
 Sankhy? : The Indian Journal of Statistics
 1996, Volume 58, Series A, Pt. 2, pp. 225-242

 A MARKOV CHAIN MONTE CARLO METHOD FOR
 GENERATING RANDOM (0,1)-MATRICES

 WITH GIVEN MARGINALS

 By A. RAMACHANDRA RAO
 RABINDRANATH JANA*

 and
 SURAJ BANDYOPADHYAY
 Indian Statistical Institute

 SUMMARY. In this paper we give an MCMC method using switches along alternating cycles

 for generating random (0, l)-matrices with given marginals and examine its empirical performance
 in several examples.

 1. Introduction

 The problem of generating a random (0, l)-matrix with given marginals oc
 curs in different contexts. We mention two instances.

 Wilson (1987) considered the incidence and non-incidence of 56 species of
 birds in 28 islands of Vanuatu. The data can be represented by a 56 x 28 matrix
 A where the (i, j)-entry is 1 or 0 according as the z-th species is present on the
 j-th island or not. He wanted to test the null hypothesis that the occurrence
 of the species on the islands is random in the sense that all possible incidence
 matrices are equally likely, using cooccurrences of species. Since the chance of
 occurrence of a species on an island depends on how numerous the species is
 and on the capacity of the island which are indicated by the row total of A
 corresponding to the species and the column total of A corresponding to the
 island, he assumed that only those (0,1)-mat rices which have the same row
 sums as those of A and the same column sums as those of A are possible. To
 estimate the distribution of any statistic by simulation, one has to generate a
 random (0, l)-matrix with the given marginals.

 Another instance where one has to generate a random (0, l)-matrix with
 given marginals occurs in the analysis of social networks. A social network is
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 essentially a digraph, the nodes being the actors, an arc being drawn from i
 to j if i is related to j according to the particular relation being studied. The
 digraph or social network can also be represented by its adjacency matrix A
 defined as follows: Let the number of nodes be n. Then A is the (0, l)-matrix
 of order nxn with a?; = 1 or 0 according as (?, j) is an arc or not. Note that A
 is now a square matrix and the diagonal elements of A are 'structurally zero\

 Also here, the i-th row sum of A and the i-th column sum of A represent the
 texpansiveness, and the 'popularity' of the i-th actor. Hence one can consider the
 null model that the observed (network as represented by its) adjacency matrix
 is a random n x n (0, l)-matrix with structurally zero diagonal and with given

 marginals. One may be interested in estimating the distribution of a statistic

 (like the number X)?<? OijO'ji of reciprocal pairs) under the null model.
 Generating a random (0, l)-matrix when both marginals are fixed seems to

 be a difficult problem. Note that, in contrast, if, only the row sums n, r2,..., rm

 of an m x n (0, l)-matrix are fixed, the number of matrices is YYiL\ (?) an(* it is
 easy to generate a random matrix since all one has to do is to choose r? cells at
 random from the i-th row and put l's there, the choices from different rows being
 made independently. When both marginals are given, some recursive methods
 have been given by Sukhatme (1938) and Katz and Powell (1954) for finding
 the number of matrices. But they are of no practical use even for moderate n
 like n = 20 since the number of matrices can be astronomical and the amount

 of computational work so huge that even modern computers cannot handle
 it. However, Snijders (1991) bypassed the problem of generating a random

 matrix and gave a way of generating (0, l)-matrices with given marginals and
 with computable probabilities. He could then estimate the distribution of any
 statistic using a ratio estimator. More recently, Pramanik (1994) gave a method
 for generating an approximately random (0, l)-matrix with given marginals but
 his method does not seem to work well for small orders.

 In this paper we present a Markov Chain Simulation method to generate a
 random (0, l)-matrix with given marginals which is applicable when either (i)
 there are no structural 0's, or (ii) the matrix is square with structurally zero
 diagonal. We shall refer to these problems as Problem I and Problem II. Our
 main interest is in Problem II, particularly in estimating the distribution of
 the number s of reciprocal pairs though the method can be used for estimating
 the distribution of any statistic. Besag and Clifford (1989) presented a similar

 method for Problem I, though the details regarding the way the method is
 implemented differ considerably. Somewhat similar ideas have also been used
 by several others including Diaconis and Sturmfels (1995) and Hoist (1995).
 A different type of Markov Chain Simulation method for generating random
 regular undirected graphs was given by Jerrum and Sinclair (1988).
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 2. Markov chain simulation method

 We denote by 8 the class of all (0, l)-matrices with given row sumsri, r2,...,
 rm and given column sums c\, c2,..., c?. If we are interested in generating a
 random network we take m ? n and impose the further condition that the
 diagonal entries are all 0. A will usually denote an element of 8. Our simulation
 method uses the concept of an alternating rectangle defined as follows:

 Definition. An alternating rectangle in A is a set of four distinct cells
 of the type {?iji, ?ij*2? *2j2> *2ji} in A such that the entries in the four cells are
 alternately 0's and l's as one goes around the rectangle in either direction and
 the 0's are not structural 0's.

 By switching along an alternating rectangle in A, we mean interchanging
 0's and l's in the four cells forming the alternating rectangle. It is easy to see
 that switching along an alternating rectangle of a matrix A 8 gives another

 matrix B in 8. It is also clear that the same four cells form an alternating
 rectangle in B also and by switching along it in B we can get back to A.
 For example, the following two matrices can be obtained from each other by
 switching along the alternating rectangle {12,14,24,22}:

 r i i i o i r i o i i ] 10 0 1,110 0
 [oioij [oioij

 The idea of switching along alternating rectangles is quite old. This has been
 used by Ryser (1963) to study classes of (0, l)-matrices and, with a slight mod
 ification, by Diaconis and Sturmfels (1995) and others to study contingency
 tables. Also, for problem I, it is well known that any matrix in 6 can be
 obtained from any other by a finite sequence of switches along alternating rect
 angles, see for example, Ryser (1963). However, we give a proof of the following
 theorem, including the bound on the number of switches required, for the sake
 of completeness.

