.3.19. The characteristic foliation of a regular Jacobi structure is

either a locally conformal symplectic foliation or a contact foliation. Conversely,

a locally conformal symplectic foliation or a contact foliation defines a regular

Jacobi structure.

Results of this section will be used in Chapter 3.
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2.4. Preliminaries of h-principle

In this section we recall some preliminaries of h-principle following [5], [9]

and [15]. The theory of h-principle addresses questions related to partial dif-

ferential equations or more general relations which appear in topology and ge-

ometry. As Gromov mentions in the foreword of his book ‘Partial Differential

Relations’([15]), these equations or relations are mostly underdetermined, in

contrast with those which arise in Physics. As a result, there are plenty of

solutions to these equations/relations and one can hope to classify the solution

space using homotopy theory. The r-jet bundle associated with sections of a

fibration X → M has the structure of an affine bundle over X. An r-th or-

der partial differential relation for smooth sections of X determines a subset R

in the r-jet space X(r). The theory of h-principle studies to what extent the

topological and geometric properties of this set R govern the solution space.

2.4.1. Jet bundles. ([12]) An ordered tuple α = (α1, α2, . . . , αm) of non-

negative integers will be called a multi-index. For any x = (x1, x2, . . . , xn) ∈ Rn

and any multi-index α, the notation xα will represent the monomial xα1
1 . . . xαmm

and ∂α will stand for the operator

∂|α|

∂x1
α1∂x2

α2 . . . ∂xm
αm
,

where |α| = α1 +α2 + · · ·+αm. Two smooth maps f, g : Rm → Rn are said to be

k-equivalent at x ∈M if f(x) = g(x) = y and ∂αf(x) = ∂αg(x), for every multi-

index α with |α| ≤ k. The equivalence class of (f, x) is called the k-jet of f at x

and is denoted by jkf (x). Thus a k-jet jkf (x) can be represented by a polynomial∑
|α|≤k ∂

αf(x)xα. Let Bk
n,m be the vector space of polynomials of degree at most

k in m variables and values in Rn. Then the space of k-jets of maps Rm → Rn,

denoted by Jk(Rm,Rn), can be identified with the set Rm × Rn ×Bk
m,n.

Definition 2.4.1. Let M,N be C∞-manifolds. Two C∞ maps f, g : M →

N are said to be k-equivalent at x ∈M if f(x) = g(x) = y and with respect to
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some local coordinates around x and y, ∂αf(x) = ∂αg(x), for every multi-index

α with |α| ≤ k. Using the chain rule one can see that the partial derivative

condition does not depend on the choice of the local coordinate system around x

and y. As before, the equivalence class of an f defined on an open neighbourhood

of x will be called the k-jet of f at x and will be denoted by jkf (x). The set of

k-jets of germs of all functions from M to N will be denoted by Jk(M,N) and

will be called the k-jet bundle associated with the function space C∞(M,N).

Remark 2.4.2. In particular, J0(M,N) = M × N . The 1-jet bundle

J1(M,N) can be identified with Hom(TM, TN) consisting of all linear maps

TxM → TyN , x ∈M and y ∈ N , under the correspondence

j1
f (x) 7→ (x, f(x), dfx),

where f : U → N is a smooth map defined on an open set U containing x.

If (U, φ) and (V, ψ) are two charts of M and N respectively, then there is an

obvious bijection

TU,V : Jk(U, V )→ Rm × Rn ×Bk
n,m.

The jet bundle Jk(M,N) is topologised by declaring the sets Jk(U, V ) open. A

manifold structure is given by declaring TU,V as charts.

We can generalise the notion of jet bundle to sections of a smooth fibration

p : X →M as well.

Definition 2.4.3. Let X
(k)
x denote the set of all k-jets of germs of smooth

sections of p defined on an open neighbourhood of x ∈M . The k-th jet bundle

of sections of X is defined as follows:

X(k) = ∪x∈MX(k)
x .

Clearly, X(0) = X.
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Remark 2.4.4. If X is a trivial fibration over a manifold M with fibre N ,

then the sections of X are in one-to-one correspondence with the maps from M

to N . Therefore, we can identify the jet space X(k) with Jk(M,N).

If f and g are two local sections of a fibration p : X → M which represent

the same k-jet at a point x ∈ M , then they also represent the same l-jet at x

for any l ≤ k. Therefore, we have natural projection maps:

pkl : X(k) → X(l) for l ≤ k.

Set p(k) = p ◦ pk0 : X(k) → M . If g is a section of p then x 7→ jkg (x) defines a

section of p(k). We shall denote this section by jkg or jkg.

Theorem 2.4.5. ([12]) Let p : X →M be a smooth fibration over a manifold

M of dimension m. Suppose that the dimension of the fibre is n. Then

(1) X(k) is a smooth manifold of dimension m+ n+ dim(Bk
n,m);

(2) p(k) : X(k) →M is a fibration;

(3) for any smooth section g : M → X, jkg : M → X(k) is smooth.

2.4.2. Weak and fine topologies. Let p : X →M be a smooth fibration.

We shall denote the space of Ck-sections of X by Γk(X) for 0 ≤ k ≤ ∞.

Definition 2.4.6. ([19]) The weak C0 topology on Γ0(X) is the usual

compact open topology. If k is finite, then the weak Ck-topology (or the Ck

compact open topology) on Γ∞(X) is the topology induced by the k-jet map

jk : Γ∞(X) → Γ0(X(k)), where Γ0(X(k)) has the C0 compact open topology.

The weak C∞ topology (or the C∞ compact open topology) is the union of the

weak Ck topologies for k finite.

We shall now describe the fine topologies on the function spaces. For any

set C ⊂ X(k) define a subset B(C) of Γ∞(X) as follows:

B(C) = {f ∈ Γ∞(X) : jkf (M) ⊂ C}.
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Then observe that B(C) ∩B(D) = B(C ∩D).

Definition 2.4.7. ([12]) The collection {B(U) : U open in X(k)} forms a

basis of some topology on Γ∞(X), which we call the fine Ck-topology. The fine

C∞-topology on Γ∞(X) is the inverse limit of these Ck-topologies. The maps

pkk−1 : X(k) → X(k−1) define a spectrum with respect to the fine topologies.

Remark 2.4.8. The fine Ck-topology on Γ∞(X) is induced from the fine

C0-topology on Γ0(X(k)) by the k-jet map

jk : Γ∞(X)→ Γ0(X(k)), f 7→ jkf.

The fine Ck topology is, in general, finer than the weak Ck topology. How-

ever, if M is compact then these are equal. For a better understanding of the fine

Ck-topologies we describe a basis of the neighborhood system of an f ∈ Γ∞(X).

Let us first fix a metric on X(k). For any smooth section f of X and a positive

smooth function δ : M → R+ define

N k
δ (f) = {g ∈ Γ∞(X) : dist(jkf (x), jkg (x)) < δ(x) for all x ∈M}.

The sets N k
δ (f) form a neighbourhood basis of f in the fine Ck-topology.

Remark 2.4.9. If R is an open subset of X(k) then the space of sections

of X(k) with images contained in R is an open subset of Γ0(X(k)) in the fine

C0-topology. Consequently, (jk)−1(Γ(R)) is an open subspace of Γ∞(X) in the

fine C∞ topology.

2.4.3. Holonomic Approximation Theorem.

Definition 2.4.10. A section of the jet-bundle p(k) : X(k) → M is said to

be a holonomic section if it is the r-jet map of some section f : M → X.

We now recall the Holonomic Approximation Theorem from [5]. Through-

out the thesis, for any subset A ⊂ M , OpA will denote an unspecified open

neighbourhood of A (which may change in course of an argument).
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Theorem 2.4.11. Let A be a polyhedron (possibly non-compact) in M of

positive codimension. Let σ be any section of the k-jet bundle X(k) over OpA.

Given any positive functions ε and δ on M there exist a diffeotopy δt : M →M

and a holonomic section σ′ : Op δ1(A)→ X(k) such that

(1) δt(A) ⊂ domain (σ) for all t;

(2) dist(x, δt(x)) < δ(x) for all x ∈M and t ∈ [0, 1] and

(3) dist(σ(x), σ′(x)) < ε(x) for all x ∈ Op (δ1(A)).

(Any diffeotopy δt satisfying (2) will be referred as δ-small diffeotopy.)

We now mention the main steps in the proof of the theorem when dimM = 2

and dimA = 1. To start with A is covered by small coordinate neighbourhoods

{Ui} of M . If the intersection Ui ∩ Uj is non-empty then we choose a small

hypersurface Si,j in Ui ∩ Uj transversal to A. The map σ is then approximated

by holonomic sections σi on open sets Ui. On the intersection Ui ∩ Uj, the two

holonomic approximations do not match, in general. However, the set of points

in Ui ∩ Uj where σi is not equal to σj can be made to lie in an arbitrary small

neighbourhood of Si,j. Let S be the union of the transversals Si,j. The main

task is to modify the local holonomic sections σi on Ui to get a holonomic section

σ′ defined on the subset U \ S, where U is an open neighbourhood of A. It can

also be ensured that σ′ lies sufficiently C0-close to σ.

The next step is to get a small isotopy which would move A outside the set

S where σ′ is already defined. Indeed, if the transversals Si,j are small enough

then there exist diffeotopies δt, t ∈ I which have the following properties:

(1) δ0 is the identity map of U ;

(2) δt is identity outside a small neighbourhood of S;

(3) δ1 maps OpA into U \ S.
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r r r r r
A

δ1(A)

Si

U

In the above diagram, A is denoted by the horizontal line and the rectangle

represents a neighbourhood U of A in M . The small vertical segments represent

the set S. The intersection of S with A is shown by bullets. The curve in U \S

represents the locus of δ1(A).

Remark 2.4.12. The diffeotopies characterized by (1)-(3) above are referred

as sharply moving diffeotopies by Gromov ([15]). It will appear once again in

Definition 2.4.28

2.4.4. Language of h-principle. Let p : X →M be a smooth fibration.

Definition 2.4.13. A subset R ⊂ X(k) of the k-jet space is called a partial

differential relation of order k (or simply a relation). If R is an open subset of

the jet space then we call it an open relation.

A Ck section f : M → X is said to be a solution of R if the image of its k-jet

extension jkf : M → X(k) lies in R. We denote by Γ(R) the space of sections of

the k-jet bundle X(k) → M having images in R. The space of C∞ solutions of

R is denoted by Sol(R).

The k-jet map jk maps Sol(R) to Γ(R):

jk : Sol(R)→ Γ(R)

and the image of Sol(R) under jk consists of all holonomic sections of R. The

function spaces Sol(R) and Γ(R) will be endowed with the weak C∞ topology

and the weak C0 topology respectively.



2.4. PRELIMINARIES OF h-PRINCIPLE 51

Definition 2.4.14. A differential relationR is said to satisfy the h-principle

if every element σ0 ∈ Γ(R) admits a homotopy σt ∈ Γ(R) such that σ1 is

holonomic. We shall also say, in this case, that the solutions of R satisfies the

h-principle.

The relation R satisfies the parametric h-principle if the k-jet map jk :

Sol(R)→ Γ(R) is a weak homotopy equivalence.

Remark 2.4.15. We shall often talk about (parametric) h-principle for cer-

tain function spaces without referring to the relations of which they are solu-

tions.

Since jk is an injective map, Sol(R) can be identified with the holonomic

sections ofR. Thus, ifR satisfies the parametric h-principle, then it follows from

the homotopy exact sequence of pairs that πi(Γ(R), Sol(R)) = 0 for all integers

i ≥ 0. In other words, every continuous map F0 : (Di, Si−1)→ (Γ(R), Sol(R)),

i ≥ 1, admits a homotopy Ft such that F1 takes all of Di into Sol(R).

Remark 2.4.16. The space Γ(R) is referred as the space of formal solutions

of R. Finding a formal solution is a purely (algebraic) topological problem

which can be addressed with the obstruction theory. Finding a solution of R

is, on the other hand, a differential topological problem. Thus, the h-principle

reduces a differential topological problem to a problem in algebraic topology.

Let Z be any topological space. Any continuous map F : Z → Γ(X) will be

referred as a parametrized section of X with parameter space Z.

Definition 2.4.17. Let M0 be a submanifold of M . We shall say that a

relation R satisfies the h-principle near M0 (or on Op(M0)) if given a section

F : U → R|U defined on an open neighbourhood U of M0, there exists an open

neighbourhood Ũ ⊂ U of M0 such that F |Ũ is homotopic to a holonomic section

F̃ : Ũ → R in Γ(R).
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Parametric h-principle is said to hold for R near M0 if given any open set

containing R and a parametrized section F0 : Di → Γ(R|U) such that F0(z) is

holonomic on U for all z ∈ Si−1, there exists an open set Ũ , M0 ⊂ Ũ ⊂ U , and

a homotopy Ft : Di → Γ(R|Ũ) satisfying the following conditions:

(1) Ft(z) = F0(z) for all z ∈ Si−1 and

(2) F1 maps Di into Sol(R|Ũ).

2.4.5. Open relations on open manifolds. We shall here apply the

Holonomic Approximation Theorem to open relations on open manifolds.

Definition 2.4.18. A manifold is said to be closed if it is compact and

without boundary. A manifold is open if it is not closed.

Remark 2.4.19. Every open manifold admits a Morse function f without

a local maxima. The codimension of the Morse complex of such a function

is, therefore, strictly positive ([23],[24]). The gradient flow of f brings the

manifold into an arbitrary small neighbourhood of the Morse complex. In fact,

one can get a polyhedron K ⊂ M such that codimK > 0, and an isotopy

φt : M → M , t ∈ [0, 1], such that K remains pointwise fixed and φ1 takes M

into an arbitrarily small neighborhood U of K. The polyhedron K is called a

core of M .

Proposition 2.4.20. Let p : X → M be a smooth vector bundle over an

open manifold M . Let R be an open subset of the jet space X(k). Then given any

section σ of R there exist a core K of M and a holonomic section σ′ : OpK → X

such that the linear homotopy between σ and σ′ lies completely within Γ(R) over

OpK.

Proof. We fix a metric on X(k). Since R is an open subset of X(k), the

space of sections of R is an open subset of Γ(X(k)) in the fine C0-topology.

Therefore, given a section σ of R, there exists a positive function ε satisfying
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the following condition:

τ ∈ Γ(X(k)) and dist (σ(x), τ(x)) < ε(x) ⇒ τ is a section of R

Consider a core A of M and a δ-tubular neighbourhood of A for some positive

δ. By the Holonomic Approximation Theorem (Theorem 2.4.11) there exist a

diffeotopy δt and a holonomic section σ′ such that

(1) dist (x, δt(x)) < δ(x) for all x ∈M and t ∈ [0, 1] and

(2) dist (σ(x), σ′(x)) < ε(x) for all x ∈ Uρ,

where Uρ is a ρ-tubular neighbourhood ofK = δ1(A) for some real number ρ > 0.

Now take a smooth map χ : M → [0, 1] satisfying the following conditions:

χ ≡ 1, on Uρ/2 and suppχ ⊂ Uρ,

Define a homotopy σt as follows:

σt = σ + tχ(σ′ − σ), t ∈ [0, 1].

Then

(1) σ0 = σ and each σt is globally defined;

(2) σt = σ outside Uρ for each t;

(3) σ1 is holonomic on Uρ/2.

Moreover, since the above homotopy between σ and σ′ is linear, σt lies in the ε-

neighbourhood of σ for each t. Hence the homotopy σt lies completely within R

by the choice of ε. This completes the proof of the proposition since K = δ1(A)

is also a core of M . �

Remark 2.4.21.

