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Estimates of Parameters of Grain-Size Distribution
from Weight Frequencies!

A. K. Adhikari,? J. Roy,? and S. Sengupta?

When grains of a sediment sample are separated by sieving into a number of size classes, the
weight of the grains belonging to a particular size-class is called the weight frequency of that
class. That the weight frequencies cannot be used as simple frequencies for the calculation
of the mean and standard deviation of size of grains is well known. A method is developed
in this paper for estimating these two as well as a third parameter, named shape parameter,
by minimizing a quadratic form that arises naturally as an analogue of the x? statistic. Two
fully worked out numerical examples, with simulated data, are presented to illustrate the
method. A computer program in FORTRAN language is also appended. Comparative study
shows that the quicker conventional method used by geologists may produce reasonably
good estimates of standard deviation when the sample size is large, but the estimates of
mean may show large deviations.
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INTRODUCTION

The method commonly followed by geologists for obtaining frequency distribu-
tions of grain sizes of sediment samples is to separate the grains into a number of
size classes using sieves of different sizes and to obtain the bulk weight of the
particles retained on each sieve separately. In such a method of analysis, the to-
tal weight of the grains in any particular sieve class is called the weight frequency
of that class (Krumbein; Krumbein and Pettijohn, 1938). Counting the number
of grains within each sieve class, being extremely tedious, is always avoided. The
problem, therefore, is to determine the mean and the standard deviation of the
size of the grains when the number of grains in each sieve class is unknown.

It has been customary for geologists to treat weight frequency as number
frequency and to determine the mean, standard deviation, skewness, and kurto-
sis of the distribution in the usual way, from the various percentile values ob-
tained from graph plots (eg., the Folk and Ward, 1957, method often used by
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geologists). McCammon (1962) and Folk (1966) have discussed the relative effi-
ciencies of the various percentile measures commonly used by geologists for this
purpose. In a recent paper Swan, Clague, and Luternauer (1978) examined,
through a simulation approach, the effectiveness of Folk and Ward graphic mea-
sures as descriptors of grain-size distributions.

That the weight frequencies cannot be used as simple frequencies for the
calculation of the mean and the standard deviation of the size of grains has been
pointed out by a number of authors (see Sahu, 1964 for a review of the early
work). Sahu (1965) gave a method for estimating these two parameters, assum-
ing that the weight W of a grain is strictly proportional to the cube of its size S;
W oS3 and that the distribution of size is log-normal.

It should be noted, however, that the size of a grain as determined by siev-
ing is not a simple geometric characteristic of a grain, except when the grain has
a regular geometric shape, such as a perfect cube or a sphere. Again, the grains
belonging to a particular size class may differ among themselves in density as
well as in shape. It is therefore more realistic to assume a statistical rather than a
deterministic relationship between the weights and sizes of grains.

Both from theoretical and empirical considerations the log-normal distribu-
tion has long been accepted as a standard model for the size distribution of
homogeneous samples of grains. In this paper, it is assumed that the joint distribu-
tion of the size S and weight W of grains is bivariate log-normal. It follows as a
consequence that the average weight W of grains of a fixed size S is proportional
to S¥; W «S” which is a statistical relationship more realistic than the deter-
ministic relationship W o« S assumed by Sahu. Here v is the coefficient of linear
regression of log W on log S. For perfectly spherical grains of uniform density
v=3. If <3, it implies that the average weight of a grain is less than that of a
spherical grain of the same size, and if ¥>3 it is the other way around. The
parameter v is thus a general indicator of the shape of grains when they are of
uniform density. We call v the shape parameter.

It should be noted that the simple model used here assumes the shape pa-
rameter v to be constant; this would be unrealistic in situations where v might
vary considerably with the size or density of grains.

Starting from the assumed bivariate log-normality of the joint distribution
of the size and weight of grain, the asymptotic joint distribution of the weight
frequencies in given size classes is worked out in this paper. This asymptotic dis-
tribution turns out to be multivariate normal and an explicit expression is ob-
tained for the quadratic form associated with it. Apart from a multiplicative fac-
tor, this quadratic form is analogous to the x? statistic and involves the mean u
and the standard deviation ¢ of the natural logarithm (base ¢€) of the size of
grains and the shape parameter v. These three parameters are estimated by mini-
mizing the quadratic form. The minimization is carried out by an iterative proce-
dure which involves heavy computations. Numerical examples worked out on a
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computer, together with programs written in FORTRAN 1V language, are pre-
sented in this paper.

The number of grains in the sediment sample, and the mean and the stan-
dard deviation of the weight of grains are nuisance parameters which cannot be
estimated by the proposed method. Nor is it possible to assess the sampling
errors of the estimates since the sample size (the total number of grains, n) is
unknown.

THE STATISTICAL SET-UP

We use the expression “sieve of dimension C” to describe a sieve with
square holes in which the side of each square is of length C. In the present con-
text, the size of a grain is the dimension of the finest sieve through which it can
just pass. It is assumed that the grains that pass through a sieve of dimension C
are all of size less than or equal to C.