 Theorem 1. Let A and B be matrices belonging to 6 and let there be
 no structural 0[s. Then B can be obtained from A by a sequence oft or
 less switchings along alternating rectangles where t is the minimum of the
 number of O's and the number of lfs in A.

 Proof. If A = B there is nothing to prove. So let A ^ B. Then the
 Hamming distance d between A and B, i.e., the number of cells ij such that
 Oij ^ bij is an even positive integer. We now show that we can switch along an
 alternating rectangle of either A or B so that the Hamming distance between
 the two matrices decreases by at least two. Let a^ ^ bijr Without any loss
 of generality we may take o,^ = 1 and 6,i;i = 0. Since the ji-th column sums
 of A and B are equal, there exists i2 such that a^ = 0 and 6?2jl = 1. Since
 the ?2-th row sums of A and B are equal, there exists j2 such that a,Jj2 = 1

All use subject to http://about.jstor.org/terms
This content downloaded from 14.139.222.72 on Tue, 02 May 2017 09:29:09 UTC



 228  A.R. RAO, R. JANA AND S. BANDYOPADHYAY

 and bi2j2 = 0. Proceeding like this it is easy to see that, as the process cannot
 continue indefinitely, there exists an 'alternating cycle' in A with entries l's
 and 0's, the corresponding entries in B being 0's and l's. Without loss of
 generality, let ?iji,?2Ji,?2J25?3J2, . >njfc>Mjf* be such an alternating cycle with
 the minimum length and let a?Ul = 1. Note that the i's are distinct and the
 j's are distinct. If a,i;2 = 0 then switching along iij\,?2Jit?2J2^iJ2 in A gives
 a matrix C whose Hamming distance from B is at least two less than the
 Hamming distance of A from B. If fc^y, = 1 we can perform the switch in B.
 These two cases are exhaustive since if o*lj2 = 1 and biUi ? 0 then we have a
 contradiction to the minimality of the length of the alternating cycle as we can
 replace i\j\, ?2ji, i2J2 by %\J2 in the earlier alternating cycle to get a shorter one.

 Thus by switching along an alternating rectangle of either A or B, we can
 reduce the Hamming distance between them by at least two. Since switching
 is a reversible process, it follows that we can go from A to B in at most d/2
 switchings. Since the number of cells ij such that a,j = 1 and ?fy = 0 equals the
 number of cells ij such that at; = 0 and 6^ = 1 and this number cannot exceed
 t, it follows that d <2t and the theorem is proved. I

 Perhaps it is worth mentioning that the number of steps required is often
 much less than the bound given in the theorem.

 For Problem II, the situation is not always so nice. There are examples,
 though rather rare, where some matrix in IS cannot be reached from some other

 matrix in IS by switching along alternating rectangles. For example, both the
 following matrices have all row sums and column sums equal to 1 but one cannot
 be obtained from the other by switching along alternating rectangles:

 " x 1 0 1 [ x 0 1 0x1, 1x0
 _ 1 0 x J [ 0 1 x _

 Here we have denoted structural 0's by crosses. Note that the above matrices do
 not have any alternating rectangles. However, the off-diagonal entries in each
 matrix form what we will call a compact alternating hexagon and one can go
 from one matrix to the other by switching along it.

 Definition. A compact alternating hexagon in A is a set of 6 cells of the
 type {?i?2,?i?3,?2?3,?2*1,?3*i5?3?2} with entries 1,0,1,0,1,0 respectively, where
 *i> H) ?3 are distinct.

 Switching along such a compact alternating hexagon means interchanging
 l's and 0's in the six cells. Note that for the compact alternating hexagon in
 the second matrix above, we may take i\ = 1, ?2 = 3 and ?3 = 2.

 Theorem 2. Let A and B be two distinct matrices belonging to IS
 corresponding to Problem II. Then B can be obtained from A by a sequence
 oft or less switchings along alternating rectangles and compact alternating
 hexagons, where t is the minimum of the number of 1 's and the number
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 of non-structural 0's in A.

 Proof. The Hamming distance d(A, B) is clearly even. We now show that
 we can switch along an alternating rectangle or a compact alternating hexagon of
 either A or B so that the Hamming distance between the two matrices decreases.
 We will prove this by contradiction. So assume that the distance cannot be
 decreased by any such switching.

 We form a bipartite graph G with vertex set XuX' where X = {1,2,..., n}
 and X' = {1', 2;,..., n'} as follows: if is an edge of G if and only if i ^ j and
 atj ?" bij- We also color each edge of G red or blue thus: edge if receives color
 red if Oij = 1 and 6tJ = 0 and color blue if Oij = 0 and bij = 1. Since the row
 sums of A and B are the same, the number of red edges equals the number of
 blue edges at any vertex in X. Since the column sums of A and B are the same,
 the number of red edges equals the number of blue edges at any vertex in X1.

 By an alternating path in G we mean a path in which the edges are alter
 nately colored red and blue. By a diagonal pair we mean a pair of vertices of
 G of the type {?, t'}, t = 1,2,..., n. Note that a diagonal pair of vertices is not
 adjacent in G. We call an alternating path in G proper if all its vertices belong
 to different diagonal pairs.