(a) Note that the core K can not be fixed a priori in the statement of the

proposition.
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(b) The theorem, in fact, remains valid in the general set up where X is a

smooth fibration [15]. In this case, however, the linearity condition on

the homotopy σt has to be dropped for obvious reason.

2.4.6. Open Diff invariant relations and h-principle. The set of all

diffeomorphisms on a manifold is a group under composition of maps. Let

Diff (M) denote the set of all local diffeomorphisms of M , i.e, all diffeomor-

phisms f : U → V where U , V are open subsets of M . The composition of

maps in Diff (M) is not defined for every pair of local diffeomorphisms. How-

ever, if f, g are local diffeomorphisms of M , then g ◦ f ∈ Diff(M) if and only

if domain of g is equal to the codomain of f . A subset D of Diff (M) is called

a pseudogroup if the following conditions are satisfied ([9]):

(1) If f ∈ D and V is an open subset of the domain of f , then f |V : V →

f(V ) is in D.

(2) If the domain U of f has the decomposition U = ∪iUi and if f |Ui :

Ui → f(Ui) ∈ D for all i, then f ∈ D.

(3) For any open set U , the identity map idU ∈ D.

(4) For any f ∈ D, f−1 ∈ D.

(5) If f1, f2 ∈ D are such that f1 ◦ f2 is well defined then f1 ◦ f2 ∈ D.

Example 2.4.22.

(1) Diff (M) has all the above properties.

(2) The set of all local symplectomorphisms of a symplectic manifold (M,ω)

preserving the symplectic form ω is a pseudogroup.

(3) The set of all local contactomorphisms ϕ of a contact manifold (M, ξ)

is a pseudogroup.

Definition 2.4.23. ([9]) A fibration p : X → M is said to be natural if

there exists a map Φ : Diff(M)→ Diff(X) having the following properties:
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(1) For f ∈ Diff(M) with domain U and target V , Φ(f) : p−1(U) →

p−1(V ) is such that p ◦ Φ(f) = f ◦ p.

p−1(U)
Φ(f)

//

��

p−1(V )

��
U

f

// V

(12)

(2) Φ(idU) = idp−1(U).

(3) If f, g ∈ Diff(M) are composable, then Φ(f ◦ g) = Φ(f) ◦ Φ(g).

(4) For any open set U in M , Φ : Diff(U)→ Diff(p−1(U)) is continuous

with respect to the C∞ compact open topologies.

The map Φ satisfying (1) - (4) above is called a continuous extension of Diff (M).

Example 2.4.24.

(1) Let X = M × N be the trivial bundle over a manifold M with fibre

N which is also a manifold. The group of diffeomorphisms of M has

a natural action on the space C∞(M,N) given by δ 7→ δ∗f = f ◦ δ,

where M,N are smooth manifolds. This gives an extension of Diff (M)

to Diff (X) as follows: If δ : U → V belongs to Diff (M) then

Φ(δ) : (idU , f) 7→ (idV , f ◦ δ−1), f ∈ C∞(U,N).

(2) All exterior bundles are natural. The pull-back operation on forms by

maps define an extension of Diff (M) to Diff (∧k(T ∗M)) for all k ≥ 1:

If δ : U → V is a local diffeomorphism of M then

Φ(δ) : ωx 7→ (dδ−1)∗δ(x)ωx, ωx ∈ ∧k(T ∗xM), x ∈ U.

Any continuous extension Φ defines an ‘action’ of Diff (M) on the space of

local sections of X. Furthermore, Φ naturally gives an extension of Diff (M)

to Diff (X(k)) which we shall denote by Φk : Diff(M)→ Diff(X(k)). For any
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f : U → V in Diff (M),

Φk(f)(jkxσ) = jkf(x)(Φ(f) ◦ σ ◦ f−1), x ∈ U (13)

This gives an ‘action’ of Diff (M) on the jet space X(k). For brevity, we shall

denote the k-jet Φk(f)(jkxσ) by f ∗(jkxσ).

Definition 2.4.25. ([9]) Let X →M be a natural fibration with an exten-

sion Φ. A relation R ⊂ X(k) is said to be D-invariant (for some pseudogroup

D) if Φk(f) maps R into itself for all f ∈ D. We also say, in this case, that R

is invariant under the action of D.

Example 2.4.26.

(1) Let R denote the relation consisting of 1-jets of germs of local im-

mersions of a manifold M into another manifold N . Then R can be

identified with the subset of Hom(TM, TN) consisting of all injective

linear maps. Hence, R is open. Also, it is easy to see that R is in-

variant under the natural action of Diff (M) (see Example 2.4.24(1)).

Similarly the relation consisting of 1-jets of germs of local submersions

is also open and Diff (M)-invariant.

(2) Let R denote the set of 1-jets of germs of 1-forms α on a manifold

M such that dα is non-degenerate. Since non-degeneracy is an open

condition, it can be shown that R is open (see Lemma 3.2.1). Further-

more, it easy to see that if ω is a symplectic form then so is f ∗ω for

any diffeomorphism f of M . Hence, R is clearly invariant under the

natural action of Diff (M) on (T ∗M)(1) (see Example 2.4.24(2)).

(3) LetR be the set of 1-jets of germs of contact forms on an odd-dimensional

manifoldM . The defining condition of contact forms (Definition 2.1.12)

is an open condition; therefore, R is an open relation. Moreover, if α is

a contact form then f ∗α is also contact for any diffeomorphism f of M .
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Thus R is invariant under the natural action of Diff (M) on (T ∗M)(1)

(see Example 2.4.24(2)).

The following result, due to Gromov, is the first general result in the theory

of h-principle. We shall refer to this result as Open Invariant Theorem for future

reference.

Theorem 2.4.27. ([14]) Every open, Diff(M) invariant relation R on an

open manifold M satisfies the parametric h-principle.

Proof. We give a very brief outline of the proof of ordinary h-principle.

Since M is an open manifold, it has a core K which is by definition a poly-

hedron of positive codimension. Hence by Proposition 2.4.20 and part (b) of

the previous remark, any section σ0 of R can be homotoped to a holonomic

section σ1 on an open neighbourhood U of K such that the homotopy σt lies in

Γ(R|U). Now, K being a core of the open manifold M , there exists an isotopy

δt of M such that δ1 maps M into U . Since R is invariant under the action of

Diff (M), the sections δ∗1(σt), t ∈ I, lie in R; moreover, δ∗1σ1 is holonomic. On

the other hand, the homotopy δ∗t σ0 also lies in R. The concatenation of the

two homotopies defines a homotopy between σ0 and δ∗1σ1 which is a holonomic

section of R. Thus R satisfies the h-principle. �

For a detailed proof of the above result we refer to [17].

2.4.7. Open, non-Diff invariant relations and h-principle. If a rela-

tion is invariant under the action of a smaller pseudogroup of diffeomorphism,

say D, then also we may expect h-principle to hold, provided D has some addi-

tional properties.

Definition 2.4.28. ([15]) Let M0 be a submanifold of M of positive codi-

mension and let D be a pseudogroup of local diffeomorphisms of M . We say

that M0 is sharply movable by D, if given any hypersurface S in an open set
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U in M0 and any ε > 0, there is an isotopy δt, t ∈ I, in D and a positive real

number r such that the following conditions hold:

(i) δ0|U = idU ,

(ii) δt fixes all points outside the ε-neighbourhood of S,

(iii) dist(δ1(x),M0) ≥ r for all x ∈ S and for some r > 0,

where dist denotes the distance with respect to any fixed metric on M .

The diffeotopy δt will be referred as a sharply moving diffeotopy. A pseu-

dogroup D is said to have the sharply moving property if every submanifold M0

of positive codimension is sharply movable by D.

Example 2.4.29.

(1) Let M be a smooth manifold. A diffeomorphism f : M × R→M × R

is called a fibre-preserving diffeomorphism if π ◦ f = π, where π :

M × R → M is the projection onto the first factor. Then the set

D(M × R, π) consisting of fiber preserving diffeomorphisms of M × R

forms a subgroup of Diff (M×R). It is also easy to see that D(M×R, π)

sharply moves M = M × {0} in M × R.

(2) Symplectomorphisms of a symplectic manifold (M,ω) have the sharply

moving property ([15]).

(3) Contactomorphisms of a contact manifold (M,α) also have the sharply

moving property. (We refer to Theorem 4.3.1 for a proof of this fact.)

We end this section with the following result due to Gromov ([15]).

Theorem 2.4.30. Let p : X → M be a smooth fibration and R ⊂ X(r) an

open relation which is invariant under the action of a pseudogroup D. If D

sharply moves a submanifold M0 in M of positive codimension then the para-

metric h-principle holds for R on Op (M0).

Proof. Let σ0 be a section of R on OpM0. We apply the Holonomic

Approximation theorem to σ0 as in Proposition 2.4.20, and obtain a homotopy
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σt in Γ(R) defined over Op (δ1(M0)). However, this time we take the diffeotopies

δt from D. This can be done because D has the sharply moving property. Since

R is invariant under the action of D, we can bring the homotopy onto an open

neighbourhood of M0 by the action of D. Indeed, the two homotopies δ∗t σ0

and δ∗1σt lie in Γ(R) over Op (M0). The concatenation of these two gives a

path between σ0 and the holonomic section δ∗1σ1 within Γ(R|OpM0) proving the

h-principle. �
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2.5. Some examples of h-principle

2.5.1. Early evidence of h-principle. Early evidences of h-principle can

be found in the work of Nash on isometric immersions ([28], [29]) and in the

work of Smale and Hirsch ([19],[32],[33]), Phillips ([30],[31]) and Feit ([6]).

The general framework of h-principle developed by Gromov unified these works

and gave many new results. We state some of these results here which will be

referred in the later chapters.

Theorem 2.5.1. (Smale-Hirsch Immersion theorem [19]) Let M and N be

smooth manifolds with dimM < dimN . Then the space of smooth immersions

M → N is weak homotopy equivalent to the space of bundle monomorphisms

TM → TN .

Theorem 2.5.2. (Phillips Submersion theorem [30]) Let M be an open man-

ifold such that dimM ≥ dimN . Then the space of smooth submersions M → N

is weak homotopy equivalent to the space of bundle epimorphisms TM → TN .

Theorem 2.5.3. (Gromov-Phillips Theorem [14], [31]) Let M be an open

manifold and N a foliated manifold with a foliation FN . Let π : TN → ν(FN)

denote the projection onto the normal bundle of FN . Then the space of smooth

maps f : M → (N,FN) transversal to FN has the same weak homotopy type as

the space of all bundle homomorphisms F : TM → TN such that π ◦F : TM →

ν(FN) is an epimorphism.

Proof. Smooth maps f : M → N transversal to the foliation FN are

solutions of a first order relation Rt on M defined as follows:

Rt = {(x, y, F ) ∈ J1(M,N)|π ◦ F : TxM → νy(FN) is an epimorphism}

The relation Rt is open, as the set of all surjective linear maps TxM → νyFN
is an open subset of Hom(TM, ν(FN)). Furthermore, Rt is invariant under

the action of Diff (M). Indeed, if δ : U → V is in Diff (M) and f : U →
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N is transversal to FN then clearly, f ◦ δ is transversal to FN . Hence, by

Theorem 2.4.27, Rt satisfies the parametric h-principle provided M is open.

Observe that a section of Rt can be realised as a bundle morphism F : TM →

TN such that π ◦ F : TM → ν(FN ) is an epimorphism. This completes the

proof. �

2.5.2. h-principle in symplectic and contact geometry. We have al-

ready noted in Example 2.4.24 that the diffeomorphism group of a manifold M

has a natural action on the space of differential forms on the manifold and the

space of symplectic forms (resp. the space of contact forms) is invariant un-

der this action (Example 2.4.26). Furthermore, the non-degeneracy conditions

on symplectic and contact forms are open conditions. The following results in

the symplectic and contact geometry were obtained as applications of Open

Invariant Theorem (Theorem 2.4.27).

Theorem 2.5.4. ([14]) Let M be an open manifold and ζ be a fixed de

Rham cohomology class in H2(M). Then the space of symplectic forms in the

cohomology class ζ has the same homotopy type as the space of almost symplectic

forms on M .

In Corollary 3.2.5, we shall obtain a similar classification for locally confor-

mal symplectic forms on open manifolds.

Definition 2.5.5. Let M be a manifold of dimension 2n + 1. An almost

contact structure on M is a pair (α, β) ∈ Ω1(M) × Ω2(M) such that α ∧ βn is

a nowhere vanishing form on M .

Theorem 2.5.6. ([14]) The space of contact forms on an open manifold has

the same weak homotopy type as the space of almost contact structures on it.

The above results show that the obstruction to the existence of a symplectic

form (resp. a contact form) on an open manifold is purely topological. The

results are not true for closed manifolds.
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2.5.3. Homotopy classification of foliations. Let M be a smooth man-

ifold and Folq(M) be the set of all codimension q foliations on M . Recall the

classifying space BΓq and the universal Γq structure Ωq on it (see Subsection

2.2.5). If F ∈ Folq(M) and f : M → BΓq is a classifying map of F , then

f ∗Ωq = F as Γq-structure. We define a vector bundle epimorphisms TM → νΩq

by the following diagram (see [16])

TM
π //

&&

νF ∼= f ∗(νΩq)
f̄
//

��

νΩq

��
M

f

// BΓq

(14)

where TM → ν(F) is the quotient map and (f̄ , f) defines the pull-back diagram.

The morphism f̄ ◦ π is defined uniquely only up to homotopy. Thus, there is a

function

H ′ : Folq(M)→ π0(E(TM, νΩq)),

where E(TM, νΩq)) is the space of all vector bundle epimorphism F : TM →

νΩq and π0(E(TM, νΩq)) is the set of its components.

Definition 2.5.7. Two foliations F0 and F1 on a manifold M are said to be

integrably homotopic if there exists a foliation F̃ on M×R which is transversal to

the trivial foliation of M ×R by leaves M ×{t} (t ∈ [0, 1]) and that the induced

foliations on M × {0} and M × {1} coincide with F0 and F1 respectively.

If F0 and F1 are integrably homotopic as in Definition 2.5.7 and if F :

M × [0, 1] → BΓq is a classifying map of F̃ then we have a diagram similar to

(27) given as follows:

T (M × [0, 1])
π̄ //

''

νF̃
F̄ //

��

νΩq

��
M × [0, 1]

F

// BΓq
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Let it : M →M × {t} ↪→M ×R denote the canonical injective map of M into

M ×{t} and ft : M → BΓq be defined as ft(x) = F (x, t) for (x, t) ∈M × [0, 1].

Then F̄ ◦ π̄ ◦ dit : TM → ν(Ωq) defines a homotopy between f̄0 ◦ π and f̄1 ◦ π,

where (f̄i, fi) : ν(Fi)→ νΩq, i = 0, 1, denote the pull-back diagrams. Thus, we

get H ′(F0) = H ′(F1). Hence, H ′ induces a function

H : π0(Folq(M)) −→ π0(E(TM, νΩq)),

where π0(Folq(M)) denotes the integrable homotopy classes of codimension q

foliations on M . We shall refer to H as the Haefliger map.

Theorem 2.5.8. ([16]) If M is an open manifold, then the Haefliger map

induces a bijection between the sets π0(Folq(M)) and π0(E(TM, νΩq)).

