THE PROBLEM OF TESTING LINEAR HYPOTHESIS ABOUT POPULATION MEANS WHEN THE POPULATION VARIANCES ARE NOT EQUAL AND M-TEST

By SAIBAL BANERJEE

Indian Statistical Institute

SUMMARY. Given k independent samples of n_i units from k populations N_i (m_i , n_i) (i-1, 2, ..., k) a test statistic for testing a hypothesis H_i about s ($s \in \mathcal{E}$) linear functions of k population means without any n_i prior knowledge of population variances or the ratio of the variances to it laterest. A new test statistic called M statistic is defined for testing such hypothesis where any prior knowledge about the population variances is not avaisable. The error of the first kind grabability of rejection of the hypothesis when true) of the test statistic depends on the unknown population variances but the test statistic as defined that for all possible values of population variances to the error of the first kind is less than or equal to some pre-assigned probability n_i . It is shown that critical values of the test statistic for testing a hypothesis about two linear functions of k population means with $n_i = 0.03$, 0.02, 0.01, etc., can all bothined from tabulated values of F-table. A numerical example for testing equality of these population means has been considered. It is also shown that the test statistic ne used in multivariate problems as well. An analysis of Barneric data (Barneric, 1933) has been considered.

I. INTRODUCTION

1.1. Given k samples of n_t units from k normal populations $N_t(m_t, \sigma_t^a)$ (i = 1, 2, ..., k) having equal variances or the ratio of the variances known a priori any hypothesis about any linear function $\sum_{i=1}^k c_i m_i$ of population means (where c_i (i = 1, 2, ..., k) are known coefficients) can be tested by the t-statistic. Also, any hypothesis about more than one linear function of population means can be tested by F-statistic or F-ratio. If the population variances are not equal or the ratio of the variances are not known a priori it is possible to test (Banerjee, 1961) any hypothesis about any single linear function of population means. Also, any hypothesis about more than one linear function of population means can be tested by a new statistic hereinafter called M-statistic or M-ratio.

2. Samples from heteroscedastic populations

2.1. Let x_i , σ_i^* (i = 1, 2, ..., k) be sample estimates of population means and variances of k samples of n_i -units drawn drom k normal population $N_i(m_i, \sigma_i^*)$ (i = 1, 2, ..., k). Suppose it is required to test the hypothesis that

$$H_0 \left\{ \begin{array}{lll} c_{11}m_1 + c_{12}m_1 + \ldots + c_{11}m_2 & = M_1 & \ldots & (2.1.1) \\ c_{21}m_1 + c_{22}m_2 + \ldots + c_{21}m_k & = M_2 & \ldots & (2.1.2) \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ c_{11}m_1 + c_{12}m_2 + \ldots + c_{1k}m_k & = M_s & \ldots & (2.1.s) \end{array} \right.$$

where c_{ij} (i=1,2,...,s;j=1,2,...,k) and M_{j} (j=1,2,...,s) are known constants. It is assumed without any loss of generality that the relations (2.1.1), (2.1.2), ... (2.1.3) are mutually consistent and independent. It is also assumed that s < k for if s = k the relations (2.1.1), (2.1.2), ... (2.1.3) can be replaced by

 $m_i = M_i \quad (i = 1, 2, ..., k)$

and Ho can be tested by the statistic

$$T = \sum_{i=1}^{k} \left[\frac{Z_{i} - M_{i}^{i}}{\theta_{i} \sqrt{n}} \right]^{2} = \sum_{i=1}^{k} t_{i}^{2}$$

whose percentage points, although not tabulated, can be evaluated as each t_i (i = 1, 2, ..., k) would be independently distributed as a Student's t-variate if the hypothesis be true.

2.2. Let test variates U1, U2, ..., U. be defined as

$$U_i = \sum_{i=1}^{n} c_{ij}\bar{x}_{j}$$
. $(i = 1, 2, ..., s)$ (2.2.1)

The test variates $U_1, U_2, ..., U_s$ as defined in (2.2.1) are stochastic variates jointly distributed in a multivariate normal form.

2.3. Now let us consider the probability of the inequality

$$\mathop{\Sigma}_{i=1}^{s} (U_{i} - M_{i})^{2} \geqslant \mathop{\Sigma}_{j=1}^{s} A_{j} C_{j} \mathop{\Xi}_{n_{i}}^{s_{j}^{2}}$$

where $C_1, C_2, ..., C_k$ are defined as

$$C_j = \sum_{i=1}^{s} c_{ij}^2; \quad (j = 1, 2, ..., k)$$

and A_j (j = 1, 2, ..., k) are positive constants to be suitably determined in a manner as discussed later.

2.4. Let $M_1', M_2', ..., M_s'$ be respectively means of test variates $U_1, U_2, ..., U_s$ whereas by hypothesis H_0 the means are $M_1, M_2, ..., M_s$. Let variates u_i (i = 1, 2, ..., s) be defined to

$$u_i = U_i - M_i'; \quad (i = 1, 2, ..., s)$$
 ... (2.4.1)

 u_i (i=1,2,...,s) as defined in (2.4.1) follow a multivariate normal distribution with zero mean with, say, disperson matrix R. Now consider a further transformation (Ferrar, 1953) to variates v_i (i=1,2,...,s) so that

$$\begin{bmatrix} \vec{r} & u_1^2 = \vec{r} & v_1^2 \\ 1 & u_1^2 = \vec{r} & v_1^2 \end{bmatrix} \dots (2.4.2)$$

$$uR^{-1}u' = \lambda_1 v_1^2 + \lambda_2 v_2^2 + \dots + \lambda_s v_s^2$$

and where

u is a row matrix (u1, u2, ..., u1).

n' is a transposo n

nnd

 R^{-1} is a $s \times s$ matrix reciprocal to the dispersion matrix R.

The transformed variates v_i (i=1,2,...,s) are independently normally distributed with zero mean and variance, say, σ_{si}^2 (i=1,2,...,s).

