A REPRESENTATION THEOREM FOR G $\boldsymbol{\sigma}_{\boldsymbol{\delta}}$-VALUED MULTIFUNCTIONS

By S. M. Srivastava

1. Introduction. In this paper we prove the following representation theorem for G_{δ}-valued multifunctions:

Theorem 1.1 Let T, X be Polish spaces, \mathcal{I} a countably generated sub σ-field of the Borel σ-field $ß_{T}$ and $F: T \rightarrow X$ a multifunction. Then the following are equivalent:
(A) F is \mathfrak{J}-measurable, $G r(F) \in \mathfrak{J} \otimes \bigotimes_{X}$ and $F(t)$ is a G_{δ} in X for each $t \in T$.
(B) There is a function $f: T \times \Sigma \rightarrow X$ such that for $t \in T, f(t,$.$) is a$ continuous, closed map from Σ onto $F(t)$ and for $\sigma \in \Sigma, f(., \sigma)$ is J-measurable, where Σ is the space of irrationals.

The necessary definitions and notation are given in Section 2 where we also state some known results for easy reference. In Section 3 we prove the implication $(A) \Rightarrow(B)$ when X is, moreover, zero-dimensional; this implication for an arbitrary Polish space X is proved in Section 4. The implication $(B) \Rightarrow(A)$ is proved in Section 5.

The author [10] had earlier established the existence of a J-measurable selector for a multifunction $F: T \rightarrow X$ satisfying condition (A). Various representation theorems for such multifunctions are also proved in [9]. Similar results for multifunctions taking closed values in a Polish space can be found in [5], [11].

Our result can be viewed as a sectionwise version of the following well known characterization of Polish spaces: a second countable, metrizable space is completely metrizable if and only if it is the image of irrationals under a closed continuous function. The 'if' part of this result was proved by Vaïnšteīn [14] and we carry over this proof for each $F(t), t \in T$, uniformly to prove the implication $(B) \Rightarrow(A)$. Engelking [4] proved the 'only if' part of the above result.

I received invaluable help and suggestions from Drs. A. Maitra and H. Sarbadhikari while working on the problems considered in this paper. I express my deep indebtedness to them.

Manuscript received October 25, 1978
American Journal of Mathematics, Vol. 102 No. 1, pp. 165-178
2. Definitions and Notation. The set of positive integers will be denoted by $N . S$ will denote the set of all finite sequences of positive integers, including the empty sequence e. For each non-negative integer k, we denote by S_{k} the set of elements of S of length k. For $s \in S,|s|$ will denote the length of s and if $i \leq|s|$ is a positive integer, s_{i} will denote the i-th coordinate of s. If $s \in S$ and $n \in N$, $s n$ will denote the catenation of s and n. We put $\Sigma=N^{N}$. Endowed with the product of discrete topologies on N, Σ becomes a homeomorph of the irrationals. For $\sigma \in \Sigma$ and $k \in N$, σ_{k} will denote the k-th coordinate of σ and $\sigma \mid k=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$. If $k=0$, $\sigma \mid k=e$. If $s \in S_{k}, \Sigma_{s}$ will denote the set $\{\sigma \in \Sigma: \sigma \mid k=s\}$.

Let (X, \mathcal{Q}) and (Y, \mathcal{B}) be measurable spaces. We denote by $\mathbb{Q} \otimes \mathscr{B}$ the product of the σ-fields \mathcal{Q} and \mathcal{B}. We say that the σ-field \mathcal{Q} is countably generated if there exist subsets $A_{n}, n \in N$, of X such that Q is generated by $\left\{A_{n}: n \in N\right\}$. A non-empty set $A \in \mathbb{Q}$ is called an A-atom if $A \supseteq B \in \mathbb{Q} \Rightarrow$ $B=A$ or $B=\emptyset$. If $Z \subseteq X, \mathbb{Q} \mid Z$ will denote the trace of the σ-field \mathbb{Q} on Z. So, $Q \mid Z=\{A \cap Z: A \in Q\}$. If X is a metric space, \bigotimes_{X} will denote the Borel σ-field of X. If $E \subset X \times Y$ and $x \in X, E^{x}$ will denote the set $\{y \in$ $Y:(x, y) \in E\}$ and will be called the section of E at x. We use Π_{X} to denote the projection from $X \times Y$ to X.

A multifunction $F: T \rightarrow X$ is a function whose domain is T and whose values are non-empty subsets of X. A function $f: T \rightarrow X$ is called a selector for F if $f(t) \in F(t)$ for each $t \in T$. The set $\{(t, x) \in T \times X: x \in F(t)\}$ is denoted by $\operatorname{Gr}(F)$ and is called the graph of F. If X is a metric space and J is a σ-field on T, we say that F is J-measurable if the set $\{t \in T: F(t) \cap$ $V \neq \emptyset\} \in \mathcal{J}$ for every open set V in X.

Let X, Y be topological spaces and $A \subset X$. We say that A is a retract of X if there is a continuous function $f: X \rightarrow A$ such that $f(x)=x$ for each $x \in A$. The $\operatorname{map} f$ is called a retraction of X onto A. A continuous function $g: X \rightarrow Y$ is called closed if for every closed set C in $X g(C)$ is relatively closed in the range of g.

The rest of our terminology is from [6].
Now we state two results which will be useful in the sequel.
Lemma 2.1. Let T, X be Polish spaces and J a countably generated sub σ-field of $®_{T}$. Let $B \in \mathfrak{J} \otimes ®_{X}$ and let the sections of B be σ-compact. Then $\Pi_{T}(B) \in \mathcal{J}$.

Proof: By a result of Arsenin and Kunugui [1] (See also [13]) it follows that $\Pi_{T}(B)$ is Borel in T. Further, $\Pi_{T}(B)$ is a union of \mathcal{J}-atoms. As \mathcal{J} is countably generated, by a result of Blackwell [2], $\Pi_{T}(B) \in \mathcal{J}$.

