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 University of Utrecht and Indian Statistical Institute

 We consider Boolean models in d-dimensional Euclidean space. Each

 point of a stationary, ergodic point process is the center of a ball with
 random radius. In this way, the space is partitioned into an occupied and

 a vacant region. We are interested in the number of unbounded occupied
 or vacant components that can coexist. We show that under very general
 conditions on the distribution of the radius random variable, there can be
 at most one unbounded component of each type. In case the point process
 is Poisson, we obtain uniqueness of the unbounded components without

 imposing any condition at all. Although we do not prove the necessity of
 the conditions to prove uniqueness, we obtain examples of stationary,

 ergodic point processes where the unbounded components are not unique
 when the conditions are violated. Finally, we discuss more general random
 shapes than just balls which are centered at the points of the point
 process.

 1. Introduction. The geometric properties of Boolean models have been

 studied quite extensively by probabilists. The main reference here is the
 excellent book of Hall (1988) on Boolean models and their geometric proper-
 ties. The primary focus of the book-and in fact of most of the relevant

 literture-is on Boolean models driven by a Poisson point process. Percola-

 tion properties of Boolean models driven by a Poisson point process were first
 studied by Gilbert (1961) to model the transmission of radio waves. This
 continuum percolation model, in which each point of the point process is the
 center of a ball with random radius, was later studied by Hall (1985),
 Menshikov (1986), Roy (1990) and others.

 A question of both geometric and percolation theoretic interest in Boolean
 models is the number of unbounded components admitted by the process. In

 Boolean models, unbounded components can be either the unbounded con-

 nected components in the region formed by the random balls, or the un-
 bounded connected components in the complement of this region. The former
 are called the occupied components, and the latter are the vacant compo-
 nents. The number of unbounded vacant components is also asked by
 Sznitman (1991a, b). He studies the path of a Brownian motion in a space
 with obstacles, where the obstacles arise as balls centered at points of a
 Poisson point process.

 In discrete percolation models, the unbounded occupied cluster is unique
 under very general conditions. Harris (1960) gave the first uniqueness result
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 (in two dimensions), and later uniqueness was established in higher dimen-
 sions and under weaker conditions in Aizenmann, Newman and Kesten
 (1987), Gandolfi, Keane and Russo (1988) and Burton and Keane (1989). In a
 variant of the continuum percolation model introduced by Penrose (1991),
 Burton and Meester (1993) obtained uniqueness under very general condi-
 tions. In this model, any two points of the point process are connected with
 each other with a probability which only depends on their distance, indepen-
 dently of all other pairs. The uniqueness result of Burton and Meester only
 requires the point process to be stationary, and the connection rule should be
 long-range, that is, the probability for any pair of points to be connected to
 each other should be positive. Vacant components do not have any meaning
 in their model.

 In this paper, we consider the uniqueness problem in Boolean models
 driven by stationary, ergodic point processes and where each ball has a
 random radius, independent of all other balls and the driving point process.
 We study uniqueness for unbounded occupied as well as vacant components.
 Since our percolation process depends on two independent random processes,
 namely, the point process and the process governing the radii, we have two
 different variables governing the unbounded components. We obtain suffi-
 cient conditions for uniqueness of the occupied and vacant components. In
 addition, we construct examples of Boolean models which admit more than
 one unbounded occupied or vacant component when the sufficient conditions
 are not satisfied.

 Many of our results go through if the shapes are not necessarily balls, but
 arbitrary shapes subject to certain conditions. For the sake of clarity, how-
 ever, throughout Sections 2-7 we consider models with balls only. We indi-
 cate, in brief, how the results can be generalized to more general shapes. The
 proofs of these generalizations will be clear from what follows in the subse-
 quent sections.

 In the general setup, we take a "basic" shape containing the origin, and we
 center at each point of the point process such a basic shape multiplied by a
 certain random factor. We require the basic shape to contain some ball in its
 interior. The statement of Theorem 2.1 remains true if we require the shapes
 to be arbitrarily large (i.e., to contain arbitrary large balls) with positive
 probability. Although convexity is used in the proof of Lemma 4.2, it is easy to
 see we can do without it here. For Theorem 2.2, we require that the shapes be
 arbitrarily small (i.e., contained in arbitrary small balls) with positive proba-
 bility. We also need the boundary of the shape to have finite length here. Note
 that condition (2.2) might not be true for "strange" shapes. For Theorem 2.3,
 no further conditions on the shapes are required.

 In the next section we introduce the model and state our main results.
 Sections 3-6 are devoted to the proofs of these results. The last section is
 devoted to examples.

 2. The model and main results. Let Rd be d-dimensional Euclidean
 space, let Md be the collection of Borel sets in Rd and let Ad be the Lebesgue
 measure in Rd. Let N be the set of all Radon counting measures on (Rd, Md).
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 Then N can be identified with the set of all finite and infinite configurations
 of points in Rd without limit points. Let X be the o-algebra on N generated
 by sets of the form {v E N I v(A) = k}, for all integers k and bounded Borel
 sets A. A point process is a measurable mapping X from a probability space
 (fl,g, P1) into (N,).

