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SUMMARY. Tho paper provides various i i of principal in the annlysis
of multiplo medsurementa. A mumber of i of principal have been mailo specially
in tlio study of & sct of varisbles in rvlation 10 another st known as inxtrumental varisblos, The wi of

generulieed principal components in applisd rescarch has Inen indiented.  Finally, the differcnco between
foctor analysia nnd principdl component analysis has Leen explaine).

1. IsTRODUCTION

During the last few ycars, I had the opportunity of surveying some of the multi-
variate statistical techniques and ovaluating their usefulness in practieal research work
(Rao, 1000, 1961). I undertovk to do this mainly beesuso the superivrity of tho
multivariato methods over the simpler univariato analysis has been questioned by
somo statisticlans. It was said that an examination of individual measuroments by
simpler univariate methods is an esseitial step which ean bo supplomented by more
elaborate multivariato analysis when this nppears feasible and necessary. It was
also thought that multivariato mothods have only provided new outlets for mathe-
matical theory without materially assisting scientifio research.

It is, indeed, necessary to eriticise uncritical and inappropriate spplications,
which aro perhaps naturnl when new techniques aro put forward.  But a criticism of
multivariate nicthods ns such is not justifiable. I have considored a number of
practical examples specially in ono of the papers (Rao, 1961) to demonstrato tho uso of
multivatiato analysis and to emphasizo the need for exploring the potentialitics of the
existing techniques and for furthor rescarch.

Tho purpuso of the present paper is to oxamine, in somo detail, the rolo of
principal component analysis in applied research.  When a largo number of measure-
ments aro available, it is natural to enquire whether they could bo replacod by a fewer
number of tho measurements or of their functiona, without loss of much information,
for convenienco in the annlysis and in the interpretation of data.  Lrincipal components,
which are linear functions of tho measurements, are suggested for this purpose, It
is, thereforo, relevant to examine in what senso principal components provide a reduc-
tion of the data without much loss of information we are seeking from the duta.

Tho following aro somo typical statoments found in the literaturo on appli-
cations of principal component analysis. ‘Tho transformed varinbles (tho first fow
principal components) aro uscful in connection with preliminacy investigation of o
largo number of samples of species from different localitics.' *For an orientatory
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typo of investigation, it would probably suflico with tho variable provided by the
first principal component (out of four) for this ropresonts 3/4 of tho total VAru\l.lon

‘At first principal compononts are most likely to bo rogarded by the h -
cians as a highly arbitrary sot of pulations,  Such a reaction should bo dismiased

s soon as the geomotrieal ing is idored : principal I t analysis moroly
Jeads to now angles of viowing data, analysis bost suited to discloso thoe nature of
sizo and shapo variation.! In no easo aro tho stat ts mado substantiated by sta-
tistical analysis to show that tho information neglected docs not lead to misleading
conclusions. Often, the principal component analysis ia first undertakon without
any clear objective and then an attempt s made to interprot tho derived results.

The discussion in tho presont paper has tho following aims : (a) To provide
various interpretations of principal P ts. (b) To ino tho situations whoroe
tho principal component analysis can bo undortaken with a dofinite purpose or in an
exploratory way in tho earlier stages of invesligation of a research problem. (o) To
indieate the difference botween the principal comnponont analysis and the factor ana-
lysis. (d) To genoralize tho principal componont analysis in & number of diroctions
useful in applied rescarch.

2, EI0EX VALUES AND VEOTORS OF MATRIOES
For a theoretical dovelopment of the principal component analysis, und its
interpretation it is necessary Lo uso somo rosults on the ical reduction of mat
which are summarized in this section for uso in the lator sections.

(i) Eigen values and veclors of a malriz. Iet 2 Lo o non-negative (i.e.,
positive definito or positivo semi-definite) matrix of order pXp. The roots of tho
determinantal equation

|E-AI| =0 o (2D)
are called tho cigen values of E. The equation (2.1) has p real non-negative roots,
A 2 A 2 ... p A, Corrcsponding to cach root A; of (2.1), thero exists a column
vector P, such that
P =P, . (22)
which is called an eigen veotor. Then the following results hold :
(a) Py, ...y 22, can bo chosen to bo orthonormal whuthor 4, ..., A, are distinet
or not.
(b) E = 4P Pl +...+2,0,P,.
= Pl +..4+P,p; . (23)
(¢) Let Ly,..., L, Lo any sct of orthonormal vootors. Then
$ LEL QS PEP = At
f=2 I} e (24)
g=1,..p
and tho maximum is attained at L, = P,
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(d) Let B bo any matrix of rank 4. Then
min D) = (... + 2 - (28)

and the minimum is attained whon

B =X, P,Pj+..+AP,P, o (28
In (2.5), the symbol |lA]| denotes the Euclidean norm, which is tho square root of tha
sum of squares of the oloments of A. Or in other words, the choico of B as in (2.6)
ia the best fitting matrix of given rank ¢ to E.

(ii) Eigen ealues and teclors associaled with a pair of mairices, Jet Zand T
bo two symmetrio matrices of order (pX p) such that T is positive definite. Consider
the doterminantal oquation

|Z-ar| =o0. Y

Tho equation (2.7) has p roots, A, > A, > ... > A, which may be ealled eigen values
of Z with respect to I'.  Corresponding to each root A, there is a vector P; such that

Ep=)\TP,
which is called an eigen voctor. Then the following resulta hold :
(8) Py, ..., P, can bo choson such that

PiT Py=1, PiT P;=0, i#j v (28)
S j=1..p
{b) I = AP, Pi+...42,P,P;
T'=P P+..+P, P, e (28)

(¢) Let Ly, ..., L, bo any set of vectora satisfying the samo conditions as
Py in (2.8). Then
3: LEL € EPEP, = At+... 43,
L =1 (2.10)
q=1..,p.
(iii) The Eigen values and vectors under vestrictions. Consider a symmotrio

2 X p matrix E and a pX X matrix € of rank k. Jot Ly, ..., L,bo p dimensional vectors
satisfying the conditions

() LiLiml, LiL,=0 fori#j
) R (2.11)
() LjC=0, i=1,..4q
Thon the maximum of
LiEL+.4+LTL, e (212)

is attained whon L, = Ry, tho i-th cigen vector of tho matrix (I-C(C’Cy 1 C)E.
Tho maximum valuo of (2.12) is then vi+...4v, whoro v; ia the i-th cigon valuo of the
matrix (I~ C(C'C)~'C")E. 1t is casy to sco that i€y, I aro tho cigon values and vootors
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of (I—C(C’C)"C')E and p;, M, aro tho eigon valucs and voctors of the symmetrio
matrix EVYI—C{C’C)-'C)EW, thon A, = jt; and R; =y, ZAM,, whero 7, = M;
Z-1)I;. Thus tho cigen vectors R, are obtained from the oigon veotors of a symmetrio
matrix.

(iv) Relation behiveen the eigen values and veclors of the malrices AA’ and A'A.
Let A bo a matrix of order ® X p, and rank r. Then A4’ and A’A are both symmetrio
and have the same non-zero cigen values Ay, ..., A, The multiplicity of tho zero
root is n—r for A4’ and p—r for A’A. Further, lot P; be tho cigon vector of AA’
and @, bo tho eigen vector of A’A corresponding to the same non-zero cigen valuo
XA Then Q@ = A~V2 4'Piand P; = 4,11 AQ,, 80 that I’ con bo obtained from Q;
and vico vorsa.