 We first show that if ?1*31314 is any alternating path in G with ?1 / ?4 then
 ?i?4 is an edge of G with color the same as that of ?i?2- It is clear that ?1, ?2, ?3
 and ?4 are distinct. Without loss of generality, let ?i?'2 be red. If a^ = 0
 then by performing the switch on the matrix A along the alternating rectangle
 (?i?2,?i?4,?3?4,?3?2) we get a matrix C with <?(C,B) < d(A,B), a contradiction.

 Thus a?L?A = 1. If bilH = 1 then by performing the switch on the matrix B along
 the alternating rectangle (?i?2>?i?4>?3?4,?3?2) we get a matrix D with <i(A,D) <
 d(A, B), a contradiction. Thus 6^4 = 0 and so ?i?4 is an edge of G with color
 same as that of ?i?2.

 We next show that there is no proper alternating path of length more than 2
 iiiG. Suppose there is one such. Let p be such a path of maximum length. With
 out loss of generality let // = [?1, ?2, ?3, ?4,...] and i\i2 be red. Then by the state
 ment proved in the preceding paragraph, it easily follows that ?i?2>?i?4,?i?6> * *
 are all red edges and ?2?3, ?2?5, ?2*7> are all blue edges. If the last vertex of p is
 i'2k then k > 2 and there exist at least A; blue edges at ?1 and so a blue edge ?i??
 with ?0 different from ?i,?2,?3, , ?2fc> & contradiction to the maximality of //.
 So let the last vertex of p be ?2?+.1 where k > 2. Then there are at least k blue
 edges at ?1 and, by the maximality of p, it follows that ?i?3,?i?5,... >?i?2fc+i are
 all blue edges. Looking at the path p in the reverse direction, we similarly get
 *2*+i?i*> ?2?+i?ifc_2> ? ^2fc+i?2 are ^ blue edges and ?2jb+i?!, ?2*+i*3> ? *2fc-n?2jfc-i
 are all red edges. Now the alternating path ?i?3?2fc+i?2 g*ves a contradiction.

 We are now ready to complete the proof of the theorem. Since A ^ B,
 there exists a red edge i\i2 and so a blue edge isi2. Now there exists a red
 edge at ?3 and by what was proved in the preceding paragraph, it follows that
 the only red edge at ?3 is ?3?/1. It follows similarly that the only blue edge at

All use subject to http://about.jstor.org/terms
This content downloaded from 14.139.222.72 on Tue, 02 May 2017 09:29:09 UTC



 230  A.R. RAO, R. JANA AND S. BANDYOPADHYAY

 ?i is ?i?3, the only red edge at ?3 is ?2^3 and the only blue edge at ?2 is ?2*1
 Thus {?i?2,?i?3)?2?3,?2?i)?3?i,?3?2} is a compact alternating hexagon in A and
 by switching along it we get a matrix C such that d(C,B) = d(A,B) ? 6, a
 contradiction.

 Thus we can go from any matrix in IS to any other by a sequence of switches,
 the distance between the matrices decreasing by at least 2 after every switch.
 That at most t switches are required follows as in the proof of Theorem 1. This
 completes the proof of the theorem. I

 We mention that the idea of alternating cycles (of length 4 or more) is also
 old and is used in the solution of the Assignment Problem. However, we believe
 our Theorem 2 is new.

 From now on we will use the term alternating cycles to mean (i) alter
 nating rectangles for Problem I and (ii) alternating rectangles and compact
 alternating hexagons for Problem II. We mention, however, that for most
 instances of Problem II, it is enough to consider alternating rectangles.

 2.1 Basic step. We can now give the basic idea of the Markov Chain Sim
 ulation method to generate a random matrix belonging to 8. We start with
 an initial matrix belonging to 8. At any stage we enumerate the alternating
 cycles in the current matrix, choose one of them at random and switch along
 it to get a new matrix in 8. We do this a large number of times. Then one
 feels that the matrix obtained should be a nearly random matrix (we shall see
 presently that this is not quite correct). To try to prove this, let us formulate it
 as a Markov Chain. The states of the Markov Chain are the matrices belonging
 to 8. Note that 8 is finite. Let N = |8| > 2. We shall say that two states
 are adjacent if the matrices represented by them can be obtained from each
 other by switching along one alternating cycle. Let d(i) denote the number of
 states adjacent to the state i. Then the procedure given above obviously forms
 a Markov chain with transition probability pij = l/d(i) if j is adjacent to i and
 0 otherwise. Note that the MC is irreducible since every state can be reached
 from every other state in a finite number of steps. So, (e.g., Feller, 1960) there
 exists a unique stationary distribution and, if the MC is aperiodic, the distribu
 tion of the state after q steps approaches this stationary distribution as q ?> 00,
 whatever be the initial state. To find the stationary distribution, note that it
 is a probability vector nf = (7Ti,7T2, ... ^n) such that tt'P = irf where P is the
 transition probability matrix ((pt;))- Taking 9i = d(i)/ J]fc d(fc), it is easy to see
 that Yli^iPij == O31 so TTj = flj. Thus according to the stationary distribution,
 the probability of the ?-th state is not \/N but is proportional to the number
 d(i) of alternating rectangles in the matrix corresponding to the ?-th state.