 By considering rectangles with rational coordinates only, we may assume
 that 6j is countably generated. For A E _Wd, we denote by X(A) the (random)
 number of points in A. For any t E iRd, let Tt: R d -> Rd be defined by
 Tt(x) = x + t, for all x Ec Rd. We only consider processes which are station-
 ary, that is, the finite-dimensional distributions are invariant under all

 translations Tt, t E Sad. Furthermore, we restrict our attention to processes
 which are ergodic under the whole group {Tt, t E DRd}. This amounts to saying
 that any event which is invariant under the whole group has measure 0 or 1.
 By ergodic decomposition, this is not a real loss of generality. According to
 Pugh and Shub (1971), if Rd acts ergodically on a countably generated
 probability space, then all elements of Rd, off a countable family of hyper-
 planes, are ergodic. (Here, a hyperplane is not assumed to contain the origin.)
 This implies that we may choose an orthonormal base {t1,..., tdj of Rd such
 that, for all but countably many values of A, TAt acts ergodically for all i, and
 we denote by I the set of values for A for which this is the case. We may
 assume that 1 E I. For all A E I, any event which is invariant under one of
 the translations Tt1,... , TA, has P1-measure 0 or 1; from now on, all

 coordinates of elements in Rd are with respect to this base. We will need this
 in many places.

 We define the density A(X) of X as follows: Let Bn C Wcd be the d-dimen-
 sional cube centered at the origin and with side length 2n. By the ergodic
 theorem, the limit

 X(Bn)

 n (2n)

 exists and is constant almost surely. The density A(X) is defined to be equal
 to this almost sure limit.

 Next, we consider the random balls associated with the model. Consider a
 second probability space X = (R++),d equipped with a product measure (to be
 denoted by P2) and on which we define nonnegative i.i.d. random variables

 pjor) := rx, for all x E Rd and o- E E. We denote by p a random variable
 with the same distribution as the p,'s. If the occurrences of X are (x1, x2, ... ),
 we write pi = p., for all i. Let, for x E WRd and a ? 0, S(x, a) be the closed
 ball with radius a centered at x, that is, S(x, a) = {y E R d Y - xt < a).

 We make the following definitions:

 1. The occupied region C is defined as C U i= S(xi, P1)P
 2. The vacant region V is defined as V= 0Rd \ C.

 The Boolean model just described will be denoted by (X, p). The model is
 thus defined on the probability space (fl x l) with product measure P=
 P1 x P2. Thus, the radii are independent of the point process X.
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 In the case where X is a Poisson process with finite density and p is a
 bounded random variable, Menshikov (1986) has shown that there exists a
 critical density 0 < AC < co such that, for A > Ac, C contains an unbounded
 component a.s. Furthermore, in two dimensions and the same Poisson setup,

 Roy (1990) has shown that there exists a 0 < AC < oo such that, for A > AC, C
 contains an unbounded component but V does not and, for A < AC, V contains
 an unbounded component, but C does not. In three or more dimensions, in
 analogy with discrete percolation, one expects to have two critical intensities
 Ac and A* such that 0 < A < A* < oo, and the following hold:

 1. for A < A*, V contains an unbounded component, while C does not;

 2. for A > AC, C contains an unbounded component, while V does not;
 3. for A E (AC, A*), both C and V contain unbounded components.

 We will be concerned with the number of unbounded components in C or

 V. To this end, we pick a vector t such that Tt acts ergodically, and we
 observe that the map Tt induces a transformation from fl into itself (to be
 denoted by Tt 1) defined by the requirement that the occurrences of X(Tt 1(Z))
 are Tt(xl), Tt(x2), . Of course Tt also induces a transformation from I into
 itself (to be denoted by Tt 2) defined by (Tt,2 v)x = O_TFlx, for all x E R
 Hence, the definition of Tt can be extended to fl x I by Tt(wo, ) =
 (Tt 2 to, Tt,2o) and this transformation corresponds to shifting a whole con-
 figuration of points and associated balls in space over the vector t. Now note

 that Tt, 1 acts ergodically on Ql by assumption, and Tt 2 is a mixing transfor-
 mation on E. It is a standard result in ergodic theory [see, e.g., Petersen
 (1983), Theorem 6.1] that this implies that Tt acts ergodically on Qi x X and
 any event which is invariant under all translations Tt has probability 0 or 1.
 In particular, the number of unbounded components is invariant, and it is
 thus a consequence of ergodicity that this number is equal to a constant a.s.
 Our main results are the following.

 THEOREM 2.1. Consider the Boolean model (X, p) with bounded radii in
 Rd, and suppose that

 (2.1) P(p>R)>O forallR>O.
 Then C contains at most one unbounded component a.s.

 THEOREM 2.2. Consider a Boolean model (X, p) in Rd with A(X) < X.
 Suppose that, for some a > 0,

 (2.2) E(number of components of V n [0, a]d) < co

 and furthermore that

 (2.3) P( p < e) > 0 forall e > 0.

 Then V contains at most one unbounded component. In the case d = 2,
 condition (2.2) is not needed to obtain uniqueness.
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 Condition (2.2) seems to be restrictive and we do not know how to remove
 it. However, all "nice" processes like the Poisson point process satisfy the
 condition, as we show in the following proposition.

 PROPOSITION 2.1. Consider a Boolean model (X, p) in Rd. If

 (2.4) E(X([O, a]d)d) < oo,
 then (2.2) holds.

 Another way of removing condition (2.2) is to impose some restrictions on
 the radius random variable.

 PROPOSITION 2.2. In a Boolean model (X, p) with X an arbitrary station-
 ary point process, if p is such that, for some 0 < a < 1 and b > 0, we have

 (2.5) infP( p > z + blp > z) > a > 0,
 z>O

 then (2.2) holds for suitable a.