(v) Lot A be nxp matrix of rank r. To determine a matrix I} of order
nxp and of rank k < r such that A—Dj is o minimum.

Let B = CD where C is nx X matrix with orthonormal columna. For given
C, 1t is easily shown that |[A—DB] is a minimum when D = C’A. With such a
choice of D

1A=Bjt = KI-CC)AI*
= trace {(I—CC")A A'(I-CC’)]
= trace [AA(I—CC")
= trace AA'—trace AA’ CC’
= traco AA’'—trace C'A A°C.
Wo need chooso C such that traco €’A A°C is a maximum. Thon using tho reanlt
(2.4), tho columns of C are the first & cigen vectors of A4’.
(vi) Let Ly, ..., L, bo p dimensional vectors satisfying tho conditions
) AL =1 LAL=0 for i#j
(b) LiC=0, fm .., g
whete A is a positive dofinito matrix and € is px X% matrix of rank k. Thon the
maximum of
LiEL+..+L 2L,

is attained when L, = R, tho i-th eigon veotor of E—C(C°A-! €)' C'A-* E with
respect to A.

Tho problom ia reduced to that of (iif) by considering tho veotors M, = G'L;
whoto GG’ = A,i=1,...,q. In torma of M, tho problom is tho samo as in (iii).
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3. FITTINO A SUDSPACE TO A SET OF FOINTS IN A HIONER
DDMENSIONAL BPACE
Principal component analysis involving the application of cigen values and
vectors of & matrix was first encountered by Karl Pearson (1001) and Frisoh (1029)
in the problem of fitting a lino, a plano or in general & subspaco to a scatter of pointa
in a higher dimensionnl space. Let

we (31)

represent n points (each column veotor representing a point) in a p dimenxionnl apace.
Any typical point is represented by X.  Tho i-th point is X; and tho centro of gravity
of the points is X, with tho s-th coordinate

X= EXy£n . (32)

The pointa .X; as measured from tho centro of gravity are
XII—X‘I xln_‘?l
&= PR we (33)
X, ~X, .. X,,-X,
Let us dofine E =y O = (oy) e (34)
as the total dispersion matrix (or scatter) of the points. In (3.4) tho cloment oy is
computed by the formula

oy = 'E(xn— X0 (x,—X) ="::lxnxn - n XX,

Now a g dimensional aubapaco I specified by a point (origin) and g orthogonal
axes (ench axis specified by its direction cosines) passing through it. Pearson defined
o best fitting subspace as that for which tho sum of squares of tho perpendiculars from
the points to tho subspace is a minimum. It is easily shown that such a subspaco
passes through the centro of gravity of tho points. Further, tho sum of squares of
tho perpendiculars from tho pointa to the subspaco defined by the centro of gravity and
¢ orthogona! vectors L,, ..., L, is

fo—FLiEL, . (35)
=1 =1

Minimizing (3.5) is tho samo ns maximizing £ L; E L; and an application of tho result
(2.4) shows that tho maximum is attained when

L=P, i=l,..,q . (3.0
where Py, ..., P, are the first g eigen veotors of tho matrix X.

What wo need In practice is an aotual ropresontation of points in the best fitting
lower dimonsional subspaco. ‘This is simply dono by computing for each X tho ¢
coordinates

PiX, .., P X, e (37)
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Thus the points in the projooted epaco reforred to g orthogonal axes aro
P.X, ... PX,
y= . . . ) e (3.8)
P, . P,
Tho first row of % gives the best ono dimensional ropresentation, tho first two rows of
Y givo the bast two dimensional ropresontation, and so on.

In practico, it is also necesanry to know how good tho ropresentation of points
in a lower dimensional spaco is. A suitablo critorion for this purposo is tho sum of
squares of tho distances botween the original and tho projected points. For tho best
g spaco, the criterion has tho valuo

Apitect Ay v (3.9)
using the result (2.4). Justend of the absoluto valuo (3.9), we may ohooso as a measure

of goodness of fit tho ratio
st +A 3.10)
At o 310

Tho choice of g, then depends on the smaliness of (3.10) or the largouess of the ratio

At

Trlj;: . (30Y)

It may happen that tho ovorall measure (3.11) has a small valuo but the con-
figuration of the points as a wholo is distorted in tho projected space duo to some
isolated points being far away from tho best fitting space. Tho examination of such
isolated pointa is of intorest in practical work and may provide an interprotation of the
nature of hoterogencity in tho data. For this purpose it is necessary to computo tho
length of tho perpendicular of each point on tho best fitting space. Tho square of the
porpendicular from X, the i-th point is
@t = X=Xy (X=X~ [PYX,— X)P—... ~[PX— X))
t=1.,n

An examination of the valucs df, ..., 2 will enablo us to find out the outliors if any.

4. OTHER INTERPRETATIONS OF TIE TRANSFORMATION (3.8)

Tho problem of representing tho points (3.1) in a lowor dimensional spaco may
bo posed as the detormination of a transformation matrix 7' of order pX ¢, and rank
g tranaforming a p-vector X into a g-vector ¥,Y = T"X, and satisfying some optimum
properties. The tranaformation from ¥ to X is not ono to ono when ¢ <p and conso-
quently cortain proporties of tho configuration of tho pointa in tho original space (which
is invariant when g = p) aro altered. Our aim is to chooso T which prosorves tho
configuration of the points to tho maximum possiblo oxtent. We shall show that some
intuiti of ol between tho confy ions in tho original spaco and
tho transformed subspaco, whon minimized with respeet to tho tranaformation matrix
T lead to tho transformation (3.8) as tho optimum.
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Lot us observo that tho columns of T ean Lo chosont to bo orthonormal, without
loss of genorality.
Maximizing the sum of squares of the distances. Tho sum of squares of tho dis-
tances between all possible pairs of pointy in the p-space is
5'_}:‘ (X,=X)Y(X,—X;) = 5 traco Z, . (1)
whilo tho corresponding oxpresion in tho g-spaco is
:}J‘..z. (V=Y (¥,—¥)) = ntraco 'L T
=a(T; E Tyt t T, E T w (3.2)
where]T), ..., T arcjtho columns’of T. It7is’scen that (4.2) < (4.1) and (3.2) = (4.1)
when (not necessarily only whon) p =¢. Lot us chooso T such that (4.2) is a maxi-
mum. Applying tho result (2.4), wo find that tho maximum is attained whon T; = I,
i =1, ..., ¢, whioh is tho solution obtained in Section 3.