 2.2 Modification. As observed in the preceding paragraph, the basic MCS
 method given above does not choose the matrices in 8 with equal probabil
 ities and needs modification. Suppose we know an upper bound K for the
 d(i)'s. Then we can modify the basic method as follows: At any stage, if we
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 are currently in state ?, we go to any one of the states adjacent to ?, each with
 probability \/K and remain at the state ? itself with probability 1 - d(i)/K.
 Then the transition probability pij is \/K if ? ^ j and ?, j are adjacent, 0 if i ^ j
 and ?, j are not adjacent, and 1 ? d(i)/K if ? = j. Clearly now P is (symmetric
 and) doubly stochastic and so. the stationary distribution gives probability \/N
 to each state provided the MC is aperiodic. If at least one d(i) is strictly less
 than K, then as a bonus we have that for such an ?, pa > 0 and so the state
 i and (noting that the MC is irreducible) the entire MC are aperiodic and the
 distribution of the state after q steps tends to the discrete uniform distribution
 as q ?> oo, whatever be the initial state. We mention in passing that if d(i) = K
 for all ?, then the MC need not be aperiodic (if we consider Problem II with
 r = (2,2,1,1) and c = (1,2,2,1), there are exactly six states and d(i) = 2 and
 the period is 2 for each state.)

 The difficulty one has to face in using the modification mentioned in the
 preceding paragraph is in getting a good upper bound for the d(?)'s. If K is too
 large compared to the {/(?)'s, then them's become close to 1 and the convergence
 to the uniform distribution will be too slow. The best K would, of course, be
 the maximum of d(?)'s over all the states, increased by a small number to take
 care of periodicity. Since this exact maximum cannot be found out, we may do
 one of two things:

 (i) estimate the maximum using a pilot study and use the estimate as K,
 and

 (ii) use the maximum of the d(?)'s of the states visited till any stage as the
 K for the next stage.

 We shall refer to these two alternatives as Choice (i) and Choice (ii).

 2.3 Method I. For the MCS method with choice (i), which we call Method
 I, we have the following result.

 Theorem 3. Suppose we use Method I and so adopt the following proce
 dure: If the current state is i and d(i) < K, then we go to one of the states
 adjacent to i, each with probability l/K and remain at i with probability
 1 ? d(i)/K. If the current state is i and d(i) > K, then we go to one of
 the states adjacent to i, each with probability l/d(i). Then the station
 ary distribution of the MC gives a probability to the i-th state which is
 proportional to max(d(i), K).

 Proof. Let 0* = max(d(?), K). Then p,; = l/0? if i ^ j and ? is adjacent to
 3i Pij = 0 if ? t? j and i is not adjacent to j and pjj = max(l ? d(j)/K, 0). So
 QjPjj = max(K - d(j),0) and JT 0iPij = max(K, d(j)) = 0,. Thus 0T = 0' and
 7r'P = 7r' where 7r is obtained from 9 by normalizing. This proves the theorem. I

 Note that the estimate of K obtained by pilot study may not be a true upper
 bound for the d(?)'s but is expected to be close to the maximum of the d(i)ys.
 Hence Theorem 3 shows that after a large number of steps, the MCS method
 with Choice (i) chooses the matrices in 8 with nearly equal probabilities, the
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 probabilities being equal if K > max?d(?). Note that periodicity poses no
 problem at least theoretically since we can make K > max d(i) by increasing K
 a little if all the states visited in the pilot study have the same value of d(i).

 We note that if we can assume that K is an upper bound for the d(i)'s, then
 while implementing Method I, we do not have to generate all the alternating
 cycles in the current matrix at every stage. We may first choose a random
 number jR between 1 and K and then start generating alternating cycles in a
 systematic way. As soon as we reach the R-th alternating cycle, we switch along
 that cycle and go to the next stage. If all the alternating cycles are exhausted
 before reaching the R-th, then we go to the next stage without altering the ma
 trix. This simplification reduces the time taken by about 30%-40%. However,
 for this simplification to work properly, K has to be an upper bound.

 2.4 Method II. Here we use the basic MCS method with Choice (ii). Strictly
 speaking, this is no more a Markov chain since the transition probabilities at
 any stage depend not only on the current state but also on the states visited
 earlier through their d(i)'s which are used in updating K. However, it is easy to
 see that with probability 1, a state with the maximum d(i) is reached and then
 on the transition probability matrix does not change and it behaves like a MC,
 the limiting distribution being the discrete uniform distribution. A rigorous
 proof of this is given below.

 Theorem 4. Suppose we use Method II and so adopt the following
 procedure: Let the initial state be ?q. Take the initial value of K to be d(io).
 Whenever we move from a state i to a state i' we update K by replacing
 it by d(i') if d(i') > K. At any stage, if the current state is i, then we go
 to one of the states adjacent to i, each with probability \/K and remain
 at i with probability 1 ? d(i)/K. Then, in the limit, all states are equally
 probable.

 Proof. As already observed, our procedure is not exactly Markovian. How
 ever, we can reformulate it so that it becomes a Markov chain and then prove
 that the stationary distribution is uniform.1

 We define the new Markov chain M' to have state space {(*, j) : i is an
 original state and d(i) < j < L} where L is the maximum of d(i) over all original
 states. (Here, j denotes the 'current value of K\) It is easy to see that our
 procedure is equivalent to: we can go from state (i, j) to state (t', j') in a single
 step iff either (i) the original states i and ir are adjacent and j1 = max(j,d(i'))
 or (ii) i = i', j = jf and d(i) < j. Also the probability of transition is \/j
 in case (i) and 1 ? d(i)/j in case (ii). The MC starts with a state of the type
 (i,d(i)). Since it is possible to reach every original state from every other and
 their number is finite, it easily follows that all states of the type (i, j) with j < L
 are transient and the complementary set {(i,L) : i arbitrary} is a closed set of
 persistent states. Moreover, the transition matrix restricted to the latter set is

 *We are indebted to Prof. B. V. Rao for this proof.
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 doubly stochastic, so the stationary distribution of M' gives probability 0 to
 the transient states and equal probabilities to the persistent states, see Feller
 (1960). This is equivalent to saying that, in the limit, all original states are
 equally probable. I

 Remark. The conclusion of Theorem 4 remains valid if the initial value Kq
 of K is any integer > d(io).

