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“When numbers are large, chance is the best warrant
for certainty.”
A. S. Eppingron,
The Nature of the Physical World

“A sttuation like this merely means that those details
which determine the future in terms of the past may
be so deep in the structure that at present we have
no immediate experimental knowledge of them and
we may for the present be compelled to give a treat-
ment from a statistical point of view based on con-
siderations of probability.”

P. W. BripGMAN,
The Logic of Modern Physics



PREFACE

Broadly speaking, the object of industry is to set up
economic ways and means of satisfying human wants and in
so doing to reduce everything possible to routines requiring a
minimum amount of human effort.{ Through the use of the
scientific method, extended to take account of modern statis-
tical concepts, it has been found possible to set up limits
within which the results of routine efforts must lie if they are
to be economical. Deviations in the results of a routine process
outside such limits indicate that the routine has broken down
and will no longer be economical until the cause of trouble is
removed.)

This book i1s the natural outgrowth of an investigation
started some six years ago to develop a scientific basis for
attaining economic control of quality of manufactured product
through the establishment of control limits to indicate at
every stage In the production process from raw materials to
finished product when the quality of product is varying more
than is economically desirable. As such, this book constitutes
a record of progress and an indication of the direction in which
future developments may be expected to take place. To get
as quickly as possible a picture of the way control works, the
reader may find it desirable, after going through Part I, to
consider next the various practical illustrations given in Parts
VI and VII and in Appendix 1.

The material in this text was originally organized for
presentation in one of the Out-of-Hour Courses in Bell Tele-
phone Laboratories. Since then it has undergone revision
for use in a course of lectures presented at the request of
Stevens Institute of Technology in its Department of Eco-
nomics of Engineering. Much of the work recorded herein is
the result of the cooperative effort of many individuals. Toa
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considerable extent the experimental data are such as could
have been accumulated only in a large industry.

On the theoretical side the author wishes to acknowledge
the very helpful and suggestive criticisms of his colleague
Dr. T. C. Fry and of Mr. E. C. Molina of the American Tele-
phone and Telegraph Company. On the practical side he
owes a great debt to another colleague, Mr. H. F. Dodge.

The task of accumulating and analyzing the large amount
of data and of putting the manuscript in final form was
borne by Miss Marion B. Cater and Miss Miriam S. Harold,
assisted by Miss Fina E. Giraldi. Mr. F. W. Winters contrib-
uted to the development of the theory. The Bureau of
Publication of the Laboratories cooperated in preparing the
manuscript for publication. To each of these the author is
deeply indebted.

The author is particularly indebted to R. L. Jones, Director
of Apparatus Development, and to G. D. Edwards, Inspection
Engineer, under whose helpful guidance the present basis for
economic control of quality of manufactured product has been
developed.

W. A. SHEWHART.

BeLL TeLErHONE LABORATORIES, INC.
New York, N. Y.
April, 1931,
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Part 1

Introduction

Fundamental Concepts of Statistical Con-
trol and an Outline of Five Economic
Advantages Obtainable through Statistical
Control of Quality of Manufactured Product



CHAPTER 1
CuarACTERISTICS OF A CONTROLLED QUALITY

1. What is the Problem of Control?

What is the problem of control of quality of manufactured
product? To answer this question, let us put ourselves in
the position of a manufacturer turning out millions of the
same kind of thing every year. Whether it be lead pencils,
chewing gum, bars of soap, telephones, or automobiles, the
problem is much the same. He sets up a standard for the
quality of a given kind of product. He then tries to make
all pieces of product conform with this standard. Here his
troubles begin. For him standard quality is a bull's-eye, but
like a marksman shooting at a bull’s-eye, he often misses. As
1s the case in everything we do, unknown or chance causes
exert their influence. The problem then is: how much may
the quality of a product vary and yet be controlled? In other
words, how much variation should we leave to chance?

To make a thing the way we want to make it is one popular
conception of control. We have been trying to do this for
a good many years and we see the fruition of this effort in the
marvelous industrial development around us. We are sold
on the idea of applying scientific principles. However, a
change is coming about in the principles themselves and this
change gives us a new concept of control.

A few years ago we were inclined to look forward to the
time when a manufacturer would be able to do just what he
wanted to do. We shared the enthusiasm of Pope when he
said “All chance is but direction thou canst not see”, and
we looked forward to the time when we would see that direction.
In other words, emphasis was laid on the exactness of physical

3



4 ECONOMIC CONTROL OF QUALITY

laws. Today, however, the emphasis is placed elscwhe’re as
is indicated by the following quotation from a recent issue,
July, 1927, of the journal Engineering:

Today the mathematical physicist seems more and more inclined
to the opinion that each of the so-called laws of nature is essentially

statistical, and that all our equations and theories can do, is to
provide us with a series of orbits of varying probabilities.

The breakdown of the orthodox scientific theory which
formed the basis of applied science in the past necessitates
the introduction of certain new concepts into industrial
development. Along with this change must come a revision
in our ideas of such things as a controlled product, an econ-
omic standard of quality, and the method of detecting lack
of control or those variations which should not be left to
chance.

Realizing, then, the statistical nature of modern science,
it is but logical for the manufacturer to turn his attention
to the consideration of available ways and means of handling
statistical problems. The necessity for doing this is pointed
out in the recent book ! on the application of statistics in
mass production, by Becker, Plaut, and Runge. They say:

It is therefore important to every technician who is dealing with
problems of manufacturing control to know the laws of statistics
and to be able to apply them correctly to his problems.

Another German writer, K. H. Daeves, in writing on somewhat
the same subject says:

Statistical research is a logical method for the control of opera-

tions, for the research engineer, the plant superintendent, and the
production executive.2

. The problem of control viewed from this angle is a compar-
atively new one. 1In fact, very little has been written .on
the subject. Progress in modifying our concept of control
has been and will be comparatively slow. In the first place,

lAﬂwtnauﬂgt’ﬂ der Mathema ische
13 n Statistik auf ltroh'eme der IuﬂJSt’nfahtkanOﬂ)

2 e ..
The Utilization of Statistics,” Testing, March, 1924.
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it requires the application of certain modern physical concepts;
and in the second place, it requires the application of statistical
methods which up to the present time have been for the most
part left undisturbed in the journals in which they appeared.
This situation is admirably summed up in the January, 1926
1ssue of Nature as follows:

A large amount of work has been done in developing statistical
methods on the scientific side, and it is natural for anyone interested
in science to hope that all this work may be utilized in commerce
and industry. There are signs that such a movement has started,
and it would be unfortunate indeed if those responsible in practical

affairs fail to take advantage of the improved statistical machinery
now available.

2. Nature of Control

Let us consider a very simple example of our inability
to do exactly what we want to do and thereby illustrate two
characteristics of a controlled product.

Write the letter  on a piece of paper. Now make another 4
just like the first one; then another and another until you
have a series of @’s, @, @, 4, 4,.... You try to make all the
@’s alike but you don’t; you can’t. You are willing to accept
this as an empirically established fact. But what of it? Let
us see just what this means in respect to control. Why can
we not do a simple thing like making all the 4’s just alike?
Your answer leads to a generalization which all of us are
perhaps willing to accept. Itis that there are many causes of
variability among the 4’s: the paper was not smooth, the
lead in the pencil was not uniform, and the unavoidable vari-
ability in your external surroundings reacted upon you to
introduce variations in the 4’s. But are these the only causes
of variability in the @’s? Probably not.

We accept our human limitations and say that likely
there are many other factors. If we could but name all the
reasons why we cannot make the a4’s alike, we would most
assuredly have a better understanding of a certain part of
nature than we now have. Of course, this conception of what
it means to be able to do what we want to do is not new: it
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does not belong exclusively to any one field of human thought;
it is commonly accepted. .

The point to be made in this simple illustration is that
we are limited in doing what we want to do; that to do what
we set out to do, even in so simple a thing as making 4’s that
are alike, requires almost infinite knowledge compared with
that which we now possess. It follows, therefore, since we are
thus willing to accept as axiomatic that we cannot do what
we want to do and cannot hope to understand why we cannot,
that we must also accept as axiomatic that a controlled quality
will not be a constant quality. Instead, a controlled quality.
must be a variable quality. This is the first characteristic.

But let us go back to the results of the experiment on the
&’s and we shall find out something more about control. Your
a’s are different from my &’s; there is something about your @’s
that makes them yours and something about my 4’s that makes
them mine. True, not all of your @’s are alike. Neither are
all of my 4’s alike. Each group of a’s varies within a certain
range and yet each group is distinguishable from the others.
This distinguishable and, as it were, constant variability
within limits is the second characteristic of controf.

3. Definition of Control

For our present purpose a phenomenon will be said to be
controlled when, through the use of past experience, we can predict,
at least within limits, how the phenomenon may be expected to
vary in the future. Here it is understood that prediction within

lz'n?z'f‘.r means that we can state, at least approximately, the prob-
ability that the observed pheno

bil: menon will fall withi ven
limits. / o the g

In this sense the time of the eclipse of the sun is a predictable
phenomenon.

So also is the distance covered j I
] : in successive
Intervals of time by a freely falling body. In fact, the prediction

1n such cases is extremely precise. It is an entirely different

matter, however, to predi .
N ct the expected 1 i
Individual at a given age; p ength of life of an

1 ; the velocity of a molecul 1
) 1t . e ata given
stant of time; the breaking strength of a steel wire of known
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cross section; or numerous other phenomena of like character.
In fact, a prediction of the type illustrated by forecasting the
time of an eclipse of the sun is almost the exception rather
than the rule in scientific and industrial work.

In all forms of prediction an element of chance enters.
The specific problem which concerns us at the present moment
is the formulation of a scientific basis for prediction, taking
into account the element of chance, where, for the purpose of
our discussion,{@ny unknown cause of a phenomenon will be
termed a chance cause. V¢ ;UL

LT A



CHAPTER 11
ScieNTIFIC Basis rForR CONTROL

1. Three Important Postulates

What can we say about the future behavior of a phenomenon
acting under the influence of unknown or chance causes’
I doubt that, in general, we can say anything. For example,
let me ask: “What will be the price of your favorite stock
thirty years from today?” Are you willing to gamble much
on your powers of prediction in such a case? Probably not.
However, if I ask: ““Suppose you were to toss a penny one
hundred times, thirty years from today, what proportion of
heads would you expect to find?”, your willingness to gamble
on your powers of prediction would be of an entirely different
order than in the previous case.

The recognized difference between these two situations
leads us to make the following simple postulate:

Postulate 7—AIl chance systems of causes are not alike

in the sense that they enable us to predict the future in terms
of the past.

Hence, if we are to be able to predict the quality of product
even within limits, we must find some criterion to apply to

observed variability in quality to determine whether or not
the cause system producing it is such as to make future pre-
dictions possible.’ © -+ - ’

Perhaps the natural course to follow is to glean what we
can about the workings of unknown chance causes which are

generally acknowledged to be controlled in th

. S e sense that they
permit of prediction within limits, Perh

could be considered than lemath o erhaps no better examples

f human life and molecular
8



SCIENTIFIC BASIS FOR CONTROL 9

motion. It might appear that nothing is more uncertain than
life itself, unless perhaps it be molecular’ motion. Yet there
is something certain about these uncertainties. In the laws of
mortality and distribution of molecular displacement, we find
some of the essential characteristics of control within limits.

A. Law of Mortality

The date of death always has seemed to be fixed by chance
even though great human effort has been expended in trying
to rob chance of this prerogative. We come into this world
and from that very instant on are surrounded by causes of

T

FRACTION DYING AT A GIVEN AGE
PROBABILITY

45 50
AGE IN YEARS

Fie. 1.—Law or MorTaLty—Law or Frucruations CoNTROLLED wiTHIN LimiTs.

death seeking our life. Who knows whether or not death will
overtake us within the next year? 1If it does, what will be the
cause? These questions we cannot answer. Some of us are
to fall at one time from one cause, others at another time
from another cause. In this fight for life we see then the
element of uncertainty and the interplay of numerous unknown
or chance causes. *. - "

. However, when we study the effect of these chance causes
in producing deaths in large groups of individuals, we find some
indication of a controlled condition. We find that this hidden
host of causes produce deaths at an average rate which does
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not differ much over long periods of time. From such obser-
vations we are led to believe that, as we approach the condition
of homogeneity of population and surroundings, we approach
what is customarily termed a “Law of Mortality” such as
indicated schematically in Fig. 1. In other words, we believe
that in the limiting case of homogeneity the causes of death
function so as to make the probability of dying within given
age limits, such as forty-five to fifty, constant. That is, we
believe these causes are controlled. In other words, we assume
the existence of a kind of statistical equilibrium among the
effects of an unknown system of chance causes expressible in
the assumption that the probability of dying within a given

age limit, under the assumed conditions, is an objective and
constant reality.

B. Molecular Motion

Just about a century ago, in 1827 to be exact, an English
botanist, Brown, saw something through his microscope that
caught his interest. It was motion going on among the sus-
pended particles almost as though they were alive. Inaway it
resembled the dance of dust particles in sunlight, so familiar
to us, but this dance differed from that of the dust particles
in important respects,—for example, adjacent particles seen
under the microscope did not necessarily move in even approx-
imately the same direction, as do adjacent dust particles sus-
pended in the air.

Watch such motion for several minutes. So long as the
temperature remains constant, there is no change. Watch it
Q%ratlgﬁuirts,fotrhzaryr;ot‘l;): Ser:rrlllams. characteristically t}}e same.

t for days, no difference. Even particles sus-
pended in liquids enclosed in quartz crystals for thousands of
y}el:arls) show exactly the same kind of motion. Therefore, to
Ehies ;s(:tic;t;l f)urlini\}:lv;erigie:i};:: 1s remarkable permanence to
certainly find a ekt rs re;nam constant. Eere we
chance system of mancal gree of constancy exhibited by a

Suppose we follow the motion of one particle to get a better
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picture of this constancy. This has been done for us by
several investigators, notably Perrin. In such an experiment
he noted the position of a particle at the end of equal intervals
of time, Fig. 2. He found that the direction of this motion
observed in one interval differed in general from that in the
next succeeding interval; that the direction of the motion

)
/A

F16. 2—A Crose-up oF MoLEcuLArR MoTION APPEARING ABSOLUTELY
IrrEGULAR, YET CoNTROLLED WITHIN LimiTs.

presents what we instinctively call absolute irregularity. Let
us ask ourselves certain questions about this motion.

Suppose we fix our attention on the particle at the point A.
What made it move to B in the next interval of time? Of
course we answer by saying that a particle moves at a given
instant in a given direction, say AB, because the resultant
force of the molecules hlttlng it in a plane perpendicular to

A

I rt

PR [Nl
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this direction from the side away from B is greater than that
on the side toward B; but at any given instant of time there
is no way of telling what molecules are engaged in giving it
such motion. We do not even know how many molecules are
taking part. Do what we will, so long as the temperature is
kept constant, we cannot change this motion 1n a given system.
It cannot be said, for example, when the particle is at the point
B that during the next interval of time it will move to C.
We can do nothing to control the motion in the matter of dis- .
placement or in the matter of the direction of this displacement.-

Let us consider either the x or y components of the segments
of the paths. Within recent years we find abundant evidence
indicating that these displacements appear to be distributed
about zero in accord with what is called the normal law.!

Such evidence as that provided by the law of mortality
and the law of distribution of molecular displacements leads us
to assume that there exist in nature phenomena controlled by
systems of chance causes such that the probability dy of the
magnitude X of a characteristic of some such phenomenon
falling within the interval X to X + 4X is expressible as a

function f of the quantity X and certain parameters represented
symbolically in the equation

dy =f(X, M, Ny oo AdX, (2)
where the M's denote the parameters. ' Such a system of €
we shall term constant because the probability dv is independent

of time,  We :
of tim shall take as our second postulate:

. Postulate 2—Constant systems of chance causes do exist
in nature.

To say that such systems of causes exi

) / st in nature, however,
is one thing;

to say that such systems of causes exist in a
! That is to say,

if x represents the deviati fi .
. on from the m H
this case, the proba ean displacement, zero in

bility dy of x lying within the range x to x + dx is given by
t -2
dy = ==¢ 20%dy,
o/ 2x

where o is the root mean square deviation.

(0
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production process is quite another thing. Today we have
abundant evidence of the existence of such systems of causes
in the production of telephone equipment.. " The practical
situation, however, is that in the majority of cases there are
unknown causes of variability in the quality of a product which
do not belong to a constant system. This fact was discovered
very early in the development of control methods, and’ these
causes were called assignable. The question naturally arose as
to whether it was possible, in general, to find and eliminate
such causes.) Less than ten years ago it seemed reasonable to
assume that this could be done. Today we have abundant
evidence to justify this assumption. We shall, therefore,
adopt as our third postulate:

Postulate  3—Assignable causes of variation may be
Jound and eliminated.

Hence, to secure control, the manufacturer must seek to
find and eliminate assignable causes. In practice, however,
he has the difficulty of judging from an observed set of data
whether or not assignable causes are present.” A simple illus-
tration will make this point clear.

2. When do F/uct_uations Indicate Trouble?

In many instances the quality of the product is measured
by the fraction non-conforming to engineering specifications
or, as we say, the fraction defective. Table 1 gives for a
period of twelve months the observed fluctuations in this
fraction for two kinds of product designated here as Type A
and Type B. For each month we have the sample size 7,

th . . n
¢ number defective 7; and the fraction p =—. We can
n

better visualize the extent of these fluctuations in fraction

defec“;;lve by plotti.ng the data as in Fig. 3-2 and Fig. 3-4.

any ev?ée\zzenZ?d 1§ some yardstick to detect in such variations

ot sach ne of the Ppresence. of assignable causes. Can we

apach Jardstick? Experience of the kind soon to be con-
ed indicates that we can. It leads us to conclude that
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it is feasible to establish criteria useful in detecting the presence
of a331gnable causes of variation or, in other words, criteria
which when applied to a set of observed values will ‘indicate
whether or not it is reasonable to believe that the causes of
variability should be left to chance.r Such criteria are basic
to any method of securing control within limits. Let us, there-
fore, consider them critically. Itis too much to expect that
the criteria will be infallible. We are amply rewarded if they
appear to work in the majorlty of cases.

3 Generally speaking, the criteria are of the nature of limits
derived from past experience showmg within what range
the fluctuations_in quality should remain, if they are to be
left to chance. For example, when such limits are placed on
the fluctuations in the qualities shown in Fig. 3, we find, as
shown in Fig. 4, that in one case two points fall outside the
limits and in the other case no point falls outside the limits.

TasLe 1—FrucrtuaTions IN QuaLity oF Two MaNuFacTURED Provucts

Apparatus Type A Apparatus Type B
Fraction Fraction
Number | Number | pefective Number | Number | pefective

Month |Inspected| Defective n Month |Inspected| Defective "
n m p== 7 m p=

n n
Jan..... 527 4 0.0076 |} Jan..... 169 1 0.005§9
Feb..... 610 5 0.0082 || Feb..... 99 3 0.0303
March. .| 428 5 o.o117 || March. . 208 1 0.0048
April....| 400 2 0.0050 | April.... 196 1 0.00§1
May....| 498 15 0.0301 || May.... 132 1 0.0076
June....| 500 3 0.0060 || June.... 89 1 o.0112
July. .| 395 3 0.0076 || July.... 167 I o oobo
Aug. . ..| 393 2 o.00§1 || Aug..... 200 1 0 oosC
Sept....| 625 3 0.0048 || Sept. ... 171 2 o o117
Oct.. ... 463 13 o.0280 || Oct..... 122 1 . 0082
Nov... | 446 5 o.o112 || Nov.... 107 3 0.0280
Dec..... 510 3 0.0059 |i Dec..... 132 1 0.0076
Average| 483.08 5.25| ©.0109 || Average 149.33 1.42 | 0.009§

I
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Upon the basis of the use of such limits, we look for trouble
in the form of assignable causes in one case but not in the other.
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to find and eliminate causes of va Should we expect to be able

riability only when deviations
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fall outside the limits? First, let us see what statistical theory
has to say in answer to this question

Upon the basis of Postulate 3, it follows that we can find
and remove causes of variability until the remaining system
of causes is constant or until we reach that state where the
probability that the deviations in quality remain within any
two fixed limits (Fig. §) is constant. However, this assumption
alone does not tell us that there are certain limits within which
all observed values of quality should remain provided the
causes cannot be found and eliminated. In fact, as long as

x
=
L
I
°
3 . L4 °
.

% R o L] * [ ] [ ]
z ONLY SUCH VARIATIONS ®SHOULD BE@ LEFT @ TO gCHANCE
) .
s ° L4 . °
S . . .
5 °
u [ DD G G I S S—  S——

e . . —— —— . ——
w
3
a
(2]

AS TIME GOES ON

F16. 5.—JupamenT PLus MODERN Statisticar MACHINERY MAKEs PossiBLE THE
EsTaBLisuMENT oF Sucn Limits

the limits are set so that the probability of falling within the
limits is less than unity, we may always expect a certain
percentage of observations to fall outside the limits even though
the system of causes be constant. In other words, the accept-
ance of this assumption gives us a right to believe ‘that there is
an objective state of control within limits but'in itself it does
not furnish a practical criterion for determining when variations
in quality, such as those indicated in Fig. 3, should be left
to chance.

Furthermore, we may say that mathematical statistics as
such does not glve us the desired criterion. What does this
situation mean in plain everyday engineering English? Simply
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this: such criteria, if they exist, cannot be shown to exist by
any theorizing alone, no matter how well equipped the theorist
is in respect to probability or statistical theory. We see in
this situation the long recognized dividing line between theory
and practice. The available statistical machinery referred to
by the magazine Nature is, as we might expect, not an end
in itself but merely a means to an end. In other words, the
fact that the criterion which we happen to use has a fine
ancestry of highbrow statistical theorems does not justify its
use. Such justification must come from empirical evidence
that it works. As the practical engineer might say, the proof
of the pudding is in the eating. Let us therefore look for the

proof.
3. Evidence that Criteria Exist for Detecting Assignable Causes

4. Fig. 6 shows the results of one of the first large scale
experiments to determine whether or not indications given by
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Zl;ilc?i‘c,relt‘i’réf: fipp%lﬁed to quality frleasured in terms of fraction
items used in thjusnl ed by experience.  About thirty typical
into the millione telephone plant and produced in lots running
As shown i hs. per year were made the basis for this study.

In this figure, during 1923~24 these items showed
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68 per cent control about a relatively low average of 1.4 per
cent defective.! However, as the assignable causes, indicated
by deviations in the observed monthly fraction defective
falling outside of control limits, were found and eliminated, the
quality of product approached the state of control as indicated
by an increase of from 68 per cent to 84 per cent control
by the latter part of 1926. At the same time the quality
improved; in 1923—24 the average per cent defective was 1.4
per cent, whereas by 1926 this had been reduced to 0.8 per cent.
Here we get some typical evidence that, in general, as the
assignable causes are removed, the variations tend to fall more
nearly within the limits as indicated by an increase from
68 per cent to 84 per cent. Such evidence is, of course, one
sided. It shows that: when points fall outside the limits,
experlence indicates that we can find assignable causes, but
it does not indicate that when pomts fall within such limits,
we cannot find causes of variability. -However, this kind of
evidence is provided by the following two typical illustrations.
B. In the production of a certain kind of equipment,
considerable cost was involved in securing the necessary
electrical insulation by means of materials previously used for
that purpose. A research program was started to secure a
cheaper material. After a long series of preliminary exper-
iments, a tentative substitute was chosen and an extensive
series of tests of insulation resistance were made on this
material, care being taken to eliminate all known causes of
variability. Table 2 gives the results of 204 observations of
resistance in megohms taken on as many samples of the
proposed substitute material. Reading from top to bottom
beginning at the left column and continuing throughout the
table gives the order in which the observations were made.
The question is: ““Should such variations be left to chance?””
No 4 priori reason existed for believing that the measure-
ments formmg one portion of this series should be different
from those in any other portion. In other words, there was

! Jones, R. L., “Quality of Telephone Materials,” Bell Telephone Quarterly, June,
1927.
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no rational basis for dividing the total set of data into groups
of a given number of observations except that it was reasonable
to believe that the system of causes might have changed from
day to day as a result of changes in such things as atmospheric
conditions, observers, and materials. In general, if such
changes are to take place, we may readily detect their effect
if we divide the total number of observations into compar
atively small subgroups. In this particular instance, the
size of the subgroup was taken as four and the black dots in
Fig. 7-a show the successive averages of four observations in
the order in which they were taken. The dotted lines are the

TasLe 2.—EvLEcTrRICAL RESIsSTANCE OF INsuLaTION 1IN MEGOHMS—
SuouLp Suck VariaTions B LErr 1o CHANCE?

5,045 4’635 4,700 47650 4:640 3,940 | 4,570 4’560 4,450 | 4,500 | 5,075 | 4,500
4,350 5,100 4,600 | 4,170 4335 | 3,790 | 4,579 | 3,075 | 4,450 | 4,770 | 4,925 | 4,850
4350 5450 | 4,110 | 4,255 | 5,000 | 3,650) 4,855 | 2,965 | 4,850 | 5,150 | 5,075 | 4,930
3,975 | 4,035 | 4410 | 4,170 | 4,615 | 4,445 | 4,160 | 4,080 4,450 | 4,850 | 4,926 | 4,700
4,290 4,720 | 4,180 | 4,375 | 4,215 | 4,000 4325 | 4,080 | 3,635 | 4,700 5,280 | 4,890
44301 4,8101 4,790 | 4,175 | 4,275 | 4,845} 4,125 | 4,425 | 3,635 | 5,000 | 4,915 | 4,625
4,485 4,565 [ 4,790 4,550 | 4,275 [ 5,000 | 4,100 | 4,300 3,635 5,000 | 5,600 | 4,425
4285 4,410 4,340 | 4,450 | 5,000 | 4,560 | 4,340 | 4,430 | 3,900 | 5,000 | 5,075 | 4,135
3,980} 4,065 | 4,895 | 2,855 | 4,615 4,700 | 4,575 | 4,840 | 4,340 | 4,700 | 4,450 | 4,190
3:925| 4,565 | 5,750 [ 2,920 | 4,735 | 4,310 3,875 | 4,840 | 4,340 4,500 | 4,215 | 4,080
3:645] 5190 | 4,740 | 4,375 | 4,215 | 4,310 | 4,050 | 4,310 | 3,665 | 4,840 325 | 3,690
3,760 4,725 | 5,000 | 4,375 | 4,700 | 5,000 | 4,050 | 4,185 35775 | 5975 | 4,665 | 5,050
3:390| 4,640 1 4,895 | 4,355 | 4,700 | 4,575 | 4,685 | 4,570 | 5,000 5,000 | 4,615 | 4,625
3’685 4)640 4255 | 4,090 | 4,700 4,700 4)685 4,700 4—,850 4,770 4,61; §,150
3463 | 4,895 | 4,170 | 5,000 | 4,700 | 4,430 | 4,430 | 4s440 4775 1 4,570 | 4,500 | 5,250
5200 47901 3,850 | 4,335 | 41095 | 4,850 | 4,300 | 4,850 | 4,500 | 4,925 | 4,765 | 5,000
5100 4,845 | 4,445 5,000 | 4,094 | 4,850 4>69O 4,125 1 4,770 | 4,775 4)5O<; S:OOO

ll.mltS within which experience has shown that these observa-
tions should fall, taking into account the size of the sample
provided the variability should be left to chance.. Severai
of the observed values lic outside these limits. This was

ta}llc'er;1 as an indication of the existence of causes of variability
which could be found and eliminated

Further research was instituted

-

at this point to find these
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causes of variability. Several were found, and after these
had been eliminated another series of observed values gave the
results indicated in Fig. 7-6. Here we see that all of the
points lie within the limits. We assumed, therefore, upon the
basis of this test, that it was not feasible for research to go

much further in eliminating causes of variability. Because of
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the importance of this particular experiment, however, con-
siderably more work was done, but it failed to reveal causes of
variability. Here then is a typical case where the criterion
indicates when variability should be left to chance. :
C. Suppose now that we take another illustration where
it is reasonable to believe that almost everything humanly
possible has been done to remove the assignable causes of
variation in a set of data... Perhaps the outstanding series of
observations of this type is that given by Millikan in his
fa}mous measurement of the charge on an electron. Treating
his data in a manner similar to that indicated above, we get
the results shown in Fig. 8. All of the points are within the
dgtted limits. Hence the indication of the test is consistent
with the accepted conclusion that those factors which need not
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be left to chance had been eliminated ' before this particular
set of data were taken.: .. .-

4. Réle Played by Statistical Theory

It may appear thus far that mathematical statistics plays
a relatively minor rdle in laying a basis for economic control of
quality. Such, however, is not the case. In fact, a central
concept in engineering work today is that almost every physical
property is a statistical distribution. In other words, an observed
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s;t of data constitutes a sample of the effects of unknown
ct:hanc_e ca;luselsc.1 It is at once apparent, therefore, that sampling
d eor};1 should prove a valuable tool in testing engineering
er};pcé.t elsesil Here it is that much of the most recent math-
inviffﬁ, gttheﬁory befcomes of value, particularly in analysis
use of co 1
el mparatively small numbers of observa-
Let us consi
ider
teonsile stieh f’ for example, some property such as the
gth of a material. If our previous assumptions
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are justified, it follows thaty'after we have done everything
we can to eliminate assignable causes of variation, there will
still remain a certain amount of variability exhibiting the
state of control..Let us consider an extensive series of data
recently published by a member of the Forest Products Lab-
oratories,! Fig. 9. Here we have the results of tests for modulus
of rupture on 1,304 small test specimens of Sitka spruce, the
kind of material used extensively in aeroplane propellers

60
551
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w H
& 8 &
T T T

NUMBER OF TESTS
(73
o
T

—d
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MODULUS OF RUPTURE IN 100 POUNDS PER SQUARE INCH

Fi6. 9.—Varasiuty 1N MobuLus of Rupture oF CLEAR SPECIMENS oF GREEN
Srrka Spruce TyPICAL OF THE STaTIsTicAL NATURE OF PHYSICAL PROPERTIES.

during the War. The wide variability is certainly striking.
The curve is an approximation to the distribution function for
this particular property representing what is at least approxi-
mately a state of control. The importance of going from the
sample to the smooth distribution is at once apparent and in
this case a comparatively small amount of refinement in
statistical machinery is required.

*Newlin, J. A., Proceedings of the American Society of Civil Engineers, September
1926, pp. 1436-1443.
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Suppose, however, that instead of more than a thousand
measurements we had only a very small number, as is so often
the case in engineering work. Our estimation of the variability
of the distribution function representing the state of control
upon the basis of the information given by the sample would
necessarily be quite different from that ordinarily used by
engineers, see Fig. 10. This is true even though to begin with
we make the same kind of assumption as engineers have been
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accustomed to make in the past. This we may take as a
typical example of the fact that the production engineer
finds it to his advantage to keep abreast of the developments
in statistical theory. Here we use #ew in the sense that much
of the modern statistical theory is new to most engineers.

5. Conclusion

Based upon evidence such as alrea

feasibl dy presented, it appears

€ to set up criteria by which to determine when assignable
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causes of variation in quality have been eliminated so that the
product may then be considered to be controlled within limits.
This state of control appears to be, in general, a kind of limit
to which we may expect to go economically in finding and
removmg causes of variability - without changing a major
portion of the manufacturing process’as, for example, would
be involved in the substitution of new materials or designs.



CHAPTER II1
ADVANTAGES SECURED THROUGH CoNTROL

1. Reduction in the Cost of Inspection

If we can be assured that something we use is produced
under controlled conditions, we do not feel the need for
inspecting it as much as we would if we did not have this
assurance. For example, we do not waste our money on doctors’
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bills so long as we are willing to attribute the variability in
our health to the effects of what in our present terminology
corresponds to a constant system of chance causes.

In the early stages of production there are usually causes
of variability which must be weeded out through the process
of inspection. As we proceed to eliminate assignable causes,
the quality of product usually approaches a state of stable
equilibrium somewhat after the manner of the two specific
illustrations presented in Fig. 11. In both instances, the
record goes back for more than two years and the process of
elimination in each case covers a period of more than a year.

It is evident that as the quality approaches what appears

to be a comparatively stable state, the need for inspection
is reduced.

2. Reduction in the Cost of Rejections

That we may better visualize the economic significance
of control, we shall now view the production process as a whole.
We take as a specific illustration the manufacture of telephone
equipment. Picture, if you will, the twenty or more raw
materials such as gold, platinum, silver, copper, tin, lead, wool,
rubber, silk, and so forth, literally collected from the four
corners of the earth and poured into the manufacturing process.
The telephone instrument as it emerges at the end of the
production process is not so simple as it looks. In it there are
201 parts, and in the line and equipment making possible the
connection of one telephone to another, there are approximately
110,000 more parts. The annual production of most of these
parts runs into the millions so that the total annual production
of parts runs into the billions.

How shall the production process for such a complicated
mechanism be engineered so as to secure the economies of
quantity production and at the same time a finished product
with quality characteristics lying within specified tolerances?
One such scheme is illustrated in Fig. 12. Here the manu-
facturing process is indicated schematically as a funnel, at the
small end of which we have the 100 per cent inspection screen
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to protect the consumer by assuring tbat the quality of. th.e
finished product is satisfactory. Obvun}sly, how.ever, it is
often more economical to throw out defective matena.tl at some
of the initial stages in production rather than to leF it pass on
to the final stage where it would likely cause the rejection of
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finished unit of product. For example, we see to the right

of the funnel, piles of defectives, which must be junked or
reclaimed at considerable cost.

It may be shown theoretically that,
assignable causes of variability,

it is feasible to go in reducing th

by eliminating
we arrive at a limit to which
e fraction defective. It must
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suffice here to call attention to the kind of evidence indicating
that this limiting situation is actually approached in practice
as we remove the assignable causes of variability.

Let us refer again to Fig. 6 which 1s particularly significant
because it represents the results of a large scale experiment
carried on under commercial conditions. As the black sectors
in the pie charts decrease in size,'indicating progress in the
removal of assignable causes, we find simultaneously a decrease
in the average per cent defective from 1.4 to 0.8. Here we
see how control works to reduce the amount of defective
material. Howgwer, this is such an important point that 1t 1s
perhaps interesting to consider an illustration from outside
the telephone field.

Recent work of the Food Research Institute of Stanford
University shows that the loss from stale bread constitutes an
important item of cost for a great number of wholesale as well
as some retail bakeries. [t is estimated that this factor alone
costs the people of the United States millions of dollars per
year. The sales manager of every baking corporation is
interested, therefore, in detecting and finding assignable
causes of variation in the returns of stale bread if by so doing
he can reduce this loss to a minimum.

Some time ago it became possible to secure the weekly
record of return of stale bread for ten different bakeries oper-
ating in a certain metropolitan district. These observed
results are shown graphically in Fig. 13. At once we see that
there is a definite lack of control on the part of each bakery.
The important thing to note, however, is that the bakery
having the lowest percentage return, 1.99 per cent, also shows
better control than the other bakeries as judged by the number

of points falling outside the control limits in the 36-week
pertod.

3. Attainment of Maximum Benefits from Quantity Production

The quality of the finished product depends upon the
qualities of raw materials, piece-parts, and the assembling
process. It follows from theory that so long as such quality



30

ECONOMIC CONTROL OF QUALITY

characteristics are controlled, the quality of the finished unit
will be controlled, and will therefore exhibit minimum vart-
ability. Other advantages also result. For example, by

PER CENT DEFECTIVE OR STALE
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establish standar
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3 EsuLTs Suowine How ConrtroL ErrecTs a RebuctioN IN THE
CosT or REJECTIONS.

Fie.

1t 1s possible, as we have already seen, to
d statistical distributions for the many quality
nvolved in design. Very briefly, let us see
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just how these statistical distributions representing states of
control become useful in securing an economic design and pro-
duction scheme.

Suppose we consider a simple problem in which we assume
that the quality characteristic Y in the finished product is
a function f of m different quality characteristics, X1, X2
X, representable symbolically by

Y =f(X1) XQ) CECEREE) XWI) (3)

For example, one of the X’s might be a modulus of rupture,
another a diameter of cross section, and Y a breaking load.
Engineering requirements generally place certain tolerances on
the variability in the resultant quality characteristic Y, which
variability is in turn a function of the variabilities in each
of the m different quality characteristics. A

It follows theoretically that the quality characteristic ¥
will be controlled if the m independent characteristics are
controlled. Knowing the distribution functions for each of
the m different independent variables, it is possible to approx-
imate very closely the per cent of the finished product which
may be expected to have a quality characteristic ¥ within
the specified tolerances. If, for example, it is desirable to
minimize the variability in the resultant quality ¥ by proper
choice of materials, and if standard distribution functions
for the given quality characteristics are available for each of
several materials, it is possible to choose that particular
material which will minimize the variability of the resultant

. . . ay
quality at a minimum of cost. s

3+ ey

+ Attainment of Uniform Quality even though Inspection Test
is Destructive

So often the quality of a material of the greatest importance
to the individual is one which cannot be measured directly
without destroying the material itself. So it is with the fuse
that protects your home; with the steermg rod on your car;
with the rails that hold the locomotive in its course; with
the propeller of an aeroplane, and so on indefinitely. How are
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we to know that a product which cannot be tested in respect
to a given quality is satisfactory in respect to this same quality?
How are we to know that the fuse will blow at a given current;
that the steering rod of your car will not break under maximum
load placed upon it? To answer such questions, we must r-ely
upon previous experience. In such a case, causes of variation
in quality are unknown and yet we are concerned in assuring
ourselves that the quality is satisfactory.

Enough has been said to show that here is one of the very
important applications of the theory of control. By weeding
out assignable causes of variability, the manufacturer goes to
the feasible limit in assuring uniform quality. -

§. Reduction in Tolerance Limits

By securing control and by making use of modern statistical
tools, the manufacturer not only is able to assure quality,
even though it cannot be measured directly, but is also often
able to reduce the tolerance limits in that quality as one very
simple illustration will serve to indicate.

Let us again consider tensile strength of material. Here
the measure of either hardness or density is often used to
indicate tensile strength. In such cases, it is customary
practice to use calibration curves based upon the c:)ncept of
functional relationship between such characteristics. If instead
of ba}sing our use of these tests ‘upon the concept of functional
r.elatlo.nship., we base it upon the concept of statistical rela-
tionship, we can make use of planes and surfaces of regression
as a means of calibration. In general, this procedure makes
possible a reduction in the error of measurement of the tensile
fif}rl?:gizhtrir;db::;;:e ti:ﬁe:stablll'shment of closer toler.ances.

, quality can be measured directly

and accurately, we can se I
' parate those samples of a material
for which the quality | :

les within given tolerance limits fi
Lo imits from
o :l:x(‘)s. EOW) when the method of measurement is indirect
subject to erro 1 i 1
on i e ) r, this separation can only be carried

s he probability sense assuming the errors of measure-
controlled by a constant system of chance causes.



ADVANTAGES SECURED THROUGH CONTROL

d
(%

It is obvious that, corresponding to a given probability, the

tolerance limits may be reduced as we reduce the error of
measurement.
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Fig. 14.—How ConTroL Makes PossiBLe IMPROVED QuUALITY THROUGH
Repuction 1v ToLERANCE Limrts.

Fig. 14 gives a simple illustration. Here the comparative
magnitudes of the standard deviations of tensile strength about
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two lines of regression and the plane of regression are shown
schematically by the lines in Fig. 14-d. The lengths of these
are proportional to the allowable tolerance limits corresponding
to a given probability. Itis customary practice to use the line
of regression between tensile strength and hardness. Note
the improvement effected by using the plane of regression.
By using the hardness and density together as a measure of
tensile strength, the tolerance range on tensile strength cor-
responding to a given probability can be made less than it
would be if either of these measures were used alone.

6. Conflusz'on

It seems reasonable to believe that there 1s an objective
state of control, making possible the prediction of quality
within limits even though the causes of variability are unknown.
Evidence has been given to indicate that through the use of
statistical machinery in the hands of an engineer artful in
making the right kind of hypotheses, it appears possible to
establish criteria which indicate when the state of control
has been reached. It has been pointed out that by securing
this state of control, we can secure the following advantages:

1. Reduction in the cost of inspection.
2. Reduction in the cost of rejection.

3 Atta.inment of maximum benefits from quantity pro-
duction.

4. f’\ttainrpent of uniform quality even though the
1nspection test is destructive.

5. Reduc'tu-)n in tolerance limits where quality measure-
ment is indirect, T iy

5

LR PRI



Part 11

Ways of Expressing Quality of Product

A Review of the Methods for Reducing
Large Numbers of Observations of Quality
to a Few Simple Functions of These Data
Which Contain the Essential Information



CHAPTER IV
DEeriNiTiON OF QUALITY

1. Introductory Note

When we analyze our conception of quality, we find that
the term 1s used in several different ways. Hence, it is essential
that we decide, first of all, whether the discussion is to be
limited to a particular concept of quality, or to be so framed
as to include the essential element in each of the numerous
conceptions. One purpose in considering the various definitions
of quality is merely to show that in any case the measure of
quality is a quantity which may take on different numerical
values. In other words,’ the ‘measure of quality, no matter
what the definition of quality may be, is a variable. We shall
usually represent this variable by the symbol X. In future
chapters when we are discussing quality control, we shall treat
of the control of the measurable part of quality as defined in
an);’grlgmgf the different ways indicated below.

(The more important purpose in considering the various
definitions of quality is, however, to examine the basic require-

mday  Friany
ments of effective specifications of guahty,.. AT

2. Popu/ar Conception of Quality

Datmg at least from the time of Aristotle, there has been
some tendency to conceive of quality as indicating the goodness
of an object. The majority of advertisers'appeal to the public
upon the basis of the quality of product. In so doing, they
implicitly - assume that there is a measure of goodness which
can be applled to all kinds of product whether it be vacuum
tubes, sewing machines, automobiles, Grape Nuts, books,
cypress flooring, Indiana limestone, or correspondence school

37
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courses. 'Such a Soncept, is, however, too indefinite for
. e e T C
practical purposes. 2.1 -

~.3. Conception of the Quality of a Thing as a Set of Characteristics

’(Quality, in Latin gqualitas, comes from gqualis, meaning
“how constituted” and signifies such as the thing really is.
Suppose we consider a simple thing like water. What is it
that makes water what it is? One might answer that it
the chemical combination of hydrogen and oxygen represented
by the symbol H:O. To do so is to evade the question, how-
ever, for to begin with we must know what we mean by the
symbol H:O. If we turn to a textbook on chemistry, we find
that the quality of water is expressed in terms of its chemical
and physical properties. For example, it is colorless in thn
layers and.blue in thick layers. It is odorless and tasteless,
has a density of unity at 4 deg. C., a heat of vaporization of
540 calories at 100 deg. C., and remains a liquid within 2

certain temperature range. It dissociates at 1,000 deg. G
in accord with the formula

H2 + Oﬁ Hzo,
1.8% 98.2%,

and i i . . ,
1s an active catalyst. Even this description, however,

only an incomplete specificati

' r cation of water i that

which makes it what it is. 5777 tn terms of

_— sgetr}lle;:l;vthe quality of a thing is that which is inherent

i i the; tCE:_nnot alter the quality without altering the
. rom which anything can be said to be such

and such and may, fo % X
by an adjective aydmi;t?:; I:ilg le, be a characteristic explamable

Going a litt grees of comparison. /3%
ever g le deeper we see that possibly withot €+ tion
Y conceptual ¢ Yy out excep

something” i :
more elementary in form 8 s really a group of conceptions

i : LAle mimim f con-
ceptions requir o um number of con
thereof. If“lor Zi:o dfﬁne an object may be called the qualitis
regard each objecznp e Jevons says: “The mind learns ©

as an aggregate of qualities and acquires
Crge v necdea d myea

o I HE AT N '
e n'}Lil\ kg Mty &~ N :tv
Lo RN .
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Feane s,ozr Mrrage

to the exclusion of the rest.”Hsr <. 353 -

The same conception undetlies the deﬁnition of quality
of manufactured product as given by a prominent author on
this subject. Thus he says-% (The term ‘quality’, as applied
to the products' turned out by industry,/means the character-
istic, or group (or combination of characteristics which dis-
tinguishes one article from another, or the goods of one i s-:* <irases
manufacturer from those of his competitors, or one grade of -7 * *argo
product from a certain factory from another grade turned out $ifan 2 B R
by the same factory.”” 2 In this sense a thing has qualities
and not a Guality., For example,{a piece of material has
weight densify, dimensions, and so on indefinitely. .

For our purpose we shall assume that, had we but the
ability to see, we would find a very large number 7’ of different
characteristics required to define what even the simplest thing
really is) A thing is therefore formally defined in this sense,
if the specific magnitudes of the m' characteristics are known.

@dmittedly we do not know a srngle one of these—not
even the number of possible ones in any given. case.) Those that
we_ takd as elementary we, believe to be but{a combmatlon of .

the power of dwelling at will uFon one or other of those qualities

several truly elementa).rir ones, so that the nearest we can . ", I,'
approach to the description of any physical tﬁlng,\ is to say "uiired
that it" has a finite number of measurable charact:erlstrcs, charn derow
X1, X2, . Xm, where of course, m’ is presumably greater

than m. IR

Thus we mlght take the characteristics of capac1ty, induct-
ance, and resistance as defining the quality of a relay. Geo-
metrlcally speaking, the quality of a relay in this sense can
be thought of as a point (P = Xu, Xa, Xa1) in three dimen-
sional space with coordmate axes Xr, Xz, and X3, see Fig. 135.
(Of course, to define the qua ity og\;he relay in terms of those
characteristics which make it what it is would require a space
of m’ dimensions, where 7’ is the unknown number of inde-

Y The Principles of Science, 2nd Edition, page 25.
2 Radford, G. S., The Control of Quality in Manufacturing, published by Ronald
Press Company, 1922, page 4.
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pendent characteristics required to define a relay. 1For example,
to characterize a monatomic gas molecule we need a space of
six dimensions, since one dimension is required for each of three
space coordinates and for each of three velocity components;

Quality then as we shall use it‘may be a quantity having
known physical dimensions’such as length, velocity, resistance;
a'quantity representing the magnitude of any entity in units
of the same kind; or merely a number such as a rate, number

. S i '
defective, and so on. = ".[" LA
Xa X3
P =X, X2y, X3l
}
I
[}
® PE X Xz,X 3
1 |
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i |
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FiG. I5.—QUA§1TY as A Poinr 1n Fic. 16.—Quaviry CONFORMS 5r WITHIS
PACE.

VorLumEk.

4. Conception of the Quality of Thing as an Attribute

eranCustorpz}t;y engineering Practice specifiesithe limits or tol-
ces within which the different quality characteristics are

zi%;;?ssetd 50 }1(:"prt())vided the single piece of apparatus or thing
udy is to be considered as satisf 1
: ; stactory or conforming to
specifications.  Geometrical] 1 :
: y this can be represented f
pecif . : ed for the
previous example involving three quality characteristics by

/A 4
{A pilece of a i 1 1
i : of volume is said t
: O poss €
izs;;v:h{::trzl&ute of conformance to specified standalzls esgbt\lfli
clement of volume may be large because often only
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a single lower or upper bound is given to some one or more
of the quality characteristics. If the quality falls outside
this volume, the piece of apparatus or thing is said to possess
the negative attribute of non-conformance. The property of
positive attribute is variously characterized as good, satis-
factory, conforming, standard, and that of negative attrlbute
is characterized as unsatisfactory, non-conforming, and so on.

5. Quality of a Number of the Same Kind of Things 26,55.71’?

To begin with, let us consider the information presented
in Table 3 giving the measurements of tensile strength hard-
ness, and density on sixty specimens of a certain aluminum
die-casting-++ This table glves three quality characteristics
for each specimen.! To picture the quality of the group of
sixty specimens, it is therefore necessary to consider the one
hundred and eighty measures of the different quality charac-
teristics given in this table,\Now our graphical representation
of quality becomes a real aid because we must have some
method of v1suahzmg the significance of a set of data such
as that in Table 3.7

First let us thmk only of the sixty values of tensile strength.
How shall we arrive at a simple way of expressing the quality

— © P o o . Pe

TENSILE STRENGTH X
F16. 17.—Quauity v RespecT TO TENSILE STRENGTH,

of the 31xty specimens in respect to this characteristic’ The
answer is simple if we think of the sixty values of tensile
strength plotted along a line such as indicated in Fig. 17. Here,
of course, we have plotted only a few of the sixty points.
This graphical presentation at once suggests that we seek
some distribution function to represent the density of the
points along the line. If we can find such a function and if this
function can be integrated, it is obvious that the integral within

! The abbreviation psi is used here and elsewhere for pounds per square inch.  All
hardness measurements are given throughout this book in Rockwell's “E” even though
the “E” may sometimes be omitted.
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specified limits gives us the number of specimens having
. . . . . vedrccims The it Ty ny
value of tensile strength within these limits.?7-2'57 " R

TasLe 3—Quarrry ExprEssep 1N Tasurar Form

Speci- Tensile |Hardness in Depsity Speci- Tensile | Hardness in| Density

men Sfrength Rockwells in men Strength | Rockwells in
in psi “E” gm/cm? in psi “E” gm cm’

1 29,314 53.0 2.666 31 29,250 71.3 2.648
2 34,860 70.2 2.708 32 27,992 52.7 2400
3 36,818 84.3 2.865% 33 31,852 6.5 2.692
4 30,120 5.3 2.627 34 27,646 63.7 2. 669
5 34,020 78.% 2.681 35 31,698 6g.2 2.623
6 39,824 63.5 2.633 36 30,844 6g.2 2.696
7 | 35,396 714 2.671 37 31,988 61.4 2.648
8 31,260 53.4 2.650 38 36,640 83.7 2,773
9 32,184 82.¢ 2.717 39 41,578 94.7 2.874
10 33,424 67.3 2.614 40 30,496 70.2 2.700
| 37,694 69.5 2.524 41 29,668 8o..4 2583
12 34,876 73.0 2.741 42 32,622 6.7 2.668
13 24,660 55.7 2.619 43 32,822 82.9 2.679
1q 34,760 85.8 2.758 44 30,380 55.0 2.609
15 38,020 95.4 2.846 45 38,580 83.2 2.721
16 25,680 51.1 2.57¢ 46 28,202 6\2 .6 2.678
i'g 22810 74-4 2.561 47 29,190 78.0 2.610
19 28,:;62 54.1 2.593 48 35,636 84.6 2.728
9 2 ,67 77-8 2.639 49 34,332 64.0 2.709
» 4,640 52.4 2.611 50 34,750 75.3 2 880
u 25,770 69.1 2.666 51 40,578 84.8 2.949
23,690 53.5 2.606 52 28,500 49.4 2.66
23 2§’6§O 64.3 2.616 53 34,648 74.2 2'63
2‘; 28,212 w7 2748 54 324 598 2.705
" > 55.7 2.518 55 33,802 75.2 2 96
34,002 70.5 2.726 7
N g oy : g 56 34,850 57.7 2.701
28 | 2gmys o > Sgg sg 3f’69° 79-3 2.776
29 28,710 72.3 2. 54:7 : P 67.6 278
30 29,830 59.5 2.606 ég g:’g‘g 7 z 2000
s 74 - 2.819

\\
—

In a similar wa
values of tensi]
hardness,

) Str};nw:h ma}cr1 represent the sixty observed
by e Oig and one other property, such a
e Y y points in a plane. Again the graphical

suggests the need for some distribution function
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which will give us the density of the points in this plane.
In just the same way, the graphical representation of the
values of tensile strength, hardness, and density in three
dimensional space suggests the need for a distribution function
indicating the density in space. The graphical representation
of the 31xty points in a plane and in space was glven in Fig. 14.

In the inspection of product manufactured in quantities
running into the thousands or even millions of pieces per year,
it would be a very laborious task to measure and record as a

0.4
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Fic. 18.—REcoORD oF Quaiity 1n TErRMs oF Fracrion DEFECTIVE.

variable the quality characteristic for each piece of apparatus
or piece-part. Instead, the practice is usually followed of
recording only the fraction non-conforming or defective in
each lot of size N. In the course of a year, then, we have a
record such as shown graphically in Fig. 18 representing the
quality of a given kmd of apparatus measured in terms of
fraction defective. " w7 v .o

In the general Case each piece of apparatus is supposed to
possess several quality characteristics and the results of an
inspection of a lot of size N on the basis of, say m, quality
characteristics, X1, Xa, ..., Xm, can be reported either as
the fractions, p1, p2, . . . , pm, within limits for the respective
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characteristics or the fraction p within all the limits. Obviously
this fraction p does not give as much information about th

product as the set of m fractions. "', .,

6. Quality of Product

Thus far we have considered the meaning of the qualit
of 2 number of the same kind of things such as the set of sixt
specimens of a given kind of die-casting. Now we come to the
problem of expressing the quality of a product for a give
period of time where this product is composed of M differen
kinds of things, such as condensers, relays, vacuum tubes
telephone poles, and so on.

We must define quality of ;product in such a way tha
‘the numerical measure of this ciilaiitli serves the following tw

purposes )

1. To make it possible for oneito see whether or not th
quality of product for a given period differs from that for somt
other period taken as a basis of compafison.

2. To make possible{the comparison of qualities of produc
for two or more periods to determine whether or not the dif
ferences are greater than should be left to chance. 5 o ..