We consider a set-up in which # grains of total weight w are separated into
m size-classes, using (m - 1) sieves of dimensions Cy, C,, ..., C,,.; where
C, <C, <---<C,_;.Let w; denote the total weight of the finest grains that
pass through the first sieve of dimension Cy; w,, the weight of the coarsest grains
that fail to pass through the last sieve of dimensionC,,, _,;and forj=2,3,...,
(m - 1) let w; denote the weight of the grains that pass through the jth sieve of
dimension Cj but not through the (j - 1)th sieve of dimension C;_,. We thus
have w=w; +w, +---t+w,, and the relative weight frequency of the jth size
class is calculated as

p; =wjfw, for j=1,...,m )

Inference regarding the parameters of particle-size distribution will be based
on these relative weight frequencies and we work out their asymptotic joint dis-
tribution, as » tends to infinity, starting from certain assumptions regarding the
joint distribution of particle size and weight. We note here that p{ + - -~ +p,, =
1 and consequently their joint distribution is singular. For purposes of statistical
inference any one of the m relative weight frequencies can be omitted without
any loss of information, since the value of the omitted variable can be deter-
mined without error as the complement of the sum of the retained (m - 1, vari-
ables. Without loss of generality, we base our inference procedure on(p,,...,
Dwm - 1) but express it later in a symmetric form involving each of py, ..., pp.

Let us denote the size and the weight of the ith grain by S; and W;, respec-
tively, and observe that the total weight of all grains belonging to the jth size
class can be written as

n
wi=3 L;(SiW) for j=1,...,m @)
i=1
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where t; (S, W)=W if C;_, <S <(j and =0 otherwise. Here Cy =0 and C,, =
+oo,

To work out the first- and second-order moments of wy;s, we need the first-
and second-order moments of the ;5. We calculate these on the assumption that
the two-dimensional random variables (log, S;, log, W;) fori=1,...,n are in-
dependent and follow a common bivariate normal distribution with the follow-
ing parameters

E (log. S =u, V (log, S;) = 0*
E (loge W) =u,,  V(log, W) =03, and
Cov (log, S;, log, W;) = vo” 3)

We now need the following
Lemma. If (x, y) follows the standardized bivariate normal distribution
with zero expectations, unit variances, and correlation-coefficient p and

z=exp (ay) if a<x<b and =0 otherwise 4)
where a, b, ¢ are given constants, then
E(z)=exp (4 2*) {®(c - ap) - ®(b - ap)}, where )
t
(1) = f Qn) 2 exp (-1 1*)ar (6)

is the standardized normal probability integral. This can be proved by direct
evaluation of the double integral

E@)= J; ) [ f : e Qn)™ (1 - p?)V/2

“exp {- 3 (x* - 2pxy +y?)/(1 - p?)} dy]dx

We now note that x = (log, S; - u)/e,y = (log. W; - u,)/0,, follow a stan-
dardized bivariate normal distribution with correlation-coefficient p = vo/o,,,.
The random variable ¢; = ¢; (S;, W;) can be written as

ti=exp iy + 0,)) if ¢, <x<c¢f and =0 otherwise
where ¢/ = (log, C; - p)/o. The above lemma then gives

E(tf)=exp (ru,, +4 20%) {®(cf - o) - @}, - mo)} )

forr=1,2.
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Let us now write
cj =log, C;
Ay =exp (uy + 3 0%)
A2 =exp (2uy, +202)
s =PA;+Ascy)
Ty =P+ Asc) - PA+Asc5-4)
forj=2,...,m-1,and
Tgm=1-PAs+As¢,-1)
fort=1, 2 where
A, =~-[(/o)+ve]l, A, =-[/o)+2v0] and As;=1fo
Then eq. (7) gives
E@tp) = my;
V(t;) = Namyj = )x%ﬂ%j, and
Cov (4, tx) = ~E(t)) - E(tx) = ~Nimjmx
forj#k=1,...,m.

251

®)

©®)

(10)

We now note that the w;s are sums of independently and identically dis-
tributed random variables #;(S;, W;) for i =1, ..., n. From the multivariate ex-
tension of the central limit theorem (see Varadarajan, 1958) we then conclude

that, asymptotically as n tends to oo, the m-dimensional random-vector

{n'/? (wjln = \ymy): j=1,...,m}

follows the m-dimensional normal distribution with an expectation-vector of

zero and a dispersion matrix whose elements are given by (10).
We now make use of the following theorem stated by Rao (1974)

Let T, be a k-dimensional statistic (Ty,,...,Tk,) such that the
asymptotic distribution of v/# (T, - 81), ... ,v/n (Tin - 0%) is k-variate
normal with means zero and dispersion-matrix X = ((0;)). Let &1, ...,84
be g functions of k variables and each g; be totally differentiable. Then the

asymptotic distribution of

\/;l_uin=\/;[gi(T1na"':Tkn)_gi(ela--'sok):L i=1""7q

is g-variate normal with zero means and dispersion-matrix GE G’ where G =

((38:/96,)). The rank of the distribution is R(GZG")