 This remark follows easily from the proof of Theorem 4. The only modifi
 cation needed is that L has to be replaced by Ko throughout in case L < Kq.
 This remark will be used in the next subsection.

 We note that in Method II, we have to generate all the alternating cycles
 in the matrix at every stage and cannot use the simplification mentioned for

 Method I. Moreover, the information on K obtained in earlier runs of the MC
 is not used in later runs and the convergence to uniform distribution may be
 slower.

 2.5 Method III. Method I makes the assumption that the estimated K is a
 true upper bound for the d(i)'s while in Method II, there is some wastage of
 information. So we adopt a combination of the two, viz.: we estimate K based
 on a pilot study and use it as the starting value of K for the actual generation of
 random matrices. However, at every stage of generating the random matrices,
 we list all alternating cycles of the current matrix, update K if necessary, and
 use the updated value as the K for the next stage. If we use this method, which
 we call Method III, it follows from the Remark following Theorem 4 that, in the
 limit, all states are equally probable.

 We prefer Method III even though it takes slightly longer than the other two
 methods.

 We end this section by noting that after completing most of the work, we
 came to know that a MCMC method close to ours was presented by Besag and
 Clifford (1989) for Problem I, though the details differ considerably. Hoist (1995)
 also did similar work in a slightly different setting. Hendrickson, Jr. (1995) states
 that Stone and Roberts (1990) adopted Besag and Clifford's approach but their

 Monte Carlo sample tends to favour a restricted subset of (0, l)-matrices and
 that future work should evaluate the long-run probability distribution of (0,1)

 matrices from the transition probabilities to compare it to the exact distribution
 of (0, l)-matrices. We have attempted this last type of evaluation of the MCMC
 method in Examples 2 and 3 in Section 4.

 3. Some practical considerations

 Whether we use Method I, II or III, we have to decide on the number of steps
 to be used before the matrix obtained can be considered to be (approximately)
 random. By Theorems 1 and 2, any matrix in 8 can be reached from any other
 in at most t steps, where t is the minimum of the number of l's and the number
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 of non-structural 0's. In many situations, we have noticed that the number of
 steps needed will be much less than t. Hence for adequate mixing we think 2t
 to St steps will be enough. After working with several examples, we found that
 using St steps will be better even though the distribution of the number s of
 reciprocal pairs in a network can be estimated quite closely by using 2f steps.

 * We thus take the matrix obtained in the 3?-th step to be a random matrix.
 To get another random matrix, we again start with the given matrix and run the
 MC for St steps.This way we can obtain a sample of any required size M. We call
 running the MC for St steps starting with the given matrix a run. We denote
 the number of alternating cycles (rectangles in Problem I and rectangles and
 compact hexagons in Problem II) by ACCT and the number of random matrices
 generated at any stage by MATCT. If d is the ACCT of the initial matrix, we
 use the matrices obtained in 2d runs as a pilot to estimate K. After working
 with several examples, we found that increasing the maximum ACCT obtained
 in the pilot study by about 10% (and adding 1 to take care of small values) gives
 a reasonable value for K for the actual generation of random matrices. This
 is large enough to counter the negative effects of periodicity, if present, and is
 likely to be an upper bound for d(i)'s in most examples but is not too large so
 that running the MC for St steps will be enough.

 The probability that any statistic X takes a particular value x is estimated
 by the proportion p of matrices in the sample for which X = x. The standard
 error is y/p(l ? p)/M. We note that the standard error of the estimate of
 P(X = x) obtained by Snijders' method is also close to this.

 We now give the main steps of the procedure we have adopted in the form
 of an algorithm.

 Algorithm.
 Given: A (0, l)-matrix A and the number SS of random matrices to be

 generated. (We will denote the current matrix at every stage by A.)

 1. Find t = min(number of Ts, number of non-structural 0's).
 MAXUSED = 0.
 MATCT = 0.

 2. RUN = 1.
 3. A = initial matrix.

 STEP = 0.

 4. List the alternating cycles (alternating rectangles and, in case of problem II,
 the compact alternating hexagons) in the current matrix A and find their
 number ACCT.
 MAXUSED = max(MAXUSED, ACCT).
 IF RUN = 1 and STEP = 0, RPILOT = 2 ACCT.
 IF STEP = St GO TO 5.
 Choose a random integer IRD between 1 and MAXUSED.
 IF IRD > ACCT, GO TO 5.
 Interchange Ts and 0's along the IRD-th alternating cycle of A.
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 5. IF STEP < 3t, GO TO 6.
 IF RUN > RPILOT THEN
 Choose A.
 MATCT = MATCT + 1.
 IF MATCT = SS, GO TO 8.

 ENDIF
 IF RUN = RPILOT, MAXUSED = 10(MAXUSED/ 9) + 1.
 GO TO 7.

 6. Increase STEP by 1 and GO TO 4.
 7. Increase RUN by 1 and GO TO 3.
 8. STOP.

 We have made an interesting empirical observation while working with sev
 eral examples. In all the examples we found that the maximum number of
 alternating cycles never exceeds twice the minimum number. (In one example,
 the minimum was 15 and the maximum 28.) We do not know whether this
 holds always and whether there is any theoretical basis for this.