A. Distribution of Quality Characteristics

Let us assume that there are N, things of one kind such
as condensers, N things of another kind such as relays, anc
finally Na things of the Mth kind. Let mi, mo .) my
represent Fhe number of quality characteriséics ,on th,e M
different kinds of things. From what we have already seen,
it 1s obvious that our picture of quality must be derived it
Z?S;:b\:;iy frorrllc the my +me L Mt observed frequenct

tons of the quality characteristics. The quality o
product for two different periods consists of two such sets of
frgquency distributions.  For example, Fig. 19 shovfsS I
ths:rri:gci f;:rgichency fdlstrlb'utions. for a single quality char
iy twelve’montlﬁnc}ff)s for a given kind of product over a period

s. 'Since there were five quality characteristics
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for this partlcular kind of apparatus, the complete record of
quality requires five sets of frequency distributions similar to
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Fi6. 19.—QuaLrty Recorp 1N Terms or OservED FreQuENcy DISTRIBUTIONS.

those shown in Fig. 19. As already said, the corresponding
picture of the quality of product COHSIStmg of M different
kinds of apparatus or things would require as many sets of
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such distribution functions as there are quality ch:flracte_;ist.ics,
Such a picture contains the whole of the available m;foi;r%?;gm
B. Quality Statistics 14~-‘~'~‘

The information presented in the form of frequenCY.dls-
tributions does not permit readily of quantitative comparison
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Fic. 20.—QuaLty REcorRD 1N TErMS oF StaTistics.

To get around this difficulty, we may use instead of the fre-
quency d.lstrlputlon itself some characteristic or statistic of
this distribution, such as the fr

action within a given range,
the average,

the dispersion, or the skewness. For example,

the information given in Fig. 19 is presented in terms of certain
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of these statistics in Fig. 20. { Whereas we have only one
frequency distribution for each characteristic, we have one
or more statistics for each distribution. These statistics,
however, give us a quantltatlve p1cture of the variation in the

- Mlgnies  anday WEN‘Sar/

given quality characterlstlc} R ARSI 0 T A
C. Quality Rate

The two measures of quality just considered are based
upon'the conception of quality’ as that which makes a thing
what it is and, therefore, involve the use of as many quality
characteristics as are required to define the product. In this
sense, the quality of one thing cannot be added to that of
another;. for example, the quality of a condenser in terms of
capacity, leakage, and so forth, cannot be added to the quality
of a telephone pole | in terms of 1ts‘modulus of rupture and other
physical properties.” 7 7T 15,070, i

If, however, we can find some measure of the goodness of
a thing, no matter what it is, we can then get a single quanti-
tative measure of quality of product. One way of doing this
is to weight each quality characteristic. As an example, let
us assume that for some one quality characteristic X; of the.
product, we have the observed relative frequency distribution -

Xit, Xigy ooy Xigy o+ 5 Xini , )
P’il, Pizy ..o,y .PU’ ey Pini 4
where the X’s represent the n; different observed values of the
variable X7, pi;/V; is the number of times that the characteristic
Xij was observed, and N; is the total number of things having
the quality characteristic X;. By choosing a weighting factor
wi(X;) where w; 1s a functional relationship different, in general,’
for each characteristic, we get a transformed frequency dis-
tribution
wi(Xi1), wi(Xiz), . .., wi(Xi5), - - ., wi(Xin)
: . A ‘ (5)
P, pizy .y Pigr e - o> Din, - .
Itis assumed usually that the weights are additive so  that
the total weight /#; for the quality characteristic X; on the N;
pleces of product having this characteristic is

Wi= Ni{pixwi(Xin) + pum(X) + . . . + peywilXe) + . + pingtiXing)].  (6)
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The corresponding total weight /#” for the whole product then
becomes

W = W1+W_>++Wq, + ... +Wy/:l+rlﬁ2+--~+rn),'> (7)

where as above there are supposed to be mi + m2 + . . . + My
quality characteristics. ’

Tt is obvious that the total weight from month to month
for any given product will vary because of the effects of un-
known or chance causes which, as we have already seen,
produce variations in the observed distributions of the re
spective quality characteristics, We also see that to be able
to interpret the significance of variations in respect to this
weight, we must be in a position to consider the significancei
of variations in the observed frequency functions from which’
this weight is calculated, assuming that for a given kind of

product the number of pieces produced each month is approx
. Lk T,
imately the same. .- L

i

In general, an attempt is made to obtain a weighting
factor which represents approximately the economic value of 2
quality characteristic having a given magnitude. Obviously,
however, it is very difficult to attain such an ideal, and conf
sequently the weights usually represent empirical factors.l . \

By dividing the weight 727 of product for a given period
by the weight /7, of the same product over some previous
period taken as a base, we get the customary form of index

I = g ¢
S
' It should be noted that the statement that the index of qualily
15 such and such does not give any indication of what the qualif\‘
is unless we take into account the details of the method zmder/yin'“
the formatio;;z of the index. In fact a high or low index doﬁbS
not necessal"lly mean that the quality is good or bad in a giver
case unless it is known that for the particular index with v%hich

'One very simple f, . . .
Mr. H. F. Dodgep ¢ form of rate used extensively in the Bell System is described b

. in an article “A Method of Rating M ' Bei
System Tecﬁilzcal Fournal, Volume VII, pp. 350—362181?Epri1a?;£?mred Product,” Bei
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we are dealing, a high index means good and 2 low index means

bad quality from the accepted viewpoint. 1“7 .1y

7. Quality as a Relationship

‘Often the quallty of a thing, such as the quality of a manu-
facturmg process, is of the nature of a relatlonshlp As an
example, we may consider the process of creosoting telephone
poles. In general, the depth of penetration of the creosote
appears to depend upon several factors, one of which is the
depth of sapwood, as is evidenced by the data given in Table 4,
showing the depth of sapwood and the corresponding depth
of penetration for 1,370 telephone poles In this case ithe
relatlonshlp between these/two factors is an important char-
acteristic of the quality of the process.:

To compare the quality of the creosoting process of one
plant with that of each of several others, we must try to inter-
pret the significance of observed differences in the results
obtained by different plants, such as the seven records shown
i Fig. 21. To facilitate comparisons of this character, \we
need to have available quantitative measures of the correla-
tion or relatlonshlp between the quality characteristics corre-
sponding to a given process.' 1 ri) Witk

The importance of the concept of relationship in specifying
quality 1s more deeply seated than might be indicated by this
simple problem. In trying to define the quality of a thing in
terms of those characteristics which make it whatitis, we called
attention to the fact that we make use of what are perhaps
secondary characteristics, For example, In expressing the
quality of a thing in respect to strength we make use of meas-
ures of ductility, brittleness, and hardness—characteristics
which are likely dependent to a certain degree upon some com-
mon factor more elemental in nature. Hence it follows that
not only the magnitudes of the characteristics but also their
lnterrelauonshlps are 51gnlﬁcant in Characterlzmg a thlng
The representation of quality in m “space. as outlined in a

previous paragraph ‘lends itself to a quantitative expression
of quality relationship;
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8. How Shall Quality be Defined? (M3 be LYo T

UL
If we are to talk intelligently about ‘the quahty of a thing

or the quality of a product, we must have in mind a clear

One of these has to do with the, consideration of the quallty
of a thing as an objective reality independent of the existence
of man. The other has to do with' what we think, feel, or
sense as a result of the objective reality. In other words, there
is aisubjective side of quality. For example, we are dealing
with the subjective concept of quality when we attempt to
measure the goodness of a thing, for it is impossible to think
of a thing as havmg goodness independent of some human
want. In fact, (this subjective concept of quality is closely
tied up with the utility or value of the objective physical
properties of the thing itself. .

For the most part ave may thmk of the objective quality
characteristics of a thing as being constant and measurable
in the sense that physical laws are quantitatively expressible
and independent of time. When we consider a quality from
the subjective viewpoint, comparatively serious difficulties
arise. To begin with, there are various aspects of the concept
of value. We may differentiate between the following four?
kinds of value:

1. Use 3- Esteem
2. Cost 4. Exchange

For example, although the air we breathe is useful, it does
not have cost or exchange value, qnd untll we are deprived of
it we do not esteem it highly.’=. "

Although the use value remains comparatively fixed,
we find that the significance of cost, esteem, and exchange
values are relative and subject to wide variation. Furthermore,
we do not have any universally accepted measures of such
values. Our division of several different things of a given

"For a thorough discussion of this division of economic value see Walsh, C. M.,
The Four Kinds of Economic Value, Harvard University Press, Cambridge, 1926.
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kind into two classes, good and bad, necessitates a quantitative,
fixed measure which we do not have in the case of subjective
value.

From the viewpoint of control of quality in manufacture,
it is necessary to establish standards of quality ina quantitative
manner. For this reason we are forced at the present time
to express such standards, insofar as possible, in terms of
quantitatively measurable physical properties. This does not
mean, however, that the subjective measure of quality is not
of interest. On the contrary/it is the subjective measure that
is of commercial interest.’ It is this subjective side that we
have in mind when we say that the standards of living have
changed. " L

Looked at brovadly:’\ihrexg_are at a given time certain human
wants to be fulfilled® through the fabrication of raw materials
into finished products of different kinds. 7These wants are
statistical in nature in that the quality of a finished product
in terms of the physical characteristics wanted by one individual
is not the same for all individuals. The first7stepiof the en-
gineer{in trying to satisfy these wants is, therefore,ithat of
translating as nearly as possible these wants into the physical
characteristics of the thing manufactured to satisfy these
wants. In taking this step intuition and judgment play an
important role as well as the broad knowledge of the human
element involved in the wants of individuals. The second
step of the e.ngineer is{g;ég_up ways and means of obtaining a
product Wth]} will differ from the arbitrarily set standards
for these quality characteristics by no more than may be left
to chance, .

G e i el of ety £
chis second step Th;s broodls limited to a con51df:rat10n of
naturally includ-es the r?)zl o CO?CePt 'Of eCOl’lom.lC'COHtl‘Ol
standards expressed i teI;mS efm o Contmually. shifting t.he
to meet best the shifting ec ; m§asurable physical propertics
physical characteristicsdg i wo 'Of' these particulas

epending upon shifting human wants.



CHAPTER V
THE PrOBLEM OF PRESENTATION OF DaTa

1. Why We Take Data

You go to your tailor for a suit of clothes and the first
thing that he does is to make some measurements; you go
to your physician because you are ill and the first thing that
he does is to make some measurements. The objects of making
measurements in these two cases are different. They typify
the two general objects of making measurements to be con-
sidered in our future discussion. They are:

(a) To obtain quantitative information.
(6) To obtain a causal explanation of observed
phenomena.

Measurement to attain the first object enters into our
everyday life because everything that we buy or sell is by the
yard, pound, or some quantitative unit of measure. Such
measurements also play an important réle in scientific work.
In fact, there was a time not so very long ago when it was felt
that physical measurements were largely of this character;
as, for example, those of the so-called physical constants, such
as the charge on an electron, the coefficient of expansion of a
material, and so on. Quite naturally, measurement to obtain
Quantitative information plays an important réle in industry,
Particularly in the inspection of quality of product where it is
necessary to have quantitative information to show just what
the quality for a given period really is.

The second object of taking data is, however, of perhaps
greater importance than the first in the field of 'resear‘ch‘and
development because here we are in search of physical prmc1p!es
to explain the observed phenomenon so that we may p?edlct
the future in terms of the past. In the control of quality of
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manufactured product, it is one thing to measure the qualit
to see whether or not it meets certain standards and it
quite another thing to make use of these measurements tn‘
predict and control the quality in the future.

We shall have occasion to lay stress on four kinds of causil
interpretation, typical examples of which are:

A. We note differences between the qualities of a numbe
of the same kind of things, such as apples on a tree, produced
insofar as we know, under the same essential conditions"

The important question which we shall ask is: Should sud
differences be left to chance?

B. Having concluded in a given case that the difference
in the qualities of a group of things are such as should be left
to chance, we often want to discover the distribution of thest
qualities which we may expect to get in the long run. In terms
of our simple illustration we want to discover the distribution
of the size of apples to be expected under the same essentil
conditions over a long period of time. A study of this problen
involves the use of some kind of mental picture of the way
certain kinds of chance cause systems act in nature.

C. Two series of observations of some quality charac
teristic have been taken under what may or may not have
been the same essential conditions. From an analysis of the
data, we are called upon to determine whether or not the two
conditions were essentially the same. Again using the apple
tree illustration, we can picture two trees of the same kind
treated with different fertilizers. The question to be con-
sidered is: Do the differences between the quality charac-
teristics of the apples on one tree and those of the apples on
another indicate that the fertilizers exerted a controlling
influence?

D. We take sets of observations of 7z quality characteristics
on a number of the same kind of thing,

determine whether or not there is any underlying causal

relationship between the characteristics. For example, we
b

ohe . . : .
:lli%ity.try to find out if the size of an apple is related to its

and from these try to
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2. The Problem of Presentation

Starting with the raw data, the problem of presentation
depends upon the way the data are to be used or, in other
words, the kind of information that they are supposed to give.
For example, the tailor’s measurements for your suit of clothes
must be presented practically in the detailed form in which
they were taken.

In general, however, it is neither feasible nor desirable
for one reason or another to present raw data in detail such
as is done in Table 4 for the depth of sapwood and depth of
penetration in telephone poles. Such a presentation usually
requires too much space. Furthermore, data in this form do
not furnish the quantitative information usually desired and
are not readily interpretable in terms of causal relationships.

The problem of presentation involves the use of methods
of analysis designed to extract from the raw data all of the
essential information contained therein for the answer to
questions which may be put in attaining the object for which
the data were taken. ‘

We shall consider briefly methods for presenting such
data in both tabular and graphical forms which assist materially
in helping one to obtain the information present in the original
series of observations. We shall find, however, that the results
thus obtained are for the most part qualitative, and for this
reason do not effectively serve the purpose of comparing sets
of data. To secure quantitative reduction of data, we must
therefore introduce methods for summarizing a series of values
of a given quality characteristic by means of a few simple
functions which express quantitatively such things as the
central tendency, dispersion, and skewness of the observed
frequency distribution of the quality characteristic. In
particular, we need quantitative measures of the relationship
between quality characteristics.

We shall find that there are many ways of carrying out
the details of such analyses and that there are many functions
which measure such characteristics as central tendency, dis-
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persion, and skewness, some of which are far more effective
than others in giving the essential information.

3. Essential Information Defined

We take data to answer specific questions. We shall say
that a set of statistics for agiven set of data contains the essential
information given by the data when, through the use of these
statistics, we can answer the questions in such a way that

further analysis of the data will not modify our answers to a
practical extent.

4. Statement of the General Problem

The raw data with which we have to deal are usually
given in one of the following ways. We may have a series of
n observations of the quality of a single thing, such as 7 obser-
vations of the length of a rod, the resistance of a relay, or the
capacity of a condenser; or we may have a series of # observa-
tions representing single observations of some quality charac-
teristic on 7 different things, such as the 1,370 observations of
the depth of sapwood previously given in Table 4.

In one case we have # values

Xy Xoy ooy Xiy oovy X, (9)

representing as many measurements of the same quality on one
thmg, and in the other case we have » values representing
single measurements of the same quality on each of » things.

In a similar way, we may have a series of # successively
observed values of a group of quality characteristics on
some one thing, or observed values of say m qualities on each

of, let us say, # things. In either case we have a series of
observations, such as

¢ g

Xll, Al‘_’, ey );17:, ey Afln

> N be
Xot, Xooy ooy Xog, .y Xoy,

& X >, (IO}

J1s Jz,...,)s]i,.,_,)(jn
X1y Xma, . . . s Xomiy o o - s Xomn

7
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Naturally, we always have a certain purpose in accu-
mulating such a series of data, and the object of tabular
and graphical presentation is to assist in the interpretation
of the raw data in terms of the object for which they were
taken. As already noted, the distributions of values of depth
of sapwood and depth of penetration as given in Table 4
illustrate the first form (g) in which raw data may occur.
Similarly, the two distributions taken together illustrate the
second form (10).

Later we shall have occasion to make use of several simple
geometrical conceptions in our study of the ways and means of
presenting data. It will be helpful, therefore, for us to keep
in mind some of the problemsinvolved in the analysis of data,
both from the viewpoint of presentation of facts and from
that of causal interpretation stated in terms of these geometrical
conceptions.

For example, the problem of presenting a series, such
as (10), of m qualities on each of # things may be looked upon
as that of locating a set of # points in a space of m dimensions
in reference to certain lines, planes, or hypersurfaces. A
simple illustration is that previously given in Fig. 14 where
we may think of the points as being located in respect to the
coordinate axes in one case and in respect to either the lines
or planes of regression in the other case.

There are many ways in which we may set up this problem.
For instance, in the case of two variables X and ¥, we may
seek some function f(X,Y) such that f(X, Y)dXdY tells us
approximately how many of the observed values lie within
the element of area X to X +dX and Y to ¥ + 4Y. Such a
function would give us approximately the density of the
observed points in the plane. Sometimes, however, it is more
convenient to have some measure of the clustering of the
points about a curve Y = f(X). It may be sufficient to know
that approximately a certain per cent of the points lie within
some band /(X) = e as shown in Fig. 22-4.

It may be of interest to note how some of the problems
of causal interpretation mentioned at the beginning of this
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chapter can be expressed in terms of certain geometrical
representations of the data. Thus, if we represent a series of
n measurements of some quality characteristic by points along
a straight line, we are often interested in knowing whether or

) . .
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YodVpm—m—gm—— ——— ; .
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Fig. 22.—Two MEgTrHops oF REPRESENTING Darta.

not the particular spacing of the points indicates that the
causes of variation between the observed wvalues are such as
should be left to chance, Fig. 23-2. Assuming that we have |
decided that the causes of variation should be left to chance,

- -0

&

QUALITY CHARACTERISTIC X

QUALITY CHARACTERISTIC X
SAMPLE UNIVERSE
@) (b)

Fic. 23.—ScHEMATIC RELATION BETWEEN SAMPLE AND UNIVERSE.

we are usually interested in discovering the distribution of the
variable to be expected if these same causes are allowed to
operate for an indefinite period of time. In other words. we
seek the universe of effects for a given cause system, Fig. ;3-5.
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It is obvious that the other problems of causal interpretation
may also be given a geometric significance.

§. True Versus Observed Quality

Thus far we have purposely avoided the problem of trying
to distinguish between true quality and the observed mag-
nitudes of the quality characteristics. Obviously, it is necessary
to try to do this since all measurements are subject to error.
Hence, to obtain the essential information in respect to the
distribution of true quality from a set of observed data such
as either (9) or (10), we must have some means of correcting
for errors of measurement existing in the original data.

To get a picture of what we mean by true quality, let us
consider first a very simple illustration. What is the true
length of the line #B? Strictly speaking, it does not have a

A B

true length in the sense of an unchangeable value which is a
constant of nature. On the contrary, we believe that the
molecules at the ends of the line are jumping around in random
fashion so that in the last analysis the line does not have a
length except in the sense of some distribution of length or
in the sense of some characteristic of a distribution function,
such as an average.

Whereas, in the case of the length of the line (in fact the
magnitudes of most physical quantities) the objective or
true quality is a frequency distribution function, there are
instances where we believe that the true quality is perhaps a
fixed constant of nature. As an illustration, it appears that
most physicists regard the charge on an electron as such an
objective constant.

Even the most precise measurements of such a quantity,
however, are subject to chance causes of variation or, as we say,
errors of measurement. As evidence that there always remains
a nucleus of chance causes of variation in even the best physical
measurements, we may take the series of observed values of
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the charge on an electron originally given! by Millikan, Table;.
The problem of presenting the essential information contained
in such a set of measurements of some quantity assumed to
be a constant is that of finding the best estimate of this con
stant.

TasLe §.—Miriikan’s Opservations oF CHARGE ON AN EvrecTrON

¢ X 10'°

4.781 4.764 +.777 4.809 4.761 4.769
4795 4.776 4.765 4.799 4.792 4806
4.769 4.771 4785 4-779 4.753 4779
4.792 4.789 4.805 4.788 4.764 4.78%
4779 4-772 4.768 4-772 4.810 4790
4775 4.789 4.801 4.791 4-799 4-777
4772 4.764 4.785 4-788 4779 4.749
4.791 4.774 4.783 4.783 4.797 4.781
4.782 4.778 4.808 4.740 4-790

4767 4.791 4771 4.775 4:747

Now let us consider the meaning of true quality where
we have one or more series of measurements (g) or (10) on 2
number of different things. It is obvious from what has been
said that the true quality in such a case is a frequency distri-
bution function. It is, however, not the objective frequency
distribution function of the observed values, for these contain
errors of measurement. Itisrather this frequency distribution
function corrected for errors of measurement. Since, in com-
mercial work, the error of measurement is often large, it follows
that the distribution of observed values may differ significantly
from our.best estimate of the true distribution function. Hence,
in our discusston of the ways and means of presenting data,
we must lay the basis for correcting, -insofar as possible, the
original data for errors of measurement. )

‘.These data are those given in the first edition of Millikan's book The Electron,
pubhshed' by the University of Chicago Press. For our purpose, we shall neglect in all
furtber discussions of these data the fact that certain correctio’ns should bg made as
outlined by Millikan if we are concerned with the problem of giving the best estimate
of the charge on an electron. To do this, it would also be necessary to weight the
values as he has done.  For the latest discussion of the use of these data in estigmating
the most probable value of the charge on an electron, see ““Most Probable 1930 Values

of the Electron and Related Constants.” R. A. Milli 1
Review, May 15, 1930, pp. 1231-1237. > illikan, published in the Physical



CHAPTER V1
PrEseNTATiON OF DATa By TABLES aAND GRaPHS

1. Presentation of Ungrouped Data

Perhaps the most useful way of presenting an ungrouped
distribution of raw data in tabular form is that in which the
values of the variable are arranged or permuted in ascending
order of magnitude. Such a permutation is termed a frequency
distribution. Let us consider this form of presentation for the
fifty-eight observed values of the charge on an electron given

in Table g.

TasLe 6.—TABULAR PrESENTATION oF PERMUTED SERIES oF Data

4740, 4747, 47495 4.758, 4.761, 4.764, 4.764, 4.764, 4.765, 4.767, 4.768, 4.769, 4.769,
4775 4778 4772, 47725 4:7725 4774 4775, 47755 47765 47775 4777 4778, 47795
4779 4779 4779, 4781, 4.781, 4.782, 4.783, 4.783, 4.785, 4.785, 4.785, 4.788, 4.788,
4789, 4.789, 4790, 4790, 4.790, 4791, 4791, £.79T, 4.792, 4.792; 4795, 4797, 47995
4.801, 4.805, 4.806, 4.808, 4.809, 4.810.

With this tabular arrangement we can easily obtain such
characteristics of the observed distribution as range, mode or
most frequently occurring value, and median or middlemost
value, of the permuted variable.

Naturally we can present such a permuted series of mag-
nitudes graphically in numerous ways, only one of which is
given by way of illustration in Fig. 24.

In a similar way a set of observations representing measure-
ments of several characteristics on each of several things
may be arranged in tabular form by permuting one of the series
of observations in ascending order of magnitude and then
tabulating the corresponding values of the associated char-

63
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acteristics. Table 7 shows two such tabulations, there beiny
in each case two quality characteristics.

Table 7-a gives the observed current I in amperes through
a certain kind of carbon contact as the voltage E is changed
This is the everyday type of observed relationship presentec
in the customary tabular form in which one of the series o
measurements, in this case voltage, is permuted in ascending
order of magnitude.

TaBLE 7.—TaBuLAR PrESENTATION OF RELATIONSHIP

Table 7-a Table 7-6
Voltage £ | Current/ | Volume in Area in
in Volts in Amperes Cu. Cm. Sq. Cm.
3 0.03 °.9 0.667
6 0.07 1.9 0.428
9 o.11 39 ©.538
12 0.15 4.5 0.778
15 0.19 4.6 o. 827
18 0.24 4.6 ©.543
21 0.29 4.8 ©.792
24 0.34 4-9 ©.694
27 0.39 4.9 0,694
30 0.4§ 5.1 0.804
33 0.%0 6.6 0.772
36 .58 7-8 0.706
39 o.62 9.6 0.750
42 0.69 1.7 0.496
45 0.76 14.9 0.491
48 0.86 16.2 0.716
51 ©.93 17.9 0.771
18.2 0489
1.0 o.811
19.2 0.792
19.8 0.803
26.8 0.664
44.8 0.718

.T:flble 7-6 gives the measureme
teristics of each of twent

carbon.

nts of two quality charac-

i : y-thr'ee different kinds of granular
n this case the series of observed values of the
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volume of the pores is permuted in ascending order of mag-

nitude.

The corresponding customary graphical representations
of such sets of data are presented in Fig. 25.
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Fic. 24—OnE GraPHICAL PRESENTATION OF PERMUTED SERIES OF DATA.

In Fig. 25-4, there can be little doubt that the current is a
function of the voltage E, although neither the tabular nor
the graphical presentation gives the relationship quantitatively.
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Fic. 25.—~One Form oF GraphicaL PresentaTioN oF Data or Tasie 7.

In Fig. 254, there is a definite question as to whether or not
the two characteristics are related at all.
Now suppose we were to present in a similar way the
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distribution of 1,370 observed values of depth of sapwood
given in Table 4 and also the relationship between depth of
sapwood and depth of penetration. To do this would require
an excessive amount of space. To get around this difficulty
of presentation when the number of observations is large,
customary practice calls for the grouping of the original data

2. Presentation of Grouped Data

We usually divide the range covered by a frequency dis-
tribution of observations into something like thirteen to
twenty equal intervals or cells, the boundaries of which are so
chosen that no observed value coincides therewith, thus
avoiding uncertainty as to which cell a given value belongs.
The number of things having a quality X lying within a cell
is termed the freguency for that cell; in a similar way, the
ratio of the frequency of a given value of X to the total number
n of observations is termed a relative frequency. The series of

TasLe §.—Distrizution oFr DepTH oF Sapwoop

Cell Cell
Midpoints Frequency Midpoints Frequency
in Inches in Inches
1.0 2 3.4 151
1.3 29 3.7 123
1.6 62 4.0 82
1.9 106 4.3 48
2.2 153 4.6 27
2.5 186 4.9 14
2.8 193 5.2 5
3.1 188 5.5 I

frequenue.s and of relative frequencies constitute fre uency
and relative  frequency distributions respectively. Thi dis
glli)uftmn o; dept}-\ of sapwood can in this way be reduced to
obser(zr:?ioi sovynt in Tlable 8. By thus grouping the original
e vation, mho cells, we secure a tabular presentation
m pler than t}}at originally given in Table 4, but in
process we have slightly modified the original data.
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By grouping, we get an improved picture of the clustering
of the observed values about a central value somewhere near
the cell whose midpoint is 2.8 inches, as is shown in Fig. 26.
In the first diagram the black dots represent ordinates pro-
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Fi16 26.—~GrarnicaL PrESENTATION oF FrREQUENCY DisTriBUTION 0F DEPTH OF

Sapvoop or TELEPHONE PoLEs.

portional to the corresponding cell frequencies, the ordinate
for a given cell being placed at the midpoint of that cell. If
we join these ordinates by a broken line, we get the frequency
polygon. The method of obtaining the frequency histogram is
clearly indicated by the figure itself. An ordinate in such
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graphical presentations is termed a frequency, meaning therevy
the frequency of occurrence in the associated cell.

We may plot as the ordinate at a given value of abscissa
the total number of observations having a value equal to or
less than that of the given value of abscissa. In this way we
get the cumulative distribution, cumulative polygon, and cumu-
lative histogram also shown in Fig. 26. These are often termed
ogives. Itis perhaps a matter of personal judgment depending
upon the situation in hand as to whether the tabular or the
graphical presentation of the frequency distribution of Table 8
is the more desirable.

Let us next try to present the data of Table 4 in such a
way as to indicate whether or not there is any relationship
between the two quality characteristics, depth of penetration ¥
and depth of sapwood X. In general, applying the same
methods as those used above to obtain the reduced frequency
distribution, we get the correlation table or scatter diagram of
Fig. 27. The number of poles having values of depth of
sapwood and depth of penetration lying within a given rectangle
is printed in that rectangle.

If we were to erect a parallelepiped on each rectangle
with a height proportional to the number in this rectangle,
the resulting figure would be a surface histogram. We might
also construct a suzface polygon in a manner analogous to that
used in constructing the frequency polygon.

What' does the table or chart shown in Fig. 27 tell us about
(f)h;?er :i?;lg?:hclfri?;ﬁiﬁet? tv.vg v?.riables therein considert?d?
in a given column corresporligrll u:10n O‘f values of penctration
depends upon the denth of Sapwgo 03 a Igriven depth of sapwqod

. other words, knowing

the depth of sapwood, we have some information about the

depth of penetration. We shall be content, therefore, to say

for the present that these two qualities appear to be correlated
and that, in general, the depth of penetration appears to be
greater, the greater the depth of sapwood. Thus the table or
chart of Fig. 27 does tell us something, but what it tells is

qualitative and not quantitative. For example, it does not
)
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tell us how close a relationship exists between the two
qualities.
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Fig. 27.—TaBuLAR PRESENTATION OF GROUPED DATA IN SCATTER Diagram.

3. Choice of Cell Boundaries

The choice of from thirteen to twenty cells is to a large
extent empirical. Experience has shown that, wh.en the
data are grouped in this way, it appears possible to retain most
of the essential information in the ungrouped data. To ta1.<e
a larger number of cells often confuses the picture zjmd, in
particular, emphasizes sampling fluctuations, the significance
of which will be considered later. In general, other things being
equal, the outline of the frequency distribution is more regular
the smaller the number of cells. This is illustrated b'y the two
frequency distributions of the data of Table 4 shown in Fig. 28.
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4. Conclusion

Both tabular and graphical presentations of original
ungrouped data are cumbersome and often require a prohibitive
amount of space, particularly when there are a large number of
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Fic. 28.—EFrFecT OF CLASSIFICATION ON (GRAPHICAL REPRESENTATION

observed values. Grouping of raw data materially reduces
the space required and makes possible a better picture of the
observed distribution whether in one or more dimensions
although the data in this form are not readily susceptible o’f
causal interpretation. P



CHAPTER VII

PreEseNTATION OF DaTA BY MEANS OF
SiMpPLE FunNcTiONs OR STATISTICS

1. Simple Statistics to Be Used

Table g presents for ready refererice a list of those functions
or statistics which we shall consider, the ones marked by an
asterisk being the most important in the theory of quality
control.

TasLe g.—CommonLy Usep FuNcTioNs or SraTisTics

Fraction
. Measures | Measures of | Measures | Measures of
within Measures of . . X
. . of  Lopsidedness | of Flatness| Relationship
Certain | Central Tendency . . . . .
Limit Dispersion| or Skewness {or Kurtosisjor Correlation
its
*Fraction| *Arithmetic mean *Standard| *Skewness | *Flatness | *Correlation
defective X deviation k B2 coefficient
¥4 I3 r
Maximum <+ Minimum| Variance Correlation
2 o2 ratio g
Median ‘ Mean
deviation
Mode Observed
range

L. Fraction p Defective or Non-Conforming
This simple measure of quality was described in Chapter IV
of Part IT as the fraction of the total number of observations
lying within specified quality limits.
71
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3. Arithmetic Mean X as a Measure of C entral Tendency

By definition, the arithmetic mean X of n real numbers,
Xl,Xz,...,qu, . .. ,Xn,ls

. 2 Xi
X: X1+X2+...+Xz+...+Xn=1=; : (II)
n

An approximate value for the mean is often obtained
from the grouped data as indicated in Table 10 which gives
the 1,370 observed depths of sapwood grouped into 16 equal
cells. The mean value obtained in this way will not, in general,
be equal to that given by (11). For example, the mean value
from the grouped data in Table 10 is 2.914 inches, whereas
the mean obtained from (11) is 2.900 inches.

TasLe 10..—CALCULATION OF ARITHMETIC MEAN FrOM Grouprep DATA

Mid-Cell Value Deviation * Observed
in Inches in Cells from & Frequency Xy
X y

1.0 o 2 o
1.3 I 29 29
1.6 2 62 124
1.9 3 106 318
2.2 4 153 612
2.5 s 186 930
2.8 6 193 1,158
3.1 7 188 1,316
3.4 8 151 1,208
37 9 123 L,107
4.0 10 82 820
43 11 48 528
4.6 12 27 324
49 13 14 }82
§.2 14 5 70
525 I3 1 15

1,370 8,741

' EXv 8941
My = Ty —#70 = 6.380292

. m = units per cell = 0.3 inch
Arithmetic mean X =

=0+ mu =10+ 1.914088 = 2.914088 inches
* The origin 5 is the mid-cell value of cell No. o,
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I

4 The Standard Deviation ¢ as a Measure of Dispersion

Given a set of » real numbers, X1, Xz, ..., X, ..., X,
the standard deviation o of this set about its mean value X is,
by definition,

[NV

1=1 i=1

_ . +;?2=\/’=‘ - (12)

n n n n

13 n
/ 2(X:— X)? z X XZ X { z X2
0_=\1=1

The exact value of ¢ can easily be obtained from (12) although
this method of calculation introduces a prohibitive amount of
work when the size 7z of the sample is large. For this reason
as in the case of the average, we make use of the grouped data
and calculate o as indicated in Table 11.

TasLE 11.—CALCULATION OF THE Stanparp DEviaTiON FrROM THE GrROUPED DaTa

Mid-Cell Values | . Deviation ) Observed
. in Cells from ¢ Frequency Xy Xy
in Inches
X y
1.0 s} 2 o o
1.3 I 29 29 29
1.6 2 62 124 248
Lg 3 106 318 954
2.2 4 153 612 2,448
2.5 5 186 930 4,650
2.8 6 193 1,158 6,948
3.1 7 188 1,316 9,212
3.4 8 141 1,208 9,664
3.7 9 123 1,107 9:963
4.0 10 82 820 8,200
4.3 11 48 528 5,808
4.6 12 27 324 3,888
4.9 13 14 182 2,366
5.2 14 1 70 980
5.5 15 I 15 22§
T 1,370 8,741 65,583
m = units per cell = 0.3 inch
1y = ZX = Srar _ 6.380292
Zy 1370
162 = g(’_y = 6i5—8—3- = 47.870803
Zy 1370

Mo =z = it = 7.162677
o = mut = 0.802895 inch
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Obviously, a small standard deviation usually indicates
that the values in the observed set of data are closely clustered
about the arithmetic mean; whereas, a large standard deviation
indicates that these values are spread out widely about the
arithmetic mean. For the time being it must suffice to picture
the significance of this measure of dispersion somewhat after

>
ey s
z
wl
5
g
ot
[:4
L -
)
VARIABLE
Fic. 29— How THE StanpARD DEeviaTioN o InpIcates Dispersion. Two

DistriBUTIONS DIFFERING ONLY IN STANDARD DEviaTiON.

the manner indicated in Fig. 29 which shows two continuous

distributions of the same functional form, differing only in
standard deviation.

5. Skewness k

The particular statistic which we shall use most extensively
as a measure of the skewness of a distribution of # values of X
is designated by the letter £ and defined by the expression
n

Z(Xi-XP  IX# 3XZ X2
- i=1

1=1 i=1

— =t Y3
. " ” Y +2X

2 (/ T )?)2 g

, (13)

w

4

Wh r 37 - . -
ere X is the arithmetic mean and o is the standard deviation
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of the # values of X. Of course, # may be either positive or
negative. If the distribution is symmetrical, £ is zero, but it
should be noted that the condition & = o is not sufficient for

L PN
/
/ \\
3 / \\
// Y

L ’ \\

3 /] \
\ ==
8l / \ K
2 / \
g
w / k=0
14 / \
"" /
/ \ k=1
/ A
J A
\y
/, \\
L ~
4.—’1, 1 1 1 I 1 1 1 L 1 Pt J
VARIABLE

Fie. jo.—ILLUsTRATING Usk oF k£ As A MEASURE OF SKEWNESS

symmetry. Fig. 30 shows two continuous distributions of the
same functional form, differing only in skewness.

6. Flatness 1 85

The statistic B2 used as a measure of the flatness of the
distribution is defined by the expression

n
2 Xt 2 X3 2 X2
—=i=1

=4 i=1 Gi=1 s
[~ —a4X +6X 3X

; . I(Xt X) " 9 71 4 ”

y =

- - , (19

gl

IRYE

’ > (X7
1=1

where the symbols used are those previously introduced.
Fig. 31 pictures three symmetrical frequency distributions
differing only in the degree of flatness.

1 Also called kurtosis.
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=. Calculation of Statistics

Let us see how simply the calculation of the four above-
mentioned statistics may be carried out. For convenience
we introduce a new term, the moment of a distribution. By
definition, the jth moment, ¥, of a set of n values, X1, Xz,

..., Xi, ..., Xn about the origin from which the values are
measured s

n

P&

i=1

14 = - (13)

1]

FREQUENCY

. VARIABLE
16. 3t—luLu
jt—~liLusTraTiING USE OF B2 As A MEASURE OF FLATNESS OF DisTRIBUTION.

Sxmxla.rly, th.e jth moment of this same set of numbers about
the arithmetic mean X is

E](Xi - X)i

pjo= ————, (16)

It may readily b : 1ati
o r‘yess C}l’ ﬂe seen that the formulas for standard deviation,
oxe resul,t Sanin tatness may be greatly simplified by expressing
o jesles In erms of the moments of the distribution, as
shown § ower part of the data sheet of Table 12. The
y computations for finding the four statistics for the

distribution of
sheet. of depth of sapwood are also shown in this data
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TaBrLe 12.—TvyricaL. CompuTaTION SHEET

77

Subject Date 2/21/30
Depth of Sapwood Cale. by MBC
in inches Checked MSH
Cell Cell Deviation | Observed Frequency
Mid- | Bound- | in Cells | Frequency X ¥yX?2 yX3 ¢ in
point ary from o0, X kY Per Cent
0.850
1.0 o 2 o (5] [ [ 0.15
1.150
1.3 1 29 29 20 29 20 2.12
1.450
1.6 2 62 124 248 496 992 4.53
1.750
1.9 3 106 318 054 2,862 8,586 74
2.050 —
2.2 4 153 612 2,448 9,792 39,168 11.17
2.350 ——
2.5 5 186 930 4,650 23,250 116,250 13.58
2.650 -
2.8 6 193 1,158 6,948 41,688 250,128 14.09
2.950
3.1 7 188 1,316 9,212 64,484 451,388 13.72
3.25¢C
3.4 8 151 1,208 9,664 77,312 618,496 11.02
3.550
3.7 ) 123 1,107 9,963 89,667 807,003 8.98
3.8s50
4.0 10 82 820 8,200 82,000 820,000 5.99
4.150
4.3 11 48 528 5.808 63,888 702,768 3.50
4.450
4.6 12 27 324 3,888 46,656 559,872 1.97
4.750
4.9 13 14 182 2,366 30,758 399,854 1.02
——| 5.050
5.2 14 K 70 980 13,720 192,080 0.36
——| 5.350
5.5 15 I 15 225 3,375 50,625 0.07
5.650
z 1,370 8,741 | 65,583 | 549,977 | 5,017,239
m = units per cell =0.3
_ ZyX 8741 _
W = Sy 1370 6.380292
TyX2 65583
= 22 = 22270 = 47 8708
1H2 Ty 1370 47.870803
ZyX3 _ 549977
= 22 = 23N . 6
143 zy 1370 401. 44306
ZyX4 _ 5017239
= == 218248
1A Sy 1370 3662.21824
Ho = Mg — 112 = 47.870803 — 40.708126 = 7.162677
Hgz = iHz — 31My1Mg + 248
= 401.443066 — 916 289104 + 510.459461 = 4.613423
By = 184 — 4141 143 T+ O1by 2 1ty — 314yt
— 3662 .218248 — 10245.205930 + 11602.384081 — 4971.454567
= 137.851832
X =6 -+ ms; = 1.0 + .3(6.380202) = 2.014088
g = muz.’é = 0.3(2.676318) = 0.802805
M3 4.613423
k= —— = 2 —2"= = 0,240663
#2-5{_, 19. 169601 ——————
B = My 137.851832 _ 2.686064

MoZ 51.303942
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A, Errors of Grouping—It will be seen that all of the com-
putations in the illustrative example make use of grouPed
data, thereby introducing a source of error. The question
naturally arises as to whether or not an engineer should attempt
to correct the moments thus obtained by some of the formulas,
such as those of Sheppard, presented in almost every good
text on statistical theory.

We shall consider three reasons why it seems likely that
little is to be gained through the use of such corrections, at
Jeast in the class of problems considered in this book. These
reasons are:

(4) The actual limitations imposed in the development of
the formulas for correcting the moments necessitate sharp dif-
ferentiation between those distributions to which their applica-
tion is justified and other distributions; and yet it is not
feasible to formulate rules which can be applied intelligently
to differentiate between these two classes of distributions
without a full knowledge of the somewhat involved theory
underlying the corrections.

(6) The magnitudes of such corrections for the statistics
are small, compared with the sampling errors of the statistics
thus corrected, unless the sample size is very large, it being
assumed that the interval of grouping is small compared with
the maximum observed range of variation, as is the case when
we use from 13 to 20 cells. Hence, in general, the corrections
do not add much from the viewpoint of causal interpretation.

(¢) The corrected moment may Iin some cases differ more
from the moment obtained from the raw data than does the
uncorrected moment. As a case in point, the standard deviation
f)f the 1,370 Obsprved values of depth of sapwood is ©.802555
;r;(c:}tlessm(iii;ntnzzciaigocrln fthe U}I:grouped data, "The uncor
inch; whereas the Valie ;OYE_ e Zrouped data i 0.80205f
pard’s formula is 0.798 Vinch oonent corrected by. Shep-

798211 inch. Hence we see that in this

example' the correction factor does not correct. This situation
may arise quite frequently,

ay. ' since the distribution of points
within a given cell often does p

not satisfy the conditions tacitly
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assumed to exist in the applications of Sheppard’s correction.
Obviously, therefore, if one is to be sure that he has attained
the correct moments for a given distribution, he must carry
out the calculations of these moments from the ungrouped data.

Since it is difficult to determine when the corrections
should apply, since the corrections are usually small compared
with the sampling errors of the moments, and since the cor-
rections may not correct, it seems that little can be gained
by applying the customary correction factors.

B. Number of Figures to be Retained —1t will be noted that
in the calculation of the statistics, the numerical work is
carried out to more places than may often be used in the
final form of presentation. The reason for doing this will
become clear as we proceed, but one or two instances showing
the necessity for such a procedure may not be out of place
at this point.

In the problem just considered, suppose that we wish to
determine the error of the average. In general, this will be
expressed in terms of the observed standard deviation ¢ which

. . . g
In turn has its own error customarily taken to be e where
n

n is the number of observations. Since the number of figures
which we wish to retain in the average depends upon the
error of the average, we must know this error before we can
decide how many figures to retain. The calculation of this
error, however, involves the use of the average itself. Hence
we must carry enough figures in the average during the process
of calculation of its error so that the final number of figures
retained in the average will not be influenced by the number of
figures retained in the calculation of the standard deviation.

It is obvious that the same line of reasoning applies in
determining how many figures to retain in the standard
deviation,

In the general case, starting with a series of observed
values, our interpretation of the data involves the use of
certain statistics expressed as symmetric functions of the data.
Before we can tell definitely how many figures to retain at a
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given stage of the calculation, we must have completed all the
calculations. Obviously we cannot carry an indefinitely large
number of figures. The detailed calculations carried out in
this book will serve to show what we have found to be satis
factory practice. It does not appear feasible, however, to lay
down simple, practical, and infallible rules.

8. Measures of Relationship

As engineers, we are accustomed to think of two or more
things as being related when we can express one of them as a
mathematical function of the others. However, in the scatter
diagram, Fig. 27, showing the observed values of depth of
sapwood X and depth of penetration Y, we see that for a
given value of X there are several values of Y so that these
two quantities do not appear to be related in a functional way;
although there does appear to be some kind of relationship
between them. The knowledge of the depth of sapwood
gives us some information about the depth of penetration.
To measure this kind of relationship, we make use of the
correlation coefficient.

By definition the correlation coefficient r between n pairs of
values of X and Y is

XYy
1=1

-XY
n

rxy = P . )

The I}wthod of calculating 7 is illustrated in Table 13
We shall see later that the value of » must lie between +1

and - 1. The significance of » must be developed as we
proceed.

9. Other Statistics

Let us first consider m
tha.n the arithmetic mean.
series of # values of a variab
least and less than the great

easures of central tendency other

By. definition, an average of 2
le is a number greater than the
est when all of the values of the
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TasLe 13.—METHOD OF CaLcutaTiNG CORRELATION COEFFICIENT
X = Depth of Sapwood. Y = Depth of Penetration

ni@: 6 (4) (| @ |6 (4) |1 @16 @
X Y n '11XY X Y m anY X Y m ﬂxXY
1.0(0.7 1 o.70 Il 3.1 o7 | 10 21.70 |t 4.0 3.4 3 68 .00
1.0 I 1.00 1.0f 22 68.20 3.7 1 14.80
-: A P 1% 40 16;.20 2310l 4 17 20
: : ‘ - I. 42 | 208.32 : : .
0.7 15 13.65 1.9 36 | 212.04 1.3 4 22.36
1.o} 2 15.60 2.2{ 24 | 163.68 1.6 7 | 48.16
1.3 1 1.69 2.8 6 46.50 .94 17 §7-19
Ay 3 28] 7| 60.76 2.2| 6 | 56.76
604 2 1.2 31 1 .61 2.5 7 75.25%
0.7 11 12%2 2.8 4 48.16
1.0| 33 52.80 1 66.6
1.3 11 22.88 341097 3 7-14 §A4 § 3.82
1.6 5 12.80 Loy 13 5;;02 3.7 1 ‘:5 91
: : 1.3] 29 | 128.1 : :
19lo7] 13| 17.29 1.6 | 28 15232 11 4.6 o.ﬂl 1 3.22
ol 7790 5 e o 1303 | 1704
I% 314 4226 2.5 | 11 93.50 ig 3 26.22
1.9 N 7.22 2.8 12 | 114.24 22| 3 30..36
3.1 2 21.08 2.5 1 11.50
22004 1 0.88 34| 2| 23.12 28| 3 38:64
0.7 | 11 16.94 3.1 3 42.78
10| 42 | 92.40 || 3.7 [0.7] 2.59 340 2 | 31.28
1.31 48 | 137.28 1.0} 10 37.00 371 1 17.02
1.6 39 137.;8 1% 13 62.53 4.0 2 36.80
1.9 IO 41.80 I. a1 | 124.32
2.2 2 9.68 1.9 23, 168.72 i 4.9 1.2 1 4.90
— 2.2 | 2 227.92 I. 3 23.52
25104 1 I.00 2.4 11 | ror.7s8 1.9} 1 9.31
0.71 14 24 .50 2.8 7 72.52 2.2 1 10.78
1.0 50 | 125.00 3.1 4 45 .88 2.5 2 24.50
ig gz ;gézg 3.4 4 50.32 2.8 2 27.44
: - 3.1 1 15.1
;-9 19 9‘;?5 4.0 071 2 5.60 3.71 2 32.22
-2 7 3¢.50 10l 2 8.00 4.3 1 21.07
2.5 ] 2 12.50 I% 10 gz,oo s2l o *-‘—— PP
A - 1. 10 .00 . : .
2807 6 ”Zé 19| o 6?3-,40 3.1 1 16.12
i'?‘ 3Z 133'60 2.2 15 | 132.00 374 1 19.24
35 5.64 2.51 12 | 120.00 4.0 1 20.80
1.6 | 4 201 .60
1..9 :'i ”7'04 2.8 14 | 156.80 4.6 1 23.92
221 18 | 110.88 31| 2 2480 5.5 1251 1 13.75
2 5‘ 12 84 .00
2.8 2 15.68 11 |
n = 1,370 o
=mXY = 6,765.77 XY = 4.637654
Em XY
— = 4.938518 gx0y = 0.498779
Xn:\,y_ Xy 3518 6376
;= — 49395 4-637 54=o.603201

oxOy 0.498779
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variable are not equal and equal to the common value of the
variable when all of the values of the variable are equal
Therefore, the arithmetic mean is only one of an infinite number
of measures of central tendency. Typical means often used in
maximum X + minimum X

characterizing data are the median, :

2
and mode. Naturally, we may expect the different kinds of
averages of a series of numbers to differ among themselves.
Just as an example, we give below four averages for the series
of fifty-eight observed values of the charge on an electron.

Median = 4.785 X 10719 e;s.u.
Max. + Min.
2

4775 X 10710 esu.

Mode = 4.779 X 10710 esu.

Arithmetic mean = 4.780 X 10719 esu.

Next, let us consider some measures of dispersion, skew-
ness, and flatness other than those previously given. A
measure of dispersion very commonly used in engineering
work 1s the mean deviation u defined for the case of # values

of X by the expression
£1x-x

“ ==
7 ? (18)

where, as usual, the symbol | | represents the absolute value
of a quantity. In the same way, any even moment of a dis
tribution about its mean is a measure of dispersion, as is any
odd mog[lent of absglute values of the deviationsJ from  the
rmnzzsl.lres Zr;cgisther(? 1s ar; mfleﬁr.litely large number of possibie
o oures of Eersmn of this kind. Furthermore, if we turn

y ard text on statistical theory, we shall find other

kin . .
Whi; Otimea.sures of d.lspers1on, such as symmetric ranges, o
: here 1s also an indefinitely large number
n the sa : .
different meaI:e Wway, we may set up an unlimited number o
ures of skewness and flatness. Obviously, there
3
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fore, we need to have some general principle to guide us in
choosing measures of such characteristics of a distribution of
data as the central tendency, dispersion, skewness, and flat-
ness.

One basis of choosing between two statistics as a measure
of a characteristic of a distribution is the difference in the
amount of labor involved in their calculation. As a case in
maximum X + minimum X

2 : >
and mode, can readily be determined by observation of the
observed frequency distribution; whereas, the calculation of the
arithmetic mean involves considerable labor. It is believed,
however, that the cost of the manual labor involved in the
analysis of engineering data is for the most part a very small
per cent of the cost of taking the data. If we can get more
information out of one measure than we can out of another,
the cost of analysis will not, in general, be a deciding factor.

Casting about for some more fundamental basis of choice,
we take note of the fact that it is usually desirable to have a
statistic which is an algebraic function of the data. It is
obvious that these functions must be symmetric since they
must be independent of the order in which the data were
taken. It follows from algebraic theory that the chosen func-
tions must be expressible in terms of what are generally known
as sum functions, because all symmetric functions are so
expressible. Now, the sum functions are defined as

oint, such measures as the median
3 3

Si=X1 +X2 +...+X +...+Xn
So= X2+ X2+, .+ X2+ ...+ Xn2
. . . . . . . .- (19)
X+ X+ X X

&
i

Obviously, =/ is the jth moment 1#; of the distribution about
o

the origin.
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The statistics X, o, k, B2, and 7 satisfy the condition ¢
being symmetric functions of the data, but stii we mu
try to find out if they are the most useful symmetric functions
In the remaining chapters of Part II, we shall justify the us
of these five statistics to the extent of showing that they go:

long way towards expressing the total amount of informatio
contained 1n a set of data.



CHAPTER VIII
Basis ror DEeETERMINING How TO PRESENT Data

1. The Problem

Let us consider again the distribution of the 1,370 observed
values of depth of sapwood. So far-as this or any similar
set of data is concerned, we assume that one observation
contributes just as much information as any other in the same
set. The total information is given by the observed distribution.
If, then, we are to present the total information, we must give
the original frequency distribution. For reasons already con-
sidered, however, we find it desirable to condense the original
data insofar as possible by calculating certain statistics. In
the previous chapter we showed how to effect this reduction
and illustrated the method by application to the distribution
of depth of sapwood. The information contained in this dis-
tribution, reduced to the form of statistics, is given in Table 14.

TaBLeE 14.—InrForMaTION 1IN FORM OF StATISTICS

Average X = 2.9141 inches
Standard Deviation ¢ = 0.8029 inch

Skewness £ = 0.2407

Flatness 82 = 2.6870

Number of Observations 7 = 1,370

If the statistics of Table 14 actually contain the total
information in the original series of observations, it should
be possible to reproduce this distribution from these statistics.
Obviously, it is not possible todo this, and therefore the statistics
do not contain all of the information. However, they do con-
tain a surprisingly large percentage, as we shall now see.

8
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Table 15 gives the results of two attempts to reproduce the
original distribution from the observed statistics. The second
row is the distribution obtained from the average and standard
deviation alone, while the third row is that obtained using,
in addition, the skewness of the original distribution.

TasLe 15.—SHowine How Much INrorMATION 1s CONTAINED IN A
Few SiMPLE STATISTICS

Cell Midpoint.......[o.4l0.7/1.0|1.3|1.6/1.0[2.2{2.5|2.8{3.1]3.4|3.7/4.0/4.3|4.6(4.9}5.2/5.5

Observed Frequency.| o | o 2| 29| 62{106{153|186(103[188|151]{123] 82| 48| 27| 14|/ 5 |

Normal Law Fre-
quency........... I 5 12| 27| 53| 92(138{179|202|100|170|127] 82| 46| 23] 10] 3 |

Second Approxima-
tion Frequency....| o o o| 25| 55| 99|149(180!207|103/150|116| 77| 46| 25{ 13| 6 | 2

That the approximate or theoretical distribution obtained
through the use of the average X, standard deviation o, and
skewness & is closer to the observed distribution than is that
obtained through the use of only the first two of these statistics
can be seen quite readily from Fig. 32.