252 Adhikari et al.

Here R( - ) denotes the rank of the concerned matrix. In ourcase, k =g =
m, Ty=win, 0;=Nmyj, 05 =Na@y;85~ Nimumj, 8101, ., 0m)=0:(6, +
<o+ 0,)", fori,j=1,...,m, where 5;; is Kronecker’s delta, §;; =1, §;; =0,
for i #j. Thus g/(T1n>- > Tn) =pi and g;(01,. .. ,0,)=mfori=1,...,
m since E;'ll my=1 for t=1, 2. Also 9g;/00x = (8 ~ m13) A;l. Thus the as-
ymptotic distribution of 7% (py - m11), . . . , 2% (P - Tym) is m-variate nor-
mal with zero means and dispersion matrix A = ((A;)) = GZG . Direct compu-
tation gives

mn

Ni= D (9g:/36,)(0g/36)) ot
k,l=1

Ms

A2 @ir ~ 1) (Bjr — 1) Mg arBier ~ Nimacm i)

k,l=1

=N {(mg; - M) (myj ~ wij) + wo(8 45 — o)} (1

forj=1,...,m,where A2 = \,\]? = exp (03).

The rank of the s X m dispersion matrix A can be shown to be (m - 1) and
the distribution is thus singular. We therefore omit the last variable and consider
the asymptotic distribution of n'/2(p, - my;), ..., 02 (D -y - Ty -1)
which is (m - 1) dimensional nonsingular normal with means zero and dispersion
matrix ((A;)) fori,j=1,...,(m - 1). The quadratic form associated with this
distribution is

~
[}

0=n'S Ni(p-mp) (py - m)) 12

i,7]=1

where the elements of (\¥)) = ((\;))" are derived below.
Let us write x; for the jth element in the 7th column of the inverse matrix
x;=N'j=1,...,(m - 1) which by definition satisfy the equations

m-1
2 Nxp=di,t=1,. .., (m~ 1) (13)
i=1

By substituting the values of \;;’s from (11) in (13), we get

A? [(mi - 7)) D - 7wy P+ 7y %] =844 (14

where

m-1 m-1
D= Z (7T2]' - ﬂlj)x,- and P= Z Moj Xj
7=1

j=1
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Adding eq. (14) overi=1,.. ., (m - 1), and remembering that

m-1 m-1
Z (T2 = M) =T ~ Mo » Z Ty=1 - Ty
i=1 i=1
we get
N A = Tam) D+ My P =1 (15)

Again, multiplying both sides of (14) by (n,; - my;)/n,; and adding over i =
1,...,(m - 1) we get after some simplification

A? [{So - (Tom - nlm)]z/ﬂ2m}D (Mo - 7T1m)P] =1 - (my4/mye) (16)

where

So =3 mhimy (17)
i=
Solving eqs. (15) and (16) for D and P, we get
D= [(Mim/Tam) = (@1e/m2e)]/(A*S0)
P=(1/N73,) + [1 - (W1l Tom)] D
Finally, substituting the values of D and P in (14), we get
N =x; =N [Girl2) + (1Tam) - (ei€dlSo)] . where
€ = (mulmy) = (M1 [Tam) (18)

Let us write d;=p; - ny;, so that the quadratic form defined by (12) may be
written as

m-1 [§.. 1 €;€;
Q=n\? Y <i+ - ”)d,-dj

My Tam SO

ij=1
m-1 g 1 m -1 2 m-1 2
=nk‘2{ Z —+ (Z dl) - ( eidi)} So]
i=1 M2i Tam \j=1 i=1

But
m-1 m-1 m-i q.. m-1 m ..
S di=-dpy, ad Y edi= 3y ~2d-0my g=3y Mg
i=1 i=1 i=1 M Tam =1 i=1 T2
Consequently,

Q=n>\-2(S2 _Sf/So) (19)
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where

. ) momy
&:i e and S =Z 'l—l'(pi""li) (20)

Taj i=1 2i

and S, is defined by (17).

THE MINIMUM Q* METHOD OF ESTIMATION

The quadratic form
Q*=n"'NQ=5, - S{lSo @1

is seen to play a role analogous to that of a x* statistic. It is a function of the
observed weight frequencies and the three parameters A;,4,,and 43, and con-
sequently u, ¢,and v since

u=A45024,- A1)
o= l/A3
V=A3(A1"A2) (22)

In a sense Q* can be looked upon as a measure of deviation of the observed
weight frequencies from the assumed statistical set-up: the larger the value of
Q¥, the greater is the discrepancy between the model and the observations.