 In the case where the Boolean model is driven by a stationary Poisson
 process, we do not need the assumption (2.1), (2.2) or (2.3) to obtain unique-
 ness of either the occupied or the vacant component. The independence
 property of the Poisson point process is sufficient to replace these conditions.

 THEOREM 2.3. For a Boolean model (X, p) driven by a stationary Poisson
 point process, we have the following:

 (i) C contains at most one unbounded component a.s.
 (ii) V contains at most one unbounded component a.s.

 The original proof of Burton and Keane (1989) for uniqueness in discrete
 percolation was based on the fact that it is impossible to accommodate a
 tree-like structure in the integer lattice in a stationary way; there are just
 not enough points. The whole idea works there because different clusters
 contain different vertices (of course) and the density of the vertices in space is
 finite. This idea will be used here as well, but as we are working in R0d rather
 than in Zd, we have to find other objects which have the property that their
 density is finite and which cannot belong to two different components. In the
 case of occupied components, these objects will be connected components of a
 small part of occupied regions; in the case of vacant components, they will be
 parts of the boundaries of the balls or local vacant components.

 As will be clear from the proofs of the theorems, the unique unbounded
 occupied component, if it exists, when condition (2.1) is satisfied, will have an
 infinite volume. However, the same cannot be said about the unique un-
 bounded vacant component, if it exists, when conditions (2.2) and (2.3) are
 satisfied. It could be that the vacant component is a long thin region in R d
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 whose volume is finite, even though it is unbounded. In the case when the
 driving point process is Poisson, it is relatively easy to see, using the
 independence property of the Poisson point process, that the vacant un-
 bounded component will necessarily have infinite volume. It is precisely for
 this reason that we need the extra condition (2.2) in Theorem 2.2.

 We will see in the last section that (2.1) and (2.3) cannot be removed from
 the statements of the theorems. We believe that (2.2) is not necessary for
 Theorem 2.2; however, we do not have any rigorous argument for this. Note
 that in Theorem 2.1 there is no restriction on X at all, but in Theorem 2.2 we
 need a moment condition on the point process. As a rule, it turns out that the
 vacancy is a little more delicate than occupancy, and we do not know how to
 get rid of the moment condition in Theorem 2.2.

 3. Preliminary results. In this section, we prove two results which
 turn out to be very useful, but which are also interesting in their own right.
 The first result tells us that it is not a loss of generality to assume that the
 expected Lebesgue measure of the random balls is finite, as the whole space
 is covered a.s. if this expectation is infinite. This extends a result in Hall
 (1988) for Poisson point processes. The second result shows that if balls can
 be arbitrarily small, then the existence of vacancy is equivalent to the fact
 that any bounded subset of Rd has nonempty intersections with only finitely
 many balls a.s.

 PROPOSITION 3.1. Consider the model (X, p) in Rd. If Epd = Xc, then
 P(C = Rd) = 1

 PROPOSITION 3.2. Consider the model (X, p) in Rd, and suppose that (2.3)
 holds. Then the following two statements (i) and (ii) are equivalent:

 (i) P(C = Rd) < 1.
 (ii) Any bounded region is intersected by only finitely many balls a.s.

 PROOF OF PROPOSITION 3.1. If X has infinite density, we can "thin" the
 process in some stationary way to obtain a finite-density process. If we prove
 the proposition for this process, then it is certainly true for the original
 infinite-density process. Therefore, we may assume that the density A(X) of
 X is finite and is equal to 1. Let Cn be the ball centered at the origin and with
 radius 2n/d, n Ec N. (Cn is nonrandom.) Note that 1LLd(Cn+l) = cd24+1 -
 2Ad(C), where Cd is a constant depending only on the dimension. From the
 ergodic theorem, we have that, for n large enough (depending on the realiza-
 tion, ? X(C0) Vn where Vn = ltd(Cd). Now we write, for large enough
 n, X(Cn+ 1 \ Cd) = X(Cn+1) - X(Cn) > 4Vn+ 4Vn =4Vn 4 Vn =4Vn
 Hence, for n large enough, the "annulus" Cn \ Cn -1 contains at least bd 2 n+ 1
 points of the point process, where bd is another constant depending only on
 the dimension.
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 Now let En be the event that CO is not completely covered by a ball which
 is centered in Cn \ Cn- 1. Furthermore, let Am be the event that m is the first
 index such that X(Cn \ Cn-1) 2 bd2+ 1, for all n ? m. It follows from the
 above that the Am's form a partition of the probability space. Now write

 P n( Ek Am)
 k=m

 00

 <P n (all balls centered in Ck \ Ck- 1
 k =m

 have radius at most 2k/d + l)lAm)

 oo

 < H P( p < 2k/d + 1)bd2k
 k =m

 where the last inequality follows from the independence of the radii and the
 point process. It suffices to show that this expression equals zero. For k large
 enough, 2k/d + 1 < 2(k+1)/d, so if we replace k + 1 by k, for k large, the
 terms in the product are at most P( p < 2k/d)bd2k. Now, for m large enough,
 we find

 f Pp < 2k/d)bd2k
 k =m

 = ]7J p( pd k 2k)bd2k
 k=m

 00

 < H{p( pd < 2k)*p(pd < 2k + 1).. p(pd < 2k+1 _l)}bd
 k=m

 { m bd

 = lr p( pd _< k)
 = k=2m2J

 { m bd

 =} HM (1 - p( pd > k)))