2.5. Now by virtue of (2.4.1) and (2.4.2)

$$\overset{t}{\underset{1}{\downarrow}} (U_{i} - M_{i})^{3} = \overset{t}{\underset{1}{\downarrow}} (u_{i} - M_{i} + M'_{i})^{3} = \overset{t}{\underset{1}{\downarrow}} (u_{i} - d_{i})^{3} = \overset{t}{\underset{1}{\downarrow}} (v_{i} - d'_{i})^{3} \dots (2.5.1)$$

(where $\sum d_i^2 = \sum d_i^{\prime 2}$).

Also, by virtue of (2.4.1)

$$\overset{s}{\Sigma} \ V(U_i) = \overset{s}{\Sigma} \ V(u_i) = \overset{s}{\Sigma} \ E(u_i^1) = \overset{s}{\Sigma} \ E(v_i^2) = \overset{s}{\Sigma} \ \sigma_{v_i}^2 \, . \qquad \dots \ \ (2.5.2)$$

2.6. From (2.5.1) and (2.5.2) the probability of the inequality

$$\sum_{i=1}^{n} (U_i - M_i)^2 > \sum_{i=1}^{n} A_i C_i \frac{\sigma_i^2}{n}$$

is equal to

$$\frac{\sum\limits_{1}^{L} (v_{t} - d_{t}^{\prime})^{2}}{\sum\limits_{1}^{L} \sigma_{v_{t}}^{2}} \Big\{ = \frac{\sum\limits_{i=1}^{L} (V_{t} - M_{t})^{2}}{\sum\limits_{i=1}^{L} V(U_{t})} \Big\} > \frac{\sum\limits_{i=1}^{L} A_{i} C_{i} \frac{\sigma_{t}^{2}}{n_{t}}}{\sum\limits_{i=1}^{L} V(U_{t})}$$

which is equal to

$$\sum_{i=1}^{s} \beta_i \chi_{1i}^s > \sum_{j=1}^{\frac{1}{s}} A_j \omega_j \frac{\chi_j^s}{v_i}$$

where

 χ_{1i}^{s} are non-central χ^{s} -variates with 1 d.f. (i = 1, 2, ..., s)

 χ_1^* are χ^* -variates with v_i d.f. $(v_i = n_i - 1)$, (j = 1, 2, ..., k)

 β_i and ω_i are positive weights defined as .

$$\beta_i = \frac{\sigma_{i_l}^2}{\frac{1}{\Sigma} \sigma_{v_l}^2}; \omega_j = \frac{C_j^2 \sigma_j^2 / n_j}{\frac{1}{\Sigma} C_j^2 \sigma_j^2 / n_j}. \quad (i = 1, 2, ..., s; \ j = 1, 2, ..., k)$$

If the hypothesis H_0 is true $\chi_1^2(i=1,2,...,s)$ are, however, distributed as χ^2 -variates with 1 d.f.

2.7. The crux of the problem of having a test statistic for testing hypothesis H_0 based on test variates U_4 (i = 1, 2, ..., s) therefore boils down to finding positive constants A_1 (i = 1, 2, ..., k) so that

prob
$$\left[\begin{array}{c} \frac{a}{b} \beta_{i} \chi_{1i}^{2} > \sum_{j=1}^{b} A_{j} \omega_{j} \frac{\chi_{1}^{2}}{v_{i}} \right] < \alpha$$
 ... (2.7.1)

where χ_{ii}^{a} (i=1,2,...,s) and χ_{j}^{a} (j=1,2,...,k) are all independently distributed χ^{a} -variates with respectively 1 and v_{j} (j=1,2,...,k) d.f. and β_{i} and ω_{j} are positive weights adding up to unity. First, it has, however, to be proved that it is at all possible to find finite positive constants A_{j} (j=1,2,...,k) so that given some pre-assigned α (2.8.1) would be satisfied.

2.8. Theorem : Let U_i (i = 1, 2, ..., s) be a set of stochastic variates (not necessarily independently distributed) which satisfy the relation that

$$prob[U_i < 0] < \alpha_i$$
 $(i = 1, 2, ... s)$ (2.8.1)

Now if β_t (i=1,2,...,s) be a set of arbitrary positive weights adding up to unity (i.e. $\sum_{\ell=1}^{r} \beta_{\ell} = 1$), then

prob
$$[\overset{\circ}{\Sigma} \beta_i \ U_i \leqslant 0] \leqslant \overset{\circ}{\Sigma} \alpha$$
. ... (2.8.1)

Proof: First, let us consider the case of only two variates $-U_1$ and U_4 . Now if β_1 and β_2 be two positive weights adding up to unity

prob
$$[\beta_1 u_1 + \beta_2 u_1 \le 0] \le \text{prob } [U_1 \le 0] + \text{prob } [U_2 \le 0] \le \alpha_1 + \alpha_2$$

Also, similarly it can be proved that

prob
$$\sum_{i=1}^{r} \beta_i U_i \le 0$$
 $\le \sum_{i=1}^{r} \alpha_i$ (2.8.2)

2.9. Now let U_i (i = 1, 2, ..., s) be defined as

$$\sum_{i=1}^{s} A_{i} \omega_{j} \frac{\chi_{i}^{2}}{v_{i}} - \chi_{1i}^{2} \qquad (i = 1, 2, ..., s) \qquad ... \quad (2.9.1)$$

where X_{ii}^* (i, 1, 2, ..., s) and χ_i^* (j = 1, 2, ..., k) are all independently distributed χ^i -variates with respectively 1 and v_j (j = 1, 2, ..., k) d.f. and A_j (j = 1, 2, ..., k) are 100. α/s percentile point of Student's *i*-table of d.f. v_j (j = 1, 2, ..., k) so that (Banerjee, 1960)

prob
$$[U_i \le 0] \le \alpha/s$$
. ... (2.9.2)

From (2.8.1) and (2.8.2) it follows

$$\operatorname{prob} \left[\sum_{i=1}^{s} \beta_{i} \chi_{1i}^{2} \geqslant \sum_{i=1}^{s} A_{i} \omega_{j} \chi_{j}^{2} / v_{j}\right] \leqslant \alpha. \qquad \qquad \dots \quad (2.9.3)$$