200 ~ ® OBSERVED POINTS

—— SECOND APPROXIMATION
\ ~—- NORMAL LAW
150

100

NUMBER OF POLES

50

[+] Y N
0 o3 1.0 1.5

1 L 1 1 '
20 25 3.0 4I '
- 3.5 2
DEPTH OF SAPWOOD IN INCHES ? e >° *
Fic 2.~SIGNIF v T,
. S IC T w
3 ANCE OF A ERAGE, S ANDARD DEVIA 10N, AND SKEWNESS
1 3 .
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The surprising thing is that a knowledge of the average
and standard deviation alone enables us to reproduce so
closely the observed distribution in this case. Here, the
approximation is so good that it is somewhat doubtful whether
or not, from the viewpoint of presentation alone, we can attach
any practical significance to the increase in the amount of
information given by the introduction of the skewness over
that given by the average and standard deviation alone. In
fact, engineers are usually interested in knowing only the
number of observations lying within certain relatively large
ranges, such as the average X plus or minus two or three times
the standard deviation o. Table 16 presents the observed
percentages of the 1,370 observations lying within these ranges
together with those estimated from a knowledge of the average
and standard deviation. A knowledge of % as here used adds
nothing to the precision of our estimate of the number of
observations lying within these or any other ranges symmetric
in respect to the average.

TaBLE 16.—PERCENTAGE OF OBSERVATIONS LyiNe wiTHIN ParTicuLar Rances

Range Range Range Range
X 067450 X+o X =+ 20 X %30

Estimated, Per Cent. . . . . . . 50.00 68.27 95.45 99.73
Observed, Per Cent. .. .. ... 47.4% 66.57 95.91 99.93
Difference, Per Cent. ... . .. 2.5§ 2.70 0.46 0.20

In the next few paragraphs we shall see how these simple
statistics often enable us to approximate very closely the
original distribution. In general, we shall find that the infor-
mation contained in statistics calculated from moments
higher than the second depends to a large extent upon the
nature of the observed distribution; therefore, these statistics
are somewhat limited in their usefulness. The rea'lly re-
markable thing is that so much information is contained in
the average and standard deviation of a distributior.
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The specific problem to be considered is: Given a series
of numbers, X1, X2, - « « s Xiy+++» Xn, representing an observed
distribution of some quality characteristic X such as any of
those previously discussed, let us try to find some function
f(X, X, q, k, B2) of X and the four statistics calculated from
the observed distribution such that the integral

b
f f(Xn y) a, k) BQ)dX (20)

of this function from X = a to X = & gives approximately the
total number of observed values lying within this same interval.
When the approximation is good, we can say that the statistics
contain practically all of the total information in the origina
distribution. In fact, as already noted, we can say that thest
sFatist.ics contain most of the information of practical en
gineering value when the approximation

X-’rza —_
Vf_ f(X, X) a, k; ,B2>dX (21‘:‘

"X —z¢

is good, where, as before, the values of z with which we are
usually most concerned are 0.6745, 1, 2 and 3.
. CO{nmon sense tells us that the degree of approximation
in a given case will depend upon the function f. Of coursg,
1t is d.esuable to be able to estimate the amount of information
contained in the statistics independent of the function f. For
reasons which will be considered later, we find that undes
the' state of control of manufactured product the function
Wth.h 1s best in the majority of cases is the same for most
Euahty cha'racteristi.cs. Hence, what we shall do is to shos
li;)nV;’tiI:;Cth lr;fo?nzla}tlopb 1s.containec.1 in thf:se statistics for this
- apmefh toh 1stribution function which is approached as
work of the Rus:i: o ?\f Con?r'OL s, Shall then review ¢
it possible for us tt; r:eit hzr:va;iii}r:’; Cilheb}%heﬁ-’ which n.qakés
e total information 1

contained i
o “ded in the average and standard deviation of a distribv
independent of its functional form.
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2. Statistics to be Used when Quality is Controlled

When the. number 7 of measurements of some quality X
have been made under the conditions of control, we find in
general that the function f in (20) can be assumed to be one
or the other of the following two forms without introducing
practical difficulties:

x2

fx) = 575? (22)

fo) = ”JﬁpéG—fﬂ, (:3)

where x = X — X.

Under the conditions of control, it may then be assumed
that the integral of either one or the other of these two functions
over a given range should give approximately the number of
observed values within the corresponding range, particularly
when the number 7z of observed values is comparatively large.
We need, therefore, tables of values of the integrals of these
functions for » = 1. The integral of (23) is

z 2 2 2% _z
‘Xf(x)dx= 1 ¢.(z)dz=£ T/Ij-;e—ﬁdz-kg-\—;ilil*(l—zz)e 2 ] =F1(z) - kFo(z), (24)

where Fi(z) is the integral of (22),and 2 = f. Tables A and B

or

give the functions F1(z) and Fu(z) respectively. o
Now we are in a place to see how the approximations
given in Table 15 were obtained. The method is lll.ustr?.ted
in detail in Tables 17 and 18 derived from approximations
(22) and (23) respectively. Corrected moments were used 1n
Tables 17 and 18 and Fig. 39. . .
We have already noted that  contains some m.forrpatlon
not contained in the average and standard deviation in the
sense that the use of all three gives the closer of the two approx-
imations to the observed frequency distribution of depth of
sapwood. If, however, we are interested in the number of
observed values within a symmetrical range about the observed



Y
QUALTL
OF
ONTROL S vany
OMIC C I fe Fi)
=—== 0 3|0
ECON s o Filz) = = z | @) o
o —VaLue Fi(z) 87812.70 o
9 LE A. z 251 .4 8112.71 68
Tas Fi(z) o2 28| 3 T3 49
2 - 464 2.26 884127 4969
() 1.80 649 -4 2.73 =0
z | 4115 1.81 44656 2,2% 4887 2.74) 49
Fi() 160 (1.35 e HE 366422 -4890 -
. 3 36 7 4 2.29 97
Fi(z) or| 3186 ' e liss 4671 (2. sa 1 Ts) e
z AR s 3212 ! HEI R Bk B esd gl e
0000 'ié .Igg‘g .93 '3228 1:39 417 8 46;2 2131 '1839 2.77 :973
o0 .00 7|1 -9 3264 L. .46 2.32]. o112.7 4974
D Ipeie.5e 41 1844 94 - o ‘4‘9?5 1.86 . 693 33| 49 79| 4
oal oo 4 1880 o M e 157 4ba3 a 4904 7
. , -3 1.4 22 -47 2.34 4975
.03 0160 { .49 .95 315 2| .42 1.88 706 2.80 75
oq1. 1913 .96} .3 40 I%’( .4237 .89| .4 .4906 2 81 49:_
ool IR b a 98| 33 F] s 7131238 et s e
.08 -0239 -52 .1985 ‘98 : 389 I.4 1.go ‘4720 2'37 -491 2.83 '49-/.8
.0b o279 5 osa| 90l 3 5| 4265 Lol 4% 23 Al
o8 | loato 34 2054 oeed o) DE 30 2 3| ot gt
. . . 8|1. 29 . 2. -49]
e 5| 2089 o0 Skl ) pes B
: -5 ‘123 on -3 I.35}. Igr. 2.40| . 2012. 49
17| o8| 5| s IR I B piriieaps i o
ar 815 2191 o4 . 433298 Aelad 4923 89! .49
HE ke s sl ek b
.13 .0557 . 1.05] . 55511, 2| .435 1.98 . 638142 9o 482
14 . 2258 ob| .3 77115 4370 99| .47 4929 2. 1] .49
: 61-6ot - 207 f1. 38 LB 2.45| . ool o
15 o5t pa R e 7 e o 2.001 4773 240 o .1933
.16 0675 | . 2357 “o9] . 4395|200 -4 2.4 4938 |2 4984
e .63 8ol1. .55 612.0 783 8 .4 612.94
17 14 -2389 644 |1 -440 02} .4 812.4 93
8| .07 64 -364 1.56 18]2. .478 -49| -4 84
.19 L0754 2472 1.1? .363’57 1.57 ‘4:30 2.03 -4793 12. 4 38]2.95 '1385
. 631 5401 2| .36 811.58 .4 112.04 .50 '490 2.96) - 98
.0793 66 .24 6i1.1 70 -444 812 - 494 7} -4 I3
-20 0832 69 ~2483 1.13 .§729 159 2.05 '4gg3 1'5; 4942 2'38 '4926
-21 0871 . -251 T4l . 452 06| 4 2521 31 -49
o 68 1. 60 - 4. 2.0 808 -494, .99
.22 o}, -2549 9fr. .4463 -4 2.53 sl2
AR bz s 789 L wnilacy B A s o
.24 . - 1. . 4 . 9
0987 70 2eis 't ‘3700 1.63 -ijgg 2.09 255 et glxo et
e b amh bl
.26 . 64| . .2673 .19] . o : -4 574 - 13- -4997
2 ,1?03 23 2708 |1 8501 65 “:216 21; ~4830 2_58 .49§2 3.40| .4
0| el R P 5 Lo 4 213 Bt b » of 4998
29 . 2734 21 . 888 |1. 535)2- -483 4435 499
17978 2764 L an -3 o7 1168 :545 2.14 212 6o .49?5 3.60 4999
.30 1217 2794 23 '3925 L.69 -484 2.61 ‘49637O §000
.31 -1255 ;g 2823 1'24 -39 4555 21% 4846 2 62 .43§8 3.80 5000
.32 1203, 2853 1. 41170} . 564 |2. -4850 2.63] .4 3.9/ -
331 - 1293 79 -394 1.71] .4 2.17 854 -4959
34133 fo) 2882 |1 ag Rl B sy 2ol i 60l4.00| .5000
S| fo) 288 2713 Gi Ryl g 651 .49
3| it 2039127 REH e 20| aseria6s P
-36 1443 .29 .29} . 4599 2. -48 671 .4
37 gt RRes dosalr 28| 428 2 22 Priad it pres
’39 15 3024 130 .4042 ;;7 '4?% 2.23 '4235 2:69) 4
. 851302, 1.314. 06611, 492612, 4
° _155‘}' 86 _305; 1.32 '1083 1.78 46331224
- 1 881 . 1.34] .
-42 1664 . -3133
. .89
-43 1701
-44 | .




DETERMINING HOW TO PRESENT DATA

91
1 :
Tasie B—VALUES OF Faoz) = — =1 — (1 ~ zz)e—,‘ézz]
6V 1x
2| Fox) | 2 | Falz) | 2 | Fa(2) z | Faz) 2 | Fa(z) z | Fa(z) | 2z | Fol2)
.00 .000001 .451.01857] .90| .05806 |1.35| .08848|1.80 09597 [2.25| .08798 [2.70] .07742
01| .00001 | .46|.01933| .91| .05894 |1.36| .08890(1.81| .09590 |2.26] .08774 {2.71| .07722
-02|.00004 1 .47 | .02011| .g2| .05980 11 .37 .08930|1.82] .09584 |2.27)| .08749 [2.72| .07702
-03].00009 | . 48] .02089} .93 .06066 |1.38| .08970|1.83| .09576 |2.28| .08724]2.73| .07682
-04].00016 | .49|.02168( .94] .06152 |1.39] .09008|1.84| .09568 [2.29| .08699 |2.74] .07665
-081.00025 | .501.02248] .95| .06236 |1.40| .09045|1.85| .09559 |2. 30! .08674]2.75| .07644
06| .00036 | 51| .02329| .96 .06320 |1.41| .09080|1.86] .09549 |2.31} 08650 [2.76| 07625
-07(.00049 | .52|.02411] .g7| .06404 |1 .42| .09115|1.87) .09539 |2.32] .08625]2.77| .07606
-08).00064 | .53!.02494) .98| .06486 |1.43| .09148]1.88) .09527 |2.33| .08600{2.78] .07588
-09).00081 | .54|.025781 .99| .06568 |1.44|.09180|1.89| .05516 |2.341 .08575|2.79] .07569
10| .00099 | .55 .026621.00 .06649 |1.45| .0g9211|1.90| .09503 |2. 35| .08550{2.80] .07551
11} .001201 56| .02748 1. 01| .06729 |1.46| .09241 [1.91] .09490 |2. 36| .08525[2.81| .07534
12| .oo143 1 . 57! .02833|1.02] .06809 |1.47| .09269|1.92| .09477 |2.37| .08500}2.82| .07516
13| .00167 [ . 58| .02920 (1.03| .06887 [1.48] .09296 {1.93! .09463 |2.38| .08475|2.83! .07499
-14].00194 | .59 .03007{1.04| .06965 |T.49] .09322|1.94 .09448 |2.39] .08450|2.84| .07482
151.00222 | 60| .03095 |1.05| .07042 |1 . 50! .09347|1.95| .09433 12. 40| .08426|2.85| .07465
16 .00253 | .61(.03183 [1.06] .07118 |1.51| .09371{1.66| .09417 |2.41| .08401 |2.86{ .07448
17].00285 ] .62 .03272|1.07] .07193 |1. 52| .09394 [1.97| .09401 |2.42| .08376|2.87| .07432
18100319 | .631.03361 |1.08! .07267 |1.53| .00415]1.98] .09384 |2.43] .08352]2.88} .07416
*19).00355 1 .64 .03450[1.0g| .07340 |1.54] 09435 |1 .99} .09366 |2. 44| 08327 |2.89] .07400
-201.00392 | .65| .0354011.10| .07412 }1.55| .09454[2.00 .09349 |2.45| .08303 [2.90| .07384
‘21| 004321 .66 .03631 |1.11| .07483 |1.56] .0947212.01] .09330 |2.46| .08279|2.91] .07369
-22) 004731 .67 03721 ]1.12] .07552 |1.57] .0948g]2.02] .09312 |2.47| .08255]2.92| .07354
-23| 00516 | 68| .03812|1.13| .07621 |1.58| .09505 |2 03] .09293 |2.48| .08231 |2.93) .07339
‘241 .0056% | 69| .03904 |1.14| .07689 |1.59| .0951g]2.04| .09273 |2.49| .08207|2.94| .07324
25| 00607 | 70! 03995 |1. 15| .07756 |1.60] .09533 |2.05| .09253 }2. 50| .0818312.95) .07309
26100656 | 71| 04086 I‘Ig .07822 |1.61] .09546 [2.06| .09233 |2 . 51| .081592.96| .07295
-271.00705 | 72| 04178 [1. 1] .07886 |1.62| .09557(2.07| .09213 [2. 52 .08136|2.97| .07281
28| 00757 731 .04270 1. 18] . 07950 |1.63| .09567|2 08| .09192 |2.53| .08112[2.98| 07267
29| 00810 [ .74 .04362 [1. 19| .08012 {1.64] .09577{2.00 .09170 |2. 54 .0808g)2.99/ .07254
-301 00865 | .74 .04483 |1.20| .08073 |1.65! .09585 |2.10| .09149 |2.55 08066 [3.00! .07240
-31] 00921 | .76 .04542 1.21| .08133 |1.66| .09592 |2.11| .09127 |2. 56| 08043 |3.10| .07118
32100979 1 .77 .04637 [1 .22} .08192 |1.67| .09599 [2.12] .09105 |2. 57| .08020(3.20] .07016
33| 01038 | 781 04728 [1. 23] . 08250 |1.68] .0gbos |2.13] .09082 |2. 58| .07998|3.30| .06933
34101099 | 79| .04820|1.23| .08306 |1 .60} .09608 [2. 14| .09060 |2. 59| .07975 |3.40| 06866
|

3801161 | 80| 04911 [1.25] .08361 |1.70] .ogb12]2.15| .09037 |2.60] .©7953 (3. 50| 06313
36 .or2ag| g8 401;?)02 1.1% 08416 |1.71| .09614|2.16] .0go14 [2.61] 07931 [3.60 -02771
37 .o1290| .82 .0g0g3 1. 27| .08468 |1.72] .09616|2.17| .08991 [2.62] .0790913.70 -‘;6739
38 01336 | 35 05183 [1.28] . 08520 |1.73] .09616 2.18] .08967 |2.63] .07888 |3.80) . 6212
‘39"01424 -84 .03274|1. 20| .08571 |1.74] .00616 |2.19| .08943 {264 .07866 [3.90| .0669
.0668
40101493 | 85| og363 5. 30| .08620|1.75] .0g615|2.20] .08919 [2.65 .07845 [4.00 06683

4l ors6e 85 _05253 1.31 .08668 |1.76! .0g613|2.21] .08895 {2.66] .07824

42101635 | 871 ossazlr. 32! .08715 |1.77| .09610(2.22| .08871 |2.67| .07803

43701708} 881 ocha1 [1.33] .08760 |1.78| 00606 |2.23] .08847 2. 68 -07722

#i01782] 89| o5r1glr. 34l .08805 [1.79] (09602 [2.24] .08823 |2.69| 07762
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TaBLE 17.—DisTriBuTiON OF DEPTH OF Sapwoop CALCULATED FROM (23

n = 1,370

X= 2.914088

Subject

Date 2,21, 30

Depth of Sapwood

Calc. by MBC

¢ = 0.798211 in inches Checked MSH
' .
Devia- ! i .
1(\:/[e'lé BCelld tion . . Differ. | Fre. | -Pproxi- Observe.
hd-) bound- - gom ¥ (xa) 1(2) ence | quency mate Fre
point| ary . ' * iFrequency| quenc
0.25 2. 6641 3.3376 | ©.4995 — —t _—
0.4 0.0010 ] 4 l I
0.55 2.3641 2.9618 | ©.4985 — —
0.7 ©.0033 <
o.85 2.0641 | 2.5859 | ©.4952 ' +5 ) G D
1.0 ©. 0087 .9 12 :
I.15 1.7641 2.2101 | ©.486% ——
1.3 o.o168 27.1 = bl
———? I.45 1.4641 | 1.8342 | ©.4667 ! il ,_/((
I, 0.0390 62
— 1.7% 1.1641 1.4584 | ©.4277 3 534 53 S
1.9 o. 0672
2.0§ ©.8641 1.0825 | o.3605 —w_z_ 7! 92 ,_Eb,
2.2
0. 100 3
o 2.35 | 0.5641 | 0.7067 | 0.2601 48T 138 ,_—/l'” |
: 0.130 178.8 b
T 2.65 0.2641 |~0.3309 | ©.1296 393 ! 79 _‘/18
s 0.1476
o 2.95%§ ©.0359 (+0.0450 | o.0180 Ml 032 202 _.l_gj,
: o
—3— 3.25% 0.3359 0.4208 | ©.1631 1457 1088 199 ———/ISS
-4
: 0. 12 c
355 | 06359 | 07967 | 0.287s ] 199 e N
-/ i
o 3.85 ©.9359 1.1725 | ©.3795 _S cox4 | 126.6 127 ,_J_L
R —_— —_— ! o - 2
- 4.15 1.2359 15483 | ©.4392 0597 81.8 82 8
s 445 | 1.5350 | 19242 | 0.4729 | 462 46 &
[
? . {8359 | 23000 | 0 2893 o.0164 22.% 23 i 5
o 5.05 21359 | 26759 | 0.4963 _0_00*73_ 9.6 10 ‘ i
PP AL N N R O.4088 |01 34 3 :
5.65 2.7359 | 3.427§ 0_4997_ ©.0009 1.2 1 1
b e ——
©.9992 |1,368.g 1,370 1,37
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average, it follows from (24) that the skewness k does mt
add to this information because the integral of (22) over:
symmetrical range is identically the same as the integral o
(23) over the same range.

In passing, we should note that the function (22) is the
familiar bell-shaped normal law curve whose significant charac

£0.00000% OF AREA WITHIN O X 06745¢
66.26804% OF AREA WITHIN 0 210
95.44998% OF AREA WITHIN 020
99.73002% OF AREA WITHIN 0230

-3¢ -2 -10 -067450 QO 0.6745C |IC 20 3¢

Fic. 33—Normar Law Curve,

teristics are shown in Fig. 33. The function (23) will bt
referred to as the second approximation.

3. Why the Average X and Standard Deviation o are alwoy
Useful Statistics -

Let us consider the case where nothing is known about the

distribution of observed values. To what extent are W

justified in assuming that the average, standard deviation
- skewness, and flatness contain signiﬁcant’ information?

. We have alreafly seen that the amount of infc.>rmation
given b'y. these statistics of value in reproducing a roximatelf
th?'orlgm.al filstribution, depends upon the ngfure of th
o}x;lgmal dxstrlbutio'n as reflected in the form of function/
that would be required to satisfy the condition that its integ®
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over a given range should be approximately equal to the
number of observed values within this same range. However,
even when nothing is known about the condition under which
the distribution was observed, we find that the average and
standard deviation enable us to estimate within limits which
are quite satisfactory for most purposes, the number of obser-
vations lying within any symmetrical range X + 20, where z
is greater than unity. In fact, the proportion of the total
number of observed values within any such limits is always
greater than 1 — zi2 This follows from a general theorem, the
proof of which can be framed in the simplest kind of elementary
mathematics, as we shall now see.

Tchebycheff's Theorem—Given any set of n observed
values expressible by the frequency distribution of 7 different
values,

X1, Xoy ooy Xiy oo vy Xm
plﬂ,an,. .. ,piﬁ, ey pmﬂ
where pinz represents the number of values of Xj, then
3 2 pin X m
X =5— = ZpiX;
2 pin e
=1

and
Zopin(Xi — X)?
1=1

o2 =

m
2 pin
i=1

Let P,n denote the number of values of X such that
x=(X — X) does not exceed numerically zc where z > 1,
and » — P,z denote the number of values of x that do exceed zo.

We may write

¢? = Lipixi + Zopixi?,

where =, denotes summation for all values of ¥ which do not
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exceed zo and o denotes summation for all values of x; whid
do exceed zo. Since all values of pixi® are either positive u
zero,
> ngixiz.
Obviously, therefore,
a2 > Egpiz%?

since all values of x; included in the summation I are great
than zo. But

Yopi=1 — Pa.

Hence

o2 > (1 — Pz)z%%,
or

1> (1 — P)2?,

1
(I - Pz) < ;5,

and

Pz > 1 — ”ZI—z.

We see that no matter what set of observed values we mﬂ?i
have, the number of these values P.# lying within the clost

- . 1
range X == zo is greater than <1 — ~2>n whereas the numbt
2

(1 — Pz)n lying without this range is less than L,
22

4. Importance of Skewness k and Flatness B2

Given a set of any n real numbers X, Xo, ..., Xi, . . ., An
what does a knowledge of the skewness # and f’iatn’es; 13," for
this set of numbers really tell us independently of any assumy
tlor(lias to the nature of the distribution of the numb}e’rs as we
%13 etm de}:‘wmg the theoretical distributions in Table I;

uzgletoat this question, let us assume that the skewness k&

1 tqls © :Ce;;)sarObcwo;sly, for a distribution to be symmetrlca]
I ane y condition that its skewness be zero. If the
were also sufficient, it would be possible to say of th



DETERMINING HOW TO PRESENT DATA 97

set of numbers given above that they were symmetrically
distributed about the arithmetic mean value, and hence that
there were just as many on one side of the mean as there were
on the other. This would oftentimes be really worthwhile
information.

It can readily be shown, however, that the condition

k = o is not sufficient for symmetry. For example, the dis-
tribution

X: 2 —1 1 I
y: 1 6 16 6

satisfies the condition that its skewness is zero, although
it is obviously not symmetrical about its mean value X = o.
In fact, it is far from being symmetrical as are many others
which may be found by empirical methods. In this particular
instance, instead of finding the set of numbers equally divided
on either side of the average, we find sixteen on one side and
twenty-three on the other. Hence we must conclude that a
knowledge of £ in itself does not present very much information.

In a similar way it can be shown that a knowledge of 3.
in itself does not present any very useful information about the
distribution of a given set of n numbers.

These results are of considerable importance because
they show that the tabulation of moments higher than the
second for the purpose of summarizing the information con-
tained in a set of data is likely to be of little value unless there is
also given some function involving these statistics, the integral
of which between any two limits gives an approximate value for
the observed frequency corresponding to these two limits. In
the general case, therefore, where one wishes to summarize an
extensive series of observations which may not satisfy the
condition of control, it is necessary to give a satisfactory
function of this character to be used in interpreting the sig-
nificance of the tabulated statistics from the viewpoint of
presentation of the total information contained in the original
set of data. Such functions are usually termed theoretical
frequency distribution functions, and from the viewpoint of
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presentation of an observed set of data, it would appear tha
the one to be used is usually that one which satisfies best th
condition described in Paragraph 1 of this chapter,

§. Conclusion

We may divide observed distributions into two classes—
those that have and those that have not arisen under controlled
conditions. For distributions of the first class, the thre
simple statistics, average X, standard deviation o, and skew
ness k contain almost all of the information in the origind
distribution. For those of the second class the most useful
statistics are the average and standard deviation. Thes
contain a large part of the total information in the origind
distribution, at least in respect to the number of observations
lying within symmetrical ranges about the average.



CHAPTER IX

PresenTaTION OF Data 10 INDICATE RELATIONSHIP

1. Two Kinds of Relationship

Two kinds of relationship call for consideration: mathe-
matical or functional, and statistical.

Functional Relationship~1If for each value of some variable
X a given law assigns one or more values to Y, then we say
that Y is a function of X and write

Y = (X).
As a simple example, we may take
Y = (X - a) + &.

)

C=-

a=|, b=2 c=3

(@) (0)

Fi6. 34.—Grapu or Funcrion Y = ¢(X — @) + 4 SHOWING SIGNIFICANCE OF
PARAMETERS 4, 6, AND c.

Obviously, the graph of this function is a straight line passing

through the point X = @, Y = 4. The arbitrary constants a, 5,

and ¢ in this function are called parameters. 1f we fix the values

of 2 and 4, and give to ¢ all possible values, we get a pencil of

lines through the point (4,4). Fig. 34-@ shows such a pencil
99
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through the point (1,2). Ina similar way, if we fix the value
of ¢ and assign arbitrary values to 2 and 4, we get a family of
parallel lines. Fig. 34-0 shows such a family for ¢ = 3.

This simple example illustrates a general principle that
should be kept in mind, viz., that the expression of a func
tional relationship involves two things:

1. The form of the functional relavtionship.
2. The specific values of the parameters in that
relationship.

Thus, in the problem just considered, the form of the function
is linear since Y varies directly as X. How it varies is fixed
by the values of the parameters a, 4, and ¢.

Statistical Relationship.—I1f for each value of some variable
X a given law assigns a particular frequency distribution of
values of Y not the same for all values of X, then we say that
Y and X are statistically related. Two variables statistically
related are said to be correlated. '

If we let 2dXdY represent the frequency of occurrence
of values of X within the interval X to X + 4X simultaneously
with values of ¥ within the interval Y to Y 4 4V, the func-
tional relationship

z2=f(X,Y)

is' sald to characterize the statistical relati 1
elationship between
Xand Y. P
One_lmport.ant statistical relationship which will often
be considered in further discussions is the so-called normal
frequency function in two variables X and V.
b

1 1 (a2 2
2= ———— 2(1—r2)(,72+—y-—2rw)
27ra'xay\/1 — 2 y >

(27)

wherex = X — Xandy = Y — ¥. This is the familiar bel-

shaped frequency surface shown in Fj I
T 1g. 3¢. Ob .
parameters X, Y, o4, 0y, and 7 are involvegd 5115(27)' viously, five

. / Our interest
at present 1s centered in the fact that the ch t

aracterization of 2
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statistical relationship involves two things—form and specific
values of parameters—as did the characterization of functional
relationship.

Fic. 35.—Tee NormaL SURFACE.

2. Observed Relationship

In our causal explanation or interpretation of data we
assume that both functional and statistical relationships exist.
In fact it is one of the fundamental objects of experi-
mental investigation to determine these relationships or
physical laws, as they are customarily called. This practical
problem involves, in most instances, the formulation of the
law from a study of the observed data, including both the
fanctional form of the law and the estimate of the parameters
I the law. Taking the simplest case of relationship between
two quality characteristics X and Y, it is obvious that our
formulation of the law and our estimate of the parameters
must be based upon an observed set of, let us say, # pairs of
Smultaneously observed values of the two characteristics.
ln.Other words, the total information is tied up in these »
Pairs of values.

Suppose that we are studying the relationship between
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[
two physical quantities, such as the length L of a rod and the!
temperature © at which this length is measured, or the distanc:.
s that a body falls starting from rest and the time # that:
is falling. One object of such a study is the expression of th
law of relationship. For example, we often assume that th
empirical law relating the length and temperature of a ro
of given material is linear, or, in other words, that the length
varies directly with the temperature; 1e., L = Lo(1 + ob.
where Lo is the original length of the rod, and a is the paramet
indicating rate of increase with temperature. In a similar wav,
we say that the law relating s and 7 in the case of a freels
- falling body is s = 44, where 2 is a parameter. Havix
decided once and for all that the law in question is such anc
such, it remains for us to discover the best values of the param-
eters, as is illustrated by these two simple problems. 31
statement of the law and estimates of the parameters in tha
law is the common method of summarizing data indicating
relationship.

However, even in the simple case where we believe thata
function.al relationship exists, it is a difficult matter to determine
wha}t this functional relationship likely is; and, having onc
decided what function to assume, we must choose one from
among th.e many different possible ways of finding estimates of
the required parameters. In other words, the problem of
presenting data in this way is to a large extent indeterminate
even when t.he assumed re!ationship is functional. It goes
g;;:i?;twi?r’:i;gle i};ii;ticfrl::himdeterminatene,ss _beCOm'es‘ even

To emphasize what hay .Esis]jumed to exist is statistical.
relationship between the Jc cen said, let us try to find th

urrent through and the voltag

a:}cl‘ross a ca}tl'bon contact from the data given in Table 7. In
Is case there is no a priori basj 1 A

_ 1s for assuming the form of
the law of relationship :

. If’ l 10We e . .
. ver, we a 15
functlonal and parab 1 ] ssume that it

ic in form, or, in other ds, if we
assume that the current ¥ i ted 1 words, !

. s related :
following way, to the voltage X in the

Y=a+aXx 4+ a2 X2,
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we must find, from the data, estimates of the three parameters
ay, a1, and az. If we had a universally accepted method of
finding these parameters under these conditions, the problem
of presenting relationship would be quite simple indeed. As
we have already said, however, there are many different ways
of estimating these parameters, four of which are:

1. Direct substitution of observed values.
2. Graphical method.

3. Method of least squares.

4 Method of moments.

The details of the methods of estimating the parameters in these
different ways are given in standard treatises on curve fitting.
It will serve our purpose here to consider merely the variability
in some of the results obtained by these different methods.
Two of the several possible sets of values for the parameters
that can be obtained by direct substitution are those in the
equations

Y = — 0.01000 4 0.01333X + 0.00000X2,
and

Y = 0.09000 — 0.00167X 4+ 0.00056 X2,

Each of the following equations contains one of the infinite

number of possible sets of values for the parameters obtainable
by the particular method indicated.

1. Graphical Method
Y = — 0.02446 + 001225 X + 0.00012X?,

2, Method of Least Squares !
Y = 0.00809 + 0.00967 X + 0.00016 X2,

3. Method of Moments?
Y = 0.02649 + 0.00831.X + 0.00018 X2

! This equation was obtained by minimizing the vertical deviation of a point from
the curve of fit. Obviously, this is only one of an infinite number of different ways in
which the minimizing process could be carried out, by choosing different distances to
minimize. We customnarily minimize one of the three distances, vertical, horizontal,
or perpendicular to the line itself.

*We may use any three moments, The first three are usually chosen,
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Obviously, any one of these equations is supposed to summariz
the data of Table 7 in respect to relationship. It is apparent,
however, that the details of this summary depend upon the
choice of the method of calculating estimates of the parameters.

If in this case a different law of relationship is assumed to
exist, the values of the parameters supposed to contain the
information in the original set of data may be expected to be
different from those given above. The difficulties of expressing
relationship in this simple problem are multiplied many fold
when the relationship is statistical instead of functional.

In the light of these considerations, it becomes apparent
that the problem of presenting essential information in respect
to relationship is a complicated one and that a complete
discussion of the subject is beyond the scope of the present
text. What we shall do in the remainder of this chapter is t
consider the significance of the correlation coefficient as &
measure of relationship, because we shall find it to be a satis

factory measure in most of the problems with which we hav
to deal.

3. Information Given by the Correlation Coefficient !

4. Let us assume that we have » simultaneously observed
pairs of values of two quality characteristics X and Y. As?
specific case, let us consider the observed set of sixty pairs of
values of tensile strength and hardness previously given in
Table 3 and shown graphically in Fig. 36. It may be shown
that the line of best fit to such an array of points obtained b
the method of least squares 2 through minimizing the squarﬁ'S
of the vertical deviations of these points from this line is

y = rz—ix, (aF
where x = X — X, and y =
and r being expressed in term

't will be found hel

Y — Y, the symbols X, Y, oz, o
s of the # observed pairs of value

e 0 pful to read Chapter IV of A, ical Statists L
Rietz in connection with the remainder of this chac;)ter eehematical Sisssics by 1

* Throughout the remai i
. ainder of this chapt i “ "fit
taken in the least square sense. Prer @ fine of Thes fit s always ol
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of Xand Y. In the same way, the equation of the line of best
fit obtained by the method of least squares through mlmmlzmg
the horizontal deviations of the points from this line is given
by the equation

X = rgy. (29)
Similarly, the line of best fit obtained by minimizing the
squares of the perpendicular deviations of the points from the
line of fit is given by the equation

[(O'x — oy ) - \/(01; -— O'yz) + 47‘20'x20'12J.X (30)

)= 2rag;a'
y /
8/
/
/ A
/ [
/
L ] / cr
/ 7
4 7
Vd
3 // //’
y ,/
/ v
M e
[ 2
N A £ 4R
/ 7
7/
Y e "
L ] s a
. ~ X
® [ )
° ° // / .
W / [
K J Vd [ L ]
* ' 4 .
.,/o Vd .
L]
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i /
// / . °
/s /
7 ° /.
s
/ A - MINIMIZING THE PERPENDICULAR DEVIATIONS
// B - MINIMIZING THE X DEVIATIONS
/ C - MINIMIZING THE Y DEVIATIONS

F16. 36.~Lines oF Fir DEriveED FrRoM 4 KNOWLEDGE oF X, Y, 0, 0, AND 7.
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Equation (30) with a positive sign before the radical givs
the line of worst fit.

Having summarized the information in the sixty pairs
values of tensile strength and hardness in the form:

Average Tensile Strength Y in psi = 31869.
Average Hardness X in Rockwells = 69.81;
Standard Deviation oy of Tensile Strength in psi = 39629
Standard Deviation ¢, of Hardness in Rockwells = 11.77]
Correlation Coefficient r = 0.683

we may write down without further work the equations to th
three lines of best fit just mentioned. They are

Yy = 229.904X,
X = 0,002029y,
Y = 492.837x.

These are shown graphically in Fig. 36. In Figs. 36 and &
the variables are expressed in terms of their respective standar
deviations, and the units of the scales are made equal.
. B. 1If, in a scatter diagram such as that showing the rela':
tionship between depth of sapwood and depth of penetration
we plot the averages of the column and row arrays, we get son
such result as that indicated in Fig. 37. The line of best ft
to Fhe averages of the columns when each squared deviation s
weighted by the number of points in the corresponding colun!
Is given except for errors of grouping by (28); similarly, excef
for errors f)f g.rouping, the line of best fit to the averages o
the rows is given by (29). These two lines are called ®
spectn{ely the lines of regression of y on x and of x on .

It is shown in elementary texts on statistics that, if all ol
the standard deviations in the column arrays are eq\;al1 the?
for linear regression each is equal to the standard devia,tiorl 5

Sy = O'y\/l — 2, (31‘

1 When thi s .
s T
condition is satisfied, the distribution of y is said to be homosceds™
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With this same restriction, if all of the standard deviations
in the row arrays are equal, then it follows that each is equal
to the standard deviation sz of the points about line (29)
and is given by the expression

sz = ozV'1 — 72 (32)

| ® AVERAGES OF Y ARRAYS
O AVERAGES OF X ARRAYS
LINES OF REGRESSION

N w o
T T T

DEPTH OF PENETRATION IN INCHES — Y
T

0 1 1 1

~L 1 1 1 -1 1
[} | 2 3 4 5 [
DEPTH OF SAPWOOD IN INCHES — X

e

F1c. 37.—LinEs oF REGREssION.

“Under these conditions, it follows from what has just been
said and from Tchebycheff’s theorem that the fraction of the
total number of points in the scatter diagram within the band

ytazsy= rs—;”x + 25y (33)

: I
will be greater than 1 — —~

b4

If this scatter diagram has been obtained under conditions
of control or, in other words, if the distributions in the row
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and column arrays are approximately normal, the numb
of points within such a band will be approximately that derir:
from the normal law integral. Fig. 38 shows such a bandr
the 1,370 pairs of values of depth of sapwood and depth
penetration for the case z = 3. Under controlled conditi:
this band should include approximately 99.7 per cent of r

4.6 :
4.3 ! v
/
4.0 2 )
> I B
| 37 1/,( 12 |
» =
w34 2lals |3} 2
(%4 i I
Z 3, -
z 1 2|ala|s )31}
E / I
» 2.8 1 2 (7 w27 }ia]la]3]|2 )/
e e /
=2, o
kas A 2 |26 | |ntiz]7 1//{ !
= = i
L
G22] - 2|7 |18 |2a|a7|28|i5 g 3|
z < ~
o 1.9 2 | 10|19 | 2236 |22 /5 9 (7|3 |1
5 - -
o 18 5 (1430 |3alas | gzTas |21 |w0] 7|52
3 ,/ g
a
a3 1 2648l 51 |ao |20 13a|10]| 4] !
o '/ 4
ol 1 {2 34 42 |s0o |37 22| |w0|2]a P
- '/ 1
orf v g | |u|ia|6|wlali 2] A3
//
0.4 \ 2 + A
. (I
-~ - ot
W0 13 1.6 19 22 2.5 2.8 3.1 34 37 4.0 43 46 49 52

DEPTH OF SAPWOOD IN INCHES — X

Fic. 38.—LinE or REecrEssion anp 99.7 PEr CeENT LimrTs.

I,f37}<1> points. We find that it actually includes gg.1 per ¢
of the observec'l yalues, even though the data do not rigoro:
meet the condition of control.

" W}lat has.Just been said concerning the band about®
Ine of regression of y on x holds good in a similar way'

g;ey corresponding band about the line of regression ¢
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C. If we rewrite the equation (27) of the normal surface
in the form
1 x?
Z = '—‘—‘——/—‘._:28 2 5 (34)
21!'0’1;0'3]'\/ I1—7r
we see that all values of x and y for a constant value x; of x
lie on an ellipse defined by the equation

1 x2 2 arx
(—2 +2 - y) = x> (35)

I — 7'2 oz oy~ oxay

By revolving the original axes through an angle « such that

27"0’1;(7"11

2 gy

tan 2« = 3 (36)

ox
the equation of this ellipse for any value of x becomes

ax1? + by1? = X3, (37)
where

1 1 1
a = ————— e - —_
2(1 - 7'2) O'I2+O'yz>
1 i i 1 1\? g2
NN TSN |
2(1 —’2)[<<7z2+“y2>+ <0z2 "y2> +<7x2"y21'

Hence the semi-axes of any ellipse are

and

—\% and ——5; (38)

respectively.
When the observed frequency distribution in two dimensions
has been obtained under controlled conditions and sometimes
even when the conditions have not been controlled, the number

ny within the ellipse x is given approximately by the integral

X xt i
j:e 2xdx = 1~ e X, (39)
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TasLe C
Fraction Fraction Fraction Fraction
x? Outside Inside Outside Inside X
e~ ix? 1—e— X2 e~ ix? 1—e— 12

o.1 0.951229 0.048771 0.9000 0. 1000

0.2 0.904837 ©.095§163 o. 8ooo ©.2000

0.3 0.860708 0.139292 0.7500 0.2500

0.4 0.818731 0.181269 0.7000 0. 3000 .,
0.5 0.778801 0.221199 0.6000 ©. 4000 o
0.6 0.740818 0.259182 0. 5000 0. 5000 S
0.7 0.704688 0.296§312 0.4000 0. 6000 93"
0.8 0.670320 0.32g968c 0.3000 0. 7000 S
0.9 0.637628 | o©.362372 0.2500 0.7500 o
1.0 0.606431 ©.393469 0.2000 0. 8000 218
2.0 ©.367879 0.632121 0.1000 0.gooo 4.
3.0 0.223130 ©.776870 0.0500 0.9§00 5 998
4.0 ©.13533% 0.864665% 0.0100 0.9900 9.2[
5.0 ©.08208% 0.917914 0.0030 0.9970 11816
6.0 ©.049787 0.950213 0.002% 0.9973 1182
7.0 ©.030197 0.969803

8.0 ©.018316 0.981684

9.0 0.0I1109 ©.988891
1c.0 ©.006738 0.993262
11.0 0.004087 0.995913

12.0 0.002479 0.997521

13.0 ©.001503 | ©.998497
Ig4.0 ©.000912 0.999088
5.0 ©.000§§3 | ©.999447
16.0 0.000335 | ©.999665

17.0 0.000203 ©.999797

18.0 0.000123 0.999877
19.0 ©.000075 | ©.99992%
20.0 ©.00004§ ©.99995§

From Table C we can read off the value of this integral
large range of values of 2.

of constructing 50 per cent an

distribution of 1,3
depth of penetrat

99-12 per cent within these ellipses.

Fig. 39 illustrates the meth
. d 99.73 per cent ellipses for !
70 pairs of values of depth of sapwood ¥
ton. Observation shows 49.9 per cent ¥
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X = Depth of Sapwood in inches Y = Depth of Penetration in inches
n=1370 2o sy

- tan 2a = ———— =2, o

X = 2.914088 gz = 0.798211 4 e 43935

Y = 1.591460 oy = 0.624872 20 = 67° 42’ 32"

r = 0.603201 a=33° 51" 16"

1 [1+1 \/x 12_*_4'”2]_11II
‘= 2(1 — o o) o oyt ooyt 19194
2 2
I 1 1 1 1 47
b= ——— +— —— ]=‘ouo
2(1 —r?) [U:Z t ot + \/(aﬁ d,ﬁ’) + o2y’ 5-30113

ax;? + byt = x?

Let x? = 1.3863 or 1—e 34X =o0.5000 Letx?= 11.8290 or 1—e ¥ = 0.9973

= 1.1774 X = 3-4393

X o 1078 —1‘=05114 ~X~=315oz —x—=14938
Va UV BT Va 5 Vi
1.191941%,2 4 §.30113091% = 1.3863 1.191941x,% -+ §.301130y:% = 11.8290

4.6 !

43 \ '
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Fi6. 39~IiLustraTION OF MeTHOD OF FinDING 50 PER CENT AND 99.7 PER CENT
Eivirses rrom THE Darta
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Similar calculations of the correlation ellipses for the st
pairs of simultaneously observed values of tensile strengl
and hardness previously discussed give the results show
graphically in Fig. 40. In this connection the line of bestk
is that obtained by minimizing the perpendicular distanc
of the points from the line.

3.5~
X

2.5

50 PER CENT

TENSILE STRENGTH
[
T

=-0.5% ELLIPSE

-1.0

-1.5 N 9973 PER CEN
v ELLIPSE

-3.235 _3!9 21/ 1 L i 1 L L : ! L L d?
5 -20 -15 -0 -05 0 05 1o 15 =20 25 30 ¥
v HARDNESS
1G6. 4o.—INFORMATION G
GIVEN BY AVERAGE, STANDARD DEVvIATION, AN
CorrELATION COEFFICIENT.

thisTI})l:rast:;kl}?g t}ng about the .illustrations considered’
this par graph 1s that, under certain conditions, a knowlet

e five statistics X, Y, oz, oy, and 7 gives us so much of !
total information contained in the raw data

If » be the correlation coefficient between an

. ; t
7 pairs of values X,Y1, X;V5, . y guen

s X5Ye, oL, XaYn of
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two variables X and Y, it is interesting to note that 72 = 1 is
both a necessary and sufficient condition that the set of points
lie on the line (28), because sy = o only when » = + 1. In this
case 5z is also zero and the two lines of regression (28) and (29)
coincide. In other words, 72 = 1 is a necessary and sufficient
condition that Y be a linear function of X. If »2 is approx-
imately equal to unity, it is not necessary that all of the points
lie near the line of regression although a majority of them do.
We must know something about the nature of the scatter
before we can interpret r in this case.

4. Relationship between Several Qualities

What has been said about the relationship between two
quality characteristics can easily be extended to the case of
several. We shall consider here only the use of the correlation
coefficient in determining the plane of best fit and the location
of the observed points in a band about this plane for the case of
three variables.

Let us assume that we have z sets of simultaneous values
of three variables X, Y, and Z. Let X, Y, Z, oz, oy, 02, 72y, 7yzs
and ry; be the arithmetic means, standard deviations, and
correlation coefficients respectively.

It may easily be shown that the plane of regression of 2
onxand y, when x =X - X,y =Y —-Y,andz=7Z — Z,
is given, except for errors of grouping, by the following ex-
pression

2 =a+bs+cy, (40)
where ’
a =0,
Uz(r:cz — ryzrxy)
b= —F—= I
oz(1 — 7'xy2) 1)
ryz — royrrz,
¢ = Gz( Yz Y xz) (42)

a'y(l — 7‘xy2) ’

These equations show that a knowledge of averages,
standard deviations, and correlation coefficients ! gives us the

1 Obviously rzy = rya, etc.
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information required to construct such a plane. :~\s an il
tration, Table 19 gives these statistics for the sixty sets ¢
values of tensile strength, hardness, and density previow
given in Table 3.

TasLE 19.—InrormaTioN oF TABLE 3 GIvEN IN TERMs OF SIMPLE STATIIC

Density X in Hardness Y in Tensile Streng::-
gm/cm.3 Rockwells in psi
Arithmetic Mean. ... 2.6785 69.825 31,8694
Standard Deviation.. 0.0986 11.773 39626
rzy = 0.616 ryz = 0.683 re: = 0.657

Substituting these values in (40) we get

% = 15§310.35x + 150.988y.

The standard deviation oz.yz of the points from this plan
given approximately ! by

1

I Yyz Fxz :

ryz I Ty

Yz Txy 1 . )
Oz.yx = Oz — “‘(‘f‘” 2*),4 - = 2,638.5 psl. g

The graphical representation of the plane was given in Fig"
Under conditions of control the number of points with
the band formed by the two parallel planes spaced at a dist#"
%0z-yz on either side of the plane of regression should be app®
imately given by the normal law integral, Table A. ‘
Naturally we can duplicate the above discussion for !
planes of regression of y on z and x and of x on y and z.
Equation (43) enables us to measure the scatter of !
observed points in Fig. 14 from the plane of regression sh
thereln; It is of interest to compare the standard devia!
oz.yz With the corresponding standard deviations szy and:

! The numerical result

given in is obtai H : Jaces
shown in Table 19, CF, (43) is obtained by using more decimal place’

Paragraph 7, Chapter 7, Part I1.
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measuring respectively the standard deviation of the points
from the line of regression of z on y and z on x. Itis easily
verifiable that the equations of these two lines of regression are

oz
2 = ryz—y = 229.964,
oy
and
oz
2 = rgr—x = 26,418.9934%.
ax

It also follows that
Szy = V1 - ry? = 2,893.98 psi
and
52z = 02V'1 — rzg® = 2,987.028 psi.

Both of these standard deviations are larger than o..zy given
by (43), the relative magnitudes being represented by the
lengths of the lines in Fig. 14-4.

¢. Measure of Relationship—Correlation Ratio

Given any set of 7 pairs of values X1 Y1, XeYo, ..., XiYi,
..., XuYn, another useful measure of relationship is the
correlation ratio nyz of Y on X. By definition

“flyrz:2 = >

where 5,,? is the mean square of deviations from the means of
the arrays of y’s.

The correlation ratio nzy of X on Y may be defined in a
similar manner.

It is shown in elementary texts ! that the square of the
correlation ratio must lie between o and 1 and satisfies the

expression
1> nyx2 = 7'2.

The condition that myz? = 1 is sufficient to prove that the
variable Y can be expressed as a single-valued functional rela-

1 Cf. Rietz, loc. cit.
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tionship of X, and that the condition nys® — 7% =0 1§ satiy
if and only if the regression of y on « is linear. Sinee:
square of the correlation ratio can never be less than
square of the correlation coefficient, it follows that r 1s:
if ny? is zero. However, the condition that » = o, doe
necessarily mean that gyz = oO.

Furthermore, it should be noted that the correl
coefficient 7 may be zero even though Y is a function d
Rietz ! has shown that this is true, for example, when

Y = cos \X.

6. Measure of Relationship—General Comments

From the viewpoint of presentation of information to s
statistical relationship, it is necessary to do more than sin:
tabulate statistical measures such as the correlation coeffi:
and correlation ratio.2 It will be recalled that a similar st
ment had to be made in respect to the interpretation of mont
of: a frequency distribution higher than the second. In cont
with this situation, however, we have seen that the aver:
and standard deviation of the distribution contain a It
amount of the total information given by that distribut
independent of its nature. Of course, the knowledge of

1“On Functional Relations for which the Coefficient of Correlation is It
Quarterly Publications of the American Statistical Assaciation, Vol. XVI, Septert

1919, PP- 472-476. o ’
corre}:tcif::;a:ilg’a;t sh?uld be noted that.both the correlation coefficient aﬂd
the fret paragen he (}n}): measures of certain characteristics of correlation deﬁnf{_
- functionsg o})tho the present c,hapter. In other words, the frequency dit*
v, o e x arrays of y's need not all be alike and hence there M
€ correlation although r = o and ny. = 0. A case in point is the scatte!*

gram of numbers sh b ; . . i
be constructed. own below and typical of an indefinitely large number which

—~
»
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“two statistics gives us perfectly definite information about
an observed set of # pairs of values of any two variables X
‘and Y. Thus we can say:

(4) If r2 = 1, then y is related to x by a linear function.

(B) If nyz® = 1, it follows that Y is a function of X or
that ¥ = f(X).

(C) The regression of y on x is linear if and only if
ﬂyxz —r2 = o.

However, other values of » and n do not give us such positive
information. For example, if 72 = o, it does not necessarily
follow, as we have already seen, that there is no correlation
between ¥V and X. Similarly, if 5y? = o, then r = o, but
if # = o, it does not necessarily follow that 92 = o. Moreover
the conditions

r2=1

nyz® =1

"Iy:t2 -r2=o0

do not necessarily tell us much about the correlation between
Yand X.

We have seen what a useful tool the correlation coefficient r
is under certain conditions. We must have been struck, how-
ever, with the interesting fact that neither r nor any other
measure of relationship gives a fraction of the total information
definable within certain limits irrespective of the nature of the
relationship, a condition that is satisfied by the average X
and standard deviation ¢ of an observed distribution. In
other words, no matter whether we express the relationship
as functional or statistical, the significance of a given parameter
is in the present state of our knowledge dependent upon the
form of the relationship, whereas certain information is given
by the average X and standard deviation ¢ of a frequency
distribution independent of the form of the distribution, and
this is made useful through the Tchebycheff theorem.



Part III

Basis for Specification of
Quality Control

A Statement of the Necessary and
Sufficient Conditions for the Speci-
fication of a Controlled Quality



CHAPTER X

Laws Basic To CoNTROL
1. Control

We like to believe that there is law and order in the world.
We seek causal explanations of phenomena so that we may
predict the nature of the these same phenomena at any future
time. Asstated in Part I, a phenomenon that can be predicted,
at least within limits associated with a given probability, is
said to be controlled. Prediction only becomes possible through
the acquisition of knowledge of principles or laws.

2. Exact Law

By an exact! law we shall mean a rule whereby we can
predict with a high degree of precision the future course of
some phenomenon.

An illustration will serve to clarify this definition. If we
impose an electromotive force E sin w# upon the simple circuit,
Fig. 41, with inductance L,
capacity C, and resistance R, A AX/\/L
the current 7 at any time ¢ is
given by the solution of the
differential equation

E SIN wt L

di Il
Esnwt = L—4+ Ri +——— i
dt C c
, . Fi. 41.—ExampLE oF CoNTroLLED PHE-
The current through this NoMENON OBEYING AN Exacr Iaw.

crcuit is, therefore, a simple
example of a controlled phenomenon obeying an exact law, in
this case a differential equation.

'Of course no physical law is exact in the rigorous mathematical sense. The

significance of this term as here used will become clear as we proceed.
121
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Of this same character are the numerous laws of phys:
and chemistry, such as Newton’s laws, Fermat’s princih
Maxwell’s equations, the principle of least action, and so«
Naturally, the control of quality of manufactured produ
involves the use of all known exact laws of this charact
These laws alone, however, are not enough to insure contr
because, as we have already noted in Part I, the variabil:
in quality often is unexplainable upon the basis of knos
exact laws. We say that such variations are produced b
unknown or chance causes.

If then we are to secure control of quality of prodw
we must make use not only of exact laws but also of laws:
chance, sometimes termed statistical laws. Perhaps t:
basic law of this character is the law of large numbers.

3. Law of Large Numbers

If we flip a coin, either the head or the tail must come
If Wwe repeat the experiment again and again, we find th
there is a certain constancy in the nature of the results obtain
and ’ch.at this constancy appears to be independent of wheth
you flip the coin or whether 1 flip it; whether the coin:
flipped in some far-off country or at home. From every cor
of th(? world, we get evidence of a certain constancy in t
experimental results; i.e., it appears that the observed rat
of the number of times that a head comes up to the tot
number of throws approaches in a certain sense a conste
value for a given coin. This kind of experience is, howe®
not limited to coin throwing; and, as a result thé followr:
general principle is accepted as a law of nature:,
henever an event may happen in only one of two wi

and the event is observed to happen under the same essent:

g;ntz;’ztzom for.a large number of times, the ratio P of the numk
; mes that it happens in one way to the total number of N
ppe_ars zto approach a definite limit, let us say p, as the numk
of trials increases indefinitely.

Symbolically we may state this law in the form

Ls p =p,

7 —) 00
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where s stands for what we shall term a statistical limit,!
which differs from a mathematical limit in that we do not reach
a number 729 of trials such that, for all values of # greater than
ng, the ratio of the number of times an event happens to the
number of trials differs from some fixed value by less than some
previously assigned small quantity e.