The next is a very useful result for G_{δ}-valued multifunctions. A proof of this is given in [10].

Lemma 2.2 Let T, X be Polish spaces and \Im a countably generated sub σ-field of $\mathscr{ß}_{T}$. Let $G \in \mathcal{J} \otimes \mathscr{\mapsto}_{X}$ and G^{t} be a G_{δ} in X for each $t \in T$. Then there exist sets $G_{n} \in \mathcal{J} \otimes \Theta_{X}$ such that $G_{n}{ }^{t}$ is open in X for $t \in T$ and $n \in N$ and $G=\bigcap_{n=1}^{\infty} G_{n}$.
3. The zero-dimensional case. Our first result is on closed valued multifunctions. This result is itself interesting and it is very easy to deduce (under a weaker measurability condition) Ioffe's representation theorem for closed valued multifunctions [5] from this

Proposition 3.1 Let (T, \mathcal{J}) be a measurable space and $F: T \rightarrow \Sigma$ be a J-measurable multifunction such that $F(t)$ is closed in Σ for each $t \in$ T. Then there is a map $g: T \times \Sigma \rightarrow \Sigma$ such that
(i) for each $t \in T, g(t,$.$) is a closed retraction of \Sigma$ onto $F(t)$, and
(ii) for $\sigma \in \Sigma, g(., \sigma)$ is J-measurable.

Proof. Let $s \in S$. Let $T_{s}=\left\{t \in T: F(t) \cap \Sigma_{s} \neq \emptyset\right\}$. As F is \mathcal{J}-measurable, $T_{s} \in \mathcal{J}$. Define a closed valued multifunction $F_{s}: T_{s} \rightarrow \Sigma$ by

$$
F_{s}(t)=F(t) \cap \Sigma_{s}, \quad t \in T_{s}
$$

F_{s} is $\Im \mid T_{s}$-measurable. By the selection theorem of Kuratowski and RyllNardzewski [8], we get a $\mathfrak{J} \mid T_{s}$-measurable selector $f_{s}: T_{s} \rightarrow \Sigma$ for F_{s}. Now, define $g: T \times \Sigma \rightarrow \Sigma$ by

$$
\begin{aligned}
g(t, \sigma) & =\sigma \quad \text { if } \sigma \in F(t) \\
& =f_{\sigma \mid n-1}(t) \quad \text { if } \sigma \notin F(t) \text { and } n \text { is the first positive integer } m \text { such } \\
\quad & \text { that } F(t) \cap \Sigma_{\sigma \mid m}=\emptyset .
\end{aligned}
$$

As F is closed valued, g is defined on all of $T \times \Sigma$. (i) is easily checked. To check (ii), fix $a \sigma \in \Sigma$, and define

$$
T^{n}=\left(\bigcap_{m<n} T_{\sigma \mid m}\right) \backslash T_{\sigma \mid n}, \quad n \in N
$$

The sets $T^{n}, n \in N$, belong to $\sqrt[J]{ }$ and are pairwise disjoint.

Further,

$$
\begin{aligned}
g(t, \sigma) & =f_{\sigma \mid n-1}(t) & & \text { if } t \in T^{n} \\
& =\sigma & & \text { if } t \in T \backslash\left(\bigcup_{n=1}^{\infty} T^{n}\right) .
\end{aligned}
$$

It follows that $g(., \sigma)$ is 3 -measurable.
From now on, in this and in the next section, T, X will denote arbitrary Polish spaces and \mathfrak{J} a countably generated sub σ-field of $ß_{T} \cdot X$ will be given a complete metric such that diam $(X)<1$. We fix a base $\left\{V_{n}: n \in N\right\}$ for the topology of X such that it is closed under finite intersections and finite unions, $V_{1}=\emptyset$ and $V_{2}=X$. In this section X will be, moreover, zero-dimensional and basic open sets will be closed as well. Finally, in both these sections $F: T \rightarrow X$ will denote a multifunction satisfying condition $(A) . G_{n}, n \in N$, will be a sequence of sets in $\mathcal{J} \otimes 円_{X}$ such that $G_{n}{ }^{t}$ is open for $t \in T$ and $n \in N$ and $G=\bigcap_{n=1}^{\infty} G_{n}$, where G denotes the graph of F. The existence of such a sequence of sets is ensured by Lemma 2.2.

Lemma 3.2 Let X be compact. Then for each $t \in T$ there is a system $\left\{n_{s}{ }^{t}: s \in S\right\}$ of positive integers and a system $\left\{F_{s}{ }^{(t)}: s \in S\right\}$ of clopen subsets of X such that for $s \in S_{k}, k$ is a non-negative integer, and $t \in T$
(i) $t^{\prime} \rightarrow n_{s}{ }^{t^{\prime}}$ is a \mathfrak{J}-measurable map defined on T,
(ii) $\operatorname{diam}\left(F_{s}^{(t)}\right)<2^{-k}$,
(iii) $G^{t} \subseteq F_{e}{ }^{(t)}$ and $G^{t} \cap F_{s}{ }^{(t)} \subseteq \bigcup_{\lambda=1}^{\infty} F_{s}{ }^{(t)}$,
(iv) $F_{s m}{ }^{(t)} \subseteq G_{k+1^{t}} \cap F_{s}^{(t)}, \quad m \in N$,
(v) $F_{s}{ }^{(t)}=V_{n_{s}}$ if $k=0$, or $k \in N$ and $s_{k}=1$. $=V_{n s} \backslash \bigcup_{i<s_{k}} V_{n t_{s \mid k-1, i}}$ if $k \in N$ and $s_{k}>1$.