Let Tr(M,FN) be the space of smooth maps f : M → (N,FN) into a

foliated manifold (N,FN) and E(TM, ν(FN)) denote the space of epimorphisms

F : TM → ν(FN). Then we have a commutative diagram

π0(Tr(M,FN))
P //

∼= π0(π◦d)

��

π0(Folq(M))

H
��

π0(E(TM, νFN)) // π0(E(TM, νΩq))

in which the left vertical arrow is a bijection by Gromov-Phillips Theorem (The-

orem 2.5.3). The function P is induced by the natural map which takes an

f ∈ Tr(M,FN) onto the inverse foliation f ∗FN . On the other hand, there is a

reverse path from Folq(M) to Tr(M,FN) for some foliated manifold (N,FN) as

suggested in Theorem 2.2.11. These two observations reduce the classification

of foliations to Gromov-Phillips Theorem.

Corollary 2.5.9. ([16]) Let M be an open manifold of dimension n and

let τ : M → BGL(n) be a classifying map of the tangent bundle TM . There is a

one-to-one correspondence between the integrable homotopy classes of foliations

on M and the homotopy classes of lifts of τ in BΓq×BGL(n−q). In particular, a
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codimension q distribution D on M is homotopic to a foliation if the classifying

map of TM/D lifts to BΓq.

In [35], Thurston generalized Haefliger’s result to closed manifolds. He

viewed a Γq structure on a manifold M as a triple Σ = (ν, Z,F), where ν

is a q-dimensional vector bundle on M with a section Z and F is a foliation of

codimension q on a neighbourhood U of Z(M) which is transversal to the fibers

of ν. If G is a foliation of codimension q then we can associate a Γq structure

Σ(G) on M to it by taking ν = ν(G), Z = M ↪→ ν(F) and F = (exp |ν)∗G. The

vector bundle ν in this case embeds in TM . In this setting Thurston proved

the following.

Theorem 2.5.10. ([35]) Let Σ = (ν, Z,F) be a Γq structure on a manifold

M with q > 1. Then for any vector bundle monomorphism i : ν → TM , there

exists a codimension q foliation on M whose induced Γq structure is homotopic

to Σ.



CHAPTER 3

Regular Jacobi structures on open manifolds

In this chapter we shall prove that locally conformal symplectic foliations

and contact foliations on open manifolds satisfy the h-principle. We also inter-

pret these results in terms of regular Jacobi strucres. For basic definitions of

foliations with geometric structures, we refer to Section 2.3.

3.1. Background of the problem - h-principle in Poisson geometry

In a recent article ([7]), Fernandes and Frejlich have proved the following

h-principle for symplectic foliations.

Theorem 3.1.1. Let M be an open manifold equipped with a foliation F0

and a 2-form Ω0 on F0 which is nondegenerate. Then (F0,Ω0) can be homotoped

through such pairs to a pair (F1,Ω1) such that Ω1 is a symplectic form on F .

In the statement of Theorem 3.1.1, we can not replace F0 by an arbitrary

distribution, since it need not be homotopic to any integrable distribution at

all (See Corollary 2.5.9). However, we can replace F0 by a distribution which

is homotopic to a foliation. Taking this into account, Fernandes and Frejlich

interpreted the above theorem in terms of regular Poisson structures as follows.

Theorem 3.1.2. ([7]) Every regular bivector field π0 on an open manifold

can be homotoped to a regular Poisson bivector provided the distribution Im π#
0

is homotopic to an integrable one.

Since a symplectic form on a manifold corresponds to a non-degenerate Poisson

structure, the above result may be seen as a generalisation of Thereom 2.5.4 due

to Gromov. The authors further remarked in [7] that there should be analogues

65
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of Theorem 3.1.2 for Jacobi manifolds, in other words, for locally conformal

symplectic foliations and contact foliations on open manifolds. The results of

this chapter are inspired by this remark.

In this connection we also recall a result of M. Bertelson. She observed that

symplectic forms on a given foliation F may not satisfy h-principle, even if the

leaves of F are open manifolds ([2]). However, she proved h-principle with some

‘strong open-ness’ condition on F ([3]). Following Bertelson we shall refer to

such foliated manifolds (M,F) as open foliated manifolds. Bertelson, in fact,

obtained an h-principle for general relations on open foliated manifolds (M,F)

which can be stated as follows:

Theorem 3.1.3. ([3]) If (M,F) is an open foliated manifold, then any re-

lation R which is open and invariant under foliation preserving diffeotopies of

(M,F) satisfies the parametric h-principle.

The h-principle for foliated symplectic forms was derived as a corollary of

the above theorem by observing that the associated differential relation is open

and invariant under the action of foliation preserving diffeotopies.

Theorem 3.1.4. ([3]) Let (M,F) be an open foliated manifold. Then every

non-degenerate foliated 2-form ω0 on (M,F) is homotopic through such 2-forms

to a symplectic form ω1 on F .

Theroem 3.1.4 can also be viewed as an h-principle of regular Poisson struc-

tures with prescribed characteristic foliation. The requirement of an additional

condition on the foliation is better understood when the result is stated in the

following form:

Let π0 be a regular bivector field (on a manifold M) for which the distribution

D = Im π0
# integrates to a foliation satisfying some ‘strong open-ness’ condi-

tion. Then π0 can be homotoped through regular bivector fields πt to a Poisson
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bivector field π1 such that the underlying distributions Im πt
# remains constant.

Remark 3.1.5. A contact analogue of Theorem 3.1.4 also follows from The-

orem 3.1.3. Suppose that (M,F) is an open foliated manifold, where dimension

of F is 2n + 1. Let (α, β) be a section of E = T ∗F ⊕ Λ2(T ∗F) which gives an

almost contact structure on F . The nowhere vanishing condition on α ∧ βn is

an open condition and hence defines an open subset R in the 1-jet space E(1).

The non-vanishing condition is also invariant under the action of foliation pre-

serving diffeotopies and hence the general theorem of Bertelson applies to this

relation. Therefore, the pair (α, β) can be homotoped in the space of almost

contact structures on F to (η, dFη) for some foliated 1-form η on (M,F), where

dF is the coboundary map of the foliated deRham complex. Note that η is then

a contact form on the foliation mathcalF .

3.2. Locally conformal symplectic foliations

In this section we prove an h-principle for locally conformal symplectic foli-

ations on open manifolds.

Lemma 3.2.1. Let Mn be a smooth manifold with a 1-form θ. Then there

exists an epimorphism Dθ : E(1) = (T ∗M)(1) → ∧2(T ∗M) satisfying Dθ ◦ j1
α =

dθα so that the following diagram is commutative:

E(1) Dθ−→ ∧2(T ∗M)

↓ ↓

M
idM−→ M

In particular, given any 2-form ω there exists a section Fω : M → E(1) such

that Dθ ◦ Fω = ω.

Proof. Let θ be as in the hypothesis. Define Dθ(j
1
α(x0)) = dθα(x0) for any

local 1-form α on M . To prove that the right hand side is independent of the
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choice of a representative α, choose a local coordinate system (x1, ..., xn) around

x0 ∈M . We may then express α and θ as follows:

α = Σn
i=1αidx

i, θ = Σn
i=1θidx

i

where αi and θi are smooth (local) functions defined in a neighbourhood of

x0. The 1-jet j1
α(x0) is completely determined by the ordered tuple (ai, aij) ∈

R(n+n2), where

ai = αi(x0), aij =
∂αi
∂xj

(x0), i, j = 1, 2, . . . , n.

Now,

dθα(x0) = dα(x0) + θ(x0) ∧ α(x0)

= Σi<j[(aji − aij) + (θi(x0)aj − aiθj(x0))]dxi ∧ dxj

This shows that dθα(x0) depends only on the 1-jet j1
α at x0 and the value of

θ(x0). Since θ is fixed, Dθ is well-defined. Clearly, Dθ ◦ j1
α = dθ(α) for any

1-form α.

It is easy to check that Dθ is a vector bundle epimorphism. Indeed, given a

set of real numbers bij, 1 ≤ i < j ≤ n, the following system of linear equations

(aij − aji) + (aiθj(x0)− ajθi(x0)) = bij

has a solution, namely ai = 0, aij = −aji =
bij
2

. Therefore, the fibres of Dθ are

affine subspaces and hence contractible. This implies that Dθ has a right inverse.

Hence every section ω : M → ∧2M can be lifted to a section Fω : M → (T ∗M)(1)

such that DθFω = ω. Moreover, any two such lifts of ω are homotopic. �

Proposition 3.2.2. Let M be an open manifold and F0 be a foliation on M .

Let θ be a closed 1-form on M . Then any F0-leafwise non-degenerate 2-form

ω0 on M can be homotoped through such forms to a 2-form ω1 which is dθ-exact

on a neighbourhood U of some core K of M .
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Proof. Let S denote the set of all elements ωx in ∧2(T ∗xM), x ∈ M , such

that the restriction of ωx is non-degenerate on TxF0. Since non-degeneracy is

an open condition, S is an open subset of ∧2(T ∗M). Let

Rθ = D−1
θ (S) ⊂ (T ∗M)(1),

where Dθ : (T ∗M)(1) → ∧2(T ∗M) is defined as in Lemma 3.2.1. Then Rθ

is an open relation. Let σ0 be a section of Rθ such that Dθ ◦ σ0 = ω0. By

Proposition 2.4.20, there exists a homotopy of sections σt : M → Rθ, such that

σ1 is holonomic on an open neighbourhood U of K, where K is a core of M .

Therefore, σ1 = j1
α for some 1-form α on U . The 2-forms ωt = Dθ ◦σt, t ∈ [0, 1],

are sections of ∧2(T ∗M) with values in S. Hence,

(1) ωt is F0-leafwise non-degenerate for all t ∈ [0, 1], and

(2) ω1 = dθα on U ; in particular ω1 is dθ-closed on U .

�

Theorem 3.2.3. Let M2n+q be an open manifold with a codimension q fo-

liation F0 and a 2-form ω0 on M which is F0-leafwise non-degenerate. Let

ξ ∈ H1
deR(M,R) be a fixed de Rham cohomology class. Then there exists a

homotopy (Ft, ωt) and a closed 1-form θ0 representing ξ such that

(1) ωt is Ft-leafwise non-degenerate and

(2) ω1 is dθ0-closed, that is, dω1 + θ0 ∧ ω1 = 0.

Proof. To prove the result we proceed as in [7]. Consider the canoni-

cal Grassmann bundle G2n(TM)
π−→ M for which the fibres π−1(x) over a

point x ∈ M is the Grassmannian of 2n-planes in TxM . The space Distq(M)

of codimension q distributions on M can be identified with the section space

Γ(G2n(M)). We topologize Distq(M) by the C∞ compact open topology. The

space Folq(M) consisting of codimension q foliations can be viewed as a sub-

space of Distq(M) if we identify a foliation with its tangent distribution. Let
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Φq be the subspace of Distq(M)× Ω2(M) defined as follows:

Φq = {(F , ω)|ω is F -leafwise symplectic}

Fix a 1-form θ which represents the class ξ. By Proposition 3.2.2, there exists

a homotopy of 2-forms, ω′t, 0 ≤ t ≤ 1, such that

(1) ω′0 = ω0

(2) ω′t is F0-leafwise non-degenerate and

(3) ω′1 is dθ-closed on some open set U containing a core K of M .

Then (F0, ω
′
t) ∈ Φq for 0 ≤ t ≤ 1. Since M is an open manifold there exists

an isotopy gt, 0 ≤ t ≤ 1, with g0 = idM such that g1 takes M into U (see

Remark 2.4.19). Now, we define (F ′′t , ω′′t ) ∈ Φq for t ∈ [0, 1] by setting

F ′′t = g∗tF0, ω′′t = g∗tω
′
1.

Then, ω′′t is F ′′t -leafwise non-degenerate. Further, it is easy to see that ω′′1 is dg∗1θ

closed: Indeed,

dg∗1θω
′′
1 = dg∗1θ(g

∗
1ω
′
1)

= dg∗1ω
′
1 + g∗1θ ∧ g∗1ω′1

= g∗1[dω′1 + θ ∧ ω′1]

= g∗1dθω
′
1 = 0

since ω′1 is dθ-closed on U and g1 maps M into U . Since g1 is homotopic

to the identity map of M the de Rham cohomology class [g∗1θ] = [θ] = ξ.

The desired homotopy is obtained by the concatenation of the two homotopies,

namely (F0, ω
′
t) and (F ′′t , ω′′t ), and taking θ0 = g∗1θ. �

Remark Theorem 3.1.1 follows as a particular case of the above result by

taking θ equal to zero.

Theorem 3.2.4. Let M be an open manifold and ξ be any de Rham coho-

mology class in H1(M,R). Then every almost symplectic foliation (F0, ω0) is

homotopic to a locally conformal symplectic foliation (F1, ω1) with foliated Lee



3.2. LOCALLY CONFORMAL SYMPLECTIC FOLIATIONS 71

form θ such that the canonical morphism H2(M,R)→ H2(M,F1) maps ξ onto

the foliated de-Rham cohomology class of θ.

Proof. Let ω̃0 be a global 2-form on M which extends ω0. By Theo-

rem 3.2.3, we get a homotopy (Ft, ω̃t) and a closed 1-form θ̃ representing ξ

satisfying the following:

(1) ω̃t is Ft-leafwise non-degenerate,

(2) dω̃1 + θ̃ ∧ ω̃1 = 0.

Let ωt be a foliated 2-form obtained by restricting ω̃t to TFt and let θ be the

restriction of θ̃ to TF1. Note that, we have a commutative diagram as follows:

Ωk(M)
d //

r

��

Ωk+1(M)

r

��

Γ(∧k(T ∗F1))
dF1

// Γ(∧k+1(T ∗F1))

where the vertical arrows are the restriction maps. Hence, relation (2) above

implies that dF1ω1 + θ ∧ω1 = 0; thus, (F1, ω1) is a locally conformal symplectic

foliation on M and θ is the foliated Lee class of ω1. Further, the foliated de

Rham cohomology class of θ in H1(M,F1) is the image of ξ under the induced

morphism H1
deR(M,R)→ H1(M,F1). �

Corollary 3.2.5. Let M be an open manifold and ω be a non-degenerate

2-form on M . Given any de Rham cohomology class ξ ∈ H1(M,R), ω can

be homotoped through non-degenerate 2-forms to a locally conformal symplectic

form dθα, where the deRham cohomology class of θ is ξ.

Proof. This is a direct consequence of Theorem 3.2.3. Indeed, the form ω1

in the theorem can be taken to be dθ-exact (see Proposition 3.2.2). �
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3.3. Contact foliations

In this section we prove an h-principle for contact foliations on open mani-

folds.

Lemma 3.3.1. Let Mn be a smooth manifold and E = T ∗M be the cotangent

bundle of M . Then there exists a vector bundle epimorphism D̄

E(1) D̄−→ T ∗M ⊕ ∧2(T ∗M)

↓ ↓

M
idM−→ M

such that D̄ ◦ (j1
α) = (α, dα) for any 1-form α on M . Moreover, any section of

T ∗M ⊕ ∧2(T ∗M) can be lifted to a section of E(1) through D̄.

Proof. Define D̄ by

D̄(j1
α(x0)) = (α(x0), dα(x0))

for any local 1-form α defined near a point x0. It follows from the proof of

Lemma 3.2.1 that this map is well defined. Hence D̄ ◦ j1
α = (α, dα) for any

1-form α. Let (x1, ..., xn) be a local coordinate system around x0 ∈ M and

α = Σn
i=1αidx

i be the representation of α with respect to these coordinates.

