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 A generalization of a locally most powerful unbiased
 (LMPU) test, for the single parameter case, to the k-pa-
 rameter case is proposed. In particular, we define a locally
 most mean power unbiased (LMMPU) test based on the

 mean curvature of the power hypersurface. Compared with

 the type C tests (Neyman and Pearson 1938) and the type

 D tests, LMMPU tests possess better theoretical properties

 and enjoy ease of construction of critical regions in prac-
 tical situations. LMMPU tests are obtained for the impor-

 tant practical case (Perng and Littel 1976) of a two-param-
 eter univariate normal population, for which Isaacson (1951,
 p. 233) was unable to find a type D test, and for the case
 of means of a multivariate normal population with inde-
 pendent coordinates.

 KEY WORDS: Locally most mean power unbiased tests;
 Mean curvature; Multiparameter simple hypotheses.

 1. INTRODUCTION

 For testing multiparameter hypotheses, the likelihood
 ratio test statistic or the statistic defined by the positive
 definite quadratic form in the efficient score vector and
 the inverse of the information matrix may be conveniently
 used. Their small sample performances relative to reason-
 able competitors, however, are nearly always unknown.

 Alternative procedures construct tests having certain op-
 timal properties, at least locally, by an appeal to the Ney-
 man-Pearson theory of testing and differential geometry

 (Do Carmo 1976). The type C test (Neyman and Pearson
 1938) requires prior preference of parameter directions.
 The type D and the type E tests (Isaacson 1951; Lehmann
 1959) maximize the total curvature of the power hyper-
 surface at the null hypothesis among all regular locally
 unbiased level a tests.

 In this article we propose a locally most mean power

 unbiased (LMMPU) level a test. It maximizes the mean
 curvature of the power hypersurface at the null hypothesis
 among all locally unbiased (LU) level a tests (Sec. 2).
 Compared with type D, an LMMPU test parallels the for-
 mer in all of its nice geometrical properties and additionally
 is leading in the following statistical and practical aspects.
 (a) An LMMPU test maximizes the average power on a
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 k-dimensional spherical neighborhood of the null hypoth-
 esis among the LU tests (Theorem 1). (b) Type D regions
 have to be guessed, whereas LMMPU critical regions are
 usually more easily constructed-the Neyman-Pearson
 lemma yields LMMPU directly (without any appeal to
 asymptotics) (Theorem 2). (c) The theory for LU optimal
 tests in practice has been developed almost uniquely for
 LU tests with regular Hessian matrix for their power. There
 exist cases, however, in which all LU tests are nonregular.
 The LMMP criterion is mostly able to discriminate among

 them, whereas the type D criterion cannot (Result 2). (d)
 LMMPU tests are not, in general, invariant under param-
 eter transformations. This may be considered a weakness.
 It is also a strength, since in practice it may be of interest

 (e.g., see Neyman and Pearson 1938) to emphasize power
 in certain desired directions away from the null hypothesis,
 which the standard invariant tests like the type D and E
 tests do not do. (e) Finally, we note that average power
 plays a role in one traditional approach to linear model
 testing (e.g., see Scheffe 1959, p. 48), corresponding to
 our Result 5.

 2. DEFINITIONS AND GEOMETRIC
 INTERPRETATIONS

 Consider a k-parameter family of densities f(X, 0),

 where X = (XI, . . . , X,)' E 'X, 0 = (01, , 0k) E 0,
 AX E B(Rn) is the sample space, 0 E Rk is the parameter

 space, and B(R ) denotes the usual Borel algebra of R .
 f may be the sample density for a sample of size N from

 a p-variate population; then n = Np. Consider a test 0 =
 I, with critical region w E B(6X) for a simple null hypothesis
 Ho: 0 = 00, 00 in the interior of 0, against the alternative
 H1: 0 $7 0S. We assume its power function /?(0) is of class
 C2 or higher if needed.

 Consider in the one-parameter case a locally most pow-
 erful unbiased level a test (LMPU). Geometrically, one
 picks out a test whose power curve z = /?(0) in the (0, z)
 plane R2 takes at the point 00 the value a, has horizontal
 tangent line, and has maximum curvature ,8(00) among the
 power curves of all LU tests.

