
 Sankhya : The Indian Journal of Statistics
 1994, Volume 56, Series B, Pt. 3, pp.. 462 - 467

 A LIMIT THEOREM FOR THE IMBALANCE OF
 A ROTATING WHEEL

 By K.G. RAMAMURTHY and V. RAJENDRA PRASAD
 Indian Statistical Institute

 SUMMARY. A rotating wheel fixed with n blades in a symmetrical fashion is subject to

 centrifugal forces exerted by the blades. We study the asymptotic nature of the resulting force

 acting on the wheel (as n increases) under the assumption that the blades come from a statistically

 controlled manufacturing process.

 1. Introduction

 Consider a rotating wheel with a specified number of blades fixed radially
 and symmetrically along the circumference of the wheel. The wheel is then
 subject to centrifugal forces exerted by the blades. The force exerted by each
 blade is proportional to its moment which is by definition the product of the
 blade weight and the distance between the wheel centre and the centre of the
 gravity of the blade. The magnitude of the net resulting force exerted by all the
 blades is called the imbalance. Due to process variability of the moments at
 the manufacturing stage, the imbalance is non-zero almost all the time. How
 ever, the engineering considerations require this to be small. This problem is
 not uncommon in engineering industry. A rotor of a steam turbine generator
 provides a good example in this regard.

 The following combinatorial optimization problem is of considerable appli
 cational interest. Given the specified number of blades of known moments, how
 to fix them at symmetric locations on the circumference of the wheel so that
 the imbalance is minimum? Murthy (1976), p. 416, has formulated this as a
 quadratic assignment problem. In this paper, we look at the wheel balancing
 problem in a different angle. We assume that the blades come from a manufac
 turing process that is under statistical control and they are fixed at the locations
 in a purely random order. Consequently, the imbalance is also random. We
 show that the asymptotic distribution of the imbalance (with a change of scale)
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 is a x-distribntion with 2 degrees of freedom. In many practical situations, the
 number of blades in a rotor ranges from 150 to 250 and therefore the asymptotic
 approximation is very much valid.

 2. The statistical model

 To model the physical system described above, we first make a simplifying
 assumption that all the forces act in the same plane. This enables us to find
 the net resultant force, that is, the imbalance by resolving each of the forces in
 two specified mutually perpendicular directions. Let p denote the radius of the
 wheel and n the specified number of blades. Mark n symmetric positions on the
 circumference of the wheel as 1,2, ..., n. Note that any two adjacant positions
 make an angle of 27t/ti radians at the centre of the wheel. Take the centre of
 the wheel as the origin and the line passing through the origin and position n
 as x-axis. Take the line perpendicular to x-axis as y-axis. Suppose the blades
 are fixed to all the n positions of the wheel in a random order. Index the blade
 fixed to r?th position (1 < r < n) as r and let wr be the weight of blade r and
 cr the distance between its fixing end and its centre of gravity. Assume that
 the centre of gravity of blade r lies on the line joining the origin and position r.
 The centrifugal force exerted by blade r is proportional to Zr = (p-f- cr)wr. To
 keep the description simple, we treat Zr itself as the centrifugal force exerted
 by blade r.

 Let anr = cos (27rr/n) and ?nr = sin(27tr/n) for r = 1 to n. The centrifugal
 force Zr of blade r can be resolved into components anrZr and ?nrZT along x
 axis and y-axis respectively. Thus the components of the resulting force along
 x-axis and y-axis are

 n

 xn = y ^ oLnrzr
 r=\
 n

 Yn = / ^?nr%r
 r=l

 and the imbalance is y/X2 4- Y2.
 In this paper, we shall investigate the asymptotic distribution of \JX2 -f Y2.

 3. Notation and preliminary results

 Since all the blades come from a statistically controlled manufacturing pro
 cess, Z\, Z2,..., Zn are independent and identically distributed non-negative ran
 dom variables. Assume that the first three moments exist and let // = E(ZT),
 a2 = V(Zr) t? 0 and 7 = E \ Zr ? \.i |3. This assumption usuallly holds in
 practical situations.
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 Lemma 1.
 n n

 (i) ]Tanr = ]T/3nr = 0 forn > 2
 r=l r=l
 n

 (?) ^ Otnr?nr = 0 for 71 > 2
 r=l
 n n

 (iii) ? a?r = ?/& = n/2 for n > 3.
 r=l r=l

 Proof. The proof makes use of the fact that the sum and the sum of squares
 of all n-th roots of unity are equal to zero for n > 3. For reference, see John
 (1980, 201-202).
 Theorem 1. For n > 3,
 (i) E(Xn) = E(Yn) = 0

 (i\)E(X?) = E(Yni) = nay2

 (iii) E(XnYn) = 0.

