A REPRESENTATION THEOREM FOR G₆-VALUED MULTIFUNCTIONS

By S. M. Srivastava

1. Introduction. In this paper we prove the following representation theorem for G_{δ} -valued multifunctions:

THEOREM 1.1 Let T, X be Polish spaces, 3 a countably generated sub σ -field of the Borel σ -field \mathfrak{B}_T and $F:T \to X$ a multifunction. Then the following are equivalent:

- (A) F is 3-measurable, $Gr(F) \in \mathfrak{I} \otimes \mathfrak{B}_X$ and F(t) is a G_{δ} in X for each $t \in T$.
- (B) There is a function $f: T \times \Sigma \to X$ such that for $t \in T$, f(t, .) is a continuous, closed map from Σ onto F(t) and for $\sigma \in \Sigma$, $f(., \sigma)$ is 3-measurable, where Σ is the space of irrationals.

The necessary definitions and notation are given in Section 2 where we also state some known results for easy reference. In Section 3 we prove the implication $(A) \Rightarrow (B)$ when X is, moreover, zero-dimensional; this implication for an arbitrary Polish space X is proved in Section 4. The implication $(B) \Rightarrow (A)$ is proved in Section 5.

The author [10] had earlier established the existence of a 3-measurable selector for a multifunction $F: T \to X$ satisfying condition (A). Various representation theorems for such multifunctions are also proved in [9]. Similar results for multifunctions taking closed values in a Polish space can be found in [5], [11].

Our result can be viewed as a sectionwise version of the following well known characterization of Polish spaces: a second countable, metrizable space is completely metrizable if and only if it is the image of irrationals under a closed continuous function. The 'if' part of this result was proved by Vaīnšteīn [14] and we carry over this proof for each F(t), $t \in T$, uniformly to prove the implication $(B) \Rightarrow (A)$. Engelking [4] proved the 'only if' part of the above result.

I received invaluable help and suggestions from Drs. A. Maitra and H. Sarbadhikari while working on the problems considered in this paper. I express my deep indebtedness to them.

Manuscript received October 25, 1978

```
        American Journal of Mathematics, Vol. 102 No. 1, pp. 165–178
        165

        0002-9327/80/1021-0165 $01.50
        Copyright © 1980 by The Johns Hopkins University Press
```

2. Definitions and Notation. The set of positive integers will be denoted by N. S will denote the set of all finite sequences of positive integers, including the empty sequence e. For each non-negative integer k, we denote by S_k the set of elements of S of length k. For $s \in S$, |s| will denote the length of s and if $i \leq |s|$ is a positive integer, s_i will denote the *i*-th coordinate of s. If $s \in S$ and $n \in N$, sn will denote the catenation of s and n. We put $\Sigma = N^N$. Endowed with the product of discrete topologies on N, Σ becomes a homeomorph of the irrationals. For $\sigma \in \Sigma$ and $k \in N$, σ_k will denote the k-th coordinate of σ and $\sigma|k = (\sigma_1, \ldots, \sigma_k)$. If k = 0, $\sigma|k = e$. If $s \in S_k$, Σ_s will denote the set $\{\sigma \in \Sigma : \sigma|k = s\}$.

Let (X, \mathbb{C}) and (Y, \mathbb{C}) be measurable spaces. We denote by $\mathbb{C} \otimes \mathbb{C}$ the product of the σ -fields \mathbb{C} and \mathbb{C} . We say that the σ -field \mathbb{C} is *countably* generated if there exist subsets $A_n, n \in N$, of X such that \mathbb{C} is generated by $\{A_n : n \in N\}$. A non-empty set $A \in \mathbb{C}$ is called an A-atom if $A \supseteq B \in \mathbb{C} \Rightarrow$ B = A or $B = \emptyset$. If $Z \subseteq X$, $\mathbb{C}|Z$ will denote the trace of the σ -field \mathbb{C} on Z. So, $\mathbb{C}|Z = \{A \cap Z : A \in \mathbb{C}\}$. If X is a metric space, \mathbb{C}_X will denote the Borel σ -field of X. If $E \subset X \times Y$ and $x \in X$, E^x will denote the set $\{y \in$ $Y : (x, y) \in E\}$ and will be called the section of E at x. We use Π_X to denote the projection from $X \times Y$ to X.

A multifunction $F: T \to X$ is a function whose domain is T and whose values are non-empty subsets of X. A function $f: T \to X$ is called a *selector* for F if $f(t) \in F(t)$ for each $t \in T$. The set $\{(t, x) \in T \times X : x \in F(t)\}$ is denoted by Gr(F) and is called the graph of F. If X is a metric space and 3 is a σ -field on T, we say that F is 3-measurable if the set $\{t \in T: F(t) \cap V \neq \emptyset\} \in 3$ for every open set V in X.

Let X, Y be topological spaces and $A \subset X$. We say that A is a *retract* of X if there is a continuous function $f: X \to A$ such that f(x) = x for each $x \in A$. The map f is called a *retraction* of X onto A. A continuous function $g: X \to Y$ is called *closed* if for every closed set C in X g(C) is relatively closed in the range of g.