Then j1
α(x0) is uniquely determined by the ordered tuple (ai, aij) ∈ Rn+n2

as in

Lemma 3.2.1 and

D̄(j1
α(x0)) = (α(x0), dα(x0)) = (Σn

i=1aidx
i,Σi<j(aij − aji)dxi ∧ dxj)

It is easy to see that the following system of equations

ai = bi and aij − aji = bij for all i 6= j, i, j = 1, ..., n.

is solvable in ai and aij. Hence, D̄ is an epimorphism, and so the fibres of D̄

are affine subspaces. Consequently, any section (θ, ω) : M → T ∗M ⊕ ∧2(T ∗M)

can be lifted to a section F(θ,ω) : M → E(1) such that D̄ ◦ F(θ,ω) = (θ, ω) and

any two such lifts of a given (θ, ω) are homotopic. �
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Proposition 3.3.2. Let M be an open manifold and F0 be a foliation on M .

Let (θ0, ω0) be a pair consisting of a 1-form θ0 and a 2-form ω0 on M such that

the restriction of (θ0, ω0) to the leaves of F0 are almost contact structures. Then

(θ0, ω0) can be homotoped through such pairs to a pair (θ1, ω1), where ω1 = dθ1

on a neighbourhood U of some core K of M .

Proof. Let C denote the set of all pairs (θx, ωx) ∈ T ∗xM×∧2(T ∗xM), x ∈M ,

such that ι∗Dθx ∧ ι∗Dωx 6= 0, where D = TxF . Then C is an open subset of

T ∗M ⊕ ∧2(T ∗M). Let

R = D̄−1(C) ⊂ E(1),

where E = T ∗M and D̄ is as in Lemma 3.3.1. Then R is an open first order

relation. Let σ0 be a section of R such that D̄ ◦ σ0 = (θ0, ω0). By Proposi-

tion 2.4.20, there exists a homotopy of sections σt lying in R such that σ1 is

holonomic on an open neighbourhood U of some core K of M . Thus, there

exists 1-form θ1 on U such that σ1 = j1θ1. Evidently, the pairs (θt, ωt) = D̄ ◦σt,

t ∈ [0, 1] are sections of T ∗M ⊕ ∧2(T ∗M) with values in C. Hence,

(1) (θt, ωt) is a F0-leafwise almost contact structures and

(2) ω1 = dθ1 on U .

This completes the proof. �

Theorem 3.3.3. Let M (2n+1)+q be an open manifold and F0 a codimension

q foliation on M . Let (θ0, ω0) ∈ Ω1(M)×Ω2(M) be a F0-leafwise almost contact

structure. Then there exists a homotopy (Ft, θt, ωt) such that

(1) (θt, ωt) is a Ft-leafwise almost contact structure and

(2) ω1 = dθ1.

In particular, θ1 is leafwise contact form on (M,F1).

Proof. Let Distq(M) denote the space of all codimension q distribution

on M , as in Theorem 3.2.3. Define a subset Φq of Distq(M)×Ω1(M)×Ω2(M)
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as follows:

Φq = {(F , α, β) : (α, β) restricts to an almost contact structure on F}.

By the given hypothesis, (F0, θ0, ω0) is in Φq. By Proposition 3.3.2 there exists

a homotopy (θ′t, ω
′
t) such that

(1) (θ′0, ω
′
0) = (θ0, ω0)

(2) (θ′t, ω
′
t) is a F0-leafwise almost contact structures and

(3) dθ′1 = ω′1 on some open set U containing a core of M .

Then (F0, θ
′
t, ω
′
t) belongs to Φq for 0 ≤ t ≤ 1. Choose an isotopy gt : M → M

such that g0 = idM and g1(M) ⊂ U . Now, we define (F ′′t , θ′′t , ω′′t ) ∈ Φq, t ∈ [0, 1]

by setting

F ′′t = g∗t (F0), θ′′t = g∗t θ
′
1, ω′′t = g∗tω

′
1.

Observe that,

dθ′′1 = dg∗1θ
′
1 = g∗1dθ

′
1 = g∗1ω

′
1 = ω′′1 ,

since g1(M) ⊂ U and dθ1 = ω1 on U . Therefore, θ′′1 is a F ′′1 -leafwise contact

form. Concatenating the homotopies (F0, θ
′
t, ω
′
t) and (F ′′t , θ′′t , ω′′t ) we obtain the

desired homotopy. �

Theorem 3.3.4. Let M be an open manifold. Then every almost contact

foliation (F0, θ0, ω0) is homotopic to a contact foliation.

Proof. Choose global differential forms θ̃0, ω̃0 on M which extend θ0 and

ω0 respectively. By Theorem 3.3.3, we get a homotopy (Ft, θ̃t, ω̃t) satisfying the

following:

(1) (θ̃t, ω̃t) restrict to an almost complex structure on Ft,

(2) dθ̃1 = ω̃1.

Let ωt and θt be foliated forms obtained by restricting ω̃t and θ̃t to TFt. Clearly,

(Ft, θt, ωt), 0 ≤ t ≤ 1, is an almost contact foliation on M . Also, by restricting
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both sides of relation (2) to TF1 we get dF1θ1 = ω1; thus, (F1, θ1) is, in fact, a

contact foliation on M . �

3.4. Regular Jacobi structures on open manifolds

We now reformulate Theorems 3.2.3 and 3.3.3 in terms of Jacobi structures.

Let νk(M) denote the space of sections of the alternating bundle ∧k(TM). We

shall refer to these sections as k-multivector fields on M . We may recall that

every bivector field Λ defines a bundle homomorphism Λ# : T ∗M → TM by

Λ#(α) = Λ(α, ), for all α ∈ T ∗M .

Definition 3.4.1. A bivector field Λ is said to be regular if rank Λ# is

constant. A pair (Λ, E) ∈ ν2(M) × ν1(M) will be called a regular pair if

D = Λ#(T ∗M) + 〈E〉 is a regular distribution on M .

If Λ is a regular bivector field and Im Λ# = D, then there exists a bundle

homomorphism φ : D∗ → D such that the following square is commutative:

T ∗M
Λ#

−→ TM

i∗↓ ↑i

D∗ φ−→ D

(15)

where i : D → TM is the inclusion map. In fact, we can define φ by φ(i∗α) =

Λ#α for all α ∈ T ∗M . If i∗α = 0 then α|D = 0. The skew symmetry property

of Λ implies that α ∈ ker Λ#. Hence φ is well defined. Moreover, it is an

isomorphism as Imφ = Im Λ# = D. We can define a section ω of ∧2D∗ by

ω(Λ#η,Λ#η′) = Λ(η, η′),

for any two 1-forms η, η′ on M . This is well-defined. Moreover ω is non-

degenerate, since ω(Λ#η,Λ#η′) = 0 for all η′ implies that η′(Λ#(η) = 0 for all

η′ and therefore, Λ#(η) = 0. If ω̃ : D → D∗ is given by by ω̃(X) = iXω for all

X ∈ ΓD, then we have the relation ω̃◦Λ# = −i∗, and since ω̃ is an isomorphism

we have Λ# = −ω̃−1 ◦ i∗. Thus ω̃ is the inverse of −φ. Conversely, any section
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ω of ∧2(D∗) which is fibrewise non-degenerate, defines a bivector field Λ by the

relation Λ# = −ω̃−1 ◦ i∗. Observe that the image of Λ# = D.

In view of the above correspondence, we can interpret Theorem 3.2.3 as

follows.

Theorem 3.4.2. Let M be an open manifold with a regular bivector field Λ0

such that the distribution D0 = Im Λ#
0 is integrable. Let ξ be a fixed de Rham

cohomology class in H1(M,R). Then there is a homotopy Λt of regular bivector

fields and a vector field E1 on M such that

(1) Dt = Im Λ#
t is an integrable distribution for all t ∈ [0, 1],

(2) E1 is a section of D1 and

(3) (Λ1, E1) is a regular Jacobi pair.

Furthermore, we can choose E1 such that the foliated de Rham cohomology class

of φ−1
1 (E1) in H1(M,F1) is equal to the image of ξ under i∗ : H1(M,R) →

H1(M,F1), where F1 is the characteristic foliation of the Jacobi pair (Λ1, E1).

Proof. Suppose that D0 = Im Λ#
0 integrates to a foliation F0. It follows

from the above discussion that the associated section ω0 ∈ Γ(∧2(D∗0)) is non-

degenerate. By Theorem 3.2.3, there exists a homotopy (Ft, ωt) of (F0, ω0) such

that (F1, ω1) is a locally conformal symplectic foliation. Let Dt = TFt and

define Λt by a diagram analogous to (15). If θ1 is the Lee form of ω1 then define

E1 by the relation iE1ω1 = θ1. This proves that (Λ1, E1) is a regular Jacobi pair

(Theorem 2.3.19). �

Theorem 3.4.3. Let (Λ0, E0) ∈ ν2(M) × ν1(M) be a regular pair on an

open manifold M . Suppose that the distribution D0 := Im Λ#
0 + 〈E0〉 is odd-

dimensional and integrable. Then there is a homotopy of regular pairs (Λt, Et)

of (Λ0, E0) such that

(1) Dt = Im Λ#
t + 〈Et〉, t ∈ [0, 1], are integrable distributions and

(2) (Λ1, E1) is a Jacobi pair.
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Proof. Suppose that (Λ, E) is a regular pair and the distribution D =

Λ#(T ∗M) + 〈E〉 is odd dimensional, then we can define a section α of D∗ by

the relations

α(Im Λ#) = 0 and α(E) = 1. (16)

Also, we can define a section β of ∧2(D∗) by

iEβ = 0, β(Λ#η,Λ#η′) = Λ(η, η′) for all η, η′ ∈ Ω1(M), (17)

where iE denotes the interior multiplication by E. It can be shown easily that

β is non-degenerate on Im Λ# = kerα. Hence α ∧ βn is nowhere vanishing.

On the other hand, suppose that D is a (2n + 1)-dimensional distribution.

If α is a section of D∗ and β is a section of ∧2(D∗) such that α ∧ βn is nowhere

vanishing, then we can write D = kerα ⊕ ker β. Define a vector field E on M

satisfying the relations

iEβ = 0, and α(E) = 1 (18)

Since β is non-degenerate on kerα by our hypothesis, β̃ : kerα → (kerα)∗ is

an isomorphism. For any η ∈ T ∗(M) define Λ#(η) to be the unique element in

kerα such that β̃(Λ#η) = −η|kerα. In other words,

Λ# = −β̃−1 ◦ i∗. (19)

This relation shows that the image of Λ# is equal to kerα and ker β is spanned

by E. Hence D = Im Λ#⊕〈E〉 which means that (Λ, E) is a regular pair. Thus

there is a one to one correspondence between regular pairs (Λ, E) and the triples

(D, α, β) such that α ∧ βn is nowhere vanishing. Further, the regular contact

foliations correspond to regular Jacobi pairs with odd-dimensional characteristic

distributions under this correspondence [21].

The result now follows directly from Theorem 3.3.3. Let (Λ0, E0) be as in

the hypothesis and F0 be the foliation such that TF0 = D0. We can define

(α0, β0) by the equations (16) and (17) so that α0 ∧ βn0 is non-vanishing on
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D0. By Theorem 3.3.3, we obtain a homotopy (Ft, αt, βt) of (F0, α0, β0) such

that αt ∧ βnt is a nowhere vanishing form on TFt and β1 = dα1 on F1, so that

(F1, α1) is a contact foliation. The desired homotopy (Λt, Et) is then obtained

from (αt, βt) by (18) and (19). �

We conclude with the following remark.

Remark 3.4.4. The integrability condition on the initial distribution in

Theorems 3.2.3 and 3.3.3 can be relaxed to the extent that we can take the

initial distribution to be homotopic to an integrable one. We refer to [7] for a

detailed argument.



CHAPTER 4

Contact foliations on open contact manifolds

In this chapter we shall give a complete homotopy classification of contact

foliations on open contact manifolds. On our way to the classification result, we

study equidimensional contact immersions which plays a very significant role in

the proof. We also prove a general h-principle for open relations on open contact

manifolds which are invariant under an action of local contactomorphisms. This

leads to an extension of Gromov-Phillips Theorem in the contact setting. We

shall begin with a review of similar results in the context of symplectic manifolds.

4.1. Backgrouond: Symplectic foliations on symplectic manifolds

In [4], M. Datta and Md. R. Islam proved an extension of Theorem 2.4.27

which can be stated as follows.

Theorem 4.1.1. Let (M,ω) be an open symplectic manifold andR ⊂ Jr(M,N)

be an open relation which is invariant under the action of the pseudogroup of

local symplectomrphisms of (M,ω). Then R satisfies the h-principle.

The symplectic diffeotopies have the sharply moving property (Definition 2.4.28,

Example 3); hence the relation satisfies the local h-principle near a core K by

Theorem 2.4.30. The global h-principle follows with a consequence of Ginzburg’s

theorem (Theorem 2.1.9) which guarantees a deformation of M through isosym-

plectic immersions into a neighbourhood of K ([4]). As a corollary of it the

authors obtained the following result.

79
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Theorem 4.1.2. ([4]) If (M,ω) is an open contact manifold then submer-

sions f : M → N whose level sets are symplectic submanifolds of (M,ω) satisfy

the h-principle.

In fact, we can obtain a generalisation of the above result for maps which

are transversal to a foliation FN on N . We denote by π : TN → νFN the

projection onto the normal bundle of the foliation FN . Let Trω(M,FN) be the

set of all smooth maps f : M → N transversal to FN such that ker(π ◦ df) is

a symplectic subbundle of (TM,ω). Let Eω(TM, νFN) be the set of all vector

bundle morphisms F : TM → TN such that

(1) π ◦ F is an epimorphism onto νFN and

(2) ker(π ◦ F ) is a symplectic subbundle of (TM,ω).

These spaces, as before, will be equipped with the C∞ compact open topology

and the C0 compact open topology respectively. Then we have the following

extension of Gromov-Phillips Theorem in the symplectic setting:

Theorem 4.1.3. Let (M2m, ω) be an open symplectic manifold and N be

any manifold with a foliation FN of codimension 2q, where m > q. Then the

map

π ◦ d : Trω(M,FN) → Eω(TM, νFN)

f 7→ π ◦ df

is a weak homotopy equivalence.

The maps in Trω(M,FN) are solutions of an open relation R which is in-

variant under the action of local symplectomorphisms. Hence the result follows

as a direct application of Theorem 4.1.1. We would like to observe that the

relation in Theorem 4.1.1, in fact, satisfies the parametric h-principle.
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Definition 4.1.4. A foliation F on a symplectic manifold (M,ω) will be

called a symplectic foliation subordinate to ω if its leaves are symplectic subman-

ifolds of (M,ω). We shall often mention these foliations simply as symplectic

foliations on (M,ω)

Definition 4.1.5. Two symplectic foliations F0 and F1 on a symplectic

manifold (M,ω) are said to be integrably homotopic relative to ω if there exists

a foliation F̃ on (M × I, ω ⊕ 0) transversal to the trivial foliation of M × R by

leaves M × {t} (t ∈ [0, 1]) such that the following conditions are satisfied:

(1) the induced foliation on M × {t} for each t ∈ [0, 1] is a symplectic

foliation subordinate to ω;

(2) the induced foliations on M × {0} and M × {1} coincide with F0 and

F1 respectively,

where ω⊕0 denotes the pull-back of ω by the projection map p1 : M ×R→M .

