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Chapter 1

Introduction

In this chapter, we will give a brief history of wavelet analysis on R. We will also list some basic

results on local fields which will be used in subsequent chapters.

1.1 Wavelets on R

We first start with a brief history of wavelets and some basic definitions and results concerning

the orthonormal wavelets on R.

1.1.1 A brief history

In the last few decades wavelet theory has grown extensively and has drawn great attention not
only in mathematics but also in engineering, physics, computer science and many other fields. In
signal and image processing, wavelets play a very important role.

In 1910, A. Haar gave the first example of an orthonormal wavelet on R but because of
the poor frequency localization of the resulting orthonormal basis, they are not of much use in
practice. In 1981, while trying to further understand the Hardy spaces, Strémberg [71] obtained a
wavelet of L2(R) by modifying a basis constructed earlier by Franklin in 1927. We refer to [75]
for a detailed discussion of the Stromberg wavelet. In the early eighties, Morlet introduced
the continuous wavelet transform. Grossman obtained an inversion formula for this transform
and along with Morlet explored several applications. Meyer [64] constructed an example of

an infinitely differentiable wavelet such that its Fourier transform also had this property. This
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construction was generalized to higher dimensions by Lemarié and Meyer [58]. The concept of
multiresolution analysis (MRA) was developed by Meyer and Mallat [63, 65]. Daubechies used
this concept to construct compactly supported wavelets with arbitrarily high, but fixed, regularity.

The wavelets have poor frequency localization. To overcome this disadvantage, Coifman,
Meyer and Wickerhauser [27] constructed wavelet packets from a wavelet associated with an
MRA. Cohen, Daubechies and Feauveau in [25] introduced the concept of biorthogonal wavelets.
We will discuss these concepts in details in subsequent chapters.

Wavelets and multiresolution analyses were also studied extensively in the higher dimensional
cases R", see [20, 30, 42, 62, 65, 75] and references therein. The concept of wavelet has been
extended to many different setups by several authors. Dahlke [29] introduced it on locally
compact abelian groups (see also [32, 43]). It was generalized to abstract Hilbert spaces by Han,
Larson, Papadakis and Stavropoulos [39, 70]. Lemarié [56] extended this concept to stratified
Lie groups. Recently, R. L. Benedetto and J. J. Benedetto [11] developed a wavelet theory for
local fields and related groups. In [12], R. L. Benedetto proved that Haar and Shannon wavelets

exist and, in fact, both are the same for such a group.

1.1.2 Basic concepts of wavelets

In this section we will discuss some basic definitions and results which are useful in the theory

of wavelets.
Definition 1.1.1. A collection {9n : n € Z} of functions in Lz(R) is called an orthonormal
system if it satisfies

<gm,gn> = é‘m,n, m,n € Z,

where
1, Zf m=n,

0, 2fms#n.

CSm,n =

The inner product is defined by

(frq) = /IR f(@)a@)dz  for f.g € LA(R).
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Definition 1.1.2. The Fourier transform of a function f € L1(R) is defined by

F&) = /R (@) ds, € R

We can define the Fourier transform in L?(R) by defining it on L(R)NL2(R) and extending
it to L2(R) by using the fact that L (R) N L2(R) is dense in L?(R) in the L2(IR)-norm. The

Plancherel theorem is of the following form:

(f,9) = oo (a9 € L(R)

We have the following necessary and sufficient condition for a system of integer translates of

a function to be an orthonormal system. The proof is well known, see e.g. [42].

Proposition 1.1.3. Ifg € L2(R), then {g(- — k) : k € Z} is an orthonormal system if and only
if

Y196 +2km)P=1 forae EE€R (1.1.1)
keZ

A complete orthonormal system is called an orthonormal basis.
Two simple operators acting on functions defined on R play an important role in the theory
of wavelets. These are the translation and the dilation operators. The translation operator 7 and

the dilation operator §; are defined on L2(R) as follows:
Tf(x)=fx -k and 0;f(x)=2f(z), xR fel¥R)andj k€2

Definition 1.1.4. An orthonormal wavelet on R is a function ¢ € L2(R) such that the system

of functions {¢; 1 : j,k € Z} forms an orthonormal basis for L?(R), where
Pik(x) =27 2p@z-k), J keEZ
Observe that
(Wip)\(€) = 279/2e~ 27k (a77E), EER, kel

The oldest example of such a basis is the Haar basis. Another simple example is the Shannon
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wavelet. The Haar wavelet is compactly supported in the time domain but not in the frequency
domain whereas the Shannon wavelet is compactly supported in the frequency domain but not in

the time domain.
Example 1.1.5. The Haar wavelet is defined by
1, 0<z<1/2,

Y)=¢ —1, 1/2<z<1,

0, otherwise.

Example 1.1.6. The Shannon wavelet is defined in terms of the Fourier transform:

~

Y=1p, E=[-2m, —7]U[r 2],
where 1 denote the characteristic function of E.

1.1.3 Multiresolution analysis

‘We will discuss about the construction of orthonormal wavelets from a multiresolution analysis

(MRA). The concept of MRA is given by Y. Meyer and S. Mallat [63, 65].

Definition 1.1.7. A multiresolution analysis is a sequence of closed subspaces {V;:jeL}of
L2(R) satisfying the following propetties:
(@) V; CVjypforall j € Z;
(®) U Vjisdense in L2(R);
jez
© NV;i={0}
i€z

(d) f€Vjifand only if f(2) € Vippforall j € 7Z;

(¢) thereisa function ¢ € L?(R), called the scaling function, such that {,(- — k) : k € Z}

forms an orthonormal basis for .

An example of the spaces {V; : j € Z} satisfying (a)-(e) above is

- 2
Vi={f € L*(R): f|[2—jk,2—j(k+1)) is constant forall k € Z}, je€Z.
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This is called the Haar MRA.

We will now briefly discuss how to construct a wavelet from an MRA. Suppose that {V; :
j € Z} is an MRA with scaling function . Since ¢ € Vi C V; and {1k : k € Z}isan
orthonormal basis of V, there exists {c : k € Z} € ¢2(Z) such that

p(x) = ch21/2cp(2x — k).
keZ
Taking Fourier transform of both sides, we get

B(6) = Y ex2” 2e"*ip(¢/2) = mo(£/2)3(¢/2), (1.12)

keZ

where mg(§) = 972 Dokez cre**€. The function myq is 2m-periodic and is in L2(T), where
T = [0, 27]. It is called the low-pass filter associated with the scaling function ¢. Using (1.1.2)

in (1.1.1), and splitting the sum over Z into sums over even and odd integers, we get
Imo(&))% + |mo(§ +7))*=1 forae. £€T. (1.1.3)

Let W; be the orthogonal complement of Vj in Vj 44, i.e., Vj41 = V; @ W;. By properties (b)

and (c) in the definition of an MRA, we have a decomposition
L*R)= P W L (114

If we can find a function € Wy such that {¢)(- — k) : k& € Z} is an orthonormal basis for Wp
then {4, x : j, k € Z} forms an orthonormal basis for W; by property (d) of MRA.. It is clear
from the decomposition (1.1.4) that {1; : j, k € Z} forms an orthonormal basis for L2(R).
It turns out that the wavelet ¢ can be expressed in terms of the low-pass filter and the Fourier

transform of the scaling function. In fact, we have
() = 3 u(E©mo({/2+mp(E/2) forac.(ER, (1.13)

where v is a 27-periodic measurable function such that |v(£)| = 1 forae. {in T. We refer to

Chapter 2 of [42] and [75] for the details.
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A wavelet associated with an MRA described as above is called an MRA-wavelet. Haar and

Shannon wavelets are examples of MRA-wavelets.

Two simple equations characterize all wavelets of L2(R). A function ¢ € L%(R), with

[l4]l2 = 1,1s a wavelet for L2(R) if and only if

Z [P(@2€)?2 = 1 forae £€R. (1.1.6)
JEZ
Z;@(?{)zﬁ(%(f +2¢m)) = 0 forae.£eRandforallg€2Z+1. (1.17)

j20

For the details, we refer to Chapter 7 of [42]. Not all wavelets are associated with an MRA.
The first example of a non-MRA wavelet was given by J. L. Journé. Another interesting example

is given by Lemarié. The Journé wavelet ©; is defined in terms of Fourier transform

Py =1y,

where

J = [~Fr, —4r|U[~m, — 4] U [&r, 7] U [4r, 327],
and Lemarié wavelet 1y, is defined by

YL =1y,

where

—[_8
L=l=bn=4n] U [, §m)U ¥, P,

We have seen that the scaling function plays an important role in the construction of wavelet

from an MRA. The characterization of scaling functions is given by the following theorem.

Theorem 1.18. A function ¢ € [2(R)
L%(R) if and only if

is a scaling function for a multiresolution analysis of

STIRE+2%MZ =1 foraeceT. (L1.8)
keZ
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7
m a(2-36) =
]11)1{.10 [2(2778)| =1 fora.e.§ €R, (1.1.9
and there exists a 2r- periodic function mq in L*(T) such that
@(€) = mo(£/2)p(6/2) fora.e. £ R (1.1.10)

1.1.4 Dimension function

There is a single equation which tells us when a wavelet is an MRA-wavelet. From (1.1.2),

(1.1.3) and (1.1.5), we get

PR+ RO = (Imo(©)F +lmo(& + m)2) 1O = [P

Iterating this equation, we obtain

N
PR = @@V +)_[9(@E* forall N> 1
j=1
Since, |$(€)] < 1, the sequence {Z;v___l (PR : N = 1} is an increasing sequence
of real numbers, which is bounded by 1 so that A}gn Z;\]:l [9(27€)|2 exists. There-
o0
fore, A}im |¢(2N £)|2 also exists. Hence, by using Fatou’s lemma, we can show that
-—»00

i A(oN Y2 —
Aim | 227" =0, as

N—oo

. 1 A
= o [ 1R

N—oo

[ Jm p@VePds < Jim JNECGERG
JRN—o0 JR

Hence,

12O =S 1@ forall§ R

Jj=1

Using Proposition 1.1.3, we get for a.e. { € R,

1= Y jp(e + 2km)2 = D1 Y B/ (€ + 2km)I = DufO) .11

kez j>1 ke
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We call Dy, the dimension function of the wavelet 2. Thus, we observed that if a wavelet is
associated with an MRA, then its dimension function is equal to 1 a.e. Gripenberg and Wang

have proved independently that this condition is also sufficient. For a proof of the following

theorem, we refer to Chapter 7 of [42].

Theorem 1.1.9. A wavelet v is an MRA-wavelet if and only if Dy, (€) = 1 fora.e. £ €R.

1.2 Local fields

Before we discuss about a general local field, we provide the construction of p-adic and p-series
fields, where p is a prime.

For an integer n € Z, we define its p-adic norm | - |, as follows. If n = 0, then |n|, = 0. If
n # 0, then we write n = pFl, where k and [ are integers and [ is relatively prime to p, and define
Inlp = p~*. We can easily verify that | - |p is a norm on the integers which satisfies the stronger
triangle inequality |m + n|, < max{|m|,, |n|p} for m, n € Z. If we use the usual arithmetic for
the integers and define a metric by d(m, n) = |m — n|p, then Z is a metric space which is not
complete. Its completion is called the p-adic integers. Its field of quotients is called the p-adic
numbers. The p-adic numbers can also be obtained directly by extending the definition of the
p-adic norm to the rational numbers in a natural way (i.e., write o= p = with r and s relatively
prime to p and define | 2|, = p~*) and then completing the rationals as a metric space with
respect to the induced metric. In either case, we obtain a totally disconnected locally compact

topological field of characteristic zero.

The elements of this field are identified as formal Laurent series:

oo
— k
w—g agp-,

k=l

where a;, € {0,1,2, ... ,P — 1} and we carry in the arithmetic. For example, letp = 7,

T=3+47+3.72 and y =5+ 3.7+ 5.72, thenz +y=1+1.7 4 2.72.

This field is called the p-adic field and is denoted by Qp.

Now, we again consider the same set of formal Laurent series, but do the addition and

multiplication modulo p. For example, if p = 7, x =3 4+ 47 +3.7%2andy =5+37+ 5.72,

- 2
thenz +y =1 + 1.72. If we use the $ame norm and metric as used for Qp, then we obtain
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another totally disconnected locally compact topological field. This field is of characteristic P

and is called the p-series field.

We will now discuss about the general local fields.

Let K be a field and a topological space. Then K is called a locally compact field or a local
field if both K+ and K* are locally compact abelian groups, where K+ and K™* denote the
additive and multiplicative groups of K respectively.

If K is any field and is endowed with the discrete topology, then K is a local field. So we
will only consider non-discrete fields. Further, if a local field K is connected, then K is either R
or C. If K is not connected, then it is totally disconnected. If the characteristic of K is positive,
then it is a field of formal power series over a finite field GF(p©). If ¢ = 1, then it is a p-series
field and if ¢ # 1, then K is an algebraic extension of degfee c of a p-series field. If K is of
characteristic zero, then K is either Q, for some p or a finite algebraic extension of such a
field. So, by a local field, we mean a field K which is locally compact, non-discrete and totally
disconnected. We refer to Theorem 4.12 in [66] for a proof of the classification of local fields.

We use the notation of the book by M. H. Taibleson [72]. Proofs of all the results stated in
this section can be found in the books [72] and [66].

Let K be a local field. Since K is a locally compact abelian group, we choose a Haar
measure dz for K+, If o # 0, « € K, then d(az) is also a Haar measure. Let d(ax) = |a|dz.
We call || the absolute value or valuation of o. We also let 0| = 0.

The map = — |z| has the following properties:
(a) x| = 0if and only if z = 0;
(b) |zy| = |z||y| forall z, y € K
© | +y| < max{)z|,|y|} forall z,y € K.

Property (c) is called the ultrametric inequality. It follows from this property that
|z + y] = max{jz), ly|} if |=] # Y| (2.1

Theset D = {z € K : |z| < 1} is called the ring of integers in K. It is the unique maximal
compact subring of K. Define 3 = {z € K : |z| < 1}. The set P is called the prime ideal in

K. The prime ideal in K is the unique maximal ideal in ©. It is principal and prime.
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Since K is totally disconnected, the set of values |z|, as x varies over K, is a discrete set
of the form {s* : k € Z} U {0} for some s > 0. Hence, there is an element of B of maximal
absolute value. Let p be a fixed element of maximum absolute value in 3. Such an element is
called a prime element of K. Note that as an ideal in D, = (p) = pD.

It can be proved that D is compact and open. Hence, % is compact and open. Since P is
compact, ® /% is compact. Since P is open, D /B is discrete. Also, since I is a maximal ideal
in ©, we have © /3 is a field. Thus, ® /B is isomorphic to a finite field G F'(q), where ¢ = p°
for some prime p and ¢ € N.

For a measﬁrable subset E of K, let |[E| = | w 1E(z)dz, where 1 is the characteristic
function of £ and dz is the Haar measure of K normalized so that |D| = 1. Then, it is easy to see
that || = ¢~ and |p| = g~!. We can decompose D into q cosets of PB. Thus 1 = |D| = ¢,
this gives || = ¢~ 1. Since P = pD, we have |p| = ¢~ 1. It follows that if x # 0, and z € K,
then |z| = ¢* for some k € Z.

LetD* =D\ P = {xr € K:|z] = 1}. D* is the group of units in K*. If z # 0, we can
write z = p*2’, with 2’ € D*. Let pF = pFD = {z € K : |z| < ¢"*}, k € Z. These are called
the fractional ideals. Each ‘,Tjk is compact and open and is a subgroup of K (see [66]).

If K is alocal field, then there is a nontrivial, unitary, continuous character y on K*. It can
be proved that K is self dual (see {72]). The existence of such a character follows from the
Pontryagin duality theorem.

Let x be a fixed character on K+ that is trivial on D but is nontrivial on P—1. We can find
such a character by starting with any nontrivial character and rescaling. We will define such

a character for a local field of positive characteristic. For y € K, we define x,(x) = x(yx),
r € K.

Definition 1.2.1. If f € L'(K), then the Fourier transform of f is the function f defined by

fe) = /K F(@)xe@) de.
Note that
f(f) = /Kf(iE)X(&?) dr = /K f(@)x(—¢z) dz.

Similar to the standard Fourier analysis on the real line, one can prove the following results.
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() The map f — f is a bounded linear transformation of LY(K) into L>°(K), and

1/ lloo < 17112

(b) If f € LI(K), then f is uniformly continuous.
(© If f € LY(K) N L*(K), then || f|l2 = |fl>-

To define the Fourier transform of functions in L2(K'), we introduce the functions ®y. For

k € Z, let @y, be the characteristic function of ‘33’“,

Definition 1.2.2. For f € L2(K), let fr, = f®_; and

€)= Jim fue)= jim [ s@e@ e
Ti>q

where the limit is taken in L2 (K).
We have the following theorem (see Theorem 2.3 in [721).
Theorem 1.2.3. The Fourier transform is unitary on L?(K).

A set of the form h + ‘3[3’“ will be called a sphere with centre h and radius q"“ . It follows
from the ultrametric inequality that if S and T are two spheres in K, then either S and T are
disjoint or one sphere contains the other. Also, note that the characteristic function of the sphere

h + 8% is @4 (- — h) and that @ (- — k) is constant on cosets of BF.

Definition 1.2.4. The set S is the space of all finite linear combinations of functions of the form

®x(-— h), h € K,k € Z. This space is called the space of testing functions.

This class of functions can also be described in the following way. A function g € S if and
only if there exist integers k, [ such that g is constant on cosets of B and is supported on P
It follows that S is closed under Fourier transform and is an algebra of continuous functions
with compact support, which is dense in Co(K) as well as in LP(K),1 < p < co. We have the

following theorem.

v . l A ;
Theorem 1.2.5. If g € S is constant on cosets of 213’C and is supported on ', then § € S'is

constant on cosets of 8~ and is supported on Pk,
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We will use the notation Ng = NU {0}. Let X be any character on K *. Since D is a
subgroup of KT, the restriction X.|p is a character on D. Also, as characters on D, X, = X if
and only ifu—v € ®. Thatis, xu = Xy ifu+D = v+D and xy # xo If (U+D)N(v+D) = ¢.
Hence, if {u(n) : n € No} is a complete list of distinct coset representative of D in KT, then
{ Xu(n) i Tt € Ng} is a list of distinct characters on ©. It is proved in [72] that this list is complete.

That is, we have the following proposition.

Proposition 1.2.6. Let {u(n) : n € No} be a complete list of (distinct) coset representatives of
D in K. Then {Xu(n) : n € No} is a complete list of (distinct) characters on 2. Moreover, it is

a complete orthonormal system on D.

Given such a list of characters {Xu(n) : n € Np}, we define the Fourier coefficients of
feLl(®)as
fu) = [ f@xam@s

% .,

The series Eo F(u(n)) Xu(n) () is called the Fourier series of f. From the standard L?-theory
n=

for compact abelian groups we conclude that the Fourier series of f converges to f in L2 ®)

and Parseval’s identity holds:

| V@de = 371 Fam

n=0

These results hold irrespective of the ordering of the characters. We now proceed to impose
a natural order on the sequence {u(n) : n € No}. Note that T’ = D/ is isomorphic to the finite
field GF(q) and GF(g) is a c-dimensional vector space over the field GF(p). We choose a set

{1 =coe1,e, - ,€c—1} C D* such that span {ep, €1, €, ,ec—1} = GF(q). Forn € Ny
such that 0 <n < g, we have

n=a0+a1p+"'+ac—1pc—la OSak <pak=o717"' ,¢— 1

Define

u(n) = (ag+arey + - - - + ac_lec_l)p“l. (1.2.2)
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Now, for n > 0, write

n=b0+bIQ+b2q2+"'+b3q89 0,<_bk<61;k=011;2» y S,

and define
u(n) = u(bo) +ub)pt + -+ ulbsp™" (1.2.3)
This defines u(n) for all 7 € Np. In general, it is not true that u(m + n) = u(m) + u(n).
But
u(rg® + s) = w(r)p~* +u(s) ifr>0,k>0and0<s < g (1.2.4)

For brevity, we will write Xn = Xu(n), ™ € No. As mentioned before, {xn : n € Np}isa

complete set of characters on .

Letd = {ai}‘i’;é be a fixed set of coset representatives of 9 in D. Then every = € K can

be expressed uniquely as.
n
=20+ bipt, o €D br €U
k=1

Let K be a local field of characteristic p > 0 and €g, €1, . . - , €1 be as above. We define a

character x on K as follows (see [76]):

exp(27i/p), p=0andj=1,
1, p=1,---,c—lorj#1l

X(fub-j) — (1.2.5)
Note that Y is trivial on D but nontrivial on .