 In the k-parameter case, we obtain a power hypersurface
 z = /?(0) in the (0, z) space Rk+l and denote it by the

 same symbol fl. The local behavior of fl at 00 is, as usual,
 studied by its Taylor expansion at 00 and by its behavior
 in any particular direction in the parameter space at 0o.
 Maximizing the power in some direction, however, often
 pulls down the power in other directions. One needs to
 consider then some measure of "overall" power.

 Definition 1. The level a test / is (strictly) LU if/B?o(0o)
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 (>) ?o a for all 0 in some neighborhood of 00. Note that

 a test k with /3(0) in C2 is strictly LU of level a iff (1)

 I3(0o) = a, (2) /3(0o) = 0, and (3) 1(0o) is positive definite.
 A necessary condition for 0 to be LU is (1), (2) and
 (3 ')fl(0) is nonnegative definite.

 Definition 2. The level a test 0 is LMMPU of level a
 if it is LU of level a and for any other LU level a test P,

 there exists an ro > 0 (depending on T) such that

 fs r () dO> / (0) dO, r <Jsr

 where Sr = {0: 10 - 0ol < r}. Note that a test 0 is regular
 LMMPU with level a iff /3(0) satisfies (1)-(3) and (4)

 tr /?o(O0) ? tr /?p(OO) for any other LU level a test T. Re-
 placing (3) by the weaker requirement (3'), /3(Oo) is positive
 semidefinite gives a second-order LMMPU test.

 Some geometric consequences of these definitions are
 of interest and are presented subsequently, since they make

 these notions easier to work with. The power of test 0 in
 a direction 3 E Rk/{0} is

 fl3(t) = /3(00 + t3), t E R,

 and its second-order Taylor polynomial is the second-order

 power in the 3 direction,

 = fl(0O) + /t?(00)6t + P3'fl(00)&t2,

 where /3'(00) and /1(00) are the gradient vector and the
 Hessian matrix of ,B at 00, respectively. The power curva-

 ture y(00) in the direction 3 at the null hypothesis is the
 normal curvature of the power hypersurface ,B at 00, that
 is, the curvature of the curve ,B(t) at t = 0.

 Assume a level a test 0, that is, (1) /3(OO) = a. Then 0
 is (strictly) LU in a direction 3 E Rk/{0} if/,5(t) has a (strict)
 local minimum at t = 0. The test / is (strictly) LU if it is
 (strictly) LU for all directions 3 E Rk/{0}. In particular, a
 regular LU test, defined as an LU test with regular Hes-

 sian, or defined by (2) and (3) is strictly LU. A regular
 LU test is most powerful in a direction 3 if it has maximum

 power curvature y6(Oo) among all regular LU tests.
 The critical values of the normal curvature y6(00) with

 respect to 3, which in case k = 2 reduce to the extreme

 value of y6(00), and the vectors 3 for which they are at-
 tained, are known as the principal (power) curvatures and
 corresponding principal (power) directions of the (test 0)

 power hypersurface ,B at 00. They are the eigenvalues X
 (1 - i - k) and corresponding eigenvectors of /(00). The
 total curvature or Gaussian curvature (power) and the mean

 curvature (power) of ,B (test 0) at 00 are, respectively,

 k k

 K = detfl(00) = Jj Xi, H = tr/3(0O) = 1.
 i=l i=l

 The Xj, H, K are measures of the way /3 bends away from
 its tangent space To: z = a at 00. A good geometrical
 interpretation follows from 32: z -- 42(0), where now

 /32(0) = a + A3'/3(0)3, 3 = 0 - 0o.