We propose to estimate the parameters 4,, 4,, and A3 and consequently
u, o, and v by minimizing the quadratic form Q* with respect to 4,, 4,, and
A 3. The estimates so obtained will be denoted by A¥, A%, and A%, respectively,
and called minimum Q¥ estimates. Statistical properties of these estimates are
being investigated. For the present these estimates are offered on the heuristic
ground that they provide the best agreement with the observed values in the
sense of minimizing O¥.

Since analytical methods for minimization do not lead in this case to neat
expressions, essentially numerical iterative procedures are proposed in this paper
which are minor variants of well-known techniques.

In the first stage, starting from a given initial point (4,,4,,4) one would
like to reach another point (4, - hy, 4, - hy, A3 - h3) at a fixed distance &
from the initial point; 2% = A} + h} + b3, such that the reduction A=Q*(4,,
Ay, A3)- Q%A - hy, Ay - hy, A3 - h3) is the maximum. This gives &; = r5;,
i=1,2, 3 where §; is the partial derivative of Q™ with respect to A4; at the initial
point that can be evaluated analytically, or, in this particular case, more con-
veniently estimated by the corresponding partial divided difference. Here #2 =
h*/(83% + 8% +6%), but since % is in any case arbitrary, one can take r itself as ar-
bitrary and try to choose a suitably large value of 7 by trial and error. The proce-
dure can then be repeated to move from the second point to the third and so on.
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This is the so-called method of steepest descent, known otherwise as the gradi-
ent method or the linear method since only first-order partial derivatives are
used.

Note that in each cycle of the above procedure the reduction in the value
of Q* is approximately A =2 #;6; =r Z §2, so that when the first-order partial
derivatives become small in absolute value, the reduction falls off. It is at this
stage that a second procedure involving the replacement of Q* by a second-
degree polynomial approximation is needed. There are various ways of obtaining
a second-degree polynomial approximation. When first- and second-order partial
derivatives can be obtained analytically and evaluated, one can use a Taylor se-
ries expansion retaining partial derivatives up to the second order. One could al-
ternatively use a second-degree interpolation polynomial by using partial divided
differences instead of partial derivatives. A third alternative is to obtain a second
degree curve which best fits the function at a certain number of points in the
sense of least squares. The least-squares approach is frequently used by statisti-
cians for empirically determined functions subject to errors of observation and
was first recommended by Box and Wilson (1951). '

To obtain initial approximations for 4,,4,,and A5 we write P; = Z, D
forj=1,...,m-1and note that P; is an asymptotically unbiased estimate of
d(A, + Ascj). Writing Y;=D7' (P;) we expect a linear relationship ¥; ~4, +
Aic]- between Y; aEd ¢j. Eet t=[m/3],Y, =§;=1 Yi/t, ey = Z;f:l fi/’; Y, =
Zioy Yyjltand ¢;=2; | cpyp-j/t, s0 that Y ~A; + 43¢, and Y, ~4, +
A;c, from which one gets to start

A, =(0 Y, - 61 V), - 1)
Ay =(Y, - Y )I(@E, -¢)
and taking v = 3 initially
Ay =4, - 3/4;

Using an arbitrary small value for A, say 2 =0.01 one then estimates the partial
derivative with respect to 4, namely 6, = [Q*(41,4,,43) - 0%, - h,A,,
A3)]/h and in a similar manner the other two partial derivatives 8, and & ;. Next
choosing an arbitrary value for », say r=0.0001, one can compute the decre-
ment A=Q%*(A,,A,,45)- Q%(4, - r5,,4, - 15,,4; - r§3) and check if it is
positive. If it is positive, one can successively double the value of r until the larg-
est decrement is obtained. If the decrement is negative, one tries r/2 in place of
r and proceeds in the same way as before. With the value of » so determined, one
computes A;=A;-r8;,i=1,2,3 and (47,45,A3)is taken as the starting point
for the next cycle of steepest descent calculations.

At the end of each cycle of such calculations, the decrement A=0%(4,,
Ay, A3)- Q%A -18,, A, - 155, A3 - ¥83) is calculated. If this decrement is
smaller than a preassigned quantity A,, steepest descent calculations are termi-
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nated and one proceeds to the next stage of calculation of fitting second-degree
polynomials. At this stage, 27 different values of Q¥ are computed at the points
(A4, A, Ay) where each A; takes successively the three values 4; - h, 4; and
A; + h where h is some small chosen quantity. A second-degree polynomial

3 3 3

Q*=Bo+ 3 Bidi+ 3 3 ByAid;
i=1 i=1 j=1

is fitted to these 27 points by the method of least squares. The value of (4,4,

A3) at which this second-degree polynomial is minimum is determined in the

usual manner by equating the first-order partial derivatives to zero giving

(A1>A2>A3)=‘%(51, Ba, 53)((51’1‘))_1

One then checks if at this new point 0* has indeed a smaller value and repeats
the procedure if necessary .