We have the following result for x. We refer to [44] for a proof of this fact.
Proposition 1.2.7. Foralll, k € Ny, we have x(u(k)u(l)) = 1.

In order to be able to define the concepts of MRA and wavelets on local fields, we need
analogous notions of translation and dilation. Since 'UZp"j 9 = K, we can regard p~tasthe
dilation (note that |p~!| = g) and since {u(n) :n éeNo} is a complete list of distinct coset
representatives of D in K, the set {u(n) : n € No} can be treated as the translation set. We

make the following definition.
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Definition 1.2.8. A finite set {t, : m = 1,2,---, M} C L?(K) is called a set of basic
wavelets of L(K) if the system (@ m(p™ - —u(k)) : 1< m < M, j € Z,k € No} forms

an orthonormal basis for L2(K).

As we mentioned earlier, the local fields are essentially of two types (excluding the connected
local fields R and ©). The local fields of characteristic zero include the p-adic field Q. Albeverio,
Kozyrev, Khrennikov, Shelkovich, Skopina and their collaborators have discussed about MRA
and wavelets on Qp, in a series of papers [3, 46, 47, 48, 49, 50, 52]. Khrennikov, Shelkovich and
Skopina [50] constructed a number of scaling functions generating an MRA of L%(Q,). But
later on in [2], Albeverio, Evdokimov and Skopina proved that all these scaling functions lead to
the same Haar MR A and that there exist no other orthogonal test scaling functions generating
an MRA of L?(Q)) except those described in [50]. Some wavelet bases for L2(Q,) different
from the Haar system were constructed in [31] and [1]. These wavelet bases were obtained by
relaxing the basis conditions in the definition of an MRA.

A 2-series field is also known as the Cantor dyadic group and p-series fields are also called
the Vilenkin groups. Lang [53, 54, 5] constructed several examples of wavelets for Cantor
dyadic group. Farkov [32, 33] has constructed many examples of wavelets for the Vilenkin

groups. Several examples of biorthogonal wavelets on the Vilenkin groups were constructed by

Farkov in [34] and by Farkov and Rodionov in [35].

1.3 Organization of the thesis

The aim of this thesis is to develop atheory of wavelets on local fields X of positive characteristic.
The algebraic structure of such local fields is similar to that of real number field and the translation
set {u(k) : k € Ng} of K is a countable discrete subgroup of K. This is analogous to the fact

that the translation set Z of R is a countable discrete subgroup of R. But, unlike the real line, it

1s not true in general that u(k) + u(l) = u(k + 1) for nonnegative integers k and [. This problem

does not show up in the Euclidean case. We have to deal with issues related to this problem
separately.
This thesis is based on the five problems discussed in the articles [6], [7], [8], [9]and [10] .
In Chapter 2 we will discuss about the MRA on local fields of positive characteristic.

We will show that it is enough to assume that the discrete translates of a single function in
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the core subspace of an MRA forms a Riesz basis instead of an orthonormal basis and show
how to constrﬁct an orthonormal basis from a Riesz basis. We show that the properties in the
definition of an MRA on L2(K) are not independent. We will prove that the intersection triviality
condition in the definition of MRA follows from the rest of the properties of an MRA. The union
density condition also follows if we assume that the Fourier transform of the scaling function is
continuous at 0. At the end of this chapter we will characterize the scaling functions associated
with such an MRA. This work is summarized in the publication [7].

The concept of quasi-affine frame in Euclidean spaces was introduced to obtain translation
invariance of the discrete wavelet transform. We have extended this concept to a local field of
positive characteristic. We have shown that the affine system generated by a finite number of
functions is an affine frame if and only if the corresponding quasi-affine system is a quasi-affine
frame. In such a case we have proved that the exact frame bounds are equal. This result is
obtained by using the properties of an operator associated with two such affine systems. We also
characterize the translation invariance of such an operator. A related concept is that of co-affine
system. We prove that L?(K') does not have any co-affine frame. This is the content of Chapter 3.
These results are summarized in [10].

In the case of L%(R), a wavelet ¢ is characterized by two basic equations. That is, a function
P € L2(R), with ||¢| = 1, is a wavelet of L?(R) if and only if 1 satisfies (1.1.6) and (1.1.7).
Bownik [15] gave a new approach to characterize multiwavelets in L2(R") by means of basic
equations. This result is based on results about shift invariant systems in [15] and quasi-affine
systems in [22]. Using the results on affine and quasi-affine frames obtained in Chapter 3, we
give a characterization of wavelets on local fields of positive characteristic in Chapter 4. Among
all the wavelets, the wavelets those arise from an MRA are characterized by a single equation. A
wavelet 9 of Lz(lR) is an MRA-wavelet if and only if Dy, (§) = 1 forae. § € R. In the same
chapter, we will discuss an analogous result of MRA-wavelets for the case of local fields of
positive characteristic. This work is the content of the article [9].

In Chapter 5, we will discuss about wavelet packets and wavelet frame packets. The concept
of wavelet packet was introduced by Coifman, Meyer and Wickerhauser. In the context of a local
field K of positive characteristic, we first prove a crucial result called the splitting lemma. Using
this lemma, we have constructed the wavelet packets associated with an MRA of such a field.

We have shown that these wavelet packets generate an orthonormal basis by translations only.
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We then proved an analogue of the splitting lemma for wavelet frames on K and constructed the
associated wavelet frame packets. This work is summarized in the publication [6].

The concept of biorthogonal wavelets plays an important role in applications. We have
generalized this concept to a local field K of positive characteristic. We prove that if ¢ and  are
the scaling functions of two MRAs {V; : j € Z} and {V} : j € Z} such that their translates are
biorthogonal, then the associated families of wavelets are also biorthogonal. Under mild decay
conditions on the scaling functions and the wavelets, we also prove that the wavelets generate

Riesz bases for L2(X(). This is the content of Chapter 6 and is summarized in the article [8].



Chapter 2

Multiresolution Analysis On Local

Fields Of Positive Characteristic

The concepts of MRA and wavelet can be generalized to a local field K of positive characteristic
by using a prime element p of such a field. An MRA is a sequence of closed subspaces of L2(K)
satisfying certain properties. In this chapter, we will discuss about the interdependency of the
properties in the definition of an MRA. We will also characterize the scaling functions associated
with an MRA on such a field.

This chapter is organized as follows. In section 2.1, we define the concept of MRA on local
fields K of positive cheracteristic. We will briefly mention how to get a set of basic wavelets
from an MRA and provide an example which is analogous to the Haar wavelets on R". It is
traditional to define an MRA by specifying the five properties that a family of subspaces must
satisfy. One of the properties is that the central space or the core space of an MRA has an
orthonormal basis consisting of discrete translates of a single function. We show that it is enough
to assume that these translates form only a Riesz basis for this space. We also show how to
construct an orthonormal basis for the core space from a Riesz basis. In section 2.2, we show
that the properties in the definition of an MRA of L?(K) are not independent. We will prove
that the intersection triviality condition follows from the rest of the properties of MRA. Same
is the case for the union density condition, if we assume an additional condition on the scaling
function. Finally, in section 2.3, we give necessary and sufficient conditions on a function to be

the scaling function for an MRA of L2(K).

17
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2.1 MRA on local fields

Similar to R", wavelets can be constructed from an MRA. We define an MRA on local fields as
follows (see [44]):
Definition 2.1.1. Let K be a local field of characteristic p > 0, p be a prime element of X and
u(n) € K forn € Ng, be as defined in (1.2.2) and (1.2.3). A multiresolution analysis (MRA)
of L?(K) is a sequence {V; : j € Z} of closed subspaces of L2(K) satisfying the following
properties:
(@ V;CVyforall j € Z;
(b) U Vjisdense in L2(K);
JEZ
© N V;={0};
JEZ

(d) f€V;ifand only if f(p~1) € Vjyq forall j € Z;

() there is a function ¢ € V;, called the scaling function, such that {x(- — u(k)) : k € No}

forms an orthonormal basis for Vo

GivenanMRA {V; : j € Z}, we define another sequence {W; : j € Z} of closed subspaces
of L2(K) by

W= Vi oV

These subspaces also satisfy

f e W;ifandonly if f(p~1) e Wy, j e Z. @2.1.1)

Moreover, they are mutually orthogonal, and we have the following orthogonal decompositions:

) = Pw, 2.1.2)
JEZ
= Voo (P W;). 2.13)
720

Observe that the dilation is induced by p~1 ang |p‘1| = g. As in the case of R", we

expect the existence of ¢ ~ 1 number of functions {4y, s, - - - »%¥q-1} to form a set of basic
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wavelets. In view of (2.1.1) and (2.1.2), itis clear that if {1, - 9,1} is a set of functions
such that {¥n,(- = u(k)) : 1 < m < ¢ — 1,k € Ng} forms an orthonormal basis for 1V, then

{@?pm(p™  —u(k)) : 1 < m < g—1,j € Z,k € Ny} forms an orthonormal basis for
L*(K).
For f € L?(K), we define

fir(@) =2 f(p Iz —u(k)), jeZkeN.
Then it is easy to see that
I fikllz =11/ ll2
and
(Fi)©) = a7 x(p7E) F ().

We will now briefly mention how one can get a set of basic wavelets from an MRA. Let
{V; : j € Z} bean MRA of L?(K). Since ¢ € Vo C Vi, and {1 : k¥ € No} forms an

orthonormal basis of V3, there exists {af : k € Ng} € £2(Np) such that

e(z) = aork(@)-

keNy

Taking Fourier transform, we get

2(€) = q V2 Y adxu(pE)p(pE) = mo(pE)P(pE), (2.14)

keNy

where mg(€) = ¢ V2 ¥ a@xx(6)-
keNg

Definition 2.1.2. A function f on K will be called integral-periodic it
f(z + u(k)) = f(z) for all & € No.

The following property of mg is shown in [44] (see Proposition 3).
Theorem 2.1.3. The function My is integral-periodic and is in L* (D).

As in the case of R", it can be shown that if we can find integral-periodic functions m;, 1 <
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i < g — 1, such that the matrix

1971
S —
is unitary for a.e. £ € D, then {y!, 2, ..., 1} forms a set of basic wavelets for LY(K),
where

D(€) = m; (p€)H(pE).

In other words, if

mi() = a2 ) axx(6),

keNp

where {al : k € No} € ¢2(Ny), then,

W) =2 S ake(pte - (k).

k€N

We now give an example of an MRA and the associated wavelets.

Example 2.14. Let ¢ = 1g. Define V; = span{y (p~7 ~u(k)) : k € No}. Then {V; :j € Z}
forms an MRA of L2(K). This will be called the Haar MRA. Observe that

g—1
o(x) = Z e(p~tz — uk)).
k=0

Taking Fourier transform, we get
q—1
PE) = a7 Y xx(PE)P(pE) = mo(pE) B (pE),
k=0

q—1
where my(§) = g1 > xk(6).
k=0
We define

q-1

V(@) =D esa 2o (p e — u(j), 1<i<q-1, @2.1.5)
=0

o oNg—1 . . .
where A = (al])g’j=0 1s an arbitrary unitary matrix such that agj =q /2 for0<j<qg-1
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It can be shown that the columns of the corresponding matrix M (¢) form an orthonormal
basis for C?. Hence the matrix M (€) is unitary a.e. This will show that {¢* : 1 < i < ¢ — 1}is
a set of basic wavelets.

The wavelets constructed above are the analogues of the Haar wavelets on R™. We will call
 the Haar scaling function and the corresponding wavelets will be called the Haar wavelets.
‘We would like to point out that the expression for the Haar wavelets given in [44] is not correct.
In fact, they are not even orthogonal to each other.

An example of a unitary matrix A with a constant first row is the following. Let ag; = g /2

for0<j<g-1Forl <i<g—1,define

(g = 2)(g — i + D] Y2 j=01..,q—i~1,
aij=4 —(g—)[(g—)(g—i+D]V2 j=q-i
0, j>q-—1.

The following elementary properties of u(n) for n € Ng will be very useful in the sequel.
Proposition 2.1.5. For n € Ny, let u(n) be defined as in (1.2.2) and (1.2.3). Then
(a) w(n) =0ifandonly if n = 0, and [u(n)| = ¢" ifand only if ' <n < g, 7 2 1;
(b) {u(k):keNg}={—u(k):keNo}
(c) Forafixedl e Ny, {u(l) + u(k) : k e No} = {u(k) : k € No}.

Proof. 1t follows from the definition that u(n) = 0 if and only if n = O. To prove the

second statement in (a), observe that {u{n):n=10,1,...,9 — 1} is a complete set of coset
g-1 . . .
representatives of D in 1, ice., B! = U (D + u(n)). Using this, for any integer 7 = 1, we
n=0
can write
q"—1
7 = |J@+um)
n=0
qr—l__l q"—l
= U @rumU ( U @ +u(n)))
n=0 n=qr—l
g -1
= g+ ( U @+ u(n)))- 2.16)

n=gq" 1
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Now, fix n € Ng such that ¢~} < n < ¢". Then, by the definition of u(n) and the
ultrametfic inequality, we have |u(n)|] < ¢”. We claim that [u(n)| > q"~L. If this is not true,
then u(n) € P~"+1. But then, any z € D + u(n) will have |z] < ¢" 7%, by the ultrametric
inequality. This would imply that ® + u(n) C P~"+1. Since the sets appearing in (2.1.6) are
disjoint, we get a contradiction. This proves our claim. Since the absolute value of any non zero
element in K is a power of g, we get [u(n)| = q".

Suppose that 0 < k£ < q. Thenk = ag +a1p+--- + ac-1p°~ 1, where 0 < q; < p for
i=0,1,---,c— 1. For each i, let b; be such that 0 < b; < pand a; + b; = 0 modulo p. If we
letl =bg+bp+ - + be—1p® 1, then it is clear that u(k) + u(l) = 0. Thus, u(k) = —u(l)
for some [ with 0 < [ < g. Now,any n > 0, let n = do+ d1g + dag?® + - - - + dsg®, where
0<d;<qfori=0,1,2,---,s. Then, by definition

w(n) = u(do) + u(dr)p ™! + -+ u(dy)p .

Foreach i with 0 < ¢ < s, we have u(d;) = —u(r;) with0 < r; < ¢. So u(n) = —u(m),
wherem =rg+r1g+72¢% + - +75¢° with 0 < r; < qfori =0, 1, 2, -+, s. This proves (b).
To prove (¢), fix I € N, and let k € Ny. Let

l=ao+a1g+ad+ +arq", 0<a;<qi=0,1,2,---,r

and

k=b0+bIQ+b2q2+"‘+bsan Osbi<q7i=071a27“' ) 8-

Without loss, we can assume that r < s. Then

3

ull) +u(k) = (u(ao) + u(bo)) + (u(az) + w(by))p~t + .- - + (u(as) + u(bs))p™

where we have taken a; = 0 for r <% < s. Since K is of characteristic p, we can show
that u(a;) + u(b;) = w(l;) for some I; with 0 < li < g. Sou(l) + u(k) = u(m), where
m = lo+lig+laq® +- - - +1,¢°. This shows that {u(l)+u(k): k € No} C {u(k) : k € No}. To
prove the reverse containment, let k € No. We have to find m € Ny such that u(l)+u(m) = u(k).

B '
y (b), we can find I’ € Ny such that u(l") = —u(l). Then, u(k) + u(l’) = u(m) for some
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m € No. Hence, u(l) + u(m) = u(m) — u(l’) = u(k). This completes the proof. o
We have the following result for translates of a function to be an orthonormal system. The

proof is similar to the proof in the Euclidean case.

Theorem 2.1.6. Let ¢ € L?(K). The system {¢(- — u(k)) : k € No} of functions is an
orthonormal system in L2(K) if and only if Y. |2(€ + w(k))|2 = 1forace. € € K.
keNg

In some of our resuits, we only need that {p(- — u(k)) : k € Ny} is a Riesz basis of Vj,

which is weaker than being an orthonormal basis.

Definition 2.1.7. Let H be a separable Hilbert space. A subset {2y, : n € Ng} of H is said to
be a Riesz basis of H if for any = € H, there is a sequence {ay : k € Ng} € ¢2(Np) such that

T = Y akzi with convergence in H, and
keNo

C1 Z lak)? < ” Z akkaz < Cy Z |a|?,
keNg

keNg keNy
where the constants C;, Cy satisfy 0 < C7 < Cy < oo and are independent of x.

The system {z, : k € Np} of functions is said to be a frame of H if there exist constants A
and B such that

Ajell3 < 3 o) < Bllal|3  forall f € H.
keNy

The largest A and smallest B that can be used in the inequalities are called the frame
bounds. In the definition of MRA, we can relax the last condition by requiring the system of
functions {(- — u(k) : k € No} to form a Riesz basis instead of an orthonormal basis of V4.
It will follow from the following lemma that we can then find another function ¢y such that

{®1(- — u(k) : k € Ny} forms an orthonormal basis of Vg.

Lemma 2.1.8. Ler g € LZ(K) be such that {o(- — w(k)) 1 ke No} forms a Riesz basis of its

closed linear span; that is,

o S Jarl? < H 3 gl - u(k))”i < Y jul @.17)

keNg keNg k€Ng

2
where 0 < C; < Cy < oo and they are independent of the sequence {ak 1 k € No} € £4(Ny).
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Then for a.e. £ € D, we have

Cr< Y 12( + uk) < Ca (21.8)
keNg

Proof. Let

Ap={€D: > |P(E+uk)f > a}.

keNp
Assume thai A, has positive measure. We will prove that o < Cs. Let 1 4 denote the character-

istic function of the set A. Consider the sequence {ay : k € Np} € £2(Np) such that

14,08 = Z apxk(€) forae. (€.

keNg
Then,
“Z akep(- —u(k))H = / .Z arxk(§ ‘ )| [e(€))? de
keNo k€Np
= LI aoa@] 16+ uap i
keNp leNp
= [ 3 et uy ae
Aa leNp
> / o d€ = al4,|.
Ao
By Parseval’s identity, we have, 2 lakl? = ||14, |2 = |Aa). Hence
keNy ’

| 3wt ]|} > alaa <o 3 jaup.

keNo keNg

Comparing with (2.1.7), we see that o < Cy, as required. Hence, the set {€ed: ) |pc+

w2 > G h keNy
(DI > Co} has measure zero. Therefore, Z |P(E+u(k))? < Cp forae. € € D. Similarly,

considering the set

Ba={¢eD: 3~ (6 +u(t)p < o},

k€ENg
we get the left hand inequality of (2.1.8).
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Using this lemma, we can show that if the translates of a function form a Riesz basis for

the subspace they span, then it is possible to find another function whose translates form an

orthonormal basis for the same subspace.

Proposition 2.1.9. Let o € L2(K) and suppose that {p (- — u(k) : k € No} forms a Riesz basis
of its closed linear span V. Then there exists a function 1 such that {1(- ~ u(k) : k € No}

forms an orthonormal basis for V.

Proof. Let

56 = (3 tete+utkniz) "

keNg

Define ¢; so that ¢; = Si It follows from (2.1.8) that ¢» € L%(K). Hence,  also belongs
to L2(K). Since S, and g~ belong to L2(D), there exist two sequences {ak : kK € No} and
{Bx : k € No} in £2(Np) such that for a.e. £ € D, we have

=3 wx® and %:Zﬁkm—)

keNg keNy
Hence,
=5(©) S Bxk® and (&) = 1(8) Y ewxw(8)-
keNg keNg
That is,

pi(r)= Y Brp(x — u(k)) and () = S awpr(e — u(k)),

keNg keNg
with convergence in L2(K ). Therefore, {p(- — u(k) : k € Np}and {p1(- —u(k) : k€ No}
span the same subspace of L2(K). It follows from Proposition 2.1.5 that the function Sy is

integra_l-periodic. In fact, for each [ € Ny, we have

Sp&+ul) = Y (€ +uld) +u(k)) =Y g€ (k)P =528 forae ek

kENO kENo

Therefore, for ae. £ € K, we have

U 2
S a(e +u@)P = z'*"ﬁ“ OF _ LS g+ u@)P’ =1
S2(€ +u(l)) &)

leNy
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By Theorem 2.1.6, {1 (- — u(k) : k € Np} is an orthonormal system. 0

2.2 Intersection triviality and union density conditions
In this section we show that the intersection triviality condition in the definition of MRA follows
from the other properties. For the corresponding results on R and R™ we refer to [30, 42, 62].

Theorem 2.2.1. Let {V; : j € Z} be a sequence of closed subspaces of L*(K) satisfying

conditions (a), (d) and (e) of Definition 2.1.1. Then, (| V; = {0}. This is the case even if.in (e),
JEZ
we only assume that {(- — u(k)) : k € No} is a Riesz basis.