3. STATEMENT OF THE STATISTIC

3.1. Let $M_{s,p}$ -statistic (M after Mahalanobis) for testing hypothesis about s linear functions of population means without any a priori knowledge of population variances of size α (or with maximum value of error of the first kind α) be defined as

$$\frac{\sum_{i=1}^{\infty} \beta_i \chi_{1i}^2}{\sum_{i=1}^{\infty} A_j \omega_j \chi_{i}^2}$$

where χ_{1i}^a (i=1,2,...,s) and χ_j^a (j=1,2,...,k) are independently distributed χ^a -variates with respectively 1 and $v_j(j=1,2,...,k)$ d.f. and β_i and ω_j (i=1,2,...,s;j=1,2,...,k) are a set of positive weights adding up to unity and A_i (j=1,2,...,k) are irreducible positive constants which have been so determined so that

prob
$$\left[\left[\sum_{i=1}^{r} \beta_{i} \chi_{1i}^{2} > \sum_{i=1}^{r} A_{j} \omega_{j} \frac{\chi_{1}^{2}}{v_{i}} \right] \right]$$

is less than or equal to α for all possible values of β_i and ω_i (i = 1, 2, ..., s; j=1, 2, ..., k).

4. CRITICAL VALUES OF M-STATISTIC

4.1. Let us consider the case of finding critical values of M-statistic for the case s=2 and any k. The problem of finding critical values of $M_{1:k}$ amounts to finding minimum possible numerical values of A_{j} (j=1,2,...,k) so that

$$\operatorname{prob}\left[\begin{array}{c} \sum\limits_{1}^{s}\beta_{i}\chi_{1i}^{s} > \sum\limits_{1}^{k}A_{j}\omega_{j}\frac{\chi_{i}^{k}}{v_{j}}\right] < \alpha. \qquad \qquad \dots \quad (4.1.1)$$

If P denotes the probability of the inequality

$$\sum_{i=1}^{k} \beta_{i} \chi_{it}^{k} > \sum_{i=1}^{k} A_{i} \omega_{i} \chi_{i}^{k} \qquad ... \quad (4.1.2)$$

we have

$$1-P = \int\limits_0^{\pi} \int\limits_0^{\pi} \cdots \int\limits_0^{\pi} \int\limits_{i-1}^{k} f(\chi_i^{\pi}) \left\{ \int\limits_0^{T/\beta_1} h(\chi_{11}^2) \left\{ \int\limits_0^{(T-\beta_1\chi_{11}^2)/\beta_2} h(\chi_{12}^2) d\chi_{11}^2 \right\} d\chi_{11}^2 \right\} d\chi_{11}^2 \right\} d\chi_{12}^2 \cdots (4.1.3)$$

where $h(\chi_{i}^{a})$ (i=1,2) denotes frequency function of a χ^{a} -variate with 1d.f. (i=1,2) $f(\chi_{j}^{a})$ denotes frequency functions of χ^{a} -variate with v_{j} d.f. (j=1,2,...,k) and $T = \sum_{i=1}^{k} A_{j} \omega_{j} \frac{\lambda_{j}^{a}}{v_{i}}$.

4.2. The integral $\int_{0}^{s/\beta_1} h(\chi_{11}^2)^{\left\{\frac{s(-\beta_1)}{\beta_1},\frac{1}{\beta_1}\right\}/\beta_1} h(\chi_{12}^2) d\chi_{12}^2 d\chi_{13}^2$ is an upward convex function of z (Courant, 1957) (details in Appendix A.1) so that

$$\frac{\frac{k}{2}}{\omega_{1}} \omega_{1} \mu_{1} \frac{(\frac{k}{2}\omega_{1}(2-\beta_{1}\chi_{1}^{2}))\beta_{1}}{\int_{0}^{k} h(\chi_{1}^{2})} d\chi_{1}^{2} \frac{1}{\delta} h(\chi_{1}^{2}) d\chi_{1}^{2} \frac{1}{\delta} d\chi_{1}^{2}}$$

$$\geqslant \frac{k}{2} \omega_{1} \frac{\omega_{1}(\beta_{1})}{\int_{0}^{k} h(\chi_{1}^{2})} \left\{ \begin{array}{c} (z_{1} - \beta_{2}\chi_{1}^{2}))\beta_{1} h(\chi_{1}^{2}) d\chi_{1}^{2} \\ \int_{0}^{k} h(\chi_{1}^{2}) d\chi_{1}^{2} \end{array} \right\} d\chi_{1}^{2}, \qquad ... \quad (4.2.1)$$

From (4.1.1), (4.1.2) and (4.1.3) it follows

$$P \leqslant \sum_{i=1}^{k} \omega_i P_i$$
 ... (4.2.2)

where

$$P_j = \int_0^\infty f(\chi_j^z) \left[\int_{T_1/\beta_1}^\infty h(\chi_{11}^z) \left\{ \int_{(T_1-\beta_1\chi_{11}^z)/\beta_1}^\infty h(\chi_{12}^z) d\chi_1^z, \right\} d\chi_{11}^z \right] d\chi_1^z$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} h(\chi_{11}^{2})h(\chi_{12}^{2}) \left\{ \int_{1}^{2} f(\chi_{1}^{2})d\chi_{2}^{2} d\chi_{11}^{2}d\chi_{12}^{2} \right\} ... (4.2.3)$$

where

$$T_1 = \frac{A_j \chi_j^2}{v_j}$$

and

$$T_{z} = \frac{\beta_{1}\chi_{11}^{2} + \beta_{z}\chi_{12}^{2}}{\frac{A_{i}}{\gamma_{j}}} \cdot$$

4.3. Now, for degrees of freedom of x1 equal to 1 or 2, the integral

where

$$T_{\mathbf{z}} = \frac{\beta_1 \chi_{11}^2 + \beta_2 \chi_{12}^2}{F_{2, \mathbf{v}_j, \pi} / \mathbf{v}_j}$$

for variation in β_1 and β_2 is always less than or equal to α , where $F_{2,\gamma,\alpha}$ is tabulated F-value of F-table corresponding to 100α percentage point and d.f. of greater mean square 2 and d.f. of smaller mean square $(\gamma_1 = 1, 2)$. (Details in Appendix A.2).