 /3 and /32 have at the point 00 the same z value, the same

 tangent space, and the same normal curvature yb for any

 direction s E R/{O}. Hence as to tangent space and normal

 curvatures at 00, /52 is a copy of /5. Restrict now to second-
 order LU tests, that is, besides (1) and (2), all eigenvalues

 Xj are nonnegative. The local behavior of ,B and /52 at 00 is
 clarified by the intersection E' of /52 and a hyperplane Te:
 z = a ? 8 for small E > 0; EE is congruent with its pro-
 jection

 EE: 2I'fl (00)8 8
 in the parameter space; EE is the set of constant second-

 order power a + 8. It is the (a + 8) power section, E >

 0, or the parameter set of equidetectability a + 8 of the
 test 4. EE gives the set of deviations, defined by the standard
 Euclidean norm, of 0 that will be equally frequently de-
 tected by the test. In case k = 2 the principal power di-
 rections are the directions of the smallest and the largest
 deviations of 0 with a given detectability a + e; in addition,

 they are the directions in which equal size deviations of
 the parameter 0 are the most and the least likely to be
 detected. As an example, requiring equidetectability of

 equal size positive or negative deviations of the means in
 both two-parameter normal examples N(,, a2) and N(,u,
 ,j; I) of Section 4 translates the parameter directions into
 the principal power directions.

 Neyman and Pearson (1938) defined a type C test, case
 k = 2, as a test corresponding to the smallest ellipse in a
 set of regular LU tests having coaxial similar ellipses of
 equidetectability. Hence a type C test, if it exists, is ob-
 tained by maximizing the power in one direction in a set
 of regular LU tests with fixed principal power directions
 and fixed ratio of the principal power curvatures.

 A type D test (Isaacson 1951) is obtained by maximizing
 the total power among all regular LU tests.

 Remark 1. Under (3') no type D test exists. There are,
 however, interesting situations (e.g., Result 2), where
 LMMPU tests exist in such cases and where they may even

 be strictly LU.

 If 0 is a regular LU test, that is, all Xj > 0, or equiva-
 lently, EE is a hyperellipsoid in Rk (an ellipse if k = 2),

 then Xj, K, and H can be expressed in the axes a, (1 ? i ?
 k) of E,, as follows:

 2 2- a, = 2841, K = 2E II a'2 = 2ec(vol Ej)2,

 H =2E a2 2

 where c is a constant and vol is the volume.

 Property. Let 0 be a regular LU level a test with sec-
 ond-order (a + 8) power section E, for any given 8 > 0.
 Then (a) + is type D if it minimizes the volume (the area

 in case k = 2) of the inside of E, among all regular LU
 level a tests and (b) 0 is LMMPU if it maximizes the sum
 of the squares of the inverse axes of E. among all regular
 LU level at tests.

 In the next theorem, parts (a) and (b) provide the mo-

 tivations and statistical relevance of the mean power H in

 the following sense. Given an LU test and any small r >



 Sen Gupta and Vermeire: Multiparameter Locally Optimal Tests 821

 0, the average frequency of detecting any deviation of size -

 r from a null hypothesis 00 is measured by the mean power
 H = tr /3(00), which depends on 0 only. An LMMPU test
 is obtained by maximizing this average detectability among
 all LU tests of a chosen level a.

 Theorem 1. (a) Suppose that /(0) is in C2 for all LU

 tests T. A necessary condition for the level a test 0 to be
 LMMPU is that it be LU and maximize tr /(00) among
 all LU level a tests T. If 0 is essentially the only test with
 this property, then it is LMMPU. (b) A level a test 0 is
 LMMPU iff it is LU and for any LU level a test /0 either
 (i) Dro > 0 3 B(r) > BO(r) for all r with 0 < r < rO or (ii)
 B(r)2BO(r). The symbol p stands for the following: have
 equal Taylor polynomials of order p.

 Proof. (a) To prove this part of the theorem, we need
 the following result to connect average local power with

 A(00)

 Lemma 1. Suppose that a test 0 has /?? E C2, which
 satisfies (1) and (2). Then,

 lim f [/lI(0O) - a] d0/r2vol(S,) = tr /I0(00)/2(k + 2).

