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A new iteration method-of solving linear equations is described. The convergence of this method depends
on a single scalar paramgter which can be predetermined. A brief description of an electrical analog
machine for solving linear »quations with ten variables based on this iteration method is given. In addition
to the solution the machirie gives the largest eigenvalue of the matrix of the linear system,

INTRODUCTIGN

ERRY, Wilcox, Rock, and ‘Washburn! have de-
scribed a very interesting analog computing ma-
chine for solving linear equations hased on a well-known
numerical method, »iz., the GCauss-Seidel iteration
method. Since then the descripiions of many other
analog machines based on this m«thod and some other
numerical methods bave been published. It is note-
worthy that analog machines which are based on itera-
tion methods are very sound from the practical view-
point. The accuracy of an analog machine is limited by
the accuracy of the machine components. If large
rounding-off and accidental errors are allowed, the
error in the final result will be so large as to spoil the
prospect of using the machine for numerical work. The

beauty of the iteration methods is that they keep down-

all propagated errors, such that the error in the final
result does not exceed the elementary instrumental
error of a single analogous multiplication and addition,
inherent in the particular instrument and the analog
methods employed.

But a serious drawback of the Gauss-Seidel iteration

method is that it does not converge always and that its’

convergence depends on the initial approximation. The
machine which is going to be described is based on
another iteration method, whose convergence can be
proved very easily and which is entirely independent of
the initial approximation, but depends on a single
scalar parameter that can be predetermined. Further,
the eigenvalue (latent root) of the matrix, having the
largest absolute value can be determined simulta-
neously with the solution of a systemn of linear equations,
which is a special feature of the machine. Solution can

! Berry, Wilcox, Rock, and Washburr,, J. Appl. Phys. 17, 262
(1046,
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be obtained even if the rank of the matrix is less than
the number of equations. The mathematical details
of the method will be published elsewhere. The follow-
ing gives a brief account of the method:
MATHEMATICS OF THE MACHINE
The system of linear equations,

SuZ1+ 6128+ auXst + « - +a1n%n= g,
anxi+agaxa+-aasxat- - - “+Ban%n=go,

X1t Gas®rt@ntat - < FOnnta=ga,
may be expressed in the matrix notation by

AX=G, )]
where A is the square matrix

dn1 G132 4n Gy

Gy Gy G2 "'t G2

e e . N

Ga1 Gpz Ona Ous,

X is the unknown column vector whose components are
(%1, %9, 23, - -+, %,), and G is the known column vector

whose components are (g1, g2, g3, - - -, ga). If the deter-
minant of 4 is not zero, then the solution of the above
equations is given symbolically by

X=4-G,

where A™! is the reciprocal matrix of A.
Let ’ be a scalar number, then the Neumann series,

I+ (I=hA)+ (T ~h4)*+- -+,

2
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converges to
. g1 1
[I— (I— hA)J = (hA)“=;A“,

provided the latent roots of A4 are all positive and

h<2/Aa, where \4is the largest latent root of the matrix.

Let us assume for the time being that the latent

roots of A are all positive, that is to say, that the matrix

A is positive-semidefinite, and form the iterative
sequence?

XW=pG+4 (I—hA)XO®

X®=hG+(I—hA)XD®

X = hG (I—hA)X ™,
where X ® is any arbitrary vector. It can be shown that

XMW= 4G+ (1— hA)Y (X O — 4-1G)

= AIG+O(1—Irg) »(X ® — 47G). 4
Thus
lim X =4"1G 5)
el

whatever the initial approximation X may be, pro-
vided, of course, k<2/A; and the latent roots are all
positive.

If, however, 4 be any real matrix then the latent
roots of 44’ are all positive, A’ being the transpose of
A. Consequently, the above method is applicable to the
product matrix A4’ and the solution of the equation

(AANY =G
can be obtained by the iterative process described. Now’
Y=(44"y"G
=[(4")1471G.

Frc. 1. The photograph of the machine,

* Hotelling, Ann. Math. Stats, 14, 23 (1943),
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Multiplying this solution by the transposed matrix A’
we get
A'V=A471G=X,

which is the required solution.

So, when 4 is any matrix, the above iteration method
is applicable, though some extra computational labor
is involved. In the machine the multiplication of A4
by A’ and the muitiplication of ¥ by A’ are carried
out mechaniczlly.