Proof. Since {¢gk : k € Ng} constitutes a Riesz basis for Vo, in particular, it is a frame for V;.

Hence, there exist 4, B > 0 such that

A3 < D 1Ufvor)l? < Bljf|2 forall f € Vp.
keNp

By condition (d) of Definition 2.1.1, we can write

AIFIZ < DI ei)? < BIFIZ forall fe V), e Z., @2.1)
keNg

Let f € jQZ Vi and € > 0. Recall that the space S of all finite linear combinations of the

form ®(- ~ h) is dense in L2(K). So, there exists g € & such that
If —gllz <e

Forje Z, let P; be the orthogonal projection on Vj. That is,

Bif = Y (it es0eim e LK),
keNg

Then,

S = Piglla = |P;(f - D2 <If-gllz < e
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Therefore,

1Fllz <€+ 1P591l2-

From (2.2.1), we have

| Piglls < A7Y 7‘(2 g, @j,k>l2)l/2- 222)

keNg

Since g is compactly supported, we can assume that supp g {zeK:x|<qg°}="P"for

some s > 0. Now

Y g i = Z/

(@) %= ()|

keNg keNg ” 1S
< ¢ x) T — uw(k))|dx
¢ 3 ([ Jo@lleee =) )’
< WY ([ Jetre-uklar)”
keN, ¥ I%Isa ’
< 7oy q / (b - u(k))[*de
keNg

= olze S / () Pdy

P +u(k)|<qv+s

oz 3 / lo(v)|Pd,

keNg

where S = {y: [y + u(k)| < ¢/*°}. Let S; = U Sk
keNo
Note that for j small enough, {S; : k € No} is a disjoint collection, since {u(k) : k € No}

is a complete list of distinct coset representative of ©® in K and
{u(k) : k € No} = {—u(k) : k € No}-

Therefore, for j small enough, we have

PORICAZ

keNg

I

loloa® [ ey

lol%a’ /K 15, (V) (0)Pdy. @23)
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Observe that, if y # —u(k),k € Ny, then 1g; (y) = 0asj — —oo. In fact, there exists
J € Zsuchthat 15; (y) = 0if j < J. By Lebesgue dominated convergence theorem, the right

hand side of (2.2.3) tends to 0 as j — —oo. In particular, there exists 7 such that

Y- g, widl? < €A
keNg

Substituting in (2.2.2), we get
IPigllz <e

Therefore, || f||l2< 2¢. Since € was arbitrary, we get f = 0 a.e. O

For the next result, we need the following lemma proved in [59].

Lemma 2.2.2. If g € S and y € L*(K), then

Mo sl = [ 3000 O a(6 +pu0)FIE + ul) e

keNg leNg

We now assume that the function ¢ is such that ¢ is continuous at 0. Under this assumption

we can show that the union density condition follows from conditions (a), (d) and (e) in the
definition of MRA..

Theorem 2.2.3. Let {V; : j € Z} be a sequence of closed subspaces of L*(K) satisfying

conditions (a), (d) and (e) of Definition 2.1.1. Assume that the function o of condition (e) is such

that $ is continuous at € = 0. Then the following two conditions are equivalent:

(i) ¢(0) #0.
(i) U Vj=L(K).
J€Z
Moreover; when either is the case, we have |2(0)] = 1.

Proof. Assume that ¢(0) # 0. Let fe ('UZ V})J‘ so that P;f = 0 for all j € Z. We claim that
f=0ace. I€

Let ¢ > 0. Since S is dense in L*(K), there exists 9 € S such that

If—gllz <e (2.2.4)
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Hence, for all j € Z, we have

WPjgllz = |1Pi(g— Nll2 < llg = fll2<e

Since {g; : k € No} forms a Riesz basis, and hence a frame for V;, there exist A, B > 0 such

that

AIFIB < ST 1wl < BIFIZ forall f € V.
keNg

In particular, we have

> g, vl < Bl Pigl3- (2.25)
keNp

Since g € Sand ¢ € L2(K), by Lemma 2.2.2, we have

> N i)l

keNg

= [ 3@ew { 3 ate +pu)FHE )

leNp

/K BOPIEPE + | OO 3 8(€ +v ) p(pIE + u(l)) ot

leN

[ b@rI@ P + By, sy 226

Then

e OO T 1(E + I u®)lIpe +u(b)| e
JK IeN
< 12l /K S B3 + P u)lde. @27)

leN

Observe that ¢ is bounded by (e) of Definition 2.1.1 (see Theorem 2.1.6).
Since g € S, there exist integers k, [ such that g is constant on cosets of ‘,Bk and is supported
on ‘131. Hence, §j € S is constant on cosets of £]3'l and is supported on ‘,B_k (see Theorem 1.2.5).

We now show that, for large 7, each term of the sum that appears on the right of (2.2.7) is 0.
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Let () #0. Then & € P So|¢| < ¢*. For j > kandforany | € N, we have
lp~Pu(D) = @’ Ju()] = ¢ > "
Therefore, for j > k, we have |€| # Jp~u(l)|. Hence, by (1.2.1) and Proposition 2.1.5, we have
€ +p~7u(l)] = max{|¢], p~Pu(l)]} > ¢’ > ¢*.

That is, £ +p~7u(l) ¢ P~*, and hence, §(£€ + p~7w(l)) = 0 for all § > k. This implies that
|I%;| — 0asj — oo.

Since || Pigllz < ¢, from (2.2.5) and (2.2.6), we have

(Am@mawaﬁm+&<3a

That is,
| 1a@rIswieras < B -,

Since ¢ is continuous at 0 with @(0) # 0, the left hand side converges to |¢(0)|2||gn§ as j — 00.
It follows that

lgl3 < Be*|(0)) 72
Hence,

lgllz < BY2¢|p(0)) 7.
By (2.2.4)

712 < (1 + BY2[3(0)|1)e.

Again, since ¢ was arbitrary, we getthat f = 0 a.e. This proves (ii).

Assume now that | J Vj = L*(K). Consider [ such that f = 15. Note that
JEZ
I llz = 11F )2 = 1.

Wehave, I~ Piflls - 0 as j = 00, due to (a) of Definition 2.1.1 and our assumption. Thus,
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I1P; fll2 — 1Ifl2 =1 as j — oo. Therefore, we have

155 £13

H > AL, soj,k)sﬁj,kHz

keNp

> K i)l

keNp

I

since {¢;k : k € No} is an orthonormal basis of V.

For j > 1, wehave ® C iB‘j . From the Plancherel theorem and the fact that f = 1gp, we

have

IPifI1E = D Iheinl

keNg
R JP R — X 2
= 2| [ o0 om0 o]
keNg K
N [P — R 2
= Y| e eeowwo|
keNg P
. n N 2
= | [ FermEtxemin|
keNg ?
By Parseval’s identity, we have
P13 = / O 1F (07m)p ()
JD

o U GECHI

-7

/K HEECRIES

Since || P;f||2 — 1 as j — oo, we have
lim / If (e &) 2d€ = 1. (2.2.8)
J—o0 JK

o FlI215 (0 12
By Lebesgue dominated convergence theorem, the left hand side is equal to || f |I2]2(0)|*. Hence,

|¢(0)| = 1. This completes the proof of the theorem. t
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2.3 Characterization of scaling functions

In this section we will characterize those functions that are scaling functions for an MRA of
L?(K). But, first we will clarify what we mean when we say that a functipn is a scaling function
for an MRA.

Given a function @ in L*(K), we define the closed subspaces {V; : j € Z} of LK) as

follows:

Vo =span{e(- — u(k)) : k € Ny}, and
Vi={f: f(p) € Vo} it jez\ {0},

We say that ¢ € L2(K) is a scaling function for an MRA of L?(K) if the sequence of closed
subspaces {V; : j € Z} as defined above constitutes an MRA of L3 (K).

Theorem 2.3.1. A function ¢ € L¥K)isa scaling function for a multiresolution analysis of

L2(K) if and only if

Do IPE+uENP =1 foraeted, 23.1)
kENg
jli;& 20 =1 foraetek, 2.3.2)

and there exists an integral-periodic Junction myg in L*(D) such that

P(E) = mo(pE)B(pE)  forae.€c K. (23.3)

Proof. Suppose that  is a scaling function for an MRA of L*(K). Then {y(- — u(k)) : k €

No} forms an orthonormal system in L2(K') which is equivalent to (2.3.1) by Theorem 2.1.6.

Equality (2.3.3) follows from equation (2.1 4) and Theorem 2.1.3. To

prove (2.3.2), we proceed
as follows. Since {v;

+7 € No} isanMRA of L2(K), we have (J V, = L2(K). Following the

second part of the proof of Theorem 2.2.3 (see equation (2.2.8),] ivze have

Jim [ e =1
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Substituting (2.3.3) into (2.3.1), we get

1= ) 1@l +uk)?

keNg

= ) Imo(€ + pu(k)P|(€ + pu(k))[?

keNg

g—1
ST imo(€ + pull + kg))|2@(€ + pull + k)|

=0 ICGNQ

q-1
= 37037 Imol€ +ulk) + pu®)) PIH(E + ulk) + pu())]?

=0 keNg

g—1
=SS 16+ ulb) + pu)I? imol€ +pe)I

=0 keNo

In the fourth equality, we have used equation (1.2.4). Using (2.3.1) again, we get

=

.
|mo(€ +pu())]? =1 forae. £ € K.

o~
i
=3

In particular, we get
|mo(€)| < 1forae. € € K.

This inequality and equality (2.3.3) show that |2(p7€)) is non-decreasing for a.e. § € K as

J — oo. Let
9() = lim |7 I
j—c0
Since |@(€)| < 1ae. (which follows from Theorem 2.1.6), by Lebesgue dominated convergence

theorem it now follows that

/@ g(€)de = 1,

and (2.3.2) then follows since 0 < g(§) < 1fora.e. £ € K.

We now prove the converse. Assume that (2.3.1), (2.3.2) and (2.3.3) are satisfied. The
orthonormality of {¢(- — u(k)) : k € No} is equivalent to (2.3.1), as observed earlier. This fact
along with the definition of Vj gives us (¢) of the definition of an MRA.

. . -1 .
The definition of the subspaces V; also shows that f € V; ifand only if f(p™") € Vit1,
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which is (d) of the definition of an MRA. Now, for each j € Z, we claim that
Vi={f : F(p77€) = wi(§)p(€) for some integral-periodic u; € L*D)}. (234

We can show this by expressing f(p’-) € Vo as a linear combination of {¢(- ~ u(k)) : k € No}
and then taking Fourier transforms.
To prove V; C Vj 11, itis enough to show that Vi C V). By (2.3.4), given f € V), there is

an integral-periodic function pg € L2(®D) such that

f71€) = no(p~&)p(p7%e).

Thus, using (2.3.3), we get

f(671€) = po(p~&)mo(&)2(©).

It is clear that the function po(p~1)my is integral-periodic. Now

S ot 0 ma(©Rde < [ untr-ie) P < oo
D D

as [mo(€)| < 1 for a.e. € € D. Hence, the function to(p~t)mg belongs to L2(D). Again by
(234), f € V4.

We have already seen in Theorem 2.2.1 that property (¢) in the definition of MRA follows

from (a), (d) and (e). Now it remains to prove only one property, i.e., we have to show that
U Vi = I2(K).
JEL

L .
Letf e (%JZ V). We claim that f=0ae Lete >0be given. Since & is dense in L2(K),
J
there exists g in S such that

If —gll2 <e

Since P f = 0 for all J € Z, we have

I1Pigll2 = 1Pi(g ~ f)ll2 < |lg - fll2 < e. (2.3.5)

Since {¢(- - u(k)) : &k ¢ No} is an orthonormal basis for Vo, {@jk : k € Z} forms an
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orthonormal basis for V}, by property (d) in the definition of MRA. In particular, it is a frame for
V;. So there exist A, B > 0 such that

AlFIBS D 1 wsm? < BIFIIG forall f € V.
keNg

Taking f = Pjg, we have

> Kg. @50l < BlIPjgl3- (2.3.6)
keNg

Let supp § C ' for some [ € Z. Then for all j > —I, we have p! C P, Hence,

keNy keNg

> ool = Z‘,/K@(§>q—j/2¢(pj§>><k(pjf>dé g

Now

[ 0 eaweds = [ a©d e wed
K p-I

/@ 30~ m) @ 2B (k).

The last expression is the k-th Fourier coefficient of the function ¢/ 2g(p“j-)$. Hence, by

Parseval’s identity, we get

Y g i)l

keNg

/@ F1a(p™ m)p(n) 2

- [ lerewiora

/K 13(6) (7€) |PdE.
Therefore, by (2.3.5) and (2.3.6) we have
[ la@ewor < B

Using (2.3.2), we conclude that the left hand side converges to ||g||3 as j — oo. Hence, g =0

a.., which, in turn, implies that f = 0 a.e. This completes the proof of the theorem. U
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Chapter 3

Affine, Quasi-affine and Co-affine

Frames

Ihe concept of quasi-afline frames in R™ was introduced by Ron and Shen in [68], where they
proved that quasi-affine frames are invariant by translations with respect to elements of Z™. They
also proved that if X is the affine system generated by a finite set ¥ C L2(R") and associated
with a dilation matrix A, and X is the corresponding quasi-affine system, then X is an affine
frame if and only if \ is a quasi-affine frame, provided the Fourier transforms of the functions
n ¥ satisfy some mild decay conditions. Later, Chui, Shi, and Stockler [22] gave an alternative
proof of this fact. and more importantly, removed the assumption of the decay conditions. This
result was used by Bownik in [15] to provide a new characterization of multiwavelets on L2(]R").

Another concept related to this theme is that of co-affine systems initially defined in [36]
‘or the case of R where the authors proved that the co-affine system can never be a frame for
TRy This result was subsequently extended to L2(R™) by Johnson [45]. Some of the other
mleresting articles dealing with these concepts are [13, 14, 40, 41]. In this chapter, we extend
hese Concepts to local fields of positive characteristic and prove analogous results.

Thic ¢ hapter i< orgamzed as follows. In section 3.1, we define affine and quasi-affine systems
M alocal hield K of postive characteristic and prove that an affine system X (W) is an affine
rame for 12K )t and only if the corresponding quasi-affine system X(¥) is a quasi-affine
“zme Morcover. their exact lower and upper bounds are equal. This result also holds for Bessel

“amihes We ala characterize the translation invariance of a sesquilinear operator associated

37
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with a pair of affine systems. In section 3.2, we define the affine and quasi-affine duals of a finite
subset U of L2(K') and show that a finite subset ® of L?(K) is an affine dual of ¥ if and only if

it is a quasi-affine dual. In the last section, we show that L?(K') cannot have a co-affine frame.

3.1 Affine frames and quasi-affine frames

Forj € Z, and y € K, we define the dilation operator §; and the translation operator 7, on

L2(K) as follows:
5;f(2) =¢"2f(p7x) and 7 f(z)=flz-v), fe LK)
Observe that these operators are unitary and satisfy the following commutation relation:
0y = Tpiy0j-
In particular, if j < 0, then for k € Ng, we have

JjTu(k) = u(q‘jk)(s]'. (3.1.1)

Let fj = 0;Tu(kyf- Then

Fip(@) =g f(p~Iz — u(k)), jeZ,ke N

We also define
f;,k =fik= 6jTu(k)f ifj>0,ke No,

and
fik =P dif i j <0,k € No.
Let W = {91, 42 ... %} be a finite family of functions in L2(K). The affine system

generated by W is the collection X(7) = {wj.,k 11<I<LjeZ ke No}. The quasi-affine

system generated by ¥ is X () = {Plei1<i<Lje Z,k € Ng}.

Definition 3.1.1. Let ¥ ¢ L2(K) be a finite set. Then X(¥) is called an affine Bessel family if
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there exists a constant B > 0 such that
Y. KEmP < BIfIE forall f € LA(K). (3.12)
neX(¥)
If, in addition, there exists a constant A > 0, A < B such that
Al Y- KAmME<B|fIE forall f e LA(K), (3.1.3)

neX(¥)

then X (W) is called an affine frame. The largest A and the smallest B that can be used in the
above inequalities are called the lower and upper frame bounds respectively. The affine frame is
called tight if the lower and upper frame bounds are same.

Similarly, X (¥) is called a quasi-affine Bessel family if there exists a constant B >0
such that (3.1.2) holds when B is replaced by B and X (¥) is replaced by X (¥). It is called
a quasi-affine frame if there exist constants Aand B > 0 such that (3.1.3) holds when A is

replaced by A, B is replaced by B and X () is replaced by X (D).

For two subsets ¥ = {g!, 92, ..., %L} and @ = {1, 02, ..., "} of L*(K), we define a
sesquilinear operator Ky 5 : L2(K) x L?(K) - Cby

L
Kea(fi)=>_ > O (hvl e a),  fgeX(K). (3.1.4)

1=1 jeZ keNp

Note that if X (¥) and X(®) are affine Bessel families, then Ky ¢ defines a bounded operator.

Similarly, we define the operator K¢ & by

L
N - 2
Kos(f,) =D O D AL 05k 9)  frg € LK) (.15
=1 jJEZ k€ENy
Itis easy to see that Ky o is dilation invariant, that is, Ky o(6nf,0ng) = Kyg,a(f,9) for
al N € Z, and Ky ¢ is invariant by translations with respect to u(k), k € No. We write

K‘I’,‘Il = K\I/ and K\I;,\p = f(q/
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Forj >0, let Dj = {¢/,¢/ +1,...,2¢’ — 1}. Forany j € Z and f, g € L*(K), we define

fJ) Z Z(fﬂ/’], ¢]k’g>

=1 keNy

and

fg) Z Z f¢]k ‘p]k’g>

I=1 k€N

We first prove two crucial lemmas before we state and prove the main results of this chapter.

Lemma3.1.2. Let ¥ = {y',9%,..., %"} and @ = {¢',¢2, ..., oL} be two subsets of L2(K).
FixJeN Then, forall j > -Jand f, g € L2(K), we have

Ki(f,9)=q™’ D Ki(ruwf, Tu()9)-

IJGDJ

Proof. For j > 0, K;(f,9) = K;(f, 9) = K (Tu(w)f, Tuw)g) for any v € Ny. Now, for any
integer j such that —.J < J <0, Kj is invariant with respect to translation by u(q“j v) = pj u(v),
v € Ny. That is,

K;(r Toiu(w) f pJu(u)g) Kj(f.9), v e No.
Note that, for any m < J, we have

q—l q™ _1qu

Za,,_ Z Z Qpgm 42
v=0 A=0  p=0
Hence,
2q -1 qm—1 qJ m_
Z W= Z v = Z Z Gugm 4 rt+q7-
veD, v=q’ A=0  u=0
Therefore,
Y Ky DN
i A IEDY
% w(@) f> Tu@)9) Kj(Tu(uq=s4at-09) Fr Tufug-i4340)9)

A=0 u=0
2q~ j—1 2q-]+]_2

Z Z Kj(Tu(/.tq‘j +)\) f) Tu(ﬂq‘j-[-)\)g)'

)\=q_j ﬂ:q-"f'j -1

I
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Since A € {g7,q77+1,...,2¢77 —1}and p € {q/+9 — 1,¢7%9,...,2¢/H7 — 2}, we have
p=q"4randA=q7+s,wherer € {-1,0,1,...,¢/+7 —2}ands € {0,1,...,¢77 —1}.
Hence, pg ™ +A=¢' +rqg77 +q¢7 + 5= (¢/P + 7+ 1)g77 +ssothatu(ug™ + ) =
u(g?t 4+ + 1)p/ +u(X - ¢g77), by (1.2.4). Therefore,

Qq*j_l qu+j_2
q_J Z Kj(Tu(u)f,Tu(u)g) = q_J Z Z Kj(Tu()\_q-j)f,Tu(/\_q_j)g)
veD; A=q~I p=qJ+i-1
g1
= ¢ ) Ki(rupnyfr Tun9)
A=0
g7i-1
= ¢ ) Ki(r—upyf> Tmun)9)
A=0
qgIi-11L
= 7Y Y>> (a2 W) (s Tou () 9)
A=0 I1=1 keNo
g i-1 L

= Z Z Z (f @Zé,q—jk+,\><¢§,q-jk+w9>

0 I=1keNy

A=
L
= 3SR EE 0 9) = Ki(h ).