We shall call this limiting value p an objective probability,
and we shall assume that this objective probability of an
event happening under the same essential conditions may be
used in the same mathematical sense as we use measures of
a priori probability in the mathematical theory of probability.

Mathematical or a priori probability is usually defined in
some such way as the following: If an event can happen in
a definite number 7 of mutually exclusive ways, all ways
being equally alike, and if m of these ways be called favorable,

then the ratio — is the & priori probability of the favorable
i

event. For example, in the tossing of a coin the number »
of ways in which the event may happen is considered to be
two—head or tail. If the turning up of a head is taken as
favorable and if the two ways the event may happen are
equally likely, the @ priori probability of a head is 3. In a
practical case, we never know whether or not the ways an
event may happen are equally likely; often we do not even
know the number # of ways. Hence we cannot calculate the
a priori probability of an event. Assuming the existence of an
a priori probability p of an event, the best we can ever hope
to do is to adopt some estimate p of this probability which
may not and, in general, will not be the true objective value p.

Obviously, the concept of @ priori probability is not the
same as that of a statistical limit. Furthermore, even though
an a priori probability of an event does exist in an objective
sense, it is not necessary that even an infinite sequence of
trials will lead to the establishment of this 4 priori probability
that can be accepted in a rigorous logical sense. On the other
hand, if we knew in a given case that an objective 4 priori

!See Fig. 1 of Appendix II as an illustration of the way p approaches a statistical
limit.
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probability did exist, it appears that we would most ki

have faith that the more observations we took in deterni

an empirical measure of this objective probability, the b

our estimate would become. In general it appears th

must believe that estimates of probabilities derived i

large samples are, in the long run, better than thos der

from small samples. In other words, it is perhaps reasm
to believe that our best estimates of a priori objective

abilities are those values which we determine throughl
samples. So far as the present book is concerned, 4 pr
probabilities and probability distributions will be character:
by a bold-faced notation wherever necessary for the sik
clearness. Whether we think of these as statistical limit
simply as mathematical entities should not influence v
marlfed extent their practical significance in that in any ¢
the important thing to note is the way in which estimats
these probabilities represented by the regular symbols ¢
actually derived from the data.

_ Aslightly more extended form of this law of large nunft
1s as follows: If we make a series of 7 measurements

X1, Xz,...,Xi, e e ey Xn

of some quali'ty characteristic X in such a way that &
measurement 1s made under the same essential conditions,t
ratio p of the .number of times that an observed value X *
be found to lie within any specified range Xr to X to t

total number 7 will a isti
— . pproach a statistical limit p as the numtt
# 1s increased indefinitely. ’

A st
" st;ll more general statement of this law is: If we take-
es of m samples of » measurements,

Xll, X12, PR

) Xl'l., > Xyn_
X:
21, Xoz, ..., X, .y Xon ,
. ) ' ) . , (
Xml’ sz, 3 sz, y Xmn

» in this connection, the discussions of the dei*

Its Engineering Uses, Coolidgper’:k;:ftz»zf-?und ;nRSUCh books as Fry’s Probabiliy &
abuily, and Rietz’s Mathematical Statistics.
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in such a way that each one of the m samples is drawn under
the same essential conditions, and if we let © be a symmetric
function or statistic of the 7 values of X in a sample of size #,
the ratio p of the number of times that the observed value of
will be found to lie within the range 8, to 6, to the total
number 7 of samples will approach a definite statistical limit p
as the number m of samples is increased indefinitely. Functions
of this type are termed statistical laws. '

To control quality we must make use of both exact and
statistical laws.

4. Point Binomial in Relation to Control

If p is the mathematical or a priori probability of the
occurrence of an event or success and ¢ is the mathematical
or a priori probability of the non-occurrence of the event, it
readily follows ! that the probabilitiesof o, 1, 2, 3, . - ., 4,...,
n occurrences of the event in # trials are given by the suc-
cessive terms of the point binomial

(g +p)™
It also follows that:
Average number of successes = p#. (46)
Standard deviation of number of successes = \/pgn. (47)

We are now in a position to consider evidence in justification
of our assumption of the existence of the law of large numbers.

5. Evidence of the Existence of the Law of Large Numbers

A. Tossing a Coin or Throwing Dice—Experience shows
that, if we throw what appears to be a symmetrical coin or
die a very large number of times, the statistical limit of the
ratio of the number of heads to the total number of throws of
the coin is 4. Similarly, if the occurrence of 1, 2, or 3 on a
symmetrical die be termed a success, the statistical limit of
the ratio of the number of successes to the total number of
throws of the die is 4. If then our previous assumptions are

!See any elementary textbook on probability.
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justified, we should expect ! to find the relative frequenc:
of occurrence of o, 1,2, 3, . . . , 77 SUCCESSES in a large numb
of throws of # dice to be given by the successive terms
the point binomial (¥ + %)™

We may make use of some of the experimental resu
obtained by throwing # dice a large number of times to¢
how closely the observed frequency distribution of succes:
checks that of the point binomial. The second column
Table 20 gives the observed relative frequencies of 0,5,%

., twelve successes in 4,096 throws of twelve dice? T
third column of this table gives the mathematical probabilit:
or, in other words, the successive terms of the point binon-
& + )=

A little observation shows that the second and third colur
reveal a striking agreement. In other words, it appears t:

TABLE 20.—RELATION BETWEEN MaTHEMATICAL PROBABILITIES AND
ExperiMENTAL RESULTS

e

t

Number Observed | Mathematical Number Observed | Mathemat:

of Relative Probability of Relative Probabil

Successes | Frequency p G+ e Successes | IFrequency p G+

? ©.0000 ©.0002 7 0.2068 0.193

0.0017 0.0029 8 0.1309 o134

2 0.0146 0.0161 9 0.0627 0057

3 0.0483 0.0537 10 0.0173 0.01f!

4 0.1050 0.1208 11 0.0027 0.0%%

g ©.1783 0.1934 12 0.0000 0.0
©.2314 0.2256

|

;Ezg:&?lizf pr‘ocec}ill.lre foll_owed in calculating the mathemat-
o es in this particular case leads to a close predi¢
mor e experimental results. We return in Part VI to cons-
robe (i,r}]?‘?ally the closeness of check between the mathem
probabilities and the observed relative frequencies.

! Strictly speaki ‘
actual coinz a:;‘dk‘mg,hwe know that the conditions of symmetry are not satisi
 Theos s ice, hence t}:; statement here made is only approximately
are given in An Int ; . . '
Yule (8th ed), p. 248, roduction to the Theory of Statistics, by Gt
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B. Sampling Experiment.—If we were to draw a series of #
chips with replacement from a bowl containing a large number
of similar chips each marked with a given number, common
experience leads us to believe that the observed relative fre-
quency of the occurrence of a given number would approach
as a statistical limit the relative frequency of this number in
the bowl as the number of trials increased indefinitely. It
follows that, if we were to draw a series of # chips with replace-
ment and then a series of say 27 chips, the observed frequency
distribution of numbers in the sample of 2n chips should
approach closer to the actual frequency distribution of numbers
in the bowl than should the observed frequency distribution
of say only # chips; or, in general, the larger the number in
the sample, the closer, in the statistical sense, should be the
approach of the observed frequency distribution of the sample
to the true distribution in the bowl. The results of the fol-
lowing experiment give evidence that such a prediction, made
upon the assumption of the existence of the law of large
numbers, appears to be justified.

Successive samples of 5, 10, 20, 100, and 1,000 chips were
drawn with replacement from a bowl in which the frequency
distribution of the numbers on the chips in the bowl was that
indicated in the upper left-hand corner of Fig. 42. The observed
relative frequency distributions of numbers for the samples of
different size are also shown in this figure. We witness the
smoothing out of the distribution with increase in the size of
sample as is predicted upon the assumption of the law of
large numbers.

C. Distribution of Number of Alpha Particles—In 1910,
Rutherford and Geiger * observed the distribution of frequencies
with which o, 1, 2, ..., # alpha particles struck a screen of
constant dimensions in successive equal intervals of time.
The objective probability of a particle striking the screen as
estimated from this experiment is 0.046; and, assuming that
this can be used as a mathematical probability in a point

1“The Probability Variations in the Distribution of a Particles,” Philosophical
Magazine, Series 6, Vol. XX, 1910, p. 698.
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binomial (g4p)* where g + p = 1, we get the smooth i:
quency distribution shown in Fig. 43. The agreement betw:
the observed relative frequencies and those calculated fromt:
point binomial is further justification for our belief in thek

of large numbers.

SYSTEM OF CAUSES SAMPLE OF 5

l\l I L1

SAMPLE OF 10 SAMPLE OF 20

SAMPL
E OF 100 SAMPLE OF 1000

Fic. —
42~—TvricaL ExrERIMENTAL EvIDENCE FOrR LAW oF LARGE NUMBERS

D. Macroscopic Properties of Matter—We might be will
to agree that there appears to be a close agreement betwet
what. was observed under A, B, and C and that which ¥
fredlcted upon the assumption of the existence of the la¥!
arge flumbf’«l'S, an.d yet we might not appreciate the full ext®
to which this law is basic to our modern conceptions of physi®
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and chemical laws. Perhaps our best justification for belief
in this law comes from study of the macroscopic properties
of matter expressed in terms of its microscopic properties.
For example, we believe that a gas is made up of a large
number of molecules dancing about in a way characterized

Q. PARTICLES BEING EMITTED
UNDER A CONSTANT SYSTEM
OF CAUSES

8§00
o0 ® OBSERVED POINTS

[ ] e THEORETICAL DISTRIBUTION(0,954+0.04Q“

NUMBER OF OBSERVATIONS

A il X L A

Bttt
0 15 20 25 30
NUMBER OF O PARTICLES IN INTERVAL

Fic. 43.—FREQUENCY DisTRIBUTION OF ALPHA PaRTICLES.

by the Brownian motion previously considered. For a single
molecule the properties of greatest importance are perhaps
those of position, velocity, and mass. In most practical
applications, however, we do not interest ourselves so much
in these as we do in the properties of a group of molecules,
such as pressure, viscosity, temperature, and entropy. Now,
it is shown in elementary texts on kinetic theory that these
four properties are statistical in nature and result from a
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state in which the law of large numbers applies with g
precision.

For example, it is shown in discussions of kinetic theor
that the pressure p of a gas containing v molecules, each:
mass 77z, is given in terms of the root mean square velocity v
by the expression

p = Tmw2.

Thus we see that the pressure of a gas is a statistical aver
dependent upon the law of large numbers for its constan
and yet under constant temperature conditions we know th
the pressure remains constant within the precision of «
measurements.

In a similar way, we find the law of large numbers plari:
an important role in the discussion of Brownian moti
the fluctuation in density of a fluid, the distribution of velodt:
of electrons emitted from a hot filament, the distribution¢
t}.lerm-al-radiation among its different frequencies, rates
diffusion and evaporation, rates of thermal and electr
conduction, rate of momentum transfer, rates of thermal &
photo-chemical reactions, and so on indefinitely.

Upon the basis of results such as indicated under A, B,

and D, we make the following assumption:
. There exist in nature systems of chance causes which opes
m a way such that the effects of these causes can be predik
after t/.ze manner just indicated, by making use of custont.
P”"bfl&fﬁf}’ theory in which objective probabilities in the Jimilii;
Statistical sense are substituted for the mathematical probabi/z'tiff

Stated in another way, we assume that there are (i

cc&verab.le constant systems of chance causes which prod¥
eftects in a way that may be predicted.

#6. Controlled or Constant System of Chance Causes

T 3 ~
with }:}el ulnknown causes producing an event in accordat®
f che e law of large numbers will be called a comstant 55

ance causes because we assume that the objective pret

ability that such |
- . a cause system will produce a given event’
independent of time. ’ :
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In other words, a cause system is constant if the phe-
nomenon produced thereby satisfies the conditions charac-
sterized by either (44) or (48). 5evs

X7, Meaning of Cause

As human beings, we want a cause for everything but
nothing is more elusive than this thing we call a cause. Every
cause has its cause and so on ad infinitum. We never get quite
to the infinitum. In this sense there must always exist a
certain amount of topsy-turviness about the world as we
perceive it. All that we can do is to find certain practical rules
or relationships among the things which we observe. In doing
this, we introduce a lot of terms which we cannot explain in the
fundamental sense, but which we use to great advantage as, for
example, mass, energy, electron, and so on. Under these
conditions we go ahead undaunted and introduce theories as
to how these things are related, even though we do not know
what these things are that we talk about.

As an example, we have theories of light, but we do not
know what light is. In some ways it acts like 2 wave, in
others like a corpuscle. From our viewpoint, the justification
of the use of either the wave theory or the corpuscular theory
of light is that it helps one to attain the desired end. So,
in the simple theory of control, we talk about causes even
though we do not know what a cause really is any more than
we know what light or electricity is. Nevertheless, when we
apply control theory, as we do in this book, it is just as easy to
get a “feeling” for what we mean by cause in a specific case
asit is to get a feeling for what we mean by light when we talk
about i,

8. Variable S ystem of Chance Causes

All systems of chance causes are not constant as two
simple examples will serve to show. Fig. 44 shows the fluc-
! An interesting discussion of cause and effect will be found in W, E. Johnson’s

Lugic, Vol. 111, treating of the logical foundations of science, and published by the
Cambridge University Press, 1924.
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tuations ! in general business conditions over the period fron
1919 to 1928. Similar curves could be given for the fluctuatios
in market prices of individual commodities or stocks. Its
well recognized that the causes of such fluctuations are, for
the most part, unknown. The general belief is, however, the
variations of this character show distinct trends and possibh
cyclic movements—the existence of either rules out the cor
stancy of the cause system.

20 -
y M - A M
s N\ M v
Qo
4
w
o "0

_20 -

=30 ] 1 1 1 1 1 1 —l

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
YEARS

F16. 44.—GenNEraL Business ComparED wiTH NoRrMaL.

Fig. 45 _ShOWS the growth in the number of Bell-owr
telephones in the United States from 1876 to 1928. Simi
::;gisfle:f gro}vlv th COUIfi be given for sales of almost all co
fumes ;u::;()b‘ﬁ radio sets, ele_ctrlc \yashing machines,
curves there are % and %o on lndgﬁanely, Always in s
causes. In f; ;ertam irregularities introduced by cha®

1 fact, the causes of such growth in a particular &

are ,
e u}s;ually u'nk‘nown, although they certainly do not exhil
Characteristics of a constant system. . .'[i7,
N ad A

' Weber, P. ., “An 1 .
April, 1929, Pp.. 124—121.ndex of General Business Activity,” Bel] Telephone Quart®
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9. Statistical Laws

Constant systems of chance causes give rise to frequency
distributions, often called statistical laws.! One such is the
law of mortality, and another is the law of distribution of dis-

18

~

S

-]

NUMBER OF TELEPHONES IN MILLIONS
b o

Fic. 45.—NumBER oF TELEPHONES IN THE BeLL SvsTEM.

placements of a particle under Brownian motion, both of
which were mentioned in Part I.

Another well-known example is Maxwell’s law of dis-
tribution of molecular velocities,

cv?

dy = Ae” % dvg dvy dvs, (49)

"It will be noted that a frequency distribution as here used is in the sense of an
objective law of distribution whereas, in Part I1, it was simply introduced as a function
such that its integral over a given range is a fair approximation to the observed number
of observations falling within that range.
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where 4y is the probability of a molecule having a velocity:
with components lying within the respective ranges & v
vz + dvz, vy to vy + dvy, and vz to vz + dvz; and where 4 and:
are constants for a particular kind of molecule in a given statt
We may transform this law into one which gives us the prob
ability dy that a molecule will have a speed between v an:
v + dv. By so doing we get

cv?

dy = Be 2 v%db, (5

where B is a constant different from 4. The constants 4,5
and ¢ in these equations can be determined experimentally fr
a gas under given conditions and these laws may then be ust
to predict either the number of molecules having an &, y, or:
component within given limits or a speed v within a given rang

Equation (50) may be stated in terms of the root mer
square speed V22 in the following way

3 35 392
dy = 47r< —»2-> e 202 p2dy, (504

Using the value 461.2 meters per second at zero degrees cent
grade determined from (48) for the root mean square spe!
of an oxygen molecule, we get the distribution of speeds of or
thousand oxygen molecules given ! in Table 21.

TABLE 21.—DIsTRIBUSION OF SPEEDS

Mseef:(l)'rsléier Number of Meters per Number of
Molecules Second Molecules

o-100 _
100200 S e P s
- 006 ~152
200~300 166-167 éoo—722 151‘132
3007400 2147215 700~800 f)/6- 77

1g. 46 shows schematically the shape of this distributi

1D ' K
ata taken from Meyer’s Kinetic T’ heory of Gases.



LAWS BASIC TO CONTROL 135
curve and the relationship between the mean speed 7, root
mean square speed V12, and modal speed 7.

The mean speed v = 424.9 meters per second
Root mean square speed V2 = 461.2 meters per second

Most probable speed 7 = 376.6 meters per second
Obviously, if the quality of a product is controlled in the

sense that the fluctuations therein obey the law of large numbers
and hence some statistical distribution law, we must know

-
s
2
@
<
@
)
T
by
Vv
Fi6. 46.—A Sratisticar Law—ONE Form oF MaxwkiLL’s Law ror OXYGEN
MoLECULES.

this law in order to predict how many pieces of product will
have qualities lying within given limits. To be of use in this
as in any other problem, statistical theory must provide us
with statistical distribution laws.

It is but natural, therefore, that attempts should have
been made to discover and tabulate all such laws. As early
as 1756 a law of error was proposed, and in quite rapid suc-
cession other simple laws of error were suggested. Some of
these, including the normal law of Laplace and Gauss, are
shown in the first five rows of the table in Fig. 47.
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An attempt was made to apply the normal law to ma
observed distributions, but it was soon found to be v
satisfactory in a majority of problems. This situa:
gave rise to an active search for more general laws, s
of which are indicated in the last six rows of the table
Fig. 47.

Two of these general laws should be briefly conside:
here as we shall have occasion to refer to them in one war
another. One is that of Pearson represented by the :
ferential equation

V81 (B2 +3)
_,I,‘_Zl: 1082 — 123y — 18 '
ydx  g2(4f2 — 3B1) eV B1(B2+ 3) 282 — 3B — 6 .; v

X ;
1082 — 1231 — 18 1082 — 120831 — 18 1082 — 1283 — I8

where y is the relative frequency function of the deviatio
frc3m the arithmetic mean, 8, is the square of the skewnes:'
o is the standard deviation, and 8. is the measure of flate
This general law obviously gives rise to several special It
depending upon the functional form of the solution of (51). !
turn the form of the law depends upon the values of i andi
as illustrated in Fig. 48. The upper part of this figure she
some _of Pearson’s laws fitted to observed data, the cor
sponding values of 8, and s being given at the bottom of 1
figure.

It is shown in elementary treatises on frequency cu™
that some of the laws [solutions of (51)] are valid for wh
areas in .the BB plane; whereas others are valid only ¥
points lying on a certain curve; still others only for one ’pﬂif"
as is the normal law which corresponds to the point i =
B2 = 3, as is readily seen by substitution of these value :

f)sele)r; fPeacrison and his followers claim that these laws i
ound to cover practic . .
attention. P ally all cases coming to !
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The other important general law is the Gram-Charlier series

1@ = L6 [ - §<3z ) B = DG 6 )
+ E—<Iok - #~)>( — 152 4 1023 — 2°)
5! a® :

1 "L Y wa
+€!<3O“ ‘5ﬁ+%§>(— 15 + 4522 — 1528 +2%) + . . } (s

1 _2 . )
where ¢o(z) = \/——6‘ z,and z = * By taking enough term
2w a ’

and using the proper parameters, this law may be made tof:
almost any frequency distribution.

10. Exact and Statistical Laws—.A Comparison

Perhaps the most important characteristic difference be
tween an exact and a statistical law is that the former stat
something that is true for a single thing or event, whereas t
latter states something that is true on the average or in tk
long run. The exact law applies to the individual thing
whereas the statistical law applies to a group of the same ki
of things.

Il:l .general we like to think that exact laws apply und?
conditions where the physical phenomena are quite *
understood, as is true for the current through a simple cire
dlscus§ed at the beginning of this chapter. In a similar ¥&
we think of statistical laws as applying where the detall!
the phenomena are not so thoroughly understood. Betv
Elhese two apparent extremes lies that great body of facts:
t;gak?nhézh lEli':lve not been explained in terms of ither of
ol wh(?l haws Just cogsxdered.; yet even here we find r;l
trath 1ch make possible a kind of prediction. Two il

at\l;\),ns will serve to clarify this statement. ‘

i, sty s areion 1 fh proin &
: g business conditions. Ther
companies devoting all their time to forecasting. In gen”

{i
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they claim to have discovered a way of breaking down a time
series, such as that shown in Fig. 44, into four parts:

(a) Trends, (¢) Seasonals,
(6) Cycles, (d) Erratic Fluctuations.

An outline of the technique involved in such a study is given
in most of the elementary books on business statistics. A
rule for forecasting developed in this way is sometimes called

law although most people would, to say the least, probably
insist on calling it an emplrlcal law. To refer to it as an em-
pirical law, however, is somewhat mlsleadmg, because any
law, insofar as it is derived from experience, is empirical.
This point we shall have occasion to emphasize again and
again as we proceed. Perhaps the best that we can say is
that the degree of empiricism is greater in this case than it is
in the case of the so-called exact or statistical laws already
considered.

Such rules as are used in business forecasting have to do
in general with data, the causal explanation or interpretation
of which is not thoroughly understood. In other words,
here, as in the case of statistical laws, the phenomena thémselves
are to a large extent attributable to chance or unknown causes.
It should be noted, however, that here probability theory does
not apply directly because the conditions for the law of large
numbers do not hold. This point has been emphasized by
Persons.!  In other words, probability theory does not apply
simply because a phenomenon is attributable to chance causes.

Let us next consider the phenomenon of growth which
comes nearer to being reduced to an exact law than does that of
Customary economic time series. The literature on this subject
is very extensive. Fig. 49 shows the forecast of the population
growth of the United States.2 It is interesting indeed to see

!Persons, Foster, and Hettinger, The Problem of Business Forecasting, Houghton
Mifflin & Co., New York, 1924.

*Raymond Pearl, The Biology of Population Growth, Alfred Knopf, New York,
1925. This book includes an appendix with 165 references.
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how closely the observed points fall on this logistic curv,
the equation for which is

197.27
I 4+ ()7 3,_’6——(].0:413[.

Yy

By means of this law, Pearl predicts the future course 0
population growth to the year 2100, at which time the popul
tion is to be approximately 197,000,000.

The general law of growth

Yy = d+ air +agr?fazri+ ...t ant” (:;
I+ ¢ 1t a2 s 1
200 (= e e+ e e s e - ——— - T
UPPER LIMIT OF PRESENT CYCLE 197.274 -7
”~
175 | e
Id
/
/
2 150 - ’
& /
Sesk K
= /
/
Z 100}
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o
I -
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z
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o
2s |-
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Fic. —
49.—ForEecasT oF PoruLaTiION GROWTH OF THE UNITED STATES.

1s shown. by Pearl to be applicable to a large number of d
fen;nt kinds of populations, and for this reason it may b
clalmed‘that the law is less empirical than the laws used
forecasting business conditions. It would perhaps be genefﬂ”}
agreed, however, that this law of growth is more empiri
tharIlfNeWton’s laws of motion.

we were to observe the growths in population for
1a}tlrge n}lmber of pairs of fruit gﬂies, we coIt)llcll) expect WP’
the basis of the work of Pearl and others, that these grOWth'
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would vary about the law of growth. It seems reasonable tc
believe that we would find a statistical distribution at any
point along the line as indicated in Fig. so. Such a phenomenon
is of interest because it suggests the possibility of the use of
probability theory in predicting the deviation from this line—
somethmg that economists in general feel cannot be done in
connection with economic forecasts.

The causal basis for this frequency distribution might be
set up after the manner in which hereditary influences are
explained by Whittaker and Robinson.! They assume that

POPULATION

TIME

Fic. s50.—SraTisticaL Distrisution at ANy PoInT i¥ 4 Law oF GrowrTh.

the chest measure of an individual, for instance, is the result
of a very great number of chance causes present in the heredity
and environment of the individual. This suggests a type of
law derivable upon a causal basis similar to that involved in
the study of chemical kinetics. The growth curve under
these conditions may be thought of as an exact law, and the
distribution about this curve at any point may be thought of
as a statistical law. In other words, the general law of growth
may be a combination of exact and statistical laws. This
suggests another viewpoint in respect to the so-called exact
law which is worth considering briefly.

As an illustration of an exact law, we have used the dif-

L The Caleulus of Observations, Blackie & Son, Ltd., London, p. 167.
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ferential equation relating the current in a circuit to th
inductance, capacity, and resistance of that circuit. The ar
rent, even though it appears to be continuous, is really:
flow of a number of discrete units of charge or electrons. Thu,
if we could see what is actually taking place when the curren
appears constant, we would likely find that the number d
electrons per second passing a given point is not constan
The apparent constancy is, as in the case of the pressure of th
gas, the result of the law of large numbers. Hence we see th
our exact law is, in the last analysis, statistical in the sens
that the current is a phenomenon obeying the law of laig
pumbers. It should also be noted that all exact laws are sub
ject to statistical laws of error about which we shall hex
more as we proceed.

11. Summary

From what has been said in this chapter, it seems reasonabk
to draw the following conclusions:

4. It is not feasible to make pieces of product identicd
one with another. Hence a controlled product mu
be one of variable quality.

B. To be able to say that a product is controlled, we mu
be ‘ab!e to predict, at least within limits, the futur
variations in the quality.

C. To be able to make such predictions, it is necessa!

that we know certain laws.

These laws may be exact, empirical, or statistict)

Exact laws are generally stated in terms of the dif

ential equations of physics and chemistry. Statistict

laws are the frequency distributions arising from t

very general law of large numbers. All other laws &

empmcal.. _The technique of finding and using ex®
and.statlstlcal- laws is better established than that®
finding and using what we term empirical laws.



CHAPTER XI
StaTisticalL. CoNTROL

1. Conditions for Control

If there is a causal orderliness in events and phenomena
as we postulate, then it follows that, to one with perfect
knowledge, everything is predictable and therefore controlled.
However, for practical purposes the quality of product is
controlled only to the extent that we know the laws that make
prediction possible. For one to be able to say that a phenom-
enon is controlled, it is necessary and sufficient that he know
the laws which make prediction possible.

In practice, however, we must start with an observed
set of data representing the fluctuations in some phenomenon
and try to determine from these whether or not the product is
controlled. Such a procedure involves, as do all scientific
attempts to discover natural laws, logical induction in that
we must employ some such argument as this: Since the
observed fluctuations are such as might have occurred provided
the phenomenon obeyed such and such laws, then it follows
that these laws do control this phenomenon; whereas all that
we are rigorously justified in saying is that these laws may
control this phenomenon. For this reason we perhaps never
can say that the behavior of a phenomenon in the past is
sufficient to prove that the phenomenon is controlled by a
given set of known laws. All that we can ever say is that
experience has shown that such behavior appears to be sufficient.

Furthermore it is a significant fact, as we have seen in
the previous chapter, that empirical laws do not make possible
the prediction of erratic fluctuations upon the basis of prob-
ability theory. If product is controlled only in this empirical

143
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sense, it follows that we cannot obtain the economic advantage
discussed in Part I. For this reason it is desirable to attan
the state of statistical control in which the natural law of larg
numbers makes prediction possible.

9. Necessary and Sufficient Conditions for Statistical Control

We shall assume that the necessary and sufficient condition
for statistical control is that the causes of an event satis
the law of large numbers as do those of a constant system d
chance causes. If a cause system is not constant, we sha!
say that an assignable cause of Type 7 1s present. AssignﬁlbIe
causes of this type in an economic series are such things &
trends, cycles, and seasonals; and in a production proces
they are such things as differences in machines and in sourt:
of raw material.

Stated in terms of effects of a cause system, it is necesst’
that differences in the qualities of a number of pieces o’
product appear to be consistent with the assumption the
they arose from a constant system of chance causes. W
say appear because, as is always the case in trying to find:
law cor.ltrolling a phenomenon, we can never be sure that®
have discovered the law. Obviously such appearance is ¥

sufficient in the logical sense although it must be in the practt
sense.

3. Necessary and Sufficient Conditions—Continued

Let.u.s see how the law of large numbers gives a basis -
determining from the observed fluctuations in a phenome®
whether or not it is statistically controlled. For this pu’
let us consider the practical problem presented in P4
Chapter. 11, Paragraph 2.

ll)f Ehls product is statistically controlled, there is an object
Il)zc}oﬁoti,l:y p tha}llt a piece of this product will be defec”
ol » a8 we have seen 1n our previous discussion of es

) al evidence for the existence of the law of large nun®
that the observed fractions defective in successive samplt
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size n should be clustered or distributed about the value
? = p in accord with the terms of the point binomial (¢ + p)»-

Graphically this means that, if we take the observed values
of the fraction defective p as ordinates and a series of numbers
corresponding to a sequence of samples of size 7 as abscissae,
the observed fractions should be distributed about the ordinate
p after the manner indicated schematically in Fig. 51.

The frequency distribution of values of p observed in an
infinite sequence of samples of size # should be some curve

—

FRACTION DEFECTIVE p

[ T I L ) 1 L PR W L s [ 1 1 )
0 ¥ 2 3 © RELATIVE FREQUENCY

Fic. g1.—Scuematic or OBjecTivE CoNDITION,

such as that indicated at the right of the figure. This is the
picture of what happens in this very simple case deduced from
the postulated law of large numbers.

The practical problem involves induction instead of de-
duction. We start with a sequence of observed values of the
fraction defective, and from this we try to determine whether
or not the quality as measured by fraction defective is sta-
tistically controlled. As indicated in Part I, the method of
attack is to establish limits of variability of p, represented by
the dotted lines parallel to the line p = p in Fig. 51, such that,
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when a fraction defective is found outside these limits, look
for an assignable cause is worth while.

How to establish these limits is the question of utm
importance, because it must be satisfactorily answerel
statistical control of a production process is to be a pract
objective. Experience like that presented in Part I leads:
to believe that it is feasible to establish workable rules:
setting these limits. These rules will be presented in Part!
For the present we shall confine our attention to a considerat!
of some of the fundamental problems which must be consides
in the establishment of a scientific basis for setting sv
limits.

A. Obviously, it is not possible to observe an infir
sequence in order to discover the objective probability
even though it exists and is discoverable in this way. i
practice, therefore, we must substitute some experimentayf,
determined value for the objective value p.

B. Assuming for the sake of argument that in some man®
we have found the true objective value p, it follows from Wi
has previously been said that, no matter how we set the Jimit
about the line p = p (so long as they are not outside the Jimit
of the frequency distribution at the right of Fig. 51), somet
_the observed fractions will fall outside these limits. Therefor
if we lo9k for trouble in the form of assignable causes of Type:
every time an observed fraction falls outside these limits, ®
shall look a certain number of times even though none exist
Hence we must use limits such that through their use we Wi
not waste too much time looking unnecessarily for trouble.

C-.Th§ f::lct that an observed set of values of fractd
f}‘::e(;;;’:erllrédiic;:es the product to have been co.ntrolled up Ii
course of this Shgr?t enon th\?\; W can prodict the futu"’
this can be doni rz$zn3n'h ¢ always }}ave to say thﬂ:
maintained. and oIf)col ed the same essential conditions ¥
are maintai:ned u,nless ;"SC, e know. whether or nOt'thq
were not available to she COl;ltlnue ° CXperlm(?nt., IfexP?rle.an
once reached is usuall ow that a state of statistical equ{llbrlu“"

y maintained, we could not attain mt¥
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of the economic advantages of Part I. Evidence of the type
given in Figs. 6 and 11 seems to justify our belief in the con-
stancy of the condition of statistical equilibrium when it is
once attained, subject to the limitation that there is no @ priori
reason for believing that an assignable cause has entered the
production process.



CHAPTER XII
Maximmum CONTROL

i. Maximum Control Defined

The object of industrial research is to establish ¥
and means of making better use of past experience. Toc
this it is essential that research reveal natural laws. T
ideal goal sometimes pictured for research is complete .knowr{
edge of all the laws of nature so that one could predict g
future course of all phenomena. The belief in the exist-enctf
such a goal rests upon the assumption of a causal orderlinest
the universe.

If a manufacturer could tell what the quality of &
piece of product is going to be, or, more generally, if we ol
predict exactly the future course of a phenomenon, thf.ﬂ L
could say that this quality or phenomenon exhibited maxim’
control. This amounts to assuming that, with perfect kno®
edge of the universe, it would be possible to obtain e¥!
control of quality of product because the element of chart
fluctuation in quality could be removed. .

It is important to note, however, that such a goal is neidd
feasible nor economic. To emphasize this point, let us b
a very simple illustration. All of us are perhaps willing !
admit that it is not feasible to find the causes which con®®
the course of a single molecule of a gas. It is also reasonﬂly’"'
to believe that there is a state reached in the control of qui’
beyond which it is just as foolish to try to go as it is to uyt
find the causes of the motion of a given molecule. ‘

Suppose, however, that we did have knowledge Wh}d
would enable us to set down the differential equations of mot
of a system of molecules. Assuming that one could ot

150
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these, a little calculation shows that he would have to live
something like 1012 years to set down his results for only
a thimbleful of molecules at room temperature even though he
worked 12 hours per day. Obv1ously the results of such perfect
knowledge would not be usable in an economic sense.

In other words, it is believed that there is a limit beyond
which it is not economically feasible to go in trying to eliminate
chance fluctuations.

Common sense guides us in setting conditions to be satisfied
by a cause system in a state of maximum control. If one
were ill and were told by his physician that there were likely
a very large number of causes of his illness, he would feel
more discouraged about his condition than he would if he were
told that there was only one cause. This follows because it is
customarily found to be difficult to ferret out and assign a
single cause of illness when there are several unknown causes.
What has just been said is true subject to the limitation that
each cause produces practically the same effect as any other.
Naturally, if one of the causes is known to produce a pre-
dominating effect, a person will feel that there is greater likeli-
hood of his being able to find this cause than if each of the
causes produces the same component effect. This kind of
experience leads us to postulate that it is not feasible to explain
in terms of specific causes those phenomena which are attribut-
able to a very large number of causes such as the throw of a
head on a coin, the motion of molecules, the daily fluctuations
in the price of a stock, hereditary influences, and so on.

Therefore maximum control for our purpose will be defined
as the condition reached when the chance fluctuations in a
phenomenon are produced by a constant system of a large
number of chance causes in which no cause produces a pre-
dominating effect.

However, in order that these conditions for maximum
control may be of practical use, they must be expressed in
terms of the effects of the causes. This is obviously necessary
because we cannot find out anything about the causes except
through their effects. We shall soon discover that serious
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difficulties are involved in trying to set up necessary condite
for maximum control in terms of the distribution of effects:,
a constant cause system.

2. Characteristics of Maximum Control—Molecular Phenom:

At first thought one might expect to find that the G
tribution of displacements of a particle undergoing Browni
motion should be characteristic of maximum control. Sinc
previously noted, this distribution is normal and corresp:
to the point (o, 3) in the B182 plane (Fig. §2), one mightd
led to ask if there is an obiective point of maximum contrd

By

o 0.5 1.0
° ; a 1.5

Qa2

3¢~—POINT OF MAXIMUM CONTROL?

4L

Fie. 52.—
16. 52.—Is TueRe AN Opjective Point oF MaxiMum Control!

As we have already seen, however, the distribution!
mol?cular Ve.locities is not normal even though this distributt
obviously arises under a condition of maximum control 1%
same extent as does the distribution of displacements. T

fa 1 i jec
ct alone IS_Suﬁiaent to show that there is not an objec®
point of maximum control,

3 Necessar_y Conditions Sor Maximum Control—Simple Can
System ‘

Cl,C2,...,C1:,-.~)Cm,

and that the re
o sultant effect of th i e
individual effects. ese causes is the sum of
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In one case let us assume that these m causes produce
effects

Xiy X2, v v e 3 XTy o o o 5 XM

respectively, with probabilities

Py P2 s Pl s e s P

In the other case let us assume that the probability of the
ith cause (i = 1, 2, ..., m) producing a contribution x in the
interval x to x + dx 1s

Jfi(x) dx.

A little consideration shows that such systems may be said
to exhibit maximum control when:

pi=pi [fi(x) = fi(x)
i and m large. (55)

Obviously the first set of conditions gives rise to a dis-
continuous distribution, the ordinates of which are the terms of
the point binomial (g 4- p)™ where the effect of each cause is
assumed to be unity. As we know, such a distribution is
smooth and unimodal. Hence smoothness and unimodality
are necessary conditions for maximum control in terms of
effects for this simple discontinuous cause system.

It 1s readily shown for the point binomial that

(7 - P)2 1 - 6])9
pgm bgm

From these equations we see that no matter what the values of
p and ¢ are, the values of 8, and B2 approach the normal law
values o and' 3 respectively as m becomes large. This state of
affairs is shown graphically in Fig. 53. Hence we see under
what conditions the distribution of effects for such a simple
cause system approaches normality, characterized by g, = o
and B = 3. Of course, the condition that 8, = 0 and
B> = 3, although necessary for normality, is not sufficient.

To one not accustomed to think of distribution functions

B = and B2 = 3+ (56)
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in terms of B and Bz, Fig. 54 is of interest because it gives two
binomial distributions fitted by theoretical curves. In the one
case p = ¢ = 4 and the number 7 of causes is 16. In the other
case p = 0.1, ¢ = 0.9, and m = 100. This figure illustrates
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Fi6. 54.—ApproACH TO NORMALITY WITH INCREASE 1N Numskr or Causks.

the rapid approach to normality with increase in the number
of causes 1rrespect1ve of the value of -
For the continuous cause system, it may be shown ! that

B B
B = ;1 and P2 = ~2——34—3, (s7)

! Subject only to limitations not met in practice. See for example, Romanovsky,
V., “On the Distribution of an Arithmetic Mean in a Series of Independent
Trials,” Bulletin of the Russian Academy of Science, 1926.
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where B: and B: represent the distribution of the resultr
effect of the operation of 7 continuous causes and B ang!
represent the cause function f(x). From (57) we see thats
matter what the distribution function of a cause is, the &
tribution function of the resultant effect will approach x:
mality as the number 7 of causes increases indefinitely.

The rate of approach to normality, however, is mt
more rapid than we might at first expect, as we shall s
Part IV in our discussion of the distribution function of ¢
artithmetic mean.

4. Necessary Conditions—Some Criticisms

That chance causes produce equal component effects
obviously not a necessary condition for maximum contt
a:lthough the discussion of the previous paragraph is tr
11.mited through (55). Thus, in our previous reference to %
dlfﬁcultY of ferreting out a cause of illness from among M
causes, it was not necessary to impose the restriction it
the causes should produce equal effects. On the other b
some restrictions must be placed on the relative magnitude’
the effects as well as upon the number of effects in order e
it appear reasonable that one cause may be separated from th
others. For example, few of us, strictly speaking, are ever:
from a single cause, and yet we know that causes of il
are findable. It is perhaps enough to insure feasibility:
discovery of a cause that the effect of this cause be 1
compared with the resultant effect of all others. Itis®
possible, .however, to say how large the effect of one ¢
must be in respect to the resultant effect in order that it:
discoverable. Hence we cannot write down explicit requé
ments to be fulfilled by a cause system in order that it repres
the state of maximum control.
sreater chan e e e doce ot produce a1 £

effect of all the others, it s&¢
rfh'ElSOn?il_:'le to believe that considerable trouble wili be e
rienced in discovering this cause when there are a large nun®
of other causes. With this restriction on the relative i
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nitudes of component effects, the distribution of resultant
effects may be shown to approach normality as the number of
causes is increased indefinitely subject to limitations of no
practical interest. Perhaps this fact gives credence to a some-
what widespread popular belief that normality is a limiting
condition approached whenever the number of causes is large.

Before too much significance is attached to this fact we
must recall that, as shown in the second paragraph of this
chapter, normality cannot be, rigorously speaking, a necessary
condition for maximum control.

From a practical viewpoint we are most concerned with
the need for sufficient conditions for maximum control. We
want to be able to say that, since the distribution of observed
effects of a chance cause system is of such and such nature,
therefore the cause system is in the state of maximum control.
Neglecting for the present the limitations of all inductive
inferences of this type, let us see if approximate normality is
a sufficient condition for maximum control.

That this condition is in itself not sufficient can easily
be seen by looking at Fig. 55. Here we have two identical
normal curves (broken curves) with their averages separated
by one and one-half times the standard deviation of either.
The result of compounding these two distributions is shown
by the black dots. The smooth solid curve is a normal one
fitted to the resultant distribution. Suppose now that product
comes from two sources, the corresponding qualities being
distributed normally as shown by the broken curves. Obviously
we could not readily detect the existence of the difference
between the two sources by an examination of the resultant
curve assuming normality to indicate maximum control. The
possibility of such a situation arising in practice, however, is
precluded, if we apply the test for maximum control only in
those cases where we have first assured ourselves that the
data exhibit statistical control.

For these reasons it is believed that approximate normality
of an observed distribution arising under controlled conditions
may be taken as indicating that the cause system is in a state
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of maximum control. On the other hand, the fact thatr.
observed distribution is not approximately normal isx
sufficient evidence that the phenomenon is not in the state:
maximum control.

Some may argue that there exists a general law char
teristic of the state of maximum control. Suppose then t:
we make such an assumption. : In practice we would alw
try to fit the observed distribution with this general law; a
having successfully done this, we would argue that the i
nomenon exhibited maximum control. Since one can fitaln
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any distribution by taking enough terms in a general Jaw st
as the Gram-Charlier series, the conclusion that the Ph:
nomenon exhibits maximum control is foreordained. For 4
reason 1t does not appear that much is to be gained by s
a test. SR N R 1o :

R I 2 1 AN IR LR B
5. Some Practical Conclusions

It appears that there is no characteristic of an obs"
dIStrlbl}tlon which in itself is sufficient to indicate 2 &
of-max1mum control. If, however, the effects appear t B
arisen under controlled conditions and at the same 4
exhibit normality, there is good reason to believe that as*
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of maximum control of the cause system has been reached.
The occasions when these two conditions are satisfied, however,
are so rare that the test is of little utility. We have also
seen that normahty of a dlstrlbutlon 1s not a necessary con-
dition for maximum control. 11.~:.".

When a phenomenon has been shown to exhibit control,
we have likely gone about as far as we can in detecting the
existence of assignable or discoverable causes by standard
tests. Our experience shows that after assignable causes of
Type I have been found and eliminated, the observed dis-
tribution is usually smooth and unimodal. Furthermore,
most distributions exhibiting control have been found to be
sufficiently near normal to be fitted by the first two terms of
the Gram-Charlier series previously referred to as the second
approximation (23).




Parr IV
Sampling Fluctuations in Quality

A Discussion of the Sampling
Fluctuations in the Simple Statistics
Used in the Control of Quality



CHAPTER XIII

SampLiNGg FLucruaTIONS
1. Sample

One dictionary definition of sample is: “A part of anything
presented as evidence of the whole.” Thus, the people living
in New York City constitute a sample of those living in the
United States. The top layer in a barrel of apples is a sample
of those in the barrel. The fish taken from a lake are a sample
of those in the lake. The instruments inspected from the
product of a given day constitute a sample of that day’s product.
In each of these instances, the whole of the thing sampled is
finite in the sense that there is a finite number of people in the
United States, apples in a barrel, and so on.

We may, however, think of any one of these samples as
a sample of the whole of the possible number of things which
the same cause system could produce if it continued to function
indefinitely. In this sense the product for a given period is a
sample of that which can be produced by the same manu-
facturing process. Millikan’s measurements of the charge
on an electron are a sample of the indefinitely large number of
measurements that can be made by this method.

On the one hand, we are interested in what the sample
tells us about a finite lot or number of things. On the other
hand, we are interested in what the sample tells us about the
cause system producing the sample—in this sense all our
experience is a sample. Thus the data used in establishing
natural laws is a sample from the possible infinite set of data
that these laws could give.

2. Sampling Fluctuations

Even though produced under essentially the same con-
ditions, no two things are identical in the sense that no two
163
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apples on the same tree are identical. The differences,
we have said, are attributed to the effects of chance or unknow.
causes. If we look at one thing after another produced uni
presumably the same conditions, we find that the qualt
varies from piece to piece. Such variations are called sampli;
variations or fuctuations.

These sampling variations may be produced by et
variable or constant systems of chance causes. As seen:
Part III, there is reason to believe that we may find a:
eliminate variable chance causes, but not those of a consta
system in which there is no predominating cause. Hence®
must always have sampling fluctuations in the quality*
product. However, if produced by a constant system, the
are controlled sampling fluctuations in that they can be pe

dicted by well-established probability theory.

3. Simple 1llustration of Sampling Fluctuations

‘ Let us start our study of sampling with an experime®
in which 4,000 drawings of a chip from a bowl were made wit
replacement; that is, after drawing a chip, it was replaced an
thoroughly mixed with the others before another was draw
In the bowl there were 998 circular chips on each of whid
there was a number. Forty chips were marked o, 40 ¥
.marked — 0.1, 40 were marked 4+ o.1, and so on as sho¥
in Table 22. Before replacing a chip in the bowl, the numt
was recorded. The 4,000 observed values are given in Table?
Appendix I1.
. In this experiment we have as near an approach i';
likely feasible to the condition in which the law of large numb
apph_eg,l since, to the best of our knowledge, the same essent”
condltl?ns can be maintained. The d’iﬁ'erences betwe-
successive numbers drawn are beyond our control.
Dividing the observed values into four sets of 1,000 e
we get the four grouped frequency distributions of c,olumﬂ5 :
45 55 anq 6 in Table 23. Column 2 gives the correspoﬂding
distribution in the bowl.

! Cf. Paragraph 3, Chapter X, Part 111.
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TaBLE 22.—MARKING ON ¢98 Cuips FOR SAMPLING EXPERIMENT
|
Marking | Number |} Marking | Number || Marking | Number || Marking | Number
on Chip of on Chip of on Chip of on Chip of
X Chips X Chips X Chips X Chips
-3.0 I —1.% 13 ©.0 40 1. 13
~2.9 I —1.4 15 o.1 40 1.6 11
—2.8 1 —1.3 17 o.2 39 1.7 9
—-2.7 1 —1.2 19 0.3 38 1.8 8
~2.6 I —1I.1 22 o.4 37 1.9 7
—2.5 2 —1.0 24 0.5 35 2.0 I
—-2.4 2 —0.9 27 0.6 33 2.1 4
-2.3 3 —~o0.8 2 0.7 31 2.2 4
—2.2 4 —0.7 31 0.8 2 2.3 3
—2.1 4 —o.6 33 0.9 2 2.4 2
~2.0 i1 —o0.§ 35 1.0 24 2.§ 2
—1.9 7 —0.4 37 1.1 22 2.6 1
—-1.8 8 —0.3 38 1.2 19 2.7 1
-1.7 9 —0.2 39 1.3 17 2.8 1
—-1.6 11 —0.1 40 1.4 15 2.9 I
3.0 1

TaBLE 23.—GROUPED FREQUENCY DISTRIBUTIONS 1IN SampLING EXPERIMENT

Observed Distributions
Cell Distribution
Midpoint in Bowl Sample No. 1 |Sample No. 2 |Sample No. 3 |Sample No. 4

—3.0 3 g 1 2 2
-5 9 9 4 1o 9
—2.0 28 36 24 29 26
—1.5 63 55 51 2 49
-1.0 121 123 113 124 112
—0.§ 174 163 187 181 191
o 198 203 194 180 204
0.5 174 172 176 169 182
1.0 121 123 125 120 123
1.§ 6¢ 68 71 67 64
2.0 28 31 31 32 25
2.5 9 8 8 11 12
30 3 2 4 3 2
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As is to be expected, no two of the observed distributi
are the same, and no one of them is the same as that in?
bowl. In fact the differences between these five distributc
are quite marked as is evident from their graphical prer
tations in Fig. §6. The differences look much like those pr
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he.SItate to say that the distributions in Fig. 19 reveal &
evidence of lack of statistical control, although, as we shi
soon see, an assignable cause was present in that’case. Hent
able cause OWhewatlons tO.lndlcate the presence of an Z}SSIQL
measure o.f the 3 iy .need - Sud.l a case is some quantxtafl"
measare of the deviation of the distribution in a sample '

e bowl to be used as a basis for detecting lack of conti®

ousl in Fi : igt
y shown in Fig. 19—so much so, in fact, that one migh
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4 Sampling Fluctuations in Simple Statistics

We shall use simple statistics such as the average X,
standard deviation ¢, skewness # =+/8;, and flatness B for
expressing quantitatively the differences between the observed
distributions. For example, columns 2 to § of Table 24 give
the observed values of these statistics for the four observed
distributions of Table 23. We see how the observed distribu-
tions differ quantitatively in respect to these simple statistics.
Column 6 of Table 24 gives, for comparison purposes, the
values of these same statistics for the distribution in the bowl.

TaBLE 24.—OBSERVED VALUES OF StaTisTICS FOR DisTriBUTIONS GIVEN 1N TABLE 23

Observed Distributions

Distribution
Sample Sample Sample | Sample in Bowl
No. 1 No. 2 No. 3 No. 4

Average.............. 0.001§ 0.044§ |~—0.0060 0.0365 o
Standard Deviation....| 1.0219 1.0019 1.0317 0.9739 1.0070
Skewness. ............ —0.0903 |—o0.0126 0.0631 0.0038 o
Flatness.............. 2.9257 2.9904 2.7996 3.0757 2.9302

Instead of performing such an experiment to determine how
samples differ, we try to predict such variability in the prob-
ability sense. To do this, we must find the distribution func-
tions of averages, standard deviations, and other statistics in
samples of size # drawn from the distribution in the bowl.
Usually this is a complicated mathematical procedure, as we
shall soon see. Therefore, to begin with, we shall take a simple
example in which the distribution functions can be derived by
elementary arithmetic.

5. Simple Problem in Prediction of Sampling Fluctuation—
Problem of Distribution

Suppose that there are just four similar chips in a bowl,
and that these are marked 1, 2, 3, and 4 respectively. Suppose
that samples of 4 are to be drawn with replacement. The
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problem to be considered is the prediction of sampling fluct.
ations in the simple statistics.

Since the number of ways of choosing 7 things from:
things where each of the 7 things may be any one of the:
things is 77, it follows that a sample of four may be chosen
in 4% = 2¢6 different ways. Obviously not all of the 2t
samples will be different. A little study will show that th
different possible samples are those given in Column 1 d
Table 25, and that the number of ways in which these mar
be drawn are as given in Column 2. The corresponding di
tributions of statistics X, o, #, and B2 can now be set dow
as in the last four columns of this same table. The frequent
distributions of these and certain other statistics are show
graphically in Fig. g7.

. It is of interest to note that the method of finding t
distributions in Fig. §7 is purely an analytical one involving
simple arithmetic. One sets down all of the possible sampl
of size four that can be drawn from the bowl, and then fink
the averages, standard deviations, and other statistics for this
set of possible samples.

If we assume that the sampling fluctuations in the statistis
of samples drawn from such a bowl satisfy the law of lag
numbers, it fqllows from evidence given in Part III th#
the observed distributions of statistics in samples of size for
may be expected to approach ! as statistical limits the respecti’

. ‘. This involves the assumption that similer in the phrase “similar chips” has i
significance of the phrase “equally likely”” so often used in probability theory- k
seems reasonable to believe, however, that “equally likely” is a concept which b
:gHI?FanCe for the external world rather than for mathematics. On thif pointit v
SZ c; el:ctert)e’stbto If:ealii “Probability_ as Expressed by Asympototic Limits of Pencilsﬁf‘
Sojiet_y ‘;/5;1 2’ . L. Dodd, published in the Bulletin of the American Mathemslis
the word Pr;z&:;aéi(ljzv‘zcr;);f}k; 2997305. For example, he says: “In pure mathemit
in a subset to the number in‘lt}T: steot,s‘sgomlg;lsxmply the ratio of the number of ob&*

i i as disc 1 : ity B
being considered. g as discrete or arithmetic probabl \

whether two eve th is, indeed, as far outside the field of mathematics to determi®
nts are equally likely as to determine whether two bodies have the

same mass. Even in the applicati m

pllcatlons, the réle of pur ics i g
m. e mathem to cot
expeditiously the elements of sets and subsets e e :
bl

: or, more enerally tod rmine certl®
measures of sets which bel; L g , to determi
i . 4 1 are ellCVCd by competent)udges to depict ad tely st
tions in the external world.” pict adequa ¥
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TaBLE 2§.—SiMPLE ProBiEM 1N DistriBUTION THEORY
Number
Sample OS(:;;;ZS X o k B2
Occurs
1111 1 1.00 ° o
2222 I 2.00 o} o .
Indeterminate

3333 1 3.00 © °
4444 1 4.00 o} o]
1112 4 1.25 ©.4330 1.1547 2.3333
1113 4 1.50 0.8660 1.1547 2.3333
114 4 1.75 1.2990 11547 2.3333
2221 4 1.75 0.4330 ~T1.1547 2.3333
2223 4 2.25 0.4330 1.1547 2.3333
2224 4 2.50 0. 8660 1.1§47 2.3333
3331 4 2.60 0.8660 —1.1547 2.3333
3332 4 2.75 ©.4330 —1.1547 2.3333
3334 4 3-25 ©-4330 1.1547 2.3333
4441 4 325 1.2990 —1.1547 2.3333
4442 4 3.50 o.8660 —1.1547 2.3333
4443 4 375 ©.4330 —1.1547 2.3333
1122 6 1.50 0. 5000 o [.0000
1133 6 2.00 1.0000 o I.0000
Ti44 6 2.50 I. 5000 o 1.0000
2233 6 2.50 0. §000 o I.0000
2244 6 3.00 1.0000 o I.0000
3344 6 3.50 0. 5000 o 1.0000
1123 12 1.75 0.82g2 0.4934 1.6281
124 12 2.00 1.2247 0.8163 2.0000
1134 12 2.2¢ 1.2990 0.2138 1.2798
2213 12 2.00 0.7071 o 2.0000
2214 12 2.25 1.0897 0.6520 2.0970
2234 12 2.75 0.8292 0.4934 1.6281
3312 12 2.2§ 0.8292 —~0.4934 1.6281
3314 12 2.7% 1.0897 —o0.6520 2.0970
3324 12 3.00 0.7071 Ke] 2.0000
4412 12 2.7§ 1.2990 —o0.2138 1.2798
4413 12 3.00 1.2247 —o.8165 2.0000
4423 12 3.2 0.8292 —0.4934 1.6281

< 234 24 2.50 1.1180 o 1.6400
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distributions of these same statistics shown in Fig. ¢7. I
general, the prediction of sampling fluctuations in statistiso,
samples of size # drawn from a distribution such as thatt
the bowl requires the knowledge of the distribution functio:
of these same statistics. Observed fluctuations may or m
not have in them component effects of variable chance caus

6. Relation of Sample to Universe

Let us now examine the relationship between some of
simple statistics for the universe (Fig. 57-4) and the averg:
or expected values of the distributions of these same statistic
For example, Column 1 of Table 26 gives the values of son:
of the simple statistics of the universe, and Columns 2 and;
give the corresponding expected values for 'samples of Siz:
four and oo respectively.