There is one very interesting feature of the machine.
If 4, which is analogously represented by a tapped
voltage from a potentiometer, were increased to
2/\a (or 2/|Xal? in the case of an arbitrary matrix) the
iteration process would not converge. If a solution has

" been obtained in the machine with a particular setting
of k, if this solution is very slightly disturbed, and if the
setting of % is gradually increased to a point where
h=2/X\,, the iterative operation of the machine will
fail to restore the-solution and would never tend to
reach a final stage..Consequently, this setting of & will
give the absolute vxlue of the largest latent root with a
sufficient degree of accuracy. Another interesting
feature is that a sclution can be obtained even though
the rank of the matrix 4 is less than the number of
¢QUALIONS, Decauseé oOnly matrix mujtiplication is in-
volved in the iteraiive method.

DESCRIPTION AND OPERATION OF THE MACHINE

The machine (Fig. 1) is designed for solving a system
of linear equations with ten variables. (The basic com-
ponents of the machine are almost the same as those
of the machine designed by Berry ef al) Numbers
(fractional) are simulated by ac voltages tapped from
wire-wound potentiometers. Negative numbers are
simulated by ac voltages in opposite phase to the
'voltages which represent positive numbers. These “‘posi-
tive” and “negative” voltages are supplied by an accu-
rately wound center-tapped transformer suitably loaded.
Multiplication of voltages is executed by potentiom-
eters and addition of voltages is done by Kirchhoff net-
work. There are 10¢ potentiometers to represent the 100
elements, a5, 613, @1, -+, of the matrix 4, and 10
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F16. 2. The bridge circuit for setting the cocfficients of the matrix
in the correshonding matrix potentiometers.
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Fig. 3. The circuit for multiplying the coefficients of the matrix and of the column vector by the parameter .

potentiometers to represent the 10 elements, g, gs, g3,
- -+, o1 the column vector &. There are aiso 10 poten-
tiometers each to represent the iterated column vectors
X and X(= given in Eq. (3). The first step is
setting the coefficients of the matrix 4 and the column
vector G in the corresponding potentiometers. For the
sake of clarity, it is desirable to denote these potentiom-
eters by their corresponding symbols in Eq. (3), vz,
@11, T3y Gy, *** ) §1y £3 Z3, . There are ten rotary
selector switches each with ten positions for selecting
the particular element of the matrix in a column, and
there is another such switch for seleciing the elements
of the column vector G. Each one of these switches has
two poles. One pole is switched to the upper terminal of
a potentometer while the other pole is connected to
its tapping terminal, the lower terminals of all the
potentiometers being grounded. There is a four-dial
decade potentiometer in.which a four-digit number
representing the coefficients of the matrix 4 or of the
column vector G can be put, For example, if the element
of the matrix 6y; has a numerical value such as 0.8962,
the selector switch corresponding to the first column
of the matrix is set on the first row position and the
number 0.8962 iz put on the decade potentiometer.
The au-potentiometer is then adjusted to match the
voltage given by the decade potentiometer by means
of a Wheatstone bridge circuit. In order to avoid loading
errors, each potentiometer belonging to a column of the
matrix is loaded with the corresponding X-potentiom-
eter during this setting operation, but the potentiom-
eters belonging to the diagonal elements ay1, 623, a3,
- - -, are not loaded with their corresponding -, 2s-, s,
- + + ,~potentiometers, for reasons to become obvious
in the next paragraph. The circuit is described in Fig. 2.

The next circuit is the iteration operation of Eg. (3).
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The first equation of this vectorial formula is

2, ® = hg 1+ (1 - hdu)xl O — hay3x, ™
—horgxs @ — - -« —hayyex0 @, (6)

The left-hand side of this equation shows that in order
to get the first element of the iterated vector X @ from
its initial approximation X it is necessary to {a)
multiply the voltage given by the g;-potentiometer by
a fractional number 4; (b) multiply the voltages given
by the potentiometérs representing the first row of the
matrix @11, 01, 613, ** + @y by a negative fraction —k;
(c) from the voltage -—hkay, given by the g,-potentiom-
eter to build a voltzge proportional to 1—kay; by an
electronic circuit; (d}, to multiply the voltages propor-
tional to l*hau, —;:4013, —han, LN —hay 10, respec-
tively, by the numbers £, 2,@, - -+, x,0@; (e) to add
all these voltages and store the result in a potentiometer.