Let Fol2qω (M) be the space of all codimension 2q symplectic foliations on

the symplectic manifold (M,ω) and let π0(Fol2qω (M)) denote the integrable

homotopy classes of symplectic foliations on (M,ω). The map H ′ defined in

Subsection 2.5.3 induces a map

Hω : π0(Fol2qω (M)) −→ π0(Eω(TM, νΩ2q)),

where Ω2q is the universal Γ2q-structure onBΓ2q (Subsection 2.2.5) and Eω(TM, νΩ2q)

is the space of all vector bundle epimorphisms from F : TM → νΩ2q such that

kerF is a symplectic subbundle of (TM,ω). Indeed, if F is a symplectic foliation

on M (subordinate to ω), then the kernel of H ′(F) is TF which is by hypothesis

a symplectic subbundle of TM . Therefore, Hω is well-defined. Proceeding as in

[18] we can then obtain the following classification result.

Theorem 4.1.6. The map π0(Fol2qω (M))
Hω−→ π0(Eω(TM, νΩ2q)) is bijective.
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We have omitted the proofs of Theorem 4.1.3 and Theorem 4.1.6 here to

avoid repetition of arguments. In the subsequent sections we shall deal with

the classification problem of contact foliations on open contact manifolds in full

details. The proofs of the above theorems will be very similar to Theorem 4.4.3

and Theorem 4.6.2.

4.2. Equidimensional contact immersions

In this section we get an analogue of Ginzburg’s theorem (Theorem 2.1.9)

in the contact setting. We begin with a simple observation.

Observation 4.2.1. Let (M,α) be a contact manifold. The product man-

ifold M × R2 has a canonical contact form given by α̃ = α − y dx, where

(x, y) are the coordinate functions on R2. We shall denote the contact struc-

ture associated with α̃ by ξ̃. Now suppose that H : M × R → R is a smooth

function which vanishes on some open set U . Define H̄ : M × R → M × R2

by H̄(u, t) = (u, t,H(u, t)) for all (u, t) ∈ M × R. Since H̄(u, t) = (u, t, 0) for

all (u, t) ∈ U , the image of dH̄(u,t) is TuM × R × {0}. On the other hand,

ξ̃(u,t,0) = ξu × R2. Therefore, H̄ is transversal to ξ̃ on U .

Proposition 4.2.2. Let M be a contact manifold with contact form α. Sup-

pose that H is a smooth real-valued function on M×(−ε, ε) with compact support

such that its graph Γ in M × R2 is transversal to the kernel of α̃ = α − y dx.

Then there is a diffeomorphism Ψ : M × (−ε, ε)→ Γ which pulls back α̃|Γ onto

h(α⊕0), where h is a nowhere-vanishing smooth real-valued function on M×R.

Proof. Since the graph Γ of H is transversal to ξ̃, the restriction of α̃ to Γ is

a nowhere vanishing 1-form on it. Define a function H̄ : M × (−ε, ε)→M ×R2

by H̄(u, t) = (u, t,H(u, t)). The map H̄ defines a diffeomorphism of M×(−ε, ε)

onto Γ, which pulls back the form α̃|Γ onto α−H dt. It is therefore enough to

obtain a diffeomorphism F : M × (−ε, ε) → M × (−ε, ε) which pulls back the
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1-form α−H dt onto a multiple of α⊕ 0. For each t, define a smooth function

H t on M by H t(u) = H(u, t) for all u ∈ M . Let XHt denote the contact

Hamiltonian vector field on M associated with H t. Consider the vector field X̄

on M × R as follows:

X̄(u, t) = (XHt(u), 1), (u, t) ∈M × (−ε, ε).

Let {φ̄s} denote a local flow of X̄ on M × R. Then writing φ̄s(u, t) as

φ̄s(u, t) = (φs(u, t), s+ t) for all u ∈M and s, t ∈ R,

we get the following relation:

dφs
ds

(u, t) = Xt+s(φs(u, t)),

where Xt stands for the vector field XHt for all t. In particular, we have

dφt
dt

(u, 0) = Xt(φt(u, 0)), (20)

Define a level preserving map F : M × (−ε, ε)→M × (−ε, ε) by

F (u, t) = φ̄t(u, 0) = (φt(u, 0), t).

Since the support of H is contained in K× (−ε, ε) for some compact set K, the

flow φ̄s starting at (u, 0) remains within M × (−ε, ε) for s ∈ (−ε, ε). Note that

dF ( ∂
∂t

) = ∂
∂t
φ̄t(u, 0) = X̄(φ̄t(u, 0)) = X̄(φt(u, 0), t) = (XHt(φt(u, 0)), 1).

This implies that

F ∗(α⊕ 0)( ∂
∂t
|(u,t)) = (α⊕ 0)(dF ( ∂

∂t
|(u,t)))

= α(XHt(φt(u, 0)))

= H t(φt(u, 0)) by equation (6)

= H(φ̄t(u, 0)) = H(F (u, t))

Also,

F ∗(H dt)( ∂
∂t

) = (H ◦ F ) dt(dF ( ∂
∂t

)) = H ◦ F
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Hence,

F ∗(α−Hdt)( ∂
∂t

) = 0. (21)

On the other hand,

F ∗(α−H dt)|M×{t} = F ∗α|M×{t} = ψ∗tα, (22)

where ψt(u) = φt(u, 0), ψ0(u) = u. Thus, {ψt} are the integral curves of the

time dependent vector field {Xt} on M (see (20)), and we get

d
dt
ψ∗tα = ψ∗t (iXtdα + d(iXtα))

= ψ∗t (dH
t(Rα)α− dH t + dH t) by equation (6)

= ψ∗t (dH
t(Rα)α)

= θ(t)ψ∗tα,

where θ(t) = ψ∗t (dH
t(Rα)). Hence ψ∗tα = e

∫ t
0 θ(s)dsψ∗0α = e

∫ t
0 θ(s)dsα. We con-

clude from equation (21) and (22) that F ∗(α−H dt) = e
∫ t
0 θ(s)dsα. Finally, take

Ψ = H̄ ◦ F which has the desired properties. �

Remark 4.2.3. If there exists an open subset Ũ of M such that H vanishes

on Ũ × (−ε, ε) then the contact Hamiltonian vector fields Xt defined above are

identically zero on Ũ for all t ∈ (−ε, ε). Since ψt = φt( , 0) are the integral

curves of the time dependent vector fields Xt = XHt , 0 ≤ t ≤ 1, we must have

ψt(u) = u for all u ∈ Ũ . Therefore, F (u, t) = (u, t) and hence Ψ(u, t) = (u, t, 0)

for all u ∈ Ũ and all t ∈ (−ε, ε).

Remark 4.2.4. If Γ is a codimension 1 submanifold of a contact manifold

(N, α̃) such that the tangent planes of Γ are transversal to ξ̃ = ker α̃ then

there is a codimension 1 distribution D on Γ given by the intersection of ker α̃|Γ
and TΓ. Since D = ker α̃|Γ ∩ TΓ is an odd dimensional distribution, dα̃|D
has a 1-dimensional kernel. If Γ is locally defined by a function Φ then dΦx

does not vanish identically on ker α̃x, for ker dΦx is transversal to ker α̃x. Thus

there is a unique non-zero vector Yx in ker α̃x satisfying the relation iYxdαx =
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dΦx. Clearly, Yx is tangent to Γ at x and it is defined uniquely only up to

multiplication by a non-zero real number (as Φ is not unique). However, the

1-dimensional distribution on Γ defined by Y is uniquely defined by the contact

form ˜alpha. The integral curves of Y are called characteristics of Γ ([1]).

It can be checked in the proof of the above proposition, that the diffeomor-

phism Ψ maps the lines in M × R onto the characteristics on Γ.

The following lemma is a parametric version of a result proved in [5]. As

we shall see later, it is a key ingradient in the proof of equidimensional contact

immersions for open manifolds.

Lemma 4.2.5. Let αt, t ∈ [0, 1], be a continuous family of contact forms

on a compact manifold M , possibly with non-empty boundary. Then for each

t ∈ [0, 1], there exists a sequence of primitive 1-forms βlt = rlt ds
l
t, l = 1, .., N

such that

(1) αt = α0 +
∑N

1 β
l
t for all t ∈ [0, 1],

(2) for each j = 0, .., N the form α
(j)
t = α0 +

∑j
1 β

l
t is contact,

(3) for each j = 1, .., N the functions rjt and sjt are compactly supported

within a coordinate neighbourhood.

Furthermore, the forms βlt depends continuously on t.

If αt = α0 on OpV0, where V0 is a compact subset contained in the interior

of M , then the functions rlt and slt can be chosen to be equal to zero on an open

neighbourhood of V0.

Proof. If M is compact and with boundary, then we can embed it in a

bigger manifold, say M̃ , of the same dimension. We may assume that M̃ is

obtained from M by attaching a collar along the boundary of M . Using the

compactness property of M , one can cover M by finitely many coordinate neigh-

bourhoods U i, i = 1, 2, . . . , L. Choose a partition of unity {ρi} subordinate to

{U i}.



86 4. CONTACT FOLIATIONS ON OPEN CONTACT MANIFOLDS

(1) Since M is compact, the set of all contact forms on M is an open

subspace of Ω1(M) in the weak topology. Hence, there exists a δ > 0

such that αt+s(αt′−αt) is contact for all s ∈ [0, 1], whenever |t−t′| < δ.

(2) Get an integer n such that 1/n < δ. Define for each t a finite sequence

of contact forms, namely αjt , interpolating between α0 and αt as follows:

αjt = α[nt]/n +

j∑
i=1

ρi(αt − α[nt]/n),

where [x] denotes the largest integer which is less than or equal to x

and j takes values 1, 2, . . . , L. In particular, for k/n ≤ t ≤ (k + 1)/n,

we have

αjt = αk/n +

j∑
i=1

ρi(αt − αk/n),

and αLt = αt for all t.

(3) Let {xij : j = 1, . . . ,m} denote the coordinate functions on U i, where

m is the dimension of M . There exists unique set of smooth functions

yijt,k defined on U i satisfying the following relation:

αt − αk/n =
m∑
j=1

yijt,kdx
i
j on U i for k/n ≤ t ≤ (k + 1)/n

Further, note that yijt,k depends continuously on the parameter t and

yijt,k = 0 when t = k/n, k = 0, 1, . . . , n.

(4) Let σi be a smooth function such that σi ≡ 1 on a neighbourhood of

supp ρi and suppσi ⊂ U i. Define functions rijt,k and sij, j = 1, . . . ,m,

as follows:

rijt,k = ρiyijt sij = σixij.

These functions are compactly supported and supports are contained

in U i. It is easy to see that rijt,k = 0 when t = k/n and

ρi(αt − αk/n) =
m∑
j=1

rijt,k ds
ij for t ∈ [k/n, (k + 1)/n].
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It follows from the above discussion that αt−αk/n can be expressed as a sum of

primitive forms which depends continuously on t in the interval [k/n, (k+1)/n].

We can now complete the proof by finite induction argument. Suppose that

(αt−α0) =
∑

l α
l
t,k for t ∈ [0, k/n], where each αlt,k is a primitive 1-form. Define

α̃lt,k =

 αlt,k if t ∈ [0, k/n]

αlk/n,k if t ∈ [k/n, (k + 1)/n]

Further define for j = 1, . . . , N , i = 1, . . . , L,

βijt,k =

 0 if t ∈ [0, k/n]

rijt,k ds
ij if t ∈ [k/n, (k + 1)/n]

Finally note that for t ∈ [0, (k + 1)/n], we can write αt − α0 as the sum of all

the above primitive forms. Indeed, if k/n ≤ t < (k + 1)/n, then

αt − α0 = (αt − αk/n) + (αk/n − α0)

=
L∑
i=1

m∑
j=1

rijt,k ds
ij +

∑
l

αlk/n,k

=
∑
i,j

βijt,k +
∑
l

α̃lt,k.

The same relation holds for 0 ≤ t ≤ k/n, since βijt,k vanish for all such t. This

proves the first part of the lemma.

Now suppose that αt = α0 on an open neighbourhood U of V0. Choose

two compact neighbourhoods of V0, namely K0 and K1 such that K0 ⊂ IntK1

and K1 ⊂ U . Since M \ IntK1 is compact we can cover it by finitely many

coordinate neighbourhoods U i, i = 1, 2, . . . , L, such that (
⋃L
i=1 U

i) ∩ K0 = ∅.

Proceeding as above we get a decomposition of αt on
⋃L
i=1 U

i into primitive

1-forms rlt ds
l
t. Observe that {U i : i = 1, . . . , L} ∪ {U} is an open covering of

M in this case. The functions rlt and slt can be extended to all of M without

disturbing their supports. Hence, the functions rlt and slt vanish on K0. This

completes the proof of the lemma.
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�

Theorem 4.2.6. Let ξt, t ∈ [0, 1] be a family of contact structures defined by

the contact forms αt on a compact manifold M with boundary. Let (N, ξ̃ = ker η)

be a contact manifold without boundary. Then every isocontact immersion f0 :

(M, ξ0)→ (N, ξ̃) admits a regular homotopy {ft} such that ft : (M, ξt)→ (N, ξ̃)

is an isocontact immersion for all t ∈ [0, 1].

In addition, if M contains a compact submanifold V0 in its interior and

ξt = ξ0 on Op(V0 ) then ft can be chosen to be a constant homotopy on Op (V0).

Proof. In view of Lemma 4.2.5, it is enough to assume that αt = α0+rtdst,

t ∈ [0, 1], where rt, st are smooth real valued functions (compactly) supported

in an open set U of M . We shall first show that f0 : (M, ξ0) → (N, ξ̃) can be

homotoped to an immersion f1 : M → N such that f ∗1 ξ̃ = ξ1. The stated result

is a parametric version of this.

For simplicity of notation we write (r, s) for (r1, s1) and define a smooth

embedding ϕ : U → U × R2 by

ϕ(u) = (u, s(u),−r(u)) for u ∈ U.

Since r, s are compactly supported ϕ(u) = (u, 0, 0) for all u ∈ Op (∂U) and there

exist positive constants ε1 and ε2 such that Imf is contained in U × Iε1 × Iε2 ,

where Iε denotes the open interval (−ε, ε) for ε > 0. Clearly, ϕ∗(α0 − y dx) =

α0 + r ds and so

ϕ : (U, ξ1)→ (U × R2, ker(α0 − y dx)) (23)

is an isocontact embedding. The image of ϕ is the graph of a smooth function

k = (s,−r) : U → Iε1×Iε2 which is compactly supported with support contained

in the interior of U . Further note that π(ϕ(U)) is the graph of s and hence a

submanifold of U×Iε1 . Now let π : U×Iε1×Iε2 → U×Iε1 be the projection onto

the first two coordinates. Since Imϕ is the graph of k, π|Imϕ is an embedding
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onto the set π(ϕ(U)) which is the graph of s. Now observe that Imϕ can also

be viewed as the graph of a smooth function, namely h : π(ϕ(U))→ Iε2 defined

by h(u, s(u)) = −r(u). It is easy to see that h is compactly supported.

U × Iε1

U

π(ϕ(U))

In the above figure, the bigger rectangle represents the set U × Iε1 and the

central dotted line represents U × 0. The curve within the rectangle stands

for the domain of h, which is also the graph of s. We can now extend h to a

compactly supported function H : U × Iε1 → Iε2 (see [38]) which vanishes on

the shaded region and is such that its graph is transversal to ker(α0 − y dx).

Indeed, since ϕ is an isocontact embedding it is transversal to ker(α0 − y dx)

and hence graph H is transversal to ker(α0−y dx) on an open neighbourhood of

π(ϕ(U)) for any extension H of h. Since transversality is a generic property, we

can assume (possibly after a small perturbation) that graph of H is transversal

to ker(α0 − y dx).