 This expression is zero if and only if E?2mP(pd > k) = oo, which is
 equivalent to Epd - cc, proving the proposition. C1

 PROOF OF PROPOSITION 3.2. We first show that (i) follows from (ii). State-
 ment (ii) implies that there exists a k E NJ such. that the unit cube is
 intersected by exactly k balls with positive probability. Hence there is a set of

 indices {i1, k i} such that, with positive probability, the only balls inter-
 secting the unit cube are S(xi1, Pi1), ..., S(xik, Pik). Finally, there exists a
 number 8 > 0 such that there is a positive probability that, in addition,

 Ix i -xill > 8, for all j = 1. Leaving the rest of the realization as it is, we may
 now reduce the radii of the designated balls to a number smaller than - i.
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 The assumptions imply that this can be done with positive probability, and
 after the reduction there is a set with positive Lebesgue measure vacant in
 the unit cube. Hence there is a positive probability that vacancy exists in the
 unit cube and the ergodic theorem implies that vacancy exists a.s.

 To show that (ii) follows from (i), we assume that there are infinitely many
 balls intersecting the unit circle C0 with positive probability. Now a contra-
 diction arises as follows. If infinitely many balls intersect C0, there must
 exist a half line /' through the origin such that there is a subsequence

 z1, 2, ... such that S(xik, Pik) n Co # 0, for all k, and such that the angle
 between /? and the line through the origin and xi, tends to zero as k tends to
 infinity. However, it is easy to see that this implies that there must be a
 half-space which is completely covered by balls. Now consider the random

 variables Yn and Z,,, n E Z, defined as follows: Yn = 1 if [0, 1]d- I X [ n, n + 1]
 is completely covered, otherwise Yn = 0o Also, Zn =1 if [n, n + 1] X [O 1]d- I
 is completely covered and zero otherwise. Note that {YJ} and {Zn} are station-
 ary and ergodic stochastic processes (here we need the fact that each of the

 Tt 's from Section 2 act ergodically), but if a half-space is completely covered,
 at least one of the processes ({Yn}, say) satisfies Yn = 1, for all n large enough,
 or Yn= 1, for all - n large enough. However, ergodicity then implies that
 P(Yn = 1) = 1, which contradicts our assumption (i). E1

 4. Uniqueness for occupancy: Proof of Theorem 2.1. It is quite
 common to prove uniqueness by first showing that the number of unbounded
 components can be only 0, 1 or oo and then ruling out the possibility of having
 infinitely many unbounded components. We will follow this route, too, and
 start with the following lemma, the idea of which goes back to Newman and
 Schulman (1981).

 LEMMA 4.1. Under the conditions of Theorem 2.1, the occupied region C
 contains either 0, 1 or infinitely many unbounded components a.s.

 PROOF. The following reasoning is more or less standard [Newman and
 Schulman (1981)]. Suppose that the number of unbounded components in C
 is K 2 2 a.s. Then, for n large enough, there is a positive probability that Bn
 intersects them all. Also, there is an index m such that the event E = {all
 unbounded components intersect BnR Xm E Bn} has positive probability. (Note
 that neither n nor m is random.) Hence it follows from the assumptions that
 also the event E* = E n { Pm > 2nId} has positive probability. On E*, how-
 ever, the number of unbounded components is just one, because the ball
 S(xm, Pm) connects all K former components. This is the desired contradic-
 tion. LI

 LEMMA 4.2. Suppose condition (2.1) holds. Let A c Rd be a convex set

 with finite diameter, that is, supx, ye AIX - YI < K for some K < oo. Let C(A)
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 denote the (random) region

 C(A) U S(xi, Pi).
 xiEA

 Thus, C(A) is the occupied region formed by points in A. Then the number of
 connected components in A n C(A), to be dentoed by YA, has finite expecta-
 tion.

 PROOF. The set A is convex, and hence its intersection with any ball, if
 not empty, consists of one component exactly. Hence YA is at most k if
 X(A) = k. Furthermore, YA can only then be larger than 1 if all balls
 centered in A have radius at most K. Now condition on the number of
 occurrences in A to obtain

 00

 E{YAIX( A) = k} = E nP(YA = nIX(A) = k)
 n= 1

 k

 < P(YA= 1IX(A) = k) + E n{Pp <(K)}k
 n=2

 < 1 + lk(k + 1){P( p < K)}k.

 Hence

 00

 (4.1) EYA< E (1 + ? k(k + 1){P( p < K)}k)P(X(A) = k),

 and this sum is finite because P( p < K) < 1 by condition (2.1). C1

 We need one more lemma, the following combinatorial result of Gandolfi,
 Keane and Newman (1989).

 LEMMA 4.3 [Gandolfi, Keane and Newman (1992)]. Let S be a set and let R
 be a finite subset of S. Suppose that the following hold:

 (a) For all r E R, we have a family (Cr ) ) Cr3) of disjoint nonempty
 subsets of S, not containing r, and card(C(L)) 2 K for all i and r.

 (b) For all r, r' E R, one of the following events occurs, writing Cr for
 U 3 C(i) 1 =1 r

 (i) ({r} U Cr) n ({r'} U Cr) = 0.
 (ii) 2 i, j such that C(1) D {r'} U Cr' \ CrJ) and CrJ) D {r} u Cr \ C11).