The operations (2) and (b) are performed by a circuit
described in Fig. 3. The operation (c) is performed by
the circuit described.in Fig. 4. The operation (d) is
effected by a simple potentiometric multiplication and
operation (e) is effected by the usual addition circuit
based on Kirchhoff’s laws, which is shown in Fig. 3.
For the second and other elements of the vector X
the same operations are only repeated.

The circuit described in Fig. 3 provides “positive”
and “negative” voltages proportional to k. This is a
negative feedback current amplifier with high input
tmpedance designed in such a way that the output
voltage is exactly equal in magnitude and phase to the
input voltage. This input voltage, which is proportional
to k, is tapped from a potentiometer connected to the
“positive” side of the main center-tapped transformer
and ground. The value of & can be read from this
potentiometer by means of the decade potentiometer

"described earlier. The circuit shown in Fig. 4 is an
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exactly similar current amplifier, the only difference is
that the input voltage is proportional to 1— ka,;.

After the coefficients of the matrix.and the known
column vector are taken into the machine as described
earlier the computing operation starts. This consists
in selecting the potentiometers corresponding to the
first row of the matrix with the help of the eleven
selector switches. Proper signs of the coeficients a1, d12,

- @110, £ are then put by applying “positive” or
“negative” voltages through eleven toggle switches
and. the corresponding z.-potentiometer is adjusted
until a null is shown on the null detector. The mathe-
matics of this operation has been stated in Eq. (6). The
corresponding circuit is given in Fig. §.

This operation is continued for all the rows of the
matrix and the result of the first iterative step is stored
in one of the two sets of ten of z-potentiometers, let us
call them «’-potentiometers. In the next iterative step,
these #’-potentiometers take the place of the z-poten-
tiometers and are switched on to the matrix potentiom-

hY -y -h

(1-ha )V

hg Vv 'hnv 'hauv
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eters by a ganged rotary switch. The x-potentiometers
are used to store the result of the next iterative step.
The first row of the matrix is then selected and the
first x-potentiometer is adjusted to a balance and i’
process is repeated cxactly as before when the result o
this second iterativé step is stored in the z-potentiom-
eters. This operation is repeated again and again until
the values in the x- and x’-potentiometers are exactly
equal. If the convergence is found slow, the value of the
parameter & is changed by adjusting the h-potentiometer
to an optimum position. By adjusting suitably, most
problems can be solved with less than twenty iterative
steps. These values are then read off one by one in the
decade potentiometer. To find the absolute value of the
largest latent root, the voltage output from the h-po-
tentiometer is increased gradually and the solving opera-
tion with the x- and #’- potentiometers is repeated after
slightly disturbing them from the original solution posi-
tion. When k is nearly 2/\, the solving operation will fail
1o restore the potentiometers to the position of solution.

-hV

Fig. 5. The circuit corre-
= sponding to an iteration
step as stated in Eq. (6).
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The slight error introduced will not be rectified by the
iteration operation but would tend to increase as this
operation is continued. At this stage the value of %
18 read off with the help of the decade potentiometer
and the largest latent root is nearly twice the reciprocal
of this value of .

The accuracy of the machine is about 0.5 percent.
If precision potentiometers or potentiomerers witr
vernier arrangement were used, the accuracy could be
increased considerably. It takes about 90 minutes to
soive a sysiem of equations with ten variables, most
of the time being consumed for setting the 110
potentiometers.

PROGRAMMING OF PROBLEMS

The inherent defect of representing -numbers anal- -

ogously by potentiometers is that these numbers must
be fractional, It is very easy to reduce all the coefficients
of the linear equations to proper fractions by dividing
them by a suitable number which must be greater than
or ecqual to the magnitude of the largest coefficient
occuring in the matrix and the known column vector.
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Of course, the solutiLn would not be affected in any
way. But. to ensure: that the elements of the solunior
vector will also be fractional, some other programming
is necessary. Ii the elements of the known column
vector & are divided:by a number ¢2n/N(A), where
n 18 the number of variables and N(A4) is the norm of
the matrix A4, that 1sr to say

b S
N(A)= (; Z‘:aq’)

it can be proved with the help of Cauchy-Schwartz
inequality that each of the elements of this solution
vector, which is A™'[(1/¢)G)] is less than one in
magnitude. Consequently, the required soluuon car
be obtained simply by multiplying this solution by c.
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