TasLE 26.—RELATION OF SampLE To UNIVERSE

Universe Sample Sample | Correction Star}dﬁfi
n=4 n= o Factor | Deviaw!
AR
Aver'age .............. 2.5000 2. §000 2. 5000
Median. .. ....... ST 2. 5000 2. 5000 2. §000
Root Mean Squar
Devlatxon'. ceeevo..]| 11180 0.9178 1.1180 1.2181 0.3
Mean Deviation....... 1.0000 o.8086 1. 0000 1.3826 o ;0;:
Skewness £............ o) o o R -
Flatness Bs. ... ........ 1.6400 1.7562 1.6400

. The important thing to note is that the expected value 9’
given statistic in samples of size n is not necessarily equal 0 f
value.qf this statistic for the universe so long as the sample sizet i
a finite number. Suppose now that the statistics of the univers
are ur3known .although the functional form is known. Wes
21(;%, 1}f; wef wish to estimate a given statistic for the univer®
Twn; Stu:}i f(;rC :(1) ::l:rile .of size 7, a correction factor i§ required'

O oach e given in Table 26 for the case in hand
ey b;) eset{' mtex(‘iestmg point is that a statistic of the unive®
imated from the same or other statistics of a sampt
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Thus either 1.2181 times the standard deviation of a samp:
of four or 1.3826 times the mean deviation of a sample:
four may be used as estimates of the standard deviation-
the universe (57-4). The standard deviations of these e
mates, however, are not equal. We say that one is m
efficient than the other. As a measure of this efficiency's
take the ratio of the squares of the respective standard dev:
ations. For the simple case under consideration the efficier

. . (0.4052)2
of the root mean square estimate is (04052 _ 1.1644.

(0.3755)°

It is suggested that the reader start with some siny
universe other than the one used in this chapter and find
this chosen universe the distributions of the four simp:
statistics for some sample size. By such a procedure, o
easily discovers that the distribution function of a g
statistic involves a sample size # and depends upon the fur
tional form of the universe. It is also discovered that®
general, the correction factors required to go from the expect:
value of a statistic in a sample of size # to the same statisi
of the universe depend upon the nature of the universe
upon the size of the sample.

. In other words, we come in this way to see that the probles
ofmterpreting a sample involves the specification of the unives
and. t}}e ‘determination of the distribution function of a g
statistic 1n samples of a given size drawn from this universt

! This measure of efficiency is defined as follows: The standard deviation o
mean of m, corrected root mean square deviations (in samples of four) is 0,375 V'
Whlle. the standard deviation of the mean of m, corrected mean deviations in Sél’f;lple;
four is 0.4052/\/m,. 1f these two standard deviations are to be equal, we must b

©.3755 _ ©.4052
\/ml \/m—z

Hence the efficiency of the root mean Square deviation is

E = my (0.4052)2
mi o (0.3755)F
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7. The Problem of Determining the Allowable Variability in
Quality from a Statistical Viewpoint

If the quality X of a product is statistically controlled,
the probability dy that a unit of this kind of product will have
a quality X lying within the range X to X + 4X is expressible
as a function f of the quality X and m’ parameters, or formally

dy = £ M, hay .o Ny e, A)dX, (58)

We have seen that samples of size # drawn from such a product
exhibit sampling fluctuations. These fluctuations may be
measured quantitatively in terms of some statistic © of the
samples, such as average, standard deviation, etc. For each
such statistic there is some relative frequency distribution
function

fe(e: 71) >

representing the distribution of possible values of the statistic
0 in samples of size # drawn from the universe (58). Tt follows
that the probability 4y, of an observed value of the statistic ©
falling within the range © to © + 40 is given by the rela-
tionship

dye = fo(0, 7)dO. (59)

In general, the distribution functions of the universe and
of the statistics may be either continuous or discontinuous.
Thus, in Paragraph § of this chapter we considered in detail
the distribution functions of several statistics for samples of
four drawn from a discontinuous universe. Later we shall
consider distribution functions for continuous universes.

An allowable variability in quality will be defined as one
that may reasonably be classed as a sampling fluctuation, or,
In other words, one that may reasonably be attributed to the
effects of a constant system of chance causes.

In the next two chapters we shall consider in some detail the
nature of the frequency distribution functions characterizing
sampling fluctuations in some of the simple statistics previously
Introduced.



CHAPTER XIV

SAMPLING FLUCTUATIONS IN SIMPLE STATISTICS
UNDER StaTisticalL CONTROL

1. Method of Attack

In this chapter we shall assume that the universe of poss
effects of the cause system is known, and that the samp.
fluctuations obey the law of large numbers. Distribu:
functions of statistics basic in the theory of control and in'i’
establishment of quality standards are discussed in sufi:
detail to make clear their use throughout the remaining e
ters of the book.

Only those points are discussed which have been ¥
helpful in answering practical problems of the following™

4. How shall we determine when quality is statistic

controlled?

How shall we establish standards of quality’

How shall we establish allowable limits in design’

. How shall we establish allowable limits of va®
from standard quality?

How shall we select a representative sample of prodé
How large a sample shall we take?

by oW

‘ The reader. primarily interested in such questiOrlsn
wish to turn immediately to those sections outlinin
answers which have been found satisfactory in practice
w1llfﬁnd., however, that these questions, like many of
Eoencron'.céng us every day, do not permit of answers whid

consi e{ed as final. One common question will sufft
an illustration of what is meant: What should a child!

174
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in school? No one knows k¢ agswer to this question, and yet
we must adopt an answer in the form of an established cur-
ricullum. For the most part, we have faith that students of
education having a knowledge of the fundamental difficulties
involved in getting the answer will be able to make progress
in that direction. Similarly, one interested in the answers to
the several questions stated in the previous paragraph will
find that some parts of the following discussion which at first
appear abstract and impractical may actually prove to be the
most helpful in the establishment of fundamental principles
upon which to base production methods.

Starting with: the assumption that the universe of possible
effects of the controlled system of chance causes is of the form

.y=f(X>x1))‘2)'"))‘i)"'>x’ml);

we shall need to know the probability P that a statistic of
a sample of size 7 produced by this constant system of causes

will fall within the range 0 to ©2 given formally by the
integral :

5]
P =f £6(0, n)dO.
(S

We shall find that the distribution function of the statistic
depends upon the function f of the universe of effects of the
cause system, and that the distribution functions of even the
simple statistics are unknown except for a very limited number
of forms of the function f. In fact, we shall find that for the
most part the distribution functions of the simple statistics
are known only when the distribution function f of the possible
effects of the cause system is normal.

Since, however, the normal function involves the assumption
that the variable X may extend from — o0 to + ®, and since
we do not know of any quality X which rigorously satisfies this
condition, we see that the theoretical frequency distribution
functions which we are to use never can represent practical
conditions rigorously. In this same connection, much of the
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theory is based upon the assumption of continuity of:
observable values of the quality X; although this can
be attained in practice because of inherent limitations ir-
measuring instruments. Experimental results obtained
sampling under controlled conditions are introduced t
dicate, in a more or less practical way, the significance of
two limitations just stated.

Even when the distribution function f¢(0, 7) of a statist
is not known so that we cannot calculate the probabilir
that © will lie within a given range, the results of comparat®
recent theoretical work enable us to obtain quite satisfac
estimaEes of the probability P, provided we know the expe:
value © of © in samples of size # and the standard devie
o, of © measured about the expected value 6. Oftenr
we know the moments of a distribution function, althe:
we do not know the functional form. The work of Tcheby
referred to in Part Il makes it possible for us to say that’
probability P, that an observed value of 6 will fall v
the limits © =+ foy satisfies the inequality

1
Ptu'e > 11— 72’

where # is not less than unity. We may also use T chebyc
th.eore_m to advantage when the indefinite integral of th-
tribution function is unknown even though the functi:
known. |
Comparatively recent work has given us the expr
values and standard deviations of most of the statistics™
now appear to be useful in quality control work. Furthem®
tl_lese expected values and.standard deviations are know
d1§cre.te and ﬁ.nite universes of the type which we have to:
with in practice. Hence, we have available for use a ¢
amount of .theoretical work which is immediately aPPHCa
;olcommermal conditions, and which enables us to state at¥
¢ r:>werbbound to the probability associated with a symmt
ge about the expected value of a statistic.
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Recently Camp ! and Meidell 2 have shown that the prob-
ability Py, satisfies the inequality
1
o > - Ty
Prog 1 2.25¢%’
provided:

(a) The distribution function f4(0, 7) of the statistic ©
is unimodal with a modal value © coinciding with the
expected value ©.

(6) The distribution function f4(6, #) of the statistic ©
is monotonic on either side of the modal value.

Hence it follows that if we can show that the distribution
function of the statistic satisfies the Camp-Meidell conditions,
we can estimate the probability associated with a symmetric
range about the expected value within closer limits than we
can if we know nothing whatsoever about the form of the dis-
tribution function of the statistic. In certain instances it is
sufficient for practical purposes to be able to show that the
modal value is approximately equal to the expected value, and
that the distribution function is monotonic about the mode.
In this connection, it might be noted that the Camp-Meidell
relation applies strictly to a continuous function, although
it may easily be shown that this limitation is of no practical
significance in the cases where we make use of this theory.

Experimental results are introduced wherever necessary
to bridge over gaps in available theory. These same experi-
mental results will be used extensively in the remaining chapters
of the book wherever we consider the problem of interpretation
of a sample.

In our discussion we shall use bold-faced type to in-
dicate the parameters and functional form of the universe of
effects of the cause system and also the expected values,
standard deviations, and other functions derived from known
distribution functions of statistics. The regular italic notation

!Camp, B. H,, “A new Generalization of Tchebycheff’s Statistical Inequality,”
Bulletin of the American Mathematical Society, Vol. 28, 1922, Pp. 427-432.

2 Meidell, M. B., “Sur un probléme du calcul des probabilités et les statistiques
mathématiques,” Comptes Rendus, Vol. 175, 1922, pp. 806—808.
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will be used for the corresponding observed characteristis
sample as indicated in Table 27.

TaBLE 27.—NOTATIONS FOR UNIVERSE AND SAMPLE

Universe Sample
Distribution. . ................. FOU R Ay e ey A LSO A Ay
Fraction Defective or Fraction ’
.. p

within Given Limits. . ... .. .. - -
Average............. ... ..., X X
Standard Deviation......... .. .. o v -
Skewness...................... k =\/B, k=Y
Flatness....................... B: B

2. Fraction Defective !

That the fraction defective should play an imp
réle in modern production is at once apparent when o
siders that so many quality measurements are made ¥
go-no-go gauge. It is but natural, therefore, to conside’
the nature of the sampling fluctuations in this fractiont
controlled conditions. ‘

The distribution function for the observed fraction def
p or fraction found between any two specified limits X;
in samples of size # drawn from a controlled product o
functional form whatsoever is given by the terms of the?
binomial

@+ p)™

The expected value §, modal value P, and standard det*

op of this distribution function are given by the foll
relationships: 2

o'p = E.

n
' The derivation of ¢
elementary text on stat
?Of course the mod
the difference is too sm

he formulas cited in this paragraph are given in ™"
stical theory.

al and expected values of p are not always equal- HO
all to be of any practical importance in most applica””’
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In these relationships p is the probability that a constant
cause system will produce a defective piece of product.

We see at once that the first distribution function (60)
that we have chosen is not normal. In fact, it is not even
continuous. As pointed out in Part III, however, the point
binomial theoretically can be approximated quite closely by
the ordinates (or appropriate areas) of a normal curve of the
same mean value and standard deviation as the point binomial,
provided p is approximately equal to (1 — p) and # is very
large. We saw in this same connection, however, that the
approximation is quite good when p = 1 — p even if # is no
greater than 16; similarly when p = o.1 and # is no greater
than 100. This gives us, therefore, some idea of the degree
of precision which we can expect to attain by assuming that
the distribution of the observed fraction defective p is normal.

Since the modal and expected values of p may be con-
sidered equal, and since the discrete distribution can be quite
accurately fitted by a function satisfying the Camp-Meidell
requirements, it follows that the Camp-Meidell inequality
may be assumed to give a close approximation to the lower
bound of the probability associated with any symmetrical
range about the expected value p. Knowing the standard
deviation of p, we may make use of the normal law integral
to calculate the probability that an observed fraction p will
fall within any two limits p1 and p,, provided the values of p
and 7 are such that the normal law is a satisfactory approx-
imation. If the conditions are such that we cannot use the
normal law, we may always make use of this value of p and its
standard deviation in establishing limits with probability
bounds in accord with the Tchebycheff inequality.

3. Average—Normal Universe

Perhaps the arithmetic mean is used in engineering work
more often than any other statistic to express the central
tendency of a group of data. We shall therefore consider
next the fluctuation of this statistic in samples of size #» drawn
from a normal universe. It is a simple matter to show that
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under these conditions the distribution of the averag [

. .. c . ,
normal with a standard deviation ——, where ¢ is the stan
n

deviation of the universe. So long, therefore, as we are el
with samples from a known normal universe, it is a very sir
matter to obtain from Table A the value of the probab
that an observed average will fall within any two arbitu
chosen limits. Hence, from a theoretical viewpoint, wer:
give no further consideration to the distribution of the ave
of a sample from a normal universe. It is of interest, hove:
to see how closely experimental results may be expecte
check the theoretical ones, even though we cannot, for rex
previously cited, experiment with samples drawn from astri:
normal universe.

Perhaps we cannot duplicate the conditions under %
we should expect to find agreement between theory:
practice more closely than by drawing chips from a bov
the manner described in the previous chapter. Obvion
the distribution in the bowl is discontinuous and does"
extend to either side of the average beyond three times!
standard deviation; whereas a normal distribution is ¢
tinuous and extends to infinity in both directions. It®
interest, therefore, to note how closely the observed distribut
of 1,000 averages of four, Fig. 58, approaches normal

The data of Table A, Appendix II, were divided as indic

into 1,000 groups of four each.

4. Average—Non-Normal Universe

X Even for.so.SImPle a statistic as an average, we do’
now the distribution function when the universe is°

X .
nc?{)ma.l. We do, .however, know the moments of this®
tribution function in terms of the moments of the unive

'For exceptions see “On the M

Samples from any Population” eans and Squared Standard Deviations of ¥

by A. E. R. Church, Bi 1 .
21—~ « . , Biometrika, Vol. XVII
%opu%ggi’o;gzg; znecli'tai(:no;h; Frcqu,ency Distribution of the Mean’s of Samples’
§1~106. earson’s Types,” by J. O. Irwin, Metron, Vol. VI
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As in the case of averages from a normal universe, the expected
value of averages is the average X of the universe. Similarly,

.. e e . o
the standard deviation ox of this distribution is equal to 7
n

where o is the standard deviation of the universe. With this
information we are in a position to apply Tchebycheff’s theorem.

We may do better than this, however, because it is known
that the skewness kz and the flatness Boz of the distribution

200 ~ ® OBSERVED DISTRIBUTION

e NORMAL DISTRIBUTION

150 -

100 |-

50 -

NUMBER OF OBSERVATIONS

oL 1 1 1 1 ) L 1 ! 1 ! L ]
-5 -1.0 -0.5 [s] _ 0.5 1.0 .5
AVERAGE X

Fie, §8.—ExperiMENTAL EVIDENCE THAT THE DISTRIBUTION OF AVERAGES OF
SampLEs oF Size 7 DRAWN FROM AN ExpERIMENTALLY NormaL UNIVERSE
1s NorMaL.

of averages are given in terms of the corresponding functions
of the universe by the following expressions:

k
v
By - (63)
Bz}—{ = i_;’;__*_ 3.!

From (63), we see that, if the sample size z is made large
enough, no matter what the skewness and flatness of the
universe are, the skewness and flatness of the distribution of
averages of samples of size # approach normality as charac-
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terized by the values o and 3 respectively. It remainsi
to show that, even for comparatively small values of
distribution of averages may be considered to be nom:
a high degree of approximation, thus making possible t
of the normal integral, Table A, in establishing samplingir

Again we shall appeal to the use of experimental -
Tables B and C of Appendix II give the results of 40000

NUMBER OF
OBSERVATIONS
o
O
T

-2.4 -4 2 U
UNIVERSE 2 zAvenxce X 2

RECTANGULAR UNIVERSE

@
[=]
T

[ ]

NUMBER OF
OBSERVATIONS

8 8

) T

[ 1 1 3
UNIVERSE T O R RAGE R o
RIGHT TRIANGULAR UNIVERSE

Fig. 59.—~UwnivErsEs AND DiSTRIBUTIONS OF AVERAGES FROM RECTANGULA
Rieur TriancuLar UNIvVERSEs.

ings vyith replacement from each of the universes, rectang
and right triangular, described in Table 28. Fig.’59 gives’
observed distributions of averages of 1,000 samples of !
for each of the two experimental universes. To show b
closely these observed distributions actually approach !
mality, we have drawn smooth normal curves having expe-
values a'md standard deviations determined from theory U
the ba§1s of. our knowledge of the universes. The clost!
of fit is striking and illustrates the rapid approach of
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distribution to normality as the sample size is increased.
Such evidence, supported by more rigorous analytical methods
beyond the scope of our present discussion, leads us to believe
that in almost all cases in practice we may establish sampling

TaBLE 28.—MARKING oN Cuirs ror ExpERIMENTAL UNIVERSES

Rectangular Universe Right Triangular Universe

Marking | Number | Marking | Number || Marking {Number | Marking | Number
on Chip of on Chip of on Chip of on Chip of

X Chips X Chips X Chips X Chips
-3.0 2 0.0 2 —-1.3 40 0.7 20
—2.9 2 o.1 2 —1.2 39 0.8 19
—2.8 2 0.2 2 —1.1 38 0.9 8
—-2.7 2 0.3 2 —-1.0 37 1.0 17
—2.6 2 0.4 2 —0.9 36 I.I 6
—-2.5 2 o.§ 2 —o0.8 35 1.2 15
—2.4 2 0.6 2 —0.7 34 1.3 14
—-2.3 2 0.7 2 —o0.6 33 1.4 13
—-2.2 2 0.8 2 —0.% 32 1.5 12
—2.1 2 0.9 2 —0.4 31 1.6 1
-2.0 2 1.0 2 -0.3 30 1.7 10
—1.9 2 I.1 2 —0.2 29 1.8 9
~1.8 2 .2 2 —0.1 28 1.9 8
—-1.7 2 .3 2 o.0 27 2.0 7
—-1.6 2 1.4 2 0.1 26 2.1 6
-1.5 2 1.5 2 0.2 25 2.2 5
—1.4 2 1.6 2 ©.3 24 2.3 4
-1.3 2 1.7 2 0.4 23 2.4 3
~1.2 2 1.8 2 0.5 22 2.8 2
I 2 1.9 2 0.6 21 2.6 1
~1.0 2 2.0 2
—0.9 2 2.1 2
—-o0.8 2 2.2 2
—0.7 2 2.3 2
—0.6 2 2.4 2
—0.% 2 2.5 2
—0.4 2 2.6 2
-0.3 2 2.7 2
—0.2 2 2.8 2
—o.1I 2 2.9 2

3.0 2
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limits for averages of samples of four or more upon the:
of normal law theory.

5. Standard Deviation—Normal Universe

The distribution function of the standard deviation |
been studied by ‘Student,”! Pearson,? and Fisher? T
have shown that the distribution function of the obsr
standard deviation ¢ for samples of size » may be express
terms of the standard deviation & of the universe in the
lowing way:

n—1
n 2 o

e

We note at once that the distribution of ¢ is asymme
although it approaches symmetry as the size # of the san
increases. Although we have the distribution function in?
case, we do not have a table of its integral as we have for-
normal law. Obviously, however, (64) is unimodal;
may be easily shown that the modal value & and the expet
value @ are given respectively by

- n—2
g = 0'2(10"

74

& (=2)!

n—2 _ not
202
—e do.

dy =

and

o=

n <n;3>!6=czm

chei shall have- many occasions to make use of the factor
and ¢z occurring in these two equations. Hence they
! Biomertrika, Vol. VI, 1908, pp. 1
No. 3, 1925, pp. 18-21.
* Biometrika, Vol. X, 1915, pp. 522~

$1bid., pp 5076213
> Pp- 5215 Proc. C.
Meiron, Vol. V, No. 3, 1923, —

-253 Vol. X1, 1917, pp. 416-417; Metron,V

529.
bridge Phil. Soc., Vol. XXI, 1923, pp- 6§
Pp- 3-17 and 22~32.



FLUCTUATIONS—UNDER STATISTICAL CONTROL 185

tabulated in Table 29 for sample sizes most likely to be of
interest.
TaBLE 29.—CoRRECTION FACTORS ¢1 AND c3

n 3% C2 n 1 4

3 0.57735 0.72360 22 ©.95346 0.96545
4 0.70711 ©.79788 23 ©.95553 0.96697
5 0.77460 o.84069 24 ©.95743 0.96837
6 0.81650 0.86863 23 ©.95917 ©.96g65
7 0.84515% ©.88820 30 ©.gbbog 0.97475%
8 ©0.86603 0.90270 35 o.97101 0.97839
9 0.88152 0.91388 40 0.97468 0.98111
1o 0.89443 ©.92275§ 45 ©.97753 0.98322
11 0.90453 0.92996 50 ©.97980 0.98491
12 0.91287 0.93594 55 ©.98163% 0.98629
13 0.91987 0.94098 6o 0.98319 0.98744
14 0.92582 0.94529 65 0.98450 0.98841
15 ©.93094 ©.9490I 70 0.98561 0.98924
16 0.93541 0.9522% 75 0.98658 0.98996
17 ©.93934 0.9§511 80 0.98742 0.99059
18 0.94281 ©.95765 85 ©.98817 0.9911§
19 0.94591 0.95991 90 ©.98883° 0.99164
20 0.94868 0.96194 95 0.98942 0.99208
21 0.95119 0.96378 100 ©.98995 0.99248

For sample sizes greater than five, the difference between
modal and expected values of standard deviation is so small
that in most practical problems we may assume that the
Camp-Meidell inequality applies, where the standard deviation

. [+2
of the distribution of ¢ is taken to be T

Here again it is not feasible to du_plicate -theoretical con-
ditions in practice. It is therefore interesting to see how
closely the 1,000 standard deviations in sarr.lples of ﬁ.)ur drawn
from the experimentally normal distribution previously de-
scribed can be approximated by (64). The results of such
a comparison are shown in Fig. 60. The closeness of fit between
the observed and theoretical distributions certainly appears
to warrant our acceptance of the theory as a guide to practice
in such a case. It is also of interest to note how closely the
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1860 |-
. OBSERVED OISTRR.

1401 e——— STUDENT DISTRE

120 ¢

100 t-

60 ¢

NUMBER OF OBSERVATIONS

20+t

I 1 A L 1 ] ) 1 1
0.075 0.375 0875 0.975 1.275
STANDARD DEVIATION ©

L
1.575 1875

Fic. 60.—DISTRIBUTION OF STaNDARD DEVIATIONs 1N SAMPLES OF Foux
FrRoM NormaL UNIVERSE

theoretical and observed values of modal and average st
deviation agree as indicated in Table 30.

TABLE 30.—AGREEMENT OF THEORETICAL AND OBSERVED VALUES oF Mo
AvVERAGE VaLuEes oF Stanparp DEeviation

Obsere.

Theoretical | 1,005

of o

__7_//

Modal Standard Deviation in Samples of Four. . . .. 0.7071 o
Expected or Average Standard Deviation in Samples

of Four. ... ... ... . . . . 0.7979 o &

6. Standard Deviation—Non-Normal Universe

Tbeoretically, we know nothing about the distribu
fux?ctxon of the standard deviation of samples from a non-no*
universe—not even the values of the moments. If, them
are to be able to establish ranges of variability within ¥
the observed values of standard deviation may be expemd
fall for samples drawn from other than a normal univers:
must rely at the present time upon empirically determinedres*
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To indicate the nature of the results to be expected, it is
of interest therefore to consider the observed distributions of
standard deviations of samples of four drawn from rectangular
and right triangular universes. These are shown in Fig. 61.

'2°F RECTANGULAR UNIVERSE
<] o® L o
: 90 |- °
> L ]
a L
u .
S eof
w L )
Lo |
T 30
m ® ®
: |
2 °°

0 Y 1 1 1 | 1 1 1 L ] L1 i 1 1 1 L | )
0.075 0.675 1.275 1.875 2.475

STANDARD DEVIATION O

160 -

» - RIGHT TRIANGULAR UNIVERSE
z
Q .
= [
p; 120 - °
>
it " [
8 ¢ o * .
O 80
w .
S L
14
w 40| L 4
3
o
> - [
z [ ¢
ol _® v e a0 e
0.05 0.45 25 1.85

0.85 L.
STANDARD DEVIATION O

F16. 61.—DisTRIBUTIONS OF STANDARD DEviaTioNs oF SampLes oF Four Drawwn
rroM REcTANGULAR AND RigHT TRrIaNGULAR UNIVERSEs.

As is to be expected, the modal and average values of the
observed distributions are less than the standard deviations
of the respective universes, Table 3I. These results show
that since the modal and expected values are approximately
equal, it would be possible to apply the Camp—Meide.:ll ir}-
equality except for the fact that the standard deviation is
not known. In other words, we are not in a place to set
sampling limits on the standard deviation of samples drawn
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TaBLE 31.—ExPECTED AND MoDAL VALUES OF STANDARD Deviatios

Rectangular | Right Triary.

Universe Univers

Modal Standard Deviation in Samples of Four. 1.4639 0.7

Average Standard Deviation in Samples of Four. 1.4323 0.786;

Standard Deviation of Universe.............. ! 1 7607 0.953
!

from other than a normal universe, unless the diverg
from normality is so small as to warrant our belief that
distribution function (64) is a reasonable approximati
In cases where this assumption is not justified, we may m
use of the square of the standard deviation or the wari
as it i1s termed.

7. Variance

For variance, as for standard deviation, we know !
distribution function when sampling from a normal univ
Itis

n—3 _ne?
dy = C(o2) 2 ¢ 207 4(g?),
where C is a constant. In fact, ““Student”! first found &
distribution function empirically, and from it derived ¥
distribution of o.

When the sampled universe is not normal, we know mert

the moments of o2 expressed in terms of those of the unives

The expected variance and the standard deviation of vari#®
are

g

0-2
n
and

o o \/n -1
2 - 71 [(n — I)ﬁz—n+3)]

'Loc. cit. The distribut;
. % See, for example, A. E.
tions of Smal] Samples fro
PP- 321-394.

on was later found rigorously by R. A. Fisher, loc: o
R. Church, “On the Means and Squared Standard DC"F
m any Population,” Biometrika, Vol. XVIII, Nov., ¥
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in terms of the standard deviation o and the flatness B2 of
the universe. Obviously, without further investigation based
upon the use of higher moments of the distribution function of
variance than those given in (68), we cannot establish sampling
limits in general with an assurance much greater than that

afforded by the application of the Tchebycheff relationship.

X —-X

ag

8. Ratio z = — Normal Universe

Thus far we have considered the distribution functions of
some of the simple statistics taken one at a time. We shall
find that another very helpful way of looking at this problem
is to consider the ratio z of the deviation in the average to
the standard deviation of the sample. “Student” was the
first to derive the distribution of z for samples drawn from a
normal universe. His results are given by (69):

S
vi{'3)

It is useful to know that the standard deviation o is always

1
equal to i3
the expected value Z = o, and the table of the integral of this
function originally given by “Student” has now been extended
by “Student’’! and Fisher.!

Fig. 62 shows how the distribution function of z differs from
the normal law for the case # = 4. The broken curve is the
normal law with the same standard deviation as the observed
distribution of z derived from the thousand samples of four
drawn from a normal universe. Two things should be noted.
First, although the two distribution functions are symmetrical,
they differ widely for small sample sizes. Second, we should

dy (1 +22) 24z (69)

The distribution of z is symmetrical about

! Loc. cit.



190 ECONOMIC CONTROL OF QUALITY

note how closely “Student’s” theoretical distribution fiy
observed points in Fig. 62. ‘

If the samples are drawn from other than a normal unii¢
very little of importance in the theory of control is ki
about the distribution of z other than that derived frox

soer . OBSERVED DISTRIBU
———  *STUDENT'S” DISTRE/.
3sor — —=— NORMAL DISTRIBUTC
300}
n
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o
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>
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z

Fic. 62.—~ComparisoN oF “STupENT’s” DISTRIBUTION WITH THE NoRMALl
AND wiTH THE OBSERVED VALUES OF z FOR SAMPLES OF FOUR.

empirical study of the sampling results given in Appendt
The success of ““Student’s” theory in predicting the distribut
of z for samples of size four drawn from rectangular and
triangular universes is indicated in Fig. 63. There &
litele doubt that “Student’s” distribution is a closer &Y
imation to the observed distribution than is the normal
Analysis /of these results indicates that for most ranges ’
‘t‘ost:;l z \’w,l}erT 2 < 3) the associate.d probability giver "
ent’s” distribution must be considered as an upper bov

!See for example,

hart and F. W, Win
144~153, 1928.

“Small Samples—New Experimental Results,” by W. & S}'E’
ters, Journal of American Statistical Association, Vol %
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when sampling from a universe with values of B: and B2
lying in the 8182 plane above the line

B2 —B1-3=o0.

9. Distribution of Average and Standard Deviation

We shall now briefly outline another way in which sampling
limits may be set on statistics. Instead of considering the
distribution of each statistic separately, we may consider the
distribution of pairs of simultaneously observed values of two
statistics. As an example, Fig. 64 shows such distributions
for averages and standard deviations of the samples from the
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normal, rectangular, and right triangular universes. It is
apparent that the distributions for the rectangular and right
triangular universes differ materially from that of the thousand
samples drawn from the normal universe. For control purposes
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we may make use of the form of presentation given in Fig. 65
showing the curves of regression of average on standard
deviation. For the samples drawn from a normal universe,
we see that the regression curve is a horizontal line. In the
other cases, however, the regression is non-linear. For the
rectangular universe the curve of regression is a parabola
symmetrical about the ordinate through the mean of the dis-
tribution; for the right triangular universe the curve of re-
gression cannot be so simply described.

Recent work of Neyman ! gives the equation of the curve
of regression of the average on variance in terms of the moments
of the universe. Neyman also gives the standard deviation of
the distribution from this curve of regression.

These results of Neyman were used in constructing the
theoretical curve of regression and the dotted limits corre-
sponding to three times the standard deviation of the dis-
tribution about the line of regression for the data presented
in Fig. 65. Of course we are not justified in using Neyman’s
work in this particular way, except to get an approximation.
Therefore, it is interesting to note that the results so established
include approximately g9 per cent of the observed values
as they should if the distribution about the curve of regression
were normal and the theoretical value of the standard deviation
used in constructing the limits were not subject to compu-
tational error.

So far as we are concerned at the present moment, emphasis
is to be laid upon the importance of these results as indicating
the wide variety of possible ways in which we may establish
limits within which observed statistics may be expected to fall.
In such a case the theoretical determination of the regression
curve together with the standard deviation of an array abc?ut
such a curve gives us a basis for establishing limits which
we may interpret at least upon the basis of Tchebycheff’s
relationship. A review of the theoretical work that has already
been done in this connection, however, indicates certain

1“On the Correlation of the Mean and the Variance in Samples Drawn from an
“Infinite” Population,” Biometrika, Vol. XVIII, pp. 401-413, 1926,
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inherent difficulties in attaining a high degree of precision in
the derivation of the necessary regression curve and the
standard deviation from such a curve.

10. 4 Word of Caution

Before passing on to a consideration of the distribution
functions of other statistics, it is well to sound a further word
of caution about accepting theoretical results in the form of
distribution functions of statistics derived upon assumptions
of continuity of universe where for one reason or another the
measurements cannot be made under the ideal conditions
assumed. As an illustration, it is interesting to examine the
effect of grouping in any universe, such for example as the
rectangular one, upon the regression of the variance on the
average in small samples. We find that the apparent close-
ness of fit of a second order parabola to the means of variances
depends upon the number of cells. The approximation in many
cases is not very good as is illustrated by Fig. 66 corresponding
to the scatter diagram of the 246 pairs of values of variance and
standard deviation based upon the data of Table 25. Obvi-
ously the mean values of variance corresponding to a given
average and represented by the solid dots do not lie on a second
order parabola. It follows that the precision of the estimate
of the number of points to be expected outside the limits
derived after the manner of those shown in Fig. 65 is quite
uncertain. In fact, we cannot use Tchebycheff’s theorem in
connection with the parabola of regression to estimate even
the upper bound to this number.

The reader may appreciate now the significance of the
experimental results previously cited to show that the effect of
grouping into a finite number of cells and the effect .of the
finite range of the experimental universe were not sufficient to
invalidate the application of the distribution functions for
averages, standard deviations, and ratios of deviations in
averages to observed standard deviatior}s d?rived upon the
assumption of a continuous universe of infinite range. As a
result of these considerations, we see that in the derivation of a
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distribution function for a given statistic in a sampleofs
drawn from a given universe, we must realize that in practic

can never attain the condition of continuous universe.
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F16. 66.—ScATTER DIAGRAM FOR AVERAGES AND VaARIANCES oF ALL Possié
SampLEs oF Four rrom UNIVERSE i, 2,3, 4-

Of cours.e,'it must be kept in mind that so far as theo
concerned, it is quite possible that the curve of regression®
for a continuous universe is not rigorously a second order p*
<t)}lla. In otl}er words, the theory involved above rests ¥
: e assumption that a second order parabola is simply 4
drst approximation to the actual curve. This fact, howe"
tcc)>etsh notﬁ invalidate the argument of the previous pafagragl

¢ effect that the form of the best fitted curve of regre®

d .
depends to a certain extent at least upon the number of ©
into which the universe is divided.
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11. Skewness k and Flatness B2

Very little is known about the characteristics of the dis-
tribution function of either k or B, except for large samples
drawn from a normal universe under which conditions these
distribution functions approach normality. It has long been
known, however, that the standard deviations of these two
statistics in samples of # drawn from a normal universe are

Tk = \ﬁ - (o)
O, = \/%- 7v)

If the sample size # is of the order of magnitude of 500 or
more, we may assume that the distribution functions of these
statistics about k and B respectively of the universe are such
that the normal law integral may be assumed to give approx-
imate values for the probabilities associated with symmetrical
ranges about the expected values.!

and

12. Other Measures of Central Tendency

In our discussion of quality control methods, we shall
have occasion to use two measures of central tendency other
than the arithmetic mean. These are the median and the
Max. + Min.

2
samples of # drawn from a normal universe is known to
approach normality as the sample size becomes indefinitely
large. Little is known, however, about the distribution of
medians in samples drawn from other than a normal universe
or in small samples drawn from any universe. Also the dis-

. The distribution function for the median of

! sserlis, L., “On the Conditions under which the ‘Probable Errors’ of Freq}lency
Distributions have a Real Significance,” Proceedings of the Royal Society, Series A,
Vol XCII, 19135, pp. 23-41.
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tribution function of the

Max. + Min..
—— s apparently not kn

except for samples of #» drawn from a rectangular univers!

For both these measures of central tendency, we cans]
that their distribution functions for symmetrical unive:
are symmetrical so that the expected value for both distribu:
functions is the average X of the universe. Although
general, we do not know the standard deviation of éit.
measurement for small samples from even a normal univers;’
do know that the standard deviation of the median in ls:

. . 1.2630 .
samples from a normal universe is 53 , where ¢ 15°

n

standard deviation of the universe.
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F16. 67.—DisTriBuTioNs of THREE MEAsURES oF CentrAL TENDENCY IN S0
oF S1ze Four Drawn rrom a Normar UNIVERSE.

_ Wherever it has been found necessary to make use of ¢
distribution functions of these two measures for small samp
they have been determined empirically. For example, Fig'
shows the experimentally determined distributions of t
two measures for the 1,000 samples of four from the nom
universe previously mentioned. For purposes of compafs!
we have included the theoretical and observed distributions:

* Rider, P. R., “On the Distribution of the Ratio of Mean to Standard Devi®

in Small S .
. amples from Non-Normal Universes,” Biometrika, Vol. XXI, pp. ore
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arithmetic means of these samples. We see that all of these
are approximately normal. Obviously they would be identical
one with another for samples of size two. The observed standard
deviations shown in Table 32 are, however, significantly dif-

TasLe 32—CHARACTERISTICS OF DisTRIBUTIONS OF THREE MEASURES OF
CenTrAL TENDENCY

Efficiency as Compared
to that of Mean as
100 Per Cent
Measure of Stand'ard
. Average | Devia- |Skewness| Flatness
Central = . :
. ) tion ko B2 Observed |Theoretical
Tendency )
oo : for Samples| for Large
of 4 Samples
Arithmetic Mean.| o.o14 0.502 | —0.038 2.985% 100.0 100.0
Median......... 0.026 0.559 | —0.028 | 2.92rI 80.6 63.8
Max.
ax + Min 0.036 0.547 | —o.0I% 2.986 84.2
2

ferent one from another, indicating that the measures differ in
efficiency as defined in Paragraph 6 of the previous chapter.!
. Max. + Min.
The theoretical efficiency for the measure —— —even
for large samples is not known, although it is known that it will
be less than that of the median. The interesting thing to note
is that the efficiency of a measure depends upon the sample
size. For example, that of the median starts with 100 per cent
for sample size 7 = 2 and drops off to 63.8 per cent for large
samples.

13. Other Measures of Dispersion

One of the competing measures of dispersion, particularly
in engineering work, 1s the mean deviation. In general our
state of knowledge in respect to the theoretical distribution

1See discussion in Chapter XIX of Part VI for special interpretation of efficiency

for the case of small samples. Just as in Paragraph 6 of the previous chapter, effi-

ciency here applies to the estimate of the mean X of the universe obtained from the

Max. + Min.
2

mean of m medians or values of in samples of four,
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of the mean deviation even for samples from the o]
universe is in a far less satisfactory state than is thatd
standard deviation under similar conditions. For large sin;
it is true that the distribution function of the mean deviati
sufficiently near normal for us to use the normal inte]
in establishing sampling limits in control theory. Under t
conditions, however, the efficiency of the mean deviat
only about 88 per cent.
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The empirically determined distribution of the thou
mean devnfttion.s (multiplied by +/7/2) in samples of four
presented in Fig. 68. We see that it is distinctly difie
in functlona}l form from that of either the theoretical o
observed distribution of standard deviations of this &

%roll)llp of 1,000 samples of four. We also see from Fig. 68
able 33 that the mean and modal values of the distrib®

f . . - g
of mean deviations differ from those of the CorrespOndl

distributi iat
thzz';bqtlc)ln of standard deviations. Hence, until fut
etical work has been done, the use of the mean devi¥
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for small samples offers comparatively serious limitations as
compared with the use of the standard deviation. Furthermore,
we shall see that under these conditions the standard deviation
is the more efficient measure.! Hence we should not expect
to find many cases in quality control work where the mean
deviation is to be preferred to the standard deviation as a
measure of dispersion.

TabLe 33.—CHarAcTERISTICS OF DisTRIBUTION OF THREE MEASURES
or DispErsioNn

Standard
Basis of Estimate of Average | Mode | Devia- |Skewness | Flatness
Standard Deviation 0 ] tion ke B2g
%0

Root Mean Square Deviation. ..| 0.8007 | 0.7161 0.340 0.486 2.952
[T

V2 (Mean Deviation)......... 0.8612 | 0.7353 | ©.379 0.622 3.261
N=Xo oo 2.0030 | 1.7564 | ©.8%75 0.548 3.030

Sometimes we need to use a measure of dispersion which
can be readily obtained on the job. For this purpose we may
make use of the absolute value of the range between the
maximum and minimum observed values in samples of size 7.

The observed distribution of ranges in samples of four
drawn from a normal universe is given in Fig. 69. The average
of the thousand observed ranges is 2.0030 where ¢ is the
standard deviation of the universe. Upon the basis of these

experimental results, we could take times the range as

2.003
an approximate value of the standard deviation of the universe;
or looked at in another way, knowing the standard deviation
of the normal universe, we may set limits within which the
observed range in the sample size # may be expected to fall
with a given probability P if, as in the previous examples,
we can find the distribution function of this range.

1 Chapter XIX of Part V1.
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Considerable theoretical work has been done within r«f
years in an attempt to find this distribution function,
example, Tippett! gives the expected value and st
deviation of the distribution of ranges in samples of sﬂ
drawn from a normal universe. From his results we getFi
He also gives the theoretical values B and B2 of the distri:
of the range. In this way, he shows that the distribut
this statistic diverges more and more from normality &
size # of the sample is increased. Obviously, therefor

200 ~
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F16. 69.—OBservep DistriuTion OF 1,000 RANGEs 1IN SAMPLES OF FonD

FROM A Normar UNIVERSE.

best th.at we can hope to do in the present state o
theoretical knowledge, in using the range for control puf’
is to establish symmetrical limits about the expected valt
the range given in Fig. 70 for a specified sample size by me
gise of theoretical standard deviations also given in this B

nce we do not know the distribution function, all

can say is that Tch ) : i
thus established. chebycheff’s theorem applies to the

In . . ..
this same connection, it is interesting to compi®

1

b O{x the Extreme Individuals an

opulation,” Biomerrika,

v d the Range of Samples taken from “M
ol. XVII, pp. 364-387, December, 1925.
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observed distribution functions of estimates of the standard
deviation o of the universe derived from the root mean square
deviations, mean deviations, and ranges for the thousand
samples of size four drawn from the normal universe. Thesc
distributions are shown in Fig. 71. The root mean square
and mean deviation estimates of the standard deviation o
are those usually employed in error theory although they are
not consistent as we shall see in Part VI. We shall have
occasion later, in discussing the efficiency of measurements,
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Fie. 70.—THEoRETICAL VALUES OF MEAN RANGE AND STaNDARD DEVIATION OF
RANGE FOR SampLEs OF Size 2.

to emphasize the significance of the differences in these three
distributions.

Sometimes in commercial work we may have occasion to
use a range other than the extreme range because often.the
available data represent the quality of product after a previous
inspection has excluded the extremes. We shall enter into
this discussion only far enough to indicate the nature of the
problems involved. .

At the present time we must 'rel}.r almost entirely upon
the results of empirical studies to indicate the nature of the
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distribution functions that we may expect to get undy
conditions, and also to determine how these functionsé
upon the functional form of the universe from whichw
are drawn. Fig. 72-a shows the observed distribut,
four ranges in samples of four drawn from a normal i~
To obtain these distributions, the four values in each '
thousand samples of four were arranged in ascending”

of magnitude. Thus, if we let Xi, Xo, X3, Xa, represe

1000 F
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. 71— Dist T

7 RIBUTIONS OF TuHREE EsTiMATES OF StaNpARD DEvi

UNIVERSE.

val i
ext::;;taigzampli ius arranged, the four ranges a%
X2 — X, the ra4n e bl’ the r ange between the first and st
and the range bet%v etween the second and third Xs ™
The striiy thieen the third and fourth X, — X3 '
functions of thge 1asntg ;10 be observed is that the dls'tﬂb“';_
that of the extrem three ranges are less symmetncal ¢
viation of the extre range.  Furthermore, the standarl-
of the other three diem'e range is larger than that of anf
stributions in absolute magnitude, altho-
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when expressed as a coefficient of variation, the variation in
the extreme range is less than that in any other. For purposes
of comparison, the distribution function of observed differences
between successive pairs of observed values is also reproduced
in this figure. Table 34 shows the observed expected value,
standard deviation, skewness, and flatness for these five dis-
tributions.

TaBLE 34.—CHaracTERISTIC OF DiIsTRIBUTION 0oF RANGES

Average Star')da'rd Skewness Flatness
Range 5 Deviation & 3
g e 20
X, — X, ©.7863 0.6087 1.2133 4.5604
Xs— X 0.6338 0.4941 I.24§1 4.5974
Xi— Xs 0.7752 0.5953 1.1672 4.3608
Xi—- X 2.0044 0.8759 0.5627 3.0312
Successive

Drawings 1.2136 0.8661 0.9140 3.5884

Turning our attention to Figs. 72-4 and 72-, we see the
marked influence of the functional form of the universe upon
the distribution functions of the ranges. This is significant
in connection with our present study in that it shows that the
interpretation of control limits set upon some statistic such
as a range depends much more upon the nature of the func-
tional form of the universe than does the interpretation of
similar limits placed upon standard deviations and, particu-
larly, limits placed upon arithmetic means.

14. Chi Square

The statistic x2 is a measure of the resultant effect of
sampling fluctuations in the cell frequencies. Thus, if the
universe of possible effects be divided into m cells such that
in a sample of size 7 the expected frequencies in these cells are
respectively yi, ¥z, -« Vi, ... ¥m; and if the observed
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frequencies for a given sample in these same c-ells are y,
1 ¥i » ymy, x? is defined by the relationship
ey Yy e e

& (vi— y6)?
2 Z —~ - Y,
X = .
1=1 yi
In 1900, Pearson ! gave the distribution function of the stat
bl
x2. which may be written

m—3

fxg(X2: m) = Ct’— Q(Xg) 2 d(XQ),

where C is a constant. e
Similarly it may be shown that the expected value ¥’
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! Karl Pearson “On the Criterion that a Given System of Deviations fr}({);‘
Probable in the Case of a Correlated System of Variables is such that it can be Re®

ably Supposed to have Arisen from Random Sampling,” Philosophical M
5th Series, Vo, L, 1900, page 157.
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modal value X2, and the standard deviation o, of x2 are
given by

Ce=mot
T (23)
Xt =m-3
o, = Va(m — 1). (74)

Tables of values of the integral of the x2 function for the

range of values of number 7 of cells of most importance were
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originally given by Elderton and are reproduced in useful
form in Pearson’s Tables.!

Tables in slightly different form are given by Fisher.?
Making use of these tables, we can read off the probability P
associated with almost any pair of limits in which we may
happen to be interested. Fig. 73 indicates the way in Whl.Ch
the probability associated with a given value of x> varies
with the number of degrees of freedom.?

Y Tables for Statisticians and Biometricians, Table X11.

* Statistical Methods for Research Workers. )

#The number of degrees of freedom is equal to one less than the number of cells if,
as we have assumed above, the universe frequencies are known & priori.



208 ECONOMIC CONTROL OF QUALITY

The distribution function of x? is unimodal; ands
the mean and the mode differ by only two, the Camp-M
inequality applies quite accurately to symmetrical m
about the expected value. Furthermore, it is of interes
note that, for a comparatively large number m of cls

° %2 DISTRIBUTION m::
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Fi6. 74.—DisrrisurioN oF x® FOrR m = 30.

distribution of x? can be quite accurately obtained by*
second approximation function (23). For example, Fig
sh.ows. the second approximation fitted to the theoreticil*
tribution of X2 for s, = 30 cells. Hence, for a numb
cells of. t_he order of magnitude of thirty o; more, the 1"
probability function can be used to give a close ap’Pl‘OXimaé
to the probability associated with a symmetric rang &
the expected value. ’
expllitc lltsl oi; ilmnit:rgstb to note that. the distribution of ¥’ 15
or by t}}rle nurzb y t.he functional form f of the um‘f‘:
does enter in thzrt ;Zh;n f:nsa-mpkf. A limitation,. ho‘;’j:
depends woom unctiona form. of the- d1s.tf1' ,

p € assumption that the variable x; is distri?”
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normally, where x; = yi — yi. From our study of the point
binomial distribution function, we see that this assumption
requires that the probability pi associated with the ith cell
must be such that the probability distribution (g + pi)* is
approximately normal. This condition cannot be rigorously
fulfilled, nor do we have any available analytical method
for determining its significance. We may, however, again
make use of the experimental results presented in Appendix 11,
this time to give information of an empirical nature which
indicates the magnitude of the effect of grouping upon the
distribution of x2. We shall make use here of only the four
samples of one thousand drawings each from the normal
universe.

TasrLe 35.—Carcurarions InvoLvED IN DETERMINING X2

True Observed (y — y)2
Distribution Distribution y—y -y e
y y y
3 5 2 4 1.333
9 9 o o] 0.000
28 36 8 64 2.286
b5 113 10 100 1.538
121 123 2 4 0.033
174 165 9 81 0.466
198 203 1 25 0.126
174 172 2 4 0.023
11 123 2 4 ©.033
65 68 3 9 0.138
28 31 3 9 0.321
9 8 1 I 0.111
3 2 1 1 0.333
X =6.741
P =0.873

~ For purposes of reference, Table 35 shows the calculations
involved in determining the value of x2? for the first sample
of one thousand, grouped into thirteen cells. We see that
the probability p associated with the end cells is only g3,
which is exceedingly small. We may, therefore, consider the
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advisability of grouping the tails of the distribution after the
manner often suggested in the literature. Table 36 shows the
effect of grouping the tails of each of the four experimental
distributions. In all but one case the observed value of
1 is less than the theoretical expected value, although the
average difference between the two decreases as we increase
the probability associated with the last cell by decreasing
the number 7 of cells. These experimental results indicate
that the effect of the limitation as to the normality of the
distribution of the variable x: may be much more serious from
an experimental viewpoint than one might be led to believe
by reading the literature on the subject. In any case the use’
of x* in control work must be subjected to careful scrutiny
to eliminate the obvious effects of grouping even under con-
ditions where, as in the present case, we should expect the x2
test to be applicable.

15. Summary

Broadly speaking, distribution functions of statistics are
basic tools with which the engineer interested in quality control
must work. In this chapter we have sketched briefly the
present state of our knowledge of the distribution functions
of some of the more important statistics. A summary of
these results is given in Table 37. From this we see how
little is really known about the distribution functions of even
the simple statistics, particularly when the universe is not
normal, with the two exceptions, viz., the fraction defective p
and the average X.

Subject to limitations set forth in this chapter, we can
make use of the average and standard deviation of a statistic,
even when the distribution function is not known. When
theoretical information about the distribution of a statistic is
not available either in the form of the function or certain
moments of the function, and we have reason to believe that
the universe is not normal, we may make use of the empirical
laws presented herein to indicate the extent to which the
normal law theory may be applied. We see that there is much
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room for future development in distribution theory, all of
which will have a direct bearing on the theory of control.
However, we shall soon see that in many cases the gain in
precision through possible developments of this nature may
not be of so great practical importance as might at first be
expected.



CHAPTER XV

y 5 cs—
SAMPLING FLUCTUATIONS IN SIMPLE STATISTI
CorRRELATION COEFFICIENT

1. Correlation Cocfficiernt

Having considered in the Previous ?hapter the()(iisftfll;;
functions for statistics of a single var1_ab1€> we n e
attention to the distributi(.m function of Sm.;th z;vti'
observed quality characteristics correlated one “; e
Since, as is to be expected, the probl'em‘ Of.d€f1V1 geral .
bution functions for correlation statistics 1s 1n gfin o
more difficult than those previously considered, oer?;.
confine our attention to the use of the correlation Cho\;
as a measure of relationship. In Part I1 we saw -
simple function may be used to present the mforrrlv'?e )
tained in a single set of 7 data. There, however, .
consider how much an observed value of r tells us 2 Osstl‘
we may expect to get in the future under the same :svf
conditions or, in other words, under the same constal .\V‘
of chance causes. What was said there about ‘the cprr;»
coefficient as an expression of observed relatlonshlpder’
for a given sample. Naturally, however, even un o
trolled conditions this statistic is subject, as are those pr¢
studied, to sampling fluctuations. ot

As an illustration Fig. 75 shows the observed sc2 .
grams and corresponding values of correlation COeﬁidO}
eight samples of five simultaneous pairs of v.alues waé
by the same constant system of causes wherein therehe'
correlation or commonness of causation between ti\"
variables. In other words, the correlation r in the unelf‘
wfas zero; yet we find in one sample an observed co
of — 0.82,

214
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The method of obtaining these eight samples was as follows:
Eighty consecutive values were taken from Table A, Appendix
II, and these were grouped into forty pairs by taking the
first and second, the third and fourth, and so on. The first
five pairs were taken as the first sample, the second five pairs
as the second sample; and in this way eight samples of five
pairs each were obtained from a non-correlated universe.
The result of this experiment is sufficient to show the impor-
tance of knowing the distribution function of the correlation

3r r=-02i

r r=030 r r=-o082 r r=o023
I i * . [ . [ .
oo
Mol % L b L L (X
[ ]
L L Y . L 1 .
. | »
WL [ [ [
| DO S S| L 4 { — L L 1 1] " ) L 1 [ A T N T )
3r r=oo04 r r =07 [ r=o042 r=-060
L . | L L .
Lot . - e o | % L %%
. .
I ¢ @ - ot I . - [}
- L] - - -
-3k L L [ L
BN R | a1y [ S S Ly
) [ 3 -3 [ 3 -3 o 3 -3 [ 3
Xi X X) X

Fig. 75.—Eiur ScaTTER DiacraMs REPRESENTING SAMPLING FLUCTUATIONS OF
THE OBsERvED CORRELATION IN SampLEs oF FIVE DRAWN FroM A UNIVERSE
IN WHICH THERE WAS NO CORRELATION.

coefficient as a basis for interpreting the significance of an
observed value of the correlation coefficient 7 in a sample.