 Then card(S) 2 K(card(R) + 2).

 PROOF OF THEOREM 2.1. In order to reach a contradiction, we assume that
 there exist infinitely many unbounded occupied components a.s. Define, for
 each integer n and z = (z1,..., Zd) E / X

 Bz =Bo + (Zl,...,Zd),
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 where of course

 Bo = X E- Rdl -n < xi < n, i = 1, ...,)di.
 (Note that in this notation Bn = Bo.) As in Burton and Meester (1993), we
 call the connected components of BI n C(BZ) local components of size n.

 For N large enough, it follows from the proof of Lemma 4.1 that the

 following event has positive probability, say, -q:

 E?(N) = {BN is covered by a ball centered in BX, and from
 (4.2) the boundary of this ball at least three disjoint

 occupied components ("branches") radiate to infinity).

 We choose N such that 2 N E I (see Section 2) in order to make sure that we
 can apply the ergodic theorem. Now we choose K very large; we shall see at
 the end of the proof how large exactly. We choose M so large that the

 following event has probability at least 1 -q:

 E0(N, M) = E0(N)

 ( {All three branches of BO contain balls centered

 in at least K different boxes BN2NZ C B?N, z Z (0,..., 0).

 The events EZ(N) and EZ(N, M) are defined by translating this event over
 the vector z.

 It follows from the ergodic theorem that, for L sufficiently large (depending
 again on the realization), the set

 R = {zIB/Nz c BoN, E2NZ(N, M) occurs)

 has cardinality at least 1qLd. For z E R, we have YB2NZ = 1 by definition
 (remember the definition of YA in Lemma 4.2), and if we denote by Z C)2
 and CZ3) the set of all local components of size N in each of its three branches
 contained in BMNNZ, then CU) n C(i) = 0, for i 0 j, and card(C(')) 2 K, for all
 i. Furthermore, for z, z' E R, z 0 z', if we identify z and z' with the only
 local component of BNNZ, it is not difficult to check that (i) in Lemma 4.3
 occurs if the points of X in BNNZ are in a different component than the points
 of X in BNNZ', and that (ii) occurs otherwise. Hence, we conclude from
 Lemma 4.3 that

 (4.3) 2 YBNNZ K (Ld+2).
 {zIB2Nz cBON}

 To derive a contradiction, we remark that it follows from Lemma 4.2 that
 E{YBo} < ?o and from the ergodic theorem that, for L sufficiently large, we
 have

 (4.4) YBNNZ < 2LdE{YB }.
 {zlIB2Nz cBON}
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 Hence we find from (4.3), (4.4) and Lemma 4.2 that, for L large enough,

 K( Ld + 2) < 2LdE{YB,J < ,

 which gives the desired contradiction if we choose K larger than 87- 1E{YB0 }.
 N

 5. Uniqueness for vacancy: Proof of Theorem 2.2. As already indi-
 cated at the end of Section 2, the vacancy case is a little trickier than the
 occupancy case. We start with three lemmas which, although not in precisely
 the same form, are in spirit the analogues of Lemma 4.1, 4.2 and 4.3,

 respectively. We shall abuse notation a bit and write ,td- 1(-) for the (d - 1)-
 dimensional measure of unions of (d - 1)-dimensional subsets of [Rd.

 LEMMA 5.1. Suppose condition (2.3) in Theorem 2.2 holds. Then the
 number of unbounded components in V equals 0, 1 or oo a.s.

 PROOF. The idea is the same as in Lemma 4.1, although a little bit more
 care is needed. Again, we suppose that there exist K ? 2 unbounded vacant

 components a.s. and, again, n is chosen such that the box Bn has positive
 probability of intersecting them all. According to Proposition 3.2, there exists
 a finite set A = {a1, .. ., am) such that, in addition, with positive probability

 A = {i E RIS(xi,pi) nBn +0).
 Let F be the event

 F = { Bn intersects all unbounded vacant components)

 n{S(xi,pi) nBn +0iffi EA}l
 Furthermore, there is a (nonrandom) number N such that

 FN :=Fn{S(xj,pi)CBN,i eA}
 has positive probability, and, finally, there is a 8 > 0 such that

 P(FN, Ixi -xjl > 8 for all i +j E A) > 0.

 Now (2.2) allows us to reduce the radii of the balls S(xi, pi), i E A, to at most
 3 . The configuration outside BN remains unchanged by this procedure, so no
 extra unbounded vacant components arise, but then the reduction of the radii
 creates a configuration with only one vacant component, a contradiction. El

 LEMMA 5.2.

 (i) The expected number of balls intersecting the unit cube is finite.
 (ii) It is the case that

 (5.1) E(,iLdy1(d(C) n [0 1]d)} < cc,
 where d( ) denotes the boundary of a set in Rd.

All use subject to http://about.jstor.org/terms
This content downloaded from 14.139.222.72 on Tue, 18 Apr 2017 09:32:41 UTC



 944 R. MEESTER AND R. ROY

 Note that the measure of the boundary causes no problems: Proposition 3.2
 guarantees that in case of existence of vacancy, only finitely many balls
 intersect [0, 1]d

 PROOF OF LEMMA 5.2. According to Proposition 3.1, we can assume that
 Epd < cc. First we show that the expected number of balls which intersect the
 unit cube is finite. Writing Id for the unit cube, x + A for the set {x + yly E A)
 and 0 for the origin in R8d

 E{E l{S(x, p) nId ?0}) E{ it l{x Id + S(O, p)})

 = E{t E l{x EId + S(O, p)}

 = E{X(Id + S(0, p))}

 = E{E(X(Id + S(0, P))Ip}}

 = E{A(X) d(Id + S(O, p))}

 < A(X)EJ(2p + 1)d} < 00.