=1 keNp

[y

We have used the following two facts in the series of equalities above:
(@ {u(N):0<A<gm—1} = {~u(N):0< A< g™ — 1} foranyme N.
(i) ¢//2 (T—u(A)fawg,k) =/, ’{D‘;’q_]‘k-k)\)'
This completes the proof of the lemma. 0

In the following lemma we prove two important properties of the operators K; and Kj when
b=y,

Lemma 3.1.3. Let ¥ = {1,432, ... WP} € LA(K). Put ® = ¥ inthe definitions of K and

Ki.¥ffe L2(K) has compact support, then
(@) Jim J§0Kj(51vf» onf) = 0.

(b) lim q_N K Tu}/f7T’ul/f)=0'
N-oo j<Z—NV€ZDN J( ( ) ( )
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Proof. We have,

L
D OKONE NS =D > ST NS, @ Py 80 2.

J<a J<0 =1 k€Ny

Let Q@ = supp f. Since

ONF Tury85%") = (£, 6-nruy 058"y = (f, Ty-NugyS-nO;t) = (T_p-mugyf,0-n¥'),
we have
(T rug b = | [ 5+ b Ny v @da”
90 [ @)
Q-p—Nu(k)
1713 | g0~ 2 (=GN 2y
Q—p—Nuy(k)

2 l 2
112 sy 12

14 2
”f”2 / (G~ N)Q—p J (k) ,¢’ (Z‘), d:l,‘

IN

Thus,
K;(Onf,6 ) <IIf )2
OO NBT S [y O

Note that p~U=Nqy — p=iy(k) = p7(pNQ -
a5,

u(k)). Since Q is compact and |[p¥ Q] =
we can choose Ny large enough so that pNQ C D if ¥ > Np. Since {D + u(k) :

k € No} is a disjoint collection, it follows that {p—7(pN ) — u(k)) : k € Ng} is also a disjoint
collection. Hence,

Y Ki(dnfong)

i<g

IN

173> ¢ /

7<0 U PPN Q—u(k)) 1=

iy Fn(®) o) e,
=1

Z |9 () 2
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where

Fn =) @1y pspra—u@m):
j<0 keNg

Observe that |Fy(z)] < > ¢ = qul. Since i |92 € LY(K), if we can show that
Fy — 0ae. as N = o0, thenjgg Lebesgue dominaté:dlconvergence theorem, the last integral
above will converge to0as N — oo.

Let E = {z € K:3 = —pJu(k) forsome j < 0 and k € No}. If z ¢ E, then
piz + u(k) # 0 forany j < 0 and k € Ny so that |p’z + u(k)| = ¢" for some r € Z. Thus,
piz +u(k) € pNQif N > —r. Thatis, z & p~/ (p"Q — u(k)) if N > —r. Since E is a set of
measure zero, it follows that Fy — 0 a.e. as N — co. Tnis proves part (a) of the lemma.

To prove part (b), we observe that

2¢N -1 L
q_N Z Z Kj(Tu(u)fv Tu(z/)f) = q_-N Z Z Z Z |<Tu(ll)f’ d)_{j,kﬂz'
j<—NveDy v=¢N j<—N I=1keNy

An easy calculation as in part (a) gives us

(Tu@) Fr Pik) = (Fug)-pin() f- 89",

so that
|<Tu(u)f»"/);',k>|2 = |<Tu(u),pju(k)f, 5j1/}l>|2
< 7 16,4 (@) d
Q—{—u(v)—pju(k)
= W[ ek
pi(Q4u(v)—piu(k))
Hence,

q_N Z Z Kj(Tu(y)fv Tu(u)f)

j<—-NveDpn
2¢N —1

< e > Y Y

L
/ Y W) 2de
pi(Q+u(r)—piu(k)) =1
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L

= ”fng/KGN(-??)Z|1/)l(.’v)|2da:,

=1

where
2¢V -1

Gr=q" D" D D Liorue)—uk)

v=gN j<—N ke€Ng
As in part (a), to complete the proof, we need to show that Gy — 0 a.e. as N — co.

Note that p?V2 C D if N > Ny. For such an N, consider the set pN(Q + u(v)), where
v e Dy. Ifx € pV(Q + u(v)), then x = y + pNu(v) for some y € pVQ C D. Since
lyl <1and |pNu(v)| = ¢~V ¢"*1 = ¢, we have |z| = ¢, by (1.2.1). Thus, p"(Q + u(v)) C
PI\D=p 1D\ D =p'D*sothat p~/(Q +u(r)) Cp7~N-1D* forany j € Z.

For N > Ny, fix j < —~Nand ¥ € Ng. Note that since 2 is compact, each Q + u(kg), for
fixed ko € Np, can intersect with only finitely many sets of the form 2 + u(k), k € Ny. So there
exists an integer d € N such thateach 2 € K can belong to at most d such sets. Thus, in particular,
any z € K can belong to at most d sets in the collection {p~7 (2 + u(v)) — u(k) : v € Dn}.

Each of these sets is contained in p™/ = =19* — 4(k), hence so is their union. Thus,

2¢N -1

D @) —utk) < prs-s-10e

v=gV

Now,

D o E

J<—N >0

= 1y p-10—uky = Lo*—u(k):
i>0

Also, we have
Doy = D Lpeyugy < > Lotum =1,
keNg keNp keNg
since {D + u(k) : k € Ny} is a partition of /& and D*CD.
Collecting all these estimates, we get

Gn(z) <qg™VN.q
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Therefore, Gn(z) — 0as N — oo uniformly in z. This completes the proof of the lemma. [
The following theorem shows the relationship between affine and quasi-affine frames.

Theorem 3.1.4. Let ¥ = {1, 92, ... v} C LAK). Then

(a) X(¥) is a Bessel family if and only if X(¥) is a Bessel family. Moreover, their exact

upper bounds are equal.

(b) X (V) is an affine frame if and only if X (V) is a quasi-affine frame. Moreover, their exact

lower and upper bounds are equal.

Proof. Put ® = ¥ in the definitions of i{; and K;. Suppose that X (¥) is a Bessel family with
upper bound B > 0. Then, by Lemma 3.1.2, forall f € L2(K), we have

oo

Ro(f./) = D Ki(hf)=lim > K;(f.])
j=—00 Ci>—J
= fma Jg”;]f(j(m(u)f  Tu)f)
< Jli_r)réoq“] ,,;, Ky (Tu@ f> Tuw)f)
< Jim q-*’g]an)fn% = BI/I;

Thus, the quasi-affine system X (W) is also a Bessel family with upper bound B.
Conversely, let us assume that X (W) is a Bessel family with upper bound C > 0. Further,
assume that there exists f € LZ(K) with ||fll = 1 and Kg(f,f) > C. We will get a

contradiction. We have

o0 fee) L
S KL = Y 0 > WP
j=—N j=—N I=1 keNg
o L
= ZZ [(Fr i)l
j=0 =1 keNo
oo L
= Y3 onf vl
j=0 I=1 keNg

1
.Mg

[
il
<



46 CHAPTER 3. AFFINE, QUASI-AFFINE AND CO-AFFINE FRAMES

Since Ky(f, f) = hm Z K;(f, f) > C, there exists N € N such that

J“—l

ST Ki(f. £) =D Ki(énf.0nf) > C.

j=—N j=0
Now, o o
Ky(6nf,onf)2 Y K;(Onf,0nF) =Y K;(6nf,onf) > C.
=0 =0

If g = dnf, then we have |g]l2 = |[6n fll2 = [|fll2 = 1 but Ky(g,9) > C. This is a
contradiction to the fact that X(¥) is a Bessel family with upper bound C. This proves part (a)
of the theorem.

We will now prove part (b). We have dealt with the upper bounds in part (a). So we need
only to consider the lower bounds A and A. Suppose that X (W) is an affine frame with lower

frame bound A. Then, forall f € L?(K) with compact support, we have

Kol ) = Jim a7/ 3" 3™ Kj(rupfimun )

veDy j>—J

= Jim ¢ Y " Ki(ru) £ rupyf)  (by Lemma 3.1.3(b)

J—oo
veD; jEZ

= }Lxréoq_J Z Ky (Tu@) fs Tuw)f)
UEDJ

v

Jim g™ Y Allruwy £1IE = AlF]2

veD;

The set of all such f is dense in L2(K). So this holds for all f € L2(K). Hence, A > A.

To show that A < A, we assume that it is not true and get a contradiction. Thus, there exists
€ >0, f € L2(K) with || f]l = 1 such that

K\Il(fvf) SA*C.

Without loss of generality, we can assume that f has compact support (otherwise, for any compact

set O, we consider f1q). Since Ky is dilation invariant, we also get

Ky(bnf Onf) < A-e
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By Lemma 3.1.3(a), there exists N € N such that Y K;(6n f, 6x f) < €/2. Hence,
7<0

Ko(Onf,0nF) < Y Ki(Onf,0nf) +€/2

Jj=0

= Y Kj(onf,0nf) +€/2

j=0
< K\p((SNf,(st) +€/2 < A—E/Q.

This contradicts the definition of the lower bound A of X (¥) and completes the proof of the

theorem. O

We have observed earlier that Ky & is dilation invariant and K v,& is invariant by translations
with respect to u(k), k € Ng. In the next theorem, we show that a necessary and sufficient

condition for the translation invariance of Ky ¢ is that the operators Ky ¢ and K wv,¢ coincide.
Theorem 3.1.5. Let ¥ = {91, 42, ..., 9Ly and & = {1, 2, ..., oL} generate two affine

Bessel families. Then Ky ¢ is translation invariant if and only if Kv.o = Ky s.

Proof. Suppose that Ky ¢ is translation invariant. Then, as in the proof of Theorem 3.1.4, for

all f, g € L2(K) with compact support, we have

R\Il,@(fv (J) = Jli_?goq_J Z K‘I’,@(Tu(u)f’ Tu(u)g)
VEDJ
= lim ¢’ ) Kve(f,9)=Kuvel(f,9),
J—ro0 veD,

where we have used the translation invariance of Ky . By density and the boundedness of the
operators Ky ¢ and f(\y,q), the equality holds forall f,g € L2(K).

Conversely, assume that K¢ ¢ = Ky . Then for m € Np, we have

Ky o (Tuim)fs rumyd) = K@ (Tumyf, Tum)9)

L
= S50 S s G ¥ 657y @ s T 9)

=1 720 keNg

L .
+> > > (Tugmy q1/2Tu(k)5j¢l)(qj/zTu(k)ijs&l, Tu(m)9)-

=1 j<0 keNg
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Since m € Ny, by Proposition 2.1.5(b), there exists a unique mg € Ny such that ~u(m) =

u(mg). Hence, in the first sum, we have

; !
(Tumy Fr 85Ty ) = (Fr Tu(mg) 05 Tuy ¥
= ([, 0iTu(gmo)+u(k) ")

Similarly, (3} 7 (k) 9" Tu(m)9) = (65 Tu(qsmeo)-+u(k) @5 9)-
For a fixed j > 0, we have {u(k) + u(¢mp) : k € No} = {u(k) : k € Ng}, by
Proposition 2.1.5(c). Hence, for a fixed § > 0, we have

[
Z (Tu(m)f’ 5jTu(k)¢l>(6jTu(k) 3017 Tu(m)g> = Z <f7 5]Tu(k)wl><6j7-u(k)(p 7g)
keNg keNg

Y L F k) (ks 9)-

keNy

In the second sum, we have

(Tumy f+ @1y 859Y) = (f, qj/27u(mo)+u(k)5j¢l>'

By a similar argument as above, we get for each j < 0,

> (Tu(m) £ qj/z‘ru(k)fsﬂlfl)(qj/2Tu(k)5j<Pl= Tu(m)9) = Z (s Do) (B 9).
keNg keNg

Hence, we have
K‘P,CI’(Tu(m)f) Tu(rn,)g) == R\Ilﬁb(fy 9) = K‘I’,‘P(f’ g)

This proves that Ky 4 is invariant by translations with respect to w(m), where m € No.

Since Ky g is invariant with respect to dilations, it follows that it is invariant with respect to all

z of the form = = piu(m), m e No, j € Z. But such elements are dense in K. This can be

seen as follows. Since { + w(m) : m € Np} is a partition of K, {p?® +piu(m): m € No} is
also a partition of K for any j ¢ 7, Hence, if x € K, then for each j € Z, there exists a unique
meNoand y € D such thatz = Py + p?u(m) so that lz — plu(m)| = |p7y| = ¢77|y|. Since

lyl <1, we can choose j sufficiently large to make |z ~ pju(m)| as small as we want.

Now, since K ¥, 1s a bounded operator and translation is a continuous operation, it follows
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that Ky  is invariant with respect to translation by all elements of K. This completes the proof

of the theorem. O

3.2 Affine and quasi-affine duals

In this section, we define the affine dual and quasi-affine dual of a finite subset ¥ of L2(K )
generating a Bessel family and show that a finite subset ® of L?(K) with cardinality same as

that of ¥ is an affine dual of ¥ if and only if it is a quasi-affine dual of ¥.

Definition 3.2.1. Let ¥ = {1, 42, ... 9L} and & = {p?, 2, ..., 9"} be two subsets of
L*(K) such that X(¥) and X (®) are Bessel families. Then @ is called an affi.e dual of ¥ if
Ky s(f,9) = (f,9) forall f,g € L2(K), thatis,

L
SIS a9y = (f9) forall f,g € LY(K). (3.2.1)

=1 jeZ keNy

We say that ® is a quasi-affine dual of ¥ if Ky o(f,g) = ([, g) forall f,g € L?(K), that s,

L
SN S f BN B 9) = (fo9) for all f,g € LA(K). (3.2.2)

=1 jeZ keNp
Since Ky ¢ and K g » are sesquilinear operators, it follows from the polarization identity
that (3.2.1) or (3.2.2) holds if and only if it holds forall f = g in L2(K).

Theorem 3.2.2. Let ¥ = {y1, 42, ..., 9L} C L*(K) generate an dffine Bessel family. Then
® = {pl,¢?,... 0"} C L2(K) is an affine dual of ¥ if and only if it is a quasi-affine dual of
v,

Proof. We first assume that ® is an affine dual of ¥. So Kw,s(f,9) = (f,9) for all f,g €
L*(K). Since {r,f,7,9) = (f, g) forally € K andfor all f,g € L2(K), it follows that K5

is translation invariant. Hence, by Theorem 3.1.5, we have
o 2
Rys(f,9) = Ku.s(f,9)={fg) forall f g€ LK)

Therefore, ® is a quasi-affine dual of ¥.
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Conversely, assume that ® is a quasi-affine dual of ¥. Let f € L2?(K) be a function with

compact support. By Lemma 3.1.3(a), we have
Y K;(6nf,ONF) = 0as N — oo.
<0
That is,
L —~
DD D NS k) (B v S) > 0as N — oo, (3.23)

J<0 i=1 keNy

Now, since ® is a quasi-affine dual of ¥, we have

L
AU = NonFIE = (O fo O F) = D03 S (ON f, DL )P )

=1 j€Z keNy
L
= D D D NS NE e NS+ Y ST (N BB ).
=1 7>0 keNy I=1 j<0 keNg

The second term in the last equality goes to O as N — o0, by (3.2.3). Hence,

L
D3N o, DB 1 O ) = | £l as N — oo. (3.2.4)

[=1 j>0 keNy

But,

L _ L
220 Do ONL NG g SN Sy = DD DN BN i)

=1 20 keNg I=1 20 keNg
L

= ZZ Z (fy w;'—N,k>(<P§'-N,k,f>

=1 j>0 keNg

= 22 Yk,

I=1j>-N keNo

t~

Hence, by (3.2.4), we have

L
D00 YA ) = 1112,

=1 Jj€Z kGNQ

This shows that (3.2.1) holds for all f = g with compact support. Since such functions are dense
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in L2(K), (3.2.1) holds for all f = g in L2(K). This completes the proof of the theorem. O

3.3 Co-affine systems

Recall that the quasi-affine system X (¥) was obtained from the affine system X (¥) by reversing
the dilation and translation operations for negative scales j < O and then by renormalizing. It is

a natural question to ask what happens if we reverse these operations for each scale j € Z. We

make the following definition.

Definition 3.3.1. Let ¥ = {y1, 42, ... 4L} C [2(K) and let ¢ = {a;:1<1 < L,jeZ}
be a sequence of scaiars. The weighted co-affine system X * (¥, ¢) generated by ¥ and c is the

collection

X'(¥,0) = {jh = et mugdit’ : 1< 1 < L, j € 2,k € No}.

This concept was first defined by Gressman, Labate, Weiss and Wilson in [36] for the case of
the real line when ¥ consists of a single function and the dilation is a real number greater than 1.
They proved that in this case the weighted co-affine system can never be a frame for L2(R).
Johnson [45] extended this result to L2 (R™) for finitely generated co-affine systems associated
with expansive dilation matrices. In this section we will extend this result to the case of a local
field of positive characteristic.

Let X*(, ) be a weighted co-affine system generated by ¥ and c. For f € L?(K), define
- !
w(@) =323 3 Wrf vl
I=1 j€Z keNo

By Proposition 2.1.5(b) and (c), it follows that wy(z + u(n)) = wy(z) foralln € Np, that is,

wy is integral-periodic. We first prove a lemma.

Lemma 3.3.2. If X*(U, c) is a Bessel system for L(K), then for each f € L?(K), we have

L . ~
/ wi(z)dz = / S5 lalPa T 1R P PIFE) e
D K

l=1 jeZ
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Proof. The result follows from the Plancherel theorem and the fact that
(149;9)"€) = a7 ?5(pE)xe(y) fory € K,j € Z.

‘We have,

T

wf(.L)dL = /;ZZ Z KTzf 3Ty k)(s ¢' >l dx

=1 jEZ keNy

ZZICZJIQ/ Z l fa —a:+u(k)6 1/1 )'2(11'

l= IJEZ D keN,

= ZzlclJl / l(fa T~z6jwl>|2d1‘
= IJEZ

= 12 r _/2*\5 2
;%ZZMJI /K(/Kf(i)q ’ wl(pﬂé)xx(é)dg' dz
L

= 12,7 ;7
St [ (7567) oo

L
= 2l [ IFOP e P
K

=1 jeZ

We now use this lemma to show that there do not exist any co-affine frame in L}(K).

Theorem 3.3.3. Ler ¥ = [yl y2 . . Y C© LK) and ¢ = {a;:1<1<LjeL}bea
Sequence of scalars. Then X*(¥, ¢) cannot be a frame for L2(K).

Proof. Suppose that X *(¥,c)is a frame with bounds A* and B*. That is
L
A* 2 * *
A2 <3257 5" KA w02 < BIAR  forall 1 € 12(K)
{=1 jeZ keN,

Taki =
aklngf ] kofOl'aﬁXed]()EZ kOENOaUd1<lo<Lwehave

*l() %],
||w0ko||2<22 D lwil y3 WP < B |lprle, |2,

I=1 jeZ keN,
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This implies ||¥}% 3 < B*. Since [|1/}2, [l2 = |ciq.jo [0 |2, it follows that
leigol? < B*|jeb'elz?  foralljo€ Zand 1<y < L. (33.1)

From the definition of w¢, we have

A'fI2 < wy(z) < B*||f|3  for all f € L*(K).

Integrating over D and applying Lemma 3.3.2, we get

L
AT||F113 < / S5 ey 12a 1B (PPE)RIFE)12dE < BR|fI3 forall f € LA(K).
K1 jex

From this we conclude that

L . A~ .
A <Y S e P WO < BT forae (e K.

=1 j€Z

Now, integrating over ‘I}‘l \ D after making the substitution & — p"é,n € Z, we have

L
Aol < /m S S P e e

N\D o jez

L .
= / SN la-alPa TR O
B

“N\D 1 jez

= q" L / |e1.j—n 219 (6)12dE.
> ) NN

=1 jez /P BTI\D)

Applying (3.3.1), we have

L
* n w1 h— ol 2d
Pa-y < NS EWE[  WeR

=1 jeZ
L
Alrey2
- ey ey [ 194(6) P
3B 26; D)

L
= ¢") B'=q'LB"
=1
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That is,
A*(q—1) < ¢"LB* foreachn € Z.

Letting n — —o0, we see that A" = 0. Hence, X*(¥, c) cannot be a frame for L?(K) O



Chapter 4

Characterization Of Wavelets

The characterization of all wavelets of L2(R) has been obtained independently by Wang [74]
and Gripenberg [37] (see also [38]). We refer to [42] for an excellent exposition of this result.
This characterization was essentially in terms of two basic equations. Calogero [17] obtained the
characterization of wavelets of .2 (R™) associated with general lattices. Bownik [15] gave a new
proof of characterizing multiwavelets in L2(R™) using the results on shift invariant systems and
quasi-affine systems in [67, 68] and [22]. In this chapter, we extend the result of Bownik and
give a characterization of wavelets on local fields of positive characteristic. To achieve this, we
have used the results obtained in Chapter 3.