4.4. Also, for the case $v_i \geqslant 3$ and $\alpha = 0.05, 0.02, 0.01, etc., the integral$

$$\int\limits_{0}^{\infty} \int\limits_{0}^{\infty} h(\chi_{11}^{n}) \; h(\chi_{12}^{n}) \Big\{ \int\limits_{0}^{\infty} f(\chi_{1}^{n}) d\chi_{1}^{n} \Big\} \; d\chi_{11}^{n}.d\chi_{1n}^{n} \qquad \qquad ... \quad (4.4.1)$$

where

$$T_4 = \frac{\beta_1 \chi_{11}^2 + \beta_1 \chi_{12}^2}{F_{1,\nu_j,\alpha}/\nu_j}$$

for variation in β_1 and β_2 is always less than or equal to α , where $F_{1,\nu_j,\alpha}$ is tabulated F-value of F-table corresponding to 100α percentage point and d.f. of greater mean square 1 and d.f. of smaller mean square $(\nu_j \ge 3)$. (Details in Appendix A.2).

4.5. Numerical values of A_j of $M_{2,k}$ test can thus be determined from tabulated values F-table. Table 1 below gives numerical values of A_j of $M_{2,k}$ test of size 0.05 and d.f. $v_i = 1, 2, ..., 20$. The values have been taken from F-table.

TABLE 1. NUMERICAL VALUES OF A; OF Mak TEST OF 81ZE 0.05

٧ş	Aş	*1	Aj
ì	200.00	11	4.84
2	19.00	12	4,76
3	10.13	13	4.67
4	7.71	14	4.60
5	6.61	15	4.54
6	5.99	16	4.49
7	ñ.69	10	4,48
8	8.32	18	4.41
9	5.12	19	4.38
10	4.94	20	4.35

- 5. TESTING EQUALITY OF POPULATION MEANS
- 5.1. Given k samples from k normal populations $N_i(m_i, \sigma_i^2)$ to test the equality of population means k-1 mutually independent linear functions L_i (i=1,2,...,k-1) of population means and associated test variates may be defined as

$$L_i = \sum_{j=1}^{k} c_{ij} m_j;$$
 $U_i = \sum_{j=1}^{k} c_{ij} \cdot x_j;$... (5.1.1)
$$(i = 1, 2, ..., k-1).$$

where $\sum_{j=1}^{n} c_{ij} = 0$. If s_i^* denotes estimate of population variance of the *i*-th population (i=1,2,...,k) $M_{k-1,k}$ -statistic may be computed as

$$\begin{array}{cccc} \sum_{i=1}^{k-1} U_i^{i} \\ \frac{i}{\sum_{i} A_i C_i} \frac{e_i^{i}}{n_i} & \dots & (5.1.2) \end{array}$$

(where $C_j = \sum\limits_{i=1}^k c_{ij}^2$; j=1,2,...,k) with suitable choice of $A_f(j=1,2,...,k)$ and the hypothesis would be rejected if the numerical value of $M_{k-1,k}$ as defined in (5.1.2) exceeded unity.

6. NUMERICAL EXAMPLE

6.1. Three samples from three populations supply the following estimates.

TABLE 2

		population	
_	1	11	п
zample mean Zi	5.0	20.0	10.0
sample variance	16.0	5.5	20.0
sample size na	3	11	21

Defining test variates U_1 , and U_2 as

$$U_1 = \frac{1}{\sqrt{2}} (\bar{x}_1 - \bar{x}_1) = \frac{1}{\sqrt{2}} (5 - 20)$$

 $U_2 = \frac{1}{\sqrt{6}} (\bar{x}_1 + \bar{x}_2 - 2\bar{x}_2) = \frac{1}{\sqrt{6}} (25 - 20).$

SANKIIYA: THE INDIAN JOURNAL OF STATISTICS: Series A

Mana-statistic of size .05 may be computed as

$$\begin{split} M_{4^{\circ}3} &= \frac{U_1^3 + U_4^4}{\frac{2}{3} \left[\frac{4}{n_1^4} + \frac{A}{n_2^4} + \frac{A}{n_3^4} \right]}{\frac{2}{3} \left[\frac{4}{n_1^4} + \frac{A}{n_2^4} + \frac{A}{n_3^4} \right]} \\ &= \frac{\frac{1}{2} \left[5 - 20\right]^2 + \frac{1}{6} \left[25 - 20\right]^2}{\frac{2}{3} \left[10.00 \times \frac{13}{3} + 4.06 \times \frac{6.6}{11} + 4.35 \times \frac{20}{21} \right]} \\ &= \frac{\frac{225}{2} + \frac{25}{6}}{\frac{2}{3} \left[114.00 + 2.48 + 4.14 \right]} \\ &= \frac{116.67}{50.41} = 1.45 \end{split}$$

where numerical values of $A_j(j=1,2,3)$ have been taken from Table 1 above. Since M_{T3} is greater than unity any hypothesis about equality of means is rejected.

7. THE CASE OF MULTIVARIATE POPULATION

7.1. Let k samples of N_i (i=1,2,...,k) units be drawn from k, p-variate normal populations having dispersion matrices Σ_i (i=1,2,...,k) which are not necessarily equal. Let z_{ij} and m_{ij} denote sample mean and population mean of j-th character of i-th population. Also let s_{ij} and σ_{ij} denote sample and population variance of j-th character of i-th population. To test the hypothesis that

$$\sum_{i=1}^{k} c_{ij} m_{ij} = \lambda_{j} \quad (j = 1, 2, ..., p). \quad ... \quad (7.1.1)$$

Me.st-statistic may be defined as

$$\frac{\sum_{j=1}^{p} \left\{ \sum_{i=1}^{k} c_{ij}x_{ij} - \lambda_{j} \right\}^{k}}{\sum_{i=1}^{k} \frac{A_{i}}{\lambda_{i}} \sum_{j=1}^{p} c_{ij}^{p}c_{ij}^{p}} \dots (7.1.2)$$

with suitable choice of A_i (i = 1, 2, ..., k) depending upon the size of the test. It can be shown that $M_{p,pk}$ as defined in (7.1.2) is equal to

$$\sum_{1}^{\sum_{i}} \frac{\beta_{i} \chi_{1i}^{2}}{\sum_{i}^{\sum_{i}} A_{i} \sum_{i}^{\sum_{i}} \omega_{ij} \frac{\chi_{ij}^{2}}{\gamma_{ij}}} \dots (7.1.3)$$

where χ_{it}^{*} (i=1,2,...,p) and χ_{ij}^{*} (i=1,2,...,k;j=1,2,...,p) are independently distributed χ^{2} -variates, χ_{it}^{*} being distributed with 1 and χ_{ij}^{*} being distributed with $N_{t}-1$ d.f. and β_{t} and ω_{ij} are a set of positive weights adding up to unity i.e. $\sum_{i=1}^{L} \beta_{i} = 1$ and $\sum_{i=1}^{L} \sum_{j=1}^{L} \omega_{ij} = 1$.