As might be expected, the distribution function of the
observed correlation 7 in samples of # drawn from a universe
In which the correlation is r involves both r and the sample
Size. n. Table 38 presents experimental evidence. Thus
Column 2 of this table shows the observed distribution of
orrelation coefficient 7 in one hundred samples of four drawn
from a universe in which the correlation r was o. It will
be seen that the mean value 7 is 0.0300 and that the standard
deviation o7 is 0.5620. The distribution itself is approximately
rectangular. In a similar way, Column 4 shows the observed
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distribution of r for one hundred and twenty-five samples
drawn from a universe in which r was o.5. The differences
between columns 2, 4, and 6 are attributable to the fact that
r is not the same in the three cases. Columns 8, 10, 12, and
14 give the distributions of observed values of the correlation
coefficient in samples of twenty-five for different values of r.
A comparison of these results with those in the other part of
the table indicates the influence of the size of sample.

2. Distribution Function of Correlation Coefficient

From experimentai results, “Student”! derived in 1908
an empirical distribution function of correlation coefficient »
in samples of # drawn from a normal universe in whichr = o.
In 1913 Soper? obtained the mean and the standard deviation
of the distribution of correlation coefficient to second approx-
imations for samples of # drawn from a normal universe with
correlation coefficient r. In 1915 R. A. Fisher3 showed that
the distribution function of r is

n—1
(1 —12) 2 no4 gr—2 <cos*1(-rr)

)= 7r—(71_——3)—' (1-r) )" 2\ V1 —r2? > 75)

This function is so complicated as to require a table of values
giving the distributions for different values of universe cor-
relation r and sample size #. Such tables were provided in
1917 by Sopert and others, and the reader is referred to
these for a comprehensive and detailed picture of the dis-
tribution of the correlation coefficient. It will be of interest,
however, to note the way it varies with the size of sample and
the correlation in the universe as shown in Fig. 76.

1“On the Probable Error of a Correlation Coefficient,” Biometrika, Vol. VI, p. 302
et seq.

2“On the Probable Error of the Correlation Coefficient to a Second Approxi-
mation,” Biometrika, Vol. IX, 1913, page 91, et seq.

*“Frequency Distribution of the Values of the Correlation Coefficient in Samples
from an Indefinitely Large Population,” Biomerrika, Vol. X, 1915, page 507, et seq.

‘H. E. Soper, A. W. Young, B. M. Cave, A. Lee, K. Pearson, *“On the Distribution

of the Correlation Coefficient in Small Samples,” Biometrika, Vol. X1, 1917, pp. 328-
413
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Fic. 76.—1vpricaL DistriBuTions oF Corrkration COEFFICIENT.

3. Standard Deviation oy of Correlation Cocfficient

'_rh'e article by Soper and others shows that the st
deviation o, of the correlation coefficient in samples of !
given approximately by the simple formula

1 —r?

Va1

Ty =
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The degree of approximation is indicated by the curves in
Fig. 77.

In general, it will be seen that, except when the sample
size # 1s small and the universe correlation r is large, formula
(76) gives a two-place accuracy. For greater precision the
reader must refer to the tables.

0.6

0.5

t —r2

VA=t
(=]
n
N
N
AN

7ava
/

/)
Y/
DT
y 2d

o 0.1 0.2 0.3 0.4 0.5 06
TRUE STANDARD DEVIATION OF CORRELATION COEFFICIENT Op

APPROXIMATION

TR NSNN
<

N\

N

[}

F16. 77.—Stanparp DEviaTion oF CorreLaTioN COEFFICIENT IN RELATION TO THE
SiMPLE APpPrOXIMATION (76).

4 Modal and Expected Values of Correlation Coefficient

Except for the case of samples from a normal universe
with correlation coefficient r = o, the modal value ¥ and the
expected or mean value T of correlation coefficient do not
coincide with the universe value r. Fig. 78 shows the rela-
tionship between these three values for several sample sizes.
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We see that for samples of less than twenty-five the abst
differences | r — ¥| and |r — | are quite large. Eve
n = 25, we often have occasion to make corrections for:
fact that these two differences are not zero.

L0
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Fic. 7;.—RELATIONSHIP oF MopAL VALUE ¥ anp ExpecTeD VALUE T IN SAMIE
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7 FROM A Normar UNivErseE with CorreLatioN COEFFICIENT !

§- Transformed Distribution of Correlation Coefficient

Let us consider the problem of establishing sam
its on the observed value of correlation coefficient in saf
of dra.wn from a normally correlated universe for which
correlation coefficient is . The tables of T and o7 previou'
referred to, make it possible to write down limits

lim

T =+ oy,
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and applying Tchebycheff’s inequality, we can say that the
probability of observing a value of » within these limits is

1 . o -
greater than 1 — r Since, as.is illustrated in Fig. 76, the

shape of the distribution function changes so much with size
of sample and the correlation of the universe, the actual
probability associated with such a pair of limits will vary
materially for different sample sizes and different values of r.

Under these conditions, some of the recent work of Fisher!
can be used to good advantage. He has shown that the dis-
tribution of z where

z = $lloge (1 + 7) - loge (1 — 7)] 77)

is approximately normal independent of the sample size and the
correlation coefficient r in the normally correlated universe.
Furthermore, he has shown that

1

=\/n—3

oz

’ (78)

where o, is the standard deviation of the distribution of the
transformed variable z.
Fisher has also shown that the expected value Z is greater

) T .
numerically than z by an amount -—(—‘—) where z is the value
aln — 1

of z given by (77) for » = r.

Making use of these results we can establish sampling
limits Z + to, such that to a high degree of approximation the
probability that an observed value of z in samples of size 7
drawn from a normally correlated universe with correlation
coefficient 1 will fall within the range fixed by these limits is
given by the normal law integral.

6. Conditions under which Distribution of r has Significance

What has been said about the sampling fluctuations of 7
has significance only when all samples are drawn from the

1 Statistical Methods for Research Wyrkers, Second Edition, 1928.
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same constant system of chance causes, so that the probit
p that the point (X, Y), corresponding to an observed p:
values of X and Y, will fall within a given area X to X+
and YV to ¥V + dY is constant for each observed pair of vi:

Correlation between variables coming from non-cor.
cause systems is termed spurious correlation. A coms
coefficient calculated from 7 observed pairs of values a:
from a non-constant system of chance causes is a spurio.
relation coefficient for which the sampling distribution fux
(75) does not apply. Such a coefficient is not subject v:
usual interpretation as a measure of relationship discussed
in detail in the following section. If then we do not take¥
care to eliminate lack of constancy in the cause system g
rise to a set of » pairs of values of two variables, we may o
a false conception of the relationship between these vari:
This is very important as we shall now show by a s
illustration.

Let us assume that we are using Rockwell hardness Yi
measure of tensile strength X for nickel silver sheet and?
for Fhis kind of material of given thickness the relationsh
statistical in that the probability of an observed pair of ¥
(X,Y) falling within the rectangle X to X + 4X and I
Y+.a’.Y 1s constant. It can easily be shown under
conditions that the correlation coefficient R between X &

for two universes considered as one, or for the total nu*
of observations is

ab
rooy + ”

<0’x" + :) <0'y~+ ;)

where the difference between expected values of tensile st

and that between expected values of Rockwell hardnes

a and 5 respectively.

purioms iuation shows that, under these sssampti

Fig. 79 gi arion R may b.e either greater or less tht
8- 79 gives a simple illustration. The two sets of dot”

R=
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resent two sets of 12 observed pairs of values of tensile strength
and hardness for nickel silver sheets of two thicknesses. The
observed correlations of the two groups taken separately are
r = o.59and 72 = 0.54; considered together the correlation R
is 0.90. Lines of regression (1, 2, and 3) of hardness on tensile
strength are shown for correlations r1, 72, and R respectively.
Obviously R is a spurious coefficient. To use it as an indication
of the statistical relationship between hardness and tensile

[

8

o
o
T

=3
o

-
o

TENSILE STRENGTH - 1000 POUNDS PER SQUARE INCH

oL L 1 1 1 1 J
0 50 60 70 80 90 100
ROCKWELL HARDNESS B

Fic. 79.—EFrrecT oF Spurious CORRELATION.

strength would obviously be misleading. Furthermore, as
already stated, the distribution function (75) does not apply
to this case.

7. Commonness of Causation Measured by r

Let us assume that we have any two physical quantities X,
and X3, and that variations in the first are produced by (/ 4 )
independent causes, which we shall designate by

Ul,U2,...,UZ,V1,V2,...,V3,
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whereas variations in the second are produced by (/ + m)i:
pendent causes
Ux, Uz,... N Ul, Wl, Wz,. ..,Wm,

so that / of the causes are common to the two variables.
Let us consider first the following simple hypotheses«
cerning the causes:

(1) Each cause produces a single effect, and this effe
unity for all of the causes.

(2) The probability that any one of the causes produc
effect is constant and equal to p.

(3) The resultant effect X; or X2 is made up of the sun.
the effects of the individual causes.

These conditions, of course, lead to a binomial distribut
of effects for each of the variables X and Xo.

Denote by z the contribution to X and X of the / com®
causes, by x the contribution of the #”’s, and by y that o t
W’s. Then, for any particular operation of the cause syst®

X1 = X+ 2,
and

Xe = y+ 2.
It may easily be shown that under these conditions

/
VUt m)

I'x,x, =

If s = m so that there are the same number (I +n
causes for each of the variables X, and X, then

!

r ———

__/+m’

or the ratio Of.the number of common causes to the total nun®
of causes in either variable.

L i .
et us consider now the more general case in which X1¥
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X: are related to their respective causes by some unknown
functional relationship. Thus

Xv=Fi(Uh, Uey ..., UV, Poy..., V),
and
X = Fz(Ul, U2, . eey Ul,Wl, Wz, e ey Wm)

Now we shall think of the U’s, /s, and #’s as symbols for
groups of causes, each group producing a discontinuous dis-
tribution of effects.

Assuming that X and X3 can each be expanded in a Taylor’s
series, that terms beyond the first powers in the expansions
can be neglected, that equal deviations in the U’s, /s, and
W’s produce deviations in X; and X proportional to the cor-
responding number of causes, and that the standard deviation
of effects of one of the / 4 s + m causes is the same as that of
any other, it may be shown that ry y, is again given by (80).

8. Simple Example Showing How Correlation Coefficient Meas-
ures Commonness of Causation

Let us take eight chips experimentally identical—three
red, three green, and two white. On each chip let us mark
one side with zero and the other with unity. Now let these
chips be tossed; let z be the sum of the numbers turned up
on the two white ones, and x and y be the corresponding sums
on the green and red ones, see Fig. 8o.

We may think of the turning up of a chip as a cause and the
number on a chip as the effect of the cause. If we let X, be
the sum of the numbers on the three green and two white ones,
and similarly let X2 be the corresponding sum on the three
red and the same two white ones, then X, and X; may be
thought of as two variables having two out of a total of five
causes of variation common to both.

In general, the resultant effect of the first system is

X1 =x+z,
and that of the second system is
X2 =y + 2.

Inasmuch as each observed value of X; and X3 has a common
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component, i.e., the effect of the two common causes, we¥:
naturally expect a certain relationship between the valu
X; and X: in successive operations of the two systems.
Now the correlation coefficient ry,y, between Xj and .l
a measure of this relationship; and since these two sy
of causes obey all the laws laid down for the general as
Paragraph 7, we have merely to set / = 2, m = 3,andw b

2
2+ 3

Iy x, = = 0.400.

The observed correlation coefficient between Xi ant.
in one observed set of 500 pairs of values was 0.422, gt
rather close check on the expected value o.400.

5
.
oY O

F1c. 8o.—Two Systems Having Two Causss 1x COMMON.

Fig. 81 gives the scatter diagram and lines of regresgi:
for these. 500 observed values of X; and Xo.

. Practical Significance~—In Chapter IV attention *
directed to the fact that the quality of material mut
expressed in terms of physical characteristics which ar
ieneral,\ not independent one of another because we 40
P:'I(());‘;rtti}el: Olfngegf.ndent ‘ultimate .quality Characterist.ics ‘.
nection the im Ing which mak-e it what it is. In ths CL‘;
characterisg: portance of considering not only the qua]‘{

ristics that are used in expressing quality but ¥

the relationshj
1ps : e &
now i ps between these was emphasized. We

.n a POS1t] .
position to see more clearly the reason for so d
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Let us consider first the simplest kind of a case in which
we have a product with two quality characteristics, X; and
Xz, Itisapparent that simply to specify that the two quality
characteristics should be controlled about the averages X,
and X, with standard deviations o; and o> does not place the

5 0 3
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I N

)
5
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X

Fie. 81.—ScarTeEr D1aAGRAM aND LiNEs oF REGRESSION FOR §00 OBSERVED VALUES.

same requitement on the constancy of the inherent quality
of the material as to state that these two properties shall be
controlled in the way just indicated and in addition that the
correlation between them shall be, let us say, homoscedastic
and linear with a coefficient of correlation r. In the second
form of specification in which the nature of the correlation
between the two characteristics is specified, we have intro-



228 ECONOMIC CONTROL OF QUALITY

duced certain restrictions on the quality of the matr.
that the two characteristics must have a common
source of an amount consistent with the causal interpret
of r outlined above.

Passing to the more complicated case where the g..
of the material is specified in terms of m quality characte”
Xy, Xo, ..., Xi,..., Xm, there is a corresponding in
tation of the correlations which becomes of importance
consideration of ways and means of specifying the qua-
materials. It is beyond the scope of our present disc
to do more than call attention to some of the recent de
ments in statistical theory indicating possible causal
pretations of certain inter-relations between all the p+’
the m variables measured in terms of the correlation:
cents. For example, it has been known for sever al yes"
four variables may be thought of as due to one genera] *
factor plus four specific non-correlated factors when

Tiol34 == I13T24 = T14lo3.

T. L. Kelley ! has recently given an interesting discv
the causal significance of inter-relationships of this Cha,
Such work suggests an avenue of approach to t -

problem of specifying quality in terms of those .
which make it what it is.

9. Interpretation of r in General

The correlation coefficient is often used as 2 me
relatlox.lship when the condition of constancy of c2U5¢ e
‘not satisfied. This is particularly true of tir}rrle series: "
consider one simple example in sufficient detail © s Q
the sampling distribution for such a coefficient of cort,
not necessarily the same as that discussed above, 2"

above interpretati l
1on of 7 as a measu nes

. re of on

ation does not apply. comm

* Cr ; ; s
0ssroads in the Mind of Man, Chapter 111, Stanford Usivers'®’ pre
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For this purpose we shall use an example given by Yule ! in
his presidential address before the Royal Statistical Society in
November, 1925, The data are given in Fig. 82 and show the
apparent relationship between the number of marriages in the
Church of England and the decrease in the standard mortality
rate over the same period. In this case the observed value of
LA Y I .

Needless to say this value of » may be thought of, as in
Part 11, as a summary presentation of the observed pairs of

® STANDARDIZED MORTALITY PER
. THOUSAND PERSONS

780
e CHURCH OF ENGLAND MARRIAGES 1
PER THOUSAND MARRIAGES

o

- 740

-1 700

- 860

- 620

TAanTA®D J€D W mTa.
-

i 1 I 1 I | I — 1
870 1880 1890 1900 1810
YEARS
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RER THOUSAND MARRIAGES

Fic.. 82.—FExaMPLE oF o NoNsENSE CORRELATION,

valuee. For example, an assumed line of regression would
=v.)ve the statistic ».  However, one is led to agree with Yule
“*a* *here is no causal relationship between the two quantities
% an i Fig. 82, Even if there were, the interpretation of »
2+ a measure of commonness of causation in the sense of the
t*rv1us two paragraphs would not hold.

Y cwow Correlations between Time Series,”” JFournal of Royal Statistical
Tewes U INNNIN, pp. 1640



CHAPTER XVI

SAMPLING FLUCTUATIONS IN SIMPLE STATISTICS—
GeENERAL REMARKS

1. Two Phases of Distribution Theory

Starting with the simple problem discussed in detal:
Chapter XIII of Part IV, we have noted that there are ™
phases to the theory of distribution.

A. Mathematical Distribution.—Given a discrete unives
it is theoretically possible to set down all of the ways in Wil
one may draw therefrom a sample of size # just as we didint
case of the simple example discussed in Paragraph 5 of Che:
ter XIII. Tt is then possible to calculate any given statiscl
any one of the N possible samples. The fundamental ni®
of the problem of determining the mathematical distributt
of a given statistic may then be represented schematically
in Table 39. The first column of this table is supposed tos#
for the V possible different samples. Obviously, s stand v
the value of the ith statistic for the jth sample, the permu
column of values corresponding to any statistic 6; represenfiii
the distribution of possible values of that statistic.

Th§ problem of determining the mathematical distribut
of a given statistic 6; is that of finding the distribution &
respondmg to the NV possible different samples. This patt’
the work, it shoul.d be {loted, is purely formal or matﬁemati[fﬁ
From a logical viewpoint, this table has nothing to do *
the universe in which we live until we have connected it"
In some way or other with reality. This we shall now do.

B. Objective Distribution—~We may think of the equatio
COI}U’OI (58) as defining the universe of possible values of Xl
which we may select all possible different sets of samples’

230
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size 7 just as we have done above. Strictly speaking this is
true only when (58) is discrete. If it is continuous we can, of

course, calculate the relative frequency of occurrence of a sta-

tistic within a given interval.

TasLE 39.—ScHEMATIC oF DiSTRIBUTION OF STATISTICS

Sample | Statistic Statistic .. Statistic B Statistic
o, O, .. o; .. 0,
1 O (P <o 941 S 651
2 012 O3 s ;2 s Oz
i 81] 82]‘ et] ea]
N [SIN N Oin Oy

In a similar way, it should be possible to calculate mathe-
matically the distribution of any statistic for a sample of
given size drawn from such a universe of possible effects. Up
to this stage, the procedure is, as before, purely mathematical.
At this point we make use of the postulate of control previously
discussed in which we assume that there exist constant systems
of chance causes such that the observed distribution of effects
approaches in the statistical sense the mathematical distribution
function. It does not appear feasible to justify this assumption
other than in an empirical way as we have tried to do in Parts I
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and 1II. The comments of Dodd' again become relew
Whether one chooses to call a mathematical distribution ap:
ability distribution or not would seem to be a matter of ch:
The mathematical distribution itself, as any mathemat
formula, merely becomes a tool in the hands of an ey
mentalist.

It is essential therefore that in all that follows we carefi
keep in mind the difference between the mathematical theon
distribution and the physical theory of distribution whid
would appear must rest upon the assumption that the la
large numbers is a law of nature.

2. Importance of Distribution Theory

Again let us return to the simple problem discusst:
Chapter XIIT of Part IV. I think that most people would#:
thz}t if they were to draw samples of four from an experimer:
universe such as described in that chapter, they would g’
statistical limits the distributions shown in Fig. 57. I doct
h9w§ver, that many of us would have much of an idea howt
distributions of standard deviation, mean deviation, skewre
and flatness, would look in such a case until we had g
thr.ough. the mathematics of distribution as was done the
This is just the kind of situation that the engineer of cont
faces when he considers the problem of predicting what
may expect to get in the future based upon an assumed equatl
of conFrol of the type (s8).

It is ol')\fious that the reasonable way of predicting und
such cond‘ltlons, assuming the existence of the law of I
numbers, is to make use of mathematical distribution the®
such as th.at briefly discussed in the previous chapters.
;if:rSIOn into the field of mathematical distribution thet"

ever, has been a sort of pleasure trip in which stoppe
to look at a few things which in th Dt state of o v
edge appear to be of mmedinre oo Srate of our K10
et car ¢ of immediate practical interest. It is ¥

» that we take another look at this field for the purPO"f

* Loc. cit,
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of getting a little better picture of the theory of mathematical
distribution as a useful tool.

3. Mathematical Distribution Theory—Method of Attack

Given the problem of determining the distribution function
of a given statistic © for samples of size # drawn from a given
universe, there are, in general, two methods of attack depending
to a certain extent upon whether the universe is discrete or
continuous. One of these methods consists in finding the exact
mathematical distribution function through the use of integral
calculus. The other, already illustrated in the previous chap-
ters, consists in finding merely certain moments of the dis-
tribution function.

As a simple example of the exact method, let us consider
the problem of determining the distribution function of x where
x = x; + xo. Furthermore, let us assume that values of ¥, and
x2 are normally distributed about zero.

One method of finding the distribution of ¥ is to fix on a
definite range, say x to x + dx, and then to find the total
probability of the occurrence of all possible combinations of
*1 and x; which will yield a value of ¥ within the prescribed
interval. The distribution function of x thus obtained will be
the one desired.

The probability that xy lies within the interval x; to x; + dx
at the same time that xo lies within the interval x; to x5 + dxe
is given by the expression

Fi% 2:22

! 2oyt dxs

1 .1
P —_—— 2""24‘(1

= — £
o Voar oV ar

Having fixed on a value of %, and x being initially fixed,
the value of x, is of necessity x — x;.. Hence we may write

I = I _(z—=)?
_ 20',2d — 2032 dx
== %1 2
P (5} \/2# 0'2\/2‘"' ’
which for a proper choice of dx; and dxz is the probability, to
within infinitesimals of higher order, of pairs x: and x, which

yvield a value of ¥ within the interval x to x + dx. When x,
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is allowed to take all values between — o0 and + o ani;
is made to approach zero, we see that the sum of terms i
approaches the total probability that xi + x lies within+
prescribed interval.

Hence the total probability P(x)dx that the sum %+
lies within the interval x to x + dx is by definition

z1 =+ 1 ﬂE_*_(:,,__,“)z) 1 __'_:r’_
e 2\oy2 [-2% dxydx = ——————¢ 2000
x

Px)dx =
L =—® . \/(0’12+°‘22)2“

o102

since dxe — dx as dx, — o. '

Thus we are led to the well-known result that the:
tribution of a sum of two variables, each of which is nom
distributed, is normal with a variance equal to the sumo':
variances of the given normal distributions. This method=
be extended to a linear sum of any number of variables. W
taker and Robinson! show how through the use of Fourt-
Integral Theorem it is possible to obtain the distributi.

function of a linear function of deviations in a more el
manner.

If_ one can obtain in some such way an exact distributt
funct{on, it is theoretically possible to obtain the integral of
function over any given range, either exactly or by quadﬁ“‘l“f
methods.

As an illustration of the modern mathematical tools 4
able for finding the moments of the distribution of a statis
let us consider one? method of finding the moments of ¢
mean of a sample of # drawn from any discrete universe.

Assume that the universe is defined by s different yalues

X],Xz,... ,Xz‘,.. .,AXs.
the relative frequencies of which are

) Pu, P2, . PN
respectively. Y » P P

!Loc. ci
Semi_I(::; a(;{t., P- 168, See alst? the very interesting papers, “Application of The!
Dec. 31, 1 s to the Sampling Problem,” C. C. Craig, Metron, Vol 7 Yoo

> 1925 PP- 51-107, and *Sampling When the Parent Population is of Peat®

TypeII1,” C. C. Craig, Bi ;
> LI SN s 2 103
V. Romanovsky, lgoc. ;(fl:te rika, Vol XX1, Parts 1 to 4, Dec. 1929, pp. 287
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Let the frequency of
X;,Xg,...,Xs

in a sample of # independent trials be

S fos s s

where, of course, some of the f’s may be zero.
Then our problem is to investigate the distribution of

2 fiXi
£ i=1
X - n

in possible sets of 7 trials.

Denote the average and higher moments of the distribution
of the universe by

X, Moy By o v vy By e v n s
and of the distribution of the mean by
Xz, Pogs Bags e ooy bigs - - -5

where, in each case, the moments are measured about the mean.

What we shall do is to express the px’s in terms of the p’s,
which for a given universe are known constants. Since the
mean value of X in an indefinitely large number of samples is
X, we may replace Xz by X in finding expressions for the
higher moments of X.

Romanovsky has developed an elegant and simple way of
obtaining these moments as follows: Consider the function of ¢

defined by
8 t = n
V= [ N pger ]
i=1

t < t. % 1 n
S(X1—X) (XX (X, ~X)
= [pleﬂ( ! +p2€n : + ... psen ¢ ] .

By the multinomial theorem we have

! 2 x-%7h L= 2 Lxe-7 1,
U= zk___n____——[plg”( ! ] [pzen ] SN [pst’n ] ¢
T fal . fs!

! s -
¢ (X —
’prf1 p. .. Psfse‘; MEAS TR (a)

=y__"®
—Efllle...fs. i=1 )
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the summation being extended to all f’s whose sumis».

Now the factor
71'

. /
AT

is the probability of getting in 7 trials i Xi’s, /o
fs Xs’s. Or, in other words, this factor is the probabi
getting an X constructed in a particular way. Also for
ticular construction of X, the exponent of ¢ is

1 ch L Psl'

S fi(Xi — X) = (X - %),
i=1

N~

Making use of this fact, we have, on differentiat:
r times with respect to # and then setting ¢ = o,

d U 32! =
22) oy hph. . p (XX
<d; >t=0 Pl ARl R B

This is true since each differentiation of a particular
the sum (2) merely multiplies this term by (X — X)-
By virtue of the way in which the right-hand side of
been built up, it is clear that this sum is precisely t
moment .o of the mean about its mean value. The ™
of obtaining any moment of X is then a very simple o

facilitate the work, set
s t
w — Epie;(x‘_m.
Then =
U = wn,
Then the zeroth moment of X is

(U)¢=o = (P1+P2+ e DL

_ [4U 1S lx-% 4
Hig = <7z>,=o= ["wnﬂ S e (XX

\ =1

I

Zp(Xi- %) = o,
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_ <£’2_U
Mi B ar? ),=0

n—1¢ t 3
W ~(Xi—X) < n—1 __
=[— T pie” (Xi—X)24—u" 2<Z pee
n n 1=1

=1

tixim _\2
(X X)(Xi—X)> ]
t=0

= Inp-xp =t
Ny n

1
In an exactly similar way, it can be shown that

n— 1) Pt
%2 and g = 3—(—'7?——“22-5-;15.

p‘3f =

Denoting by Bix and B.z the skewness and flatness re-

spectively of the distribution of the averages, we have by
definition

X pfz}_(? n4 p.2-5 n
P 3n—1) , pm\7® _ B2—3
B2X=F2;2=< 3 M2+;3>}_L2—2——n—+3"

where B, and B2 are the skewness and flatness respectively of
the universe. Of course it is possible, by the above method,
to go much further than this and to find expressions for Bix
of any desired order i. However, our present purpose is merely
to illustrate one of the modern methods of finding the moments
of the distribution of a statistic.

A. Some Numerical Results—To fix in our minds the sig-
nificance of the above results, let us use them to calculate the
statistics of the universe of averages, column 3, Table 25.
We get

Xz = X = 2.500000000

_ o 11180339887
= ) = 0.55901699435
o
Blf = % = ; = Q0
— 1.64 -
[32}_(=BZ 3+3 4 3-|-3=2.66ooooooo.
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These results obtainable through the use of the finii
moments of the universe without going through the deul
getting the distribution in column 3, Table 25, are thes
to the number of places shown as the results obtained dr:
from the distribution in column 3.

In this same connection, it will be interesting to cor
the values of mean variance o and o, obtained from (i
the distribution of variance in samples of four drawn fror
experimental universe of Chapter XIII with that calal
directly from column 4 of Table 25.

From (68) we get

—_— n—1

o7 = — 02 = 3(1.25) = 0.9375

2 [, _
o= N — 1B et g)

n n

1.2 . T
——;5\/%[3(1.64) 4 + 3] = 03125 Vo75(3:9)
= (0.3125)(1.714642820) = 0.5358258812.

'I.'hese results check to the number of places shown t
obtained directly.
di B C?mp'“" ison of the Two Methods—Whenever the®
1str1b‘ut10n of.a statistic can be found by integration, we*
more information than can be provided by the knowledg"
;my nl}llmber of moments of the distribution of the same st
kn other words, v.vhen the distribution of a statistic ¢
s e fanction of ©;, the probability that the st
be fcfa 3 on h"aluis lying between any given Jimits ¢
und either direct in i ad#
methods. y tegration or by qu
On : et
of 6 a:hiother hand, if only the moments of the distrid
the 'Ldisteribno.w n, we can never be quite sure what the o7
utio i
becomes lar. enbls. For e?‘ample, Biz — o and Bex 3"
ge but even if we actually had Bix =°°
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Bz = 3, we could not infer that the distribution of X was
normal; for obviously the distribution defined by

X: —1 o 41
S I 4 I

has! B, = o, B2 = 3, Bs = 0, which are identical with the first
three betas for a normal universe, although this distribution
is far from normal. As a matter of fact, it would be necessary
in this instance to go as far as the sixth moment before we would
discover any difference between it and the normal law function,
so far as moments are concerned.

Suppose then, that the universe we started with had a form
such that the distribution of means actually was identical with
the simple one given above, but we had calculated merely the
moments of this distribution by the above method. We would
find that the first five moments were identical with those of the
normal law, and we might perhaps be tempted to infer that the
distribution of means was normal, although, as we have seen,
such an inference would in fact be far from the truth.

4 Mathematical Distribution Theory—Important Results

Looking back over the work in the previous chapters, we
see that distribution theory provides us, in certain instances,
with distribution functions of a given statistic © of the form
fo (8,1) such that the integral of this function for a given range
gives us the probability of occurrence of a value of & within
that range. Illustrations of this type are the distribution func-
tions of average, standard deviation, and correlation coefficient.

Similarly, we may have distribution functions of a ratio z
between two statistics ©; and ©j such that fz (2, #)dz represents
the probability of occurrence of a value of z within the interval
2toz + dz. This kind of function has been illustrated by the
distribution of the ratio of the error of the average to the
observed standard deviation.

1 Of course, uncorrected moments are used here.
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The other important form of distribution to be not
that of the distribution of two statistics 6; and 8j, sutt
fo,, 0, (0i, 6j, 7)d6:id0; represents the probability of thed
rence of values of ©; and ©; within the rectangle ©; to6i-
and 6j to 6; 4 46;.

It is important to note also that the distribution fumi!
of a given statistic depends upon the functional form ¢!
universe from which the sample is drawn, and that, in g
the average or expected value © in samples of size #1300
same as the value of this same statistic for the univers.

5. Mathematical Distribution Theory— Present Status

Any summary of the status of distribution theory ¥/
will likely be out of date before the ink is dry. Here, wl
ﬁled of modern physics, progress is so rapid and along %
different lines that even those actively engaged in extendint’
theory find it difficult to keep abreast of all that is being "
A few brief remarks, however, may be of service to the enge
who cares to become acquainted with some of the imp™
recent contributions,

The.exact distribution of means of samples from 2"
populations dates back at least to the time of Gauss, whet
the exact distribution of variance and standard deviatio! i
found in 1915 by R. A. Fisher.! In the same article B
gives the exact distribution of the correlation coeffice
samples from an indefinitely large normal population. 1
iame a}uthor has‘since given the exact distributions ol

,* assuming a normal ul

tLoc. cit.

2“Th .
e Goodness of Fit of Regression Formulae and the Distribution of R

sion Coefficients,” L
1922, Pp. 597-612. Journal of the Royal Statistical Society, Vol. LXXXV, P

N 3“The Distribution of the
o 3~4, 1924, Pp. 32g-332.

“The General Sam

Proceedings of the Royal

Partial Correlation Coefficient,” Metrot, Vel

pling Distribution of the Multiple Correlation Coeffi®
Society, A, Vol. 121, 1928, pp. 654673,
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Pearson,! Romanovsky,? and Wishart 3 have also studied these
same distributions.

In 1925, Hotelling ¢ gave the distribution of the square
of the correlation ratio subject to the conditions that the
variates are not correlated, that the population is indefinitely
large, and that the variates are normally distributed.

Exact distributions of means for certain of the Pearson
type curves other than the normal have been given by Church,’
Irwin,® and Craig.”

Important contributions to the theory of distribution
through the use of moments have been made by Pearson,®
Tchouproff,? Church,® Fisher,!! and Wishart.!2

The list of references given in the last few paragraphs is
by no means complete. Instead, it is selective and is intended
to indicate the rapid development!? that is going on in this field.

! “Researches on the Mode of Distribution of the Constants of Samples Taken at
Random from a Bivariate Normal Population,” Proceedings of the Royal Society, A,
Vol, 112, 1926, Pp. I-14.

*“On the Distribution of the Regression Coefficient in Samples from a Normal
Population,” Bulletin de I' Academie des Sciences de PU. S. S. R., 1926, pp. 645-648.

*“The Generalized Product Moment Distribution in Samples from a2 Normal
Multivariate Population,” Biometrika, Vol. XXA, 1928, pp. 32—52.

*“The Distribution of Correlation Ratios Calculated from Random Data,”
Proceedings of the National Academy of Science, Vol. 11, No. 10, 1925, pp. 657-662.
Tables of the integral of the function given by Hotelling have recently been given by

T. L. Woo, Biometrika, Vol. XX1, 1929, pp. 1-66.
* Loc. dit.

* Loc. cit.
"Loc. cit.

*“On the Probable Errors of Frequency Constants,” Biometrika, Vol. II, 1503,
PP- 273-281 and Vol. 1X, 1913, pp- 1~1o. “Further Contributions to the Theory of
S""j‘” Samples,” Biometrika, Vol. XVII, 1924, pp. 176-179.

) *“On the Mathematical Expectation of the Moments of Frequency Distributions,”
Bivmetrika, Vo, XII, pp. 185—210.

1 Loc. cit,

" “Moments and Product Moments of Sampling Distributions,” Proceedings of
u?zd‘a‘n Mathematical Society, Vol. 30, 1929, pp. 199-238.
\ A Problem in Combinatorial Analysis Giving the Distribution of Certain
{oment Statistics,” Proceedings of London Mathematical Society, Vol. 28, 1929, pp.
?99—32.1; Proceedings of Royal Society of Edinburgh, Vol. XLIX, 1929, pp. 78-gc.
“Rider, P, R, “A Survey of the Theory of Small Samples,” dnnals of Mathematics,

:ﬁl' 31, Noy, Pp. 577-628, October, 1930. An excellent bibliography is appended to
IS article,
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6. Importance of Distribution Theory—~Further Commens

We are now in a position to consider a little more critial
than has been done the significance of some of the rew
work on the mathematical theory of distribution as it bex:
upon the theory of control.

Assuming that an engineer is going to make use of statisic
theory in helping him to do what he wants to do, it ist
natural that he must sooner or later express what he wans’
do in terms of some distribution function of a given quali.
which he is to take as standard; that is to say, he must spe
as a standard of what he wants to do some distribution funct
typified by the equation (58) of control

dy = f(X‘l )‘1) XQ, e e .y xq,', ey Xm’)dX.

Assuming the existence of a constant system of ca
!m.vmg as its objective statistical limit this equation of contt
1t 1s necessary to set up limits on one or more different statist:
of samples of size n. In many cases the control engineer
also desire to set up limits upon the allowable variation i !
itself and in the fraction of the observed values of X whici:
beyond some particular pre-assigned value.

Let' us consider first the problem so often met in practii-’
Of.set_tmg a limit X + s on the variable X such that®
EEJ:CUV(? }I:fOt;?.bility that an observed value of X wil ¥

ween this limitt . 7 :
average and standardacrllgvi:—tizq ol?' tph, th:re X and Ufar;(:;
To do this it i e universe (58 oL 40

$ necessary to find the value of # from the equa®

P =_ﬁ O IR NS RS Mt e

X +tor
EXpressed
establishing th
quite simple.
frequency distri
SImple as 1t ap

in this general way, the formal problen’
e value of ¢ for a given value p appears to?
Wh_en, however, we consider the theor
butions, we find that this problem is 0ot
pears when the valye ¢ corresponding t ‘

1 The sa 1 : .
me discussion obviously applies to the negative tail.
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chosen value of p is greater than three, at least for most of the
standard functions involving not more than four parameters.
In fact, certain of these frequency functions may be found to
have negative frequencies for values of X outside of a sym-
metrical range something ! like X + 30. This is true of the
second approximation (23) for certain values of k.

This fact is significant because it shows that when an en-
gineer attempts to set some particular limit X + o such that
the objective probability of an observed value falling beyond
this limit shall be p (where p is perhaps of the order of 0.001
or less), even the solution of the formal problem may be dif-
ficult.  Of course, he might appeal to experience, observe the
value of X a large number of times under what he assumes to
be a controlled condition, and in this way try to approach as a
statistical limit the exact objective frequency distribution to
which any of the customary theoretical distributions would
simply be an approximation. One does not need to go far' to
see, however, that such a procedure is not, in general, feasible
if for no other reason than because it would require a large
number of trials in order to justify the establishment of such
3 limit in anything like a satisfactory manner—it being true,
of course, that one could never be sure of results obtained in
this way.
~ Passing to the more general problem of establishing sampling
limits on any statistic © in samples of 7 drawn from the universe
(58), it is of practical importance to note that \leth but few
exceptions the exact frequency distribution function of such a
Statistic is unknown even when the universe (58) is continuous.
When the universe is not continuous—it never is in practice—
¥e must be satisfied with a knowledge of the moments of the
distribution function of the statistic expressed in terms of the
Moments of the universe (58). For example, in the previous
Paragraph we have spoken briefly of a metho.d of expressing
3y moment of the average of a sample of # in terms of the

" This point is emphasized in the writings of Edgcwortl'l an.d is touched upon in
vanous places in Bowley’s summary of “Edgeworth’s Contributions to Mathematical
fatistics,” published by the Royal Statistical Society, 1928
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moments of the universe. Ve have seen that to ks
specify the moments of the distribution of averagesinw
of size » beyond the fourth moment requires a knowk;
moments of the universe higher than the fourth.

This is significant from an engineering viewpoint &
it shows that if we are going to try to establish sampln’
even on such a simple statistic as the arithmetic mean®
comparatively high degree of precision in respect to
tive probability associated with the tail of this disti
we must certainly be in a position to specify the mone
the accepted standard (58) of control beyond the i
something that it is obviously very difficult to do.

What we have said in respect to the establishnt
sampling limits on the average is all the more true i
attempt to establish limits on other statistics such, fore®
as the variance. This follows from the work of Tchoup™
Church ! sh.owmg that the equation relating the fourth?*
of the dls.trlbutlon of variance in samples of # to then”
of the universe involves the eighth moment of the ui®
to oTb}tlam v.vhxch 1s certainly not feasible.

Chere is anothe*:r reason why it is difficult to attd"
EYCCISlon In the estimate of the probability associated w
Psrzg'l metrlcal. range as we shall now see. Several timé’

ious . o '
samplin S?CUO“ we pointed out the significance of the fac:;‘
diﬂ'eprentg frl‘ om a discrete universe may give results ™
£ om those obtained when sampling in a Slmﬂﬂ,
rom a continuous unj is 1 i -
b werse. This is particularly mp

€ecause we seldom ﬁ . . (Of
th see fit to classify measurements 1",
an ten to twent 1 : g3l
introd ¥y cells, and it does not appear fe®
roduce moment i : fyof
di corrections which allow us to go
lscrete to the Contin . dearfi
precision. uous case with a known 0%
We ha ; ;
.o Ve const i
distribution of the dered at some length the approaclh ,
size irr : average to normality with increase ¥
e€spective of th g
b Of the parent lati harad!
Y the first two &s of th Ppopulation (58) as ¢ ;
of this distribution. The comp

b Loc. cit.
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recent work of Holzinger and Church ! shows that the dis-
tribution function of averages from a U-shaped universe is not
even unimodal for small samples and appears to approach uni-
modality and symmetry only for samples of the order of fifty
ormore. In fact, they conclude that the distribution function
of averages of less than fifty cannot be satisfactorily repre-
sented by a continuous curve. In such a case we must rely
upon the application of the Tchebycheff inequality as we have
done.

This kind of evidence indicates the nature of the difficulites
involved in trying to establish asymmetrical limits on the
sampling fluctuations of any statistic and it helps us appreciate
the significance of the powerful Tchebycheff inequality in the
establishment of symmetrical limits with at least a known upper
bound to the error that we may make in the estimate of the
probability associated with these limits provided only that we
know the two simple statistics X and ¢ of the universe.

The fact that we do not, in general, know the exact distri-
bution function of measures of correlation other than the
correlation coefficient in terms of the specified correlation in
the universe precludes the use of these statistics in that we
cannot establish their control limits. For this reason, we have

not discussed the mathematical distribution theory for these
statistics,

' “On the Means of Sam

gt ples from a U-shaped Population,” Biometrika, Vol XX-A,



ParT V

Statistical Basis for Specification of

Standard Quality

The Establishment of Economic Toler-
ances and Standards of Quality Involves
the Use of Three Simple Statistics



CHAPTER XVII

DesieN L IMITS ON VARIABILITY

1. Tolerances

Since all pieces of a given kind of product cannot be made
identical, it is customary practice to establish allowable or
tolerance ranges of variability for each of the measured quality
characteristics. For example, if a shaft is to work in a bearing,
we must allow for a certain clearance. In such a case the
specifications usually require that a shaft have a diameter not
less than some minimum nor more than some maximum value,
and that the diameter of the bearing must not be less than some
minimum nor more than some maximum value. An illustration
taken from practice is:

Maxi limit o. inch
Diameter of Shaft 'z:u(.lmum .1rn.1 752 .mc
Minimum limit 0.7496 inch

Diameter of Beard Maximum limit o.7507 inch
i
ameter o BEATNE | Minimum limit o.7502 inch

Assuming that the diameters can be measured accurately to
the fourth decimal place, we see that the minimum and max-
imum clearances are ©.0002 inch and 0.0011 inch respectively.

The tolerance range for a given quality X is defined as the
range between the maximum and minimum tolerance limits
specified for this quality, Fig. 83. Sometimes these limits are
called tolerances. Perhaps more often, however, these limits
are given in the form X; = X — AX and X» = X + AX, and
in this case AX is called a tolerance. To avoid any misunder-
Standlng that might arise because of the apparent lack of unij-
formity in the definition of tolerance we shall use the terms

249
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tolerance range and tolerance limits wherever necessary ton]
the meaning clear.

2. Tolerances Where 100 Per Cent Inspection Cannot Be M

Where the quality X can be inspected on every pi
apparatus by some go-no-go gauge, it is easy to separate proc
into two classes—that which does and that which does nit:
within the tolerance range. If, however, we are testing’

TOLERANCE RANGE———J

QUALITY X

MINIMUM  LIMIT MAXIMUM ¥
X X2

Fic. 83.—RELaTIiONSHIP BETWEEN ToLERANCE RaNGE aND TOLERANCE L

some quality such as tensile strength, it is obviously not pos
to make 100 per cent inspection to see that the tolerance s
In this case our information about a lot of N piet
product must be obtained from tests made on a sample?®
pieces. The usual practice is to establish tolerance It
for the quality X and also tolerance limits for the fre
defective in the lot, or, in other words, the fraction of
total. number of pieces of product in the lot having 2 qual‘."
X lying outside the tolerance limits for this quality, Fg -
[.JSua_IIY zero is taken as the lower limit for the fraction &
tive 1n t.he lot. Since our information must depend up”
samp_le, it 1s also necessary to establish tolerance limits o’
fraction defective found in the sample, the lower limit b
zero.  These two kinds may be thought of as lot and s
tf’leranc683 and they are related one to the other throuf
risk associated with the given sampling plan as will be I
cated in Part VII, thus making it necessary for the sa"
tolerance to depend upon the number 7 in the sample.

3- Importance of Control in Setting Economic Tolerance

In general, a tolerance i
> range on a quality X should b
small as possible. If it is too small, Eowev}:zr, the rejec”
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will be excessive. In other words, the design engineer tries to
balance the rate of increase in value of reducing a tolerance

range against the rate of "increase of cost of such a procedure
because of increased reiections.

-———— TOLERANCE RANGE ——»]

QUALITY X

MINIMUM LIMIT MAXIMUM LIMIT
X) X2

TOLERANCE RANGE

FRACTION DEFECTIVE

1 |
LOWER LIMIT UPPER LIMIT
Py P2

Fic. 84.—Two SETs oF ToLERANCE Limirs Necessary WHEN 100 Per CentT INspEC-
TioN Caxnor BE MapE.

From what has previously been said, it is obvious that, if a
design engineer knows that the quality X of a material or

w— CONTROLLED DISTRIBUTION
dg =1 (X, A 12! ---ulm')dl

PROBABILITY OF REJECTION P

T
MINIMUM LiMIT MAXIMUM LIMIT
X X2
QUALITY X

Fie. 85.~ToLeraNCcE oN FractioN Derective ForR CONTROLLED Quatrty,

Prece-part entering into his design is statistically controlled in
accord with some probability distribution such as illustrated by
the smooth curve, Fig. 85, then he knows the expected number
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PN of rejections that will occur in the production of a nunk
N of these piece-parts for a given set of limits. Only uni:
these conditions of control is it a comparatively simple proces
to find an economic tolerance range.

Hence, to set an economic tolerance range it is necessary i
the qualities of materials and piece-parts be controlled.

4. Tolerances where 100 Per Cent Inspection Cannot be Made-
Importance of Control

When 100 per cent inspection cannot be made, we new
know that the tolerance on a quality X is being met, e
though it is met in the sample. Later we shall show thatan
inference about what exists in the remainder of the lot for,
what was found in the sample depends entirely upon what
assume about the lot before the sample was taken, and thatt
significance of such an assumption depends upon whether¢
not we assume that the product is controlled. If, hower
instead of trying to use the double tolerance, described in Pa
graph 2 above, the design engineer makes use of raw materi
arlld piece-parts previously shown to be statistically controllé
with accepted expected values and standard deviations,
need onl.y specify that the qualities of all materials and piee
parts going into his design be controlled with accepted aver#
values and standard deviations.

Hence we see that it is very desirable to know that the quall

of a product is contolled when it cannot be given 100 per ("
tnspection.

5 Tolerances for Quality of Finished Product in Terms |
Tolerances of Piece-parts

Let us consider a very simple problem. Assume that ¥
engineer wishes to design a circuit containing 7 differe®
pieces of standard apparatus,

such as relays, transforme®
and so on. ¥Ss

the overall Sr:sf,)ip ose th'{.lt he Wis,hes toseta tolerance rang¢®
e stance in the circuit and that the tolerat®
limits on the resistances of these 7 different pieces of appari
are respectively Ry and Riz; Roy and Ras: ...: Rip and R
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.+ 3 Rmi and Rmz. What shall the engineer use as the tolerance
range for the overall resistance?

The answer to the question is obviously

Riz+Re+...+Riz+.. .+ Rpa—Ri1—Re1—...—Riu—...—Rm,
Ry Ri2
Riy Ri2
| }
Rmi Rma2

Fic. 86.—ToLERANCE RaANGEs oN OBsERVED DisTrIBUTIONS.

if we hold to the definition of a tolerance as the range between
the maximum and minimum possible values of the quality.
Before accepting this answer, however, let us consider the
problem further. ’

Oftentimes we find that the previously observed distri-
butions in the m different resistances are somewhat as indicated
by the smooth distribution curves in Fig. 86. We see that in
some instances the tolerances are such as to cause rejections
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in both the upper and lower ranges of the resistance asin i

case of the quality R;. At other times the condition mayt
such as indicated for the resistances R; and Rm.

When the number m of different resistances is large, it
obvious that the number of times that we may expect to g
combination of m resistances chosen at random (one e
from the s different kinds of resistances) that will add -
either the maximum or minimum limit is very small inde:
The question arises, therefore, as to whether or not it is e
nomical to allow in design for an over-all tolerance range e
to the range between the possible maximum and minimv
resistances that may occur.

Let us consider this problem upon the basis of the assur:
tion that each of the m kinds of apparatus Is manufactur:
under conditions such that the resistances are controlled ab
average values

ﬁl,iz,. .. ,ﬁi, . e ,Rm,

with standard deviations

0.1)0'2)--~, o-‘l:,...,a'm.

For the sake of simplicity, let us assume that the resistan®
are normally controlled, or, in other words, that the distribu”
function for each resistance is normal. From what has pf‘f"E
ously been said, it would be quite reasonable to adopt t
tolerance limits

Ri = 303

on thc? z'_th resistance. If we adopted such a set of m tok
ance limits, and followed the practice previously described
ta.kl.ng the difference between the sums of the maximum &
minimum possible resistance as the tolerance for the sum'
the Tesistances, we would have a tolerance range such as t
schematically indicated in Fig. 87-a. Let us now consider o
sucl}\a tolerance range may not be economical.
. ressisr:arlly be shown, the expected. distribution of the'sum
ances chosen from the 7 different kinds of resista™
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as indicated above would be normal with an expected or mean
value equal to ZR; and a standard deviation

c=\/012+0'22+...+w2+...+am2.

Suppose that we assume, as a simple case, that each of the m
standard deviations 1s equal to, let us say, o1. It is obvious
that the standard deviation of the sum is

o = Vo,

Starting with these simple assumptions, we may easily draw
the frequency distribution function of the resultant resistance

TOLERANCE RANGE

—— 1

T
MINIMUM LiMIT Z-ﬁ‘ MAXIMUM LiMIT
IR, — 320; IR; '+ 3I60;
QUALITY X
(a)
o0
- 1 1 Y 1
MINIMUM LimIT _ IR; _ MAXIMUM LIMIT
IR; — 310, IR; —30 IR; + 30 IR; +3I6i
QUALITY X
(v)

Fic. 87.—ILLusTrATING ProrEr Way TOo SeT Limits.

for any special case. F ig. 87-b shows such a distribution cor-
responding to nine component resistances in the circuit or to the
tase m = g. For purposes of comparison, the additive tol-
trance previously described is also shown for m = 9. We see
At once that the practice of adding tolerance limits may be
uneconomical because the chance is relatively very small that
aresultant resistance would ever lie outside the limits R; + 3.

Having considered this simple illustration, we are in a
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position to discuss the general problem of setting overall k.
ance limits in terms of tolerance limits of piece-parts.

6. The General Problem of Setting Tolerances on Conirili
Product

As a perfectiy general case, let us assume that the qualiy
upon which we wish to set tolerance limits depends upon
qualities X1, X2, ..., Xi,. . . , Xm of m different piece-parts¢
kinds of raw material. Interpreted from the viewpoint
control, this means that we wish to set two limits on X whi-
will include a certain fraction P of the product in the longn:
We shall show how this can be done upon the basis of t:
assumption that each of the 7 component qualities are @
trolled about expected values

21,22,.. . ,Xi,. . .,)_(m,
with standard deviations

0, 020 0., 04, ..., Oy

subject to certain limitations.
Let us assume that we may write

X=F(X1,X2,...,Xi,...,Xm)-

Furthermore, let us assume that the quality X may be expandeﬁ

3 , :
ina Ta}_rlor s series so that to a first order of aPProximation W
may write

X=F(X1,X2, “on ,Xi,. . ,Xm) +a, X1+ ao xot.. . taixnit. L tan
where

X = Xy — X;
and ‘ g X

. < oF
a-‘ =
8X¢> -8

it being understood that X ; )
: i 1n th i f
possible values of the quality]X?. 1§ case Is any one ®
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It may easily be shown under these conditions that the
expected value X and the standard deviation ox of the distri-
bution of quality X of product assembled at random are given
by the following equations:

X=F(X1,X2,...,)_(i,...,f(m)
. (82)

“x=\/ﬂ12‘712+d22°22+-.-+6112°'1 4+ ...t amPon?

No matter what the nature of the distribution functions
fi(X0), 2(Xs), . . ., £i(X5), . . ., fm(Xm), Equations (82) enable
us to write down the expected resultant quality X and the
standard deviation ox of this quality about the expected value
subject to the limitations already considered. Making appli-
cation of Tchebycheff’s theorem, we can say that the probability
Pi; that the resultant quality will lie within the interval

X + I0x
satisfies the inequality

I
Pioy > I—-ts-

For example, one can say with certainty that in the long
run more than (1 — 4) of the product will have a quality X
lying within the limits X + gox. In the simple case con-
sidered in the previous paragraph, where it is assumed that
Fhe distribution function for each of the 7 quality character-
Istics is normal, we see that the probability Psey is equal to
©9973. Itis exceedingly important from our present viewpoint
to note that so long as we know nothing about the distribution
function of each of the m quality characteristics, we can onl
make use of (82) in connection with Tchebycheff’s theorem.

¢ more we know about these functions, the more accurately
We can establish the probability Py,.