A computer program in FORTRAN IV language for the minimum Q*
method of estimation is presented in the Appendix.

ILLUSTRATIVE EXAMPLES

In order to examine whether the minimum Q* method provides good esti-
mates of the three parameters u, o, and v, the method was tried on two sets of
simulated data. For the purpose of illustration simulated samples were preferred
to actual sieve data because in the latter case the parameters would be unknown,
and the assumed model also may not hold. The closeness of agreement of the es-
timates with the actual parameters indicate the usefulness of the method.

Two sets of simulated samples were generated in the following way. 1000

random pairs (S, W) were drawn from bivariate log-normal populations with the
following parameters

u=E(log, S)=1.00, 0> =V(log, $)=025 or ¢=050
Mw =E(og, W)=0.50,  ¢%=V(log, W)=2.25 or 0,=150

and the coefficient of correlation p between log, S and log, W as 0.95 in the
ﬁ_rst set and 0.50 in the second set, so that the shape parameters v = g,,/0 were
different in the two sets, v = 2.85 in the first set and » = 1.50 in the second set.

The 1000 observations were divided into m = 9 size-classes in terms of the
class limits C; =2.97, C, =3.78, C;=4.39, C, = 5.10, Cs =593, Cs = 6.69,
C7 =754, and Cy = 9.03. The total of W in each of these size classes was calcu-
la}ted and expressed as percentages of the grand total of W for all 1000 observa-
tions. These observed weight frequencies for the two sets of data, together with
’.the expected frequencies, calculated after estimating the parameters, are shown
in Table I.

The class limit and observed weight frequencies were inputs for the com-
puter programs given in the Appendix which produced the following estimates:
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Table 1. Observed and Expected Weight Frequencies in Two Sets of Simulated Data

Weight frequencies (%)

set 1 set 11

Size class observed expected observed expected
) 2.1 Q2.2) 3.1 3.2)
less than 2.97 10.94 10.73 30.34 29.88
2.97-3.78 11.68 11.90 16.76 22.09
3.78-4.39 10.28 10.19 11.08 7.90
4.39-5.10 10.80 11.68 13.90 10.97
5.10-5.93 11.09 12.17 6.92 9.34
5.93-6.69 11.25 9.35 8.21 5.97
6.69-7.54 11.04 8.45 5.69 4.61
7.54-9.03 9.58 10.29 4.70 4.64
above 9.03 13.36 15.24 240 4.60

Table 2. Estimates of 41,45, and 4 3, and the Value of 0* After Some Cycles of Iteration
for Both Sets of Simulated Data

Set Iteration no. Ay A, As o*
M ) 3) @) (5) 6)
1 steepest descent method
0 -3.567 -4.976 2.129 0.0336
1 -3.546 -4.968 2.137 0.0317
6 -3.511 -4.930 2.103 0.0280
10 -3.494 -4.909 2.088 0.0267
25 -3.473 -4.854 2.055 0.0238
48 -3.474 -4.621 2.046 0.0190
70 -3.468 -4.554 2.041 0.0180
least-square second-degree polynomial fit method
71 ~-3.468 -4.544 2.051 0.0180
79 -3.467 ~4.553 2.042 0.0180
2 steepest descent method
0 -3.004 -4.343 2.240 0.0575
1 -2.955 -4.329 2.281 0.0480
S -2.910 -4.269 2.236 0.0437
10 -2.848 -4.186 2.184 0.0392
24 -2.761 -4.018 2.071 0.0308
48 -2.688 -3.783 2.006 0.0268
58 -2.708 -3.716 1.987 0.0258
83 -2.701 -3.700 1.994 0.0254

least-square second-degree polynomial fit method

84 -2.701 ~3.700 1.994 0.0254
90 -2.701 -3.699 1.994 0.0254
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Table 3. Values of u, o, v and Their Estimates Obtained by Three Different Methods for
Two Sets of Simulated Data

Estimates

Set Parameter Actual values Folk and Ward Sahu Min. g*
1) 2 3) “) 5 (6)
[ 1.00 1.85 1.69 1.17
1 g 0.50 0.50 0.41 0.49
v 2.85 a a 2.22
i 1.00 1.49 1.37 0.85
2 o 0.50 0.49 0.44 0.50
v 1.50 a ’ a 1.99

2Cannot be estimated by these methods.

n=1.166,0=0490,v =2.217 for the first set and u =0.850,0=0.501,and v =
1.992 for the second set with the final values O* = 0.0180 and 0.0254 attained
after about 80 cycles of the iterative calculations, as shown in Table 2.

For purposes of comparison, estimates for u and o were also obtained by
using the quick methods given by (i) Folk and Ward (1957), and (ii) Szhu (1965),
shown in Table 3.