Let Γ be the graph of H; then the image of ϕ is contained in Γ . By

Lemma 4.2.2 there exists a diffeomorphism Φ : Γ→ U × Iε1 with the property

that

Φ∗(ker(α0 ⊕ 0)) = ker((α0 − y dx)|Γ ). (24)

Next we use f0 to define an immersion F0 : U × R→ N × R as follows:

F0(u, x) = (f0(u), x) for all u ∈ U and x ∈ R.

It is straightforward to see that
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• F0(u, 0) ∈ N × 0 for all u ∈ U and

• F ∗0 (η ⊕ 0) is a multiple of α0 ⊕ 0 by a nowhere vanishing function on

M × R.

Therefore, the following composition is defined:

U
ϕ−→ Γ

Φ−→ U × Iε1
F0−→ N × R πN−→ N,

where πN : N × R → N is the projection onto N . Observe that π∗Nη = η ⊕ 0

and therefore, it follows from equations (23) and (24) that the composition map

f1 = πNF0Φϕ : (U, ξ1) → (N, ξ̃) is isocontact. Such a map is necessarily an

immersion.

LetK = (supp r∪supp s). Take a compact setK1 in U such thatK ⊂ IntK1,

and let Ũ = U \K1. If u ∈ Ũ then ϕ(u) = (u, 0, 0). This gives h(u, 0) = 0 for

all u ∈ Ũ . We can choose H such that H(u, t) = 0 for all (u, t) ∈ Ũ×Iε1 . Then,

by Remark 4.2.3, Φ(u, 0, 0) = (u, 0) for all u ∈ Ũ . Consequently,

f1(u) = πNF0Φϕ(u) = πNF0(u, 0) = πN(f0(u), 0) = f0(u) for all u ∈ Ũ .

In other words, f1 coincides with f0 outside an open neighbourhood of K.

Now observe that if we have a one parameter family of compactly supported

functions (rt, st) which depend continuously on the parameter t, then ϕ and Φ

can be made to vary continuously with respect to the parameter t. Thus we get

the desired homotopy ft. This completes the proof of the theorem. �

The above result may be viewed as an extension of Gray’s Stability Theorem

for open manifolds. We shall now prove the existence of isocontact immersions

of an open manifold M into itself which compress the manifold M into an

arbitrary small neighbourhoods of its core.

Corollary 4.2.7. Let (M, ξ = kerα) be an open contact manifold and let

K be a core of it. Then for a given neighbourhood U of K in M there exists
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a homotopy of isocontact immersions ft : (M, ξ) → (M, ξ), t ∈ [0, 1], such that

f0 = idM and f1(M) ⊂ U .

Proof. Since K is a core of M there is an isotopy gt such that g0 = idM and

g1(M) ⊂ U (see Remark 2.4.19). Using gt, we can express M as M =
⋃∞

0 Vi,

where V0 is a compact neighbourhood of K in U and Vi+1 is diffeomorphic to

Vi
⋃

(∂Vi×[0, 1]) so that V̄i ⊂ Int (Vi+1) and Vi+1 deformation retracts onto Vi. If

M is a manifold with boundary then this sequence is finite. We shall inductively

construct a homotopy of immersions f it : M →M with the following properties:

(1) f i0 = idM

(2) f i1(M) ⊂ U

(3) f it = f i−1
t on Vi−1

(4) (f it )
∗ξ = ξ on Vi.

Assuming the existence of f it , let ξt = (f it )
∗(ξ) (so that ξ0 = ξ, and consider a

2-parameter family of contact structures defined by ηt,s = ξt(1−s). Then for all

t, s ∈ I, we have:

ηt,0 = ξt, ηt,1 = ξ0 = ξ and η0,s = ξ.

The parametric version of Theorem 4.2.6 gives a homotopy of immersions f̃t,s :

Vi+2 →M , (t, s) ∈ I× I, satisfying the following conditions:

(1) f̃t,0, f̃0,s : Vi+2 ↪→M are the inclusion maps

(2) (f̃t,s)
∗ξt = ηt,s; in particular, (f̃t,1)∗ξt = ξ

(3) f̃t,s = id on Vi since ηt,s = ξ0 on Vi.

We now extend the homotopy {f̃t,s|Vi+1
} to all of M as immersions such that

f̃0,s = idM for all s. By an abuse of notation, we denote the extended homotopy

by the same symbol. Define the next level homotopy as follows:

f i+1
t = f it ◦ f̃t,1 for t ∈ [0, 1].
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This completes the induction step since (f i+1
t )∗(ξ) = (f̃t,1)∗ξt = ξ on Vi+2 for

all t, and f i+1
t |Vi = f it |Vi . To start the induction we use the isotopy gt and

let ξt = g∗t ξ. Note that ξt is a family of contact structures on M defined by

contact forms g∗tα. For starting the induction we construct f 0
t as above by

setting V−1 = ∅.

Having constructed the family of homotopies {f it} as above we set ft =

limi→∞ f
i
t which is the desired homotopy of isocontact immersions.

�

4.3. An h-principle for open relations on open contact manifolds

In this section we prove an extension of Theorem 2.4.27 for some open rela-

tions on open contact manifolds. The main result of this section can be stated

as follows:

Theorem 4.3.1. Let (M,α) be an open contact manifold and R ⊂ Jr(M,N)

be an open relation invariant under the action of the pseudogroup of local con-

tactomorphisms of (M,α). Then parametric h-principle holds for R.

Proof. Let D denote the pseudogroup of contact diffeomorphisms of M .

We shall first show thatD has the sharply moving property (see Definition 2.4.28).

Let M0 be a submanifold of M of positive codimension. Take a closed hyper-

surface S in M0 and an open set U ⊂ M containing S. We take a vector field

X along S which is transversal to M0. Let H : M → R be a function such that

α(X) = H, iXdα|ξ = −dH|ξ, at points of S.

(see equation 6). The contact-Hamiltonian vector field XH is clearly transversal

to M0 at points of S. As transversality is a stable property and U is small, we

can assume that XH t U . Now consider the initial value problem

d

dt
δt(x) = XH(δt(x)), δ0(x) = x
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The solution to this problem exists for small time t, say for t ∈ [0, ε̄], for

all x lying in some small enough neighbourhood of S. Moreover, since XH

is transversal to S, there would exist a positive real number ε such that the

integral curves δt(x) for x ∈ S do not meet M0 during the time interval (0, ε).

Let

Sε = ∪t∈[0,ε/2]δt(S).

Take a smooth function ϕ which is identically equal to 1 on a small neigh-

bourhood of Sε and suppϕ ⊂ ∪t∈[0,ε)δt(S). We then consider the initial value

problem with XH replaced by XϕH . Since XϕH is compactly supported the flow

of XϕH , say δ̄t, is defined for all time t. Because of the choice of ϕ, the integral

curves δ̄t(x0), x0 ∈ M0, cannot come back to M0 for t > 0. Hence, we have the

following:

• δ̄0|U = idU

• δ̄t = id outside a small neighbourhood of Sε

• dist(δ̄1(x),M0) > r for all x ∈ S and for some r > 0.

This proves thatD sharply moves any submanifold ofM of positive codimension.

Since M is open it has a core K which is of positive codimension. Since

the relation R is open and invariant under the action of D, we can apply Theo-

rem 2.4.30 to conclude that R satisfies the parametric h-principle near K. We

now need to lift the h-principle from OpK to all of M .

By the local h-principle near K, an arbitrary section F0 of R admits a

homotopy Ft in Γ(R|U) such that F1 is holonomic on U , where U is an open

neighbourhood of K in M . Let ft = p(r) ◦Ft, where p(r) : Jr(M,N)→ N is the

canonical projection map of the jet bundle. By Corollary 4.2.7 above we get

a homotopy of isocontact immersions gt : (M, ξ) → (M, ξ) satisfying g0 = idM

and g1(M) ⊂ U , where ξ = kerα. The concatenation of the homotopies g∗t (F0)

and g∗1(Ft) gives the desired homotopy in Γ(R) between F0 and the holonomic

section g∗1(F1). This proves that R satisfies the ordinary h-principle.
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To prove the parametric h-principle, take a parametrized section Fz ∈ Γ(R),

z ∈ Dn, such that Fz is holonomic for all z ∈ Sn−1. This implies that there is

a family of smooth maps fz ∈ Sol(R), parametrized by z ∈ Sn−1, such that

Fz = jrf (z). We shall homotope the parametrized family Fz to a family of

holonomic sections in R such that the homotopy remains constant on Sn−1. By

the parametric h-principle near K, there exists an open neighbourhood U of K

and a homotopy H : Dn× I→ Γ(R|U), such that H0
z = Fz and H1

z is holonomic

for all z ∈ Dn; furthermore, H t
z = jrf (z) on U for all z ∈ Sn−1.

Let δ : [0, 1/2]→ [0, 1] be the linear homeomorphism such that δ(0) = 0 and

δ(1/2) = 1. Define a function µ as follows:

µ(z) = δ(‖z‖)z/‖z‖ if ‖z‖ ≤ 1/2.

First deform Fz to F̃z, where

F̃z =

 Fµ(z) if ‖z‖ ≤ 1/2

Fz/‖z‖ if 1/2 ≤ ‖z‖ ≤ 1

Let δ̄ : [1/2, 1]→ [0, 1] be the linear homeomorphism such that δ̄(1/2) = 1 and

δ̄(1) = 0. Define a homotopy F̃ s
z of F̃z as follows:

F̃ s
z =

 g∗s(Fµ(z)), ‖z‖ ≤ 1/2

g∗
sδ̄(‖z‖)(Fz/‖z‖) 1/2 ≤ ‖z‖ ≤ 1

Note that

F̃ 1
z =

 g∗1(Fµ(z)), ‖z‖ ≤ 1/2

g∗
δ̄(‖z‖)(Fz/‖z‖) 1/2 ≤ ‖z‖ ≤ 1

Finally we consider a parametrized homotopy given as follows:

H̃s
z =

 g∗1(Hs
µ(z)), ‖z‖ ≤ 1/2

g∗
δ̄(‖z‖)(Fz/‖z‖) 1/2 ≤ ‖z‖ ≤ 1

Note that H̃1
z is holonomic for all z ∈ Dn and H̃s

z = jrf (z) for all z ∈ Sn−1.

The concatenation of the three homotopies now give a homotopy between the
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parametrized sections Fz and H̃1
z relative to Sn−1. This proves the parametric

h-principle for R. �

4.4. Gromov-Phillips Theorem on open contact manifolds

Recall that a leaf L of an arbitrary foliation on M admits an injective im-

mersion iL : L→M . We shall say that L is a contact submanifold of (M,α) if

the pullback form i∗Lα is a contact form on L.

Definition 4.4.1. Let M be a smooth manifold with a contact form α. A

foliation F on M will be called a contact foliation subordinate to α or, a contact

foliation on (M,α) if the leaves of F are contact submanifolds of (M,α).

Remark 4.4.2. In view of Lemma 2.1.22, F is a contact foliation on (M,α)

if and only if TF is transversal to the contact distribution kerα and TF ∩kerα

is a symplectic subbundle of (kerα, d′α).

Let (M,α) be a contact manifold and N a manifold with a smooth foliation

FN of even codimension. We denote by Trα(M,FN) the space of smooth maps

f : M → N transversal to FN for which the inverse foliations f ∗FN are contact

foliations on M subordinate to α. Let Eα(TM, νFN) be the space of all vector

bundle morphisms F : TM → TN such that

(1) π ◦ F : TM → νFN is an epimorphism and

(2) ker(π ◦ F ) ∩ kerα is a symplectic subbundle of (kerα, d′α),

where π : TN → νFN is the quotient map. We endow Trα(M,FN) and

Eα(TM, νFN) with C∞ compact open topology and C0 compact open topol-

ogy respectively. The main result of this section can now be stated as follows:

Theorem 4.4.3. Let (M,α) be an open contact manifold and (N,FN) be any

foliated manifold. Suppose that the codimension of FN is even and is strictly

less than the dimension of M . Then

π ◦ d : Trα(M,FN)→ Eα(TM, νFN)
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is a weak homotopy equivalence.

Let R denote the first order differential relation consisting of all 1-jets rep-

resented by triples (x, y,G), where x ∈ M, y ∈ N and G : TxM → TyN is a

linear map such that

(1) π ◦G : TxM → ν(FN)y is an epimorphism

(2) ker(π ◦G) ∩ kerαx is a symplectic subspace of (kerαx, d
′αx).

The space of sections of R can be identified with Eα(TM, ν(FN)) defined above.

Observation 4.4.4. Theorem 4.4.3 states that the relation R satisfies the

parametric h-principle. Indeed, the solution space ofR is the same as Trα(M,F).

To see this, it is sufficient to note (see Definition 2.1.21) that the following two

statements are equivalent:

(S1) f : M → N is transversal to FN and the leaves of the inverse foliation

f ∗FN are contact submanifolds (immersed) of M .

(S2) π◦df is an epimorphism and ker(π◦df)∩kerα is a symplectic subbundle

of (kerα, d′α).

We will now show that the relation R is open and invariant under the action

of local contactomorphisms.

Lemma 4.4.5. The relation R defined above is an open relation.

Proof. Let V be a (2m + 1)-dimensional vector space with a (linear) 1-

form θ and a 2-form τ on it such that θ ∧ τm 6= 0. We shall call (θ, τ) an

almost contact structure on V . Note that the restriction of τ to ker θ is then

non-degenerate. A subspace K of V will be called an almost contact subspace

if the restrictions of θ and τ to K define an almost contact structure on K. In

this case, K must be transversal to ker θ and K ∩ ker θ will be a symplectic

subspace of ker θ.
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Let W be a vector space of even dimension and Z a subspace of W of

codimension 2q. Denote by LtZ(V,W ) the set of all linear maps L : V → W

which are transversal to Z. This is clearly an open subset in the space of all

linear maps from V to W . Define a subset L of LtZ(V,W ) by

L = {L ∈ LtZ(V,W )| ker(π ◦ L) is an almost contact subspace of V }

We shall prove that L is an open subset of LtZ(V,W ). Consider the map

E : LtZ(V,W )→ Gr2(m−q)+1(V )

L 7→ ker(π ◦ L),

where π : W → W/Z is the quotient map. Let Uc denote the subset of

G2(m−q)+1(V ) consisting of all almost contact subspaces K of V . Observe that

L = E−1(Uc). We shall now prove that

• E is a continuous map and

• Uc is an open subset of G2(m−q)+1(V ).

To prove that E is continuous, take L0 ∈ LtZ(V,W ) and let K0 = ker(π ◦ L0).

Consider the subbasic open set UK0 consisting of all subspaces Y of V such

that the canonical projection p : K0 ⊕K⊥0 → K0 maps Y isomorphically onto

K0. The inverse image of UK0 under E consists of all L : V → W such that

p|ker(π◦L) : ker(π ◦ L)→ K0 is onto. It may be seen easily that if L ∈ LtZ(V,W )

then

p maps ker(π ◦ L) onto K0 ⇔ ker(π ◦ L) ∩K⊥0 = {0}

⇔ π ◦ L|K⊥0 : K⊥0 → W/Z is an isomorphism.

Now, the set of all L such that π ◦ L|K⊥0 is an isomorphism is an open subset.

Hence E−1(UK0) is open and therefore E is continuous.

To prove the openness of Uc take K0 ∈ U . Recall that a subbasic open

set UK0 containing K0 can be identified with the space L(K0, K
⊥
0 ), where K⊥0
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denotes the orthogonal complement of K with respect to some inner product

on V ([25]). Let Θ denote the following composition of continuous maps:

UK0
∼= L(K0, K

⊥
0 )

Φ−→ L(K0, V )
Ψ−→ Λ2(m−q)+1(K∗0) ∼= R

where Φ(L) = I + L and Ψ(L) = L∗(θ ∧ τ 2(m−q)+1). It may be noted that, if

K ∈ UK0 is mapped onto some T ∈ L(K0, V ) then the image of T is K. Hence

it follows that

Uc ∩ UK0 = (Ψ ◦ Φ)−1(R \ 0)

which proves that Uc ∩ UK0 is open. Since UK0 is a subbasic open set in the

topology of Grassmannian it proves the openness of Uc. Thus L is an open

subset.