8. FURTHER NUMERICAL EXAMPLE

8.1. As an example of likely use of M-statistic in multivariate problems letus consider Barnard's data on Egyptian skulls. Four measurements on four populations are summarised as

TABLES	MPAN VALUES OF POUR CHARACTER	a

	character			
	1	17	VI	VII
population I	133.583	98.308	50.835	133.000
11	134.285	96.463	51.148	134.883
111	134.371	95.857	50.100	133.643
IV	135.307	95.040	62.093	131.467

with numbers of observations as $N_1 = 91$, $N_2 = 162$, $N_3 = 70$ and $N_4 = 75$ and pooled corrected sum of squares of the four characters as (i) 9681.097, (ii) 9073.116, (iii) 3933.290 and (iv) 8741.609. Let E_{ij} and m_{ij} denote sample mean and population mean of j-th character of the i-th population (i, j = 1, 2, 3, 4). Also let s_1^2 and σ_1^2 denote sample and population variances of the j-th character. (Here the dispersion matrices of the populations have been assumed to be equal.) To test the hypothesis that

$$m_{1j} = m_{2j} = m_{3j} = m_{4j} \quad (j = 1, 2, 3, 4).$$

Let test variates U_{ik} (j = 1, 2, 3, 4; k = 1, 2, 3) be defined be

$$U_{j1} = \frac{1}{\sqrt{2}} \{\bar{x}_{ij} - x_{ij}\}$$

$$U_{j2} = \frac{1}{\sqrt{2}} \{\bar{x}_{2j} - x_{ij}\}$$

$$U_{j3} = \frac{1}{\sqrt{4}} \{\bar{x}_{1j} + x_{2j} - x_{2j} - x_{ij}\}$$

$$(j = 1, 2, 3, 4).$$
(8.1.1)

On the basis of test variates U_{jk} $(j=1,2,3,4;\ k=1,2,3)\ M_{12\cdot4}$ -statistic may be computed as

$$\frac{\sum_{j=1}^{k} \sum_{k=1}^{k} U_{jk}^{2}}{\frac{3}{4} A \sum_{k=1}^{k} \delta_{j}^{2} \left\{ \frac{1}{N_{1}} + \frac{1}{N_{2}} + \frac{1}{N_{1}} + \frac{1}{N_{2}} \right\}} \dots (8.1.2)$$

with suitable choice of A depending on the size of the test. Taking numerical value of A equal to 3.86 (value taken from tabulated 5 p.c. point of F-table corresponding to $v_1 = 1$ and $v_2 = 400$) approximate numerical value of M_{194} -statistic comes out as 1.49. Since numerical value of M_{194} -statistic exceeds unity the hypothesis cannot be accepted.

Appendix A.1

Los

$$F(t) = \int_{0}^{t} \int_{0}^{t} e^{-x_{1}} x_{1} - \frac{1}{2} \left\{ \int_{0}^{(t-\beta_{1}x_{1})\beta_{2}} e^{-x_{2}} x_{1} - \frac{1}{2} dx_{1} \right\} ds_{1}. \quad ... \quad (A.1.1)$$

$$A.+B. = 1 + B. B. A. > 0 \text{ and } B. > B.$$

where

where
$$\beta_1+\beta_2=1$$
; $\beta_1,\beta_2>0$ and $\beta_3>\beta_1$. We have

$$\frac{d}{dz} F(z) = \int_{0}^{z/\beta_1} e^{-z_1} z_1^{-\frac{1}{2}} e^{-(z-\beta_1 z_1)/(1-\beta_2)} \left\{ \frac{z-\beta_1 z_1}{1-\beta_1} \right\}^{-\frac{1}{2}} \left\{ \frac{1}{1-\beta_1} \right\} dz_1$$

$$= K. \int_{0}^{z} e^{-z/\beta_1} e^{-(z-z)/(1-\beta_1)} \left\{ z-z \right\}^{-\frac{1}{2}} z^{-\frac{1}{2}} dz = I_1 + I_2 \quad ... \quad (A.1.2)$$

$$I_1 = K. e^{-z/\beta_1} e^{-(z-z)/(1-\beta)} \int_{\mathbb{R}} z^{-\frac{1}{2}} (z-z)^{-\frac{1}{2}} dz \right\}_{0}^{z}$$

where

$$= 2K_{\bullet} e^{-x|\beta_1} e^{-(x-x)/(1-\beta_1)} \sin^{-1} \sqrt{\frac{x}{x}} \Big]_0^{x}$$

$$= 2K_{\bullet} e^{-x|\beta_1} \frac{\pi}{2} = K_{\bullet} e^{-x|\beta_1} \qquad ... (A.1.3)$$

and
$$I_1 = -K \int_0^z e^{-z/\beta_1} e^{-(z-z)/(1-\beta_1)} \left\{ -\left(\frac{1}{\beta_1} - \frac{1}{1-\beta_1}\right)\right\} \times 2 \sin \sqrt{\frac{z}{z}} dz, \dots$$
 (A.1.4)