The rest of our terminology is from [6].

Now we state two results which will be useful in the sequel.

LEMMA 2.1. Let T, X be Polish spaces and \mathfrak{I} a countably generated sub σ -field of \mathfrak{B}_T . Let $B \in \mathfrak{I} \otimes \mathfrak{B}_X$ and let the sections of B be σ -compact. Then $\Pi_T(B) \in \mathfrak{I}$.

PROOF: By a result of Arsenin and Kunugui [1] (See also [13]) it follows that $\Pi_T(B)$ is Borel in T. Further, $\Pi_T(B)$ is a union of 3-atoms. As 3 is countably generated, by a result of Blackwell [2], $\Pi_T(B) \in \mathfrak{I}$.

The next is a very useful result for G_{δ} -valued multifunctions. A proof of this is given in [10].

LEMMA 2.2 Let T, X be Polish spaces and 3 a countably generated sub σ -field of \mathfrak{B}_T . Let $G \in \mathfrak{Z} \otimes \mathfrak{B}_X$ and G' be a G_δ in X for each $t \in T$. Then there exist sets $G_n \in \mathfrak{Z} \otimes \mathfrak{B}_X$ such that G_n' is open in X for $t \in T$ and $n \in N$ and $G = \bigcap_{n=1}^{\infty} G_n$.

3. The zero-dimensional case. Our first result is on closed valued multifunctions. This result is itself interesting and it is very easy to deduce (under a weaker measurability condition) Ioffe's representation theorem for closed valued multifunctions [5] from this

PROPOSITION 3.1 Let (T, 3) be a measurable space and $F: T \to \Sigma$ be a 3-measurable multifunction such that F(t) is closed in Σ for each $t \in T$. Then there is a map $g: T \times \Sigma \to \Sigma$ such that

(i) for each $t \in T$, g(t, .) is a closed retraction of Σ onto F(t), and (ii) for $\sigma \in \Sigma$, $g(., \sigma)$ is 3-measurable.

Proof. Let $s \in S$. Let $T_s = \{t \in T: F(t) \cap \Sigma_s \neq \emptyset\}$. As F is 3-measurable, $T_s \in 3$. Define a closed valued multifunction $F_s: T_s \to \Sigma$ by

$$F_s(t) = F(t) \cap \Sigma_s, \quad t \in T_s.$$

 F_s is $\Im|T_s$ -measurable. By the selection theorem of Kuratowski and Ryll-Nardzewski [8], we get a $\Im|T_s$ -measurable selector $f_s: T_s \to \Sigma$ for F_s . Now, define $g: T \times \Sigma \to \Sigma$ by

 $g(t, \sigma) = \sigma \quad \text{if } \sigma \in F(t)$ = $f_{\sigma|n-1}(t)$ if $\sigma \notin F(t)$ and n is the first positive integer m such that $F(t) \cap \sum_{\sigma|m} = \emptyset$.

As F is closed valued, g is defined on all of $T \times \Sigma$. (i) is easily checked. To check (ii), fix $a\sigma \in \Sigma$, and define

$$T^n = \left(\bigcap_{m < n} T_{\sigma|m}\right) \setminus T_{\sigma|n}, \qquad n \in N$$

The sets T^n , $n \in N$, belong to 3 and are pairwise disjoint.

Further,

$$g(t, \sigma) = f_{\sigma|n-1}(t) \quad \text{if } t \in T^n$$
$$= \sigma \quad \text{if } t \in T \setminus \big(\bigcup_{n=1}^{\infty} T^n\big).$$

It follows that $g(., \sigma)$ is \Im -measurable.

From now on, in this and in the next section, T, X will denote arbitrary Polish spaces and 3 a countably generated sub σ -field of $\mathfrak{B}_T \cdot X$ will be given a complete metric such that diam (X) < 1. We fix a base $\{V_n : n \in N\}$ for the topology of X such that it is closed under finite intersections and finite unions, $V_1 = \emptyset$ and $V_2 = X$. In this section X will be, moreover, zero-dimensional and basic open sets will be closed as well. Finally, in both these sections $F: T \to X$ will denote a multifunction satisfying condition (A). G_n , $n \in N$, will be a sequence of sets in $\Im \otimes \mathfrak{B}_X$ such that G_n^t is open for $t \in T$ and $n \in N$ and $G = \bigcap_{n=1}^{\infty} G_n$, where G denotes the graph of F. The existence of such a sequence of sets is ensured by Lemma 2.2.

LEMMA 3.2 Let X be compact. Then for each $t \in T$ there is a system $\{n_s^t : s \in S\}$ of positive integers and a system $\{F_s^{(t)} : s \in S\}$ of clopen subsets of X such that for $s \in S_k$, k is a non-negative integer, and $t \in T$

(i) $t' \rightarrow n_s^{t'}$ is a 3-measurable map defined on T,

(ii) diam $(F_{s}^{(t)}) < 2^{-k}$,

(iii) $G^t \subseteq F_{e^{(t)}}$ and $G^t \cap F_{s^{(t)}} \subseteq \bigcup_{\lambda=1}^{\infty} F_{s^{(t)}}$,

- (iv) $F_{sm}^{(t)} \subseteq G_{k+1}^t \cap F_s^{(t)}, \quad m \in \mathbb{N},$
- (v) $F_{s^{(t)}} = V_{ns^t}$ if k = 0, or $k \in N$ and $s_k = 1$. = $V_{ns^t} \setminus \bigcup_{i < s_k} V_{n^t s | k-1, i}$ if $k \in N$ and $s_k > 1$.

