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THE PRECISION OF OBSERVED VALUES
OF SMALL FREQUENCIES

By J. B. S. HALDANE, F.R.S.

In recent genetical work numerous observers have recorded the frequencies of rare events,
notably mutations. It has beenrealized that it is misleading to state the observed frequencies
with theigstandard errors, since the distribution is decidedly skew. Various devices have been
sugggs’ﬁ to avoid this difficulty. But so far as T know it has not been pointed out that, when
the frequency is small, its cube root is-almost normally distributed. This will be proved and
applied to actual observations.

Let a rare event be observed in o out of » trials, where n is much greater than a2. Let x be
the true value of the frequency, whose observed valueis p = afn. Let the a-prior: distribution

of z be dF = $(x)da.

Let the probability distribution, after the observation has been made, be
dF = f(z)dx,

and let x = y3.

Then for given values of » and z, the probabi]ity of ais

(Z) (1 —zx)n—a,

Hence for given values of n and a, the distribution of x is
21 —z) 2 P(z) dx

fl 29(1 — x)-od(x) dx .
0

If we assume that all values of z are equiprobable, ¢(z) = 1, and

s liy jlxﬂl(l——x)”’“dx _atl
al{n—a)lJo n+2

This value should of course be a/n. As T have previously remarked (Haldane, 1932) and
as Jeffreys (1948) has shown in greater detail, the assumption that ¢(z) = 1 introduces
a bias. Tt is also contrary to common sense. 1f we are trying to estimate a mutation rate,
we know a priors that it will almost certainly be less than 10-% and greater than 1020, I’n
a particular case we might perhaps guess that such a rate wrould be about as ]ikel?r to lie
between 107° and 106 as between 10-¢ and 1077, In other words, when z is small.it is more
nearly true that all values of log # are equiprobable than that all values of x are equlprobe?ble.
This would imply that ¢(x) = ¢/z in the region considered. However, this cannot continue
10 be true when z is sufficiently small. If we wished to state a plausible general form for the
a priort distribution of z it might be somewhat as follows:

dF = f(x)dx =

5:

C
= 1 >
dr @1 (11e—2) (0<x<1) ]
F=k (z=1), \CAL INST 7/

-~
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where k is some number less than 1 expressing the possibility that 2 may prove to be zero‘
or unity, (1—2k) (1 + 2¢)
~ 2log(1+e) ’

and ¢ is a very small number, perhaps of the order of 1072%, expressing the fact that exceed-
ingly rare events are relatively infrequent. If the universe is finite in space and in time, and
if there is a minimum time in which an event can oceur, it might imply that there is no sense
in discussing events which have no appreciable probability of ever occurring.

For practical purposes, however, so long as we know that a exceeds zero, and is less than
n, that is to say, that the event considered is possible and so is its converse, we can take

Pla) =

without appreciable error. We then have
. (n—1)!
(a—V!(m—a—1)!
This is a Pearsonian Type I distribution, and
i (n—1){a+r—1I)

T

T (n+r—1Dl@-1)!

C
z(1—x)
dF

¢ Y1 —z)ro-ldyx, 1)

Thus % = a/n, as it should be, z? = Z((Zi B , etc. When ant is small, this approximates
very closely to the Type III distribution
e~ NTypa—1 )

Now Wilson & Hilferty (1931) showed that the cube root of x? is almost normally dis-
tributed; and the same transformation will almost normalize many Type III distributions.
The standard form of this type, referred to its mode, is

z\v®
dF = 0(1 +5) e T dx.

It is more convenient to change the origin to the point where the probability becomes
zero, and write '

_ Y ldx
aF = T(c)er*’
where c=1+p=1+va=4/p,.

K, = (r—1)!cy=", so the mean is ¢y~ and the moments about it are
By=cy™%,  pg = (3c2+6c)y4, J = (15¢3 413062+ 120c) Y=,  pg = (105ct+...) Y5,
By = 20y73,  pg = (202 +24¢) Y5, p, = (210c3+ 924¢%+T20c)y~", pp = (2520c*+...)y >
Let # = cy~l+2,s0 that & = p, and y = (yx/c)t. Then

(1.7
/- (17

YE (r\y2@  [dr\yPE

() ()

=1_I_r(r—3) rr—1)(r—3)(r—6) r¥r—38)2(r—6)(r—9)
18¢ 2(18c)? 6(18c)®

L 1(r=3) (r—6) (r— 9) (r— 12) (5* — 3072+ 157 + 18)
120(18¢)4

and Y =1+

o

+0(c5).
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. 1
Or, putting ¢ = %’