It is seen from these examples that in both cases the minimum Q* method
provides closer estimates for u (the mean of logarithmic size) than the other two
methods. The estimates for o obtained by these methods are all quite close to
the actual value and to each other. This is understandable because the estimates
of ¢ do not depend on the shape parameter v, and the sample size is quite large.
While the minimum Q* method provides an estimate of the shape parameter, the
other two methods can not be used for this purpose. Columns (2.2) and (3.2) of
Table 1 show that the expected distributions of weight frequencies calculated af-
ter estimating the parameters by the minimum Q* method agree reasonably well
with the observed distributions given in columns (2.1) and (3.1), respectively.
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APPENDIX
The list of programs, including functions and subroutines for methods de-

scribed in the text, is given here. The table below gives a short description of
each routine.

Table 4. Short Description of Routines Used

Name

Description
€3] @
PROBIT This is a FUNCTION which computes for any §, 0 < § < 1 the ordinate X
such that
X
2
J. () dt=S, where  ¢(1) = 2m)"Y2e 112

S is the argument of the FUNCTION.

PRBTHN This is a FUNCTION which gives an approximate value of X for any §, 0 <
S <1, using Hasting’s approximation where X is same as is described above.
For Hasting’s approximation see Hastings, Hayward, and Wong (1955).

STNORP This function computes the probability that a standard normal variate is less
than or equal to X, for any finite X.

CALCQ This is a SUBROUTINE which computes %, given weight frequencies (P),
class limits in log,-scale (C), and parameters 4, A,, and 4 3. These are sup-
plied to the subroutine through COMMON areas.

CONT

This SUBROUTINE finds initial estimates for 4;, 4,5, and 4 3.
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Table 4. Continued

Name Description

1) )

MINQ1 This SUBROUTINE tries to optimize Q¥ using steepest-descent method. In-
puts to this subroutine are through COMMON areas. This terminates if either
the number of iterations exceeds the number specified in INT1 or if no fur-
ther improvement is possible by this method.

MINQ2 This SUBROUTINE optimizes @* by using the method of second-degree poly-
nomial fit by the least-squares method. Here also iteration ceases when it
either exceeds the number specified through INT2 or if no further improve-
ment is possible.

MAIN This is the main program which reads input cards and calls subroutines in the
required order.

FUNCTION PROBIT(S)
C GIVEN S, EVALUATES X FOR WHICH NORMAL DISTRIBUTION FUNCTION
C EQUALS §.
DIMENSION P(51),A(3),C(51)
COMMON P,A,C,Q,M,INTL,INT2,N
IF(S-$+8)12,12,1
1 J=1
H=0.0005
XX =PRBTHN(S)
PP=STNORP(XX)
IF(ABS(PP-S)- 0.00001)11,3,3
GOTO(4.8,8),)
4 1=2
IF(PP-$)6,6,5
5 H=-H
6 X0=XX
PO=PP
GO TO (7,7,10),
7 XX=XO+H
GO TO 2
8 [F((PO-S)#PP- (PO -S)%S)9,6,6
9 J=3
X1=XX
P1=PP
10 XX=XO0+(X1-X0)+(S-PO)/(P1-PO)
GO TO 2
PROBIT=XX
RETURN
12 WRITE(6,13)
13 FORMAT(1H1/2X,6HERROR1)
STOP
END

;8]

w

1

—

FUNCTION STNORP(X)

GIVEN X, COMPUTES THE STANDARD NORMAL FUNCTION.
DIMENSION P(51),A(3),C(51)

COMMON P,A,C,Q,M,INTI1,INT2,N
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SIGN=1.0
IF(X-7.0)2,11,11
2 IF(X+7.0)15,153
3 IF(X)4,5,6
4 Y=-05
SIGN=-10
X=-X
GO TO 19
6 Y=5
19 T=X
AN=1.
Y1i=X
9 Y2=Y1*X*X/[(2.xAN+1.)
IF(ABS(Y2)-0.1E-7)7,7,8
8 T=T+Y2
AN=AN+1.
Y1=Y2
GOTO9
7 Y=Y+THEXP ((- 5)%X*X)[2.506628275
Y=ABS (Y)
GOTO13
11 Y=1.
GOTO13
5 Y=5
GOTO13
15 Y=0.
13 STNORP=Y
X=SIGN*X
RETURN
END

FUNCTION PRBTHN(S)

C HASTINGS APPROXIMATION TO NORMAL PROBIT
DIMENSION P(51),A(3),C(51)
COMMON P A,C,QM,INTL,INT2, N
IF(S-5%8)7,7,1

1 IF(S-0.5)3,2,4
2 Y=00
GO TO 6
3 SIGN=-10
E=-2.0+ALOG(S)
GO TO 5
4 SIGN=1.0
E=-2.0+ALOG(1.0-5)
S E=SQRT(E)
Y=SIGN*(E- ((0.010328+E+0.802853)*E+2 515517)/(((0.001308 E+
10.189269)+E+1.432788)+E+1.0))
6 PRBTHN=Y
RETURN
7 WRITE(6,8)
8 FORMAT(5X,6HERROR2)
STOP
END

SUBROUTINE CALCQ

c THIS COMPUTES THE VALUE OF Q* GIVEN PARAMETERS AND OBSERVATIONS.
DIMENSION P(51),C(51),A(3),PHI(2,51)
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[oReNeNP]

oW

45

55

COMMON P,A,C,Q,M,INTL,INT2,N
DO 4 I=1,2

B1=0.