In particular, it follows that if $s, s^{\prime} \in S_{k}$ and $s \neq s^{\prime}$ then $F_{s}{ }^{(t)} \cap$ $F_{s^{\prime}}{ }^{(t)}=\emptyset$.

Proof. We define these by induction on $|s|$.
Define $n_{e}{ }^{t}=2$ and $F_{e}^{(t)}=V_{n_{e}}, t \in T$. (i)-(v) are satisfied for $s=e$ and $t \in T$. Suppose $n_{s}{ }^{t}$ and $F_{s}{ }^{(t)}$ are defined for $t \in T$ and $s \in S$ of length \leq k satisfying (i)-(v). Fix an $s \in S_{k}$. We observe that the set $\{t \in T: U \subseteq$ $\left.G^{t}{ }_{k+1} \cap F_{s}^{(t)}\right\} \in \mathcal{J}$ for every open set U in X. To see this let $t \in T$. We have:

If $k=0$, or $k \in N$ and $s_{k}=1$, then

$$
U \subseteq G_{k+1}^{t} \cap F_{s}^{(t)} \Leftrightarrow(\exists l \in N)\left(n_{s}^{t}=l \text { and } U \subseteq G_{k+1}^{t} \cap V_{l}\right)
$$

whereas if $k \in N$ and $s_{k}>1$, then

$$
U \subseteq G^{t_{k+1}} \cap F_{s}{ }^{(t)} \Leftrightarrow\left(\exists (l _ { 1 } , \ldots , l _ { s _ { k } }) \in N ^ { s _ { k } } \left(\left(\forall i \leq s_{k}\right)\left(n_{s \mid k-1, l}^{t}=l_{t}\right)\right.\right.
$$

and

$$
\left.U \subset G^{t_{k+1}} \cap\left(V_{s_{k}} \backslash \bigcup_{i<s_{k}} V_{l_{i}}\right)\right)
$$

By the induction hypothesis and Lemma 2.1, the assertion is now easy to check. For each $t \in T$, we now define $n^{t} s p, p \in N$, by induction on p. For $m \in N$, let

$$
\begin{aligned}
& T_{m}{ }^{0}=\emptyset \quad \text { if } \operatorname{diam}\left(V_{m}\right) \geq 2^{-(k+1)} \text { or } m=1 \\
& \quad=\left\{t \in T: V_{m} \subset G^{t}{ }_{k+1} \cap F_{s}^{(t)}\right. \\
& \text { and } \\
& (\forall l<m)\left(\operatorname{diam}\left(V_{l}\right)<2^{-(k+1)} \Rightarrow V_{l} \not \subset G^{t}{ }_{k+1} \cap\right. \\
& \left.\left.F_{s}^{(t)}\right)\right\}, \quad \text { if } \operatorname{diam}\left(V_{m}\right)<2^{-(k+1)} \text { and } m>1
\end{aligned}
$$

By the above observation, the sets $T_{m}{ }^{0}, m \in N$, belong to \mathfrak{J} and are pairwise disjoint. Define

$$
\begin{aligned}
n_{s 1}^{t} & =m & & \text { if } t \in T_{m}{ }^{0} \\
& =1 & & \text { if } t \in T \backslash \bigcup_{m=1}^{\infty} T_{m}{ }^{0}
\end{aligned}
$$

Clearly, the map $t \rightarrow n_{s 1}$ is \mathfrak{J}-measurable. Suppose for some $p \in N$, maps $t \rightarrow n_{s i}$ are defined for every $i \leq p$ and are \mathfrak{J}-measurable. For $m \in N$, let

$$
\begin{gathered}
T_{m}^{p}=\emptyset \quad \text { if } \operatorname{diam}\left(V_{m}\right) \geq 2^{-(k+1)}, \\
=\left\{t \in T: n_{s p}^{t}<m, V_{m} \subseteq G^{t}{ }_{k+1} \cap F_{s}^{(t)}\right. \\
\text { and } \\
(\forall l<m)\left(\operatorname{diam}\left(V_{l}\right)<2^{-(k+1)} \Rightarrow\left(n_{s p}^{\prime} \geq m\right. \text { or }\right.
\end{gathered}
$$

$$
\left.\left.\left.V_{l} \not \subset G^{t_{k+1}} \cap F_{s}^{(t)}\right)\right)\right\}, \quad \text { if } \operatorname{diam}\left(V_{m}\right)<2^{-(k+1)}
$$

The sets $T_{m}{ }^{p}, m \geq 1$, belong to \mathfrak{J} and are pairwise disjoint. Define

$$
\begin{aligned}
& n_{s, p+1}^{t}=m \quad \text { if } t \in T_{m}{ }^{p}, \\
& =1 \quad \text { if } t \in T \backslash \bigcup_{m=1}^{\infty} T_{m}{ }^{p} .
\end{aligned}
$$

As $s \in S_{k}$ and $p \in N$ were arbitrary, this completes the definition of $\left\{n^{t} s^{\prime}: s^{\prime} \in\right.$ $\left.S_{k+1}\right\}$. We define $\left\{F_{s^{\prime}}{ }^{(t)}: s^{\prime} \in S_{k+1}\right\}$ satisfying $(v), t \in T$. It is easy to verify that the systems $\left\{n_{s}{ }^{t}: s \in S\right\}$ and $\left\{F_{s}{ }^{(t)}: s \in S\right\}$ thus defined satisfy the required conditions for each $t \in T$.