Now
$$\frac{d}{dt} I_1 = \pi e^{-t/\theta_1} \left\{ -\frac{1}{t} \right\}$$
 ... (A.1.5)

and
$$\frac{d}{dz}I_2 = I_{21} + I_{32}$$
 ... (A.1.6)

where

$$\frac{d}{dz} I_1 = \pi e^{-z|\beta_1} \left\{ -\frac{1}{\beta_1} \right\}$$

$$\frac{d}{dz} I_2 = I_{21} + I_{22}$$

$$I_{31} = 2K e^{-z|\beta_1} \left\{ \frac{1}{\beta_1} - \frac{1}{1 - \beta_1} \right\} \frac{\pi}{2}$$

$$= K \cdot e^{-z|\beta} \left\{ \frac{1}{\beta_1} - \frac{1}{1 - \beta_1} \right\} \pi$$

and

$$I_{22} = K \int_{0}^{g} e^{-z/\beta_1} \left\{ \frac{1}{\beta_1} - \frac{1}{1-\beta_1} \right\} e^{-z/(1-\beta_1)}$$

$$\times \frac{d}{dz} \left[e^{-z/(1-\beta_1)} \sin^{-1} \sqrt{\frac{z}{z}} \right] dz. \qquad ... \quad (A.1.7)$$

 $\frac{d}{dz} \left\{ e^{-z/(1-\beta_1)} \sin^{-1} \sqrt{\frac{z}{z}} \right\} = e^{-z/(1-\beta_1)} \sin^{-1} \sqrt{\frac{z}{z}} \left\{ -\frac{1}{1-\beta_1} \right\}$ λa

$$+ e^{-z/(1-\beta_1)} \left(\frac{z}{\sqrt{z}} \frac{z}{\sqrt{z-x}} \left(-\frac{z}{z^2} \right) \right).$$

$$I_{22} = K_{\frac{1}{2}}^{\frac{1}{2}} e^{-z/\beta_1} e^{-(z-x)/(1-\beta_1)} \left\{ \frac{1}{\beta_1} - \frac{1}{1-\beta_1} \right\} \times \left[\sin^{-1} \sqrt{\frac{z}{z}} \left(-\frac{1}{1-\beta_1} \right) - \frac{z^{\frac{1}{2}}}{2z\sqrt{z-z}} \right] dz$$

$$(2.18)$$

From (A.1.1), (A.1.2), ... (A.1.8) it follows

$$\frac{d^2}{dz^2} F(z) = -Ke^{-z/\beta_1} \left\{ \frac{1}{1-\beta_1} \right\} + I_{12}.$$

As I_{23} is negative, $\frac{dz}{dz^2}$ F(z) is negative, so that F(z) is an upward convex function of z.

Appendix A.2

Lot

$$F(\beta_1, \beta_2) = \int_0^\infty \int_0^\infty e^{-x_1-x_2} x_1^{-\frac{1}{2}} x_2^{-\frac{1}{2}} \left\{ \int_0^x e^{-y} (y_1)^{v/2-1} dy \right\} dx_1 dx_2 \dots (A.2.1)$$

whore

$$T = (\beta_1 x_1 + \beta_2 x_2)/A'$$
, $A' = A/v$. $\beta_1 + \beta_2 = 1$ and $\beta_1, \beta_2 > 0$,

$$\frac{d}{d\beta_1}F(\beta_1, \beta_2) = K_1 \bigcap_{0}^{\infty} \int_{0}^{\infty} e^{-x_1(1+\beta_2|A') - x_2(1+\beta_2|A')} x_1 - \frac{1}{2} - \frac{1}{2} (\beta_1x_1 + \beta_2x_2)^{s/s - 1} (x_1 - x_2)dx_1dx_2 - \dots (A.2.2)$$
... (A.2.2)

$$-K_1 \int\limits_0^\infty \int\limits_0^\infty e^{-u_1-u_2} u_1^{-\frac{1}{2}} u_2^{-\frac{1}{2}} \left(c_1u_1+c_2u_2\right)^{-\frac{1}{2}-1} \times \left(u_1(1+\sigma_2)^{-\frac{1}{2}}-u_2(1+\sigma_2)^{-\frac{1}{2}}\right) du_1 du_2 \\ \qquad \dots \quad (A.2.3)$$

where

$$a_1 = \beta_1/A'; \ a_2' = \beta_2/A';$$

 $a_1 = \beta_1/(1+a_1); \ a_2 = \beta_2/(1+a_2).$

Sub-case 1: For v = 2, from (A.2.3.)

$$\frac{d}{d\hat{\beta}_1} F(\beta_1, \beta_2) = I_1 - I_2.$$
 ... (A.2.4)

where

$$\begin{split} I_1 &= (1+a_1)^{-1} \int\limits_0^{\infty} \int\limits_0^{\infty} e^{-u_1-u_2} \, u_1 - \frac{1}{2} \, u_2 - \frac{1}{2} \, u_1 du_1 du_2 \\ I_2 &= (1+a_2)^{-1} \int\limits_0^{\infty} \int\limits_0^{\infty} e^{-u_1-u_2} \, u_1 - \frac{1}{2} \, u_2 - \frac{1}{2} \, u_2 du_1 du_2 \end{split}$$

From (A.2.4)

$$I_2/I_1 = (1+a_1)/(1+a_2) = (A'+\beta_1)/(A'+\beta_2)$$

which is less than unity if $\beta_1 < \beta_2$, so that $F(\beta_1, \beta_2)$ increases as β_1 increases $(\beta_1 < \beta_2)$. It can be similarly shown that if $\beta_1 > \beta_2 F(\beta_1, \beta_2)$ docreases as β_1 increases and the function $F(\beta_1, \beta_2)$ has a maximum value at $\beta_1 = \beta_2 = 1/2$.