In particular, it follows that if s, $s' \in S_k$ and $s \neq s'$ then $F_{s'}^{(t)} \cap F_{s'}^{(t)} = \emptyset$.

Proof. We define these by induction on |s|.

Define $n_{e^{t}} = 2$ and $F_{e^{(t)}} = V_{n_{e^{t}}}$, $t \in T$. (i)-(v) are satisfied for s = eand $t \in T$. Suppose $n_{s^{t}}$ and $F_{s^{(t)}}$ are defined for $t \in T$ and $s \in S$ of length $\leq k$ satisfying (i)-(v). Fix an $s \in S_{k}$. We observe that the set $\{t \in T : U \subseteq G_{k+1} \cap F_{s^{(t)}}\} \in \mathcal{I}$ for every open set U in X. To see this let $t \in T$. We have:

If k = 0, or $k \in N$ and $s_k = 1$, then

$$U \subseteq G^{t_{k+1}} \cap F_s^{(t)} \Leftrightarrow (\exists l \in N) \ (n_s^{t} = l \text{ and } U \subseteq G^{t_{k+1}} \cap V_l)$$

whereas if $k \in N$ and $s_k > 1$, then

$$U \subseteq G^{t_{k+1}} \cap F_{s^{(t)}} \Leftrightarrow (\exists (l_1, \ldots, l_{s_k}) \in N^{s_k} ((\forall i \leq s_k) (n^{t_{s|k-1, i}} = l_i))$$

and

$$U \subset G^{t_{k+1}} \cap (V_{l_{s_k}} \smallsetminus \bigcup_{i < s_k} V_{l_i}))$$

By the induction hypothesis and Lemma 2.1, the assertion is now easy to check. For each $t \in T$, we now define n'_{sp} , $p \in N$, by induction on p. For $m \in N$, let

$$T_m^0 = \emptyset \quad \text{if diam} (V_m) \ge 2^{-(k+1)} \text{ or } m = 1$$
$$= \{t \in T \colon V_m \subset G^{t_{k+1}} \cap F_s^{(t)}$$

and

$$(\forall l < m) (\operatorname{diam}(V_l) < 2^{-(k+1)} \Rightarrow V_l \not\subset G^{t_{k+1}} \cap F_{s^{(l)}}), \quad \text{if diam} (V_m) < 2^{-(k+1)} \text{ and } m > 1$$

By the above observation, the sets T_m^0 , $m \in N$, belong to 3 and are pairwise disjoint. Define

$$n_{s_1}^t = m$$
 if $t \in T_m^0$
= 1 if $t \in T \smallsetminus \bigcup_{m=1}^{\infty} T_m^0$

Clearly, the map $t \to n_{s_1}^i$ is 3-measurable. Suppose for some $p \in N$, maps $t \to n_{s_i}^i$ are defined for every $i \le p$ and are 3-measurable. For $m \in N$, let

$$T_m{}^p = \emptyset \quad \text{if diam} (V_m) \ge 2^{-(k+1)},$$
$$= \{t \in T : n^t{}_{sp} < m, V_m \subseteq G^t{}_{k+1} \cap F_s{}^{(t)}\}$$

and

$$(\forall l < m) (\operatorname{diam}(V_l) < 2^{-(k+1)} \Rightarrow (n_{sp}^{t} \geq m \text{ or }$$

$$V_l \not\subset G_{k+1} \cap F_{s^{(l)}})\},$$
 if diam $(V_m) < 2^{-(k+1)}$.

The sets T_m^p , $m \ge 1$, belong to 3 and are pairwise disjoint. Define

$$n_{s,p+1}^{t} = m \qquad \text{if } t \in T_{m^{p}},$$
$$= 1 \qquad \text{if } t \in T \setminus \bigcup_{m=1}^{\infty} T_{m^{p}}.$$

As $s \in S_k$ and $p \in N$ were arbitrary, this completes the definition of $\{n_{s'}: s' \in S_{k+1}\}$. We define $\{F_{s'}(t): s' \in S_{k+1}\}$ satisfying $(v), t \in T$. It is easy to verify that the systems $\{n_{s'}: s \in S\}$ and $\{F_{s'}(t): s \in S\}$ thus defined satisfy the required conditions for each $t \in T$.