As we have mentioned in Chapter 2, one can always construct a wavelet from an MRA. But,
all wavelets are not obtained in this way. It was an open question for sometime to determine which
wavelet could be constructed from an MRA of L?(R). P. Auscher [4] and P. G. Lemarié¢ [57]
gave very mild sufficient conditions for this. It was proved independently by G. Gripenberg [37]
and X. Wang [74] that a wavelet arisés from an MRA if and only if its dimension function is 1 ae.
Calogero and Garrigés [18] gave a characterization of wavelet families arising from biorthogonal
MRAs of multiplicity d. In this chapter, we give a characterization of MRA wavelets on local
fields of positive characteristic.

This chapter is structured as follows. In section 4.1, we first prove a result that characterizes
the orthonormality of an affine system X (¥) in L2(K) and provide an expression for the dual
Gramian of the quasi-affine system X (¥). With the help of these results, we will provide a

characterization of wavelets on local fields of positive characteristic. We also give another

55
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characterization of wavelets. In section 4.2, we will define the dimension function of a set of

basic wavelets and characterize the MRA-wavelets in terms of the dimension function.

4.1 The characterization of wavelets

Let U = {1,942, ..., %%} be a finite family of functions in L2(K). Recall that the affine

system generated by W is the collection
X(¥) ={¢jr: 1< U< LjelkeNo},

where 9} (x) = ¢7/2¢!(p~Iz — u(k)) = 85 Tu(k)¥'(z). The quasi-affine system generated by
W is
X(¥)={dlp:1<1<LjeZkeNo},

where

~ . ! 13/ 20 =T )
wgk(l') _ 5JTu(k)w (1‘) =gl 4y (P Jr u(k)), j>0keN,

o 1 o @.1.1)
Py 09 (7)) = @7 (p~I (z — u(k))), j < 0,keN,.

Observe that W is a set of basic wavelets of L%(K) if the affine system X(¥) forms an
orthonormal basis for L2(K).

Definition 4.1.1. Given {t;:i ¢ N} € £2(Np), define the operator H : £2(Np) — (N) by
H = .

@) = ((.8) .

If H is bounded then & = H*H : 2(No) — €2(Ny) is called the dual Gramian of {ti:ie N}

Observe that G is a nonnegative definite operator on 3(Np). Also, note that forr, s € No,
we have

(Geres) = (Her, He) =Y ti(r)ts(s),
ieN
where {e; : i € Np} is the standard basis of £2(Ny).
The following result characterizes when the system of translates of a given family of functions

is a frame i : . .
n terms of the dual Gramian. The proof is an easy generalization of the corresponding
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results on the Euclidean cases given in [68] and [14].

Theorem 4.1.2. Let {y; : i € N} C L2(K) andfor a.e. £ € D, let G(€) denote the dual
Gramian of {t; = (%i(€ + u(k)))ken, : ¢ € N} C 3(Np). The system of translates {Tuypi :
k € No,i € N} is a frame for L2(K') with constants A and B if and only if G(€) is bounded for
ae £ €D and

Alv)? < (G(€)v, v) < B||v||? forv € £2(No) and fora.e. & €D,

that is, the spectrum of G(€) is contained in [A, B] for a.e. £ € .

We first prove alemma which gives necessary and sufficient conditions for the orthonormality

of an affine system.

Lemma 4.1.3. Suppose that @ = {1, 42,... ¢t} C L2(K). The affine system X (V) is
orthonormal in L?(K) if and only if

Y PHE + ulk))Pm(p I (€ + u(k))) = 55000m 4.12)

keNy

forae £ e K,1<Im<L,57>0.

Proof. Using Proposition 2.1.5 (b) and (c), we observe that
(Whi 00 1) = 810085 juSpr, 1<LU < L, G, j €2, kK €No
is equivalent to
(Wi 0b0) = OLudj00k0, 1SLY < Lyj 2 0k€No
Now, let 1 < {,I' < L,j> 0, k € Ng. Then

(w‘é,ka ¢g,o)

(@;,k,lﬁg,o

- / a3/ (€)X E) P (€)dE
K

/ /20RO (o) dE

K
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- ”2/ { 37 dHE+ulm)d (977 (€ + u(m) pe(Blie.

neNg

It (wl luw() O) — Ol v ]0()/»0 for all l l/ < {]— 2 L} _] > 0 and k (S N(), then the LI(D)
function F', where F(&) = . ¥H(& + u(n))dz”(p“%{ + u(n))), has the property that its

nENg
Fourier coefficients are all zero except for the coefficient corresponding 1o k = 0, which is 1

ifj=0and ! = I'. Hence, F = §;9d; a.e. Conversely, if F = 7,001, a.e., then the same
calculation shows that (z/;;,k, 1/’5,0) = dy,109,00k0, since {xn, : 7 € Np} is an orthonormal basis
of L?(D) (see Proposition 1.2.6). O

Define D; as follows:

{0,1,...,¢7 -1}, >0,
{0}, j < 0.

Let

A = {$}4:1<I<L,j € Z,de D;}

= {$0:1<I<L,j <0 U{gl,:1<I< L, j>0,deD,).

Ifj <0, then Tu(k)'l/;é',o(ff) = 1/;;0(.10 — u(k)) = @Y {p~I(x — u(k))) = %k For j > 0,
0<d<q¢’ —1,k >0, we have

Tu(k)"Z;‘,d(l') = ?Z’;d(ﬂ —u(k)) = wé,d(w — u(k))
= ¢ (p7 (2 - u(k)) — w(d))
= 0T~ (Iulk) + u(d)))
= &P p7Iz —u(kg + d))

1
= wj,kq]'-i-d(x)'

i
Since it is true that for each J >0, every non negative integer m can uniquely be written as

m=kg + d, where k ¢ Ng,d e D;, it follows that

X(¥) = {ruryp 1 k € Np,p € A}.
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We now define the dual Gramian G (&) of the quasi-affine system X (P)at& € D to be the
dual Gramian of {($(¢ +u(k)))ken, : ¥ € A} C £3(Np). The following lemma will be used

later in the computation of G(£). To prove this lemma we use a technique used by Zheng in [76].

Lemma 4.1.4. Let j > 0. For p, k € Ng, we have

. | L if okl egNo,
7 Y x((u(p) — w(k))piu(t)) = L W - HedNo 4.13)

teD; 0, otherwise.

Proof. The integers p, k € Ng can uniquely be written as p = 7 + ¢/myand k = s + ¢/my,
where mq,ms € Ngand0 < r, s < ¢/ — 1. Using (1.2.4), we have u(p) = u(r) + p~Iu(m1)

and u(k) = u(s) + p~Iu(ms). Hence,

x((u(E) - uk)put)) = x((u(r) - u(s)p u(t) + (um) - u(mz))u(t))
= x((u(r) — u(s)p’u(t)),
since x(u(k)u(l)) = 1for k,I € Ny (see Proposition 1.2.7). Since r = s if and only if
lp — k| € ¢/Ny, it is enough to show that if 0 < r,s < ¢’ — 1, then

g?-1

g7 > x((ur) = u()plu(t)) = ors. (4.14)
t=0

If 1 = s then u(r) — u(s) = 0, hence both sides of the equation (4.1.4) are 1. We now

assume that r # s. Let
. i—1
7‘=a0+a1q+---+a]‘_1q]_1, 8=b0+b1q+"'+bj—1qJ ’

and

t=co+ clq+--'+cj—1qj_1,

where 0 < a,, by, e < ¢ — 1 form = 0,1,...,j — 1. Then from (1.2.3), we have

U(T‘) = u(ao) + u(al)p_l 44 u(aj—l)P—j+1,
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u(s) = u(bo) + u(b)p™ 4+ + U(bj—l)p_j+1,

and
_ —j+1
u(t) = u(cp) + w(cr)p ™ + - +u(cj—1)p 7T

Recall that D /P = GF(gq) & span{e; }] . Since {u(n)p : n =0,1,...,g—1}isa

complete set of coset representatives of 3 in ®, foreachn =0, 1,...,j — 1, we can write
u(cn)p = /\360 -+ )\71)'61 + -4 )\2"_166_1,
where 0 < Ag, AT, ..., A7_; < p— 1. It can easily be seen that for each ! = 0,1,...,c — 1,
{au(n)p:n =0,1,...,¢g—1}isalso a complete set of coset representatives of B in D. Hence,
we have
8 _ —
au(am)p = op” eo+a1 beg + -0 +agie-1, [=0,1,...,c-1,
where 0 < o™ ,a;n Lo ,azn_’ll < p — 1. Therefore,
’ ji—1 j—1 )
u(r)plu(t) = Z Z (w(am)pu(ca)p)p? =~ "=
n=
- — c—-1

By the definition of the character X (see (1.2.5)), we have

c—1
, . . . 1 ol
x(u(r)p?u(t)) = exp <2% E (Ao ™M 4 Mot .o 4 X o ))
=0

Similarly, we can write

c~1

. . P s s ,l
X(w()p u(t)) = exp (2— DT A NB T 4 X )>,

=0
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where 0 < At <p—1form =0,1,...,5—landl = 0,1,...,c— L.
Observe that as t varies from 0 to ¢ — 1, the integers cg, . . ., cj—1 all vary from O to ¢ — 1.

Hence, the integers A} vary from Otop — 1for0 <! < ¢ — 1 and 0 <n < j — 1. Therefore,

¢-1
3 x((u(r) = uls)pu(t))
t=0
@1 _ -
= ZX(u(r)p’u(t))x(u(s)pju(t))
t=0
- ( exp( (047 - ﬁa*m‘é)) ( > exp(2(ed"- 68’0»5-1))
=0 M7t=0
p—1 p—1 ]
( Z exp 21rz(a.7 1.1 13] 1, 1)/\(1))> ( Z exp(2m( g,l _ 58‘1))\]1—1)>
A0=0 M l=0
p—1 )
( exp 27rz( 6—1,(;71 ,B] 1,c— 1)/\ ))
A0_ =0
( Z exp<2m( 0,c—1 606 1)/\ )>
N l=p
Since r % s, we have a, # by, for somem=0,1,...,7 — 1. We claim that there exists some

le {0,1,...,c— 1} such that ag” o4 # ﬂ(’)n’l. Ifag”l = ng’l foralll € {0,1,...,c — 1}, then

since u(an)p # u(by)p, we have

GF(q)

span{ (w(am)p — ulbm)p)er}iZo

N/
span{ (@ — By)eo + - + (al"y — Bl)ee)

M

span{€1, €2, .-, €c-1}-

PN A m,l
This is a contradiction which proves the claim. Now for any ! such that agt # By > We observe

that
p—1

i 4 mylyyj—1-m
> ew(Z - AN )

NT1Tm=0
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is a factor in the above product. But its value is equal to

1-exp (211'1'(016"’[—}36"'[))
lfexp(ggl(ug"luﬁan’l))

=0,
since ' — B is an integer with absolute value less than p. This completes the proof of the
lemma. 0

For s € N \ ¢gNy, define the function

L oo
=Y ST I pI(E + u(s))). (4.15)

=1 j=0

In the following lemma we compute the dual Gramian G (€) of the quasi-affine system X (¥)

in terms of the Fourier transforms of functions in 0.

Lemma4.1.5. Let ¥ = {',y%,..., ¢t} C L2(K) and G(€) be the dual Gramian of X (¥)
até €. Then

L
(G©erer) =D ST I (E+uk))?  forke N, 4.1.6)

=1 5z
and

(G©)ew.er) = ts(0™E +p™k)  fork, k' € No, k £ ¥, 4.1.7)

wherem = max{j > 0 : | ~kl € ¢'Ng}, s € No\ gNo is such that u(s) = p™(u(k) — u(k)),
and ts is the function defined in (4.1.5).

Proof. For k, k' € Ny, we have

(G(&)es, er)

Il

Yoo+ u(k))P(€ +u(k'))

pEA

Il

L
D D BT (E + (k) (pI (€ + w(R))

=1 j<0
L
" Z{ D€+ ulk))) B (pa (€ + u(k))
7>0

XD 4 Xl (@) X gy (9 ()
deD;
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The sum over D; is equal to

S 0 U@ Xaugen (07 u(@d)) = Y- a7 x (w(@ (k) - u(k)) ).

dEDj dEDj

By Lemma 4.1.4, this expression is equal to 1 if |k — k| € ¢’ Ng and 0 otherwise. Therefore, if
k=K then

£)ex, ex) Z S 1P € uk))) 1P for k € Ny,

=1 j€Z

Ifk # K, letm = max{j > 0 : |k — k| € ¢’No}. Then, the sum over D; will contribute 1 for

each j = 0,1...,m and then O from m + 1 onwards. Thus,

(G(E)ew, ex) P (7 (€ + u(R)))PH(p7 (€ +u(k)))

o~

M=
L

1 j=—oc

~

7 (€ + u(R)))D (p~ (€ +ulk)))

Mb
M8

o~

1y

—m

P ™ (€ + u(k)))D (I (€ + u(k)

M=
M2

0

i
[un
Q.
Il

113 (7 ("¢ + pu(k))

M
Mg

l

Il
b

Il

J

x¢l(p i(pme + pru(k) + pr(u(k) — u(k)))-

Letk'=co+c1q+---+chJandk:d0—|—-d1q—|—---+qu‘]. Since |k’-— k| q™No
but [k’ — k| ¢ ¢™ 1Ny, we have ¢; = d; foralli=1,2,...,m — 1 and ¢ # dm. Hence,

J—
k) — u(k) = u(em + cmird 4o esq’ ™) = u(dm + dmpag o+ o+ Ao ™

u(s)

for some s € Ny, by Proposition 2.1.5(b) and (c). Note that s ¢ qNp, since, otherwise

u(s) = p~Lu(n) for some n € Np. This will imply that cm = d,,, which is false. Therefore,

(G(E)ews, ex) = ts(p™E + p7 u(K)),
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here s € Ny \ ¢Np is as defined above. This completes the proof of the lemma. O
whe !
In the following theorem, we provide necessary and sufficient conditions for the affine system
n bl

X () to be a tight frame in L2(K). As a consequence, we get a characterization of wavelets,

Th 4.1.6. Suppose ¥ = {y1, 92, ... YL} C L3(K). The affine system X(¥)isatight
eorem 4.1.6. ={¢*,v= ..., C

frame with constant 1 for L*(K), i.e.,

L 2 Il f € L*(K)
IFE=30" 5" If sl fora

=1 jEZ keNg
if and only if the functions ', 42, . . ., Pl satisfy the following two conditions:
S 7 1.8
D WMPTIOR =1 forae €€ K, (4.18)
=1 jez
and
tm(§) =0 fora.e £ € K andforallm € Ny \ ¢Np. 4.1.9)

In particular, W is a set of basic wavelets of L*(K) ifand only if || ! ||la = 1 fori=1,2,..., L
and (4.1.8) and (4.1.9) hold.

Procf. 1t follows from Theorem 3.1.4 that X (¥) is a tight frame with constant 1 if and only if
X(¥)isa tight frame with constant 1. By Theorem 4.1.2, this is equivalent to the spectrum
of G(¢) consisting of a single point 1, i.e., G(€) is identity on #2(Np) for ae. £ € D. By
Lemma 4.1.5, this is equivalent to the fact that equations (4.1.8) and (4.1.9) hold. The second
assertion follows since a tight frame X (¥) with constant I is an orthonormal basis if and only if
l9'll2 =1for i = 1,2,..., L (see Theorem 1.8, section 7.1 in [42]). 0

The following theorem, initially proved by Bownik [15] for R™ with an integer dilation

matrix, gives a new characterization of ti ght wavelet frames with constant 1. We extend this

result to the case of local fields of positive characteristic.

Theorem 4.1.7. Suppose ¥ — {vhy2, ... yl) LA(K). Assume that X () is a Bessel

Jamily with constant 1. Then the following are equivalent:
(a) X(V)is a tight JSrame with constant 1.

(b) ¥ satisfies (4.1.8).
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(c) U satisfies . )
R e _ a1 iio
;/K G qa @110

Proof. It is obvious from Theorem 4.1.6 that (a) = (b). To show (b) implies (c), assume

that (4.1.8) holds. Then, since {p?D* : j € Z} is a partition of K, we have

— 2
Zf\wl(s)ﬁm - ZZ/ W (e)| |£1

=1 J€Z

= ZZ/ it ﬂg)'ﬂwel

I=1 j€Z

- [(ESwerar)

=1 j€Z
3

= [ E=l
o €]
-1
p

To prove (c) = (a), we assume that (4.1.10) holds. Since X () is a Bessel family with
constant 1, so is X(¥), by Theorem 3.1.4(a). Let G(¢) be the dual Gramian of X(T)at{eD.
By Theorem 4.1.2, we have ||G(€)|| < 1forae. { € D. In particular, |G(&)exll < 1. Hence,

1> [GEel = D KGE©ew el

pENg

= |G©emel+ D NCOeken) 4.1.11)

peNo p#k
By Lemma (4.1.5), we have
L - D
SO € + ulR)IE = (G(©ex,ex) < Lfork € No, ae. £ €D-
=1 jeZ

Hence,

€ _g—1
zéﬂlwll(fl)lzdg /*(ZE"”I(”_JQ')M L=

=1 j€Z
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From this it follows that Y7, Yicz |t (p7€))? = Lforae. £ € D* and hence forae. { € K,
i.e., equation (4.1.8) holds. By Lemma 4.1.5 and equation (4.1.8), I(é(g)ek, ex)|* =1 for all
k € Ny. Hence by (4.1.11), it follows that (G(£)ex, ex) = 0 for k # k' so that G(€) is the
identity operator on £2(Np). Hence, by Theorem 4.1.2, X(¥) is a tight frame with constant 1.
Therefore, X () is also a tight frame with constant 1, by Theorem 3.1.4. O

As a consequence of the above theorem, we get another characterization of a set of basic

wavelets of L2(X).

Theorem 4.1.8. Suppose ¥ = {y1, 2, ..., v} C L2(K). Then the following are equivalent:
(a) VU is a set of basic wavelets of L*>( K).
(b) U satisfies (4.1.2) and (4.1.8).
(c) Y satisfies (4.1.2) and (4.1.10).

Proof. It follows from Theorem 4.1.7 and Lemma 4.1.5 that (a) = (b) = (c). We now prove
that (c) implies (a). Assume that ¥ satisfies (4.1.2) and (4.1.10). Equation (4.1.2) implies that
X(¥) is an orthonormal system, hence it is a Bessel family with constant 1. By Theorem 4.1.7
and equation (4.1.10), X (¥) is a tight frame with constant 1. Since each ' has L? norm 1, it
follows that X () is an orthonormal basis for L?(K). That is, W is a set of basic wavelets of

L(K). 0

4.2 The characterization of MRA -wavelets

Let us recall the definition of an MRA on local fields of positive characteristic (see [44]).

Definition 4.2.1. Let K be alocal field of characteristic p > 0, p be a prime element of K and

u(n) € K for n. € Ny be as defined in (1.2.2) and (1.2.3). A multiresolution analysis (MRA)
207N 3 .

of L(K) is a sequence {V; : j € Z} of closed subspaces of L2( K) satisfying the following

properties:

(@ V; C Vjqqforall j e Z;

(b) UZVj is dense in L(K),
i€



4.2. THE CHARACTERIZATION OF MRA-WAVELETS 67

© N V;i={0}

JEZ

(d) feVjifandonlyif f(p~ 1) € Vjforallj e Z;

(e) there is a function ¢ € Vj, called the scaling function, such that {¢(- — u(k)) : k € Ng}

forms an orthonormal basis for V4.

Let U = {1,942, ..., 9L} be a set of basic wavelets of L2 (K). We define the spaces W,
j€Z,by W =span{yj, : 1 <1 < L, k € No}. We also define Vj = @ Wi, j € Z. Then
it follows that {V; : j € Z} satisfies the properties (a)-(d) in the deﬁnitig:éf an MRA. Hence,
{V; : 5 € Z} will form an MRA of L2(K) if we can find a function ¢ € L2(K) such that the
system {o(- — u(k)) : k € Ng} is an orthonormal basis for Vg. In this case, we say that ¥ is
associated with an MRA, or simply that ¥ is an MRA-wavelet.