We now show that R is an open relation. First note that, each tangent space

TxM has an almost contact structure given by (αx, dαx). Let U be a trivializing

neighbourhood of the tangent bundle TM . We can choose a trivializing neigh-

bourhood Ũ for the tangent bundle TN such that TFN is isomorphic to Ũ ×Z

for some codimension 2q-vector space in R2n. This implies that R ∩ J1(U, Ũ)

is diffeomorphic with U × Ũ × L. Since the sets J1(U, Ũ) form a basis for the

topology of the jet space, this completes the proof of the lemma. �

Lemma 4.4.6. R is invariant under the action of the pseudogroup of local

contactomorphisms of (M,α).

Proof. Let δ be a local diffeomorphism on an open neighbourhood of x ∈

M such that δ∗α = λα, where λ is a nowhere vanishing function on Opx. This

implies that dδx(ξx) = ξδ(x) and dδx preserves the conformal symplectic structure

determined by dα on ker ξ. If f is a local solution of R at δ(x), then

dδx(ker d(f ◦ δ)x ∩ ξx) = ker dfδ(x) ∩ ξδ(x).
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Hence f ◦δ is also a local solution ofR at x. SinceR is open every representative

function of a jet in R is a local solution of R. Thus local contactomorphisms

act on R by δ.j1
f (δ(x)) = j1

f◦δ(x). �

Proof of Theorem 4.4.3: In view of Theorem 4.3.1, and Lemma 4.4.5, 4.4.6 it

follows that the relation R satisfies the parametric h-principle. This completes

the proof by Observation 4.4.4. �

Definition 4.4.7. A smooth submersion f : (M,α)→ N is called a contact

submersion if the level sets of f are contact submanifolds of M .

We shall denote the space of contact submersion (M,α)→ N by Cα(M,N).

The space of epimorphisms F : TM → TN for which kerF ∩ kerα is a sym-

plectic subbundle of (kerα, d′α) will be denoted by Eα(TM, TN). If FN in

Theorem 4.4.3 is the zero-dimensional foliation then we get the following result.

Corollary 4.4.8. Let (M,α) be an open contact manifold. The derivative

map

d : Cα(M,N)→ Eα(TM, TN)

is a weak homotopy equivalence.

Remark 4.4.9. Suppose that F0 ∈ Eα(TM, TN) and D is the kernel of

F0. Then (D,α|D, dα|D) is an almost contact distribution. Since M is an open

manifold, the bundle epimorphism F0 : TM → TN can be homotoped (in the

space of bundle epimorphism) to the derivative of a submersion f : M → N

([30]). Hence the distribution kerF0 is homotopic to an integrable distribution,

namely the one given by the submersion f . It then follows from Theorem 3.3.4

that (D,α|D, dα|D) is homotopic to the distribution associated to a contact

foliation F on M . Theorem 4.4.3 further implies that it is possible to get a

foliation F which is subordinate to α and is defined by a submersion.
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4.5. Contact Submersions into Euclidean spaces

In this section we interpret the homotopy classification of contact submer-

sions ofM into R2n in terms of certain 2n-frames inM . We then apply this result

to show the existence of contact foliations on some subsets of odd-dimensional

N -spheres obtained by deleting lower dimensional spheres. Throughout this

section M is a contact manifold with a contact form α and ξ is the contact

distribution kerα.

Recall from Section 2 that the tangent bundle TM of a contact manifold

(M,α) splits as kerα⊕ker dα. Let P : TM → kerα be the projection morphism

onto kerα relative to this splitting. We shall denote the projection of a vector

field X on M under P by X̄. For any smooth function h : M → R, Xh will

denote the contact Hamiltonian vector field defined as in the prelimiaries (see

equations (6)).

Lemma 4.5.1. Let (M,α) be a contact manifold and f : M → R2n be a sub-

mersion with coordinate functions f1, f2, . . . , f2n. Then the following statements

are equivalent:

(C1) f is a contact submersion.

(C2) The restriction of dα to the bundle spanned by Xf1 , . . . , Xf2n defines a

symplectic structure.

(C3) The vector fields X̄f1 , . . . , X̄f2n span a symplectic subbundle of (ξ, d′α).

Proof. If f : (M,α) → R2n is a contact submersion then the following

relation holds pointwise:

ker df ∩ kerα = 〈X̄f1 , ..., X̄f2n〉⊥d′α , (25)

where the right hand side represents the symplectic complement of the subbun-

dle spanned by X̄f1 , ..., X̄f2n with respect to d′α. Indeed, for any v ∈ kerα,

d′α(X̄fi , v) = −dfi(v), for all i = 1, ..., 2n
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Therefore, v ∈ kerα ∩ ker df if and only if d′α(X̄fi , v) = 0 for all i = 1, . . . , 2n,

that is v ∈ 〈X̄f1 , ..., X̄f2n〉⊥d′α . Thus, the equivalence of (C1) and (C3) is a

consequence of the equivalence between (S1) and (S2). The equivalence of (C2)

and (C3) follows from the relation dα(X, Y ) = dα(X̄, Ȳ ), where X, Y are any

two vector fields on M . �

An ordered set of vectors e1(x), ..., e2n(x) in ξx will be called a symplectic 2n-

frame in ξx if the subspace spanned by these vectors is a symplectic subspace

of ξx with respect to the symplectic form d′αx. Let T2nξ be the bundle of

symplectic 2n-frames in ξ and Γ(T2nξ) denote the space of sections of T2nξ with

the C0 compact open topology.

For any smooth submersion f : (M,α) → R2n, define the contact gradient

of f by

Ξf(x) = (X̄f1(x), ..., X̄f2n(x)),

where fi, i = 1, 2, . . . , 2n, are the coordinate functions of f . If f is a contact

submersion then X̄f1(x), ..., X̄f2n(x)) span a symplectic subspace of ξx for all

x ∈M , and hence Ξf becomes a section of T2nξ.

Theorem 4.5.2. Let (M2m+1, α) be an open contact manifold. Then the

contact gradient map Ξ : Cα(M,R2n)→ Γ(T2nξ) is a weak homotopy equivalence.

Proof. As TR2n is a trivial vector bundle, the map

i∗ : Eα(TM,R2n)→ Eα(TM, TR2n)

induced by the inclusion i : 0 ↪→ R2n is a homotopy equivalence, where R2n is

regarded as the vector bundle over 0 ∈ R2n. The homotopy inverse c is given

by the following diagram. For any F ∈ Eα(TM, TR2n), c(F ) is defined by as

p2 ◦ F ,

TM
F−→ TR2n = R2n × R2n p2−→ R2n

↓ ↓ ↓

M −→ R2n −→ 0
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where p2 is the projection map onto the second factor.

Since d′α is non-degenerate, the contraction of d′α with a vector X ∈ kerα

defines an isomorphism

φ : kerα→ (kerα)∗.

We define a map σ : ⊕2n
i=1T

∗M → ⊕2n
i=1ξ by

σ(G1, . . . , G2n) = −(φ−1(Ḡ1), ..., φ−1(Ḡ2n)),

where Ḡi = Gi|kerα. Then noting that

ker(G1, . . . , G2n) ∩ kerα = 〈φ−1(Ḡ1), . . . , φ−1(Ḡ2n)〉⊥d′α ,

we get a map σ̃ by restricting σ to E(TM,R2n):

σ̃ : E(TM,R2n) −→ Γ(M,T2nξ),

Moreover, the contact gradient map Ξ factors as Ξ = σ̃ ◦ c ◦ d:

Cα(M,R2n)
d→ Eα(TM, TR2n)

c→ Eα(TM,R2n)
σ̃→ Γ(T2nξ). (26)

To see this take any f : M → R2n. Then, c(df) = (df1, ..., df2n), and hence

σ̃c(df) = (φ−1(df1|ξ), ..., φ−1(df2n|ξ)) = (X̄f1 , . . . , X̄f2n) = Ξ(f)

which gives σ̃ ◦ c ◦ d(f) = Ξf .

We claim that σ̃ : Eα(TM,R2n) → Γ(T2nξ) is a homotopy equivalence. To

prove this we define a map τ : ⊕2n
i=1ξ → ⊕2n

i=1T
∗M by the formula

τ(X1, . . . , X2n) = (iX1dα, ..., iX2ndα)

which induces a map τ̃ : Γ(T2nξ) → E(TM,R2n). It is easy to verify that

σ̃ ◦ τ̃ = id. In order to show that τ̃ ◦ σ̃ is homotopic to the identity, take any

G ∈ Eα(TM,R2n) and let Ĝ = (τ ◦ σ)(G). Then Ĝ equals G on kerα. Define

a homotopy between G and Ĝ by Gt = (1 − t)G + tĜ. Then Gt = G on kerα

and hence kerGt ∩ kerα = kerG ∩ kerα. This also implies that each Gt is an
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epimorphism. Thus, the homotopy Gt lies in Eα(TM,R2n). This shows that

τ̃ ◦ σ̃ is homotopic to the identity map.

This completes the proof of the theorem since d : C(M,R2n)→ E(TM, TR2n)

is a weak homotopy equivalence (Theorem 4.4.3) and c, σ̃ are homotopy equiv-

alences. �

Example 4.5.3. Let S2N−1 denote the 2N − 1 sphere in R2N

S2N−1 = {(z1, ..., z2N) ∈ R2N : Σ2N
1 |zi|2 = 1}

This is a standard example of a contact manifold where the contact form η is

induced from the 1-form
∑N

i=1(xi dyi− yi dxi) on R2N . For N > K, we consider

the open manifold SN,K obtained from S2N−1 by deleting a (2K − 1)-sphere:

SN,K = S2N−1 \ S2K−1,

where

S2K−1 = {(z1, ..., z2K , 0, ..., 0) ∈ R2N : Σ2K
1 |zi|2 = 1}

Then SN,K is an contact submanifold of S2N−1. Let ξ denote the contact struc-

ture associated to the contact form η on SN,K . Since ξ → SN,K is a symplectic

vector bundle, we can choose a complex structure J on ξ such that d′η is J-

invariant. Thus, (ξ, J) becomes a complex vector bundle of rank N − 1.

We define a homotopy Ft : SN,K → SN,K , t ∈ [0, 1], as follows: For (x, y) ∈

R2k × R2(N−k) ∩ SN,K

Ft(x, y) =
(1− t)(x, y) + t(0, y/‖y‖)
‖(1− t)(x, y) + t(0, y/‖y‖)‖

This is well defined since y 6= 0. It is easy to see that F0 = id, F1 maps

S2(N−K)−1 into SN,K and the homotopy fixes S2(N−K)−1 pointwise. Define r :

SN,K → {0} × R2(N−k) ∩ SN,KS2(N−K)−1 ' S2(N−K)−1 by

r(x, y) = (0, y/‖y‖), (x, y) ∈ R2K × R2(N−K) ∩ SN,K
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Then F1 factors as F1 = i ◦ r, where i is the inclusion map, and we have the

following diagram:

r∗(i∗ξ) −→ i∗ξ −→ ξ

↓ ↓ ↓

SN,K
r−→ S2(N−K)−1 i−→ SN,K

Hence, ξ = F ∗0 ξ
∼= F ∗1 ξ = r∗(ξ|S(2N−2K)−1) as complex vector bundles. Since ξ is

a (complex) vector bundle of rank N − 1, ξ|S2(N−K)−1 will have a decomposition

of the following form ([20]):

ξ|S(2N−2K)−1
∼= τN−K−1 ⊕ θK ,

where θK is a trivial complex vector bundle of rank K and τN−K−1 is a comple-

mentary subbundle. Hence ξ must also have a trivial direct summand θ of rank

K. Moreover, θ will be a symplectic subbundle of ξ since the complex structure

J is compatible with the symplectic structure d′η on ξ. Thus, SN,K admits a

symplectic 2K frame spanning θ. Hence, by Theorem 4.5.2, there exist contact

submersions of SN,K into R2K . Consequently, SN,K admits contact foliations of

codimension 2K for each K < N .

4.6. Classification of contact foliations on contact manifolds

Throughout this section M is a contact manifold with a contact form α.

As before ξ will denote the associated contact structure kerα and d′α = dα|ξ.

Let Fol2qα (M) denote the space of contact foliations on M of codimension 2q

subordinate to α (Definition 4.4.1). Recall the classifying space BΓ2q and the

universal Γ2q structure Ω2q on it (see Subsection 2.2.5). Let Eα(TM, νΩ2q) be

the space of all vector bundle epimorphisms F : TM → νΩ2q such that kerF is

transversal to kerα and kerα ∩ kerF is a symplectic subbundle of (kerα, d′α).

If F ∈ Fol2q(M) and f : M → BΓ2q is a classifying map of F , then f ∗Ω2q =

F as Γ2q-structure. Recall that we can define a vector bundle epimorphisms
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TM → νΩ2q by the following diagram (see [16])

TM
πM //

&&

νF ∼= f ∗(νΩ2q)
f̄
//

��

νΩ2q

��
M

f

// BΓ2q

(27)

where πM : TM → ν(F) is the quotient map and (f̄ , f) is a pull-back diagram.

Note that the kernel of this morphism is TF and therefore, if F ∈ Fol2qα (M),

then f̄ ◦πM ∈ Eα(TM, νΩ2q) (see Remark 4.4.2). However, the morphism f̄ ◦πM
is defined uniquely only up to homotopy. Thus, there is a function

H ′α : Fol2qα (M)→ π0(Eα(TM, νΩ2q)).

Definition 4.6.1. Two contact foliations F0 and F1 on (M,α) are said to

be integrably homotopic relative to α if there exists a foliation F̃ on (M×I, α⊕0)

such that the following conditions are satisfied:

(1) F̃ is transversal to the trivial foliation of M × I by the leaves M ×{t},

t ∈ I;

(2) the foliation Ft on M induced by the canonical injective map it : M →

M × I (given by x 7→ (x, t)) is a contact foliation subordinate to α for

each t ∈ I;

(3) the induced foliations on M × {0} and M × {1} coincide with F0 and

F1 respectively,

where α⊕0 denotes the pull-back of α by the projection map p1 : M ×R→M .

Let π0(Fol2qα (M)) denote the space of integrable homotopy classes of contact

foliations on (M,α). Define

Hα : π0(Fol2qα (M))→ π0(Eα(TM, νΩ2q)).

by Hα([F ]) = H ′α(F), where [F ] denotes the integrable homotopy class of F

relative to α. To see that Hα is well-defined, let F̃ be an integrable homotopy
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relative to α between two contact foliations F0 and F1. Then the induced

foliations Ft are contact foliations subordinate to α. If F : M × I → BΓ2q is

a classifying map of F̃ then F ∗Ω2q = F̃ . Let ft : M → BΓ2q be defined by

ft(x) = F (x, t), for all x ∈ M , t ∈ I. Then it follows that f ∗t Ω2q = Ft, for

all t ∈ I. Hence, H ′α(F0) = H ′α(F1). This shows that Hα is well-defined. The

classification of contact foliations may now be stated as follows:

Theorem 4.6.2. If M is open then Hα : π0(Fol2qα (M)) −→ π0(Eα(TM, νΩ2q))

is bijective.

We first prove a lemma.