Closest fit to the distances and the angles of the lines joining the points lo the centre
of gravily. In tho p-space tho veotors joining the points to their contro of gravity
are ropresonted by tho matrix & as dofined in (3.3). It may Lo scon that in tho matrix

A=y 2 w (43)
the i-th dingonal entry is tho squars of tho distanco of the i-th point from the contro
of gravity and the (i, j) entry divided by the square root of the i-th and j-th entries is
the cosine of tho anglo botween thao lines joining the i-th and j-th points to the centre
of gravity. Thus the matrix A represents tho distances and tho angles betweon
the lines joining tho points to their contro of gravity. In the g-space, undor tho trans.
formation ¥ = T'X tho matrix corresponding to (4.3) is

B=%y Y= TT X4 e (44)
Wo wish to determino 7' such that the matrix I is as closo as possiblo to A, We may
mensuro the closcness of I and A by the Euclidoan norm [[A— B, which is tho square
root of tho sum of squares of thoclemontsin (A—2). Then tho problom s one cheosing
B such that |A—B]) is a minimum. An application of tho result (2.0) gives tho opti-
mum choico of B as

LT T2 = MO0+ 4 00 O - (48)

whero @y, ..., @, are the cigon veotors of A = &%y Tho oplinum choics of T is
obtained from (4.5) as

& T = (V0. VA Q)

=(XiP,..X; P} e (4.6)
using the result (iv) of Soction 2. The choico
T*=(P,...P) e (07

satisfica tho cquation (4.6). Thus T = I, where T is tho i-th column of T'®, which
is tho solution obtained in Section 3. This moans that the ropresontation of tho points
in a g-dimonsional spaco 8s in (3.8) presorves tho distancos and anglos of the configuration
to a largo oxtont.
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5. REDUCTION IX TIE NUMBER OF TOINTS

Inn Sectiuns 3 and 4, a reduction in tho number of dimenxions of the spaco s
sccured through a transformation of the typo ¥ = T°X by choosing an optimum T,
Wo now consider the dunl problem of reducing the numbor of points to a fow typical
points keeping tho numbcr of dimensions tho same. For this purposo wo consider the
matrix 2 which representg tho points with tho origin at tho contro of gravity. Tho
reduction in the number of points is securod by a transformation of the typo %, = 5 M
whero 3 is nXg matrix.

Reduction providing the closest fit to the tolal dispersion matriz. Tho total dis-
persion matrix based on the reduced points is

Yy Yo = 0 MW’ 05 . {a1)
whils that based on all points is E.  Wo wixh to chooso ¥, in such a way that
12— yall v (5.2)

is & minjimum. Applying the result (2.6), tho minimwum of (5.2) is attained when
Y= WP AP,

or when Yy (VAP ... .\/X‘l‘,). . (5.3)
Thus tho typical points summarizing tho doviationa from the eentro of gravity of tho
original points aro tho cigen vectors scaled by the square roots of tho corrcsponding
eigen values.

To dotormine tho transformation matrix (if noccssary) lot us observe that,
using result (iv) of Scotion 2,

Yu= (VAP ... VALY
= (0 . LaQ) e (5.4)

whero Q, ..., @, aro the first g eigon veotors of tho matrix Q% <. But (5.4) is tho
samo a8 @ M* whoro M* is the matrix with @, ..., @, a8 its columns.

An interprelation of the lypical points. In Seetion 3, it is shown that tho best
fitting g-rpacoe is speeified by X, tho contro of gravity and tho eigen vectors Py, ..., I,
Any point in this spaco referred to tho p original axes onn bo ropresented by a vector
of the form

X4a,Py+...+a L, e (3:8)
whero ay, ..., a, aro acbitrary. By a chango in scalo, (5.5) can bo wiitten ag
X435, VAL .. +5 VAL, e (50)

involving tho typical points VAP, ..., VAL, Lot X{ bo tho projestion of .X;
on this gubspaco. Then thero exist conatants by, ..., b, such that

X = X0, VAP + ... +04VAL, . (8.7)
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Multiplying both sides of (5.7) by P} and obscrving that PiX# = PX; we obtain tho
valuo of b as

by = A PYX=X). e (6.8)
With such a choice of by
XP = Xbby VAP ... +bgVAD, e (80)

f=1,..,8

Tho point X{ so determined may bo called tho graduated or the fitted point of X,
If X;—X§ ia small for each 1, tho result (5.0) shows that the avorago point and the
typical points

X, VAP, ... VAP,

form an approximate basis of the n observed points

Xi~e X0y VAP ... 40 VAP, w (5.10)
t=1,..,n

Tho representation (5.10) admits a statistical interprotation under the follow-
ing mode! for tho ohscrved points X;:

X; = p+hu et a6 . (5.11)

whoro g, Ry, ..., 7, aro fixed vectors, Ay, ..., Ay nro constants speoific to tho i-th point
and ¢; is a veetor of random crrors.  Tho mudel (8.11) implics that any observed point
when corrected for errors of can bo oxp 1 as linear combination
of (741) basic vectors only. It can Lo shown that, when the dizpersion matrix of
& is of tho form g%, consistent estimalors of g, 7, and g, sre provided by X, VA P,
and &, as defined in (5.10). Under the additional condition that tho p components
of ¢ havo independent norml distributions, X, VA, P, and 4y can bo shown to bo.
maximum Jikelihood estimators. Such a statistical interpretation is not true when
the dispersion matrix of ¢; is not of the form o*f.

The typical pointa VA, P, .., \’X, P, used in tho represcutation (6.10) may
not admit any physical interprotation. But in specinl situntions it mny Lo possiblo
to characterizo enoh typical point as indicating sBomo aspeot of the measuremonta as
o wholo (sco Simonds, 1964).

337



SANKNYA : THE INDIAN JOURNAL OF STATISTICS : Sentes A

0. FITTING A SUDSPACE WMEN THE POINTS ARE
IN AN ODLIQUE SPACE
In tho analysia of Seotion 3, it is implicitly assumod that the original points
aro represented fn o p-di jonal Euolid space with orthogonnl axes. Thoro
aro, howover, rituntions whore obliquo axos are choson to roprosont the ocordinates.
In such a enso, tho distanco Lotweon any two points X;, X, is a quadratio form
(Xi=X) T4 X;— X)) o {00)
using a positivo definite matrix I'. Tho scattor of points analogous to (3.10) is

5'2 (X=X T-(X,—X)). . (6.2)
=1

Let us transform X to )" with g coordinates
Y' = (L)X, ..., L, X)

whero LiT Ly =1 and LT L, = 0, i # 5. Tho scatter of points in the g-space with
Ly, ..., L, ns orthogonal axes is

EXV~Y) (YY) = n(l; EL+...4+L, 2Ly e {63)
An application of the result (2.10) shows that (6.3) ¥ & maximum whon L; = Py,
i=1,..,¢ whero P, ..., I’, are the firet g eigen vectors associated with tho doter-
minantal equation |E—T| = 0. The adcquacy of & g dimonsional fit is judged by

tho largeness of tho ratio
At
e (6.4
-H >y (6.4)

whers 4, ..., 4, aro tho roots of [E—AT'| = 0.

7. PRINOIPAL COMPONEXTS OF A VEOTOR RANDOM VARIABLE

‘Tho cuncept of principal component analysis as applicd to a random variablo

is due to Hotolling (1033, 1035, 1036a).

Let us considor o p dimensional random variable X with menn z and dispersion
matrix . Consider a transformation, ¥ = T"X, whore T is a pXg¢ matrix, 5o that
Y is ¢ dimensional.  When ¢ < p, thero is loss of information in replncing X by ¥.
For a given 7, wo wish to detormino T such that thero is minimum loss.

In defining e loss function wo may bo guided by tho question as to what oxtent
wo oan predict X knowing Y. Tho pediotive officienoy of ¥ for X dopends on tho rosi-
dual dispersion matrix of X aftor subtracting its best linear prediotor in torms of 17,
Now tho juint disporsion matrix of X and ¥ ix

z T
) e (11)
TE TIT
and the residun! divporsion matrix ix
E-ET(T" ET)"'T’' . . (12)

Tho smallor tho values of tho cloments in (7.2), the grontor is tho predintivo ofticlonoy.
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We consider two overall mensures, the traco and tho Euclidesn norms of (7.2),
(A) traco (E—Z T(T" £ T)'T’E) . (13)
(b) 1=-F T(T* ET)'T'E|. . (14)
Wo ehall show that any one of these moasures whon minimized leals to the samo choice
of T aa the matrix of the first g eigen vectors of T.