Now suppose that {y!,%2, . .., 9971} is a set of basic wavelets for L>(K) associated with

anMRA {V; : j € Z}. Let p € L%(K) be the corresponding scaling function. In Theorem 2.3.1,

we have characterized the scaling functions for MRAs of L2(K). In view of this theorem, we

have
S 1€ +uk)fP=1 forae €D, 42.1)
keNg
lim |¢(p’¢)|=1 forae. £ €K, 4.22)
j—oo
and
2(€) = mo(pé)p(p¢) for a.e. & € K, 4.2.3)
where mg is an integral-periodic function in L%(®). Also, since {¢!, ¥2,..., 971} are the

wavelets associated with an MRA corresponding to the scaling function ¢, there exist integral-

periodic functions m;, 1 <! < q — 1, such that the matrix

1

M(€) = [mi (€ + pull))] j-z

2=0

is unitary for a.. £ € D (see [44]) and

PH(€) = my(p)P(pE)-
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Hence, we have
q-1

g—1
POP+ Y [QP = |mo<p£>¢<p£>|2+§j|ml (PO2POI* = 12O Y. Imp)R).
=1

=1 1=0
Since M () is unitary, we have
g—1
2O + D [ O = ¢(pe) >
=1
This equality holds for a.e. { € K. Hence, we have
qg-1 R
GO = 12O+ Wip~1e))2.
I=1
Iterating, we get, for any integer N > 1,

-1 N . )
1BOF = 12N+ Y |t p—ie)2.

=1 j=1

Since [$(€)] < 1, the sequence {Z;\;l Z?;ll [P pie)2 : N > 1} of real numbers is in-

creasing and is bounded by 1, hence it converges. Therefore, A}im |¢(p‘N 5)|2 also exists.
—00

Now,
/ le(p~Ne)2de = q‘”/ |p(6)]%d€ = 0 as N — oo,
K K

Hence, by Fatou’s lemma,

S im0 < gim [ p-Neyras =

. . At ~N
This shows that 1\}E>noo |6(p™")2 = 0. Hence, we get

q—-1 oo
PO =D ipig)?

=1 j=1
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Since {¢ (- — u(k)) : k € No} is an orthonormal systém, we getforae. £ € K,

7—1 o

1= Y e +uE)? =33 [P p 7 (€ +u)P 4.24)

keNg [=1 j=1keNy

Definition 4.2.2. Suppose ¥ = {w1,%2,...,9l} C L2(K) is a set of basic wavelets for
L2(K). The dimension function of ¥ is defined as

L oo
ZZ 2 |Wi(p~I (€ +u(k)))|2 forae.f€K.

=1 j=1 keNy

Observe thatif ¥1, 92, ..., ¥~ € L2(K), then

L35 e + ks = }:f“/IW@W%<w @25)
J=1keNy
Hence, Dy is well-defined for a.e. & € K. In particular, > _zen, bt (p7 (€ + u(k)))|? < oo for
ae. £ € K. Thus, forall j > 1,1 <! < L,andae. £ € K, wecandefmethcvectorw (€) in
2(Ny), where
wh(€) = (P (p7I (€ +u(k))) : k € No}.

Note that we can also write Dy as

L oo
D (&) = D Y 152 m0)-
=1 j=1
We have thus proved that if ¥ = {y1,9?%,..., »9~1} is a set of basic wavelets associated
with an MRA of L2(K ), then it is necessary that Dy = 1 a.e. Our aimis to show that this
condition is also sufficient. We will show that if ¥ = {¢*,¥?, ... L9971} is a set of basic
wavelets of L2 (K)and Dy = 1 a.e, then ¥ is an MRA-wavelet. To prove this we need the

following lemma.
Lemma 4.2.3. Forallj> 1,0 =1,2,...,q— 1, and a.e. § € K, we have
qg—1

HE) = i(wé(s), W(E))wh (€)- 4.2.6)

h=1 i=1
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Proof. The series appearing in the lemma converges absolutely by (4.2.5)forae. { € K. We

first show that

-1 oo

pIE) =3 N Pl TI(E + u(®))HpHE + u(R)PHPTE). @2

h=1 i=1 keNy

Let us denote the series on the right of (4.2.7) by Gl,(f) Then by using Lemma 4.1.3 and

equation (4.1.9), we have

-1 oo
Gie) = D PpE+u(®))) DY i€ + u(k))P ()
keNy h=1 i=1
= > T+ ukR)) (8 - th<£+u(k>>wh< )
keNg
= 3 G IE + u(k)))te(©)
keNy
S P e u(k))) b (e)
h=1 keNg
= > DHTIE + ulk)))t(©)
keqNg
g—1 o
= DS TIE + ulah) (i (€ + u(gk)) (i)
h=1 i=0 keN
-1
= ;ZML;W I7HPE +ulk)Ph(p~ (p€ + u(k)))P" (p~'pE)
=1 =1 keNy
= G§+1(P§)‘

L . .
This is equivalent to G 36 = GL_1(p72¢). Tterating this equation, we obtain, Gé(ﬁ) =

GY(p™9+1¢). We now calculate G (€). We have

q—1 oo

GO = D9+ um) IS P + u(h)) o)
keNg h=1 i=1
q—1 oo
= D 07 u(ak) Y0 S i (pmle + u(gh))dtp-n )
keNg h=1 i=0
q—1 oo

= D T uk) 30D G IE + u(h))dre ),

keqNg h=1 i=0
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In the last equation, we can replace the sum over k € gNg by a sum over £ € Ny since the

additional terms corresponding to k € N \ ¢Nj are all zero by (4.1.9). Hence,

q—1 oo
Gh(¢) = ZZ (p'p )81 001n

(1)

I
<

Thus G HES ( ~i¢) for a.e. € € K. Since (w ;(5), wh(€)) is integral-periodic, (4.2.6)
follows. This completes the proof of the lemma. O
We will also need the following lemma. We refer to [4], [18] and [42] for a proof of this

result.

Lemma 4.2.4. Let {v, : n > 1} be a family of vectors in a Hilbert space H such that
(i) 02, lvnf2=C < o0, and
(i) vp =3 00 1 (Un,Vm)Um foralln > 1.

Let F = spani{vy : n > 1}. Then dim F = Y20 |lva]|? = C.

The following theorem characterizes the MRA-wavelets.

Theorem 4.2.5. A wavelet ¥ = {1,92,... 9} € L2(K) is an MRA-wavelet if only if
Dy (&) = 1 for almostevery £ € K.

Proof. We have already observed that Dg(§) = 1fora.e. £ € K when U is an MRA-wavelet.
We now prove the converse.

Assume that Dy (¢) = 1 for a.e. £ € K. Let E be the subset of ® on which Dy (£) is finite
and (4.2.6) is satisfied. Then wé- are well-defined on E. For £ € E, we define the space

F(¢) =spanfw(§):1<1<q—Lj>1}

Then, by Lemmas 4.2.3 and 4.2.4, we have

dim F(§) = ZZ [Wh(€)lbmey = Pe€) =1 (4.2.8)

=1 j=1
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That is, for each € € E, F(£) is generated by a single vnit vector U(£). We now choose a

suitable vector. For 7 > 1, letus define

XJ':{EEEiwj-(f)#Oforsomel,lglgq—l,

andwh,(§) = 0,Vm < jand1< 1 < g — 1},
and
Xo={¢€D:wj¢)=0for all{,1<I<q—1, and for all j > 1}.

Then {X; : j = 0,1,2,...} forms a partition of E. Note that Xo = {£ €D:Dy() =0}.
Soforae. £ € E\ X, there exists J = 1 such that{ € X;. Hence, there exists at least one [,

1<1< g~ 1, such that wé»(f) # 0. Choose the smallest such [ and define

wi(€)

U = 2 7
© = [ e

Thus, U(€) is well defined and U le2(vgy = 1forae. £ € D. We write U(€) = {u() :
k € Ng}. Now, define P(6) = ur(& — u(k)), where k is the unique integer in Ny such that
¢ € D +u(k). This defines $ on K. We first show that ¢ € L>(K) and {p(- —u(k) : k € Np)}

is an orthonormal system in L*(K). We have

1913 = /K IB(6))2de
= | late+utmpiae

keNg

- /@ g (€) P

keNy

= [ I0@ e
D
1.
Thus, p € L2(K). Also,

keNg keN

D1 +ulk))|? = D k() = 10 3y = 1 4.2.9)
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This is equivalent to the fact that {¢(- — u(k) : k € Np)} is an orthonormal system. We now
define V§ = span{p(- - u(k)) : k € No}. Let W; =span{v}, : 1<1<q~ 1,k € Ny} and
Vo= @ W;. If we can show that vi = Vo, then it will follow that {V; : j € Z} is the required
MRA](Ege the discussion just after Definition 4.2.1).

We first show that Vy C Vg‘. It is sufficient to verify that %D;,k € Vou, ke Ng,j<0,

1 <1 < qg-—1. Foreach j > 1, there exists a measurable function 1/;» on © such that

wh(€) = VL()U(€) forae. € € D. That s,
PP (€ +uk)) = V;(f)@(ﬁ +u(k)) forae.{e€DkeZ.

Hence, by (4.2.9), fora.e. { € ®, we have

ST WeTIEuENE = D WHEPIRE + uk)? = 141 (4.2.10)

keNg keNg

This shows that 1/;- € L2(CD) so that we can write its Fourier series expansion. Thus, for j > 1,
there exists {aé-’k :k € No} € ¢2(Np) such that u;- €)= ken, aé,ka(é), with convergence in

L%(D). Extending 1/; integer periodically, we have
P p~IE) = vi(Q)p(¢) forae. £ € K, j > L. (4.2.11)
Taking inverse Fourier transform, we get

wl_j,o(z) = g'/? Z aé-,k@(x - u(k)), Jj=L
keNp

) . i, .
Hence, . i0 € V(f for j > 1. Equivalently, 1/);0 € Vg for j < 0. Moreover, since V{ s invariant
under translations by u(k), k € No, we have ¥}, € Voﬂ, j<0,keNy1<I<g— L

To show the reverse inclusion, it suffices to show that Vg L Wj, forj > 0. For j 2 0, ke

No,1 <1< g—1, wehave

(W) = (@, (W) = /K@(s)q—j%l(pf&)m(pfs)dé
T / (o I€YD(E) Xk (€)de
K
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¢/ / S B (€ + u(n)))BHE + u(m))xe(6)de.
ne&Nyg
) (4.2.12)

Using equation (4.2.10), we get

q—1 oo -1 oo
D P = ZZ D 1P (€ +uk))]? =1 forae e K.
=1 j=1 I=1 j=1 k€Ng
Hence, for such a £ and for all j > 0, there exists jy > 1 such that le-o (p=9€) # 0. Thus, (4.2.11)
implies that ¢* (p=7—Jo¢) = Vi (p77€)@(p~7€). Therefore, for k € No, we get

P07+ u(k)) = vl (079 (6 +ulk))B (0 (£ + u(k))).
Since p~/ (€ + u(k)) = p~it + u(¢’k) and z/Jl.o is integral-periodic, we have

P~ (E +u(k))) = P79 (& + u(k))).

vk (p=i€) (p—fs)

Hence, using Lemma 4.1.3,forany h with 1 < h < ¢-1, we have

D P77+ u(k)))FME + u(k)

keNg

e 2 DHBTI(E Fu(k)) DA (E + uk)
( R
= 0,

since j + jo > 1. Substituting this in (4.2.12), we get (p, wé’,k) =0forj>0,keNy,1<I<

9 — 1. From this we conclude that V§ C Vj. This completes the proof of the theorem. O



Chapter 5

Wavelet Packets And Frame Packets

In this chapter we will construct the wavelet packets associated with an MRA of a local field
of positive characteristic. We will also generalize the concept of wavelet frame packets to this
setup. First of all, we will discuss about wavelet packets on R very briefly.

Let {Vj : j € Z} be an MRA of L2(R) with scaling function  and wavelet 2. Let W; be
the corresponding wavelet subspaces: W; = span{2//2¢)(27 - —k) : k € Z}. In the construction
of a wavelet from an MRA, essentially the space V7 is split into two orthogonal components Vj
and Wy. Note that V; is the closure of the linear span of the functions {2/2¢(2 - —k) : k € Z},
whereas V and W) are respectively the closure of the span of {e(--%k) : kK € Z} and
{¥( = k) : k € Z}. Since (2 - —k) = ¢ (2(- — 27 1k)), we see that the above procedure
“splits” the half-integer translates of a function into integer translates of two functions.

In a similar way, we can split W;, which is the span of {¥(2 -k) : k € Z} =
{o(2( -2 k)) : k € Z}, to get two functions whose 2~U~Df translates will span the
same space W;. Repeating the splitting procedure j times, we get 2 functions whose integer
translates alone span the space W;. If we apply this to each W, then the resulting basis of L2 (R)
will consist of integer translates of a countable number of functions (instead of all dilations
and translations of the wavelet /). This basis is called the “wavelet packet basis”. The concept
of wavelet packet was introduced by Coifman, Meyer and Wickerhauser [27, 28]. For a nice
exposition of wavelet packets of L2Z(IR) with dilation 2, we refer to [42].

The concept of wavelet packet was subsequently generalized to R™ by taking tensor prod-

ucts {26]. The non-tensor product versions are due to Shen [69] for dyadic dilation, and

75
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Behera [5] for MRAs associated with a general dilation matrix and several scaling functions.
Other notable generalizations are the biorthogonal wavelet packets {241, non-orthogenal version
of wavelet packets [21], the wavelet frame packets {19] on R for dilation 2, and the orthogonal,
biorthogonal and frame wavelet packets on R” by Long and Chen [61] for the dyadic dilation.
In section 5.1, we prove a crucial lemma called the splitting lemma and construct the wavelet
packets associated with an MRA of a local field of positive characteristic. We also prove that the
wavelet packets generate an orthonormal basis for L2(K). In section 5.2, we prove some basic

results needed to prove an analogue of the splitting lemma for wavelet frames on K and then

construct the wavelet frame packets.

5.1 Construction of wavelet packets

Let {V;: j € Z} be an MRA of L?(K) and ¢ be the corresponding scaling function. Since

@ € Vo C V1, and {1 x : k € Ny} is an orthonormal basis in V1, we have

p(e) = > B p(p7 e - u(k)),
keNg

where h = (0, p1.1) and {h) : k € Ng} € £2(Np). Taking Fourier transform, we get

P = a2 Wxp)p(pe)

k€Np
= mo(p&)@(pé), G.1.D)

I

where mg(€) = ¢—1/2 > hxx(€).

keNy
Suppose that there exist g ~ 1 integral-periodic functions 7, 1 <1< g-1,in [*®) such
that the matrix
q—1
M) = (mu(pe + pu(h))
1k=0
1 unitary. As we mentioned before, it was proved in [44] that {4/, 3q, - -+ , 4,1} is a set of

basic wavelets of L2(K) if we define

(€)= ma(pe)p(pe).
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We first prove a lemma, the splitting lemma, which is essential for the construction of wavelet
packets. With the help of this lemma, we can decompose a closed subspace of L2(K) into

finitely many mutually orthogonal subspaces in a suitable manner.

Lemma 5.1.1 (The splitting lemma). Let ¢ € L3(K) be such that {¢(- — u(k)) : k € No}
is an orthonormal system. Let V = m{ql/%(p”l - —u(k)) : k € Ng}. Let my(§) =
Y2 Y RExE(€), 0<1< g — 1, where {h},: k € No} € £2(No) for0 < 1 < g — 1. Define
hi(€) kjljal(pi)nﬁ(pf). Then {¢1(- — u(k)) : 0 <1< g — 1,k € No} is an orthonormal system

inV if and only if the matrix

M(E) = (mpe + pu(k)))

k=0

is unitary for a.e. { € D.

Moreover, {{(- — u(k)) : 0 < I < ¢ — 1,k € No} is an orthonormal basis of V' whenever

it is orthonormal.

Proof. Assume that M(¢) is unitary for a.e. £ € D. Then, for 0 < s,t < ¢—1and k,l € N,

we have

(9o = u(k) el — u®)) )

(b= ut)) " (e = u))")

- / XOMGIAGNIGE:
= /Z (€ + u(n)) Pr (€ + u(m)xx (©)xa(6) dé
€Np

Il
/\

ma(pE + pu(n))me(pé + pu(n)) | @ (p€ + pu(n () P (©xa (6) d€

I
\

nENo
— [ 55 o+ putan + o v )
p=0neNg

x|¢(p€ + pu(gn + #))l r(E)xa(€) d€

- / {st(Pﬁ + pu(p))me(pé + P“(N))}Xk(f)Xz(f) d¢

u=0

/@ by () dE = e

I
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Hence, {1s(- — u(k)) : 0< s < ¢ — 1, k € Np} is an orthonormal system in V. The converse
can be proved by reversing the above steps.

To prove the second part, let f € V' be such that f is orthogonal to ¥;(- — u(k)) for all
1=0,1,...,9 — 1, k € No. Weclaim that f = 0 ae.

Since f € V, we have

f(z) = Z q Cm‘P(p z — u(m)),

meNg

for some {cy, : m € No} € £2(Ng). So there exists an integral-periodic function m; in L2(D)

such that
F(&) = ms(p&)2(ve).

Hence, foralll = 0,1,...,9 — 1, k € Ny, we have (by a similar calculation)

0 = (fin(-—u(k)))
= f({)z/?z(ﬁ)x;c(ads

=[S ot + patyE Ty bt

=0
Therefore, for all | = 0, 1, .. .,¢ — 1, we have

q-—1

>_mys(p€ + pulu))mi(pe + pu(u)) = 0.

=0

Now, fora.e. £, the vector (mf (b€ + PU(M))) € CY, being orthogonal to each row vector of

the unitary matrix A (), is the zero vector. In partlcular mys(p&) = 0 a.e. This means f=0
a.c. and hence f = 0 a.e. O

Applying the splitting lemma to V — V1, we get that {1, (- — u(k)) : 0 < [ < g1,k € No}
is an orthonormal basis for W

Let

-Now we will define a sequence {wn : n > 0} of functions.

W =
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and

Wn, = P (1§n§q—1),

where

i) = mu(pe)p(pe) 1 <1<gq-1). (5.12)

Suppose Wy, is definedform > 0. For 0 <r <g—1, define

Wrtqm(x) = @2 Y Mpwm(p™ z — u(k)). (5.1.3)
keNy .

Note that this defines w, for every integer n > 0. Taking Fourier transform, we have

(Wr4gm)™(€) = mr (pE)Dim (PE)- (5.14)
Definition 5.1.2. The functions {wn : 7 > 0} as defined above will be called the wavelet packets
corresponding to the MRA {V; : j € Z} of L*(K).

In the following proposition we find an expression for the Fourier transforms of the wavelet

packets in terms of ¢.

Proposition 5.1.3. For an integer n > 1, consider the unique expansion of n in the base q:
n o= g1+ pag + psg® + -+ 150 (.15
where 0 < p; < q—1foralli =1,2,...,jand ij # 0. Then
n(§) = my, (Pf)muz(92f) ALY (Pj§)95(Pj§)- (5.1.6)

Proof. We will prove it by induction. If n has an expansion as in (5.1.5), then we say that
it has length j. Since wy = @, and wp = Yp,1 < N < g — 1, it follows from (5.1.1) and
(5.1.2) that the claim is true for length 1. Assume that it is true for length j. Let m bean

integer with an expansion of length j -+ 1. Then there exist integers Y1, 72 - - - » Yi+1 with

0<71,72,.-.,%+1 < ¢ — 1 and y;j+1 # 0 such that

m o= Ayt ue vl
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=N +kq1

where k = v2 + 3¢+ -+ 7,,'+1qj‘1. Note that k has length j. Hence,

m(&) = (Wrnka) ()
= My, (pE) @k (p) (by (5.1.4))
= 1y (PE) My (P2E) -+ M1 (T 1E) R (P F1E).
Hence, the induction is complete. O

We will prove the following theorem regarding the wavelet packets.

Theorem 5.1.4. Let {w., : n > 0} be the basic wavelet packets constructed above. Then
(i) {wn(- — u(k)) : ¢ <n <@g+ — 1,k € No} is an orthonormal basis of Wj, j > 0.
(ii) {wn(- —u(k)) : 0 < n< ¢ — 1,k € Ny} is an orthonormal basis of V;, j > 0.

(iii) {wn(- —u(k)) : n >0,k € No} is an orthonormal basis of L?(K).

Proof. Since {wy, : 1 < n < q- 1} are the wavelets, the case § = 0 in (i) is trivial. Assume (i)
for j. We will prove for j + 1. By our assumption, the set of functions {wn (- —u(k)): ¢/ <n <
FH-1ke Np} is an orthonormal basis of W;. Since f € W; if and only if f(p_l-) € Wi,
j € Z, we have

{4 (et —u(k)) 1 ¢ <<t — 1,k € No}

is an orthonormal basis of W;,;. Let

Bu =m0 (g 2un(p - ~u() : k € No}.