Proofof $(A) \Rightarrow(B)$ when X is a zero-dimensional, Polish space. Since each zero-dimensional Polish space can be embedded in a zero-dimensional compact metric space in which it will automatically be a G_{δ}, we see that it is sufficient to prove the result when X is, moreover, compact. So, we assume that X is a compact, zero-dimensional, metric space. We get a system $\left\{n_{s}{ }^{t}: s \in S\right\}$ of positive integers and a system $\left\{F_{s}^{(t)}: s \in S\right\}$ of clopen sets in X satisfying (i)-(v) of Lemma 3.2. We define a multifunction $H: T \rightarrow \Sigma$ by

$$
H(t)=\left\{\sigma \in \Sigma: F_{\sigma \mid k}^{(t)} \neq \emptyset \text { for all } k \in N\right\}, \quad t \in T
$$

Using standard arguments, we show that $H(t)$ is closed in Σ for each $t \in T$. Further, H is \mathcal{J}-measurable. To see this, let $t \in T$ and $s \in S_{k}$. Then

$$
H(t) \cap \Sigma_{s} \neq \emptyset \Leftrightarrow G^{t} \cap F_{s}^{(t)} \neq \emptyset
$$

and if $k=0$, or $k \in N$ and $s_{k}=1$, then

$$
\begin{aligned}
F_{s}^{(t)} \cap G^{t} \neq \emptyset & \Leftrightarrow F(t) \cap V_{n_{s}^{t}} \neq \emptyset \\
& \Leftrightarrow(\exists l \in N)\left(n_{s}^{t}=l \text { and } F(t) \cap V_{l} \neq \emptyset\right)
\end{aligned}
$$

whereas if $k \in N$ and $s_{k}>1$, then

$$
\begin{aligned}
F_{s}^{(t)} \cap G^{t} \neq \emptyset & \Leftrightarrow F(t) \cap\left(V_{n_{s} t} \backslash \bigcup_{i<s_{k}} V_{n^{t} \mid k-1, i}\right) \neq \emptyset \\
& \Leftrightarrow\left(\exists\left(l_{1} \cdots l_{s_{k}}\right) \in N^{s_{k}}\right)\left(\left(\forall i \leq s_{k}\right)\left(n_{s \mid k-1, t}=l_{i}\right)\right.
\end{aligned}
$$

and

$$
\left.F(t) \cap\left(V_{l_{s_{k}}} \backslash \bigcup_{i<s_{k}} V_{l_{i}}\right) \neq \emptyset\right)
$$

By $\sqrt[J]{\text {-measurability of } F \text { and the condition (i) of Lemma 3.2, it follows that }}$ $\left\{t \in T: H(t) \cap \Sigma_{s} \neq \emptyset\right\} \in \mathcal{J}$. Thus, H is \mathfrak{J}-measurable. By Proposition 3.1, let $h: T \times \Sigma \rightarrow \Sigma$ be a map such that for each $t \in T, h(t,$.$) is a closed$ retraction of Σ onto $H(t)$ and for each $\sigma \in \Sigma, h(., \sigma)$ is \mathfrak{J}-measurable.

Now, define a map $g: G r(H) \rightarrow X$ by taking $g(t, \sigma)$ to be the unique point in $\bigcap_{k=1}^{\infty} F_{\sigma \mid k}^{(t)},(t, \sigma) \in G r(H)$. By standard arguments, we show that for each $t \in T, g(t,$.$) is a homeomorphism from H(t)$ onto $G^{t}=F(t)$. Let $U \subseteq X$ be open and $(t, \sigma) \in G r(H)$. Then

$$
\begin{aligned}
g(t, \sigma) \in U & \Leftrightarrow \bigcap_{k} F_{\sigma \mid k}^{(t)} \subseteq U \\
& \Leftrightarrow(\exists k)\left(F_{\left.\sigma \mid k^{(t)} \subseteq U\right)} \subseteq\right. \\
& \Leftrightarrow(\exists s \in S)\left(\sigma \in \Sigma_{s} \text { and } F_{s}^{(t)} \subseteq U\right)
\end{aligned}
$$

Thus,

$$
g^{-1}(U)=G r(H) \cap \bigcup_{s \in S}\left(\left\{t \in T: F_{s}^{(t)} \subset U\right\} \times \Sigma_{s}\right)
$$

We argue as before and show that for every $s \in S,\left\{t \in T: F_{s}{ }^{(t)} \subseteq U\right\} \in \mathcal{J}$. It follows that g is $J \otimes \bigotimes_{\Sigma} \mid G r(H)$-measurable.

Finally, define $f: T \times \Sigma \rightarrow X$ by

$$
f(t, \sigma)=g(t, h(t, \sigma)), t \in T, \sigma \in \Sigma
$$

It is easily checked that f has the desired properties.
4. The General Case. The main idea contained in this part of the proof is contained in Ponomarev [12].

Lemma 4.1. Let X be compact. Then for $t \in T$ and $i, j \in N$ there exist positive integers $n_{i j}{ }^{t}$ and $n_{i}{ }^{t}$ such that
(i) the maps $t \rightarrow n_{i}{ }^{t}$ and $t \rightarrow n_{i j}{ }^{t}$ are 5-measurable,
(ii) $\operatorname{diam}\left(V_{n_{i j} t}\right) \leq 2^{-i}$,
(iii) $\overline{F(t)} \subseteq \bigcup_{m=1}^{\infty} V_{n_{i m}{ }^{t}}$,
(iv) $m>n_{i}{ }^{t} \Rightarrow n_{i m}{ }^{t}=1$.