 Proof of Lemma 1. By (1) and (2) and since /lB, E C2,

 the Taylor series expansion for /ho gives

 /4(0) = a + 2(0 - 00)'/4(0O)(0 - 00) + 10 - 0012h(0),

 where limo,ofh(0) = 0.
 Consider a C2 function f: Rk -* R; x -- f(x) such that

 f(0) = 0, f(0) = 0. It suffices to show that then the av-

 erage of f(x) on a k-spherical neighborhood Sr: lxl I r,
 r > 0, is

 F(r) vJ Sri f = 2 [H + A(r)], (2.1)
 Vol Sr 2(k + 2)

 where H = tr f(0) is the mean curvature of the hypersur-
 face graph f = {(x, f(x))|x E Rk} at the point x = 0 and

 the function A: R -* R satisfies limr-OA(r) = 0.
 Now the function f as given previously can be written

 as f(x) = Ax'f(O)x + |X12R(x) for some function R: Rk
 R satisfying limx,OR(x) = 0. Let

 Q(r) = 2 l S , x'f(O)x dxl dxk.

 Consider an orthogonal change of coordinates in Rk, x

 y, x = Py, such that P'f(O)P = diag(Q,, , .. ,
 Note that Sr is symmetric about the origin. Let

 Sr= Y {(Yl, Yk) E Sr I Yi 0 O for all i}.
 Then

 Q(r) 2 - olSH 2k I> yi dy1 dyk. (2.2)
 2k vol Sr is \j

 Now transform to spherical coordinates in k space, as
 follows:

 ... * Yk) -~(p, 09), 09 = (0kl, *. *O k-i)'

 subject to

 O p < oo, - 7 /2 Oj 7E/2, 1 j k - 1.

 Then,

 k-1

 dy1 dyk = pk-lg(0) dp dO, dO = fI dOj,
 j=1

 where g(O) is positive almost everywhere and a function
 of 0 only. One obtains

 r ~~~~~~rk+2r

 Yiy) dYl dyk = k J22 g(O) dO

 and

 vol Sr = 2k f g(O) dO.

 Integration over Sr |xl ? r (r > 0) and substitution of
 these two results in (2.2) gives F(r) as in (2.1), where

 A(r) = 2(k+ ) J IXI2R(x)
 r2Vol Sri

 Then limr-OA (r) = 0 will follow from lim,,OR(x) = 0.
 Indeed for any E > 0 there exists an r, > 0 such that JR(x)l <
 E for all x satisfying 0 < x| < r,. Hence for any E > 0 there
 exists an r, > 0 such that

 I X12R(x) | f JxI2IR(x)l ? r2E f1 = Er2VOl Sr

 for all r satisfying 0 < r < r,.

 (b) One has to prove H ? HO *-* (i) or (ii). Part (a) gives

 r 2

 B(r) - BO(r) = 2(k + 2) [(H - HO) + A(r) - Ao(r)],

 where limr,0A(r) = 0 = limr,OAo(r); so if H # HO, there
 exists an r, > 0 such that [A(r) - A0(r)J < IH - Hol for
 all r with 0 < r < rl. This enhances the theorem in terms
 of the following properties: (1) H = HO <-4 (ii), (2) H >
 HO -* (i), (3) (i) - H - HO. Indeed, (1) is obvious, (2)
 also by choosing ro = ri, (3) follows from the fact that (i)
 cannot induce H < H0-given (i) and H < HO and taking
 O < r < min(ro, ri) would result in B(r) < Bo(r), which
 contradicts (i).

 3. CONSTRUCTION OF LMMPU CRITICAL REGION

 Theorem 2. Let f(x, 0), 0 E 0 C Rk, be a k-parameter
 family of densities, E Rn. Let HO: 0 = Oo be a null hy-
 pothesis. Assume that the integral and derivative can be

 interchanged in fl. Consider any Borel set w of the form

 k k

 w: E fii(X, So) - cf(x, 00) + E cif (x, Os), (3.1)
 1=1 i=l1

 where the constants c, cl, . . ., Ck satisfy the conditions
 (1) f\ f(x, o) = a and (2) fw fi(x, O) = 0 (1 ? i ? k).
 Moreover, if w is essentially the only set with the property
 (3) fl(00) = (fW Li1(x, On)) E Rk~xk is positive definite, then
 w is a regular LMMPU level ax critical region. If fl(O0) is
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 only positive semidefinite, one has obtained a second-order

 LMMPU level a critical region.