Let us olserve that the column veetors T,,..., T, of T can bo choson,
without loss of generality, to satisly the conditions

TiET, =0, i#j e (1.5)
which imply that tho components of the transformed variablo are uncorrelated.
Consider the measuro (7.3)
trace (E—Z T(T' Z T)"'T'E)
a= traco E—trace (" ET)-'T'EET)

- _(mzzT,, | TEET
trace £ (-Tili i +...+—-'—IT; T, (1.6)
vsing the conditions (7.6). Minimizing (7.8) is the samo as maximizing
TEZT, | TEEIT,
T,CT, TET,

Applying tho result (2.10) the optimum choice of Tis the i-th eigen vector ZE
with respoot to X, which fa the samo as P; the i-th cigen veetor of . The minjmum
valuo of (7.6) is thon

At thy . (17)
the sum of tho smaliest p—gq cigen valucs of Z.
Consider the problem of minimizing

|E=ET(T’ T TY'T' 5. . (18)

The result (2.8) showa that the minimum of (7.8) ia attained whon
ET(T" £ T)'T = AP, Pi+..4+\PP; e (19)
and it ia easy to verify that (7.9) holds when T¢ = I*;, Tho minimum valuo of (7.8) is
At 422 e (1.10)

where Ay, ..., A, are a8 defined in (7.7).

The transformed vardables P',X, ..., P,X are called the first ¢ principal
componenta of tho random variablo X and nro intorproted variously., The wsual
intorpretation is ns follows. Under a complete orthogonal transformation ¥ = 0°X,
i.o., from a p dimonsional variable to anothor p dimonsional variable, the trace of tho
diaporsion matrix, which ia tho sum of tho varianoes of the variables, romains invariant,
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Thua
traco E = traco 0'E 0 = 0;E0,+...+0; £0, PR ATH
where 0’ £ 0 is tho dispersion matrix of ¥ and 0; is the s-th column vootor of 0. Tho
total of tho variances of the first ¢ variables in ¥ i
0;20,+...40, 20, < traco E. e (112)
It is scen from (2.68) that the optimum cholco of 0; is P; for (7.12) to be & maximum, i.c.,
the first ¢ transformed variables aro P;X, ..., P.X, tho g principal components of X.
The maximum valuo of (7.12) is ,+...4A, while the total of tho varinncos of
tho variables is 4;4...44,, in which easo tho first ¢ prineipal components aro said
to explain 100(A+...+2)/(A;+...+A,) percent of the total varianco.
Tho interpretation of the principal T ts as the best predictors of X
suggests extensions of tho principal component analysis in many direstions, which are
considered in the later sections.

8. DRINCIPAL COMPONENTS OF INSTRUMENTAL VARLABLES

Let X bo the vector of p main variables, and Z the vector of m instrumental
variables. In theory Z may includa some or all the elements of X. Denoto tho joint

disporsion matrix of (X, Z) by
Z 0
. . (81)

e r
Wo wish to replace Z by a g dimonsionnl random variablo ¥ = M‘Z in such a way
that the predictivo efficiency of ¥ for X is o maximum, (Rao, 1902a). The dispersion

matrix of (X, I') is
b oM

( e (82)
e’ MTM

and the residual disporsion matrix of X' subtracting ita best linear predicter in terms of
Yis

Z—-0M(MT 31-010. . (8.3)

As In Scction 7, we may consider tho two measures of predictive efficicnoy of ¥
{a) traco (Z—0© M (AT M)-1 M'©") o (84)
(b) IE—0 M(M' T My-prefy. Y

Unfortunatoly, the solution scoms to depend on which measure is choson for minimi-
2ation.
Minimizing (8.4) is tho samo as maximizing
trco © M(M'T M)-M'O’
= traco (M' T M)-.3I'6" O M
Moo, . M6,
e T AT,
assuming that M; T M, = 0,i s j, without loss of genorality. Applying tho rosult
(2.10), tho best choico of M, ..., M, is tho sct of tho first g oigon vectors of tho matrix
©' O with respoct to T, f.0. iatod with the detormi 1 i
|6'0—Ar| = 0. . (8.7)
0

(8.0)
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It may bo oberved that when X is a proper subsot of Z, the optimum cholco
of ¥ consists of tho firat g principal components of X alone.

Tho present analyuis is differont from that of canonieal correlations and cano-
nical viates as doveloped by Hotelling (1036b) for atudying the association botween
two veotor random variables.

Thero scoms to bo no aimplo method of minimizing the measuro (8.5). Tho
solution would boe, however, different from that obtained by minimizing (8.4). Tho
relativo merits of the two solutions are worth exploring.

9. \WEIONTED PRINCIPAL COMPOXENTS

Tho measures of predictive eflicieney (7.3), (7.4), (8.4) and (8.5) aro not invariant
under chango of seales of the cloments of X.  Thia is an undesirable feature as difforont
solutions to principal components can bo found by choosing different scales. The
difffoulty oan be overcome Ly defining a loss funoti iatod with tho predioti
of ench eloment of X' by any chosen sct of ¢ lincar functions ¥ of the instrumental
variablo Z. A simplo loss function for tho prediction of X, tho i-th element of X,
may bo chesen as «f times the residual varianco, where t, § = 1, ..., p, are assigned
quantities. Denoting by 1, the diagonal matrix of the elements wy, ..., w, the total
loss in the prediction of X is the weightod trace

traco IVE I —trace 1 © M(M'T M) ) ' 11, o (80)
The problem is one of maximizing
traco IV O MM O IV = traco M' ©' 1V10 M, w (0.2)
choosing M’ I' M = I, without loss of generality. The best ohoneo of M is the matrix
of the first ¢ eigen vectors inted with the determi quati
|6 W8 —ar| =o. o (0.3)

In the special case when the instrumenta) variablo is the samo as (or contains)
the main variable, the equation (9.3) reduces to

|ZWIE = AE | =0 o (04)
which is equivalent to |E— APt =0 e (0.5)

10. PRINOIPAL COMPONENTS WITIL RESTRICTIONS OX INDIVIDUAL VARIAXCES

In tho previous sections the prodiotive efficioncy of a random variablo ¥
for predieting X is judged by tho sum (or weighted sum) of residual varinncos for the
difforent components of X. An optimum choice of ¥ (in a given class) was mado by
maxinizing the predictive offieicnay, i.o., by minimizing the sum of residual variances.
But it may so happen that for auch an optimum choico of ¥, tho redidunl varances
for pomo clementa of X aro abovo cortain desired lovels. In such a case it may bo
Rnecessary to fmposo aomo restriotions on tho individual variances and naximizo tho
ovorall predictive officiency.
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Let ¥ Do the vector of g linear functions, L X,..., L, X, of X, whore
Li2L;=1,L;EL,=0,i #j. Tho rcsidual varianco in predioting X, the i-th
element of X, by Y is

ou—(Li EP—...—(L, EN e (10.1)
where Z; is the i-th column vector of . Woe imposo the conditions

ou—(Ly T —...—(L, Z))t < ¢} (given)

or L L B0 > e} = 8} (may) - (102)
i=1.,p
The sum of squaros of residual varianoes ia
Loy—(L EELi+...+ L, ELL). W (10.3)
The problom is one of maximizing
LZEL+..+L,2LL, o (10.4)

subject to the conditions

LiZLi=1 i=1,..,q
LiZL =0, i#j } . (10.5)
L EP ot EP 8 =1, P,
We aro thus lod to a very complicated problem in i prog

When ¢ = 1, there is only a single linear function L;X to bo determined.
The expression to bo maximized is

LiZL, o (10.8)
subjoct to the conditions
LiEL =1and (LEP S8 i=1,..,p . (107)
Making the substitution E L, = U or L, = £-! U, wo nced only maximize
ig/] o (10.8)

subject to the conditions

UVEU=1and U}3 8, i=1,..,p e (10.9)
Tho solution is complicated even in this simplo caso. Tt has been shown olsowhero
(Rao, 1062b, 1064) how to obtain a solution for small values of p. The gonoral problem
awaits solution.