Proof. Let $\tilde{G}=\{(t, x) \in T \times X: x \in \overline{F(t)}\}$. For every open set U in $X,\left\{t \in T: \tilde{G}^{t} \cap U \neq \emptyset\right\}=\{t \in T: F(t) \cap U \neq \emptyset\} \in \mathcal{J}$. Fix $i \in N$. We shall define maps $t \rightarrow n_{i j}{ }^{t}, j \in N$, by induction on j. For $m \in N$, let

$$
\begin{aligned}
T_{m}{ }^{0}= & \emptyset \quad \text { if } \operatorname{diam}\left(V_{m}\right) \geq 2^{-i} \\
= & \left\{t \in T: \tilde{G}^{t} \cap V_{m} \neq \emptyset\right. \text { and } \\
& \left.\quad(\forall l<m)\left(\operatorname{diam}\left(V_{l}\right)<2^{-i} \Rightarrow \tilde{\boldsymbol{G}}^{t} \cap V_{l}=\emptyset\right)\right\}, \\
& \quad \text { if } \operatorname{diam}\left(V_{m}\right)<2^{-i} .
\end{aligned}
$$

By the above observation, the sets $T_{m}{ }^{0}, m \in N$, belong to \mathcal{I} and are pairwise disjoint. Also, $T=\bigcup_{m=1}^{\infty} T_{m}{ }^{0}$. We define

$$
n_{i 1}{ }^{t}=m \quad \text { if } t \in T_{m}{ }^{0}
$$

The map $t \rightarrow n_{i 1}{ }^{t}$ is clearly \mathfrak{J}-measurable. Now, suppose for some $p \in N$, $n_{i j}{ }^{t}$ is defined for all $j \leq p$ and $t \in T$ and the maps $t \rightarrow n_{l i}{ }^{t}, j \leq p$, are J-measurable. We observe that for every open set U in X,

$$
\left\{t \in T:\left(\tilde{G}^{t} \backslash \bigcup_{l \leq p} V_{n i^{\prime}}\right) \cap U \neq \emptyset\right\} \in \mathcal{J} .
$$

To see this, first observe that if $t \in T$ and $x \in X$, then

$$
\begin{aligned}
(t, x) \notin \tilde{G} & \Leftrightarrow x \notin \overline{F(t)} \\
& \Leftrightarrow(\exists n \in N)\left(x \in V_{n} \text { and } V_{n} \cap F(t)=\emptyset\right) .
\end{aligned}
$$

So that

$$
T \times X \backslash \tilde{G}=\bigcup_{n=1}^{\infty}\left(\left\{t \in T: F(t) \cap V_{n}=\emptyset\right\} \times V_{n}\right) \in \mathcal{J} \otimes ß_{X}
$$

The above assertion now follows from the induction hypothesis, Lemma 2.1 and the following equivalence for every $t \in T$:

$$
\left(\tilde{G}^{\prime} \backslash \bigcup_{l \leq p} V_{n_{i i^{t}}}\right) \cap U \neq \emptyset \Leftrightarrow\left(\exists\left(l_{1} \cdots l_{p}\right) \in N^{p}\right)\left(\left(\forall_{l} \leq p\right)\left(n_{l^{\prime}}=l_{l}\right)\right.
$$

and

$$
\left.\left(\tilde{G}^{t} \backslash \bigcup_{j \leq p} V_{l_{j}}\right) \cap U \neq \emptyset\right)
$$

For $m \in N$, define

$$
\begin{gathered}
T_{m}^{p}=\emptyset \quad \text { if } \operatorname{diam}\left(V_{m}\right) \geq 2^{-i} \\
\left\{t \in T: n_{i p^{t}}<m,\left(\tilde{G}^{t} \backslash \bigcup_{J \leq p} V_{n i_{j} t}\right) \cap V_{m} \neq \emptyset\right. \\
\text { and } \\
(\forall l<m)\left(\operatorname{diam}\left(V_{l}\right)<2^{-l} \Rightarrow\left(l \leq n_{i p}^{t}\right. \text { or }\right. \\
\left.\left.\left.\left(\tilde{G}^{t} \backslash \bigcup_{l \leq p} V_{n i_{j} t}\right) \cap V_{l}=\emptyset\right)\right)\right\}, \quad \text { if } \operatorname{diam}\left(V_{m}\right)<2^{-i} .
\end{gathered}
$$

By the observation made above, it follows that the sets $T_{m}{ }^{p}, m \in N$, belong to $\sqrt[J]{ }$ and are pairwise disjoint. We define

$$
\begin{aligned}
n_{i, p+1}^{t} & =m & & \text { if } t \in T_{m}^{p} \\
& =1 & & \text { if } t \in T \backslash \bigcup_{m=1}^{\infty} T_{m}{ }^{p} .
\end{aligned}
$$

As $p \in N$ was arbitrary, this completes the definition of the maps $t \rightarrow n_{i j}{ }^{t}$, $j \in N$. To define $n_{t}{ }^{t}, t \in T$, notice that \tilde{G}^{t} is compact and so, $(\exists m \in N)$ $(\forall l>m)\left(n_{i l}{ }^{t}=1\right)$. We define $n_{i}{ }^{t}$ to be the first such positive integer m, $t \in T$. It is an easy matter to verify that conditions (i)-(iv) are satisfied.

Lemma 4.2 Let X be compact. Then there is a set $B \subseteq T \times \Sigma$ and a map $g: B \rightarrow X$ such that for $t \in T$
(i) $B \in J \otimes \bigotimes_{\Sigma}$,
(ii) B^{t} is non-empty and compact.
(iii) $g\left(t\right.$, .) is a continuous map from B^{t} onto $\overline{F(t)}$,
(iv) D is a dense subset of $\overline{F(t)} \Rightarrow\{\sigma \in \Sigma: g(t, \sigma) \in D\}$ is dense in B^{t},
(v) g is $\left(\mathcal{J} \otimes \bigotimes_{\Sigma}\right) \mid B$-measurable.