 Proof. An application of theorem 5 of Lehmann (1959,

 p. 83), one general nonrandomized form of the Neyman-
 Pearson fundamental lemma, gives that a region w that
 maximizes

 tr ?(0o) = f f11(X, So) = f E ft(X, So),

 subject to the conditions (1) and (2) of the theorem, is of

 the form (3.1), provided that such constants c, cl, . . .,k
 exist. Definition 2 completes the proof.

 Similar results can be obtained with randomized tests if
 no nonrandomized test satisfies the requirements of Theo-
 rem 2.

 Remark 2. (a) Theorem 2 gives a definite method of
 construction of LMMPU critical region. In addition to Re-
 mark 1, this is yet another advantage of the LMMPU test

 over the type D test, where the critical region has to be
 guessed.

 (b) Clearly, any unique LMMPU or unique type D test
 is admissible.

 (c) Consider a pre-LMMPU test, that is, a test having
 maximum mean power in the class of all level-a tests sat-

 isfying (1) and (2). It needs to be emphasized that a pre-
 LMMPU critical region w of the aforementioned form be-

 comes useful only when the minimum requirement of local

 unbiasedness is satisfied. If it turns out that w makes M(O)
 positive semidefinite and nondefinite, one has to verify the

 local unbiasedness in all singular directions of /(&O).
 (d) Since the proof of Theorem 2 is essentially the Ney-

 man-Pearson fundamental lemma, LMMPU and second-

 order LMMPU regions of the form (3.1) will be called
 Neyman-Pearson type regions. Conditions under which re-
 gions maximizing an integral under certain side constraints

 are necessarily of Neyman-Pearson type have been de-
 veloped (Chernoff and Scheffe 1952; Dantzig and Wald
 1951).

 (e) Expressed in the log-likelihood l(x, 0) = log f(x,
 0), a Neyman-Pearson type LMMPU critical region can
 be written as

 w , [lii(x, 00) + l?(x, 0w)] ' c + E clii(x, 0w), (3.2)

 where c, cl, . . ., Ck E R. This follows easily from (3.1)
 and the relations

 f .f

 (f) Note that the LMMPU property is not, in general,
 parameter invariant (whereas the type D property is). This
 follows easily. A parameter transform g: 0 --*0 = g(0)
 transforms the power function of a test Ow, fl - : fl =
 C g. If this transformation has an invertible jacobian J,
 then tr /?(00) = tr J C(OO)J'; so unless JJI' = a2I, maximiz-
 ing tr 4 need not be equivalent to maximizing tr ,. In ad-
 dition,

 2( )tr S(O0) limO -2 /3 (0) d0/vol(Er) - ]

 where Er = {0 1 0Q(JJ)-10 c r2}. Thus changing parame-
 ters and finding the local average power over a sphere is
 equivalent to finding the local average power in the original
 parameter over an ellipse.

 Generalization of the LMMPU test to the case with nui-
 sance parameters follows easily.

 Definition 3. Let {f(x, 0) I 0 E 0} be a k-parameter
 family of densities, with parameter space 0) C Rk. Denote

 0 = (Y ,I u)T, i = (01, , . , OsY, P = (Os+1, Sk)I
 O < s < k. For ,0 E Rs, let 00 = {(X, ,u) E 0 = 201.
 Consider the null hypothesis Ho : 0 E (0. Hence ,u = + 1,
 * *, k)' is a (k - s)-dimensional nuisance parameter. A
 test 0 with critical region w is a regular LMMPU similar
 level a test for Ho if its power fl satisfies the following
 conditions for all ('{, u) E 00:

 1. ?(4o, u) = a.
 2. /,('O,) = 0, 1 ? i ? s.
 3. B(io,1A) (/ (4o, )), 1 ? i, j < s is positive definite.
 4. tr B(iO), ,)-tr Bwo(io, u) for any test kw, satisfying

 conditions 1-3.

 In case condition 3 is weakened to positive semidefiniteness
 one obtains a second-order LMMPU level a test.

 Theorem 3 can be proven through slight modifications
 of the proof of Theorem 2.