11, PRINCIPAL COMPONENTS OF X UNCORRELATED WITH THE
INSTRUMENTAL VARIABLE Z
In Sootion 8, the instrumental variable Z is analyzed into principal compo-
nonta on the basis of their predictive officioncy for elemonts of a variablo X. In
2omo probloms, it is of interost to dotormine the principal components of X in tho class

of Jinear funeti of X lated with instr | variables. Thoe problem
may bo stated as ono of dotermining g lincar funotions L)X, ..., LX such that
VLX) 4.+ V(L X) =Ly E L +...+ L, E L, e (101)
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is & maximum subjoot to tho conditions
LiL=1 LL=0
)

cov{L; X, 2) = 0, i - (11

As bofure, lot the dispersion matrix of(X, 2) be

z ﬂ u
o 1) e (103)
In terms of the elomonts of the matrix (11.3), the problom is one of maximizing
L 2L+.+L,EL, e (114)

subjoot to the conditions

LiLi=1,LL=0 i#j

Lio=0o, e (1LB)

hi=1..q
An application of the result (2.12) shows that the maximum of (11.4) is attained whon
L,, ..., L, aro the first g right oigon voctors of the matrix
(I-0 (0'6)! 0)%. .. (1L6)

The principal 80 dotermined may bo usoful in the fcllowing situation,

P P

: . o P

Suppose we have a vector variable X rep
measured in terms of a common unit (like the cash vnluo) Tho obsotved valuos of
X over time constitute a multiplo timo sorics. Some years ago, Stono (1947) consi-
dored tho problem of isolating linoar functions of X which have an intrinsio economio
significance from thoso which ropresent trend with time and thoso whioh measuro
random errors. For this purposo, ho computed the dispersion matrix of the p-variables
considoring the observations at differont points of timo as ropeated values of X and

tracted the principal it ts of X from tho estimated dixpersion matrix, without
any reference w lho timo factor. Tho problom was then posed as that of interproting
the domi It ts which d for » bigh percentage of the total

varianco. Tho hrst principal componont with the lnrgost varianco was interproted
as representing linear trond and the rest woro interprotod in oconomic terms.

It i not clear why the trand, evon if it is linear, should bo reflocted in tho ficst
principal component only. Thon thore is tho difliculty of chousing more than vne
principal component to oxpluin the trond, if it iv non-linoar in timo.

To apply the prosent analysis, wa idor an inste tal variablo Z con-
sisting of orthogonal functions of timo, §,(1), ylt), ..., roprosenting tho first, scoond,...
degreo polynomial trend with respect to timo. Then wo obtain tho principal compo-
ments of X in the ¢lnss of linear functions not showing any trond, which may thon bo
interproted in economio torms,
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12. SIZE AND SHAPE FACTONS
Biologists use funotions of measurements ropresenting size and shapo of organi-
nisma in studying differences within and botween groups, Size and shape are not,
however, well-dofined concepts and their mcasuroment will bo arbitrary to somo
oxtont. Let us ino somo funoti 1 for this purposo.

Penrose (1047) defines size as tho Linear function

X, X
=1 = X
. ot ) o (121)

whero o, is tho atandard doviation of X; and shapo as any lincar function

X, X,
¢ —# +...4¢, —‘"f . (12.2)

with ¢;+...+¢, = 0. In situations whero X,, X,, X, correspond, in some sonse, to
length, width and height of an organism, Mosi (1950) proposed tho preduct

X,X,X, . (123)

a8 o volumotrio or a ponderal dofinition of size. It may bo noted that a function of
the typo

x:‘ x:' x:' e (12.4)

studied by Rao and Show (1048) provides a botter indox of volume for a suitablo choico
of the oxponents £, By, By In terms of tho logarithms of tho measurements the
size function (12.4) has tho linear form

By log Xy 4By log Xy 8 log X o (12.8)

It has been suggosted by Jolicocur and Mosimann (1960) that the first prinoipal
component, which has maximum variation, may bo taken as size factor provided all
tho coeficicnts aro positivo and other principal components with positive and negative
coofficients ns shapo factors. A justification for such an intwrprotation of principal
compononls is os follows.

Consider the i-th oloment X, of X and tho j-th principal component ;X of
X. The regression of X; on I’X is simply P, tho i-th cloment in . Now, a unit
increaso in P'}X produces on tho avorngo an inoreaso of Py; in X;. I all the cooflicients
P, ..., P,, aro positive, & unit inorenso in P;X Increases the value of oach of the mea-
surements, in which easo 24X may bo oallod a sizo faotor, If somo of tho cueflicionts
aro positivo and others negntive, thon an inorcaso in PX, increnses tho values of some
of tho measurements and docreascs tho values of tho othors, In which easo PiX muy bo
called o shapo faolor. Donrose’s sizo and ahapo funolivns havo similar propertics.
In cither caso, thero scoms to Lo no suitablo intorpretation of the robntivo magnitudes
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of changes in tho diff ts or of tho distribution of positive and negative
coeflicients in tho case of a shapo factor.  Thero scom to be too many arbitrary elemonts
involved ns the principal p aro not oxplicitly dorived to roprosent sizo

and shapo factors in any woll-defined mannor.

Wo shall first g lizo the problem by attempting to size and shapo
variation with respect to & given sot of measurements Xy, ..., X, in torms of instru-
mental variables Z,, ..., Z, whoro tho Iatter may include somo or all of tho formor,

Lot the dispersion matrix of (X, Z) where X'=(X,, .., X,) and
2 = (Zy,..., Z,) bo

z e o (12.6)
e T
and considor a linear function of Z, with unit varianco,
B'Z=DBZ+..+B.Z, BTB=1. e (127)

The regression coofficionts of X), ..., X, on B’Z aro tho compononts of the veator
© B, Let us spocify tho ratios of tho regression coefficionts, taking into account tho
signs, as tho cloments of a veotor R, 80 that

on = ot e (128)

whero p is & t. If all tho comp of I aro choson as positive, thon any
solution for I3 of the equation (12.8) provides a sizo function. If somo compononts
of It aro positive and othera negative, then a solution for J3 provides a shapo function.
In tho caso when © is & squaro matrix of rank m, thero is a unique /3 and p for a givon
R, satixfying the oquations

@B =pR, BTB = 1. . (129)
Otherwiso there may bo a multiplicity of solutions. In such a caso I3 may be choson
to maximizo p.
Introducing Lagrangi Itiplicra € (a p-di jonal voctor) and ¢, (a cons-
tant), tho function to bo difforentiated is
p+C@B—pR)+c (BT B—1). e (12.10)
Differentialing with respeet to B3, Cy, p and ¢, wo obtain the oquations
O CiteTB=0
OB =pR
RC, =1
BTD=1.
Tho firat two equations can bo written as
@'C+TpI =0 } e (1202)
0p B =1t
346
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where C = (¢ p)~'C,. Solving the equations (12.12) we have a solution for p~'13,
i.e., tho sizo or shapo function is dotormined apart from a conalant multiplior. If
'y, the function can bo dardized by reducing its varianco to unity. To
obtain an explioit representation for p=1, lot