Proof. For $t \in T$ and $i, j \in N$ we get positive integers $n_{t}{ }^{t}$ and $n_{i j}{ }^{t}$ satisfying condition (i)-(iv) of Lemma 4.1. Let $\tilde{G}=\{(t, x) \in T \times X: x \in \overline{F(t)}\}$ and let

$$
\begin{aligned}
U_{i j}^{(t)}= & V_{n_{i j} j^{t}} \cap \tilde{G}^{t} \quad \text { if } j=1 \\
& \left(V_{n_{y} t} \cap \tilde{G}^{t}\right) \backslash \bigcup_{l<J}\left(\overline{V_{n_{i j}} \cap \tilde{G}^{t}}\right) \quad \text { if } j>1 .
\end{aligned}
$$

We have

(1) $U_{i j}^{(t)}$ is relatively open in \tilde{G}^{t},
(2) $\operatorname{diam}\left(U_{i j}^{(t)}\right)<2^{-i}$,
(3) $m \neq n \Rightarrow U_{i m}{ }^{(t)} \cap U_{i n}{ }^{(t)}=\emptyset$,
(4) $m>n_{i}{ }^{t} \Rightarrow U_{i m}{ }^{(t)}=\emptyset$
(5) $\tilde{\boldsymbol{G}}^{t}=\bigcup_{k=1}^{\infty} \overline{U_{i k}(t)}$
(6) for every open set U in $X,\left\{t \in T: \tilde{G}^{t} \cap U \subseteq U_{i j}^{(t)}\right\} \in \mathcal{J}$,
(7) if P is a finite subset of $N \times N$ and if $U \subseteq X$ is open then

$$
\left\{t \in T: \bigcap_{(m, n) \in P} U_{m n}{ }^{(t)} \cap U \neq \emptyset\right\} \in \mathcal{J}
$$

Properties (1)-(5) are clear. To see (6), notice that if $j=1$

$$
\tilde{G}^{t} \cap U \subseteq U_{i j}^{(t)} \Leftrightarrow(\exists l \in N)\left(n_{i j}^{t}=l \text { and } \tilde{G}^{t} \cap U \subseteq V_{l}\right)
$$

while if $j>1$

$$
\begin{gathered}
\tilde{\boldsymbol{G}}^{t} \cap U \subset U_{i j}^{(t)} \Leftrightarrow \tilde{\boldsymbol{G}}^{t} \cap U \subset V_{n_{i j} t} \backslash \bigcup_{k<j}\left(\overline{\left.V_{n_{i k^{t}} \cap \tilde{\boldsymbol{G}}^{t}}\right)}\right. \\
\Leftrightarrow \tilde{\boldsymbol{G}}^{t} \cap U \subseteq V_{n_{i j}^{t}} \text { and }(\forall k<j)\left(\tilde{\boldsymbol{G}}^{t} \cap U \cap V_{n_{i k^{t}}}=\emptyset\right) \\
\Leftrightarrow\left(\exists\left(l_{1} \cdots l_{j}\right) \in N^{j}\right)\left((\forall k \leq j)\left(n_{i k^{t}}=l_{k}\right),\right. \\
\tilde{G}^{t} \cap U \subseteq V_{l j} \text { and } \\
\left.\quad(\forall k<j)\left(\tilde{G}^{t} \cap U \cap V_{l k}=\emptyset\right)\right)
\end{gathered}
$$

Now, (6) follows from (i) of Lemma 4.1 and Lemma 2.1. (Note that $\tilde{G} \epsilon$ $\left.\mathcal{J} \otimes \bigotimes_{X}\right)$. To prove (7), first notice that

$$
\begin{gathered}
\bigcap_{(m, n) \in P} U_{m n}^{(t)} \cap U \neq \emptyset \Leftrightarrow(\exists k \in N)\left(V_{k} \subseteq U\right. \text { and } \\
\left.(\forall(m, n) \in P)\left(\tilde{G}^{t} \cap V_{k} \subseteq U_{m n}^{(t)}\right)\right) .
\end{gathered}
$$

Now, (7) follows from (6).
For $t \in T$ and $i, j, \in N$, we define the following by induction on i :

$$
\begin{array}{rlrl}
m_{i}^{t} & =n_{i}^{t} & & \text { if } i=1 \\
& =m_{i-1} \cdot n_{i}^{t} & & \text { if } i>1, \\
\text { and } & & \text { if } i=1 \\
W_{i j}^{(t)} & =U_{i j}^{(t)} & & =W^{(t)}{ }_{i-1, k} \cap U_{i l}^{(t)} \\
& & & \text { if } i>1,1 \leq k \leq m_{i-1}^{t}, \\
& =\emptyset & & 1 \leq l \leq n_{i}^{t} \text { and } j=(k-1) n_{i}^{t}+l \\
& & \text { if } j>m_{i}^{t} .
\end{array}
$$

We have

(a) the $\operatorname{map} t \rightarrow m_{i}{ }^{t}$ is J-measurable,
(b) $W_{i j}{ }^{(t)}$ is relatively open in $\tilde{\boldsymbol{G}}^{t}$,
(c) $\operatorname{diam}\left(W_{i j}{ }^{(t)}\right)<2^{-i}$,
(d) $m \neq n \Rightarrow W_{i m}{ }^{(t)} \cap W_{i n}{ }^{(t)}=\emptyset$,
(e) $k>m_{i}^{t} \Rightarrow W_{i k}{ }^{(t)}=\emptyset$,
(f) $\tilde{G}^{t}=\bigcup_{i=1}^{\infty} \overline{W_{i l}^{(t)}}$,
(g) $(\forall(i, j) \in N \times N)(\exists k \in N)\left(W^{(t)}{ }_{i+1, j} \subseteq W_{i k}{ }^{(t)}\right)$,
(h) $\overline{W^{(t)}{ }_{i+1, j}} \subseteq \overline{W_{i k^{(t)}}} \Rightarrow W^{(t)}{ }_{i+1, j} \subseteq W_{i k}{ }^{(t)}, k \in N$,
(i) $\left\{t \in T: W_{i j}^{(t)} \neq \emptyset\right\} \in \mathcal{J}$,