 4. Results of simulation

 We give detailed results for three examples: the first to illustrate the es
 timation of the distribution of the number s of reciprocal pairs in a network
 (Problem II), the second to compare the frequencies of all possible networks
 (Problem II) and the last to compare the frequencies of all possible matrices
 when there are no structural zeros (Problem I). We used the MCMC algorithm
 given towards the end of the preceding section in all the examples.

 Example 1. We consider estimating the distribution of s when the initial
 network is

 [0110100] 10 10 0 0 1
 110 10 0 0
 110 0 0 0 1
 1110 0 0 0
 10 10 0 0 1

 [ 0 0 0 1 0 1 0 J
 This is one matrix with row sum and column sum vectors (3,3,3,3,3,3,2)

 and (5,4,4,2,1,1,3) and with structurally zero diagonal, considered in Snijders
 (1991). In the following table we give the estimates of the distribution of s
 obtained by MCMC and Snijders' methods with sample size 10,000, the true
 distribution obtained by complete enumeration as given in Snijders (1991) and
 the standard error for each probability according to Snijders' method.
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 Value of s

 _2 3 4 5 6 7
 MCMC .0051 .0906 .2787 .3706 .2095 .0455
 True .0043 .0900 .2829 .3722 .2037 .0469

 Snijders .0045 .0900 .2961 .3586 .2046 .0461
 Std. Error .0008 .0032 .0052 .0054 .0046 .0023

 Here the range of s is from 2 to 7. The total number of matrices is 33,351.
 The mean and variance of s obtained by the MCMC method are 4.83 and 1.05,
 while those obtained by Snijders' method are 4.81 (with standard error 0.01)
 and 1.05 and the true values are 4.82 and 1.04. The number of alternating cycles
 (rectangles and compact hexagons) varied between 27 and 42 in the pilot study
 of 68 runs and we took the initial K for the generation of random matrices to
 be 47. The minimum and maximum number of alternating cycles as well as the
 minimum and maximum number of alternating rectangles in all the matrices
 generated were 26 and 44; the minimum and maximum number of compact
 alternating hexagons in all the matrices generated were 0 and 8.

 We estimated the distribution of s in a few other examples. Consider the
 sequences O: (5,5,4,4,3,3,2,2,1,1), A: (4,4,4,4, 3,3,2,2,2,2), B: (3,3,3,3,3,
 3,3,3,3,3) and C: (2,2,2,2,3,3,4,4,4,4), considered in Snijders (1991). For
 the row sum vector O and each of the column sum vectors O, A, B and C,
 we estimated the mean and standard deviation of s by the MCMC method
 and by Snijders' method. The estimates by the two methods were very close
 to each other. Note that the out-degrees and in-degrees are skewed in the
 same way for O and A while they are oppositely skewed for O and C. The
 number of networks in each of the four cases here will be in billions if not in

 trillions and the exact distribution of s is not known. We finally looked at
 the larger data set of Sampson with n = 18, see Snijders (1991). Here the
 row sum and column sum vectors are 4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,3,3 and
 0,6,4,2,4,2,2,6,4,6,2,2,5,1,2,3,2,3. Here also the estimates (of the mean as
 well as standard deviation) obtained by the two methods were very close.

 Example 2. To find out whether all the matrices in 8 are generated with
 approximately equal probabilities by the MCMC method, we consider generat
 ing random (0, l)-matrices with row sum and column sum vectors (2,2,2,1,1)
 and (2,2,1,2,1) and with structurally zero diagonal.

 By enumeration it was found that there are 73 possible matrices. We gen
 erated 146,000 matrices by the MCMC method and found the frequencies of all
 the 73 matrices. The results obtained are summarized in the following table.
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 No. of mat's Minfr Maxfr Ratio Mean Std.Dev X72 ^(0,1)
 29200 347 453 1.305 400 19.02 66.02 -0.47
 58400 737 859 1.166 800 27.29 67.96 -0.30
 87600 1122 1300 1.159 1200 37.09 83.71 0.98
 116800 1510 1690 1.119 1600 42.23 81.37 0.80
 146000 1898 2103 1.108 2000 45.99 77.22 0.47

 The range of the frequencies was 1898 to 2103 with a mean of 2000 and
 standard deviation of 45.99. If the matrices generated are indeed random, the
 frequency of each possible matrix should have distribution jB(146000, 1/73), the
 Binomial distribution with mean 2000 and standard deviation 44.41. Though
 the frequencies of the 73 matrices are not independent, they are nearly so and
 may be considered to be a random sample of size 73 from i?(146000, 1/73)
 under the null model. The observed standard deviation 45.99 of the frequencies
 is marginally larger than the binomial standard deviation 44.41 and thus we
 may say that the method generates approximately random matrices. To test
 this more accurately, we also computed the chi-square statistic for goodness of
 fit to the multinomial distribution with each of the 73 cells having theoretical
 probability equal to 1/73. The value of x2 was 77.22 with 72 df. We incidentally
 note that since the theoretical probability of each of the 73 cells is 1/73, the
 value of the x2 statistic is simply 73 times the variance of the frequencies divided
 by the average frequency. Since the df is large, we computed the corresponding
 standard normal var?ate and its value is 0.47. Thus the observed distribution