Sub-case 2: For v=1, from (A.2.3) for β_1 , $\beta_2 > e > 0$,

$$\frac{d}{d\beta_1} F(\beta_1, \beta_2) = I_1 - I_2$$
 ... (A.2.6)

whore

$$I_1 = K_1 (1 + \sigma_1)^{-1} \int_0^\infty \int_0^\infty e^{-u_1 - u_2} u_1^{-\frac{1}{2}} u_2^{-\frac{1}{2}} (c_1 u_1 + c_2 u_2)^{-\frac{1}{2}} u_1 du_1 du_1$$

$$I_1=K_1\left(1+a_2\right)^{-1}\int_{0}^{\infty}\int_{0}^{\infty}e^{-u_1-u_2}u_1-\frac{1}{2}u_2-\frac{1}{2}\left\{c_1u_1+c_2v_2\right\}^{-\frac{1}{2}}u_2du_1du_2$$

Defining variates $V_1 = u_1$ and $V_2 = u_2/u_1$, it can be shown that

$$I_1 = K_2 (1 + a_1)^{-1} \int_1^{\infty} V_2^{-\frac{1}{2}} \{1 + c_2 V_2 / c_1\}^{-\frac{1}{2}} (1 + V_2)^{3/2} dV_2$$
. ... (A.2.6)

For $\beta_1 < \beta_2$, defining $Z = 1/(1 + V_2)$, it can be shown that

$$I_1 = K_4(1+a_1)^{-1}F(1/2, 2/2; \lambda_1)$$
 ... (A.2.7)

where $\lambda_1 = A'(A' + \beta_1)^{-1}(\beta_2 - \beta_1)/\beta_2$.

Also, for B: < B: it can be shown that

$$I_1 = K_4(1+x_2)^{-1}F(1/x_1,1/x_2; \lambda_1).$$
 ... (A.2.8)

From (A.2.7) and (A.2.8) it thus follows that for $\beta_1 < \beta_2$

$$I_2/I_1 = (A' + \beta_1)(A' + \beta_2)^{-1} P\{1/2, 1/2; 2; \lambda_1\}/P\{1/2, 1/2; 2; \lambda_1\}$$
 ... (A.2.9)

For $\beta_1 < \beta_2$ thus $F(\beta_1,\beta_2)$ increases as β_1 increases. It can also be similarly shown that for $\beta_1 > \beta_2$, $F(\beta_1,\beta_2)$ decreases as β_1 increases and the function has a maximum value at $\beta_1 = \beta_2 = 1/2$.

Sub-case 3: For v > 3, we have from (A.2.3)

$$\frac{d}{d\beta_1}F(\beta_1, \beta_2) = I_1 - I_2$$
 ... (A.2.10)

where $I_1 = K_3(1+a_1)^{-1} \int_0^{\infty} \int_0^{\infty} e^{-u_1-u_2} u_1^{-\frac{1}{2}} u_3^{-\frac{1}{2}} \times \{c_1u_1+c_2u_2\}^{s/t-1} u_1du_1du_1 \dots$ (A.2.11)

and
$$I_2 = K_1(1+a_3)^{-1} \int_1^{\infty} \int_0^{\infty} e^{-u_1-u_2} u_1^{-\frac{1}{2}} u_2^{-\frac{1}{2}} \times \{c_1u_1+c_2u_2\}^{r/2-1} u_2du_1du_3, \dots$$
 (A.2.12)

For 8=0, from (A.2.11) and (A.2.12)

$$I_1 = K_2$$
, $\Gamma(3/2) \Gamma(v/2 - \frac{1}{4})/(1 + a_1)$.

 $I_2 = K_1 \cdot \Gamma(\frac{1}{2}) \Gamma(\frac{1}{2} + 1 - \frac{1}{2})/(1 + a_2)$

so that
$$I_2/I_1 = (1+a_1)(1+a_2)^{-1}(v-1) = (A'+\beta_1)(A'+\beta_2)^{-1}(v-1)$$
... (A.2.13)

From (A.2.13), I_1 would be greater than I_1 if

$$A'v = A > v/(v-2). \qquad \dots (A.2,14)$$

Now for $0 < \beta_1 < \beta_2$, defining variates $V_1 = u_1$ and $V_2 = u_1/u_2$, it can be shown from (A.2.11) that

 $\lambda_1 = 1 - D_1 = 1 - \beta_1 \beta_2^{-1} (A' + \beta_2)/(A' + \beta_1).$

$$I_1 = K_1 (1 + \sigma_1)^{-1} \int_{0}^{\infty} V_1^{\frac{1}{2}} (1 + D_1 V_1)^p (1 + \overline{V}_1)^{-(p+2)} dV_1 \qquad \dots \quad (A.2.13)$$

where

$$D_1 = c_1/c_2$$
 and $p = v/2-1$.

From (A.2.15) it can be shown that

$$I_1 = K_1 (1 + a_1)^{-1} D_1^{-\frac{1}{2}} F(\nu/2 + 1, \frac{1}{2}; 2; \lambda_2)$$
 ... (A.2.16)

where

It can also be shown from (A.2.12) that for $0 < \beta_1 < \beta_2$

$$I_1 = K_1 (1+a_1)^{-1} D_1^{\frac{1}{2}} F(\gamma/2+1, 3/2 : 2 : \lambda_2),$$
 ... (A.2.17)

From (A.2.16) and (A.2.17) we thus have

$$I_2|I_1 = D_1 (A' + \beta_1) (A' + \beta_2)^{-1} F\{v|_2 + 1, 2|_2 : 2; \lambda_1\} / F\{v|_2 + 1, 1|_1 : 2; \lambda_1\}$$

 $= (1 - \lambda_2) (A' + \beta_1) (A' + \beta_2)^{-1} F\{v|_2 + 1, 2|_1 : 2; \lambda_2\} / F\{v|_2 + 1, 1|_2 : 2; \lambda_2\} ... (A.2.18)$

Now according to algebraic relations due to Gauss (Erdelyi, 1953) satisfied by contiguous hypergeometric functions,

$$(1-z)\frac{F(a,b+1;a;z)}{F(a,b;c;z)} = 1+z\frac{a-a}{a}\frac{F(a,b+1;a+1;z)}{F(a,b;a;z)}. \qquad ... (A.2.19)$$

From (A.2.18) and (A.2.19) I2 would be greater than I1 if

$$(A'+\beta_1)(A'+\beta_2)^{-1}(1+\lambda_2 E) > 1$$
 ... (A.2.20)

where

$$E_1 = (a-c) e^{-1} F(a,b+1; c+1; \lambda_2)/F(a,b; c; \lambda_2)$$

$$\alpha = \frac{1}{2} \frac{1}{2}$$

$$\lambda_2 = 1 - \beta_1, \beta_2^{-1} (A' + \beta_2)/(A' + \beta_1)^{-1}$$

From (A.2.20), I, would be greater than I, if

$$(A'+\beta_1).(A'+\beta_2)^{-1}(1+E) > 1+\beta_1, \beta_2^{-1}, E$$

or, if $A'(\beta_1-\beta_1)E > \beta_1(\beta_1-\beta_1)$, or, if

$$A = 1 E > \beta_2$$
 ... (A.2.21)