Proof of (A) ⇒ (B) when X is a zero-dimensional, Polish space. Since each zero-dimensional Polish space can be embedded in a zero-dimensional compact metric space in which it will automatically be a G_δ, we see that it is sufficient to prove the result when X is, moreover, compact. So, we assume that X is a compact, zero-dimensional, metric space. We get a system {n_s': s ∈ S} of positive integers and a system {F_s^(t): s ∈ S} of clopen sets in X satisfying (i)-(v) of Lemma 3.2. We define a multifunction $H: T → \Sigma$ by

$$H(t) = \{ \sigma \in \Sigma : F_{\sigma|k}^{(t)} \neq \emptyset \text{ for all } k \in N \}, \qquad t \in T.$$

Using standard arguments, we show that H(t) is closed in Σ for each $t \in T$. Further, H is 3-measurable. To see this, let $t \in T$ and $s \in S_k$. Then

$$H(t) \cap \Sigma_s \neq \emptyset \Leftrightarrow G^t \cap F_s^{(t)} \neq \emptyset,$$

and if k = 0, or $k \in N$ and $s_k = 1$, then

$$F_{s^{(t)}} \cap G^{t} \neq \emptyset \Leftrightarrow F(t) \cap V_{n_{s^{t}}} \neq \emptyset$$
$$\Leftrightarrow (\exists l \in N) (n_{s^{t}} = l \text{ and } F(t) \cap V_{l} \neq \emptyset)$$

whereas if $k \in N$ and $s_k > 1$, then

$$F_{s^{(t)}} \cap G^{t} \neq \emptyset \Leftrightarrow F(t) \cap (V_{ns^{t}} \setminus \bigcup_{i < s_{k}} V_{n^{t}s|k-1,i}) \neq \emptyset$$
$$\Leftrightarrow (\exists (l_{1} \cdots l_{s_{k}}) \in N^{s_{k}}) ((\forall i \leq s_{k}) (n^{t}s|k-1,i} = l_{i})$$

and

$$F(t) \cap (V_{l_{s_k}} \setminus \bigcup_{i < s_k} V_{l_i}) \neq \emptyset)$$

By 3-measurability of F and the condition (i) of Lemma 3.2, it follows that $\{t \in T: H(t) \cap \Sigma_s \neq \emptyset\} \in 3$. Thus, H is 3-measurable. By Proposition 3.1, let $h: T \times \Sigma \to \Sigma$ be a map such that for each $t \in T$, h(t, .) is a closed retraction of Σ onto H(t) and for each $\sigma \in \Sigma$, $h(., \sigma)$ is 3-measurable.

Now, define a map $g: Gr(H) \to X$ by taking $g(t, \sigma)$ to be the unique point in $\bigcap_{k=1}^{\infty} F_{\sigma|k}^{(t)}$, $(t, \sigma) \in Gr(H)$. By standard arguments, we show that for each $t \in T$, g(t, .) is a homeomorphism from H(t) onto $G^{t} = F(t)$. Let $U \subseteq X$ be open and $(t, \sigma) \in Gr(H)$. Then

$$g(t, \sigma) \in U \Leftrightarrow \bigcap_{k} F_{\sigma|k}^{(t)} \subseteq U$$
$$\Leftrightarrow (\exists k) (F_{\sigma|k}^{(t)} \subseteq U)$$
$$\Leftrightarrow (\exists s \in S) (\sigma \in \Sigma_{s} \text{ and } F_{s}^{(t)} \subseteq U).$$

Thus,

$$g^{-1}(U) = Gr(H) \cap \bigcup_{s \in S} \left(\{t \in T : F_s^{(t)} \subset U\} \times \Sigma_s \right)$$

We argue as before and show that for every $s \in S$, $\{t \in T : F_s^{(t)} \subseteq U\} \in \mathcal{I}$. It follows that g is $\mathfrak{I} \otimes \mathfrak{G}_{\Sigma} | Gr(H)$ -measurable.

Finally, define $f: T \times \Sigma \to X$ by

$$f(t, \sigma) = g(t, h(t, \sigma)), t \in T, \sigma \in \Sigma.$$

It is easily checked that f has the desired properties.

4. The General Case. The main idea contained in this part of the proof is contained in Ponomarev [12].

LEMMA 4.1. Let X be compact. Then for $t \in T$ and $i, j \in N$ there exist positive integers n_{ij} and n_i such that

(i) the maps $t \rightarrow n_i^t$ and $t \rightarrow n_{ij}^t$ are 3-measurable,

(ii) diam $(V_{nij^t}) \leq 2^{-i}$, (iii) $\overline{F(t)} \subseteq \bigcup_{m=1}^{\infty} V_{nim^t}$, (iv) $m > n_i^t \Rightarrow n_{im^t} = 1$.

Proof. Let $\tilde{G} = \{(t, x) \in T \times X : x \in \overline{F(t)}\}$. For every open set U in X, $\{t \in T : \tilde{G}' \cap U \neq \emptyset\} = \{t \in T : F(t) \cap U \neq \emptyset\} \in \mathcal{J}$. Fix $i \in N$. We shall define maps $t \to n_{ij}', j \in N$, by induction on j. For $m \in N$, let

$$T_m^{0} = \emptyset \quad \text{if diam } (V_m) \ge 2^{-i}$$

= { $t \in T : \tilde{G}^i \cap V_m \neq \emptyset$ and
 $(\forall l < m) (\text{diam } (V_l) < 2^{-i} \Rightarrow \tilde{G}^i \cap V_l = \emptyset)$ },
if diam $(V_m) < 2^{-i}$.