Lemma 4.6.3. Let N be a smooth manifold with a foliation FN of codimen-

sion 2q. If g : N → BΓ2q classifies FN then we have a commutative diagram as

follows:

π0(Trα(M,FN))
P //

∼= π0(π◦d)

��

π0(Fol2qα (M))

Hα
��

π0(Eα(TM, νFN))
G∗

// π0(Eα(TM, νΩ2q))

(28)

where the left vertical arrow is the isomorphism defined by Theorem 4.4.3, P

is induced by a map which takes an f ∈ Trα(M,FN) onto the inverse foliation

f ∗FN and G∗ is induced by the bundle homomorphism G : νFN → νΩ2q covering

g.

Proof. We shall first show that the horizontal arrows in (28) are well de-

fined. If f ∈ Trα(M,FN) then the inverse foliation f ∗FN belongs to Fol2qα (M).

Furthermore, if ft is a homotopy in Trα(M,FN), then the map F : M × I→ N

defined by F (x, t) = ft(x) is clearly transversal to FN and so F̃ = F ∗FN is a

foliation on M × I. The restriction of F̃ to M ×{t} is the same as the foliation

f ∗t (FN), which is a contact foliation subordinate to α. Hence, we get a map

π0(Trα(M,FN))
P−→ π0(Fol2qα (M))
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defined by

[f ] 7−→ [f ∗FN ]

On the other hand, since g : N → BΓ2q classifies the foliation FN , there is a

vector bundle homomorphism G : νFN → νΩ2q covering g. This induces a map

G∗ : Eα(TM, ν(FN))→ Eα(TM, νΩ2q)

which takes an element F ∈ Eα(TM, ν(FN)) onto G ◦ F . We now prove the

commutativity of (28). Note that if f ∈ Trα(M,FN)) then g ◦ f : M → BΓ2q

classifies the foliation f ∗FN . Let d̃f : ν(f ∗FN) → ν(FN) be the unique map

making the following diagram commutative:

TM
df

//

πM

��

TN

πN

��

ν(f ∗FN)
d̃f

// ν(FN)

where πM : TM → ν(f ∗FN) is the quotient map onto the normal bundle of

f ∗FN . Observe that G ◦ d̃f : ν(f ∗FN) → ν(Ω2q) covers the map g ◦ f and

(G ◦ d̃f , g ◦ f) is a pullback diagram. Therefore, we have

Hα([f ∗FN ]) = [(G ◦ d̃f) ◦ πM ] = [G ◦ (π ◦ df)].

This proves the commutativity of (28). �

Proof of Theorem 4.6.2. The proof is exactly similar to that of Haefliger’s

classification theorem. We can reduce the classification to Theorem 4.4.3 by

using Theorem 2.2.11 and Lemma 4.6.3. For the sake of completeness we repro-

duce the proof here following [8]. For simplicity of notation we shall denote the

universal Γ2q structure by Ω in place of Ω2q. To prove surjectivity of Hα, take
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(f̂ , f) ∈ Eα(TM, νΩ) which can be factored as follows:

TM
f̄
//

##

f ∗(νΩ) //

��

νΩ

��
M

f

// BΓ2q

(29)

By Theorem 2.2.11 there exists a manifold N with a codimension-2q foliation

FN and a closed embedding M
s
↪→ N such that s∗FN = f ∗Ω. Let f ′ : N →

BΓ2q be a map classifying FN , i.e. f ′∗Ω ∼= FN . Hence (f ′ ◦ s)∗Ω ∼= f ∗Ω and

(f ′ ◦ s)∗ν(Ω) ∼= f ∗ν(Ω). Therefore f ′ ◦ s must also be covered by a bundle

epimorphism which splits as in the following diagram:

TM
f̄
//

##

f ∗(νΩ) //

��

νFN //

��

νΩ

��
M

s
// N

f ′
// BΓ2q

(30)

Let ŝ : TM
f̄→ f ∗(νΩ) ∼= s∗(νFN) → νFN . It is not difficult to see that (ŝ, s)

is an element of Eα(TM, ν(FN). Lastly we show that P̄ (ŝ, s) is homotopic to

(f̂ , f). Since f ∗Ω ∼= (f ′ ◦ s)∗Ω, by Theorem 2.2.9 there exists a homotopy

M × I G−→ BΓ2q

starting at f ′ ◦ s and ending at f . As s is a cofibration the following diagram

can be solved for some F so that F ( , 0) = f ′ and F (s(x), 1) = f(x) for all

x ∈M .

M × {0}
iM //

s×id0

��

M × I

G{{
s×idI

��

BΓ2q

N × {0}

f ′
::

iN

// N × I
F

cc

(31)
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If we set f ′t(x) = F (x, t) for x ∈ N and t ∈ [0, 1] then f factors as f ′1 ◦ s.

Since ft is a homotopy f ′∗t ν(Ω) ∼= f ′∗ν(Ω) ∼= ν(FN). Thus we get the following

homotopy of vector bundle morphism.

TM
ŝ //

��

ν(FN)
at //

��

νΩ

��
M

s
// N

f ′t

// BΓ2q

(32)

This homotopy starts at the morphism shown in diagram (30) and ends at

the morphism shown at diagram (29). Now the left square of diagram (30)

represents an element (ŝ, s) of Eα(TM, νFN) whose homotopy class is mapped

to [(f̂ , f)] by the bottom map of diagram (28). So in diagram (28) P ◦ (π0(q ◦

d))−1[(ŝ, s)] is the required preimage of [(f̂ , f)] under Hα. So we have proved

the surjectivity.

Now to prove injectivity, suppose that F0,F1 are two contact foliations on M

such that Hα(F0) is homotopic to Hα(F1). Let Hα(F0) = (f̂0, f0) and Hα(F1) =

(f̂1, f1). If f̂ : TM × [0, 1]→ νΩ is a homotopy between f̂0 and f̂1 in the space

Eα(TM, νΩ), then we have the following factorization of f̂ :

TM × [0, 1]
f̄
//

''

f ∗(νΩ) //

��

νΩ

��
M × [0, 1]

f

// BΓ2q

(33)

Without loss of generality we can assume that f ∗0 Ω = F0 and f ∗1 Ω = F1. By

Theorem 2.2.11 there exists a manifold N with a foliation FN and a closed

embedding

M × I s−→ N

such that s∗FN = f ∗Ω. As s∗0FN = f ∗0 Ω = F0 and s∗1FN = f ∗1 Ω = F1,

so s0, s1 ∈ Trα(M,FN). We shall show that ds0 and ds1 are homotopic in
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Fα(TM, νFN). Proceeding as in the first half of the proof, we can define a path

between ds0 and ds1 by the following diagram:

TM × I
f̄
//

((

f ∗(νΩ) ∼= s∗ν(FN) //

��

νFN

��
M × I

s
// N

Since the left vertical arrow in diagram (28) is an isomorphism this proves

that s0, s1 are homotopic in Trα(M,FN). This implies that F0 is integrably

homotopic to F1. This completes the proof of injectivity. �

Theorem 4.6.4. Let (M,α) be an open contact manifold and let τ : M →

BU(n) be a map classifying the symplectic vector bundle ξ = kerα. Then

there is a bijection between the elements of π0(Eα(TM, νΩ)) and the homotopy

classes of triples (f, f0, f1), where f0 : M → BU(q), f1 : M → BU(n − q) and

f : M → BΓ2q such that

(1) (f0, f1) is homotopic to τ in BU(n) and

(2) Bd ◦ f is homotopic to Bi ◦ f0 in BGL2q.

In other words the following diagrams are homotopy commutative:

BΓ(2q)

Bd
��

M
f0

//

f
55

BU(q)
Bi

// BGL(2q)

BU(q)×BU(n− q)

⊕
��

M
τ

//

(f0,f1)
77

BU(n)

Proof. An element (F, f) ∈ Eα(TM, νΩ) defines a (symplectic) splitting of

the bundle ξ as

ξ ∼= (kerF ∩ ξ)⊕ (kerF ∩ ξ)d′α

since kerF ∩ ξ is a symplectic subbundle of ξ. Let F ′ denote the restriction

of F to (kerF ∩ ξ)d′α. It is easy to see that (F ′, f) : (kerF ∩ ξ)d′α → ν(Ω)

is a vector bundle map which is fibrewise isomorphism. If f0 : M → BU(q)
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and f1 : M → BU(n − q) are continuous maps classifying the vector bundles

kerF ∩ ξ and (kerF ∩ ξ)d′α respectively, then the classifying map τ of ξ must

be homotopic to (f0, f1) : M → BU(q)×BU(n− q) in BU(n) (Recall that the

isomorphism classes of Symplectic vector bundles are classified by homotopy

classes of continuous maps into BU [20]). Furthermore, note that (kerF ∩

ξ)d
′α ∼= f ∗(νΩ) = f ∗(Bd∗EGL2q(R)); therefore, Bd ◦ f is homotopic to f0 in

BGL(2q).

Conversely, take a triple (f, f0, f1) such that

Bd ◦ f ∼ Bi ◦ f0 and (f0, f1) ∼ τ.

Then ξ has a symplectic splitting given by f ∗0EU(q) ⊕ f ∗1EU(n − q). Further,

since Bd ◦ f ∼ Bi ◦ f0, we have f ∗0EU(q) ∼= f ∗ν(Ω). Hence there is an epimor-

phism F : ξ
p2−→ f ∗0EU(q) ∼= f ∗ν(Ω) whose kernel f ∗1EU(n− q) is a symplectic

subbundle of ξ. Finally, F can be extended to an element of Eα(TM, νΩ) by

defining its value on Rα equal to zero. �

Definition 4.6.5. Let N be a contact submanifold of (M,α) such that TxN

is transversal to ξx for all x ∈ N . Then TN ∩ ξ|N is a symplectic subbundle of

ξ. The symplectic complement of TN ∩ ξ|N with respect to d′α will be called

the normal bundle of the contact submanifold N .

The following result is a direct consequence of the above classification the-

orem.

Corollary 4.6.6. Let B be a symplectic subbundle of ξ with a classifying

map g : M → BU(q). The integrable homotopy classes of contact foliations on

M with their normal bundles isomorphic to B are in one-one correspondence

with the homotopy classes of lifts of Bi ◦ g in BΓ2q.

We end this article with an example to show that a contact foliation on a

contact manifold need not be transversally symplectic, even if its normal bundle

is a symplectic vector bundle.
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Definition 4.6.7. ([16]) A codimension 2q-foliation F on a manifold M is

said to be transverse symplectic if F can be represented by Haefliger cocycles

which take values in the groupoid of local symplectomorphisms of (R2q, ω0).

Thus the normal bundle of a transverse symplectic foliation has a symplectic

structure. It can be shown that if F is transverse symplectic then there exists

a closed 2-form ω on M such that ωq is nowhere vanishing and kerω = TF .

Example 4.6.8. Let us consider a closed almost-symplectic manifold V 2n

which is not symplectic (e.g., we may take V to be S6) and let ωV be a non-

degenerate 2-form on V defining the almost symplectic structure. Set M =

V × R3 and let F be the foliation on M defined by the fibres of the projection

map π : M → V . Thus the leaves are {x} ×R3, x ∈ V . Consider the standard

contact form α = dz + xdy on the Euclidean space R3 and let α̃ denote the

pull-back of α by the projection map p2 : M → R3. The 2-form β = ωV ⊕ dα

on M is of maximum rank and it is easy to see that β restricted to ker α̃ is non-

degenerate. Therefore (α̃, β) is an almost contact structure on M . Moreover,

α̃ ∧ β|TF is nowhere vanishing.

We claim that there exists a contact form η on M such that its restrictions

to the leaves of F are contact. Recall that there exists a surjective map

(T ∗M)(1) D→ ∧1T ∗M ⊕ ∧2T ∗M

such that D ◦ j1(α) = (α, dα) for any 1-form α on M . Let

r : ∧1T ∗M ⊕ ∧2T ∗M → ∧1T ∗F ⊕ ∧2T ∗F

be the restriction map defined by the pull-back of forms and let A ⊂ Γ(∧1T ∗M⊕

∧2T ∗M) be the set of all pairs (η,Ω) such that η ∧ Ωn+1 is nowhere vanishing

and let B ⊂ Γ(∧1T ∗F ⊕∧2T ∗F) be the set of all pairs whose restriction on TF

is nowhere vanishing. Now set R ⊂ (T ∗M)(1) as

R = D−1(A) ∩ (r ◦D)−1(B).
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Since both A and B are open so is R. Now if we consider the fibration M
π→ V

then it is easy to see that the diffeotopies of M preserving the fibers of π sharply

moves V × 0 and R is invariant under the action of such diffeotopies. So by

Theorem 2.4.30 there exists a contact form η on Op(V × 0) = V ×D3
ε for some

ε > 0, and η restricted to each leaf of the foliation F is also contact. Now

take a diffeomorphism g : R3 → D3
ε. Then η′ = (idV × g)∗η is a contact form

on M . Further, F is a contact foliation relative to η′ since idV × g is foliation

preserving.

But F can not be transversal symplectic because then there would exist a

closed 2-form β whose restriction to νF = π∗(TV ) would be non-degenerate.

This would imply that V is a symplectic manifold contradicting our hypothesis.
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[2] Bertelson, Mélanie. Foliations associated to regular Poisson structures. Commun. Con-

temp. Math., 3(3):441–456, 2001.

[3] Bertelson, Mélanie. A h-principle for open relations invariant under foliated isotopies. J.

Symplectic Geom., 1(2):369–425, 2002.

[4] Mahuya Datta and Md. Rabiul Islam. Submersions on open symplectic manifolds. Topol-

ogy Appl., 156(10):1801–1806, 2009.

[5] Y. Eliashberg and N. Mishachev. Introduction to the h-principle, volume 48 of Graduate

Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.

[6] Sidnie Dresher Feit. k-mersions of manifolds. Acta Math., 122:173–195, 1969.

[7] Rui Loja Fernandes and Pedro Frejlich. An h-principle for symplectic foliations. Int.

Math. Res. Not. IMRN, (7):1505–1518, 2012.

[8] J. Francis. Lectures notes on h-principle. notes by m. hoyois.

[9] Hansjörg Geiges. h-principles and flexibility in geometry. Mem. Amer. Math. Soc.,

164(779):viii+58, 2003.

[10] Hansjörg Geiges. An introduction to contact topology, volume 109 of Cambridge Studies

in Advanced Mathematics. Cambridge University Press, Cambridge, 2008.

[11] Viktor L. Ginzburg. A smooth counterexample to the Hamiltonian Seifert conjecture in

R6. Internat. Math. Res. Notices, (13):641–650, 1997.

[12] M. Golubitsky and V. Guillemin. Stable mappings and their singularities. Springer-

Verlag, New York, 1973. Graduate Texts in Mathematics, Vol. 14.

[13] John W. Gray. Some global properties of contact structures. Ann. of Math. (2), 69:421–

450, 1959.

[14] M. L. Gromov. Stable mappings of foliations into manifolds. Izv. Akad. Nauk SSSR Ser.

Mat., 33:707–734, 1969.

115



116 BIBLIOGRAPHY

[15] Mikhael Gromov. Partial differential relations, volume 9 of Ergebnisse der Mathematik

und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-

Verlag, Berlin, 1986.

[16] A. Haefliger. Feuilletages sur les variétés ouvertes. Topology, 9:183–194, 1970.

[17] A. Haefliger. Lectures on the theorem of Gromov. In Proceedings of Liverpool Singularities

Symposium, II (1969/1970), pages 128–141. Lecture Notes in Math., Vol. 209. Springer,

Berlin, 1971.
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