(k) $\left\{t \in T: W^{(t)}{ }_{k+1, m} \subseteq W_{k n}{ }^{(t)}\right\} \in \mathfrak{J}$.
(a)-(h) are easily verified. (i) follows from (7). Also, from (7), we get that the closed set-valued function $t \rightarrow \overline{W_{i j}(t)}$ is J-measurable. Hence, by [15, Theorem 4.2], its graph is in $\mathfrak{J} \otimes \mathscr{\Re}_{X}$. Now, (\mathfrak{j}) follows from Lemma 2.1. To verify (k), notice

$$
\begin{aligned}
\left\{t \in T: W^{(t)}{ }_{k+1, m} \subseteq W^{(t)}{ }_{k n}\right\}= & \left\{t \in T: W^{(t)}{ }_{k+1, m}=\emptyset\right\} \quad U\{t \in T: \emptyset \\
& \left.\left.\neq W^{(t)}\right)_{k+1, m} \subseteq W_{k n}{ }^{(t)}\right\} \\
= & \left\{t \in T: W^{(t)}{ }_{k+1, m}=\emptyset\right\} U \cup\left\{t \in T: j_{n}\right. \\
& \left.\leq m_{k^{\prime}}, p={n^{\prime}}_{k+1}\right\},
\end{aligned}
$$

where the last union is taken over all $(p, q) \in N \times N$ such that $q \leq p$ and $j_{m}=\left(j_{n}-1\right) . p+q$. Now, (k) follows from (i), (a) and (i) of Lemma 4.1. We define

$$
\begin{aligned}
B & =\left\{(t, \sigma) \in T \times \Sigma:(\forall k)\left(W_{k \sigma_{k}}{ }^{(t)} \neq \emptyset \text { and } \overline{W^{(t)}{ }_{k+1, \sigma_{k+1}}} \subseteq \overline{W_{k \sigma_{k}}{ }^{(t)}}\right\}\right. \\
& =\left\{(t, \sigma) \in T \times \Sigma:(\forall k)\left(W_{k \sigma_{k}}{ }^{(t)} \neq \emptyset \text { and } W^{(t)}{ }_{k+1, \sigma_{k+1}} \subseteq W_{k \sigma_{k}}{ }^{(t)}\right)\right\} \\
& =\left\{(t, \sigma) \in T \times \Sigma:(\forall k)\left(W_{1 \sigma_{1}}{ }^{(t)} \supseteq \cdots \supseteq W_{k \sigma_{k}}{ }^{(t)} \neq \emptyset\right)\right\} \\
& =\bigcap_{k=1}^{\infty} \bigcup_{s \in S_{k}}\left(\left\{t \in T: W_{1 s_{1}}{ }^{(t)} \supseteq \cdots \supseteq W_{k s_{k}}{ }^{(t)} \neq \emptyset\right\} \times \Sigma_{s}\right)
\end{aligned}
$$

From (i) and (k), it follows that $B \in \mathcal{J} \otimes ®_{\Sigma}$. By König's infinity lemma [7, pp. 326] we get that $B^{t} \neq \emptyset$, for each $t \in T$. It is easy to check that for $t \in T, B^{t}$ is closed in Σ and $B^{t} \subseteq \times_{i=1}^{\infty}\left(\left\{1, \ldots, m_{i}^{t}\right\}\right)$. Thus, B^{t} is a nonempty, compact subset of $\Sigma, t \in T$. We define $g: B \rightarrow X$ by taking $g(t, \sigma)$ to be the unique point in $\bigcap_{k=1}^{\infty}{\bar{W}{ }_{k \sigma_{k}}{ }^{(t)}}^{\prime}(t, \sigma) \in B$. Using König's infinity lemma, we check that $g(t,$.$) is a continuous map from B^{t}$ onto $\tilde{G}^{t}, t \in T$.

For a proof of (iv) the reader is referred to Ponomarev [12]. Finally, if $(t, \sigma) \in B$ and U is open in X, then

$$
g(t, \sigma) \in U \Leftrightarrow(\exists k \in N)(\exists m \in N)\left(\overline{W_{k m}{ }^{(t)}} \subseteq U \text { and } \sigma_{k}=m\right)
$$

From (j), it follows that g is $J \otimes \Theta_{\Sigma} \mid B$-measurable.
Proof of $(A) \Rightarrow(B)$. Since each Polish space can be embedded in a compact metric space in which it will automatically be a G_{σ}, it is sufficient to prove the result for a compact metric X. So we assume that X is a compact metric space. We get a set $B \subseteq T \times \Sigma$ and a map $g: B \rightarrow X$ satisfying conditions (i)-(v) of Lemma 4.2. We define a multifunction $H: T \rightarrow \Sigma$ by

$$
H(t)=\{\sigma \in \Sigma: g(t, \sigma) \in F(t)\}, \quad t \in T
$$

$H(t)$ is a non-empty, G_{δ} set in Σ and by (iv) of Lemma 4.2, $H(t)$ is dense in $B^{t}, t \in T$. Thus by (i) and (ii) of Lemma 4.2 and Lemma 2.1, it follows that H is \mathcal{J}-measurable. By (i) and (v) of Lemma 4.2 and the fact that $\operatorname{Gr}(F) \in$ $\mathfrak{J} \otimes \Re_{X}$, we get that $G r(H) \in T \otimes B_{\Sigma}$. By $(A) \Rightarrow(B)$ for zero-dimen-
sional Polish spaces proved in section 3, we get a map $h: T \times \Sigma \rightarrow \Sigma$ such that for each $t \in T, h(t,$.$) is continuous, closed and onto H(t)$ and for each $\sigma \in \Sigma, h(., \sigma)$ is J-measurable. Define $f: T \times \Sigma \rightarrow X$ by

$$
f(t, \sigma)=g(t, h(t, \sigma)), t \in T, \sigma \in \Sigma
$$

It is easily checked that f satisfies (B).
5. Proof of $(B) \Rightarrow(A)$. We first check that F is \mathfrak{J}-measurable. Let $\left\{\sigma^{n}: n \in N\right\}$ be a dense sequence in Σ. Then $\left\{f\left(t, \sigma^{n}\right): n \in N\right\}$ is dense in $F(t), t \in T$. Therefore, for $U \subseteq X$ open,

$$
\{t \in T: F(t) \cap U \neq \emptyset\}=\bigcup_{n=1}^{\infty}\left(f\left(., \sigma^{n}\right)^{-1}(U)\right) \in \mathcal{J} .
$$