By the above observation, the sets T_m^0 , $m \in N$, belong to 3 and are pairwise disjoint. Also, $T = \bigcup_{m=1}^{\infty} T_m^0$. We define

$$n_{i1}{}^t = m \qquad \text{if } t \in T_m{}^0.$$

The map $t \to n_{i1}{}^t$ is clearly 3-measurable. Now, suppose for some $p \in N$, $n_{ij}{}^t$ is defined for all $j \leq p$ and $t \in T$ and the maps $t \to n_{ij}{}^t$, $j \leq p$, are 3-measurable. We observe that for every open set U in X,

$$\{t \in T: (\tilde{G}^t \setminus \bigcup_{j \leq p} V_{nj^t}) \cap U \neq \emptyset\} \in \mathcal{J}.$$

To see this, first observe that if $t \in T$ and $x \in X$, then

$$(t, x) \notin \tilde{G} \Leftrightarrow x \notin \overline{F(t)}$$
$$\Leftrightarrow (\exists n \in N) (x \in V_n \text{ and } V_n \cap F(t) = \emptyset).$$

So that

$$T \times X \setminus \tilde{G} = \bigcup_{n=1}^{\infty} \left(\{t \in T : F(t) \cap V_n = \emptyset \} \times V_n \right) \in \mathfrak{I} \otimes \mathfrak{B}_X.$$

The above assertion now follows from the induction hypothesis, Lemma 2.1 and the following equivalence for every $t \in T$:

$$(\tilde{G}^{\iota} \setminus \bigcup_{j \leq p} V_{n_{ij}\iota}) \cap U \neq \emptyset \Leftrightarrow (\exists (l_1 \cdots l_p) \in N^p) ((\forall_j \leq p) (n_{ij}\iota = l_j))$$

and

$$(\tilde{G}^{t} \setminus \bigcup_{j \leq p} V_{l_{j}}) \cap U \neq \emptyset).$$

For $m \in N$, define

$$T_m^p = \emptyset \quad \text{if diam} (V_m) \ge 2^{-i}$$
$$\{t \in T : n_{ip'} < m, (\tilde{G}^t \setminus \bigcup_{j \le p} V_{nij'}) \cap V_m \neq \emptyset$$

and

$$(\forall l < m) (\operatorname{diam}(V_l) < 2^{-i} \Rightarrow (l \le n_{ip}) \text{ or}$$
$$(\tilde{G}^i \setminus \bigcup_{l \le p} V_{n_il}) \cap V_l = \emptyset)), \quad \text{if } \operatorname{diam}(V_m) < 2^{-i}.$$

By the observation made above, it follows that the sets T_m^p , $m \in N$, belong to 3 and are pairwise disjoint. We define

$$n^{t_{i,p+1}} = m \qquad \text{if } t \in T_m^p$$
$$= 1 \qquad \text{if } t \in T \setminus \bigcup_{m=1}^{\infty} T_m^p.$$

As $p \in N$ was arbitrary, this completes the definition of the maps $t \to n_{ij}^{t}$, $j \in N$. To define n_{i}^{t} , $t \in T$, notice that \tilde{G}^{t} is compact and so, $(\exists m \in N)$ $(\forall l > m) (n_{il}^{t} = 1)$. We define n_{i}^{t} to be the first such positive integer m, $t \in T$. It is an easy matter to verify that conditions (i)-(iv) are satisfied.

LEMMA 4.2 Let X be compact. Then there is a set $B \subseteq T \times \Sigma$ and a map $g: B \to X$ such that for $t \in T$

- (i) $B \in \mathfrak{I} \otimes \mathfrak{G}_{\Sigma}$,
- (ii) B^t is non-empty and compact.
- (iii) g(t, .) is a continuous map from B^t onto $\overline{F(t)}$,
- (iv) D is a dense subset of $\overline{F(t)} \Rightarrow \{\sigma \in \Sigma : g(t, \sigma) \in D\}$ is dense in B^t ,
- (v) g is $(\mathfrak{I} \otimes \mathfrak{B}_{\Sigma})|B$ -measurable.

Proof. For $t \in T$ and $i, j \in N$ we get positive integers n_i^t and n_{ij}^t satisfying condition (i)-(iv) of Lemma 4.1. Let $\tilde{G} = \{(t, x) \in T \times X : x \in \overline{F(t)}\}$ and let

$$egin{aligned} U_{ij^{(t)}} &= V_{nij^t} \cap \ ilde{G}^t & ext{if } j = 1 \ & (V_{ny^t} \cap \ ilde{G}^t) igared igcup_{l \leq t} (\overline{V_{nil^t} \cap \ ilde{G}^t}) & ext{if } j > 1. \end{aligned}$$