(:‘ :)-l" (1: ,’i) e (1218)

Then p~'B = DR. Tho size and shapo functions so dotermined have greater floxibility,
although there will still bo somo arbitrariness in t.)\n choico of the vector of ratios,
R, when it cannot bo spocified by othor id

For instance, anthropologists use the ratio of hoad breadth to head length,
cnlled the cephalio indox, to measure the shaps of the head, Tho present approach
suggests that the shapo funotion can be bullt out of a number of length and broadth
measurements on the head, by choosing R such that the ratios for length measuromonts
havo a positive sign and those for breadth have a negative sign. The
shape function 8o determined has the property that an incroase in its value inorenses
the lengths and docreases the breadths, Furthor, othor measurements on tho body
nuch as stature, chest girth oto., can be brought in to obtain a better moasure of hoad
shape. Examples of such functions are given in Rao (1061, 1002a). It has also been
found that the choice of absolute values of the elements of It in proportion to the
standard deviations oy, ..., 0, of the measuroments X, ..., X, loads to reasonable
results.

The size and shape functions determined by the above method may not be
uncorrelated as in the caso of the principal components, although this can be achioved
by ahoosing the vectors I for size and shape functions suitably. But lack of correla-
tion is not an important property if size and shape variations ace examinod individually.
Howevor, if aizo and shapo functions are used jointly in any study, thoir corrolation
should bo taken into acoount in tho statistical analysis. For instance, if a ohart

g the configuration of a sct of groups with rospoct to moan size and shapo
ie desired ono could uso ‘size’ and ‘shape corrcoted for sizo’ (by rogrossion) and ro-
prosont them on orthogonal axes.

13. DPRINCIPAL COMFONENT AND FACTOR ANALYSES
Some authors do not make a distinotion botweon theso two analyses and this
has, no doubt, caused somo amount of confusion. It is, thoreforo, of intorest to exa-
mine tho differences in the naturs of information provided by thoso lno lochmquos
It is shown that thoy provide distinet to two difforont 4
a hypothetical structure of the olomonta of a vector random \mlnblo

Lot us supposo that thoro oxist hypothotical uncorrolatod factors (variablos),
Fy, Fy, ..., presumably infinito in number, such that

Xy = ay FytayFat o } a1
X, = a, FytaFot..
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or in matrix notation
X=AF. o (13.2)

It may bo seen that the factor structuro with common and epecifio factors, assumed
in psychologioal work is a special (and perhaps an unrealistio 1) cnse of (13.1). The
representation (13.1) is not unique for by an orthogonal transformation on tho hype-
thotioal variable F, tho structural equation (13.2) can bo writton as

X =BG . (13.3)
d) factor variable.

where G 8 now (

The problem we wish to investigate is ono of approximating X, ..., X, by
linear functions of a3 fow factors, which may bo called dominant, as possible. An
approximation to X in terms of ¢ factors, to be donoted by X'* ia obtained by consi-
doring a represontation of X, such as (13.1) and truncating the right hand sido at the
g-th torm. In matrix notation

X0 =A, F® e (13.4)

whero A, is the matrix of the first ¢ columing of A and F'*' is the vector of the variables
Fy, ..., F,. The different choices of A, are obtained by making orthogonal trans-
formations on F (tho entire sot of hypothetical factors), leading to different represen-
tations of X and applying the truncation procedure.

We have not yet speoificd tho nature of tho approximation wo are secking.
It is scen that the dispersion matrix of X is A4, (rssuming without loss of gonerality
that all F, have unit variance), while the disporsion matrix of X'is Z. Let us supposo
that the approximation aims at the cl of Zand A A;. In such a case, wo may
dotermine A, by minimizing the Euclidean norm of tho rosidual dispersion matrix
IE—AA,). Applying tho result (2.0), the answer is

A= (VA P, VA, Py... VA, P,) o (13.5)
i.6., the i-th column of A, is //4; P; whore A, is tho s-th eigen value and P is the i-th
eigen veetor of Z.  Then it may bo shown that tho best cstimates of the factors are
Fl=M1PX, i=1,..,9 e (13.0)
where ;X is the i-th principal component of X. Wo aro thus lod to principal com-
ponent analysis as a definito answer to tho problom posed.
Using estimated FY, tho g-th approximation to X as in (13.8), the residual is
X=X = (PP, +...+ P, P)X. o (137)
The disporsion matrix of tho residual is
(”au";u+~'+p;";):u.nlp;u+-“+P:";)'-
=2 PPyt +2,0,0 e (13.8)
which is emall if A,,, , ..., A, are small. In any problom wo can examino tho aotual
rosiduals (13.7) In judging tho adoquacy of a given ordor of approximation.
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Wo havo scen how tho criterion of minimizing |£—A 4] led to the principal
component analysis. o shall show that a different critorion leada to fuctor analynis.

Tho amount of Iation L X.. X, oxplained by the g factors F, ..., F,

cov (XY, XJ) + VVIXPV{X)

= (ayay+...+aa)low,

= bbby,
whero oy is tho standard dovintion of X; and by, = a,/o;. Tho off diagonal elements
of B, whero B, is tho matrix with ita i-th row as (b, ..., 4,) givo all possiblo
corrolations oxplained by tho g factors. Let A bo the actual correlation matrix
of tho variables X, ..., X,. Wo wish to chooso J3, such that tho off dingonal
clements of A—DB,13, aro as small as possiblo. A singlo of diff i the
sum of squares of tho off dingonal cloments of A~ 13, 3¢ and tho mathematical problom
is ono of minimizing this measuro subjcct to the condition that the diagonal entrica
of A— BB, are non-negative. The fuctor structure provided by tho optimum 13, is
known aa factor analysis; the attempt in such a casois to explain the correlations among
tho measurementa rather than the variances of tho individual measurements. Tho
problem of an optimum choico of B, is not easy to solve, and no definite solution can
bo obtained. An iterative method is suggested by Rao (1055) but the convergenoo of
the procedure has not been adoquately studied. For further literaturo sco Whittlo
(1033), and tho referonces in Maxwell and Lawley (1063).

14. AN APPLIOATION TO A PRODLEM IN MULTIDDIENSIONAL SCALING

Tho data consist of n(n—1)/2 independent determinations (possibly subjoet
to errors) of distances between n atimuli and tho problom is to determine tho smallest
Euclidenn space in which the stimuli can bo rej d as points (Torg 1933).
Let X, ..., X, bo pointa representing tho n stimuli in a Euclidean rpace, and X bo tho
centro of gravity of tho polnta. Then

X=X)(=X) = 2 (X=X 4. HX =X NG =X )+ (X = X)]
= n"l.‘- E [(AVESWIAVERWETAVES WA Voo W]

— (X=X N =X) =~ = N (X, —X)

- 5 Gtda=by—tu) (14.1)

whero &, denotes tho square of tho true distanco between the points X, and X, Using
tho notation £ &, =4, and £ X 8, = &.. tho expreasion (14.1) can bo written
L] i m

1 &+3, 8. o
v (—"u+—,,‘—;i)- e (12)
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Thus, given the mutual dixtances wo can oxpress tho configueation of tho points by the
matrix 2,2, whose (i, j) ontry is given by (14.2), whero @, bs na dofinod in (3.3). Tho
matrix Q% ns introduced in Scction 4, representa the lengths of the lines joining
tho points to the contro of gravity and the angles between them. Tho best ropresen-
tation of the points in a Euclidean apace of ¢ di ions i3 provided by tho g X m matrix
whose i-th row is v/, @, where A, and @, aro tho i-th cigen value and veetor of 440

Howerver, such an analysis is not directly applicablo when the oxact distances
8y are not known, but enly cstimatos d; of &, are available. Substituting d,; for
8,y in (14.2) wo have an cstimate of %, which we may denote by B = (b,). The
matrix I3 necd not Le ron-negative definite.  Wo may still computo tho eigon values
and vectorsof 3. If A and é, denoto tho i-th cigen value and veotor of I3, an estimate
of the best ¢ dimensional representation is given by the gxm motrix whose i-th row
is VX, §,, provided 3,, ..., A, aro positive.