Now, let $\left\{U_{n}: n \in N\right\}$ and $\left\{V_{n}: n \in N\right\}$ be bases for Σ and X respectively. We define a set $B \subseteq T \times \Sigma$ as follows:
$(t, \sigma) \in B \Leftrightarrow(\exists x \in X)$ (either $f(t, .,)^{-1}(x)$ is not open and σ is a boundary point of it, or $f(t, .)^{-1}(x)$ is open and $\sigma=\sigma^{n}$, where n is the first positive integer m such that $\left.f\left(t, \sigma^{m}\right)=x\right)$.

It is easily checked that for $t \in T, B^{t}$ is closed in Σ and $f\left(t, B^{t}\right)=f(t$, $\Sigma)=F(t)$. It follows from a result of Vaĭnšteĭn [14] (see also [3, p. 204]) that the restriction of $f(t,$.$) on B^{t}$ is perfect. Vainstein [14] proved that if a separable metric space Z is the image of a Polish space under a perfect map, Z is Polish. From this it follows that $F(t)$ is a G_{δ} in X for each $t \in T$. Finally, observe that

$$
\begin{gathered}
(t, \sigma) \in B \Leftrightarrow \text { Either }\left[(\forall m)\left\{\sigma \in U_{m} \Rightarrow(\exists k)\left(\sigma^{k} \in U_{m} \text { and } f\left(t, \sigma^{k}\right) \neq f(t, \sigma)\right)\right\}\right] \\
\text { or }\left[(\exists n) \left\{\sigma=\sigma^{n},(\forall l<n)\left(f\left(t, \sigma^{l}\right) \neq f\left(t, \sigma^{n}\right)\right)\right.\right. \\
\text { and }(\exists p)\left(f\left(t, \sigma^{n}\right) \in V_{p}\right. \text { and } \\
\left.\left.\left.(\forall l)\left(f\left(t, \sigma^{l}\right) \in V_{p} \Rightarrow f\left(t, \sigma^{l}\right)=f\left(t, \sigma^{n}\right)\right)\right)\right\}\right]
\end{gathered}
$$

Thus, $B \in \mathfrak{J} \otimes \bigotimes_{\Sigma}$. Now,

$$
(t, x) \in G r(F) \Leftrightarrow(\exists \sigma \in \Sigma)((t, \sigma) \in B \text { and } f(t, \sigma)=x)
$$

Therefore

$$
G r(F)=\Pi_{T \times X}(\{(t, \sigma, x) \in T \times \Sigma \times X:(t, \sigma) \in B \text { and } f(t, \sigma)=x\})
$$

By Lemma 2.1, $\operatorname{Gr}(F) \in \mathcal{J} \otimes \mathcal{S}_{X}$.

INDIAN STATISTICAL INSTITUTE, CALCUTTA.

REFERENCES

[1] W. Arsenin and A. Ljapunov, "Theory of A sets," (Russian). Uspekhi 5 (1950), pp. 45-108.
[2] D. Blackwell, "On a class of probability spaces," Proc. 3rd. Berkeley Sympos. Math. Statist. and Prob. 2 (1956), pp. 1-6.
[3] R. Engelking, Outline of general topology, North-Holland, Amsterdam, 1968.
[4] __, "On closed images of the space of irrationals," Proc. Amer. Math. Soc. 21 (1969), pp. 583-586.
[5] A. D. Ioffe, "Representation theorems for multifunctions and analytic sets," Bull. Amer. Math. Soc. 84 (1978), pp. 142-144.
[6] K. Kuratowski, Topology, Vol. 1, Academic Press, New York and London, PWN, Warsaw, 1966.
[7] ___ and A. Mostowski, Set Theory, North-Holland Publishing Company, Amsterdam, New York, Oxford, PWN, 1976.
[8] ___, and C. Ryll-Nardzewski, "A general theorem on selectors," Bull. Acad. Polon. Sci., Ser. Sci. Math. Astron. Phys. 13 (1965), pp. 397-403.
[9] H. Sarbadhikari and S. M. Srivastava, "Parametrizations of G_{δ}-valued multifunctions," Trans. Amer. Math. Soc., to appear.
[10] S. M. Srivastava, "Selection Theorems for G_{δ}-valued multifunctions," Trans. Amer. Math. Soc., 254(1979), pp. 283-294.
[11] \qquad "A representation theorem for closed valued multifunctions," Bull. Acad. Polon. Sci., to appear.
[12] V. Ponomarev, "Normal spaces as images of zero-dimensional ones," Soviet Math. Doklady 1 (1960), pp. 774-777.
[13] J. Saint-Raymond, "Boreliens A Coupes $k_{\sigma}, "$ Bull. Soc. Math. France. 104 (1976), pp. 389-400.
[14] I. A. Vaĩnšteĭn, "On closed mappings of metric spaces," Doklady Akad. Nauk SSSR (NS) 57 (1947), pp. 319-321.
[15] D. H. Wagner, "Survey of Measurable Selection Theorems," Siam J. Control and Optimization, 15 (1977), pp. 859-903.