We have

(1) $U_{ij}^{(t)}$ is relatively open in \tilde{G}^{t} , (2) diam $(U_{ij}^{(t)}) < 2^{-i}$, (3) $m \neq n \Rightarrow U_{im}^{(t)} \cap U_{in}^{(t)} = \emptyset$, (4) $m > n_{i}^{t} \Rightarrow U_{im}^{(t)} = \emptyset$ (5) $\tilde{G}^{t} = \bigcup_{k=1}^{\infty} \overline{U_{ik}^{(t)}}$ (6) for every open set U in X, $\{t \in T: \tilde{G}^{t} \cap U \subseteq U_{ij}^{(t)}\} \in \mathbb{S}$, (7) if P is a finite subset of $N \times N$ and if $U \subseteq X$ is open then

$$\{t \in T: \bigcap_{(m,n) \in P} U_{mn}^{(t)} \cap U \neq \emptyset\} \in \mathfrak{I}.$$

Properties (1)-(5) are clear. To see (6), notice that if j = 1

$$\tilde{G}^t \cap U \subseteq U_{ij}^{(t)} \Leftrightarrow (\exists l \in N) \ (n_{ij}{}^t = l \text{ and } \tilde{G}^t \cap U \subseteq V_l)$$

while if j > 1

$$\begin{split} \tilde{G}^{t} \cap U \subset U_{ij}^{(t)} &\Leftrightarrow \tilde{G}^{t} \cap U \subset V_{nij^{t}} \setminus \bigcup_{k < j} (\overline{V_{nik^{t}} \cap \tilde{G}^{t}}) \\ &\Leftrightarrow \tilde{G}^{t} \cap U \subseteq V_{nij^{t}} \text{ and } (\forall k < j) (\tilde{G}^{t} \cap U \cap V_{nik^{t}} = \emptyset) \\ &\Leftrightarrow (\exists (l_{1} \cdots l_{j}) \in N^{j}) ((\forall k \le j) (n_{ik^{t}} = l_{k}), \\ & \tilde{G}^{t} \cap U \subseteq V_{lj} \text{ and} \\ & (\forall k < j) (\tilde{G}^{t} \cap U \cap V_{lk} = \emptyset)) \end{split}$$

Now, (6) follows from (i) of Lemma 4.1 and Lemma 2.1. (Note that $\tilde{G} \in \mathcal{I} \otimes \mathcal{B}_X$). To prove (7), first notice that

 $\bigcap_{(m,n)\in P} U_{mn}{}^{(t)} \cap U \neq \emptyset \Leftrightarrow (\exists k \in N) (V_k \subseteq U \text{ and})$ $(\mathcal{U}_{\mathcal{U}}) \sim \mathcal{D}(\tilde{\mathcal{O}}_{\mathcal{U}} \cap \mathcal{U}_{\mathcal{U}} - \mathcal{U}_{\mathcal{U}}))$

$$(\forall (m, n) \in P) (G^{t} \cap V_{k} \subseteq U_{mn}^{(t)})).$$

Now, (7) follows from (6).

For $t \in T$ and $i, j, \in N$, we define the following by induction on i:

at

$$m_{i}^{t} = n_{i}^{t} \qquad \text{if } i = 1$$

$$= m^{t_{i-1}} \cdot n_{i}^{t} \qquad \text{if } i > 1,$$

and

$$W_{ij}^{(t)} = U_{ij}^{(t)} \qquad \text{if } i = 1$$

$$= W^{(t)_{i-1,k}} \cap U_{il}^{(t)} \qquad \text{if } i > 1, 1 \le k \le m^{t_{i-1}},$$

$$1 \le l \le n_{i}^{t} \text{ and } j = (k-1)n_{i}^{t} + l$$

$$= \emptyset \qquad \qquad \text{if } j > m_{i}^{t}.$$

We have

(a) the map $t \to m_i^t$ is 3-measurable, (b) $W_{ii}^{(t)}$ is relatively open in \tilde{G}^{t} , (c) diam $(W_{ij}^{(t)}) < 2^{-i}$, (d) $m \neq n \Rightarrow W_{im^{(t)}} \cap W_{in^{(t)}} = \emptyset$, (e) $k > m_i^t \Rightarrow W_{ik}^{(t)} \equiv \emptyset$, (f) $\tilde{G}^t = \bigcup_{l=1}^{\infty} \overline{W_{il}^{(t)}},$ (g) $(\forall (i, j) \in N \times N) (\exists k \in N) (W^{(t)}_{i+1,j} \subseteq W_{ik}^{(t)}),$ (h) $\overline{W^{(t)}_{i+1,i}} \subseteq \overline{W_{ik}^{(t)}} \Rightarrow W^{(t)}_{i+1,i} \subseteq W_{ik}^{(t)}, k \in \mathbb{N},$ (i) $\{t \in T : W_{ii}^{(t)} \neq \emptyset\} \in \mathcal{J},$ (j) U is open in $X \Rightarrow \{t \in T : \overline{W_{u^{(t)}}} \subseteq U\} \in \mathcal{I},$ (k) $\{t \in T: W^{(t)}_{k+1,m} \subseteq W_{kn}^{(t)}\} \in \mathcal{J}.$