 Theorem 3. Consider the null hypothesis Ho in Defi-
 nition 3. A Borel set w E Rn of the form

 s

 w: Efa(x; iO , )
 i=l

 ? c(U)f(x; 'o , U) + E cUC))fi(x; 'o , U),

 where c, ci: Rk-s -R are functions of the nuisance pa-
 rameter ,u and w does not depend on ,u, will be a regular

 LMMPU similar level a critical region for Ho, provided
 the functions c, cl, . . ., cs satisfy conditions 1-3 in Def-
 inition 3.

 For further details, the reader is referred to SenGupta
 and Vermeire (1982).

 4. EXAMPLES

 Result 1 (Exponential Family). For a regular exponen-
 tial family with log-likelihood l(x, 0) = log g(x) + O'x -

 V(O), where x = (xl, . . . , Xk)', 0 = (01, . . ., Ok)' is the
 parameter, a Neyman-Pearson-type LMMPU critical re-

 gion for Ho: 0 = 00 will be of the form w: Ei(xi - ai)2 _
 a, where the constants a, a,,. . . , ak should be determined
 from the LMMPU level a conditions.

 Proof. From 1, = xi - vi, lYj = (0ij, and (3.2) the crit-
 ical region w is of the form

 W E [(Xi - in,0)2 - 'ii,O] , C + C c,(X,- - ),

 where c, cl, . . . , Ck are constants. Observing that vi,0 and
 vIii,0 are constants, one obtains the claimed result.

 Example 1. Application to Univariate Normal Population
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 With Unknown Mean and Variance. For the interesting
 and important practical (Perng and Littell 1976) problem

 of testing that the observed random sample comes from a
 specified normal population, Isaacson (1951, p. 233) was

 unable to establish his "conjectured" region to be a region
 of type D. We present an LMMPU level a test for this

 problem. The cases n = 1 and n > 1 turn out to have
 different properties, mainly because their sufficient statis-

 tics for the two-dimensional parameter (,u, a2) are one- and
 two-dimensional, respectively.

 By Remark 2 (f), the LMMPU tests for (,u, a2) = (0,

 1) and (,u, qi = 1/U2) = (0, 1) are the same. The com-
 putations will be done for the parameters (,u, ii).

 Result 2: Case of One Observation. Suppose that X -

 N(,u, a2) with both mean and variance unknown. In testing

 the null hypothesis Ho: (,u, a2) = (0, 1) against Hi: (u,
 a2) ? (0, 1) on the basis of one observation, at a level a
 (O < a < 1) we observe that

 1. Any LU test has power curvature zero in the ,u di-
 rection and thus total power zero. Hence there does not

 exist a regular LU test.

 2. Any Neyman-Pearson type LMMPU critical region
 can be written as

 w = (-oo, -b] U [-a, a] U [b, oo), 0 < a < b,

 where the constants a and b should satisfy the two con-

 ditions (a) a = Z1/2-a2I b = Zal a,1 + a2 = a/2, and (b)
 af(a) = bf(b), where f is the standard normal pdf and Za
 is its upper a% point, 0 < a < 1. This test is strictly locally
 unbiased.

 3. For any a < .68 the system (a), (b) has a unique
 solution (a, b), 0 < a < b. Moreover, 0 < a < 1, b > 1.

 The case of one observation, though mathematically quite

 interesting, lacks practical significance. The proof requires
 substantial computations and manipulations. The inter-

 ested readers are referred to SenGupta and Vermeire (1982).

 Remark 3. (a) Since all LU tests have power curvature
 zero in the ,u direction, the LMMP criterion selects among
 them a test that is LMP in the U2 direction. (b) For a given
 a, the solution (a, b) of the system (a), (b) should be found
 numerically, for example, by the Gauss-Seidel method.

 Result 3: Case of n Observations, n > 1. Let x = (xl,

 . XnY E Rn be a sample of size n from a univariate
 normal population X - N(u, a2 = 1/) with unknown
 mean and variance. Let

 1 1
 x- Xi, S 2 =- E X -)2; n i ~~n (i

 u = V x-, v = ns2.