 Since, for every x and a > O, Id n dS(x, a) encloses a convex region in Id, we

 have that Ayd-(Id n OS(x, a)) < ?d- l(Id) = 2d, uniformly in x and a. Hence
 the left-hand side of (5.1) is bounded from above by A(X)E{(2 p + 1)d}2d < oo
 as required. L

 The final ingredient is another version of the combinatorial result in
 Lemma 4.3.

 LEMMA 5.3. Let R be a finite set, and let ,tt be any measure in Rd. With
 each r E R, we associate a family (C(l), C(2), C(3)) of disjoint (up to ,A-measure
 zero) nonempty subsets of Rd such that p(C(')) 2 K for all i and r. Suppose
 that, for all r, r' E R, one of the following events occurs, writing Cr for
 u 1 c(i). i= 1 r

 (i) Cr n Crl = 0.
 (ii) 3 i, j such that C(I) D CrA \ CrJ) and CrJ) D Cr\ C$i).

 Then P'(U re RCr) K(card(R) + 2).

 PROOF. The proof is just a copy of the proof of the lemma in Burton and
 Keane (1989). r

 PROOF OF THEOREM 2.2. Now we have gathered all the machinery we need
 to prove Theorem 2.2. In fact, the proof proceeds more or less like the proof of
 Theorem 2.1. We assume again that the number of unbounded vacant compo-
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 nents is infinite a.s. For N large enough, it follows from the proof of Lemma

 5.1 that the following event has positive probability, say; -q:

 D?(N) = {BNT intersects an unbounded vacant component

 (5.2) U such that U \ BN consists of at least three

 unbounded components ("branches") ).
 Again, DZ(N) is this event translated over the vector a. At this point, we
 distinguish between d = 2 and d ? 3. We start with d = 2. Define DZ(N, M)
 similar to the corresponding event EZ(N, M) in Section 4, but here the
 requirement is that the boundary of each of the branches has one-dimen-

 sional Lebesgue measure at least K within BMN. (In two dimensions, any
 unbounded branch must have an infinite boundary.) We now define R as

 R = {zIB NCBLN, D2NZ (N, M) occurs}.
 Note that there might be more than one unbounded vacant component for
 which the event D?(N) occurs. In such a case, we just choose one of them.

 Using Lemma 5.3 and the fact that any two branches do not share any
 boundary part of positive one-dimensional measure, we see that the argu-
 ments which led to (4.3) here lead to

 (5.3) E ,A(o(C) n BNNZ) ? K( 4L2 + 2).
 {z IB2Nz CBON

 In this situation, (4.4) is replaced by

 (5.4) E ,ul(A(C) nlBNz) < 2L2E{p pl(d(C) nBN)} <00,
 {zIB2Nz CB2N}

 where the last inequality is just Lemma 5.2(ii). From (5.3) and (5.4) we now

 find that, for large L, we have

 K(j4 L2 + 2) < 2L2E{/11(d(C) n BN)} <00,

 and the contradiction again arises by taking K large enough. Note that
 condition (2.2) has not been used in this part of the proofl.

 For d > 3, we cannot assume that an unbounded component will have a
 boundary of infinite (d - l)-dimensional Lebesgue measure. Here we use
 condition (2.2) to obtain a local vacant component argument, which is analo-
 gous to the local occupied component argument in the proof of Theorem 2.1.
 As such we omit the details of the proof. El

 Next, we indicate how to prove Propositions 2.1 and 2.2. For both these
 propositions we need the following geometric result.

 PROPOSITION 5.4. If k d-dimensional balls intersect [0, 1]d, then the vacant
 region inside [0, 1]d has at most Cdkd components, where Cd is a constant
 depending only on the dimension.

 PROOF. For case of exposition, we first give the proof for the case d = 3.
 Without loss of generality we can assume that no ball is contained in the
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 union of the others since adding this particular ball would not affect the
 number of vacant components. So consider three balls, none of which is
 contained in the union of the other two. We claim that the intersection of the
 boundaries of these balls consists of at most two points. To see this, note that
 if the intersection of the boundaries of the first two balls is not empty, it is
 the boundary y of some circle. Denote the plane containing this circle by H.

 The intersection of all three boundaries can only then be larger than two

 points if the intersection of the third ball with H is y. It is easy to check that
 in this case there is a ball which is contained in the union of the other two, a
 contradiction. We call a point in the intersection of three boundaries a triple
 point. Now each vacant component in [0, 1]d which does not intersect the
 boundary of the cube contains at least one triple point on its boundary and a
 triple point can belong to only one vacant component. Hence there are at most

 2( ) vacant components which do not intersect the boundary of the unit cube.