(a)-(h) are easily verified. (i) follows from (7). Also, from (7), we get that the closed set-valued function $t \to \overline{W_{ij}^{(t)}}$ is 3-measurable. Hence, by [15, Theorem 4.2], its graph is in $\Im \otimes \mathfrak{B}_X$. Now, (j) follows from Lemma 2.1. To verify (k), notice

$$\{t \in T: W^{(t)}_{k+1,m} \subseteq W^{(t)}_{kn}\} = \{t \in T: W^{(t)}_{k+1,m} = \emptyset\} \quad U \quad \{t \in T: \emptyset \neq W^{(t)}_{k+1,m} \subseteq W_{kn}^{(t)}\}$$
$$= \{t \in T: W^{(t)}_{k+1,m} = \emptyset\} \quad U \cup \{t \in T: j_n \leq m_{k'}, p = n'_{k+1}\},$$

where the last union is taken over all $(p, q) \in N \times N$ such that $q \leq p$ and $j_m = (j_n - 1)$. p + q. Now, (k) follows from (i), (a) and (i) of Lemma 4.1. We define

$$B = \{(t, \sigma) \in T \times \Sigma : (\forall k) \ (W_{k\sigma_k}^{(t)} \neq \emptyset \text{ and } \overline{W^{(t)}_{k+1,\sigma_{k+1}}} \subseteq \overline{W_{k\sigma_k}^{(t)}})\}$$
$$= \{(t, \sigma) \in T \times \Sigma : (\forall k) \ (W_{k\sigma_k}^{(t)} \neq \emptyset \text{ and } W^{(t)}_{k+1,\sigma_{k+1}} \subseteq W_{k\sigma_k}^{(t)})\}$$
$$= \{(t, \sigma) \in T \times \Sigma : (\forall k) \ (W_{1\sigma_1}^{(t)} \supseteq \cdots \supseteq W_{k\sigma_k}^{(t)} \neq \emptyset)\}$$
$$= \bigcap_{k=1}^{\infty} \bigcup_{s \in S_k} (\{t \in T : W_{1s_1}^{(t)} \supseteq \cdots \supseteq W_{ks_k}^{(t)} \neq \emptyset\} \times \Sigma_s)$$

From (i) and (k), it follows that $B \in \mathfrak{I} \otimes \mathfrak{B}_{\Sigma}$. By König's infinity lemma [7, pp. 326] we get that $B^{t} \neq \emptyset$, for each $t \in T$. It is easy to check that for $t \in T$, B^{t} is closed in Σ and $B^{t} \subseteq \bigotimes_{i=1}^{\infty} (\{1, \ldots, m_{i}^{t}\})$. Thus, B^{t} is a nonempty, compact subset of Σ , $t \in T$. We define $g: B \to X$ by taking $g(t, \sigma)$ to be the unique point in $\bigcap_{k=1}^{\infty} \overline{W_{k\sigma_{k}}}^{(t)}$, $(t, \sigma) \in B$. Using König's infinity lemma, we check that g(t, .) is a continuous map from B^{t} onto \tilde{G}^{t} , $t \in T$.

For a proof of (iv) the reader is referred to Ponomarev [12]. Finally, if $(t, \sigma) \in B$ and U is open in X, then

$$g(t, \sigma) \in U \Leftrightarrow (\exists k \in N) (\exists m \in N) (W_{km^{(t)}} \subseteq U \text{ and } \sigma_k = m)$$

From (j), it follows that g is $\Im \otimes \mathfrak{G}_{\Sigma}|B$ -measurable.

Proof of $(A) \Rightarrow (B)$. Since each Polish space can be embedded in a compact metric space in which it will automatically be a G_{σ} , it is sufficient to prove the result for a compact metric X. So we assume that X is a compact metric space. We get a set $B \subseteq T \times \Sigma$ and a map $g: B \to X$ satisfying conditions (i)-(v) of Lemma 4.2. We define a multifunction $H: T \to \Sigma$ by

$$H(t) = \{ \sigma \in \Sigma : g(t, \sigma) \in F(t) \}, \quad t \in T.$$

H(t) is a non-empty, G_{δ} set in Σ and by (iv) of Lemma 4.2, H(t) is dense in B^{t} , $t \in T$. Thus by (i) and (ii) of Lemma 4.2 and Lemma 2.1, it follows that H is 3-measurable. By (i) and (v) of Lemma 4.2 and the fact that $Gr(F) \in \Im \otimes \mathfrak{B}_{X}$, we get that $Gr(H) \in T \otimes B_{\Sigma}$. By $(A) \Rightarrow (B)$ for zero-dimen-

sional Polish spaces proved in section 3, we get a map $h: T \times \Sigma \to \Sigma$ such that for each $t \in T$, h(t, .) is continuous, closed and onto H(t) and for each $\sigma \in \Sigma$, $h(., \sigma)$ is 3-measurable. Define $f: T \times \Sigma \to X$ by

$$f(t, \sigma) = g(t, h(t, \sigma)), t \in T, \sigma \in \Sigma.$$

It is easily checked that f satisfies (B).