 For testing the null hypothesis Ho: (,u, q) = (0, 1) against
 the alternative H1: (,u, 5) # (0, 1) a Borel set w C Rn is a
 Neyman-Pearson type (second-order) LMMPU level a

 critical region iff it is of the form w : (v + u2 - A)2 +

 4nu2 - K2 ? 0. Letting w0 = {(u, v) C-w: u-O }, Po equal
 the standard normal density, and q0 equal the chi-squared

 density with (n - 1) df, the constants A, K E R should
 satisfy the following:

 (1') 2 f po(u)qo(v) du dv = 1 - a,

 (2') 2 f (U2 + v)po(u)qo(v) du dv = n(l - a),

 (3') 2 f u2po(u)qo(v) du dv c 1 - a,

 (4') 2 f (U2 + v)2po(u)qo(v) du dv c n(n + 2)(1 - a).

 Proof. Using Result 1, simplifications yield w: (v +

 u2 - A)2 + 4nu2 - Bu - K2> 0, where the constants
 A, B, and K satisfy (1)-(3) of Theorem 2. The power is

 /?(C, ?) = P,4 [(u, v) E w] = 1 - p(u)q(v),

 where p(u) and q(v) are the respective densities of the
 independent components u and v.

 But then condition (1) of Theorem 2 implies that

 (1") poqo -= 1 - a,

 whereas condition (2) implies that

 (2") f (v + U2 - n)poqo = 0

 and further, B has to be 0. Finally, since symmetry gives

 "I= 0, (3) of Theorem 2 requires

 (3") f (U2 - 1)poqo C 0

 and

 (4") f [(v + U2 - n)2 - 2n]poqo < 0.

 Since the region w and all of the integrands are symmetric
 in u, it suffices to consider w0. Then the system (1")-(4")
 reduces to the system (1')-(4') as claimed in Result 3.

 Remark 4. The existence of a solution (A, K) for the
 system (1')-(4') should now be investigated. For n = 1
 (u = x, v = 0) we proved that the equalities (1') and (2')
 induce the inequalities (3') and (4') and have a solution
 for the usual values of a. Hence there is reasonable hope

 to achieve the same result in case n > 1. Our attempts to

 prove analytically, however, that (1') and (2') establish
 (3') and (4') failed, except for the case A ? min(K, K2!
 4n). Therefore, we solve the problem numerically. Writing
 the region as

 w0: 0 < u < K!(2\/'-), C(u) ' v c D(u),

 where
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 shows that all integrals are of the form

 f urvMpO(u)qO(v) du dv

 we fK(2V~iurP(u f()vmqo(v) dv du. c(u)

 For given a, n we solve (1') and (2') for A, K by a numerical

 method, for example, the Gauss-Seidel method, and then

 check if (3') and (4') are satisfied. The integrals were com-

 puted by the Harwell computer package. Table 1 presents

 a few results in which, for each of the cases, the test is

 regular LU. Detailed tables will be published elsewhere.

 For the last two cases Figure 1 compares the acceptance

 regions, plotted in the (u, \/v) plane.

 Remark 5. In the foregoing example as soon as an LU

 critical region w is symmetric in x- about the null hypothesis,

 one obtains /h is a diagonal matrix. Hence for N(/u, U2),

 requiring equidetectability for equal amounts of positive
 or negative deviations of the mean translates the parameter
 directions into the principal power directions.

 Example 2: A Multivariate Normal Population With
 Known Covariance Matrix and Unknown Means. Consider

 a k-variate normal population with unknown mean vector

 and known covariance matrix. Since a suitable orthogonal

 transformation reduces the covariance matrix to a diagonal

 matrix, we restrict to the latter case. In addition, we write
 the theory first for covariance matrix I and k = 2; gen-

 eralization to all values k > 2 is straightforward and is given
 afterwards.

 Result 4. Let (X, Y) be a bivariate normal population,

 where X, Y are independent with means ,u, q and variances
 equal to 1. Tests for the null hypothesis Ho: (,u, t) = (0,
 0) at a level a (O < a < 1) against H1: (,u, t) =? (0, 0), on

 the basis of a sample x = (x1, . . . , x,)' from X and a
 sample y = (Yi, y, y)' from Y, have the following
 properties. Let

 n m
 _ i1 _ 1
 x =->=, Xi' Y=mJ->L1.