One drawback of the solution derived from B is that the estimated points may
not bave the origin aa the centre of gravity. This may bo secured by detormining tho
eigen vectors of BB with the restiiction that the sum of the elementa of each cigen voctor
is zero. Lot U represent a column vector of n unities. Then it ean bo shown, using
result (iif) of Scotion 2, that the cigen vectors of the matrix

(I—UTU) B e (143)

satisfy tho required conditions. Leb jiy, g, ... be the eigen values and By, By, ...
the corresponding eigen vectors of tho matrix (14.3). Then tho rows of tho cstimated
matrix of points (columns representing the points) in a g dimensional spaco are

Vi By, ..., VB,

15. ESTDIATION OF STRUCTURAL.RELATIONS(IIP,
BETEROOENEITY OF DATA, ETC.

A reeent application by Wernimont (1903} demonstrates the uso of principal
component analysis in detecting heterogoneity of data. In hisstudy there wero 9 spee-
trophotometers and each instrument was uscd to obtain a serics of six absorbance
curves (ns a discreto set of mensurements at 20 difforent wavo longths) of solutions at
threo different concentrations (30, 60 and 00) and on two difforent days, Tho data
congisted of 54 scta of 20 mensurements and in the notation of the prosent paper
n =64 and p = 20. According to Boer's law, if the same wave lengths bavo been
used for all the instruments, tho G4 points in the 20 dimensional spaco should ideally
bo on a lino through the origin whon thoro are no orrors in the absorbanco readings.
Tho direction cosines of such a lino would provido the constants of Boor's law for a
given sot of wave lengths. If, indced, the wavo length settings diffored from ono ins-
trument to another the configuration of points would not bo coufined to o straight
line. Tho object of investigation waa to oxamino whother the instruments had systo-
matio orrors in tho wavo length sotting. 1f some of tho instruments did not allow &
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propor setting of the desired wave longths, the data would be hotorogoncous ; this
could be detcoted by asking the question whothor the obsorved points could bo regarded
as clustering round a straight lino.

This is exactly what the principal componenta can detect provided the errors
of absorbance measurements at different wavo lengths are indopendent and have
nearly the same distribution.

According to Beer's law, the vector X of ts at 20 diffe wave
lengths can be writlen as

X=cf+ec e (16.1)
whero 8 dopends on the wave lengtha, ¢ is tho concentration of the solution used and
e represents tho errors of absorbanco readings.  Thus for difforont valuos of ¢, the true
locus of tho points X is & straight lino through tho origin, with dircotion cosines
proportional to . But if (8+%) is tho vector appropriate to tho i-th apeotro-
photometer on tho j-th day, whero Ey repreaonts the systomatio error, then for the
mensurements with the ¢-th lpectrophowmotor on tho j-th day at concentration ¢

= (B+Eylete -~ (16.2)
0 that Beer's law holds for a given inatrument on a given day. Insuoh a case we ahauld
expect tho 54 pointa to cluster round a i of 18 diff linos
to tho nine instruments and two days. The 18 lincs may lio in a spaco of as nmny as
18 di ions d ding on the complexity of the syst io errors. Let us examine
this problem by t.ho prlnaipcl component analysis by pooling the data from all the
instruments. The 54 veotors provido a 20X 20 disporsion matrix. (Actually in a
problem with the model such as (15.2), the principal component analysis could be
carrlod out on the uncorrected disporsion matrix. The computations reforred to are
on tho correoted dispersion matrix as reported by Wernimont.) Tho first two eigen
values of this matrix have beon found to be (0.110500 % 107) and (0.356424 X 10%) which
explain 90.84 and 0.03 percent of total variation respectively. Tho rest of the eigon
values aro much amallor indicating that the configuration of tho points can be examined
by one or two dimensional representations.
To find tho coordinates of tho projected pointa on the best two dimensional
plano wo have to determine tho first two eigen vectors Py and Py and compute the
coordinates

PX, P o (18.3)
corresponding to cach original point X. Transforring the origin to P\X, P;YX,
the coordinates aro

P(X—X), PYX—X). e (15.4)
For ench point, it Is also noceasnry to computo tho Jongth of the porpendioular on the
best fitting plane to oxamine whother the roprosontation {3 adoquate with respoot to
that partioular point. Tho squaro of tha porpondioular from tho point X is
R = (X=X)(X=X) [P —XP-[PYX—X)P e (15.8)
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Tho following tablo givea the values of (15.4) soaled by tho reciprocal of the square root
of tho cigon values (which is not nocessary for our purpose, but adopted frem the
computations provided by Wernimont) and R* for two sota of six absorbanco cueves
of S. . Meters 1 and 7. Similar values aro availablo for all the 54 absorbanco ourves.

no.  B.P.M. concentmtion day P{UN—X)Vi PUN—X) /G mn

11 1 0 1 -1.220 0.0H4 8417
1.2 60 1 —0.016 419 254.81
1.3 %0 1 1178 1.873 443.63
1.4 30 2 —1.200 0.51 122,158
L8 ] 2 0.001 1.518 372,83
1.6 80 2 1.200 1.877 334.46
7.1 1 30 1 -1.235 0.590 718.20
7.2 80 1 =0.085 0.140 1108.08
7.3 o0 1 1.8 -0.200 488
1.4 30 2 —-1.210 0.649 €05.23
1.8 60 2 —0.001 0.201 610.88
7.8 (] 2 PIELY 0.074 655,92

Using tho coordinates (P{(X—X)/v/A], PyX—~X/y/X}), tho 54 points sre
plotted on two charts (to avoid over orowding). In the charts (A.1, A.2, A.3) and
{A.4, A.5, A.0) represont the absorbance curves at throo lovels of concontration obtained
with S, (the spectrphotomoter A4) on tho first and sccond days respeotively. Tho
following conclusions emergo. (a) Gonerally, the points (A.1, A.2, A.3) are oloso to
a lino and so also tho pointa (A.4, A.5, A.6) indicating tho validity-of Boer's law.
(b) The points (A.1, A.2, A.3) and (A.4, A.5, A.8) lio on tho same line oxcept for S, and
S;, indicating orrora speoific to the instruments. (¢} The lines for differont instruments
aro diff i

Tent, i, 4

ly orionted i g 8Y io errors.