Hence,
qj+1 ~1

Wini= @ E. (6.1.7)

n:q.’f

Applying the splitting lemma to E,,, we get the functions

9 (@)=Y g wn(p™ e —u(k), (0<I<gq-1)
keNg
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such that {g]'(- —u(k)): 0 <1 < q — 1,k € Ny} forms an orthonormal basis for E,,. Hence,
{gh(—u(k):0<1<q—1, ¢ < n < gt -1,k € Ng} forms an orthonormal basis for
Wi1. But by (5.1.3),

n
g1 = Wiign-

This fact, together with (5.1.7), shows that

{win( —u(k)) 1 0<1<g-1, ¢ <n<g¥ -1 ke N}

= {wn(-—uk)): @ <n< P2 -1, keNo}

is an orthonormal basis for W4 1. So (i) is proved. Item (ii) follows from the observation that
V;=Vy®Wy&-- & W,_ and (iii) follows from the fact that |J V; = L*(K). O
JEL

5.2 Wavelet frame packets

Let H be a separable Hilbert space. Recall that a sequence {xzy, : k € No} of H is said tobea

frame for H if there exist constants C and Cy, 0 < C; < Ca < oo such that for all = € H

Cillel? < Y Ha,a) P < Callz)l®. (5:2.1)
keNg
The largest C; and the smallest Cy for which (5.2.1) holds are called the frame bounds.
Suppose that & = {1, g, . . . , e} C L2(K) be such that the system {oi(- —u(k)):1<
I < N,k € Ny} is a frame for its closed linear span S(®). Let ¥1,72, .- ,¥n be elements in
S(®). A natural question to ask is: when can we say that {¥;(- — u(k)):1< 1< N,k € No}
is also a frame for S(9)?

If Y5 € S(®), then there exists {p;jix : k¥ € No} in £2(Np) such that

N

i) =D Y piwer(@ — u(k))-

I=1 keNy



82 CHAPTER 5. WAVELET PACKETS AND FRAME PACKETS

Taking Fourier transform, we get

N _

95 = D pinxs©#1(8)
=1 keNy
N A
= 2 EalOa),

=1

where P;j(€) = 3= pjwxk(€). Observe that P are integral-periodic functions. Let P(€) be

k€Ng
the N x N matrix

P&) = (P 11(5))19,151\/'

Let S and T be two positive definite matrices of order N. We say that S < Tif T — S is

positive definite. The following lemma is the generalization of Lemma 3.1 in [19).

Lemma 5.2.1. Let ¢, 4 forl1 < 1 < N, and P({) be as above. Suppose that there exist

constants Cy and Ca, 0 < C; < Cy < 00 such that

CilI < P*(&)P(€) < Col forae. £ € D. (5.2.2)

Then, for all f € L2(K), we have

N N
CLY° DKl —u®NP < SN 1wl — uk))?

=1 keNy I=1 keNy

N
YN Wl —u@)E.  (523)

=1 keNp

IA

Proof. For f, g € L2(K), we define

[£,91(8) = D~ F(&+u)a(E + u®)).

leNg

Then, for f € L2(K), we have

%€ = 3 F(e+u@)ie+ u(l))

leNg
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N
= D> Pul€+u)F (€ + w(@)@r(€ +ud)

k=11eNg

N
= Z Py (&) [f, ] (€),

k=1

since Py, are integral-periodic function. Hence,
N N N
Sl = D S PP If, okl [fs ww] = XP'PX",
j=1 kk'=1j=1

where

= (I, 1), [f> o))

By Plancherel Theorem,

N
ZZI(f’QOI(_u Z/ fv(pl] |d€
=1

keNg =1

Hence, inequality (5.2.3) is equivalent to
C’l/ XX* < / XP*PX*< Cg/ XX* forall f € L}(K).
D D D

This follows from (5.2.2). -
We now introduce a matrix E(€). For0<r,s<qg—1,1<0,j< N, and for a.e. £ €9,
define

7€) = 05q™ ix(u(r) (€ + pu(s)))-
Let
PR GEICAHG) .
and

E() = (B¢ ))OSqu_l. (5.24)

So E(¢) is a block matrix with ¢ blocks in each row and each column, and each block is a square
matrix of order N, so that E(&) is a square matrix of order gN.

We have the following lemma which will be useful for the splitting trick for frames. The first
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part of the lemma is a particular case of Lemma 4.1.4 proved in Chapter 4.

Lemma 5.2.2.

(1) For0<r.s<q-—1,

qg—1
% D x((u(r) — u()pu(t)) = bp,s.
t=0

(i) The matrix E(§), defined in (5.2.4), is unitary for a.e. £ € D.

Proof. As we mentioned above, item (i) corresponds to the case 7 = linLemma 4.1.4 of

Chapter 4.

To prove (ii), observe that the (r, s)-th biock of the matrix E (E)E*(€)is

The (I, j)-th entry in this block is

Hence E(§)E*(£) = I. Similarly, E(§)*E(¢)

q—1
D ETE) (B(9)"
t=0
q—1 N
D E0nle) (€5,()”
t=0 m=0
q—1 N
>

[

t=

(]
3
I
o

O™ 2 (a(r) (€ + pule))) - Gmg =2 (u(s) (€ + pu(t)))

q—1
D Sumbimg™ ZO X (u(r)(€ + pu(t)) x (u(s) (€ + pu(t)))

m=]
N q—-1
Zl Sumimx((w(s) — w(r)€)g™ Y x((u(s) — u(r))pu(t)
m= t:O
N
Z dimdjmbrs, (by part (i) of the lemma)
m=]1
81367,

= I. Therefore, £ (&) is a unitary matrix. =~ [

Let{¢; : 1 < j < N} be functions in L2(K) such that {¢p; (- —u(k)) : 1 < j < N,k € No}

1s a frame for its closed linear span V'. For 1<I<No<r < g — 1, suppose that there exist
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sequences {hj;; 1 k € 7} € £2(D). Define

¥ (z) = ql/ZZ Z hkpi(p e — u(k)).

7=1keNg

Taking Fourier transform, we get

N
=D > hipa Y ape)ds (p€) = Zhw] (bE),

j=1 keNp
where
;&) = Z ¢ V2R xk(€)-
keNg
Let
H: (&) = (h;(8) <1 j<n
and

H(E) = (Ho(€+pu(s)))

0<r,s<g—1

Note that H (£) is a square matrix of order ¢N. We can write Y as

N
ST higeilp e — u(k))

j=1keNg

—1
Z Z > Ry gessd™ 2P (P — u(gk + s))

7=1 s=0 keNy

N g—1
= Z Z Z hl] qk+s§0] % - u(k))

j=1 s=0 keNg

i (2)

where
#(2) = ¢/%0;(p 7t —uls)), 0<s<a-l (5.25)
Note that u(gk + s) = p~ u(k) + u(s) (see eq. (1.2.4)). Taking Fourier transform, we obtain
N g-1

wpre) = SN W aa Xk E) (SO

j=1 5s=0keNy
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g—1

N
= D D RO,

7=1 s=0
where p[7(§) = Z Ri; gkisXk(§). Define the matrices
ke€Ng

P (&) = (pirjs(f))lgl,jSN’

and

P&) = (P(9)

0<r,s<q—1 )
Proposition 5.2.3. H () = P(p~1€) E(&), where E(£) is the unitary matrix defined in (5.2.4).
Proof. The (r, s)-th block of the matrix P(p~1¢)E(¢) is the matrix

q—1

D PTHpTIOE().

t=0

The (1, j)-th entry in this block is equal to

[any

<~

Pim(p1E)EL,(6)

3

It
MiL
M= iMz

D M e Xk (P 1) 5msa™ Y25 (u(?) (€ + pu(s)
1 keNy

70
-
3
I

= hllj,qk+tmq—l/2x(u(t)(§ + pu(s))).
=0 keN,

N.
=

<

Now, the (1, 5)~th entry in the (r, 5)-th block of H(¢) is

hi; (€ + pu(s))
= Y W (k) (€ T pu(s)))
keNo

— g2 Z Z hlr’qukﬂm
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q-1

g Z Z R g+t X (P~ 1u(R)E + u(k)u(s) + u(t)e + pu(t)u(s))

t=0 k€N

g-1
= q_1/2z Z hi5.akeXk(PIEX(u(t) (€ + pu(s))).

t=0 keNg

In particular, we have
H*(€)H (&) = E"€)P"(p )P (p™ ) E(S).

Since E(£) is unitary, it follows that H*(£)H (€) and P*(p~1£)P(p~1¢) are similar matrices.

Let A(¢) and A(€) respectively be the minimal and maximal eigenvalues of the positive
definite matrix H*(§)H(£), and let A = i1§1f A€)and A = s%p A(E). Assume that 0 < A < A<
00. Then we have

M < H*(§)HE) <M forae €D

This is equivalent to say that
M < P*(E)P() <Al forae. §€D.

Then by Lemma 5.2.1, for all g € L?(K), we have

q9—1 N 9 -1 N \ )
AV (a6 —uen)| < T30 3 Ko —uE)
5=0 I=1 keN, s=0 [=1 keNg

(.~ uto)[ 526

VAN
=
M=

where () is defined in (5.2.5). Since

q-1

N
S [t —utp= 5050 3 ot - un)

=1 kENO s=0 l=1 k&eNg



88 CHAPTER 5. WAVELET PACKETS AND FRAME PACKETS

which follows from (5.2.5), inequality (5.2.6) can be written as

N
AN Kas a2oi(pt - —u(k)))|?
=1 keNp
-1 N

Y3 DT Ka v (- wk)))

5=0 I=1 k€N

N
AT DT Ko d o —u(k)))?. (5.2.7)

=1 k€Ng

IN

IN

This is the splitting trick for frames.

We now apply the splitting trick to the functions {#{:1<1 < N}foreachs,0<s<qg-1.
We have

N
ADS Y Ko a 245071 - —u(k)))[?
{=1 keNp
-1 N
Y20 D" Kaowp (- - u(k)))H|?
=0 [=1 k€Np
N

AD2 D7 Ko d 2wt —u(k))) |2, (5.28)

=1 keNp

IN

IA

where 1/); o< r< q — 1 are defined as
‘ N
b)) = lZ D hid 25 (0l —u(k), 0<s < g —1,1<I<N. (529
=1 kENQ

Summing (5.2.8)over0 < s <g¢— 1, we have

q-1

N -
220 Kaa it —u(p)* < T i (9, 9" (- ~u(k)

s=0 I=1 k€N

[{g, a >y (™t —u(k))) *.

IA
=
™=
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89
Using (5.2.7), we obtain
N
YD g 2eup? - —u(k)))|
1=1 keNg
g-1qg-1 N
< D000 He ¢ = ui))f?
s=0 r=0 I=1 keNy
¥ 2
< A% Ko dxup? - —u(R))[ (5.2.10)

We now define the wavelet frame packets similar to the orthonormal case. We start with the

functions ¢4, 9, . .., ¢n. Apply the splitting trick to the space

1/2,

span{g"/2pi(p™ - —u(k)) : 1< 1 < N, k € No}

to get the functions {¢§ : 1 < 1 < N,0 < s < ¢ — 1} (see (5.2.7)). Now for any integern > 0,
we define ¢, 1 < | < N, recursively as follows. Suppose that ] is already defined for r € No
and1 <! < N.Thenfor0 < s < q—1and1<[< N, define

e+q1" Z Z hljkql/z"/";(p_l . —u(k)).

j=1keNg

Comparing this with equation (5.2.9), we see that

@ 0<rs<g—1} = (YT :0<rs<e-1}

Wp:0<n<g -1}

S0 (5.2.10) can be written as

¢g?-1

IN

N
*22 3 g, 2ou(p~2 - —u(k)))]’ S e - u®NI?
1=1 keN, n=0 l=1 keNp

M3 S Kool —uGED)
keNp

=1

IN
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By induction, we get for each j > 1,

N
N3 Ug, 2 —u(k)) |
I=1 keNg
¢-1 N

S0 D W —ultn?

n=0 [=1 k€Np

N
NS ST g @2l - —u(k))))?. (5.2.11)

=1 kENo

IA

IA

We summarize the above discussion in the following theorem.

Theorem 5.2.4. Let {y;:1 <1< N} C L2(K) be such that {p;(- — u(k)): 1<I< N,k €
No} is a frame for its closed linear span Vy, with frame bounds Cy and Cs . Let H(), Hp(E), A
and A be as above. Assume that all entries of H (&) are bounded measurable functions such
that0 <A < A < oo. Let {y} : n > 0,1 <1 < N} be the wavelet frame packets and let

Vi={fe L*(K): f(p’") e Vp}. Then for all j > 0, the system of functions
{or( -wk):0<n<¢ -1,1<1< N,k € No}

is a frame of V; with frame bounds \7 Cy and A Cs.

Proof. Since {@y(- —~u(k)):1<I< N,k e No} is a frame of Vg with frame bounds Cy and
C. itis clear that for all j,

{007 - —u(k)) :1<1< N,k € No}

is a frame of V; with the same bounds. So from (5.2.11), we have

@-1 N

MOl < 333 g, v — u(k)) < NCy)\g||2  forallge V.

n=0 [=] keN,



Chapter 6

Biorthogonal Wavelets

The concept of biorthogonal wavelets plays an important role in applications. We refer to
[23, 25, 51, 73] for various aspects of this theory on R. For the higher dimensional situation on
R", we refer to the articles [16, 18, 60]. This chapter is devoted to the study of biorthogonal
wavelets on local fields of positive characteristic.

As we mentioned in Chapter 1, Farkov [32] has constructed many examples of wavelets
for the Vilenkin groups which are local fields of positive characteristic. Several examples of
biorthogonal wavelets on the Vilenkin groups were constructed by Farkov in [34] and by Farkov
and Rodionov in [35]. By choosing the parameters appearing in these constructions suitably,
We can see that these wavelets are not orthogonal. Also, in [35], the authors have provided an
algorithm to construct biorthogonal wavelets on such groups.

In this chapter we generalize the concept of biorthogonal wavelets to a local field K of
positive characteristic. We say that two MRAs are dual to each other if the translates of the
corresponding scaling functions are biorthogonal. We define the projection operators associated
with dual MRAs and show that they are uniformly bounded on L2(K). We show that if ¢ and ¢
are the scaling functions of dual MR A, then the associated families of wavelets are biorthogonal.
Under mild decay conditions on the scaling functions and the corresponding wavelets, we also

show that the wavelets generate Riesz bases for L*(K).

91



92 CHAPTER 6. BIORTHOGONAL WAVELETS

6.1 Riesz bases of translates

Definition 6.1.1. Let {¢, : n € No} and {¢,, : n € Ny} be two collections of functions in

L?(K). We say that they are biorthogonal if
<¢n71/;n1> = dn,m forevery m,n € Ng.

Accollection {¥, : n € No} of functions in L2(K) is said to be linearly independent if for
any £?-sequence {an : n € No} of coefficients with 3" aptp, = 0 in L?(K), we have ap, = 0

neNy
foralln € Np. It is easy to see that biorthogonal sets are linearly independent.

Lemma 6.1.2. Let {¢, : n € Ny} be a collection of functions in L2(K). Suppose that there
is a collection {, : n € Ny} in L2(K) which is biorthogonal to {¥m : n € No}. Then
{tn : n € No} is linearly independent.

Proof. Let {an : n € Ny} be an £2-sequence satisfying >~ ant, = 0in L*(K). Then for

neENg
each m € Ny, we have

0= <0,7»Zm> = <i antn, ¢m> = ian<wna ¢~m> = Qm.
n=1

n=1
Hence, {, : n € Np} is linearly independent. -

We first recall the definition of a Riesz basis. Let {z,, : n € Np} be a subset of a separable

Hilbert space H. Then {zn:ne No} is called a Riesz basis of H if

() span{z, : n € No} =H, and

(b) there exist constants A and B with 0 < A < B < 0o such that

A Z lenl? < ” Z CnﬂEnH2 <B Z leal®  for every {cn, : n € No} € £2(No)-
nE€Ng neNy neNy

The above definition is equivalent to the following definition. A subset {zn:neNo}isa
Riesz basis for H if

(@) {zn:n € Ng}is linearly independent, and
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(i3) there exist constants A and B with 0 < A < B < oo such that

Al < 3 e e < Ble|d  forevery ¢ .
n€Ng

Note. The condition in (i7) above is known as the “frame condition”.
In the following lemma, we provide a necessary and sufficient condition for the translates of

two functions to be biorthogonal.

Lemma 6.1.3. Let ¢, € L2(K) be given. Then {o(- — u(n)) : n € No} is biorthogonal to
{¢(- — u(n)) : n € No} if and only if

3 b€ +u(m)F(E +un) =1 forae K. (6.1.1)

n ENU

Proof. For a fixed | € Ng, we have {u(l) +u(k) : k € No} = {u(k) : k € Np} (see
Proposition 2.1.5(c)). Hence, it follows that (p(- — u(n)), @(- - u(m))) = on,m if and only if
(¢, ¢(- — u(m))) = dom. Since

~

(g —u(m)) = [ (¢ )&(E)xm (§)dE

_ / Z (& + u(D)B(E + u)xn(§)dE,
leNg

the result follows from the uniqueness of the Fourier series and the fact that {Xm : m € No}is
an orthonormal basis for L2 (D). -

The following lemma provides a sufficient condition for the translates of a function to be

linearly independent.

Lemma 6.1.4. Let ¢ € L2(K). Assume that there exist constants c1,C2 > 0 such that

a< S |pE+uk)<e foraelek (6.1.2)
keNp

Then {©(- — u(n)) : n € No} is linearly independent.

Proof By Lemma 6.1.2, it suffices to find a function ¢ whose translates are biorthogonal to the
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translates of . We define ¢ by

L 2(6)
P8 = St P

keNg

By (6.1.2), this function is well-defined. Now for a.e. £ € K, we have

@€ + u(m))

m%g e(&+ u(m))¢(§ +u(m)) = m%;o o€+ u(m)) ZkeNo |B(€ + u(k) I u(m))|2
> 18§ +u(m))|?
— meNp -1
> g€ +u())?
leNg
By Lemma 6.1.3, {¢(- — u(n)) : n € Ng} is biorthogonal to {&(- — u(n)) : n e Ng}. O

Lemma 6.1.5. Suppose that ¢ satisfies (6.1.2). Any f in span{y(- — u(n)) : n € No} is of the
formf= 3" anp(- — u(n)), where {an} is a finite sequence. Let & be its Fourier transform,

n€Ng

thatis, a(€) = 3 anXn(€). Then
nENQ

o /@ 8(6))? dE < |12 < e /D ja(e)|? de.

Proof. By Placherel’s theorem, we have

-/Klf(x)de = ./KIZQ"(’O(I‘U(TL))'zd:c

'ﬂENo

= [ I¥ wsom@| a

neENg

= [ 1208 Y e de

neNy

- /K 1P(E)Pla(e)[? de
= /@ S Ip(e + u(k))2a(e) 2 de.

keNg

The result follows by (6.1.2). o
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Remark 6.1.6. In particular, for a finite sequence {a,,}, we have

13" ane( - u(n))HZ < 3 fanf?

nENg neNg

Theorem 6.1.7. Let {¢(- — w(n)) : n € Ny} be a Riesz basis for its closed linear span.
Suppose that there exists a function @ such that {3(- — u(n)) : n € No} is biorthogonal to
{o(- — u(n)) : n € Ny}. Then

(a) forevery f € span{p(- — u(n)) : n € Ng}, we have

=2 (H8( —um)ye(- — un));

ne&Ny

(b) there exist constants A, B > O such that for every f € span{e(- ~u(n)) : n € Ny},

oo
AILFIE < D0 — u(m))I? < B fJ3. (6.13)

n=1
Proof. Since {(- —u(n)) : n € Ny} forms a Riesz basis for its closed linear span, there exist
constants ¢; and cy s’uch that (6.1.2) holds (see Lemma 2.1.8). We will first prove (a) and (b) for
f € span{p(-—u(n)):n e Np} and then generalize the results to span{¢(- —u(n)) : n € No}.
(a) Let f € span{ip(- — u(n)) : n € N}, then there exist a finite sequence {ay,} such that

F= % anp(-- u(n)). Using biorthogonality, we have
n€ENg

o= u®)) = {3 anp(- ~ u(m)), &~ ulk)))

neNy

= Y anlp(- — u(n)), B(- - u(k))
neNg
= dag.