 (1) See Isaacson (1951). The likelihood ratio critical re-

 gion, w : nx2 + my2 > a2, where a2 = x2 is also a type
 D critical region.

 (2) Any second-order LMMPU critical region of Ney-
 man-Pearson type will be of the form w: (E xi)2 +

 yj)2 )2> a2, where a satisfies

 a/V 2 A (v) 2
 j e-v!2j e-u!/2 du dv = (7r/2)(1 - a).

 w is a regular LMMPU level a critical region.

 Table 1. Values of (A, K) for Certain (n, a)

 n a A K

 3 .1 0 8.2 7.9

 10 .10 15.7 13.1

 10 .05 17.3 15.1

 V- - G

 -3 -2 -I O 1 2 3

 Figure 1. Acceptance Regions of the LMMPU Tests of Result 4.2.2.
 N = 10.

 (3) In case n = m the LMMPU critical region coincides
 with the type D region from (1).

 Remark 6. For a brief comparison between the type D

 and LMMPU tests at a same level a in the foregoing case
 we observe the following.

 (a) Let WT and WM be the critical regions in the (u, v)
 plane, as follows:

 WT:u2 + v2 > a2 wM: nu2 + mv2 a2.

 The constants aT, am must be determined such that the
 volume under the rotation surface Po inside the circle ST

 or the ellipse SM,

 STu2 + v2 = a2 SM nu2 + mv2 = a2

 each equals 1 - a. If, for example, n <in, the LMMPU
 test is more likely to accept from zero deviating values in
 the ,u direction than the type D test.

 We conclude that in a direction with more available in-
 formation (higher sample size for X or Y) the LMMPU
 test is more likely to reject Ho than the type D test, whereas
 in a direction with less available information the LMMPU

 test is less likely to reject Ho than the type D test.
 (b) In case n = wi any LU test with critical region of

 the form (E xi)2 + (E YJ)2 ? a2 will simultaneously max-
 imize H and K. Indeed, one verifies that the power surface
 /3(0) for such a test is a surface of revolution with axis 0 -
 0. Then all eigenvalues of /3(00) are equal, say i~, and max-
 imizing K = A2 or H = 2) reduces to maximizing A.

 Result 5 (Generalization of Result 4). Let (X1, . ..

 Xk) be a k-variate normal population with known covari-

 ance matrix E = diag(u2, . . ., 72) and mean vector ,u -

 U8,*** k)', the latter being a k-dimensional parameter,
 G =Rk, Ho: ,ui= *-= /k =?. From each Xi(1 <hi
 k) a sample (xi1, . . . , Xrn ) of size n, is drawn. Let u, =

 \/i7-j!ui be the normalized sample mean from Xi under
 Ho. A regular LMMPU level a critical region for Ho of the
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 form

 k

 W: nE (2 U, a2 (4.1)

 is obtained as soon as the constant a2 > 0 satisfies the level

 condition. a2 should be determined from the fact that u,
 (1 ?i ? k) are iid N(O, 1).

 Proof. Writing qi = 1/u? and, after some simplifica-
 tions by (3.1), one obtains a regular LMMPU level a crit-
 ical region of the form

 W: (niqix-i)2' C + >CiX

 provided the constants c, c1, . . ., Ck satisfy the following

 conditions on the power /B: (a) /Bo = a, (b) f,,o = 0 for
 1 ? i ? k, (c) (/I1,O) is positive definite. As in the proof
 of Result 3, the second condition requires ci = 0 (1 c i ?
 k), which reduces w to the form w: li(niiT, )2 > a2 or
 (4.1).

 Note that w is an ellipse in terms of u, (1 ? i ? k).
 Anderson's theorem (see, e.g., Tong 1980) shows that as
 the mean vector moves away from 0, the probability of the
 set w is strictly decreasing. Thus the test is strictly unbiased

 and hence the preceding conditions (b) and (c) are satis-
 fied.

 [Received June 1983. Revised November 1985.]
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