If the distribution functions of the 7 quality characteristics
are alike in respect to their second, third and fourth moments,
't may easily be shown that the skewness kx and the flatness
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B, of the distribution of quality X are given ! by the followi:
X
equations:

k
k=

2= 3
32X=B—m‘*+3

where k and B, are the skewness and fiatness of the dlsmbut]li
of any one of the m quality characteristics. Thus we seehﬂ::
under these conditions the skewness and flatness of the rw;l ar
distribution will be approximately fmrmal, even th(})l“g t}:
individual qualities are distributed in a way such that
skewness and flatness are appreciably different from zero &

ee respectively. . -
o Iil thl:e) more general case, where the distribution furi'clzloj.-‘
for the . different quality characteristics are not all al f?e:‘
may also be shown that the distribution of the resultant eft
X will approach normality 2 as m — . N

These results are of great importance as md1c.atl.ng t*
magnitude of the advantages that accrue from speleYmEYi‘r';
distribution of any one of the m qualities other than by sai"
that they shall be controlled about known average Val.ueSfW":'
known standard deviations. Even though the dist'rlbutlon uni
tion of X approaches normality as 7 increases, it is usually tr\L
in a specific case that it would be very difficult to charactf»’f:;
the functions of the m component qualities with such Preqshl;:
as to enable the determination of the probability Pie to Wit
let us say, 1 per cent. In other words, it appears that, ff‘:in“f
design viewpoint, there are many advantages to be gained”
specifying that the quality of ‘raw materials and Plece'Pa:
shall be controlled about known averages and with kno;
standard deviations, although it appears that the advant®
to be gained by trying to specify the functional formso"
controlled distributions and more than these two parametf'
of the distributions are offset by certain disadvantages.

! Compare with (63).
*See Appendix 1.
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Hence from a design viewpoint we conclude that the specifi-
cation of control should include the specification of expected value
Xi and standard deviation &; of any quality characteristic Xi.

We are now in a place to consider the more general problem
of designing a complicated piece of apparatus so that the
quality of the product will have minimum variability.

7. Design for Minimum Variability

Again let us assume that the resultant quality X is a function
Fof the qualities X1, Xo, . .., Xi, ..., Xm, or that

X=F(X],Xz,...,Xi,...,Xm),

and that we wish to make a product having an expected quality
X with minimum standard deviation ox.

We shall assume that the m quality characteristics are
controlled about expected values Xi, Xz, . - . , Xy, . . ., Xmwith
standard deviations ¢, 02, .. .,05, ..., Om.

Making the same kind of assumptions as in Paragraph 6

about the expansibility of the quality X by means of Taylor’s
theorem, we may write

Oy = \/a120'12+ ax’03* 4+ ... +ato? 4+ .. .+am20’m2’

X=FX,Xs,...,%...,%m),

where, as in the preceding paragraph, @; is a function of the
m mean values. Our problem now is one of minimizing ox
Su.bject to the restriction imposed by the last equation. This
Wl.ll.be recognized as a problem in the theory of maxima and
minima.  Expressed in terms of the Lagrange indeterminate
multnPlier A it involves the solution of the following m + 1
equations:

o(ex®) . of

oXi oXy

- L B (84)
X = FX, Xy, X4y . v, Xim)
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It may not be feasible to solve this set of m + 1 equatin
for the unknowns Xi, Xz, . . . , Xm and X because of theiran

SPECIES A
| — 1 L i I ! i 1. 1 1 1 1 L“
o [ 2 3 |4 5 6 7 sl ¢ 10 v 2 i
Ly X L2
SPECIES B
[ i [ l i 1 1 1 N n 1 1 g—)}
0 ] 2 | a3 4 5 J|e 7 s 9 10 u 2
Ly X La
SPECIES C
L L L L L 1 1 ! { L4J)”
e N 2 3 a4 5 6] 7 8 e 1o n ©
L X Ly
SPECIES D
| S—
) ; A 1 I 1 4‘\1‘1
S 7 & o 1o v 1 °
Ly x

L2

IIG. 88. I ICAIL ELAT E: V. T. NDARD
——1YP TwW X CT
R LATION BE EEN PECTED VALUES AND Sta

Deviations,
lexit initi ; '
%)nﬁnit); Ag.am 1t 1s possible that the solution may contain %
> OF Imaginary values of the X’s, Such solutions”
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obviously of no practical significance. We see that, in addition
to knowing that the qualities of piece-parts and raw materials
are controlled, i is essential only to know the averages and
standard deviations of the distribution functions of the component
qualities.

In practice limitations are often imposed upon the possible
magnitudes of the expected values of the m quality charac-
teristics other than those already considered. For example,
one or more of these quality characteristics may be properties
of material such as density, tensile strength, resistance, coeffi-
cient of expansion, and so on. Obviously, in choosing the
expected values in such a case, we are limited to the expected
values of the available raw materials, unless we develop some
alloy having the desired expected value.

Also, in practice, the choice of an expected value of a quality
cannot usually be made independent of the choice of its stand-
ard deviation. Thus in the case of a physical property of a
material there is, in general, some relationship between the
expected value of the property or quality and its standard
deviation. This fact is illustrated in Fig. 88 showing the
relative expected values and standard deviations of modulus of
rupture of four kinds of telephone poles. We see that, broadly
speaking, the standard deviation increases with increase in
expected modulus of rupture.



CHAPTER XVIII
SPECIFICATION OF STANDARD QUALITY

1. Standard Quality
We often think of aGtandard of quality as being either:

specified value Xs or a value X lying within some specit
tolerance limits X; and X2. If, however, we try to produce -
units of a given kind of product with a standard quality L

the best we can hope to do, as we have seen in Parts | and I}

Xg
]
<+ I
QUALITY X X. X2
QUALITY X
(@)
(v)

Fic. 89.—~Common CoNCEPTS OF STANDARD QUALITY.

{is to T . ) -y
‘1s to make a product whose quality X satisfies the equati®’
control

d_y = f(X, )\1, )\2, ey x,’:) ce, xm'), (;‘

wit.h an expected value X somewhere near the speciﬁed sta“d?ru
or ideal value X;as indicated schematically in Fig. 89-4: "
ilarly, if one dttempts to make a product all units of *
will have a quality within the tolerance range X to Xz, e®
usually end up, after having done everything feasible to “ttg}‘

constancy, by making a product whose quality will be 1;\

il

.

tributed as indicated schematically in Fig. 8¢-6. It is posisy“e
t}f}mhthe tolerance limits X, and X, will lie outside th b
of the curve (58) although this is seldom the case.z’;sé;‘ag

262
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{These standards are, as it were, iilggls.} "We may, however,
gain certain advantages by looking upon standard quality in
a slightly different way as being the distribution function
representing what we can hope to do in our attempt to attain
an ideal standard quality. This objective standard quality
distribution represents what we may expect to get when we
have done everything feasible to eliminate assignable causes of
variability in the quality. Hence, if we are to be able to inter-
pret the significance of observed variability in quality, it is
necessary to adopt or specify some such distribution function
to be accepted as a standard for each quality characteristic.
Then, iso long as the observed variability in quality of # pieces
of product may be interpretéd asia sampling fluctuation in the
effects of the constant system of chance causes)characterized
by the accepted standard distribution function for this quality
characteristic,f there _is no need to worry over the observed
variation because it is likely that there is nothing that we can
do about lt-gk:%a?q R

e question now to be considered is: What are the factors
that determine how far we should try to go in specifying dis-
tribution functions to be used as standards? In the previous
chapter we have shown that, from a design viewpoint, it is
usually satisfactory to specify only the average X and the
standard deviation o of the distribution, whereas complete
specification would require the functional form f and the numer-
ical value of each of the m’ parameters. Furthermore, it is
obvious that the specification must be such as to provide a
satisfactory basis for detecting lack of control in the two
Important design characteristics X and ¢ of the distribution
of effects of the chance cause system.

It is necessary that we consider at this time the character
of the specification to be required, because upon the choice of
specification depends much of the treatment to follow in the
discussion of the two problems: ‘

() Establishment of sampling limits to detect lack of
control to be treated in Part VI.
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(4) Statistical estimation involved in establishing qui
standards to be treated in Part VI. "r”‘
2. Types of Specification
Type I: The probability of the production of a defective e
of product shall be p.
This type of specification corresponds to making the te
ance limits either — 00 and some value Xj, or some valel

QUALITY X

Fie. go.—
90-—THREE UNIvERsEs oF EFFECTS SATISFYING THE SPECIFICATION T“‘TW
Prosamiuity p SmarL Be Consrant.

outSIde. such. a tolerance shall be p. It is obvious that this for
o.f specification does not fix the form of the distribution o
tion _(5 8). For e)fample, Fig. go shows three distrib“d°
al;relcfilion's which satisfy the specification Type I, although‘thf'
e S nstm.ctly different. Hence the necessary design
bution ,f: o the.average and standard deviation of the &
o fonr(l)ctlox}, 1s not fixed by this type of specification.
establish WS rom .w}.lat was said in Part IV that we"”
Sh sampling limits within which the observed fract

and + 00, and to specifying that the probability of X I
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defective in a sample of # may be expected to fall with a
specified probability P. Hence this form of specification
provides a basis for detection of lack of control although it fails
to give requisite design information. 1;' %74

Type II: The expected or average quality shall be X.

This form of specification is sometimes considered when
we would like to specify that the quality should be some ideal
standard value Xs. It is apparent that there is an indefinitely
large number of frequency functions satisfying this specification,
but differing in respect to dispersion, skewness, and other char-
acteristics as is illustrated schematically in Fig. g1.

QUALITY X

Fio
» QI
9 THREE UNIVF_RSES OF EFFEC’I‘S SAT]SFY]NG THE SPECIFICATION THAT THE

Expectep Varue Suail BE X.

atlit fOlloyvs that specification Type II fails to give the infor-
on t}?n Wh'lch_r.nakes possible the establishment of design limits
sice Variability of quality. Neither does it give information
QUalitto the establishment of limits within which the observed
Cohtm}i Mmay be exPected to vary witl}out indicating lack of
litge . Hence this form of specification is of comparatively
Valye from the viewpoint either of design or control.
Star dypf III: The average or expected quality shall be X and the
“d deviation shall be o.
ol SPecification gives the requisite design information, and
from, 8 a5 quality of product satisfies this specification, we know
Piece Ochebycheﬂ"s theorem that the probability Ps, that a
product will have a quality X lying within the range

We R .
| *% the two limits X = o is greater than 1 — % This
¢
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statement is true independent of whether the function fint:
objective equation of control is or is not continuous.!
To emphasize the importance of the use of Tchebychef:.
theorem in this connection, we show in Fig. g2 four distributin,
having approximately
! | same average X and stand
' deviation ¢. The dotted lin::
are drawn at X =+ 30. Henc:}
we should expect to find mo:
than 89 per cent of the to:
area for each distribuic
within the limits. Infact!
matter what distribution ¥
might construct with aver

| l
! |
‘ |
‘ |
' |
| |
' |
‘ |
: : X and standard deviation ¢
| | we would find that more th
! l
| |
| l
‘ :
! |
' |
' l

I

89 per cent of the area ¥
fall within the dotted limis

From the viewpoint !
control, we have seen in I
IV that sampling limits L
be set on averages of szt
if we know o and that [Ihf
probability associated W
any limits X; to X for ¢
average X of a sample of
given quite accurately by
normal law integral, at 1‘3"_
when # islarge. F urtherm”
sampling limits can be &%
deviation or variance ; lished for observed.s.tand’i
i : ance in samples of 7, and the probability
cated with a gIven range a1 to o3 can be quite accurdt

esti i .
S mat.ed if we can assure ourselves that the function
approximately normal, ¥57S5351 Fridey

1This ; freAg €1.10,04
IS 1S tru . . . . . .
practice. e at least for objective distributions of the type Posslblf

' N
r-—-—td'_—“_‘+t6'_"“

) X |

QUALITY X

Fie. 92.—Four Untverses or ErrrcTs
SATISFYING THE SPECIFICATION THAT THE
ExpEcTED VaLue Suair BE X anp
StaNpARD DEviaTioN SHaLL B o
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From this discussion we conclude that the specification Type
I11is far superior to either of the two types previouslymentioned. -

Type 1V: The average, standard deviation, skewness, and
flatness of the distribution of quality X shall be X, o,k, and .

Let us see what the specification of k and Bz adds in the way
of valuable information. In the first place, the knowledge of
these two statistics of the distribution function adds nothing
to our knowledge of the integral of the function over any range
X1 to X; over and above that given by X and o and the use
of Tchebycheff’s theorem. This statement rests upon the
assumption that we know nothing about the function f.

Under the same conditions the knowledge of k and Bz is of
little practical value from a control viewpoint, since, as we
have seen in Part I'V, not even the expected values and standard
deviations of £ and B2 for samples of size # are known for other
than normal universes, so that we cannot establish sampling
limits on these two statistics.

Hence we come to the important conclusion that the speci-
fication of standard quality in terms of X and o gives us the
maximum amount of usable information, unless we specify £,/

i

25204

3 Importance of Specifying the Function f.

From the discussion of Chapter XII, Part III, we sce that
there is some justification for the belief that the distribution of
a controlled quality is approximately normal or at least is
approximately representable by the first two terms of a Gram—
Charlier series, which has previously been referred to as the
second approximation (23). If then we specify that the func-
tion f shall be normal with X and ¢ as the two parameters, the
Specification becomes complete from the viewpoint of both
design and control in that we know for such a product the
probability associated with any interval X, to Xz, and we can
Set sampling limits on almost all of the common statistics,
Table 37. Similarly, if we specify that f shall be the first two
terms of 2 Gram—Charlier series, we can make use of most of
th(? distribution functions of the simple statistics for a normal
Universe as first approximations, and the normal law integral
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gives the probability associated with any symmetrical inter:
X -+ so0. In these two cases we find X and o playing an imy
tant role.

Formally, of course, the specification of f and each of &
m’ parameters makes possible the determination' of the pr
bility associated with any interval X to Xa. We have st
however, that little is known about sampling fluctuatios
statistics of samples of » drawn from such universes with ¢
exception of average, variance, and x2. Hence, from a cot
viewpoint, having specified X and o, the specification of fu
any number of parameters does not add as much as one mg
at first expect. However, we shall soon see that we m
specify f in order to make possible the most accurate estimi
of such statistics, as p, k, and Bz."- . -

4. Specification—Further Discussion.

Thus far we have considered the problem of speciﬁcaﬁ’
as though we could make the function f and parametefs)
e, -+ «5 M, ..., My, whatsoever we chose to make
Obviously we do not have such freedom of choice. Weas¥
that there is one and only one objective distribution funcs
representing the state of control for each quality X, althos
we do not assume that these functions are necessarily €%
the same form f for all qualities. This means that the diset
tlon.function for any quality X must be found before it an
§peF1ﬁeF1. Our previous discussion is of interest therelor
1{1d1cat1ng the relativeimportance of different forms ofSPedﬁ"
tion, thus indicating the extent to which we should try o€
finding the distribution function of control in 2 specific (&%
stal}g a(rily case we need to esti.mate the expected value X‘

ard deviation ¢ of the objective distribution represe®
th(; state of control. Whether we try to go further and $p¥
Ir)r;at’iopx:, ;iixrrl::i fbdepends upon whether or not the kind of infi
of euts given by such a Spec1f:1ca_tion justifies the added &XF"
mating these characteristics of the objective distrib*

! The use of ¢ i
omplicated quadrature methods is often necessay-
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and the expense of the extensive inspection required to assure
the producer that the quality of product does not vary beyond
reasonable sampling limits in respect to these characteristics.

It is of interest to point out at this stage of our discussion
that the specification of p, k, and B; introduces a problem in
estimation, the solution of which requires the asstumption of a
particular functional form f. To illustrate this point, let us
assume that we have a comparatively small sample, say five
observations, in which we are to estimate p. Assuming that
the objective p is of the order of c.01 as is often the case in
practice, it is obvious that we cannot use the observed fraction
pin a small sample as a basis of estimating p. The best we
can do perhaps is to make use of our estimates of X and o
derived from the sample as a basis for the estimate of p. On
the other hand, the estimate of p derived in this way involves
an assumption as to the functional form f. We may, by mak-
ing use of Tchebycheff’s relationship, state certain bounds
within which it is likely that p lies.

Of course, when we have a large sample representing what
we assume to be the condition of control, it is possible to use
the observed fraction p as a basis for an estimate of p, although
even then it is reasonable to believe that we should consider
the general functional form of the distribution in arriving at
an estimate. For example, Column 2 of Table 40 gives a dis-
tribution of observed values! of a variable X. Column 3 of
this table gives a theoretical distribution based upon the
assumption that the distribution function is

K\ aZ
y — }’O 1 +’_2 e-vtnn a,
a

Th§ theoretical and observed distributions, shown in Fig. g3,
Indicate close agreement between theory and observation.

hen there is such close agreement it seems reasonable to
assume that the integral of the assumed theoretical distribution
€tween any two limits X1 and X; should be taken into con-

1 Elderton, W. P., Frequency Curves and Correlation.
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sideration along with the observed fraction p within the s
limits in estimating the objective fraction p. In other wor
we see that the estimate of p required in a specification involi
the assumption of a particular functional form f which it
must be justified upon the grounds that it appears to be
objective frequency function representing the condition ¢

AN

control in this specific case. .77 1]

TaBLE 40.—IMporTANCE OF DisTriBUTION FUNCTIONS IN
EstimaTing Fraction 1N TaiL or DisTriBuTION

Cell Observed Distribution | Type IV Distribution
Midpoint of Variable X of Variable X

5 10 6
10 13 16
15 41 49
20 115 135
25 326 321
3° 675 653
33 ,i13 1,108
40 1 ‘528 1,535
45 1,692 1,712
5o 1,530 1,522
55 1,122 1,074
6o 610 604
63 255 274
70 86 102
78 26 32
8o 8 8
83 2 2
90 I 1
95 I o
= 9154 9154

We have seen in the previous paragraphs that if we att
make use of.~ information given by k and B2, we must also hi!
a specification of f. Thus, in the example just quoted fre
Eldertqn, the observed values of % and B, are 0.073 and 3
respectweIY, The fact that the use of these two observed 3"
of kand B in the assumed functional form f gives an appare”
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close fit to the observed data, provides us with a certain amount
of assurance that the objective values of skewness k and flat-
ness Pz are, for example, different from o and 3 respectively
corresponding to the normal law, or that they are somewhere
in the neighborhood of the values derived from the observed
data.

Enough has been said to show that the problem of estimation
involved in the specification of characteristics other than X and

100

L
90
& OBSERVED DISTRIBUTION

NS
N

.
80— —— NORMAL DISTRIBUTION e

/
--—- TYPE I¥ DISTRIBUTION /‘

b
. ‘/

A

‘»

00 o1 05 1 5 10 30 50 70 90 98 995 99.9 99.99
PROBABILITY ASSOCIATED WITH A GIVEN VALUE OF VARIABLE

Fie. 9g3.—GrapHical Presextation or Darta 1x TasLE 4o,

o and the objective fraction p of the distribution of control
involves the assumption of specific forms for f.

3. Conclusion

The specification of quality from the Vlewpomt of both
design and control should provide X and o. In certain cases it
sdesirable that we specify p so as to provide a basis for catching
erratic troubles which, as we shall see later, may not be detected
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through sampling limits established on statistics used to dets
lack of control in X and . The accurate estimate of p, o
ever, involves the introduction of some assumption as to
functional form f of the distribution (58) of control. The sp
fication of k and B; is, in general, of less importance than tht
of p, X, and o.



Part VI

Allowable V ariability in Quality

Five Criteria for Determining
When Variations in Quality
Should Not Be Left to Chance



CHAPTER XIX

Derection oF Lack or ControL IN RESPECT T
StaNDARD QuaLiTY

1. The Problem

In Part V we saw that standard quality is characterized by
the equation of control

dy =£(X, M, Aay oy Ny e Am)d X (58)

In particular, we saw that it is desirable to maintain constancy
of this distribution at least in respect to the average X and
standard deviation o. Of course the qualities of samples of
# pieces of product of standard quality may be expected to
show sampling fluctuations.

The problem to be considered in this chapter is that of
establishing an efficient method for detecting the presence of a
cause of variability other than one of the chance causes belong-
ing to the group which gives the accepted standard distri-
bution (8), or of determining when an observed sample is such
that it i unlikely that it came from a constant cause system
characterized by this distribution.

2 The Basis for Establishing Control Limits

Knowing the distribution function (58), we saw in Part IV
that it is possible, in general, to find a distribution function
f6(8, 7) for a given statistic © calculated for samples of size 7
such that the integral

62
P= f £o(0, 7)dO (85)

g;'Ves. the probability that the statistic © will have a value lying
Within the limits ©; to ©s. Of course, if the function fo(0, 1)
275
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is limited in both directions, we may choose 6 an;i ezfs1
that P = 1; and, in this case, any ol?served value of 0 a
outside the limits is a positive indlcatl'on that stan'dard e
is not being maintained. If the functlon f;,(e, n) in (85)1;;
continuous we must replace the integral sign by the sym 0
summation X for discrete ordinates and change our ﬁlscu::.
accordingly. The conclusions, however, remain un(f: agg:f

For the most part, however, we never k‘now of "
sufficient detail to set up such limits. More important
the fact that, even if we knew the function well enougg 30
up limits within which a statistic & must fall prov(l1 erd»
cause system has not varied from the accepted stan lal [
could not say that the occurrence of an observed va ile 2
within this range is sufficient to prove that the sample &
from a constant system characterized by the accepted st
distribution function (58). |

How then shall we establish allowable limits on the ¢
ability of samples? Obviously, the basis for such limits TF:
be, in the last analysis, empirical. Under such condmon“.’
seems reasonable to choose limits 6, and 6. on .30fn€ SW‘“:
such that the associated probability P is economic n thgsi
now to be explained. If more than one statistic is ust X
the limits on all the statistics should be chosen so tha}tw
probability of looking for trouble when any one of the
statistics falls outside its own limits is economic. .

Even when no trouble exists, we shall look for UIC;
(1 — P)N times on the average after inspecting N SamPP
size #. On the other hand, the smaller the probabﬂlt) L
more often in the long run may we expect to catch trO;;"
it exists. We must try to strike a balance between U
vantages to be gained by increasing the value P fhr.‘l'i
reduction in the cost of looking for trouble when 1t do&;‘;
exist and the disadvantages occasioned by overlooking /"
that do exist. It is conceivable, therefore, that there 5
economic value P or pair of limits 6, and ©; for each "/
charact.eristic. It is perhaps unnecessary to say thﬂig\»
determination of the economic value P and the as®
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limits must be an approximation in any case. Furthermore, it
is obviously necessary to adopt some value which will be
acceptable for practically all quality characteristics, although
the economic value P for one quality may not be the same as
that for another.

With these points in mind we shall consider a few principles
to guide our choice of ©; and 6,. In general, it is reasonable
to believe that the objective economic values of 6; and .
are not symmetrically spaced in respect to the expected value
0 of the statistic. It is perhaps more reasonable to assume
that they are so spaced as to cut off equal tails of the function
fo(8, #). Under these conditions it is reasonable to try to set
limits ©; and O that will satisfy this condition. From the
discussion in Part IV we see, however, that even when the
distribution (58) is known, the distribution function fo(8, )
for a given statistic © is seldom known in sufficient detail to
make it possible to choose 6; and 0 to cut off equal tails,
Even more important is the fact that we seldom care to specify
faccurately enough to make possible the setting of such limits.

For these reasons we usually choose a symmetrical range
characterized by limits

0 = 1o, (86)

symmetrically spaced in reference to®. Tchebycheff’s theorem
tells us that the probability P that an observed value of 6

will lie within these limits so long as the quality standard is
maintained satisfies the inequality

I
P> I—}E'

We are still faced with the choice of 2. Experience indicates
that £ = 3 seems to be an acceptable economic value.

‘Hepce the method for establishing allowable limits of vari-
4ton 1n a statistic © depends upon theory to furnish the
tpected value © and the standard deviation &g of the statistic

9 and upon empirical evidence to justify the choice of limits
+ fo,
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3. Choice of Statistic to Detect Change in Average Qualiy
Suppose, for example, that

d_y = f(X> )‘1) XZ) RO Xi) e ,Xm’)dX,

with an expected value X, is the standard of quality an:
we are to detect a change in quality in which only the eqc
value changes from 1
X + AX. What statistic
sample should we use t().d‘fi'
X this change in order tomur

f (X-}h""lm')

a .
STANOARD T X TSR the number of observ
QUALITY (b) requlred?

EXPECTED VALUE To start with, let us &t
that (58) 1s a normal &
bution. Obviously then

: f might use either the mt

;' «© { or arithmetic mean?

:' L@ sample to detect a chang-

USED IR DRI AN ¢ in the expected value X

illustrate, let us assune’

the standard quality is dit

uted as in Fig. 94-4 and

: ! the shift AX in expectfid W
i @ _J is represented by Fig ¥
! T Let us assume also t_haf‘"
USeo N DN dr epiaNs distribution of arithmetic®™

1 are

F1e. 94.—~ILLustraTING IMPORTANCE OF and tha‘t Of medl.ans_ ,
ProPER Cuoick or StaTisTICS. mal as mdlcated n FIgST

. . , and g4-¢ respectively. *
.31tua]t]1-on 1s practically met when the sample size 18 '12\;
m which case the standard deviation of the distribut®

: . [+ '
me .o 1.
dians is 1.253 7 and that of means is —=. Thest™

- . n
Ef: standard deviation were used in drawing Figs. 94-¢ 3 dj
Tl}imts mcludmg equal areas of F 1gs. 94-c and g4-¢ are s‘hO‘i
¢ curves of Figs. g4- and 94-f represent the distribut”
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averages and medians about the expected value X +4X
Obviously, the area of Fig. 94-d outside the dotted limits for
means is greater than the area of Fig. 94-f outside the limits for
medians. Hence, for a given increase AX, we may expect to
have an indication of trouble more often by limits set on arith-
metic means than by those set on medians.-g’?_'g%‘_igl;

In general, if ©, and ©: are two statistics (such as median
and arithmetic mean) used to detect a change in some charac-
teristic © of the universe; if the functions fe,(61,7) and
fo,(8:, ) are symmetric, monotonic, and unimodal; if the
standard deviations of ©, and ©; fall off in the same way with
increase in sample size 7#; and if 8; = 6; = ©, then we may
say that that statistic having the smaller §pgndard deviation
should be used in detecting the change AX. 2L ey

Now, if there exists a statistic  such that the use of any
other statistic ©; does not throw any further light upon the
value of the parameter to be estimated, then © is said to be a
sufficient statistic, and is, of all statistics of this class, the one
to use, provided it can be shown that it is also the most efficient.

_In this connection, some very useful theory has been con-
tributed by R. A. Fisher.! He shows that if ¢ and g, the

standard deviations of © and 6y respectively, fall off as —I—_,
n
and if © and ©; are normally correlated with correlation coeffi-

cent r, then the above criterion of sufficiency leads to the
relationship

0 =I0,
showing that © is more efficient than ©; and that under the
given conditions

r = VE, (87)
where £ is the efficiency of ©; as compared to ©. If,in practice,
‘15 find that the correlation surface for two statistics, such as
the m.ed.nan and arithmetic mean, is normal and satisfies (87),
then 1t is reasonable to assume that the more efficient of the

1o . .
) Of{ the Mathematical Foundations of Theoretical Statistics,” Philosophical
@nsactions, Series A, Vol. 222, pp. 309-368, 1922,



280 ECONOMIC CONTROL OF QUALITY

two is a sufficient statistic and perhaps also the most efi:
statistic that can be used. It should be noted that underr
given conditions the more efficient of the two statistics has:
smaller standard deviation and hence is the better one to.
in detecting a change of parameter.

We have already seen that the distribution of median
samples of size 7 = 4 from a normal universe is symmer
and not so very different from normal, whereas the distribu
of arithmetic means is normal in this case. It is interesti
see, therefore, whether or not the arithmetic mean is not¢
better than the median for detecting a shift AX but reall

best statistic that can be used.aﬁ,!_
Fig. 95 shows the observed scatter diagram of correlx:
between medians and means for samples of four. In this

the observed efficiency £ and correlation coefficient  are

E = 0.80
r = 0.899,

and (87) is practically satisfied. Since we know of no statls

whose standard deviation falls off more rapidly than:‘

we may conclude that the arithmetic mean is the best stalf
to be used for detecting a shift AX, subject to the condit:
stated above. ‘

We: are not in a place to prove that the average is tht :

statistic w}}en the distribution function (58) is not 1"
H?WCVCF., since we do not know of a better statistic th"
arithmetic mean to detect a shift of AX when the i
differs from normality by no more than it usually does inf*
tice, we shall always make use of the arithmetic mean fo'"
purpose.

It is of interest to note that the efficiency E of the me
respect to .the arithmetic mean for samples of # draw? i
:a;(;)lif:zgzgx}werse decreases asymptotically with ian“‘Sir
nis ) Lom 100 per cent for # = 2 to 63 per cent ¥,

arge, as indicated in Fig,. 96. The point for 7 = 4187

in
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observed for the 1,000 samples of four. This curve shows that
for large samples the efficiency of the median is such that it
contains only about 63 per cent of the information in respect
to the change AX; in other words, that the average of a sample

T/
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Fig, 95~Scatter DiaGraM oF CORRELATION BETWEEN MEDIANS AND MEANs.

of size » = 63 will detect in the long run a shift AX as often
as the median of a sample of # = 100.

Max. + Min.

., 2
Statistic, we have seen that the efficiency is 100 per cent for

%amples of two and about ‘88 per cent for samples of four.

If, instead of the median, we use the as a
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By making use of some of the recent work of Tippett,' £
Pearson, and N. K. Adyanthiya,® we may show thatt

Max. + Min.
2

efficiency of the falls off as indicated in Fig.|

This curve is in striking contrast to that for medians.
The concept of efficiency here used is different from t

introduced in Part IV, and is perhaps the more usual o

It is simply the ratio of the sample sizes of two differr

or ARITHMETIC MEAN

90

[ d
Q
I

~
o
L
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N 174 b ('3 o
o (<] o o (=]
T 7 T T T

o
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F)
| -
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F1e. 96.—ErriciENCY OF THE MEDIAN AND As A Foxeno¥

OF SAMPLE SI1zE .

consistent statistics required to give the same stan¥
deviation.

Consider for example the arithmetic mean X and medis"’
of a sample of #n. The standard deviation of X in samples®
drawn from a normal universe with standard deviation "’
o/v/n and for medians M, the standard deviation is 4

1“On the Extreme In

divi Nof®
Population,” Biomenika, widuals and the Range of Samples Taken froma M

Vol. XVII, Decemb
L o) > mber, 1923. )
stants g;:’ Ssl:n::lelarss:; alnd I;I K. Adyanthaya’ “The Distribution of Frequenc Cﬂ
PP. 356~360. ples from Symmetricall Populations,” Biometrika, Vol
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where ¢(r) is some function of # which approaches 1.253/v/7
as 1 becomes large. E‘fﬁ%

Choose a particular sample size 7y for the median and find
the sample size 7z for the arithmetic mean required to give
the same standard deviation as that of the median for the

chosen sample size. ‘This requires merely the solution of the
equation
= = o
——— = nM
Vnx
forng. In fact
X

A(ny)

nx =

and therefore by definition the efficiency of the median for the
chosen value of 72, is

The trouble with this value of efficiency for small values of
5 ssetn? it depends upon the fact that the value of 7y was
slve £ 1st, Thus if we ,a331gn to #x the same vsitlue nu, and
Valye 0; the.new valueon 2 we should come o_ut.W1th the same

O E if the efficiency for small samples is to have the

Same : 1
o Mterpretation as for large samples. However, if we solve

¥ from the equation

1

g
—— = (e,
37

ang g, n \
_ ®Ntake the ratio E = — it will be found to be different,
Wy

’

n
gle ne; a}l; from the vatlue of E computed above.

one urt er words, .thls means t}}at.for small samples we get

Seque c"e of efficiency b.y assigning to 7a an increasing

s wsig tn,n,,. . . and a different curve of efficiency when ng

N Qd. the same series of values.

Sideg this reason the curves of Fig. 96 should not be con-
Wexact but as merely indicating, in a general way, how
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the efficiency of the median or Max. + VI flls off witi

)

creasing sample size.

4. Choice of Statistic to Detect Change in Standard Deviatinn

Suppose now that we consider the problem of determini:
the statistic which will detect a change only in the stand
deviation of the effects of the cause system. Let us start,a:
the previous paragraph, with the case where the univers:
effects (58) is normal. Naturally, we may use any one of sevtr
infinite sets of estimates of o as a means for detecting a chax
Ao.  Thus, for example,

o0 x2 .2 .
2 L= th2_  [t+ 1 N
m; = — xle 20gx =T p(—), ‘
ovVaeor /, \/ 2

T

where x = X — X, and 7 = (1, 2, 3y . ..). For a given vl
of i, we can write
ot = /my,

where & is a constant for a particular i. Obviously, the ©©
moment m; of the absolute values of the deviations in a sanf
from the observed average X of a sample can be used #*
estimate of o in samples of size # = o0. In other words t

statistic
1
O = (bmy)?
may be used as an estimate of o if the sample size is sufficient’
large.

In general, the distribution function fo(6, 1) of any stati¥
0 Is not symmetrical; hence the expected value 6 is not!
This situation is represented schematically in Fig. 97- '
samples of a given size n, there is some constant ¢ by which*

divide © so that the expected value of 9 becomes equal ¢
¢

(3]
Hence = . . . f
¢  may be used as an estimate of © or in this case of

it1s called a comsistent estimate.
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In a similar way we may make use of either a symmetrical
or an asymmetrical range as an estimate of o. For example,
we have already considered the distribution of 1,000 observed
ranges in samples of four drawn from a normal universe. The
statistics for these distributions were given in Table 34. Since
these ranges are measured in terms of the standard deviation
of the universe, the empirical factors for estimating o are those

™
>
V]
4
u
o]
a
w
4
w
w f'e (9)n)
>
'.
<
J
w
"4
e 6 ¢
STATISTIC ©

Fi. g7.—ScuEmATIC AsyMMETRICAL DISTRIBUTION OF A STATISTIC.
given in Table 41. Now, as in the discussion of Fig. 97, if ©
represents the expected value of the distribution of any range

C e 0.
6, the expected value of the distribution of — is © or the sta-
c

tistic @ of an infinite sample or of the universe. Of course,

TaBLE 41.—EwmpiricaL Facrors ror EsTIMATING o

Ra“ge Xi—- X | Xo— X | XXy | Xi— X
Empitical Factor for Estimation. . . .. 2.0044 ©.7863 0.6338 0.7752

thi‘s statement rests on the assumption that © is measured in
units of @ ag in Table 41. The second row of this table gives
the empirically determined factors with which to transform the
observed ranges into consistent estimates of . It will be noted
that we yse @ as a statistic of an infinite universe. If © is
Ao 2 parameter in the equation of control (58), as it usually is,
then there is some parameter A numerically equal to 6.
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Enough has been said to show that there is an indefni
large number of ways in which to estimate o. Which one s
we choose as being the most likely to detect a change 4d!

Let us start with a comparison of the standard and them
deviation as a basis for estimating . In Part IV we sawt:
the expected value for small samples is not equal to o foret:
of these statistics, the situation being that characterized!
Fig. 97. Hence, before we can use either statistic as an estiné
of o, we must know the correction factor for transforming®
statistic into one for which the expected value will be 0. S
correction factors are given in Table 2g for the standard &
ation o of the sample and a similar table could be given fort
mean deviation. ,

Of course these factors approach unity as the sample®
becomes large. If we also assume that the distributions of the
two statistics approach normality as the sample size # becor
large, we can make use of the same reasoning as that giver?
Paragraph 3 to show that ¢ is the better estimate since the et
deviation estimate is only 88 per cent efficient. N

When the sample size is small, these two estimates hafi
more nearly the same efficiency. This situation is showt
Fig. 98. The question arises as to whether or not the Standar;
deviation ¢ is the most efficient statistic for estimating o fi
a small sample, assuming that it is the most efficient fof alargf
sample. The only available method for doing this is t© ? ‘1
the test of (87) which is strictly applicable only when ”
correlation between the two estimates is normal, which Coni
:le(:rllllltss’ ?()srv:Eekrll%Zé not fullﬁlled in this case. T.he e?(peflr'n C%;;
correlation coeﬁ’icienstamP esh(?f four B shown in Fig 9t9h 4
ciency of the estimat : L e s 0395, vsfherease :
125330 is practicall eIo;: 547 m1 as compared with the o
from this test whetlz;r or Pt Cint. e ars tht?ref o ut e
efficient estimate alib r}llot the standard Eiev1at10n 15 e i
small samples it is moreug we see from Fig. 98 t}}at' . T

efficient than the mean deviatio”

diff ; . :
s; nf;ﬁ:l:e 1s negligible, of course, for comparatlvely

i



DETECTION OF LACK OF CONTROL 287

It will be of interest now to consider the efficiency of the
range between the maximum and minimum values of a sample
asan estimate of o, Again making use of the work of Tippett,!
E.§. Pearson, and N. K. Adyanthaya,? we get the range effi-
ciency curve shown also in Fig. 8. The very rapid decrease in
efficiency of the estimate derived from the range is striking.
The same concept of efficiency is used here as was used in
Paragraph 3. We have here an added difficulty in that the

100 -

ROOT MEAN SQUARE DEVIATION
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[T MEAN DEVIATION

8o} 2
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° ' N N \.
24 0 20 1000 [«

SAMPLE SIZE n

= e
Fie. 8.~ Erercrency or \/E TimMes Mean DeviaTion AND RANGE as EstimMaTEs

of ¢ COMPARED WITH THAT OF THE STANDARD DEviaTION.

foot mean square deviation, v/x/2 mean deviation, and the
fange are not even consistent estimates of o. For this reason
the curves of Fig. 98 are supposed merely to indicate, in a
general way, how the efficiencies of the above two statistics fall
off with increasing 7.

It should be noted that, in our discussion of the importance
0£choosing the most efficient statistic for detecting a change
X or Ao, we tacitly assumed that the distribution functions
O the statistics compared were symmetrical and of the

! Loc. cit.
2 Lo, cit.
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same functional form. This is a very important requiren:
for, in general, the most efficient statistic in the sense of b
the one with the smallest standard deviation need not bet
statistic most likely to catch a given change in Xore |

/ J |
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example, the comparison of the four ranges of Table 41°

detecting a given chan i i itu-
g¢ Ag involves the algebraic magn®™
of Ao, and the knowledge of the functional forms of the &

butio .
ot er)f the dlfferent. ranges. The same could be said of©
parison of the statistics based upon the moments i 0!
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absolute values of the deviation. To make such a comparison
is certainly not practicable at the present time. -

It appears, therefore, that there is good reason to choose
the standard deviation o of the sample as a basis for the es-
timate of the standard deviation o of the universe to detect
a change Av.

5. Additional Reason for Choosing the Average X and Standard
Deviation o

We are now in a place to consider an additional and very
important reason for choosing the average X of a sample to
detect a change AX and the standard deviation ¢ to detect a
change Ac. The previous discussion has been limited to the
assumption that the universe or distribution (§8) of standard
quality is normal.

InPart IV, however, we saw that, no matter what the nature
of the distribution function (58) of the quality is, the distri-
bution function of the arithmetic mean approaches normality
rapidly with increase in #, and in all cases the expected value
of means of samples of # is the same as the expected value X
of the universe. Hence the arithmetic mean is usable for de-
tecting a change AX almost equally well for any universe of
effects which we are likely to meet in practice. It appears that
the same cannot be said of any other known statistic.

\\.e also saw in Part IV that, although the distribution
function £,(s, #) of the standard deviation o of samples of » is
not known for other than the normal universe, nevertheless
the moments of the distribution of variance o2 are known in
terms of the moments of the universe. Hence we can always
establish limits

02+ 10,2
¥ithin which the observed variance in samples of size # should
fall mor !
e than 100( 1 — ) per cent of the total number of times

2 sample of # is chosen, so lon h li ]
. , g as the quality of product
wntrolled in accord with the accepted standard. P ®
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This generality of usefulness is not shared by any o
known estimate of & or, more specifically, of o2

6. Choice of Statistic to Detect Change Ot in the Correlay
Cocfficient t

In the present state of our knowledge of the distributir’
product moments, the only available basis for detectn:
change Ar is the distribution function (75) of the correla
coefficient in samples of size #.

7. Choice of Method of Using Statistics

Having chosen statistics with which to detect variabil:
from standard quality, it remains for us to choose the wat”

X 1 I i 1 1 1 !
SUCCESSIVE SAMPLES OF n

Fic. 100—SimpLE ForMm oF ConTroL CHART.

using them. We shall illustrate this point by a discussion

the ways of using the average X and standard deviation ¢
samples of size #.

Making use of the control limits
é = 30-6)

j’;ﬁ may construct a contro! chart such as shown in Fig. 1€
¢ occurrence of a value of © outside these limits is taker®

an mdlcattlo‘n of a significant variation from standard quah“i
or as an indication of trouble, '
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Instead of using this simple form of chart for each of several
statistics, we may use a chart based upon the probability of
the simultaneous occurrence of the different statistics. Two
possible forms of such charts for two statistics ©; and 6, are
shown in Fig. 101. In Fig. 101-4 the occurrence of a sample
for which the point (01, ;) falls outside the shaded area is
taken as an indication of trouble, the boundary of this area
having been chosen so that the probability P of falling within
the boundary is economic. Similatly, in Fig. 101-4, the prob-
ability P of falling inside the dotted limits on either side of the

8 9,

o, 82
Oy ®

Fic. 101.—Two TvypicaL Forms oF CoNTrOL CHART.

curve of regression represented by the solid curve is economic.
Such a test is often referred to as the doublet sest.

To construct a chart of the type of Fig. 101-a requires the
knowledge of the distribution function fe,, 0,(01, 2, 7) of the
o statistics ©; and ©,. For the averages and standard
deV_lations of samples from a normal universe this function
2pidly approaches normality as we see from a study of the
dstribution functions of X and ¢ of Part IV. Hence we can
¥t up correlation ellipses correspondirig to a desired probability

- Ifl general, however, little is known about the distribution
unction of pairs of statistics, even for the arithmetic mean and

Sandard deviation, for samples from other than a normal
Aniverse, ' -
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The work of Neyman already referred to in Chapter X[y
Part IV makes possible the construction of a chart of the fo
of Fig. 101-4 for averages and variances of samples fromay
known universe. This theory also makes it possible to estall
approximate limits for pairs of averages and standard devie

281 ——— REGRESSION CURVE — STANDARD DEVIATION ON AVERAGE
=== LIMITS—— STANDARD DEVIATION ON AVERAGE
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F16. 102.—~EFFecT oF SampLe Size ow LiMI™*
. . s
tions. Fig. 102, for example, shows such Sets.oﬁ ure ® .
samPles of n = 4,7 =100, and # = 1000, TH?® : maybf
partlcular.interest in that it indicates that such #
more sensitive to a change in the functional for™

verse when the sample is small than when it is Jat

test
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wards, such a chart can be made sensitive to changes in the
function representing standard quality, even though the average
X and standard deviation o of the universe remain constant.

8. Choice of Method of Using Statistics—Simple Example

Table 42 gives forty observed values of tensile strength of
steel strand in pounds per square inch (psi). Let us assume

TABLE 42.—TENSILE STRENGTH OF STEEL STRAND

Company No. 1 Company No. 2
12,600 13,800 14,300 14,550
13,750 14,250 13,900 14,250
13,440 13,370 14,460 13,390
13,960 13,510 14,480 14,130
13,570 13,110 14,170 13,910
13,550 13,400 13,610 13,180
13,570 13,860 13,990 13,790
13,430 13,440 14,140 13,810
13,250 13,900 13,400 13,260
13,320 13,910 14,290 14,550

th:at the accepted standard quality for the tensile strength of
this particular product is normally distributed with

X

il

13,540 psi,
and

O = 440 Ppsi.

Is there any indication that the quality of product of either
supplier is significantly different from standard quality in the
snse that the observed samples may not be considered as
fandom samples from standard quality? In what follows, we
shall describe three different ways of using the statistics X and o
10 answer this question.

4. One way is to construct control charts for averages and
Yandard deviations of samples of twenty with the following



294 ECONOMIC CONTROL OF QUALITY

limits. Of course, @ is 440c2 where the value of ¢z is thatgr
in Table 29 for » = 20:

- o o 13,2
Rea = s [
and

- o 440 214
g —_—_— = —_— = .
=3~ B30 {632'

This is done in Fig. 103. Using this method, we assume t
there is an indication of the existence of significant deviatt

4,000 900,
3 e [
- 800}
e ——— e ——
13,800} b 700F
z e e — -
» B ?_ 600
w <
S rd
2 13,600} w i
il W 500
w [
> o
« N
< - < aoof
z
z .
13,400} [~
i~ 200 ——————"
e = — e e
13,2001 0oL
; A J [ —
! 2 ) t ?
COMPANY COMPANY

F1c. 103—~OnE Form orF Cowrrol Cuarr TEST.

irrtzlmdsta‘nd.ard if t}}x)e observed values of either average or st#"
eviation or both for a oiv ide of !
. en sample fall outside of !

control chart limits, s P
Th . S
he th observed values of average and standard deviationt
g takesta}tlm}f)les of twenty are represented by the black dot
e fact that one of the averages falls outside its linr®

. g
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B. Another way of testing whether or not the two samples
of twenty came from standard quality is to construct a control
chart of the type shown in Fig. 101-@. S'nce for samples of
twenty from a normal universe! the correlation surface of X
and ¢ is approximately normal, we may construct the ellipse
which should include, let us say, P = g99.73 per cent of the
observed pairs of values of X and ¢. Doing this for the case
in hand, we get the results shown schematically in Fig. 104.

800

100}
b soo}
2
Q
-
< so0}
>
w
o
° o
8 400
3
2 3
g 300
“n

200}

100

0 L I 1 L L 1 1 1 ) .
13,200 13,400 13,600 13,800 14,000
AVERAGE X !

Fic. 104.—Anotuer ControL CuArT TEST.

Th&? fact that one point is outside this ellipse is taken as an
Indication of trouble.

C. A third way of testing whether or not the two samples

;ame from standard quality is to test whether or not the dif-
erences

le - le = 428.50,
and

lol—ozl = 71.28

are likely to have occurred if both samples came from standard

1 Cf. Chapter XV, Part IV,
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quality. Obviously a test of this nature comparable with
previous two is to consider the occurrence of an absolute di
ference in averages greater than

A - SO
3J§ = 3_\/;) 417.42,

2

or in standard deviations greater than

o 440
—_— = ———— = . 6
3Vr T 3V 2951

as indicative of trouble. Again we get a positive indication.

9. Choice of Method of Using Statistics—Continued

cht us look at the results obtained by the three
tests just described. It will be seen that the first test!
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F1c. 105.—~ComparisoN oF Turee TESTS.

-_— ng.
trouble w i i et
roudle hen z;.‘ point (X, o) falls outside the dotted © whet?

_ g}. ©5, whereas the second test indicates troub’® he ™
point falls outside the ellipse. It is easy to see th?! t
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tests arc inherently different. In the first place the probabilities
associated with the areas of the rectangle and ellipse are 0.9946
and 09973 respectively. More important, however, is the fact
that the two tests could not be made to exclude the same region
even if the areas were equal.

Now the third test is basically different from the other two
in that it indicates trouble when either the distance 4 or § ex-
ceeds certain limits. :

Since, as in the simple illustration of the previous paragraph,
experience indicates that the three tests so often give consistent
results, since the third test is obviously very difficult to apply
when we have many samples of size 7, and since the second
test is more difficult to apply than the first although it gives
approximately the same results, the first test appears to be the
practical choice.

10. Choice of Statistic for Detecting Change in Universe of Effects

Let us consider next the problem of detecting a variation
from standard quality represented by a change of cause system
from one which gives standard quality, say

d}' = f(X) x1) )‘2) vy M) LI Xml)d‘){) (58)

to one which gives something different from standard and
represented by some unknown distribution of the form

d_y = fl(X, )\/1, )\'2, ey )"i, e vy )\,m”)dX.

'Perhaps the single statistic most sensitive to a change of
this type is the x2 function. Subject to the limitations set forth
i Part IV, we may divide the original distribution into any
number of cells and calculate x2 for samples of size # grouped
into the chosen cells. A control chart for x2 may then be con-
structed by making use of the known values of X2 and 0,2, In
general, it s desirable to use a grouping which gives as’;learly
% possible equal probabilities for all cells. One difficulty is

that the x2 control chart can only be used f i
e y be used for comparatively
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11. Detection of Failure to Maintain Standard Quality

Thus far we have considered the comparatively s
problem of detecting a change of a given kind and amour:
the effects of a constant cause system, such as a change 41"
expected value or a change Ae in the standard deviation oft
effects of the cause system, everything else remaining fixed
practice, however, we never know that the quality has cha
from standard in a specific way. What we do is to take asanp
of # to determine whether or not the product has change. |
may or may not have changed one or many times within®
period in which the sample of 7 is being taken. Our su
in detecting trouble in such a case depends among other thin
upon the way in which the sample is taken, or, more specifick
upon whether or not the sample of # comes from one or n:
constant systems of causes.

For example, in testing whether or not the tensile streng:
of strand, Table 42, had been controlled in accord with stand
quality, we divided the data into two groups of twenty ob¢
vations, one group from each of the two suppliers. Of cwout
we could have tested in a similar way the hypothesis that t
forty observations came from a standard production proc®
Thus, the control limits in pounds per square inch (psi) ¥
average X and standard deviation ¢ of samples of forty frr
product of standard quality are respectively:

13,540 == 3%3_— - {13’331

40 13,749
440 284
432 + =
V5o {580

The fact that the observed average of the forty values of tend:
str‘zngth falls outside the control limits would be taken ?
izznegce l(i)fd1 ack of control. Hence, no matter which test
o mayp{:asei ; Ir;) thlﬁ case, the result would have been the 53““1
tests mmay no}; b: tsh own, hOWeVCI‘,. that the results of two
in that the ores ¢same. That is to say, if trouble does e

product as tested by a sample of # comes from ™
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wonstant systems of causes in the sense that 71 pieces come

from a cause system with constants

X, and oy,

and n; pieces come from another system with constants

X; and o,

it is possible that a test for trouble using the total sample 7
may or may not give an indication of trouble. The same is
true of the test based upon the use of the samples 71 and 7.
Furthermore, one test may be positive and the other negative.
Therefore it might appear that it makes little difference
how a set of # data representing lack of standard control is
grouped before applying the test for detecting trouble of this
kind. Inother words, this would mean that an inspector trying
to detect variation from standard quality would be able to do
50 equally well irrespective of whether or not he was able to
divide the data in a sample of size # into subgroups corre-
sponding to different constant systems of causes. To draw
such 2 conclusion would be utterly misleading and against what
is perhaps the most generally accepted step in the scientific
method, that is, classification. Assuming for the moment, how-
ever, that in the long run a test using the whole group of »
data as a unit is just as likely to detect trouble as one using the
subgroups of data obtained by accurate classification, there still
would be a definite advantage in classifying the data before
Pplying the test. Obviously, the ultimate object is not only
0 detect trouble but also to find it, and such discovery natu-
rally Involves classification. The engineer who is successful in
dl\'}dmg his data initially into rational subgroups based upon
ational hypotheses is therefore inherently better off in the

ong run than the one who is not thus successful.
For such an engineer the statistical tests described in this
;ni:ipit:rdz(t):rs:]iit;;e ahpowerful tool i.n testipg hi§ hy_potheses
g the extent to which an investigation must

¢ carried.in order to check beyond reasonable doubt whether
“mota given hypothesis is justified,
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Suppose, for example, that an engineer wishes to detem:
how large a sample is required to detect variation from stands:
quality by an amount AX in the expected value, wherei:
assumed that the functional form f and all other paramet:
remain the same. It is a simple matter to show that
required sample size 7 is given by the solution of the equats

- L
AX = 21—= it
v /
where ¢ is generally taken as three for reasons already set for
In a similar way one finds that the number required ¢
detect a change only in standard deviation and of an amo
Ac is given by the solution of

a .
— i
Van (V

For example, the size of sample determined from (894)&31
such that the probability of detecting trouble of the naturtt
a cha.mge only in X and of an amount AX is approximatcl‘f
0.99 if # =3 We can go even further and say that with t
sample size the probability of detecting trouble in the form¢

a change only in X is greater than 0.99 if the shift is grei
than AX used in (89-4) ’

A similar interp
derived from (89-2).
hus we see how statistical theory becomes a useful
after we have taken the scientific step of classification of i
into rational subgroups. Moreover we see that, even thf
classification is not as it should be, statistical tests’often indie®
the presence of trouble. Of course, these advantage ¥
attained with a knowledge that we s};all not look for tro
when it does not exist more than a certain known fra®

11— P . L
(() bservc)df)f the total number of times that a sample of stze!”

AT = 24

retation may be given to the value off



CHAPTER XX
DerEcTioN ofF Lack oF ConNTrO

1. The Problem

In the previous chapter we considered the comparatively
smple problem of detecting lack of control in respect to an
accepted standard distribution. Now we shall consider the
problem of detecting lack of control in the sense of lack of
constancy in the unknown cause system. To make clear the
inherent difference in these two problems, let us consider once
more the data on tensile strength of strand as given in Table 42.
The three tests of the previous chapter merely served to in-
dicate whether or not it is likely that the data came from a
{pecified constant cause system. The corresponding question
to be considered now is whether or not they come from some
constant cause system of unknown functional form {, unknown
average X, and unknown standard deviation o.

The tests of the previous chapter made use of assumed
known values of X and o. The corresponding _tests which we
@n use in this chapter must involve estimates X and o, say, of
the unknown average X and standard deviation o of the objec-
tive but unknown distribution representing the condition of
tontrol, if it be controlled. _

Two criteria to guide us in making the estimates X and s are:

4. The estimates X and ¢ used as a basis for detecting
lack of control must be such that, if the quality from WhiC_]’_l
the sample of size # is drawn is controlled with an average X
and a standard deviation o, then the following two statistical
limits should be fulfilled:

L X=X
”n— %
(90)
Ly o=0 %
R - 0

3o1
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B. Insofar as possible, the estimates should be chosa:
that, if the quality is not controlled, the estimates X ai
actually used shall be those which will be most likely to inde:
the presence of trouble or, in this case, lack of constan:
the cause system.