DO 3 J=1,N

T=A()+AG)*C ()

B2=STNORP(T)

PHI(,])=B2-B1

B1=B2

PHI(1,M)=1.-B1

S0=0.

S1=0.

$2=0.

DO 5 J=IM
$0=80+(PHI(1,T)#x2)/PHI(2,T)
S1=81+(P(3)-PHI(1,¥))+PHI(1,1)/PHI(2,)
$2=52+((P(T)-PHI (1, 1)) ##2)/PH1(2,3)
Q=52-(S1%51/S0)

RETURN

END

SUBROUTINE CONT

Adhikari et al.

THIS IS THE FIRST PROGRAM - FOR FINDING INITIAL ESTIMATES. HERE

M= NUMBER OF SIEVE-CLASSES,

C-ARRAY STORES SIEVE-SIZES, AND
P-ARRAY STORES WEIGHT FREQUENCIES AS PROPORTIONS.

DIMENSION P(51),C(51), A(3),Y(51)
COMMON P,A,C,Q,M,INT1,INT2,N
1=N/3

T=0.

DO 45 I=1)N

T=T+P(I)

Y (I)=PROBIT(T)

Y1=0.0

Y2=00

C1=00

C2=00

DO 55 I=1,L

Y1=Y1+Y(D)

=M1

C1=Cl+C()

Y2=Y2+Y(3)

€2=C2+C(J)

T=L
A(1)=(Y1#C2-Y2*C1)/((C2- C1)*T)
A(3)=(Y2-Y1)/(C2-C1)
AQR)=A(1)-3./A(3)

WRITE (646)((1,A(D)),1=1,3)

46 FORMAT(IHO/SX,17HINITIAL ESTIMATES/4X,18(1H-)//(3X,2HA(11,2H)=,

1E16.9))
RETURN
END

SUBROUTINE MINQ1

THIS IS THE SECOND PROGRAM WHICH USES STEEPEST DESCENT METHOD,

AS DISCUSSED IN THE TEXT, TO OPTIMIZE Q*.
DIMENSION A(3),P(51),C(51),QT(3),AL(3),B(3),CT(3)

COMMON P,A,C,Q,M,INT1,INT2,N
DO 1 1=1,3
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1

920

1

—

o)}

W

16

~3

37

69

20
10

14

19

21
30
32

35
31
33

AL(D=A()

CALL CALCQ
ICTR=0

Qv=Q

R=0.0001

EPS=.01

Qo=Qv
ICTR=ICTR+1
IF((INT1.GT.0).AND.(ICTR.GT.INT1))GO TO 15
1IT=0

DO 11 I=1,3
B(I)=AL(})
CT()=AL()
A(=BM)
COMPUTES PARTIAL DERIVATIVES BY FIRST DIFFERENCES.
CALL CALCQ
QD=Q

DO 5 1=1,3

DO 6 J=1,3
A(=B()
A(D)=A)+EPS
CALL CALCQ
QT(1)=(Q-QD)/EPS
COMPUTES EXPECTED CHANGE IN THE VALUE
T=0.

DO 7 1=1,3
B(D)=R+QT(I)
A(D=AM)-B(N)
T=T+B(D)*B()
IF(((QV+T)-QV).EQ. 0) GO TO 15
A(3) SHOULD BE POSITIVE ALWAYS:
IF (A(3)) 37,37,69
R=R/2.

GO TO 31

CALL CALCQ
Q1=Q

IF (IT) 20,20,21

IF (Q1-Q0) 10,10,12
Q0=Q1

DO 14 1=1,3
CT(D=A()
A(D=AL(D)

R=2.*#R

GO TO 16
R=R*3./4,

IT=1

DO 19 1=1,3
A(D=AL(I)

GO TO 16

IF (Q1-QO0) 30,30,35
DO 32 I=1,3
AL()=A(M)

QV=0Q1

GO TO 90
R=R=*2./3.