 Next, we look at the intersection of vacant components with the faces of the
 cube. The intersection of a three-dimensional ball with a face is a two-dimen-
 sional ball. Any vacant component which intersects a face of the unit cube but
 no edge must contain at least one point of intersection of two such two-dimen-

 sional balls. For each face therefore there can be at most 2( ) such vacant

 components, giving a total number of at most 12(t). Finally, an analogous

 argument shows that the number of vacant components which intersect an
 edge is at most 12(k + 1). Hence, the total number of vacant components is
 bounded by C3k3 for a suitable constant C3. The argument in higher dimen-
 sions is essentially the same and is omitted. L-

 Now Proposition 2.1 is immediate from Proposition 5.4, and Proposition 2.2
 follows from Proposition 5.4 after simple calculations similar to the calcula-
 tions in the proof of Lemma 4.2.

 6. The Poisson case: Proof of Theorem 2.3. We begin with the occu-
 pancy case. Observe that in the proof of Theorem 2.1, we needed condition
 (2.1) in three different places, namely, (i) to prove Lemma 4.1, (ii) to show
 that EYA < ? in (4.1) and (iii) to show that the event in (4.2) has positive
 probability. We shall use the independence property of the Poisson process to
 show all the above, without taking recourse to condition (2.1). This, coupled
 with the other arguments of Section 4, will prove (i) of Theorem 2.3.

 For (ii), indeed, if X is a Poisson point process of intensity A, from (4.1) we
 have

 EYA? < (1 + lk(k + 1))(P( p < K))kP(X(A) = k)
 k=O

 00

 - E (1 + lk(k + 1))(P( P < K) (k!) exp( -kAd( A))(Ad(A))
 k=O

 < 00.

 For (i), we need to show the following.
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 LEMMA 6.1. For a Boolean model (X, p) driven by a Poisson point process
 of intensity A, C contains either 0, 1 or infinitely many unbounded compo-
 nents a.s.

 PROOF. In view of Lemma 4.1, we only need to consider the case when the
 random variable p is bounded. Thus let R > 0 be such that

 P( p > R) = 0,
 P(R - -7 < p < R) > 0 for any 71 > O.

 Now suppose (X, p) admits K ? 2 unbounded occupied components a.s. If
 we remove all the balls centered inside a box B, then the resulting picture
 should contain at least K unbounded occupied components a.s. In other
 words, using the notation from Section 4, C(BC) admits at least K un-
 bounded occupied components a.s. (but, of course, not infinitely many).

 Given a box B and ? > 0, consider the event

 A(B, ?) {d(U, B) < R - ? for any unbounded occupied

 component U in C(BC)},

 where d(c) denotes Euclidean distance in Rd. Now partition the box into cubic
 cells with edge length a > 0, and let C&a = {W1,.. ., WN} denote the collection
 of all the cells which are adjacent to the boundary of B. Clearly, for a box B
 and an 8 > 0 for which A(B, e) occurs, we can find a = a(B, 8) > 0 and

 -q = -q(a) > 0 such that, for any point x - B with d(x, B) < R - ?/2, there
 exists a cell W = W(x) E Ka for which we have supy E w d(x, y) < R - 217.
 This means that if we center in each cell of Ka a ball with radius between
 R - -q and R, then the region {x X B: d(x, B) < R - e/21 will be completely
 covered by these balls.

 Let E = E(a, 17) be the event that each cell in Ka contains at least one
 Poisson point with an associated ball of radius between R - -q and R. Since
 E depends on the configuration inside the box B, A(B, 8) depends on the
 configuration outside the box B and the radii are independent of the Poisson
 process, we have

 P(A(B, e) n E) = P(A(B, ?))P(E).

 Now if both A(B, e) and E occur, then there is only one unbounded
 occupied component. Now P(E) > 0, so in order to arrive at a contradiction,
 we need to show that there exist a box B and an 8 > 0 such that P(A(B, 8))
 > 0.

 Since (X, p) admits K ? 2 unbounded occupied components, we can find a
 box B so large that, with positive probability, d(U, B) < R for every un-
 bounded component U of C. Also, the radius of any ball is at most R, so, with
 positive probability, d(U, B) < R for every unbounded occupied component U
 in C(BC). Thus for this B we can find 8 > 0 such that A(B, 8) occurs with
 positive probability. L1
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 Finally, for (iii) we use arguments as in the last lemma to show that the
 following event has positive probability and replaces E?(N) in (4.2):

 {BN is covered by balls centered in BN and, irom the
 boundary of the union of these balls, at least three disjoint
 occupied "branches" radiate to infinity}.

 This is enough to prove Theorem 2.3(i).
 For the proof of (ii) of Theorem 2.3, we first observe that (2.4) holds for any

 bounded set B, and thus (2.2) holds. Moreover, to prove Theorem 2.2 we
 needed condition (2.3) in Proposition 3.2, in Lemma 5.1 and to show that
 D0(N) in (5.2) has positive probability. However, in the proof of Proposition
 3.2 we note that we do not need condition (2.3) to show that whenever V 0 0
 a.s. there can be at most finitely many balls having nonempty intersection
 with a fixed bounded region. We shall use only this part of Proposition 3.2
 and as such condition (2.3) is irrelevant here. Lemma 5.1, however, needs to
 be reproved because it crucially uses (2.3). Although we use the independence
 property in more or less the same way as in Lemma 6.1-removing all balls
 from a box B instead of adding as in Lemma 6.1-we have to be more careful
 because balls centered outside the box could have nonempty intersection
 inside the box and disallow us from connecting the vacant components in the
 box. It will be clear from the proof of the following lemma that P(D?(N)) > 0
 remains true in this Poisson setup. Thus, to complete the proof of Theorem
 2.3, we need the following lemma.