16. DETERMINATION OF OLUSTERS OF POINTS

Let Xy, ..., X, be poinis in a p-dimonsional space. In some problems it is
of interest to oxamino whether tho n points can bo classified into groups or olustors
such that tho points within a clustor are oloso together, whilo tho clustors thomsolvos
aro far apart. Thus if tho p coordinates of each point represent tho production of p
agrioultural commoditios in a region and diff points rop b diffe rogions
wo may liko to group togothor regions which are similar with rospoot to ovor all agri-
cultural production (Kendall, 1939). Or if tho p coordinates of each point roprosont
tho mean anthropological characters of a population and difforont points ropresont
difforent populations we may like to oxamino whothor the populations can bo groupod
into distinet clusters on tho basis of similarity of the oharaotors (Mahalanobis, 1036;
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Mahalanobis, Majumdar and Rao, 10490 ota.). In all such situations we noed to have
& measuro of distanco botweon two points.  One may chooss as tho distance botwoon
X, and X,

dy = (X~ X)X, —X)) e (18.0)
ropresenting the points in a Euclidean space with orthogonal axes or

dy = (X, —X)A(X,—X;) . (162)
representing the points in a Euclidean space with oblique axes. Whon A is the co-

varianco matrix of the ch within o population (or region) the distance (16.2)
is known as Mahalanobis distance.

Whatevor distanco function is choson, we have a nxn matrix D = (d;) of all
possiblo distances, \We, then, look for clusters of points, by fixing a few pairs of points
which are oloso together, but tho pairs thomsolves boing moro distant from each other,
and building clustors around thom by adjoining noighbouring points. In practico such
ap oan bo fully carried out although considorable difficulties are in-
\ol\od(sco Mahalanobis, Majumdar and Rae, 1049; Majumdar and Rao, 1958).

When p = 1, we havo ono dimonsional ordering of peints and no visual re-
presentation of points on a lino i nocessary to detormine the olustors. When p = 2,
the determination of olustcrs is also simplo, sinco we can represont the points on &
two dimensional chart (using orthogonal or obliquo axcs) and mark out the subsots
of points closo together. For p = 3, wo may use a threo dimensional model. But
no such visual aid is available for largor valuos of p.

Wo may, thon raiso the question as to whether the points in a p-dimensionsl
space can bo reasonably rof ted in 2 or 3 di ional spaces without distorting
tho configuration as specificd by the mutual distances. Wo have scen in Sections 3
and 4, that such a represontation is sccurod through tho principal components. Lot
Py,Py, P, bs tho first threo eigen vectors of £ (or £ with reapect to A in the oblique
case) giving the coordinates PjX;, PpX,, P;X; for the representation of .X in the
best threo dimensional spnco. o may chooso, tho first, or tho first bwo or all the three
coordinates to obtaln o visunl representation of the points and thon detormino tho
clustors of points.

The suceess of the mothod obviously doponds on how well tho configuration
of the pointa is presorved in the roduced spaco. If Ay, ..., A, aro all the eigen valuos
an overall of tho adequacy of tho Lest g dimonsi q fon as intro-
duced in Soction 3is (A+...+A)/(A+...+4,). Wo may oxamlno tho valuea of this
measuro for g =1, 2,3 and decido on a suitablo valuo of 4. But such a doolsion
moy bo misleading In individual cases. So it i noocssary to obtain a tabulation of
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all the distances in tho original and reduced spaco for a preliminary comparison. Tho
distance botween tho i-th and j-th points in the reduced spaco of g dimensions is com-
puted by the formula

@Y = (PLX—P X+ (P X~ P X, .. (18.3)

whether tho original points are in an orthogonal spaco or not. Tho differenco dy—dy
is always positive and tho efliciency of reduction in tho di ions of tho
space with respect to the points i and j. If the diffcrences (dy—d$ ) are uniformly
small, i.e., for all i and j, wo are on safo grounds in dotermining the elusters on the basis
of the first g principal components. If not wo can still uso the ¢ principal components
for the points whero the distances aro not distorted. Tho affinitics of tho points whoso
distances with the othera aro distorted may thon be determined by considering their
actual distances botween themsolves and with the others.

17. TESTS OF SIONIFICANCE FOR PRINCIPAL COMPONENTS

In the provious scotions no referenco has been made to tests of significanco in
principal component analysis. The reason is that tho problems have not been posed
in terms of testing of well-defined hypotheses but in terms of estimating some foatures
of tho measurements on the individuals of & population. It is assumed that in any
realistic problem, reduction in the number of mieasurements (by omission of some or
by replacing the original measurementa by a smaller number of linear functions) entails
somo loss of information. If 8o we can only consider null hypotheses which apeoify
the amount of information lost. For instance, a null hypothesis may specify that tho
ratio of the sum of tho last p—g eigen values to the sum of all cigen values of a hypo-
thetical dispersion matrix = is 7. How can wo test such a hypothesis when we have

an cstimate & of T. Tho relovant atatistio appears to bo
Qerat -+ A .+ e (17.0)

whore A,, ..., 3, are the eigen valucs of £ Itis extromely difficult to derive the distri-
bution of (17.1) even under tho assumption that $ has & Wishart distribution.

Another null hypothesia of intereat is tho equality of tho last p—g true cigen
values. An appropriate statistio to test such a hypothesis is tho ratio of the goometrio
mean to tho arithmotic mean of tho estimated roots Agy. ..., A, (sco Bartlott,
1050, 1051a, 1051b; Rao, 1955). Tho large sample distribution of the logarithm of the
ratio suitably standardized is chi-square whon X has a Wishart distribution. Howovor,
tho testa based on the roots ,, ..., , aro likely to be sensitive to departuro from
Wishartnesa of tho distribution of £ and no appropriato robust test critoria aro
known.
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18. USE OF PRINCIPAL COMPONENTS IN TESTING DIFFERENOES IN
SIEAN VALUES BETWEEN OROUTS
It is well known that when multiplo moasurmenta aro availablo on anmples of
individuals from different populations, tho total sum of producta (S.P.) matrix can
Lo analyzed as due to ‘within® and ‘botween’ groups. Tho analysis of disporsion (which

is n gencralization of analysis of variance) s indicated 09 follows (Rao, 1952).
D.F. 8.P. matrix
Botweon k—1 B
n w
Within AFET T

Differences betwoon the mean values of & populations and the configuration of the mcan

values when difforences exist are examined by the roots of the determinantal equation

|B~0T| = 0. . (18.1)

For applicationa the reador is reforred to Bartlott (1048); Fishor (1039); Rao (1048,
1032); Williams (1059) eto.

Recently, Roy (1038) proposod stopdd: d whorby diffe
aro oxamined in one observed variablo first, nnd '.hon in another obsorved variablo
climinating the regression duo to the first, and so on using each timo a univariato proce-
duro. Thero is, howover, the problem of fixing tho order in which tho variables are
considered. It is auggested that instead of the original variables, the principal compo-
nents

PiX, ... PX . (182)

where P, ..., P, aro the firat ¢ cigen vectora of the total 8.P. matrix T' may be consi-
dered in tho given order. Tho perfc of such a procedurs (Demp 1963)
is not fully studied excopt in a very pocial caso arising in tho comparison of growth
ourves (Rno, 1058).  Although tho mothod suggested is in lino with tho genoral philo-
sophy of the principal component analysis it i cloar that tho first fow principal compo-
nonta (18.2) aro not designod to 1z0 na much inf tion ns possiblo on tho
differonces botweon tho mean values of tho groups. In actual practico it may turmn
ou'. that somo of the principal compononts with emallor olgon valucs are bottor disori-

b tho populations with roapect to tho difforonces in moans than tho
first fow principal compononta This is not o only in epecial cnacs such as thoso consi-
dered by Rao (1038). However, tho gonoral drawback of tho step-lown procodures
is that thoy do not ennblo us to study the configuration of tho mean valuca of the
difforont populations, which in practioa! probloms is more important than meroly
catablishing difforoncos in tho moan valuos.
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