 of the frequencies is very close to the distribution under equal probabilities for
 all the 73 matrices. The ratio of the maximum frequency to the minimum was
 1.305 when 29,200 matrices were generated and decreased to 1.108 when 146,000
 matrices were generated. This also shows that the probabilities of the different
 matrices are very close to one another. (The ratio possibly decreases further
 if still larger samples are taken; conversely, the ratio is very large like 20 if a
 small sample of, say, 730 is drawn.) Thus by all these tests, we conclude that
 the 73 possible matrices are chosen with nearly equal probabilities. We actually
 obtained the minimum and maximum frequencies, ratio of the maximum to
 the minimum, x2 an(i the corresponding standard normal var?ate etc. after
 generating 29,200, 58,400, 87,600, 116,800 and finally 146,000 matrices. These
 are given in the above table. We incidentally note that the number of alternating
 cycles varied between 7 and 10 in the pilot study as well as in the population
 and the value 12 was used for K. The number of alternating rectangles varied
 between 6 and 10 in the population and the number of compact alternating
 hexagons varied between 0 and 3 in the population. We did not attempt any
 comparison here with Snijders' method since the latter does not choose matrices
 with equal probabilities.

 We repeated the type of tests done in Example 2 for a few other data sets.
 We first took the row sum and column sum vectors to be (3,2,2,1,1,1) and
 (1,2,3,1,1,2). By enumeration we found that there are 440 matrices. We
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 then generated 880,000 random matrices by the MCMC method and noted
 the frequencies of the 440 matrices after 176000, 352000, ..., 880000 matrices.
 The values of the standard normal var?ate for goodness of fit were between
 ? 1.32 and 1.21. We next took the out-degree and in-degree sequences to be
 (3,3,2,2,1,1) and (1,1,2,2,3,3) respectively. Then the number of matrices is
 1153. We generated 576,500 matrices by the MCMC method. Here the values
 of the standard normal var?ate for goodness of fit were between ?0.55 and 1.12.

 We incidentally note that, here, the number of alternating cycles varied between
 15 and 28 (the number of alternating rectangles varying between 14 and 28) in
 the pilot study and as well as in the population.

 We finally took both out-degree and in-degree sequences to be (2,2,2,2,2,2).
 Then the number of matrices is 7570. We generated 378,500 matrices by the
 MCMC method. The values of the standard normal var?ate for goodness of fit
 were between -2.30 and 1.35. We mention that we used MS FORTRAN (on
 an AT486) and with this could not handle larger examples for the frequency
 analysis. Even for this example with 7570 matrices, we encoded the matrices
 by converting each row into a single integer by treating the row (in the reverse
 order) as the binary representation of the integer.

 Example 3. We now consider comparing the frequencies of all possible ma
 trices in a sample obtained by the MCMC method when there are no structural
 zeros and the matrix may not be square.

 We first consider generating 3x4 matrices with row sums 3,2,2 and column
 sums 3,1,2,1 and no structural zeros. There are 5 possible matrices. The
 number of alternating rectangles is either 3 or 4 for each of them. Based on
 the pilot study, we chose K = 5. We generated 10,000 matrices and the data
 are given in the following table. The x2 values are somewhat on the low side,
 but we think this is due to sampling errors and the error is, in any case, on the
 side of the frequencies being too close to one another. This shows that the 5
 matrices are chosen with very nearly equal probabilities.

 "~No. of mat's Minfr Maxfr Ratio Mean Std.Dev x\
 2000 387 429" 1.109 400 16.505 3.405
 4000 768 813 1.059 800 16.420 1.685
 6000 1181 1222 1.035 1200 16.529 1.138
 8000 1565 1636 1.045 1600 26.405 2.179
 10000 1965 2049 1.043 2000 29.353 2.154

 We next considered a few other examples of Problem I. There are 156 ma
 trices of order 4x5 with row sums 3,3,2,2 and column sums 2,3,1,2,2 and no
 structural zeros. When we generated 312,000 matrices by the MCMC method,
 the values of the standard normal var?ate for goodness of fit were between
 ?0.82 and 0.53. We finally considered generating 5x6 matrices with row sums
 3,3,2,2,2 and column sums 2,2,3,1,2,2 and no structural zeros. There are
 6114 possible matrices. We generated 611,400 matrices and the values of the
 standard normal var?ate for goodness of fit were between 0.83 and 1.50.
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 The main advantage of the MCMC method seems to be that it can produce
 (at least in the limit) a random matrix while the other methods (Snijders' and
 Pramanik's) cannot. However, its main disadvantage is that it takes a huge
 amount of time.

 We wrote the MCMC program in MS FORTRAN whereas Snijders' program
 was written in TURBO PASCAL. When both these were run on the same
 AT486, the former seems to take 1.5 times to 8 times as much time as the latter.
 Our MCMC program (for Problem II) was written specifically for finding the
 distribution of s but the time taken for other statistics would be roughly the
 same as most of the time is taken for generating the random matrices. The
 same probably holds for Snijders' method though his program finds, by default,
 the distribution of s and the distribution of the proportion of the triads which
 are transitive. Thus the above time comparison seems meaningful.

 However, the MCMC method can be made faster if one is satisfied with
 slightly less accuracy. For example, if 2t steps are used instead of St in each
 run, the time taken reduces by about 30%. One could also reduce the number
 of pilot runs substantially. One can also use the following method: choose a
 certain number of matrices, say the matrices from the (2t + l)-th step to the
 3t-th step in each run. This will obviously cut the time required by a factor
 of nearly t (and can make the method much faster than Snijders'). However1
 then, the successive matrices generated are not statistically independent since
 from any given matrix we can go only to a few adjacent ones. In spite of this,
 the procedure works reasonably well for the estimation of the distribution of
 any statistic provided the number of 'runs' used is reasonably large like 100.
 However, the standard deviation of the frequencies of the possible matrices in
 the sample obtained thus is somewhat higher than the binomial one.