 LEMMA 6.2. For a Boolean model (X, p) driven by a stationary Poisson
 point process, the vacant region V contains either 0, 1 or infinitely many
 unbounded components a.s.

 PROOF. Suppose there are K ? 2 unbounded components of V. For A c
 Rd, let V(A) denote the vacant region in R0d which we obtain after removing
 all points (and associated balls) in Ac. Let Bn = [ - n, n]d, for some integer
 n > 0, be a box big enough such that, for some -q > 0,

 P (all unbounded vacant components in V( Bc) have

 nonempty intersection with Bn) > 'q.

 There exist integers N > 0 and R > 0 such that

 P (all unbounded vacant components in V( Bc) have

 nonempty intersection with Bn and there are at most
 N balls each with a radius less than or equal to R which

 have nonempty intersection with Bn) > 2.
 2

 Now consider the annulus A = n - rR, n + R]d \ Bn and partition this by
 the integer lattice. Let ' be the finite collection of all cells of this lattice in A.
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 Since F is finite, we can find (nonrandom) cells W1,..., WN in F such that,
 for W:= W1 U ... U WN,

 P (all unbounded vacant components in V(( Bn U W) c) have
 nonempty intersection with Bn and Bn has empty inter-
 section with any ball not centered in Bn U W) > 0.

 Denote the event in the last expression by E. Then E depends only on the

 points outside Bn U W and the associated radii. Hence it follows from the
 independence property of the Poisson point process that

 P(E n {X(Bn U W) = 01) = P(E)P(X(Bn U W) = 0) > 0.
 However, the event in the previous expression implies that all the K vacant

 components are connected by the vacant region Bn, that is, there exists only
 one vacant component. This contradiction establishes Lemma 6.2. Lz

 7. Examples. We shall indicate how one can construct some examples to
 show that (2.1) and (2.3) cannot be removed from the statements of our
 results. Our first example will be the situation in which the radii are bounded
 from below and above. We will show that, for any integer K, we can construct

 a point process which admits K unbounded occupied and K + 1 unbounded
 vacant components. In the second example, we only require the radii to be
 bounded from above. There, we shall construct a point process which admits
 the coexistence of exactly two unbounded occupied components.

 EXAMPLE 1 (The case 8 < p < R a.s. for some 8, R > 0). Without loss of
 generality, let us assume that R < 1. We borrow a bit from Burton and
 Keane (1991) here. They considered discrete percolation in 2, and they
 showed that there exists for any K a stationary and ergodic (under the

 actions of Z2) measure AK on {0, 1}12 such that the following event has
 AuK-measure 1: "There exist exactly K occupied components Cl, C2,..., Ck
 which are all infinite and such that minz E c, z' E ci {Iz - z'l} ? 2 for all i 0 j,
 and such that

 Ci =1 {1 * *, z-1 i Zil .. * I

 where lzjz - ziI+ = 1, for all j, and lzji - Z 2 2, for all j, k with L - kI > 1."
 In words, the occupied components are all infinite and just look like doubly
 infinite strips of width 1.

 We construct a stationary point process as follows. Consider any straight-
 line segment of length 1 between two occupied neighbors in Z2. We put [38]
 points evenly spaced on these line segments. Finally, we shift the whole
 configuration over a vector (u, v), where u and v are chosen randomly
 according to Lebesgue measure on the unit interval. This procedure results in
 a stationary and ergodic point process, and it is easy to check that under the
 assumptions on p, each of the clusters Ci give rise to one unbounded occupied
 component, while the complement of all these components form K + 1 vacant
 unbounded components.
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 .... l....

 FIG. 1. The two tree-like structures in the plane. The picture is to be continued in the obvious
 self-similar way.

 EXAMPLE 2 (The case p < R a.s.). We are not going to be very precise here,
 as constructions of the type we will consider already appear in different
 places in the literature [e.g., Rudolph (1979), Burton, Choi and Meester
 (1992) or Burton and Meester (1993)]. The idea is to imbed in the plane in a
 stationary (and ergodic) way, two tree-like structures as in Figure 1. We
 make sure that the two trees never get closer than 3R to each other. The
 trees consist of straight-line segments of various lengths, and we order these
 lengths in the natural increasing order, say, 11, 12. Depending on the

 precise distribution of p, we define an as the smallest positive integer with
 the following property: If we put an points evenly spaced on a line segment of
 length in, the probability that the whole line segment is contained in the

 union of all balls centered at these an points is at least 1 - 2-n. Having
 defined an for all n, the point process is obtained by putting an points, evenly
 spaced, on each line segment of length ln. Now consider the point z in Figure
 1. There is a unique sequence of line segments along which we can radiate to

 infinity starting from z, and we denote this sequence by k 1(z), k 2(z), ...
 From the Borel-Cantelli lemma, it follows that with probability 1, for all n

 large enough, the line segment kn(z) is completely covered by balls centered
 at k n(z). Thus this gives rise -to at least one unbounded occupied component.
 Obviously, the two trees give rise to different unbounded occupied compo-
 nents because the radii are never larger than R. However, because of the fact
 that, for z and z' of the same tree, kn(z) = kn(z') for all n large enough
 (depending on z and z' of course), each tree gives rise to exactly one
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 unbounded occupied component. We conclude that there are exactly two
 unbounded occupied components a.s.
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