Now h; and \$; are connected as

$$\lambda_1 = 1 - \beta_1, \beta_1^{-1} (A' + \beta_1)(A' + \beta_1)^{-1} = A' \beta_1^{-1} (\beta_1 - \beta_1)(A' + \beta_1)^{-1} \text{ so that for } 1 > \beta_1 > \epsilon > \frac{1}{2},$$

$$\lambda_2 > A' (A' + (1 - \epsilon))^{-1} (2\epsilon - 1)\epsilon^{-1}. \qquad (A.2.22)$$

$$\lambda_2 \geqslant A'(A'+(1-a))^{-1}(2a-1)a^{-1}$$
, ... (A.

For elarity of exposition (A.3.21) would be considered under two heads:

Sub-case I:
$$B_1$$
 lies in the range $3/4 > B_1 > \frac{1}{4}$.

Sub-case 2 : θ_2 lies in the range $1 > \theta_2 > 3/4$.

For sub-case 1, from (A.2.21) it follows that since $P(a,b+1;c+1;\lambda_2)/F(a,b;c;\lambda_2)$ is greater than or equal to unity, (A.2.21) would be satisfied if

$$A' = A/v > c (a-c)^{-1} 3/4 = 3/(v-2),$$
 ... (A.2.23)

For sub-case 2, since λ_2 from (A.2.22) would be greater than or equal to $A'(A'+1/4)^{-1}$, 2/3, (A.2.21) would be satisfied if

$$A' \left[\frac{1 + a(b+1)\lambda_0/(c+1)}{1 + ab\lambda_0/c} \right] > c/(a-c) = 4/(v-2) \qquad .. \quad (A.2.24)$$

where

$$\lambda_A = A'(A' + 1/4)^{-1} 2/3$$

From (A.2.24) it follows that I_2 would be greater that I_3 if

$$A'\frac{A'+1/4+aA'/3}{A'+1/4+aA'/6} > 4/(v-2).$$
 ... (A.2.25,

Considering (A.2.25) the following auxiliary function U may be considered:

$$U = A'\{(A'+1/4) + \alpha A'(3) + 4(y-2)^{-1}(A'+1/4 + \alpha A'/6)\}, \qquad ... \quad A.2.26\}$$

In (A.2.26) substituting K/(v-2) for A' we get

$$(v-2)U = (A'+1/4)(K-4)+oA'(2K-4)/6$$

= $A'(K-4+(v+2)(K-2)/6)+(K-4)/4$

or.

$$12(v-2)^{2}U = K\{12(K-4)+2(v+2)(K-2)\}+3(K-4)(v-2)$$

$$= K^{2}(2v+16)-K(v+62)-12(v-2). \qquad (A.2.27)$$

Since the co-efficient of K^2 of the quadratic on the R HS of (A.2.27) is positive, for some value of $K > K_0$ numerical value of the quadratic and at such numerical value of U is positive. Let the roots of the quadestin

$$(2v+16)K^2-K(v+6z)-12(v-2)=0$$
 ... (A.2.28)

be K_1 and K_2 (where $K_2 > K_1$). New it can be shown that for v > 3,

$$K_3 < \frac{(v+62) + (10v+63)}{4v+32} = \frac{11v+105}{4v+32}$$
 ... (A.2.29)

Since the expression on the RHS of (A.2.20) for v > 3 is less than 16/5, it follows that U would be positive for K > 16/5, which means that (A.2.25) or (A.2.24) would be satisfied for

$$A'(=A/v) > 3.2/(v-2)$$

or, A > 3.2v/(v-2). ... (A.2.30)

From (A.2.14), (A.2.23) and (A.2.25) is thus follows that for
$$0 \le \beta_1 \le \beta_2$$
, I_2 would be greater than I_1 if
$$A \ge 3.2r/(r-2). \tag{A.2.31}$$

The function $F(\beta_1, \beta_2)$ thus decreases as β_1 increases for $\beta_2 < \beta_2$, if A is greater than or equal to 3.2v/(v-2). It can also be similarly shown that for $\beta_1 > \beta_2$, $F(\beta_1, \beta_2)$ increases as β_1 increases if A is numerically greater then or equal to 3.2v/(v-2) and the function has a minimum value at $\beta_1 = \beta_2 = 1/2$ and maximum value at B, -0 and B, -1.

Since critical values of P-table for 1 and v(v > 3) d.f. for 5 p.o., 2 p.o., 1 p.c. etc. 19vel of significance are all greater than 3.2/(v = 2) [a relation which can be proved using the algebraic relation due to Fisher (1941, near 181 middle)] the relation 1

81x1.+81 x1.> 4x2 *

would be satisfied with probability less than or equal to a for a = 0.05, 0.02, 0.01, obt. and v > 3, if A is taken from F-table corresponding to 1 and v d.f. for given a.

References

- BANKBURE, S. N. (1900): Approximate confidence interval for linear functions of means of K-population when the population variances are not equal. Sankhyd, 22, 357-358.
- ---- (1001): On confidence interval for two means problem based on weparate estimates of variances and tabulated values of t-table. Sankhyā, Series A, 23, 359-378.
- BARNARD, M. M. (1935): The socular variation of skull characters in four series of Egyptian skulls. Ann. Eugen., 6, 352-371.
- COURANT, R. (1957): Differential and Integral Calculus, Volume II, Blackie & Son Limited, London and Glasgon.
- Eastly, A. (1953): Higher Transcendental Functions, Volume 1, McGraw Hill Book Company, Inc. Ferenan, W. L. (1953): Algebra, Oxford University Press.
- FISHER, R. A. (1941): The saymptotic approach to Behrens integrals. Ann. Eugen., 11, 141-172.

Paper received: May, 1961. Revised: April. 1962.