 5. Comparison with other methods

 In this section, we briefly explain Pramanik's and Snijders' methods and
 compare our method with theirs.

 Pramanik's method for generating a nearly random matrix starts by fixing
 as many entries in the matrix as possible thus: if there are structural 0's, they
 are filled in. At any stage, the free cells are those whose entries are not yet
 determined. If the number of free cells in a row equals the row sum minus the
 number of l's filled in that row, then fill all the free cells in that row by l's. If
 a row sum equals the number of l's filled in that row, then fill all free cells in
 that row by 0's. Do a similar thing for columns. Repeat these until no more
 cells can be fixed.

 Then choose one cell from among the free cells, the cell (?, j) with probability
 proportional to riCj and put a 1 there. Then fix as many cells as possible.
 Then choose a cell from among the currently free cells as above and repeat the
 procedure until a full matrix is obtained. If, at any stage, the partial matrix
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 cannot be completed to a full matrix with the given row sums and column sums,
 then abandon the partial matrix and start from the beginning.

 Though Pramanik's method seems to work reasonably well when the number
 of possible matrices is large, it is not exact and does not work well for small order
 matrices. For example, for problem I with r = c = (2,1,1), there are 5 matrices
 and Pramanik's method chooses one of them (the one with 0 in the (1,1)
 place) with probability 17/ 108 = 0.157 and each of the others with probability
 91/432 = 0.211. Updating the r?'s and c/s at every stage can improve the
 performance of Pramanik's method in some cases. In the example just referred
 to, this increases the smaller probability to 1/6 = 0.167 and decreases the
 larger probability to 5/24 = 0.208. When 880,000 matrices were generated with
 row sum and column sum vectors (3,2,2,1,1,1) and (1,2,3,1,1,2) and with
 zero-diagonal, the ratio of the maximum and minimum frequencies was about
 2 for Pramanik's method and 1.14 for MCMC method. Also, the accuracy of
 Pramanik's method cannot be improved by increasing the sample size unlike for
 MCMC method. The main advantage of his method seems to be its simplicity.
 We have not made any time comparison between his method and ours.

 Snijders' method to estimate the distribution of any statistic based on a ran
 dom matrix is essentially the following: the cells in the matrix to be generated
 are ordered lexicographically (top to bottom and right to left within each row).
 First the structural 0's are filled in and these cells are treated as determined.

 At any stage, if we arrive at a cell (?, j) not yet determined, we see if its entry
 can be determined, i.e., if the number of l's already filled in in the ?-th row is r?
 or the number of 0's already filled in in the ?-th row is n ? t\ or the number of
 l's already filled in in the j-th column is c; or the number of 0's already filled
 in in the j-th column is m ? c;. (Here m denotes the number of rows and n the
 number of columns.) If the entry in (?, j) can be determined, we do so and go
 to the next cell. Otherwise we put 1 there with probability n and 0 with prob
 ability 1 ? 7T where 7r, which depends on the earlier choices made, is computed
 in a rather complicated way as explained in Snijders' paper. Proceeding like
 this, a matrix is generated. If at any stage we get a partial matrix which cannot
 be completed to a full matrix with the given row sums and column sums, we
 abandon it and start from the beginning. When a valid matrix is obtained, the
 probability with which it is generated is computed by multiplying the proba
 bilities with which the free cells have been filled with l's and 0's. The 7r's are

 chosen in a complicated way to ensure that the matrices are generated with
 nearly equal probabilities. However, the probabilities do differ considerably and
 the mean and so the distribution of any statistic is estimated by using a ratio
 estimator as in importance sampling.

 The main differences between our MCMC method and Snijders' method are
 the following: Snijders' method can be used with any set of structural 0's and
 needs only the row sums and the column sums as data (these are true also for
 Pramanik's method) unlike our MCMC method. The MCMC method needs an
 initial matrix but this does not pose a problem in applications where the basic
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 data consists of such a matrix. Snijders' method produces matrices which are
 somewhat, but not quite, equally probable. The (ratio) estimates obtained by
 his method are consistent but are not unbiased. The probability of any possible
 matrix obtained by his method depends on the order in which the row sums
 and column sums are given.

 We did not program Snijders' method and so did not make any analysis
 of the frequencies of different possible matrices in a large sample (like that
 done in Examples 2 and 3 above). However, in some small examples, we have
 noticed that the ratio of the maximum to the minimum probability of a matrix
 generated by his method could be quite large like 2 or 3. Comparison of the
 distribution of s as estimated by Snijders' method and MCMC method was
 presented in Example 1 and the discussion following it.

 6. Conclusions

 We have presented a Markov Chain Monte Carlo method in the form of
 an algorithm in Section 3. This algorithm generates (nearly) random (0,1)
 matrices with given row sums and column sums, starting from one such matrix,
 when either there are no structural 0's or we are looking for a square matrix with
 structurally zero diagonal. We have verified empirically with several examples
 that the algorithm generates matrices with very nearly equal probabilities.

 The accuracy of the algorithm can possibly be improved by increasing the
 number of steps in each run and by increasing the number of runs. The time
 taken by the MCMC method depends more on the numbers of alternating cycles
 in the possible matrices (which is somewhat related to t, the minimum of the
 number of l's and the number of non-structural 0's) than on the order of the
 matrix or the number of l's in it. The method cannot possibly handle matrices
 of larger orders like 100 x 100 unless t is small or one has access to very large
 computing systems or one adopts some time-saving methods as explained in the
 last paragraph of Section 4, thereby accepting somewhat lower accuracy.
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