(b) Since (6.1.2) is satisfied, by Lemma 6.1.5, for every f € span{y(- — u(n)) : n € No},

we have

c?W%sAWW%quN%
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By Plancherel formula for Fourier series and the fact that a, = (f, @(- — u(n))), we have

L a@Pde = 3= lanlt = 3 105 — u(m))

nGNQ TLENO

So (b) is proved.
We now generalize the results to span{¢(- — u(n)) : n € Ng}. First we will prove (b). For
fespan{y(- —u(n)) : n € No}, there exists a sequence { f,, : m € No} inspan{p(- —u(n)) :

n € Ny} such that || f,, — f|la = 0 as m — oo. Hence, for each n € Ny,

{fm (= u(n))) = (£, B( —u(n))) as m — oco.

The result holds for each f,,,, Hence,

ZI (fg( —um)* = Z lim |{fm, G(- = u(n)))|*

m—00
n=0

- n%i_l)n@Zl Frms @(- — u(m))P

< B,,,}gnoollfmllz

= B|fI3.

Letting N — o0 in the above expression, we get

2 KF B = u(m))P? < BJ£113
neNp
Hence, the upper bound in (6.1.3) holds. Now

( Z I{fm, &(-~ U(n)))|2) 2

neNg

(ST

(32 10 =206 = w4 (32 1075 — wi)’

neNo ”ENO

Since the upper bound in (6.13) holds for each f,, — f and the lower bound holds for each fim,
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we have

Al € B S =l + (5 155 — )

n€eNp

Taking limit as m — 0o, we get

ANFIZ < Y0 WA — w(n))]>
neNg
Now, we will prove (a) for f € Span{¢(- —u(n)) : n € Ng}. Lete > O and g €
span{p(- — u(n)) : n € Ng} such that || f — g2 < €. Since (a) holds for g, for large enough

N € Ng, we have

N
F=Y (80— um))p(- — u(n))
n=0
N
= f-g+Y (9,8( — u(m)e(- —u(n)) - Z<f, u(m))e (- — u(n))
n=0 n=0
N
= f—g+Y {9— F, (- — u@))p(- - u(n)).
n=0

Hence,

-3 U4~ um))C ) ™),
=O

n

< g+ | S0 - £p - umeC — um)|],
n=0
N 1
< f =gl + vz (Do Mo — £, (= u(m))I?)” (by Remark 6.1.6)
n=0
< f gl + vE@VEIS gl < 1+ VeaB)e.

Since e is arbitrary, the result follows.

6.2 Projection operators associated with dual MRASs

In the usual definition of an MRA (see Definition 2.1.1), it is required that there exists a function

¥ € Vg such that {¢(- — u(k)) : k € No} forms an orthonormal basis for Vg. In Chapter 2, we
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have proved that if {(- — u(k)) : & € Ng} forms a Riesz basis for Vp, then we can find another
function 1 € Vp such that {¢1(- — u(k)) : ¥ € Ny} forms an orthonormal basis for Vj (see
Proposition 2.1.9).

Therefore, in the definition of an MRA, we will replace the condition (e) by the following

weaker condition:

(¢) there is a function ¢ € V}, called the scaling function, such that {(- - u(k)) : k € Ng}

forms a Riesz basis for Vj.
We can use the condition (¢) to get Riesz bases for V;.

Lemma 6.2.1. Let ¢ be the scaling function for an MRA {V;; : j € Z}. Then, foreach j € Z,
{¢ik : k € No} is a Riesz basis for V.

Proof. If we define ¢ by

o 8
A= e ume
keNg

then {G(- — u(k)) : k € No}is biorthogonal to {¢(- — u(k)) : k € Np} (see the proof of
Lemma 6.1.4), Hence,

(Pins Bim) = (85p(- = un)), 6;3(- — u(m))) = (- — u(n)), (- — u(m)) = dn.m-
Thatis, {Bjx : k € No}is biorthogonal to {; : k € Ng} for every j € Z. Hence, by
Lemma6.1.2, {©; 4 : k € No} is linearly independent.

We need to show that {p;, : k € No} satisfies the frame condition. For any f € Vj, we

have
N2 =
o Wit = > S0( - ulENP =" [0 f, (- — u(k)E
keNg keNg keNp
Since {p(- — w(k)) : k € No} is a Riesz basis for Voand 6_; f € V, there are constants

4, B > 0 such that for every f € Vj,

ANOFIZS Y 7 185, ( — u(k))? < Bllo_, fI2

keNg
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This is equivalent to
ANFIE < D7 WSl = u(k))® < BJfI5
keNp
Hence, {¢;k : k € No} satisfies the frame condition. O

Lemma 6.2.2. Suppose that {V; : j € Z} is an MRA with scaling function . Then there exists

an £%-sequence {hn : n € No} such that

p(@) =D hagPp(p7 e — u(n)),
neNp

and an integral-periodic function mq in L2(D) such that

P(&) = mo(p€) 2 (p€)-

Proof. Since ¢~ L¢(p) € V1 C Vb, by Theorem 6.1.7(a), we have

g Yp(pz) = Z (f, (- — u(n)))p(z — u(n)) = z hno(z — u(n))-

neNg neNg

Taking Fourier transform, we get

P(p1E) = > haxal)$(E) = mo(§)2(8)-

n&eNp

This is equivalent to

(&) = mo(p€) 2 (pE)-

By Theorem 6.1.7(b), {h, : n € No} € #2(No). Hence, mg € L2(D). As in Proposition 3

in [44], we can show that g is integral-periodic. O

Definition 6.2.3. A pair of MRAs {V; : j € Z} and {V; : j € Z} with scaling functions  and
( respectively are said to be dual to each other if {(- — u(k)) : k € No} and {@(- — u(k)) :
k € No} are biorthogonal.

Definition 6.2.4. Let ¢ and % be scaling functions for dual MRAs. Foreach j € Z, define the
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operators P;, P; on L2(K) by

Pif(x) = Y ([ @inpir(e), (6.2.1)
keNg

Pif(xz) = Z(f»‘/’j,k>¢j,k(x)- (6.2.2)
keNg

We first note that the series defining these operators are convergent in L2(K) and that these

operators are uniformly bounded on L?( K).

Lemma 6.2.5. The operators P; and ]5]_ are uniformly bounded.

Proof. Since the translates of ¢ and @ form Riesz bases for their closed linear spans, by

Lemma 2.1.8, there exist constants C; and C4 such that

Cr< D IeE+u(k)P < Cy and C1< 3 |B(E +u(k)P< o

keNp

keNp

Also, there exists a constant B > 0 such that forall {¢; : k € N, o} € £2(Np), we have

|3 creor], <BY fanl® 623

keNg keNy

Now, for f € L2(K), we have

Z I(f> 2ok |?

keNg

IN

IN

Y GEGMGY

keNg

S| LS i w)FE T e def

k€eNp leNg

S| L rex© i = 3 18@E = 171

keNp keNg

LIS i+ wyeraay

leNg

/’:’(2;' |f(e+ u(l))|2) (Z lp(€ + u(z))|2) de

leNg

G [ (3 17+ upp) ae

leNg

Gy /K 1F©) de = oy 2.

2
dg
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Similar estimates hold for (. Hence, for f € L%(K), we have

IPofll3 = ”Z(f@o,k)@o,kuz
k€eNg
< B l{f.Gox)* (by6.2.3)
keNg
< BG|\f|}

Thus, Py is a bounded operator on L2(K) with norm at most v/BCj, = C, say. Now, since the

dilation operators are unitary and since

Pif =Y Af, @ik)ein= D (65 F, Pox)0-j0k

keNp keNg

we conclude that the operator norm of P; is at most C. Similar arguments work for P;. This
finishes the proof of the lemma. .

In the following lemma, we prove some useful properties of the operators Pj and B;.

Lemma 6.2.6. The operators P; and P; satisfy the following properties.
(a) P;f = fifandonlyif f € Vj, Pjf = fifandonly if f € Vi
(b) Lim |P;f - fl2 =0, and lim ||P;f|la =0 for every f € L*(K).
J—o0 J—>—00

Proof. (a) P;f = fifand only if f = 3. (f.Bsn)@jm- Since {9jn : n € No} is a Riesz
n€Np ..
basis for V; and {3, ,} is biorthogonal to {¢jn} the result follows from Theorem 6.1.7. Similar

argument works for 15]- f.

(b) Let f € L%K)and ¢ > 0. Since |J Vj is dense in L?(K), there exists J € Z and
jez B
9 € Vj such that ||f — gl < 75¢> Where C is as in Lemma 6.2.5.1f g € V;, then Pjg = g for

every j > J. Thus, for j > J,

If = Piflle < If=glla+ 1P (f = 9)ll2
L+ 1B = gll2
1+Of —gll2 <«

A

IA
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This shows that
lim ||P;f — flla=0.
J—>00

Now consider & € S (see Definition 1.2.4). Then

1PhlE = | S ¢ padenn ]|, < B S i, @il

k€Ng keNyg

In Theorem 2.2.1, we proved that if h € &, then }° |(h, ;)2 — 0asj — —co. Hence,
keNg
| Pihlla = 0 as 7 — —o0. Since S is dense in L?(K), given € > 0, there exists h € S such that

|lf = hll2 < €. Hence,

155 fllz < 1P (f = R)llz + | Pibllz < CILf — hll2 + || Pkl

Therefore, || Pj f|l2 — O as j - —co. 0

6.3 Biorthogonality of the wavelets

Let{V;:j € Z} and {V; : j e Z} be dual MRAs with scaling function ¢ and § respectively.
By Lemma 6.2.2, there exist integral-periodic functions mq and ho in L2(D) such that () =

mo(pE)P(p€) and B(£) = (p€) P(pE). Assume that there exist integral-periodic functions m;
and 17y in L2(®) for 1 < [ < g — 1 such that

MM (&) =1, (6.3.1)

_ qg—1 ~ -1
where M (&) = (ml(p§+pu(k)))l o and M(¢) = (ﬁll(Pf + pu(k)))q . Now for 1 <
o= 1,k=0
1 <q~1, we define the associated wavelets 1y and 1/;1 as follows:

%u(€) = mi(p€)B(p€)  and B1(€) = 17 (p€) B(pE).

We have the following lemma which shows orthogonality relationships among the translates
of the scaling functions and the wavelets.

Lemma 6.3.1. Let ¢ and ¢ be the scaling functions for dual MRAs and Y, 1<1<q-1
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be the associated wavelets satisfying the matrix condition (6.3.1). Then the following hold.

(a) {Y1on:n€ No} is biorthogonal to {@l,o,n :n € Np};

(b) (P10, Pom) = (1/;l,0,n, po,m) = 0 forallm,n € Ng.

Proof. (a) We have

S e+ uln)dr(€ + uln))

neNg

= Y m(p€ + pu(n))@(p€ + pu(n)) i (ps + pu(n))G(pé + pu(n))
nE€Ny
g-1

= YN mu(pg + pulgk + $))p(pé + pu(ak + 3))
s=0 keNp
x 17 (p€ + pu(gk + $))B(p¢ + pu(gk + 8))
q-1

= Y% mu(pé + pu(s))@(pé + pu(s) + u(k))

5=0 keNg

x 17 (pE + pu(s))P(pé + pu(s) + u(k))
q-1
= mi(p€ + pu(s))riu(pé + pu(s))

s=0
= 1

Hence, by Lemma 6.1.3, {%/1,0.,» : 7 € N} is biorthogonal to {"Zl,o,n :n € Np}.

(b) For m,n € Ny, we have

(Y10 Bo,m)
= (- u(n)), B — u(m))
(13, PXm)
[ 6B BT xr ()€

It

= [ mutog + pu(i))elpt + pukNXH(©)
D

keNg
170 (p€ + pulR))B(pé + pru(k))xm(&)dé

[/ 5 mutot +pute) + a0 + put) + DGO

s=0 keNg
X150 (PE + pu(s) + u(k))H(p& + pu(s) + u(k))xm(€)d€
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q—1

= [ S m pu() o ¥ )
s=0

= 0.

Similarly, we can show that (1/;[,0,1, wo,my =0. O
Our aim is to show that the wavelets associated with dual MR As are biorthogonal and they
form Riesz bases for L2(K). The following proposition is crucial for the proof of the main result

of this chapter.

Proposition 6.3.2. Let o, § and ¢y, vy for 1 < | < q—1be as in Lemma 6.3.1. Denote g = ¢
and Yy = . Then for every f € L?(K), we have

q-1
Pif=Pof + > > (f ok ok (6.3.2)

=1 keNg

and
-~ ~ q_l -~
Pif=Pof+> > (F Yok Droks (6.3.3)

=1 keNy

where the series converge in L*(K).

Proof. Tt is enough to prove (6.3.2) as the proof of (6.3.3) is similar. Moreover, it is enough to

prove (6.3.2) in the weak sense, that is, for all frg9 € L3(K)

q—-1

<P1f’g> = <P0f? g) + Z Z(fa 1/;[,0,16)(9’ 1pl,0,k>
1=1 keNy
q—1 _ o
= Z Z (s ¥uok)(9: Y10 k) -
We have
g-1
Z Z (Fs10,k) (9, Yrox)
=0 keNp

q—1

= 2 2 ([ foneod) ([ @i

=0 keNg
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g—1

= S ([ 3 e+ utaniie + wonxae)ae)

=0 keNp OtENo

/D Z (€ +u(B))ydhi(&+ u(ﬁ))Xk(g)dg)

BE€Ng

g-1 -
- ?::O/Q(Z f(£+u(a))1ﬁz(£+u(a)))(z meu(m))dg

€Ny BeNg

g—1
= / S (3 (& + wle)mulpe +pu(@))B(p€ + pu(a))

D 1=0 ‘achy

x S G+ u(B))mulps + pu(B))p(pE + pu(8)))de
BeNo
-1 g-

- /@Z(Z > F(€ + u(ge) +u()mu(pg + w(e’) +pulv))

=0 v=0q ENO

x$(p€ + u(e) + pu(v))

q—1
x 3 ST 3E + uleh) +ult))ma(pg +u(B) +pu()

v'=0 B’€No

xp(pE + u(B") + pu(v)) ) dé
= /QZZZ 2 (Sl P )mi(re +pu)
xF(€ + u(ga’) + u(@)B(pE + () + pu(v)
CBEF alaP) T w R + u(B) + pul) )
B /9 SIS (F(€ + ulgal) +u()B(pE + ule) +pulv)
v oo B

€T (@F) + uOE + () + pul))de

2 [ ¥ Z(f(s + u(ga))(pE + 1)

D+u(v) ")

<BE + ulaB)P(E + () dE- (634

On the other hand, we have

<P1fv g)
= Y (P )

keNp
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i
1

[ 1©3wexpe)ae) (| TO2mexpeE)

= ([ ST A B (o) e

([ S5 ot + u(6) (o))
"B

N / 2 (F (e + ulge))dpe + u(e))

a g
X§(E+u(@B))(pS + u(B)) ) dé. 63.5)
Since the right side of (6.3.4) and (6.3.5) are same, the proof is finished. O

Combining Lemma 6.2.6 and Proposition 6.3.2, we have the following proposition.

Proposition 6.3.3. Let ¢, § and 1, 1/31 for 1 <1< q—-1beas in Lemma 6.3.]. Then for every
f € LK), we have

g—1 q-1
F=>3 YA g = o Y AF ey B (6.3.6)
I=1 jEZ keNy I=1 j€Z keNo

where the series converge in LYK).

We now prove the main result of this chapter.

Theorem 6.3.4. Let ¢ and ¢ be the scaling functions for dual MRAs and 1, Y, 1<1<q—1
be the associated wavelets satisfying the matrix condition (6.3.1 ). Then the collection {1 j :
1<i<q—-1,5€eZ ke No} and {;Zl’j,k :1<1<q-1,j € Z, k € Ny} are biorthogonal.
In addition, if

PO < O+ el =27, 1B(e)] < o1 + |epy =3,

Ol < Clel and o) < e,

Jor some constant C > 0, ¢ > Oandfor a.e. £ € K, then {Yjk

:1<1<q-1,j€Zke No}
and{Y1;6:1 <1 <gq '

-ljeZ ke No} form Riesz bases for L%(K).

Proof. We begin by proving that {Yijr 11 <1< 9-1,5 € Z,k € Ny} and {J’U»k :

1<l<q-1,jezke No} are biorthogonal to each other. First we will show that, for



6.3. BIORTHOGONALITY OF THE WAVELETS 107

1=1,2...,g—landj € Z,

(D1 Vi) = Ok -

We have already proved it for 7 = 0 in Lemma 6.3.1(a). If j # 0, then

Wrjao Vrik) = (O—rok 6—iProk)
W10k P10,k

= O
Let k, k' € Ny be fixed and let j, j/ € Z. Assume that j < j'. We will show that

(W1 s Yu jrr) = 0.

It can be shown that ¥ € V3. Hence, 91 = 0—j%1,0k € Vj+1 © V;.. Therefore, it will be
enough to show that ﬁl,’jl’k, is orthogonal to every element of Vji. Let f € Vjr. By Lemma 6.2.1,
{4 : k € No} is a Riesz basis for Vj.. Hence, there exists an ¢2-sequence {ck : k € Np} such
that f = 1%1:\1 ckpjrx in L2(K). By Lemma 6.3.1(b),

o

Wy o pjr ) = (5w op 6—jripok) = (P o6 Pok) = 0

Hence,

<¢llyjlykl’f> = (@Zl’,j’,k’v Z Ck‘Pj'Jc) = Z a(wll,jlykn(pj/,k> == 0

keNg keNg
Tn order to show that these two collections form Riesz bases for L*(K), we must verify that
they are linearly independent and satisfy the frame condition. Since they are biorthogonal to
each other, both the collections are linearly independent by Lemma 6.1.2. )
To show the frame conditions, we must show that there exist constants A, B, A ,and B>0

such that for every f € L2(K),

q—1
AlfIIZ < I, s < BISIE 637)
Ilfli2
=17

JeZ keNg
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and

1 o~
Al f1 < ZZ ZNZ (f i)l < Bl 113 (638)
=1 jeZ k

We first show the existence of upper bounds in (6.3.7) and (6.3.8). We have

Z [/, 7ubl,j,k'> |2

keNp

S| [ FOr " hwexwe af

keNg

=07 > / > FE+ o ulm)du(pie + u(m)) xa (p€) d{‘
keNp meN
- / ‘Z f(f+P_’u(m))wl(PJ§+u(m))’
meNy

: / (Z |F(€+p7u(m)))? [P1(p7€ + u(m |25)(Z 11 (p7 € + u(n ))'2(1—5)) de

L meNy neN,
B / IFOPIB@ O S [dhi(p7€ + u(ny)20-9) g,

neNp

where 4 is to be chosen suitably.

. _1
We have assumed that |¢(¢)| < C(1+]€])~27¢. Hence, we have | (&) < CA+]pé]) 727"

So Y |di(p7e + u(n))20-9 is uniformly bounded if § < 2¢(1 + 2¢) L. Hence, there exists
neN
C>0 guch that

Z Z I(f, %1,5.k) ]2

JEZ keN,
< ¢ [ 1 ©F S 1iwor d
JEZ
< Cop{3 1o e ept\ 0 s

JEZ

The last step follows because K j 1S a disjoint union of P,j e Z, and the function F(£) =

E 7€)[?® has the property that F'(§) = F(p). Note that D = 0. Since £ € P~ \ D,

we have €] = q. Hence,

0 e ¢]
Z |¢l p] |26 < Z

J=-—00
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00

= ;) 1_l_qj)(s(1+2e)

- i6(14+2 — —0(142e) 7
= ¢ ( 5) 1—g (1+2¢)

Also,
Y I < > (Ca i
j=1 j=1

_ o iq(—j+1)26 _ Cz&ﬁ%
j=1
These two estimates show that sup{ E [ Di(pT€)|2 : € € P\ D} is finite. Hence, there exists
B > 0 such that the second 1nequa11ty in (6.3.7) holds. Similarly, we can show that the upper
bound in (6.3.8) holds.
Using the existence of the upper bounds, we now show that the lower bounds in (6.3.7) and

(6.3.8) also exist. It follows from Proposition 6.3.3 that, if f € L?(K), then we have

g-1 q—1 .
=N ST st = SN i ke

1=1 jeZ keNg =1 j€Z keNg
Therefore,
1715 = (f, 1)
g-1
= Z Z Z (f, V)i f>
l=1 j€Z k€Ng
-1
= Z Z (f Yk (P £)
1=1 eZkeNo
q— % q—-1 5 %
< ( ZZIWM ) (S vnl)
=1 j€Z keNg =1 jE€Z keNy
g—1
< B30 2 1 s 2z,

l=1 jeZ keNg
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Hence, )
q—
2
—Ilfl% <D DD St
=1 j€Z keNg
Similarly, we can show that
—||f|% < ZZ PN XTEIS R
=1 j€Z keNy

This completes the proof of the theorem. O
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