5. Proof of $(B) \Rightarrow (A)$. We first check that F is 3-measurable. Let $\{\sigma^n : n \in N\}$ be a dense sequence in Σ . Then $\{f(t, \sigma^n) : n \in N\}$ is dense in $F(t), t \in T$. Therefore, for $U \subseteq X$ open,

$$\{t \in T : F(t) \cap U \neq \emptyset\} = \bigcup_{n=1}^{\infty} (f(., \sigma^n)^{-1}(U)) \in \mathfrak{I}.$$

Now, let $\{U_n : n \in N\}$ and $\{V_n : n \in N\}$ be bases for Σ and X respectively. We define a set $B \subseteq T \times \Sigma$ as follows:

 $(t, \sigma) \in B \Leftrightarrow (\exists x \in X)$ (either $f(t, ...,)^{-1}(x)$ is not open and σ is a boundary point of it, or $f(t, ...)^{-1}(x)$ is open and $\sigma = \sigma^n$, where *n* is the first positive integer *m* such that $f(t, \sigma^m) = x$).

It is easily checked that for $t \in T$, B^t is closed in Σ and $f(t, B^t) = f(t, \Sigma) = F(t)$. It follows from a result of Vaïnšteĭn [14] (see also [3, p. 204]) that the restriction of f(t, .) on B^t is perfect. Vaïnšteĭn [14] proved that if a separable metric space Z is the image of a Polish space under a perfect map, Z is Polish. From this it follows that F(t) is a G_{δ} in X for each $t \in T$. Finally, observe that

$$\begin{aligned} (t,\sigma) \in B &\Leftrightarrow \text{Either} \left[(\forall m) \left\{ \sigma \in U_m \Rightarrow (\exists k) \left(\sigma^k \in U_m \text{ and } f(t,\sigma^k) \neq f(t,\sigma) \right) \right\} \right] \\ &\text{or} \left[(\exists n) \left\{ \sigma = \sigma^n, (\forall l < n) \left(f(t,\sigma^l) \neq f(t,\sigma^n) \right) \\ &\text{and} \left(\exists p \right) \left(f(t,\sigma^n) \in V_p \text{ and} \\ \left(\forall l \right) \left(f(t,\sigma^l) \in V_p \Rightarrow f(t,\sigma^l) = f(t,\sigma^n) \right) \right\} \right] \end{aligned}$$

Thus, $B \in \mathfrak{I} \otimes \mathfrak{B}_{\Sigma}$. Now,

$$(t, x) \in Gr(F) \Leftrightarrow (\exists \sigma \in \Sigma) ((t, \sigma) \in B \text{ and } f(t, \sigma) = x).$$

Therefore

 $Gr(F) = \prod_{T \times X} \left(\{ (t, \sigma, x) \in T \times \Sigma \times X : (t, \sigma) \in B \text{ and } f(t, \sigma) = x \} \right)$

By Lemma 2.1, $Gr(F) \in \mathfrak{I} \otimes \mathfrak{B}_X$.

INDIAN STATISTICAL INSTITUTE, CALCUTTA.

REFERENCES

- W. Arsenin and A. Ljapunov, "Theory of A sets," (Russian). Uspekhi 5 (1950), pp. 45-108.
- [2] D. Blackwell, "On a class of probability spaces," Proc. 3rd. Berkeley Sympos. Math. Statist. and Prob. 2 (1956), pp. 1-6.
- [3] R. Engelking, Outline of general topology, North-Holland, Amsterdam, 1968.
- [4] _____, "On closed images of the space of irrationals," Proc. Amer. Math. Soc. 21 (1969), pp. 583-586.
- [5] A. D. Ioffe, "Representation theorems for multifunctions and analytic sets," Bull. Amer. Math. Soc. 84 (1978), pp. 142-144.
- [6] K. Kuratowski, Topology, Vol. 1, Academic Press, New York and London, PWN, Warsaw, 1966.
- [7] _____, and A. Mostowski, Set Theory, North-Holland Publishing Company, Amsterdam, New York, Oxford, PWN, 1976.
- [8] _____, and C. Ryll-Nardzewski, "A general theorem on selectors," Bull. Acad. Polon. Sci., Ser. Sci. Math. Astron. Phys. 13 (1965), pp. 397-403.
- [9] H. Sarbadhikari and S. M. Srivastava, "Parametrizations of G_{δ} -valued multifunctions," *Trans. Amer. Math. Soc.*, to appear.
- [10] S. M. Srivastava, "Selection Theorems for G_{δ} -valued multifunctions," Trans. Amer. Math. Soc., 254(1979), pp. 283–294.
- [11] _____, "A representation theorem for closed valued multifunctions," Bull. Acad. Polon. Sci., to appear.
- [12] V. Ponomarev, "Normal spaces as images of zero-dimensional ones," Soviet Math. Doklady 1 (1960), pp. 774-777.
- [13] J. Saint-Raymond, "Boreliens A Coupes k_{σ} ," Bull. Soc. Math. France. 104 (1976), pp. 389-400.
- [14] I. A. Vaínšteín, "On closed mappings of metric spaces," Doklady Akad. Nauk SSSR (NS) 57 (1947), pp. 319-321.
- [15] D. H. Wagner, "Survey of Measurable Selection Theorems," Siam J. Control and Optimization, 15 (1977), pp. 859-903.