 Proof. Trivial consequence of Lemma 1.
 Let a and b be two real numbers such that (a, b) ^ (0, 0) and let

 1 \?2

 and
 ^nr = Cnr(Zr - /i) (2)

 for n > 1 and 1 < r < n. Let Fnr(x) denote the distribution function of Znr, that
 is, Fnr(x) = P(Znr < x) and let F(x) be the distribution function of (Zr ? //).
 Define

 n

 Wn = 1*rZnr forn > 1.
 r=l

 The double sequence {Znr, l<r<n, n>l}is said to be an elementary
 system if it satisfies the following conditions.

 (1) Zn\, Zn2)...., Znn are independent r.v.'s for any fixed n;
 (2) V(Znr) is finite;
 (3) V(Wn) is bounded by a constant C not dependent on n\
 (4) max V(Znr) ?? 0 as n ? oo. l<r<n

 If the sequence satisfies, in addition, two more conditions
 (5) E(Znr) = 0 for 1 < r < n;
 (6) V(Wn) = 1;

 for n > 1, then for sequence is said to be a normalised elementary system.
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 Theorem 2. (Gnedenko, 1978, p. 284). A necessary and sufficient condi
 tion for the convergence of sums Wn 's of a normalised elementary system
 to N(0,1) in distribution is

 V^ / x2dFnr(x) ? 0 as n ?> oo for any r > 0 ... (3)

 The condition (3) is called Lindberg condition.

 4. Asymptotic distribution of the imbalance

 We now show that the asymptotic distribution of (\J2/no2Xn, y/2/na2Yn) is
 a bivariate normal distribution and that of ( -K X2+ -\ Y2) is a v2-distribution
 with 2 degrees of freedom.

 Theorem 3. The double sequence {Znr, I < r < n,n > 1} is a normalised
 elementary system satisfying the Lindberg condition.

 Proof Note that for any fixed n, the variables Zn\,Zn2, ...,Znn are inde
 pendent with

 E(Znr) = 0 and V(Znr) = 2(aJr+bM2 (4) n(az 4 bz)
 It is obvious that for any finite a and b,

 n(az 4- <r)

 and

 We have

 max V(Znr) ?> 0 as n ?+ oo. ... (5) l<r<n

 V(Wn) = ?>(Znr) r=l
 n

 The last equality holds due to Lemma 1. Thus we have

 V(Wn) = l. ...(6)
 It follows from equations (4) to (6) that the double sequence {znr>, 1 < r <
 7i,7i > 1} is a normalised elementary system.
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 We now show that the Lindberg condition also holds. It can be easily seen
 that

 / x2dFnr(x) = c2nr ? x2dF(x J\x\>t J\x\>rl\cnr\

 and

 ?/ x*dFnr(x) = ?d(/ x*dF(  x))

 < ECnr\^\([ \x*\dF(x)) fr? r J\z\>t/\c?\

 < I(?|tv,r|3)?|ZB-Ai|3 r=l

 It is easy to verify that

 Therefore,

 r=l  y/?
 V5(la| + |frl)'

 ay/a2 + b2

 n ?

 x2dFnr(x) <
 _ V2(\a\-r\b\)
 Ty/? ay/a2 -f b2

 fvfl(M+l*
 [ (T\Za2+b

 7 is finite and Now the Lindberg condition holds since the value I v?yQji"?
 invariant of n.

 It follows from Theorems 2 and 3 that for any real numbers a and 6, (a, b) ^

 (0,0), Wn-^ AT(0,1), that is,

 a^Lxn + fc^k h AT(0, <rV -f ?>2)). y/n yjn
 Thus we have for any real a and b

 a-^=Xn + fe-^|=yn ^ aX -f- 6F

 where X and Y are two independent standard normal variables.

 ...(7)

 Theorem 4. (Rao, 1974, p. 123). Let {X^ ,X{^ ..., X?k)}, n = 1, 2, ... be
 a sequence of vector random variables and let, for any real Ai, A2,... A/t,

 AlX(D + ... + AtX(*> i> AlX(]) + ... + AtX?
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 where X^l\ ... X^ have a joint distribution F(x\,..., Xk). Then the lim
 iting joint distribution function of Xn ,...Xn exists and is equal to
 F(x1,...,xk).

 From the convergence (7) and the above theorem, it follows that the limiting

 joint distribution of (-^?Xn, -^Yn) is a bivariate normal distribution with
 mean vector 0 and dispersion matrix /. Further, the asymptotic distribution of

 ?r^X2 -f -?t?Y2 is a x2-distribution with 2 degrees of freedom since the function
 g(x, y) = ar 4- y2 is a continuous real valued Borel function. For reference, see
 the theorem on page 24 of Serfling (1980).

 Therefore, the magnitude of the imbalance multiplied by \[2/(a^Jn) follows
 asymptotically x-distribution with 2 degrees of freedom. Since the mean of a x
 distribution with 2 degrees of freedom is x/tt/2, we can write for large n

 E^Xl + Y^)^{a^)/2. ...(8)
 We also have from Theorem 1

 E(Xt + Yn>)*no2 ...(9)

 for ti > 3. Therefore, we have

 V( y/X? + Y*) ? (1 - 7r/4)n<72 ... (10)
 for large n.
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