1—t + 1083 + LA 4 O(85),
1—t + #+ #2384+ 0@,
=1,

= 14 26— 362+ 1083 - 2142+ O(8),
y® = 14 58— 582+ 223 + 1144+ O(P),
Y% = 1404

! th le Qm’ L]

Hence the cumulants of the distribution of y are
Ky = 1—t+ 328+ 48 4+ O(F),

Ky =  t—32B-10t2+ O(P),
Ky = 48 +1684 0(55), L (3)
Ke=  — 2816+ 0®8),
Kg = 8t4 4+ O(#),
Kg = — 5584+ O(#°),
or o= (9;} [l — 6(193)2_ (9i)3 + O(c~4)] )

Yy = (gi)i [1 to.t 0(6—2)]

-2
Yo = 96 [ +— +O(C 2)]
8 Olc-
73 (96)*+ (C ):
—55
Vs =g, +0™)

Thus provided 9¢, or 9(1 + p), is large, the approximation to normality, up to the sixth
moment, is satisfactory. But it is of no value when p is negative, that is to say, the curve
is )-shaped. (Here p is of course the parameter used in specifying Type I1I distributions,
and not the observed frequency value.)

To apply these formulae to the distribution of y, we have only to put @ = ¢, and to multiply
K, by p¥. We thus find

(4)

-,

= pi[l- ‘1+ﬁ3—7a‘3 +0@™ )], k3 = plriga®+ 0@,
S Kg= P*[ﬁa_l 718707+ 0(@ )], K, =p755e 3+ 0(aY)], eto. }

Thus o = p¥[3at, y; = £a, v, =447, all approximately.

The terms involving ¢—3 in the mean and standard error may be safely neglected in prac-
tice. Even when a = 1, the former is only 0-013 of the standard error. If we take (1) as our
distribution of z, a term of order »—* must be added to those of order ¢-3. This also can be
safely neglected.

Thus we find that y is almost normally distributed with mean (1 — —%a7) pt, and standard
deviation pi/3at. For example, if n = 1000, q = 8, p = 0-008, z is by no means normally

distributed about 0-008, for #, = 0-5and §, = 3-75. But y is very nearly normally distributed
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about 0-2xZ} or 0-1972 with standard deviation ;35 or 0-0083, with 8, = 0-00004, and
b= 3-628. The method of Haldane (1938) would give an even better fit if @ > 10.

Two examples will be given showing how the method can be actually used.

Muller (1928, p. 311) found 13 lethal genes in 1034 X-chromosomes of flies kept at 27°C,,
and 5 in 840 X -chromosomes of flies kept at 19-5° C. Thus corrected values of ¢, and y, are: —

1034/ \1—9x 13

Y1 — Yz = 005334, which is 1-55 times its standard error of 0-03452. The difference is
therefore rather more significant than Muller, who used the usual formula, believed.

Again Muller (1940) obtained 7 translocations in 3366 flies with a dose of 375, a,nd 56 in
2223 flies with a dose of 1500 r. The question at issue was as follows: ‘the frequency may be
proportional to the dosage, to its 3th power or to its square. With which, if any, of these
hypotheses are the observed results consistent?’

Y, = 0-125616 + 0-016081, y} = 0-29256 + 0-01306.
We therefore compare y; with
2%y = 0-19940 + 002559, 2y; = 0-25123 + 0-03216, 2%y; = 0-31653 + 0-04052.

The differences are respectively 325, 1-19 and 0-56 times their standard errors, so either
of the latter two hypotheses is admissible.

It is perhaps worth remarking that, if the emendation of the classical inverse pro-
bability distribution be rejected, and the calculation made according to Bayes’s hypothesis,
the cube root of the frequency is still almost normally distributed. It is also true that if the
frequency of a rare event is estimated by the method described by Haldane (1945) when the
observations cease when a fixed number m of rare events have occurred, the estimated
frequency being (m—1)/(n— 1), where = is the total number of observations, the cube root
of the estimate is almost normally distributed. Here too the cube root may be used with
advantage in comparing different estimates.

I have to thank Prof. E. S. Pearson for valuable criticism.

T
y =( 13 ) ( ) — 0-23054 £ 0-02150, y} = 0-17720 + 0-02702.

SUMMARY
When an event is rare, the distribution of the cube root of the frequency round the cube

root of the estimate is much more nearly normal than the distribution of the true frequency
round the estimate.
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