DO 33 1=1,3
AL(D=CT()

263
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QV=Q0
GO TO 90
15 WRITE (6,201)((AL(D),I=1 3),QV)
201 FORMAT(5X,14HEND OF METHODI1/5X,3(E16.9,5X),2HQ=,E169)
RETURN
END

SUBROUTINE MINQ2
¢ THIS IS THE THIRD PROGRAM WHICH USES SECOND DEGREE LEAST SQUARE
¢ POLYNOMIAL FIT METHOD. TO OPTIMIZE Q*.
DIMENSION P(51),C(51),A(3),QT(3),AL(3).B(3),CT(3),X(27,3),Y(27)
COMMON P,A,C,Q,M,INT!,INT2,N
EPS=01
ICTR=0
DO 81 I=1,3
81 AL(1)=A(D)
CALL CALCQ
90 ICTR=ICTR+1
RO=&X ?IF(INT2 .GT. 0) .AND. (ICTR .GT. INT2)) GO TO 91
IK=1
DO 6 1=1,3
6 B(I)=AL(I)
C  COMPUTES VALUES AT 27 POINTS
DO 4 I=1,3
DO 4 J=1,3
DO 4 K=1,3
DO § L=1,3
AL)=B(L)
X(K,1)=(I-2)*EPS
X(JK,2)=(J-2)*EPS
X(JK,3)=(K-2)*EPS
DO 8 L=1,3
AL=A(L)+X(JK, L)
CALL CALCQ
Y(JK)=Q-Q0
4 JK=JK+]
C LEAST SQUARE FIT OF A SECOND DEGREE POLYNOMIAL
DO 198 1=1,3
A(1)=0.
B(1)=0.
198 QT(1)=0.
DO 15 1=1,27
DO 16 J=1,3
CTAY=Y ()X (1,T)
DO 17 3=1,3
AD)=AQ)+CT ()
BU)=B()+CT ()X (L)
IF( 1-3) 17,18,18
17 QT()=QT(1)+CTEX(1,I+1)
18 QT(3)=QT(3)+CT(3)*X(L,1)
15 CONTINUE
T=2.4(B(1)+B(2)+B(3))/7.
QQ=EPS*EPS
Q1=QQ*QQ
DO 20 1=1,3
A(=A(D)/(18.%QQ)
B()=(B(1)- T)/(6.+Q1)

v
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AmMAcAOOAOOONN

20 QT(N=QT(1)/(12.xQ1)

30

91
201

N

w

99

100

Al1=4 %B(2)*B(3)-QT(2)*QT(2)
A12=-(2.+B(3)*QT(1)-QT(2)*QT(3))
A13=QT(1)*QT(2)-2.#B(2)*QT(3)
A22=4.xB(1)*B(3)- QT(3)*QT(3)
A23=-(2.4B(1)*QT(2)-QT(1)*QT(3))
A33=4.xB(1)*B(2)-QT(1)xQT(1)
DT=2.5A11xB(1)+A12QT(1)+A13+QT(3)
B(1)=- (Al1*A(1)+A12%A (2)+A13%A(3))
B(2)=- (A12+A(1)+A22+A(2)+A23A(3))
B(3)=- (A13*A(1)+A23+A(2)+A33+A(3))
DO 30 I=1,3

B(I)=<B(1)/DT

A=AL()+B(I)

AL(D=A(D)

CALL CALCQ

IF(Q0- Q)91,91,90
WRITE(6,201)(AL(1)1=1,3),Q
FORMAT(5X,14HEND OF METHOD2/5X,3(E169,5X),2HQ=,E169)
RETURN

END

THIS IS THE MAIN PROGRAM. IT READS ONE PUNCHED CARD GIVING NUMBER
OF SIEVE-CLASSES(M), NUMBER OF ITERATIONS AFTERWHICH THE THIRD
PROGRAM WILL BE INITIATED(INT!) AND NUMBER OF ITERATIONS
AFTERWHICH THE THIRD PROGRAM WILL STOP. IT ALSO REQUIRES OTHER
INPUT CARDS GIVING CLASS-LIMITS OF SIEVE-CLASSES(C) AND WEIGHT-
FREQUENCIES EXPRESSED AS PROPORTIONS(P). FORMATS OF INPUT CARDS
ARE GIVEN IN STATEMENT NUMBERS 1, 2 AND 3, - WHICH MAY BE CHANGED,
IF REQUIRED.

IF INT1 IS ZERO, THIRD PROGRAM WILL BE INITIATED ONLY WHEN NO
FURTHER IMPROVEMENT IS POSSIBLE BY THE SECOND PROGRAM. THIRD
PROGRAM COMES TO THE END IF EITHER NUMBER OF ITERATIONS EXCEEDS
THE NUMBER SPECIFIED BY INT2 OR IF NO FURTHER IMPROVEMENT TAKES
PLACE BY THIS METHOD.

DIMENSION A(3),P(51),C(51),QT(3),AL(3),B(3),CT(3)

COMMON P,A,C,Q,M,INT1,INT2,N

READ (5,1)M,INT1,INT2

FORMAT(312)

N=M-1

READ (5,2)(C(I),1=1,N)

FORMAT(I6F5 3)

READ (5,3)((1).1=1.M)

FORMAT(16F5 5)

WRITE (6,99)((C(1),P(1)),1=1,N)

FORMAT(5X,E169,5X,E16.9/)

DO 100 I=1,N

C()=ALOG(C(1))

CALL CONT

CALL MINQI

CALL MINQ2

STOP

END
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