2. Choice of Method of Estimating X and ¢

Let us start by considering estimates X and ¢ in psi deric
from the data of Table 42 in two different ways as follows:
(@) Let

40
2 X;
X — 7=l —
o T 1376375
and
40 .
(2 (Vi — Y)2>"
= | _
a w0 442.20.
(6) Let
40
2 X
X = =1 =
10 13,763.75,
and
g loitos _
Co 2 - 40045)

where o1 and o, are the standard deviations of the first &
second groups of twenty observed values and where ¢ is &
factor given in Column 3 of Table 29.

Obviously the condition (90) is satisfied by the estimates
and (8). It may easily be shown, however, that if the &
groups are rational, then the estimate ¢ of type (4) s o t
ave,?ge lcz,_ss than the corresponding estimate of type (4)-
o estiemr(:;~ toege,(z;de.ruth.ese conditions criteria involving the ¥
often than simil Wit 1 the long run detect trouble ™
e ar criteria involving estimates (¢). Hencelt

e to choose method (&) for estimating X and o.
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3. Choice of Test Criterion for Detecting Lack of Control

Having chosen a pair of estimates X and o, we may use them
in any criterion in which we may use X and o. As an illus-
tration let us apply the three criteria of the previous chapter,
making use of X and ¢ calculated as in (4). The results of the
application of the first two criteria are shown graphically in
Fig. 106. Obviously both of these criteria give a negative
indication of lack of control. Comparing Fig. 105 with Fig. 106

7000
800}
b
2 500+
]
E
g
& 400
o
o
<
8 3001
2
<
™
| SN S . U B~ R SN
100}
oL [ 1 1 1 1 i Il ! )
13,400 13,600 13,800 - 14,000 14,200
AVERAGE X

Fi1c. 106.—TEsts For CONTROL.

¥e see that, whereas one point is out of limits in Fig. 103,
neither point is out in Fig. 106. This is interpreted as meaning
that, although the observed data are consistent with the
assumption of the existence of a controlled state upon the basis
of the criteria used, the equation of control is likely not the
accepted standard used in the previous chapter.

Now since the difference 428.50 psi in averages exceeds

q
3;/’1\7 = 379.9 psi, the third test criterion gives indication of
lack of control.

As previously explained, this is the kind of situation which
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often arises in which the indications of two criteria arr
the same. Our decision in such a case involves the u:
judgment. In this particular instance and for reasons out
in the previous chapter, we choose the first type of wn
chart test corresponding to the rectangular limits of Fig 1

With the above discussion as an introduction, we shalx
describe criteria which have been found to work successfuls:
the detection of lack of control.

4. Criterion I—General

Given a set of » data to determine whether or not¥
came from a constant system of causes, we take the folo
steps:

A. Divide the # data into m rational subgroups® of it
..y Miy ..., Hs values each.

B. Yor each statistic to be used, use estimates § #*

satisfying as nearly as possible conditions 4 and B of P&
graph 1. :

C. Construct control charts with limits
L. 5 =+ 3oeg
for each statistic.
) ) .. s dw
D. If an observed point falls outside the limits of this o
take this fact as an indication of trouble or lack of cont™®
5. Criterion I—Attributes
In this case we make use of a control chart with lim®
P = 30p .
—. . .. U
where p is the fraction defective in the total set of # obser™®

and
op = \'qu;

n .
—_ . . L el
Wher? 718 the average sample size. The lower limit is ook
zero if p — 30p < 0.

"Note in Fig, 5

. - i Id
5 the difficulties encounter d i g
. e not
rational subgroups. 1 the daca are
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Example: Carrying out these computations for the Type A
data of Table 1, we get the following results:

Month p= o Month = Month p= n
n n n
Janvary..... .| ©.0076 May......... 0.0301 September....| 0.0048
February.. . .| o0.0082 | June......... 0.0060 | October...... 0.0280
March ... .. c.otr7 | July......... 0.0076 | November....| o.0112
April. .. ....| o.0050 | August....... 0.0051 December. ... 0.0059
—_ Zﬂx
= 35— = 0.0I0
4 " 9»
P4
PENZ T 0.0047,

P+ 36p = 0.0250,
P —30p = — 0.0032 (hence taken to be 0.0000).

With this information we get the control chart of Fig, 4-a.
Tthe fact that points fall outside the limits was taken as in-
dicating the presence of assignable causes of variability, at least
some of which were later discovered, thus justifying the indi-
cation of trouble given by the test.

8. Criterion I—¥, ariables—Large Samples

¥ G_lven a series of 7 observed values Xy, Xo, ..., Xj, ...
n divisible into »2 rational subgroups of #1, ma, . .., m, ...,

" R

m Values each, we make use of control charts with limits

X+ 303 and o 30,,

where X is the average of the 7 observed values and

F=\/721:712+7120'2“’+...-1-771‘«7{2+...-i-nmamz (
mtmt . tmt . rm Y
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¢ being the standard deviation of the ith rational subgroup. If
the sizes of the subgroups are practically equal, we have

g g
oy = —\/—% and g, = 72_—'%

If the sizes of the subgroups are not equal, the limits for a given
subgroup / must be made to depend upon the sample size ; for
that group.

Obviously, the condition that the statistical limit

L_, c=0

n—rn

is not satisfied when 7; is small. It seems reasonable to believe
in the light of our previous discussion of the distribution func-
tion of the standard deviation that, so long as the minimum size
of a subgroup does not fall below, let us say, twenty-five, the
sstimate ¢ given by (g1) approximately satisfies this limit con-
dition,

_ Ifthe rational subgroups contain a large number of observa-
tions, we may also make use of control charts for the skewness £
and flatness Bs.

Example 1: ‘Table 43 gives the observed frequency distri-
bt.xtlons and the control limits for the twelve monthly records
of quality shown previously in Fig. 19. Fig. 107 shows the
fesults in graphical form. The fact that some of the points fell
‘utside control limits was taken as an indication of lack of
wntrol for which the assignable causes were later discovered.

Example 2: Let us apply Criterion I to the data of Fig. 21
© determine whether or not there is any indication that the
epth of penetration for the seven treating plants is controlled.

¢ requisite computations are given in Table 44.

In this case the sample sizes are too small to justify the use
"kand B, and the sizes differ so much among themselves that
"1 necessary to use variable limits as shown in Fig. 108. Lack
E?EMFOI, the causes of which were later discovered, is indicated

¥both the averages and correlation coefficients.
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Example 3: As a third example, let us apply Criterion I to
aset of data which may reasonably be assumed to be controlled
and see if the result of the test is consistent. For this purpose,
we may make use of the four observed distributions of 1,000
gven in Table 23.  Since these data were obtained under con-
ditions as nearly controlled as we may reasonably hope to
attain, all observed points should fall within the limits. Fig. 109

=120 .10
. o |
= . r
30 o z 100 .
x ] =
PR . < 0.90F ¢ ¢
§ [T e
S-1.50 Y _%a°%s c o0.80L
¥ T T e e Q R E— -
<-iso Soof L, *
2 . .
-1.70 < 0.60f
. (4
-+80 0.50L
Or e 6.00
£, o S
Ll S 1 ) < 500} .
2 s .
4 ~040 hd & a.00f °
;T s A ettt Ll
u-osoL : . < 3.00 —— —— e e
" Py - « [. LAP }
~0.89 [ 2.00
o PO NI S S B )
JASONDUJUF MAMUJ J ASONDJFMAMY
MONTH MONTH

Fie. 107—ConTroL CHArTs For Dara or Fic. 19 anp Tasie 43,
InpicaTING Lack oF CoNTROL.

shows that they do. The positive indication of control is con-
sistent with the facts as we believe them to be. Of course, as
Previously noted, a few points should fall outside control limits
M the long run even though there is no lack of control.

Criterion [—V ariables—Small Samples

Givenaseries X1, Xz, . . ., Xi,. . . , Xn of 7 observed values
of X that may be divided into m rational subgroups of equal
S2e, control charts with limits

X+ 305 and 5+ 30,
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wonstitute what we shall term the Criterion I test for small

samples, where - _ —
PV R 4 Kot 4+ Xt ..+ X
X = ”
_01+ag+...+ai+...+o’m
—,_ m
g
g = .
€2

In these expressions ¢z is the factor given in Table 29, X; is
the average, and o; the standard deviation of the 7th subgroup.
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Fic, 19.~ContrRoL CHART TEsT AprLiED To CONTROLLED Data Gives
ConsisTENT REsULTS.

. Example 7: The problem to be considered first is one pre-
Viously reported in the literature.! It is to determine whether

\ IA_PPendix to report of Committee B2XV of the American Society for Testing
Matenals, published in the Proceedings of that Society for 1929.
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|
or not the tensile strength in psi of a given alloy as pri.
by five different companies is controlled where five testsc.
many pieces of product from each of five companies g
following results in pounds per square inch:

Companies
|
c ' D G W
-
Average X............. 29,314 24,660 28,210 31,088 |
Standard Deviatione. .. 1,198 2,434 528 243 | -

The details of the method of calculating the control
are shown below:

T 29,314 + 24,660 + 28,210 4 31,988 + 34,332 _ 3

5
. 1,1 3 2,
= _ L1984 2,434 + 528 + 1,243 4 1,006 _ 1,281
5
e ¢ 1,281.8 6
X7 ovn 0.8407v/5 ”
X+ 30 = 31,747
X — 30% = 27,655
K 1,281.8

2V 0.8407v/ 10 482

G + 30 = 2,728

7 — 300 =— 164 (taken as Zero)

The corresp.on.ding control charts, Fig. 110, indicate lacs
Z(f)'ntt}:ff)l or signtficant differences between the tensile st
Els alloy manufactured by the different suppliers.
o :i::féi ezm Let u? next cqnsider -the set of two hundr.e,df
Tl s e ter}ts ? ms.ulatlon resistance previou51Y gl.‘i
the data in L. In this case there was no basis for dlw,

to rational subgroups other than that it is reas®
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tobelieve that the cause system may have changed in the course
of taking the measurements. Accordingly we divided the data
into groups of four, starting with the first four and continuing
in the order in which they were taken. The control chart for

35,000 N 4,000
b
u %3000}
_________ . e e e —— s —— — —
0 g °
< 30,000 82,000}
W L )
> o
< ° Z > *
o — —— ——— ———— cz)|’ooo- [
s L *
25,0000 o LY - S
1 1 L L J L 1 L 1 J
¢ o G w 5 C 5 6 w s
COMPANIES COMPANIES

Fi6. 110.~ConTroL CHART FOR SMaLL SampLEs SHOwWING Lack or ControlL.

averages shown in Fig. 7-a and that for standard deviations
shown in Fig. 111 indicate lack of control. As was pointed out
in Part I the causes for lack of control were found and removed.
~ Thereader may question why the original data were grouped
nto subsamples of four instead of some other number. A little

e
o
S

N .
2 i
0800 s e e _—
: —_—— - — —_—— e e —
3 . * *
g‘OO (3 . L] » ¢
5 .
e . _ e * o ® . *
0200} . hd °
: \" o % . hd ¢ o* ..o
0 e e——
‘O\b 1 1 1 ! ! ! L ! A )
10 15 20 25 30 35 40 45 50 55
SAMPLE NUMBER
Fis. n1.—~Conrro C S {
L HART FOR STANDARD DEVIATIONS OF SAMPLES OF I‘OUR‘—"

Data or TasLe 2.

::]T:]ilgera;tion will show that there is nothing sacred fibout the
Iy mzr our .although there are se\.reral reasons .why it may be
s st satisfactory when there is no @ priori knowledge to
-Suly any other sample size.
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Obviously, if the cause system is changing, the sampk:
should be as small as possible so that the averages of si:
do not mask the changes. In fact single observationss.
be the most sensitive to such changes. Why then dow
use a sample size of unity? The answer is that if we do, !
faced with the difficulty of choosing the standard deviau
be used in the control charts. Of course, we might uw
standard deviation ¢ of the entire group of observations:
in doing so, we would find that ¢ = 465.21, a value dst:
larger than that of ;2 = 328.26. A little consideratm’
show that, in general, this condition will occur in the lor
whenever the cause system is not constant in respect

expected value X, although the expected values of ¢

are equal when there is no change in the cause system. I
the test in which we would use the standard deviationed
whole group of # observations is not so sensitive, in g
as the one proposed in which we divide the data into smil*
groups in the order in which they were taken. In fact,”
sensitivity of the test will increase, in general, with dect
in sul?sample size until the size of the sample is such that
data in any given subgroup come from a constant syt
chance causes. In the absence of any a priori infor
making it possible to divide the data into rational subg®
there WOl'lld be some advantage therefore in reducing the
sample size to unity. To do so, however, would obsi:
defeat our purpose since we could not then obtain an et
to use in the control charts. Hence we must choose s
zamp.le size greater than unity. Sizes 2 and 3 offer somt:
0?}};&?,‘1“ the way of computation of ¢ and so we go t0 2%

No ; " . e
W We arein a position to see how important 1t 15 ©0 e

diVidin the d 1 : bt
is 1 at al su
If this is not done, g a into ration g

there would obvi in "
to apply Criterion I. obviously be no sense!
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8. Use of Criterion I—Some Comments

In the practical application of Criterion I, particularly in
the case of small samples, certain questions arise. One of
these is: How many subgroups of four must we have before
we are justified in using Critetion I? That this question is
important is at once apparent because the expected probability
of a statistic falling within the ranges established by Criterion I
approaches the economic limiting value only as the total
number » of observations approaches infinity. This difference
in expected probability, however, even for two subsamples of
four is likely less than 0.02 and certainly less than 0.05. Hence,
the effect in the long run of using Criterion I when the total
number of observations is small is to indicate lack of control
falsely on an average of perhaps five times in 100 trials instead
of three times in, let us say, 1,000 trials which it would do when
the total number 7 is large. In almost every instance we can
well afford to take this added precaution against overlooking
trouwble when the total number of observations is small. It
appears reasonable, therefore, that the criterion may be used
even when we have only two subsamples of size not less than
four. In this case, of course, we may wish to apply additional
tests although, as we have already seen in the earlier part of
this chapter, such tests will perhaps in the majority of cases
give consistent results.! The principal thing to be keptin mind
15, however, that the main purpose of such a criterion is to
detect lack of control in a continuous production process where
we have 2 whole series of samples so that the question as to the
minimum number of subsamples becomes of minor importance.

We may also ask how the indications of Criterion I depend

‘ '].n work not yet published, F. W. Winters has investigated the efficiency of this
cnterion for the case of small samples from two normal subgroups, assuming that the
data have been divided objectively. Inother words, he has determined the probability
that the use of Criterion 1 with a given sample size will detect a difference of a given
imount in the averages of two objective subgroups. For example, he has shown that
‘hc efficiency varies all the way from 4 per cent for a sample of four and an objective
difference of o (the common standard deviation of the objective subgroups) to 97 per
tent foffl sample of twenty and an objective difference of 2¢~.  On the other hand the
ZTObahlln:v that this Criterion will lead us to look for trouble needlessly is, under the

"t condition, .008 5, and under the second, .00014.
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upon the universe from which the §ample 1s drawn, especxal;‘l\
in the case of small samples. It will have been obser\'/ed rh;.
the factor c¢» used in setting limits for standard deviaton:
based upon the assumption that the samples are drawn fv
a normal universe whereas, in general, we know that this &
dition is not rigorously fulfilled. Furthermore, we have %
that the distribution function of both the average X and st
ard deviation ¢ of samples of a given size depends.upon t
nature of the universe. Hence, the probability associated:
the limits in the control charts for the average X and standa;;
deviation o depends upon the universes from which the samp:
were drawn.

Of course, the distribution of averages, even for sa.mplesi
four, is approximately normal independent of the umverses‘.
that the probabilities associated with control charts for averit
are closely comparable irrespective of the nature o.f the w
verses. 'This is not true, however, in respect to the distribute
of standard deviations. ‘,

We may get around this difficulty partly by using the contrfi
chart for the expected variance of the universe since, as we ha‘i‘
seen, the expected value is related to the variance of thh
universe in a known manner. This makes it possible to establfsL
the base line of the control chart for variance—something W_hlﬁ
cannot be done for the standard deviation unless the functlonf‘
form of the universe is known. On the other hand, the stal
ard deviation of the variance involves the flatness Bz of
universe and hence cannot be estimated with great accurs
in most practical cases. N

Under these conditions, it seems reasonable to bele
that comparatively little can be gained in most cases by makn{g
use of the variance instead of the standard deviation. In [hl’_
connection, it is of interest to cite a typical instance of the ¥
in which the control chart method, making use of average an
standard deviations for small samples, gives indications &
sistent with facts when we apply the test to samples of to¥
drawn from either of the three types

. M S\
. of universes Prekues’
described. For example, Fig. 112 shows the results of the!
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applied to twenty-five samples of four from each of the ti
experimental universes. In each case all of the points are witr
the limits as we should expect them to be under the contl:
conditions supposed to exist in drawing these samples. T
results of the test are obviously consistent with the fic
assumed @ priori to be true in this particular instance.

9. Criterion 11

We shall close this chapter with a description of anot
criterion and illustrate its use by application to the 204 &
of Table 2. Having the data divided into m subgroups of size:

. ld .. ) '
we calculate the ratio —L—‘— as indicated .in the data sheet¢
d

Table 45. If the ratio is greater than three, this fact is tai
to indicate lack of control. We shall call this test Criterion !
'I:h.is test provides a means of judging the nature of
Fondltlons under which the sampling has been done. Tha
if all samples are produced by the same constant systn !
causes, or, in other words, if the sampling has been dont i
yvhat we term Bernoulli fashion, then the expected value off
1s zero. If, however, conditions change between each obser
tion of a subgroup but the same set of changes occur in te
process of obtaining each subgroup of observations, then Ihf
expect.ed value of 4 is greater than zero, and in such cases &
samp.h_ng is said to be done in Poisson fashion. Or aga :
conditions remain constant for any subgroup of observatit:
but change in any one of a finite number of ways from subgr®
to subgrogp, then the expected value of 4 is less than zero
the sampling is said to be done in Lexian fashion.
5 HOWt?ver, even though the sampling is actually dont ¢
Z:;I;)noulh fas}}lon, the observ.ed value of 4 may be Posllti\'i
. or negative du.e to sampling fluctuations. Hence, W me
ajeves usf%r?ii r:a:i?r of Judging when the deviatiqns of 4 from Zer‘
. great to indicate either a Poisson or a Le¥
selection of samples.

The standard deviation of & based upon Bernoulli sampli®
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TapLe 45.~—DaTa SHEET ror Criterton II—Data oF TABLE 2

2]

Calculation of ——
Tq

Number of observations N = 204
Size of subgroup # = 4

Number of subgroups m = 51

Sample Average X; X2 Variance ¢;2
Number of Sample ‘ of Sample
i 4,430 . 0000 19,624,900 . 0000 149,512 §000
2 4,372 . §000 16,118,756 . 2500 7,606 . 2500
3 3,827 . 5000 14,649,756 . 2500 17,656 2500
) §,100. 0000 26,010,000 . 0000 11,250.0000
z 229,407 . 0000 1,038,119,072.0700 4,832,876 . 1050
Av. 44981765 20,355,275 .9229 94,762.2766
m
Z X2
ot = T — X? = 20,35,275.9229 — (4,498 .1765)*

= 94,762.2766

nogt =— 370,122.4810
m — 1 * -

o4 = [\/ 2(mn — 1) < 2 07>] = 29,107.6083
m(m — 1)(n —1) \n — I -

M _ 379,122.4810
oq 29,107 .6083

= 12.71§7

Provides such a measure of significance. The formula for
% Was obtained upon the assumption that the samples had
¢en drawn from a normal universe, in which case ¢? and o3?
e uncorrelated. If the universe is not normal, this formula
oot will not necessarily give the correct result, although from
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the viewpoint of detecting lack of control this simply me
- dy . .
that the probability that —‘d—‘ will exceed 3 differs soment:
d
from gg per cent, or, in other words, we may on the aven
look for trouble a little more often or a little less often th
one time in a hundred when it actually does not exist.



CHAPTER XX1
DerectioNn oF Lack oF CoNTROL—CONTINUED

L Introductory Statement

In the previous chapter we considered the problem of
detecting lack of constancy of a cause system or the presence
of an assignable cause of Type I. In this chapter we shall
consider the problem of detecting the presence of a predomi-
nating cause or group of causes forming a part of a constant
system. Such a cause will be referred to as an assignable cause
of Type II. In the latter part of this chapter we shall consider
what is perhaps the only available method for detecting the
presence of assignable causes when the data are such that
they cannot be grouped into rational subgroups and when no
nformation is available other than the observed distribution.

Assuming that the variable X satisfies the equation (58)
of control, how can we detect the presence of a predominating
Guse or group of causes? As a basis for our consideration of
this question, let us return to the picture of a constant system
of chance causes presented in Part III. There we assume that
such a system is composed of, let us say, 7 ultimate independent
causes

Cl,Cz,...,Ci,...,Cm,

Producing effects which compound linearly. It will be recalled

that we do not presume to be able to describe any one of these

™ causes. The most that we can usually hope to do is to put

our ﬁngers on some secondary cause made up of several of the
mdependent contributing causes.

To make this point clear, let us think of the unknown group
321
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of m causes of error in some physical measurement suchs
that of the coefficient of expansion of a steel rod. Som
the secondary or macroscopic causes of error would be tém
ature fluctuations, non-homogenous heating of the rod, &
Such a cause obviously includes a group of the elements
causes. We may represent this situation schematicallys
follows:

Ci, Coy...,|Ciy Cit1, Citay .o, Citjlye .oy Cm

Macroscopic Cause Y

With this picture in mind, two methods of detecting
presence of an assignable group of causes suggest themselts
They are the well-known Method of Concomitant Variatt
and the Method of Differences of elementary logic. Thes
method is to vary the cause ¥ and see if we get an accompanj
change in the resultant effect of the cause system. Theol
method is to remove the cause Y and observe whether ort
the resultant effect is modified. '

In the general case where X is a chance or statistical varit
subject to sampling fluctuation, the effect either of varying*
cause Y or of removing this cause must be shown to bt st
mﬁc.ant in the sense of being greater than can reasonably :
attributed to sampling fluctuations in the variable X.

It should be noted that both of these methods require
the. an:“lYSt be successful in choosing the macroscopic ot
which is findable in the objective sense. Hence, in the &
cation of such a test, one must make full use of his power’
\magination, supposition, idealization, comparison and and¥
in the utilization of all avajlable data’.

2. Criterion II]

L t

N anetaus‘ assume that we are to discover whether or not t,he‘,

. . . e i

Variabless)lfgnable or predominating cause of variability 0
satisfying the equation of control, namely,

dy =X, N, Ngy LN, L L , Mn)dX.
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The application of Criterion III involves three steps:
(4) Pick out some controlled variable ¥ which may or may
not be an assignable cause of Type II.

(B) Obtain 7 simultaneously observed pairs of values X1Y1,
XYs, ..., XiYi, ..., XaYn and determine the cor-
relation coefficient 7.

(€) If r lies outside the limits

3
O:t‘\/n——l’

take this fact as an indication that Y is an assignable
© cause.

.If the correlation between Y and X is normal, we see that
Criterion IIT indicates that there is a significant degree of
wmmonness of causation or, in other words, that the observed
wrelation coefficient 7 is greater than can reasonably be
attnbgted to sampling fluctuations where, as before, we choose
Sam.ph.ng limits corresponding to three times the standard
deviation of the statistic used in measuring the fluctuations.
Since, as we have seen in Part III, there is reason to believe
that thf& correlation between two controlled variables is at least
Pproximately normal, we may assume that the positive in-
dication of Criterion 11T is indicative of a significant degree of
“mmonness of causation between the two variables, and to
this extent ¥ may be considered to be in most cases an assign-
able cayse, 8
oftlgzocf(r)lrr\zl};agol:la:o:;er} saiq a‘bout Fhe sampl%ng fluctuations

cient, it is obvious that, if small samples
U1t to be used, it is preferable to state the test in terms of the

‘anable 3 given by (77). If 7, as given by this equation, lies
Wiside the range ’

ox—3
the crt "3
e . . . . P . . .
" :tgnon is s?ud to give a positive indication that Y is an
Enable cause in the sense of our present discussion. So long

s th i
h ¢ sample size 7 does not exceed twenty-five, it is perhaps
o use the 2 transformation. '
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Example 1: We shall consider a case in which it s
desirable to control the hardness of a particular kind of
ratus. In this instance, each piece of apparatus consist
two parts welded together, the materials for the twop
coming from different sources. Table 46 gives the hard:
measurements on each of the two parts for fifty-nine piews
this apparatus. Is there any evidence of the existence .
assignable group of causes of variability in hardness?

TaBLE 46.—HARDNESs MEASUREMENTS oN WELDED Parrs

Hardness Hardness “ Hardie:
Sample Sample Sample |

Number Part 1 | Part 2 Number Part t | Part 2 Number % Part 1 iPE"
1 50.9 | 44.3 21 487 | 36.8 41 47917
2 44.8 | 257 22 44.9 | 367 42 MRAK
3 51.6 | 39.5 23 46.8 | 37.1 43 4793
4 43-8 | 19.3 24 49.6 | 378 44 RERE
5 ] 490 432 25 S1.4 | 335 45 a9 ¥
6 45.4 | 26.9 26 45.8 | 37.% 46 0.0 | ¥
7 44-9 | 345 2 48.5 1 38.3 47 4738
8 49.0 | 37.4 28 46.2 | 30.7 48 469 1¥F
9 | 53.4 | 382 2 495 | 339 a9 | 49rlf
1o 48.5 | 33.0 30 50.9 | 39.6 50 4827
11 46.0 | 32.6 31 47.5 | 369 51 4.9 7
12 49.0 | 35.4 32 45.0 | 375 52 907
13 434 | 36.2 33 46.6 | 32.4 53 A
i4 424 32.% 34 48.0 | 39.8 54 sL7
15 466 ) s 35 44.5 1 35.3 55| 452
- 50.4 | 38.1 36 48.5 | 38.3 56 44.8 0
- 45.9 | 352 37 46.0 [ 38.1 57 424

47-3 | 33-4 38 48.9 35.0 58 48.%

19 46.6 | 307 39 46.3 | 349 59 50!

20 47.3 | 36.8 40 46.1 | 32.9

Now th‘? only common source of causation was th r
reatment o e appasac s o por
heoer as;i nabn]ce the Varlal.nh.ty in the heat treatment 17'-:
the Correlagtion ? C;}Us.e. If it is, we should expect 10 ﬁnd.~
in Table 46 ; coethcient r between the hardness measure™

€ 40 1s significant in terms of Criterion 111.
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Applying the test we find that the observed correlation
r = 013 lies outside the limits

-
Vis9-1
Hence we conclude that the heat treatment constitutes an
assignable cause of variability in the hardness of the finished

product.” This conclusion has since been justified by further
studies.

O+

3 Criterion IV

Let us assume, as before, that the variable X satisfies the

equation (58) of control. The application of Criterion IV
involves the following steps:

(4) Obtain » observations Xi, Xo, . . ., Xi, ..., Xnof the
variable X and calculate some statistic O3 for this set of n
observed values.

(B) Choose some variable Y which may or may not be an
assignable cause and obtain # values of the variable X under a
wndition where it is known that the variable Y can in no way
fuence the variability in X. Making use of this new series
ofnobserved values, determine the value of the statistic 8; and
let us call this value Oy,

(€) If
l Bi1 — i I > 306,—0p>

%e take this fact as an indication that Y was an assignable
(ause,

Ff)r reasons which we have already considered, it is usually
wficient to make use of the two statistics, average and stand-
ard de}’iation, in terms of which we say that Y is an assignable
@use if either of the following inequalities is satisfied:

lX—x - le > 3\/711 (612 + 022)

lor— 02| > 3\/L(012 + 02?).
n
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Example: Fig. 113 shows the cross-sectional view of 2 o
mon type carbon transmitter. It is but natural to expect -
the physical properties, such as resistance, efficiency, et,c

=0,

pUCE
VARIATIONS INTRODUCED ARIATIONS INTRO
B8Y PIECEPARTS v BY CARBON

THREE CAUSES, OR GROUPS OF CAUSES, OF VARIATION

o= VoZ + a3 + o3

THIS DISTRIBUTION OF PRODUCT TRANSMITTERS 1S, AS WE WOULD EXPECT*
A SIMPLE COMBINATION OF THE THREE CAUSES OF VARIATION

T1G. 113

. Iio'
- . and
ent should be sensitive to slight ¥

. . ith "
granular carbon, the elasticity, den® furé

parts,and the details of assembly, such as g

this kind of instrum
1n such factors ag
of the piece-
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with which the screws are set and the care with which the
respective parts are centered.

Itis of interest to see how much influence each one of these
three factors exerts upon the general variability of the qualities
of the completed instrument. The method for investigating
the influence of each factor immediately suggests itself—it is
the use of Criterion IV.

To apply this method we must eliminate the influence of
all but one of the factors and study the resulting distribution
of quality attributable to the remaining factor or constant
system of chance causes. The results of such a study on one
quality characteristic gave the three distributions shown in
Fig. 113, the standard deviations of which were o, for piece-
parts, o, for assembly, and o for carbon.

If 5 represents the standard deviation in quality of the
completed instrument in a sample of # and

ny = standard deviation in samples of # when piecé—part
variations are eliminated,

a3 = standard deviation in samples of 7z when assembly vari-
ations are eliminated, and

%= standard deviation in samples of # when carbon varia-
tions are eliminated,

then the application of Criterion IV to standard deviations
states that piece-parts, assembly and carbon represent assign-
ble groups of causes if

—_— e

1
|o— o123 | > 3\/— (02 + 021.23),
27
|1
l<r — 0213 l > 3\ (62 + o%2.13),
2m

lo— o3.12| > 3\/§1 (0% + 0%3.12).

and

l:thls case it was found that each of these three inequalities
& satisied and hence we conclude that all three factors
“ually represent assignable cause groups of variation.
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Furthermore, since the value of ¢ is approximately give

we conclude that these three groups operate independs:
and contribute practically the entire amount of variahl:
observed in the completed instrument.

4. Criterion V

Oftentimes the observed data are given in a form sucht
no one of the four previously described criteria can be w

T ® OBSERVED DISTRIBUTY
~=— SECOND APPROXIMATE:
© 2,500}
4
u
>
2 2,000+
o
—
2
= 1,500}
u
fe]
a 1,000}
w
(2]
2
z 500}
oL ‘

1 . i
10 1] 12 3 14
EFFICIENCY

1
7 8 °

Fi1c. 114.—Is I'nere ANy Inpicartion oF Lack oF CoNTROL? CRI'rERIOF\
ANswERs: “YEs.”

As a specific illustration we may consider the observed
quency distribution of efficiency of 7,686 pieces of one ki
apparatus represented by the black dots in Fig. 114- Ist
any indication of lack of control?

‘The instruments in this group had come to the &
testing laboratory from eight different shops. The mes®
ments when submitted for analysis, however, had been g%
. together, giving the frequency distribution of Fig. 114 and’

fourth column of the upper half of Table 47.

The method of detecting lack of control in this ca :
follows:
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4. Calculate the average X, the standard deviation ¢, and
the skewness % from the # observations and use these in the

expression !
z2 3 z*
1 kix 1x -
i- ~<- . _3> e 202dx
i OV 27 2\¢ 30

o caleulate the theoretical frequencies o1, ye2, - -+, yom for
the m cell intervals into which the original data have been
grouped, it being understood that x = X — X.

B. Calculate

m

X2 = 3 (yi—yei)2.
i=1  JYei
C. Read from the curves? of Fig. 73 the probability P of
obtaining a value of x2 as large as or larger than that observed,
where the number of degrees of freedom is taken as four less
than the number m of cells.

D. If the probability P is less than o.001, take this fact as
an indication of lack of control.

Example 1: The details of the application of this criterion
to the data of Fig. 114 are shown above in the data sheet of
.Tabl.e 47. It will be noted that Sheppard’s corrections are used
n this case. 'The smooth solid curve of Fig. 114 appears to fit
the observed points very well indeed. However, Criterion V
detects what the eye does not see. In accordance with the con-
dltl.ons of Criterion V, we conclude upon the basis of its appli-
ation that the quality of this product was not controlled.

Although the observations originally presented were grouped
"ether without reference to the shops from which they came
1t 1atr:r became possible to subdivide the data upon this basis?

kfinite evidence of lack of constancy of the cause system
¥ thus revealed by the control chart of Fig. 115, and the

Eslg_nable causes of variability were found. In other words,
¢indication of Criterion V was correct.

1T -
nfls 1s the sec?nd approximation already referred to in Parts Il and IIl, The
X ezl frequencies may be calculated with the aid of Tables A and B,

Hore extensive tables of P(x?) are given b in hi
‘ : y K. Pearson in his T4/ .
1ans and Biometricians. gl 1o St
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TasLE 47.—DaTa SHEET ror CriTERION V.
Date Ll
Sub ject e
: INSPECTION ENGINEERING ANALYSIS SEEET cale. iy
Chasked B
Apparatus Type 4 o .
2 2 3 4 s [ 7 8 9 - 10 -
['. Cell |Dev, Ods. s 'W" . AN
o1l | Bound.|,28l8 ) rea. | ;1 | a® ” w T |y |yl | 5
value X b4 [
of e.o |-2-5 0 s ° o 0 0 0 Lxe Ve Y
1) 2.0 * 1 18 18 18 18 18 s -
28,0 Z‘% H 164 28 658 ime 289 .1m 15628 Jﬁu 4
3l 9.0 9’5 awoe |  s732 | 17136 51408 | 1716 .?;_J_m_{ g
4|10.0 = 4 2904 | 11616 | 46404 100856 | 7 m——hf
5| 11,0 |05 s | 1018] 9580 | 47900 230500 | 1197800 | 19082 | -3¢ | 1:95 [
=115 2
sl 12,0 8 13 3972 | z3a5p | "
7l 33.0 |-12:0 7 | o 207 | 4940 843 ] 2 nol -9 L
8| 14,0 128 8 n s 704 besz 45056 10 1
14,5
|
-
&
z 7686 | lastece | esizes | sesore | E s
@ = units per ¢ell = __ ] Runber of ce.
. __3%021 - a4 6.0 + . 0
Moments about [y 7 E 4166146 b $% 18 au, - e
erigtn ® - Z'%!'_ o 4l6e9 . 1e.430783 Ve . . (osoerytt o g
(The origin ¥ e 7, g 0 = A, -
ia ¢ a- 661861 - 7 s [ 313182 . . _ M
Pt.un:.vguo s = N 686 £80.0474% »k - ;55/'! " Tl 986050
. Syt . _Sea3pee . . 3.142229 . 3
of cell mo. o) - _gi S 421.974889 5 8" __f?_ - 342259 _sm—
Tnsorrasted s T gty - 1ul' - 18,430793 - J7.386792 = 2,000
woments about
ari{thmetis U3 ¥ g~ Oy am, e 2y, « - ©6:047480 - £30.360000 ¢ 144.020602 = AL —
asan X e
-y - 421.974880 - 1433.945608 + 1919, 35K —
BaT M 4 g ¢ GrugTay - 3l - 903,772605 = 5.650068
Corrected hg{eor.) = uy -~ 0.083383 =~ _ 1,07401) - 085383 = 990678
Ioments about
X (Sheppardre | Wgloor) g - 0.5, + 0,020167 =.__3.6%0088 - 637006 ¢ .0P9LET = B4R —
Corrections)
m; 2 3 4 5 I 7 8 9 10 -
~ > Sell | Dev, (x/7)
3| valie | Bowna.|Tren X { rz) £(2) xf(z) |Plziske(z)| pire. | P |
o 8.5 [4.6661] 4.58%0 | _sooo 0665 .0211 i e T
7,0 8,5 13,8661 3,08 14998 " 500 3
5.0 }—2e5 t2.6601] 2.0787 | 4063 S 0778 _‘931*‘“'02" 82— o002 | f
9.0 8,5 |1, 1.6740 4 0960 +— 8210 1™ osrs |
10,0 10693 | .2484 | o8 2602 | 2252 ol >
11.0 33081 8384 1 319 0107 N 28 3
12.0 —laS | 1.2401 0880 g 42540 | W
2] 13,0 — &8 [2.3330] 2. 3g4a 4908 L2820 ,ﬁl&_.o "
o 1—123.5 | 3,333 3,508 - _m_m; :ﬁ: e |
o iS40 qsoe | 5000 | oges ey v TR
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Example 2: In the development of methods of preserving
telephone poles, it is of interest to know the distribution of
thickness of sapwood to be expected for poles of a given kind
and to know whether or not this quality of poles is controlled.
Early in this study a set of 1,528 measurements of depth of
sapwood on as many chestnut poles became available, although
at that time it was not possible to divide this set of data into
rational subgroups.

3

®
W ®
<2
&2
w
>
<
e
4
[
b4
%990
-
<
> ° .
u
O'ln-—————-———-—..—.——.—-——-——
L ® [ 4
-2
A 8 c o} € F G H
i 1 1 1 1 1 J
SHOPS

Fie. 115 —FurtER EviDENCE oF Lack or ControL For Dara or Fic, 114.

The observed and theoretical distributions of depth of
$pwood are shown by the black dots and the smooth curve of
Fig. 116. The probability P of obtaining a value of 52 as large
sorlarger than that observed is much less than 0.001. Hence

a search for assignable causes was begun and the following
three were found :

(a) The men who made the measurements favored even
humbers,

() The thickness of sapwood was determined from borings
d o allowance was made for shrinkage of these during thé
time Fhat the measurements were being taken.

() The expected thickness of sapwood was found to depend
"o whether the poles had come from one or the other of the
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slopes of a mountain range. In the sample of 1,528 polessr:
had come from one slope and some from another.

360 ® OBSERVED DISTREUI
—— SECOND APPROXMATE:

300 |

240

180 -

120 |-

NUMBER OF PCLES

60 |-

o 2 4 6 8 10 12 14
DEPTH OF SAPWOOD IN 3;INCH

Fic. 116.—CrirErion V INDICATES THE PRESENCE OF AssiGNaBLE CAU®

Example 3: In the initial stages of the production ofalr
of equipment for which electrical resistance was an impo®
quality characteristic, the observed frequency distribution"|
that given by the dots in Fig. 117. The application o G

250+

e OBSERVED DISTRIBUTION
—— SECOND APPROXIMATOM

N
Q
=)
T

150 |

100}

NUMBER OF INSTRUMENTS

501

L 1 L 1 1 . b4 1 «
46.25 53.75 81.25 8
RESISTANCE

FIG. 1197.—
7-—CritERION V GivEes Positive Test, INDICATING TROUBLE

31.25 3875
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terion V indicated the presence of assignable causes in that the
probability of occurrence of a value of x2 as large as or larger
than that observed was much less than o.oo1.

Further investigation revealed that assignable causes had
entered the production process and affected the resistance of a
small group of the instruments in the original lot. After the
measurements for this small group had been separated from
the others, the resultant distribution was found to be that
given in Fig. 118. Criterion V applied to this resultant dis-

250

® OBSERVED DISTRIBUTION
——— SECOND APPROXIMATION

200

Sof

NUMBER OF INSTRUMENTS

I A L 1 1 L 1

1

! J
31.25 3875 46.25 5375 61.25

. RESISTANCE
Fie. 118.—TrousLe Removep—Crirerion V Gives Necarive Test.

iy . T
Mbution gave a negative test, indicating that the trouble had
N removed.

* Criticism of Criterion V

3 In the first pl.ace th? test is based upon the use of a particular
-us(i}lgm).f functlop, viz., the second approximation. Are we
s all ed in assuming tl}at quality f.ree frqm ass1.gn‘able causes
ways distributed in accord with this statistical law or
“Juency distribution? Ts it necessary and sufficient to show
 the quality of a product differs no more from a second
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approximation curve than may be attributed to sampling
fluctuations?

In Part IIT it was shown that there is no such known neces-
sary and sufficient condition for control. However, it was
shown that, for a very wide range of constant systems of chance
causes, the second approximation is approached as we approach
the theoretical conditions of maximum control although no fre-
quency function is a sufficient, even though it be a necessary,
condition for maximum control unless it be known & priori
that the chance cause system is constant.

Now let us consider the use made of the Chi Square test
in this criterion. Let us assume for the sake of argument
that it is necessary and sufficient to show that the distribution
function is the second approximation in order to show that the
cause system 1s free from assignable causes. In this case can
we rely upon the Chi Square test to detect the presence of
asignable causes when the theoretical distribution is calculated
from the second approximation using estimates of the three
parameters derived from the observed data?

Wehave seen how the Chi Square test works when the dis-
tribution function is known a priori, both as to functional form
and the values of the parameters. The question now to be
wnsidered is: How will it work, if we know a priori the func-
tonal form but not the parameters?

_Tomake the problem specific, let us consider the four dis-
trlbu.tions of 1,000 observations each from the normal universe
Previously used to illustrate the use of the Chi Square test
Z"e}lllesn isthekntrue distri't?ut'ion g}l, yz,h. e o5 ¥y -+, Ym Into m
b (zlxiavn @ priori.  Now, however, let us calculate

: stributions for each of the four samples of 1,000

y Using the observed values of the averages and standard

ations in the normal function. Table 48 gives the four
v;:;?;tgor;s de_rived in. this way toget}}er with the calculated

of x%, using a thirteen-cell grouping.

Itis of interest to compare the observed values of x2 in
S;:Sf fwith those.previously calcula}tef:l for the.sar'nc four

of 1,000 making use of the @ priori known distribution,
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Table 36. These two sets of values are shown in colum.
The average x? in the third colum

and 3 of Table 49.

TaBLE 49.—OBSERVED VALUES OF x?

Chi Square Probability
Sample Theoretical Distibiz
Number A Priori Theoretical /-{ Priori

Known | . ceribution | 1o ]

Distribution Distribution | 12 Degrees | 10 Deg:

of Freedom | of Freer

1 6%741 6.612 0.873 o.880 0

2 10.716 8.694 0.554 0.728 o

3 4.45§ 3360 0.972 0.991 o_9f:

4 9.174 6.146 0.688 0.908 o
R

Average. . ... 7772 6.203 0772 0.877 o

definitely less than that in the second, and the averag "
ability calculated for the values of y? from the theort
frequencies is 0.877 as compared with the average of 077"
responding to the chi squares computed from the known 4"
frequencies.

A little consideration shows that in the calculation t’
from theoretical frequencies, we must make allowance i’
fact that estimates of parameters are used instead of true vé
We see that, when the 4 priori cell frequencies yi, Y.
Yi, - - -5 ¥m are known, the only restriction on the obser
cell frequencies y,, Y2+ oy Piy . oo, ymis that

Jitya+ .. st yit oot ym = n
lIln other words, the set of 7 variables (y; — y1), ( = 1, %"
as 7 — 1 degrees of freedom. Obviously, however, the®
pr variables (yi — yoi) has m — 3 degrees of freedom becais”

have three ke . .v
conditions imposed ) 1 free

. ! ’ -

cies, viz., p pon the possible ce

Xy =n,
2yiXi = nX,
Zyi(X; — X)? = not,
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When we make allowance for the loss of three degrees of freedom
instead of one, we get the probabilities in the sixth column of
Table 49, the average of which is 0.773 as compared with the
corresponding average o.772 for the values of x? calculated
from the & priori known cell frequencies. This close check
should strengthen our faith in the usefulness of the x2 test
when the functional form is known & priori and the parameters
are estimated from the data.

We must consider briefly certain other characteristics of the
Chi Square test. Obviously the total number of observations
must be large before we can apply the test, particularly when
the parameters in the frequency function must be estimated
from the observed data. In quality control work we seldom
try to use Criterion V unless the sample size # is at least 1,000.
When the sample size is very large, it becomes important that
the method of estimating the parameters in the theoretical
frequency distribution is such that the statistical limit

I
Ls =(yi-ye:) = ©
n— w0 7
issatisfied. Otherwise the observed value of x2 as # is increased
indefinitely will always approach infinity even thc.>ugh t!1e
quality is controlled in accord with the assumed functional dis-
tribution. Enough has been said to indicate the nature'of some
of the limitations to be placed upon the use of the Chi Square
test involved in Criterion V.

Thus we see that Criterion V is a far less satisfactory test
than Criterion I where the latter can be appl.ied.. We see that
Criterion V in practice will usually give indication f’f the
presence of assignable causes even though t.he product is con-
trolled, unless the objective distrib.utu.)n 18 rigorously given .by
the second approximation. The criterion 111.<ely errs on the .31d.e
of indicating trouble when it does not exist, al.though this is
not a serious handicap in most industries unt.ll the state of
control has been practically rethed. By such time a produ;:le.r
will generally have set up his inspection practices so that his
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data are divided into rational subgroups and Criterionl»
be applied.

6. Rbéle of Fudgment in Choice of Criteria

Even though, in general, an engineer need not gox
the use of the five criteria previously described, certain e
tions may arise. Such a case is shown in Fig. 1191 whits
have a control chart for averages of samples of four syt
to have been drawn from a normal universe in the orderfie
Would you conclude that the cause system is constant be
Criterion I is satisfied? Almost anyone will ans¥-
question in the negative. The probability of getting be
controlled system twenty-five samples with averages ecre®
from sample to sample is so exceedingly small comParedi
the probability of getting twenty-five samples not ™

2¢

P
————.———l—_————-————-———_—’/’
24
gt e
hd Y
- ° 0,
o ® ® ¢ o0 0 0
v o ¢ o /
ul - hd
3 ® e R
< vy,
Eal '
-
_—-__—___—-____—_-—.—//
-2L
[¢] DR S S U W R 1 1 1 R PR TR DOV FU N ‘4"—//'
5 10 5 20

DAYS

Fic. 119.—A Case wHERE JupcMENT 1s REQUIRED

as to suggest the presence of an assignable cav® or;:z
ere is a case then where common sense suggests !
criterion other than one of the five,
useﬁ; :rrilgc:;:r 1e)iample ofa situa.tion req}liri_ng.]?dgg‘esu@
o e , let us con51de.r again the distributio? ”_ »f
o ;; %e t rox:v; of twelve dice where the throw of ¢
st re:onsltjred a success. A manufacturer 0 Lt
baahe Isona y have wished to produce dice ¥ IColuﬁl
- Insuch a case the distribution of successt”
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of Table 50, should not differ from that given by the successive
terms of the point binomial, 4,096 (3 + 4)'? by more than may
be attributed to sampling fluctuations. Would he conclude
that the discrepancy between the theoretical and observed dis-
tributions indicates bias? To answer this question he might

TaLk §o.—DoEs THE DiscREPANCY BETWEEN THEORETICAL AND
OBseRrRVED DistriBuTioN INDICATE Bias?

Number Observed Theoretical Number Observed Theoretical
of F Frequency of Freauenc Frequency
Successes TEQUENTY 11096(%+3)1|| Successes AUEREY N iog6 (A1)
0 o I 7 847 792
I 7 12 8 536 495
2 60 66 9 257 220
3 198 220 10 71 66
4 430 4958 1 11 12
1 731 792 12 o 1

6 948 924

apply Criterion V. "Doing so, he would get a probability of fit
ofo.co15. Since this probability exceeds the value o.001 set as
alimit in the statement of Criterion V, he would be supposed
to conclude that the product was controlled in the sense that it
did not show a significant bias from the a priori standard.

If, however, we compare the graph of the smooth curve
through the frequencies determined from the binomial expan-
sion, Fig. 120, with the observed values, we see that the smooth
curve appears to be shifted to the left.

Instead of using Criterion V, we might have compared the
observed fraction p = 0.512 of success with the expected value
2500 upon the basis of the assumption of no bias. We might
take the occurrence of a value of p outside the range 0.500 =+ 307,
where o is the standard deviation of p in samples of size #, as
being significant. In this case

op = = 0.0158.

—
A nap
g |
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Hence this test indicates control as did Criterion V, b
the observed value p = o.512 is well within the lims
0.500 =+ 3(0.0158). Thus both tests indicate control.

It is left as an exercise for the reader to calculate thet:
retical distribution upon the assumption that the dicw
biased so that the probability of success is the observed
o.512. He will find that the probability of fit is thus remar:

| )

o ® OBSERVED DISTRE.
1\2

— 4096 (3 + 5_)

900
80Q
700
600

500

FREQUENCY

4Q0

300

200

100

L 1 L 1

s 6 7 8 9 o 12
NUMBER OF SUCCESSES
120.—THE FACT THAT THE SmooTH THEORETICAL CURVE APPEARS *

o -
IFTED TO THE LEFrT SUGGESTS Lack or ControL EvEN THOUGH Crure
Gives NEGATIVE TEsT.

2 3 4

Fia.

lmprove-d, and that the differences between observed a1’
responding theoretical cell frequencies show a mixture of ¢
as they should. In this case he will find that the o
;?SUltSb?re fnore likfﬂy on the assumption of bias than @ :
the Lo 2. Most likely his judgment will lead him ©%
e YPOthe81s that the dice are biased.
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7. Sampling Inspection in Relation to Control— Attributes

We are now in a position to consider the significance of
control in relation to sampling inspection designed to give the
consumer certain assurance in respect to the quality of product
which he receives.-

The consumer, in general ignorant of the production process,
naturally wants some protection against accepting a bad lot of
product. Of course, the ideal situation would be to inspect
the entire lot and thus make absolutely certain of its quality.
This, however, is often a too costly procedure. Hence the
consumer is willing to compromise and use sampling inspection
provided it is not likely that the quality of the sample will
indicate that the lot is good when, in reality, it contains more
defects than he is willing to tolerate. Two such sampling
methods for protecting the consumer will now be discussed.

A. 4 Priori Method: The essential element in this method
is that, if a lot containing the tolerance number of defective
pieces is submitted for inspection, the chance that it will be
accepted on the basis of a random sample is a given value P,
whereas if the lot contains more than the tolerance number of
defective pieces, the probability that it will be accepted on the
same basis is less than P,

For example, let us assume that a lot of N pieces of product
is to be inspected and that the number ¢ of defective pieces
found in a sample of 7 is to be made the basis of acceptance or
rejection of the lot. The consumer is perhaps willing to accept
a certain amount of defective material provided the number of
such pieces thus accepted does not exceed some fixed per-
centage of the lot, commonly known as the tolerance pt. In
fact we shall assume that, if a tolerance lot,—one containing
pN defective pieces—is submitted for inspection the consumer
wishes to have some assurance that he will accept only a fraction
Pof such lots in the long run. This fraction P has been called
the consumer’s risk and it is merely the probability that a
tolerance lot will be accepted upon the basis of the sample.

UThis risk is discussed in an article by H. F. Dodge and H. G. Romig, “A Method
of Sampling Inspection,” Bell System Technical Fournal, October, 1929.
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It remains merely to specify the sample size 7 and ace:
number ¢ in such a way that the probability of find:
number or less of defective pieces in the sample taken fir
tolerance lot is a given value P.

Mathematically these factors are related by the fol.
equation:

o or A o Mo SR ol o

n—¢ ¢

z‘”

P =S
C

3

where Cj' means the number of combinations of i things
ata timeandg = 1 — p;. Having assigned P a definite®
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T 0-10’-

oL l _l.
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NUMBER DEFECTIVE IN SAMPLE

Fic. 121.~—ConNsuMEer’s Risk.

$ay ©.I0, it is then possible to find pairs of values of ##
which satisfy (g2).

(o illustrate the meaning of the consumer’s risk,
consider the following simple case. N = 100, 7 =}
fhper lclent, ¢ =1, g = 95 per cent. The consumer's Flsg.

en lt e probability of finding 1 or o defective pieces
Sﬁa-mlz1 efOf _ﬁftY, taken from the lot of one hundred conts”
W\éeﬁnt’;l e;:)tlve pleces. Substituting the necessary values i
= 0.1811, which is equal fs

. . al to the sum of the I
ordinates of Fig. 121, 1
sumB. A Pos{eriori Method: This method also offers tht C{.’
Cont: ; certzlilm protection against accepting bad lots, i'e".[i
Ing the tolerance number or more of defective Ii*
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The essential point of difference between this and the method
just described is that the present method ! attempts to find the
probability that a lot contains more than X defective pieces if
¢ defective pieces are found in a random sample of 7. A little
consideration will show that this kind of risk is quite different
from the consumer’s risk previously described and that the
nature of the assumption that must be made before this risk
can be given is quite different from that made in the a priori
method.

Specifically, it is necessary to assume the a priori existence
probability distribution of lots of a given size N in respect to
the number of defective pieces contained therein. Having made
this assumption, it is then possible to calculate the probability
that each of the possible lots would have given the sample.
The @ posteriori probability that the lot contains just M de-
fective pieces is then the ratio of the probability that a lot of
size N containing M defective pieces existed and caused the
sample to the sum of the probabilities that lots containing o,
1,2, ..., N defective pieces existed and caused the sample.
It follows from this that the @ posteriori probability that the
lot contains more than M defective pieces is the sum of a series
of the above ratios found by allowing the number of defective
pieces in the lot to vary from M + 1 to NV inclusive.

To illustrate this method, consider again the above example
and let us find the @ posteriori probability that the lot of one
hundred pieces contains more than the tolerance number of
defective pieces, assuming that the sample shows only one
defective piece. As a very simple a priori assumption we shall
assume that all possible constitutions of lots are equally Pr(.)b_
able, i.e., the probabilities of the existence of lots containing
01,2,..., 100 defective pieces are all equal to 7§t - Then
the existence probability distribution of pos§ible lots is that
shown graphically in Fig. 122-¢ and given in Column 2 of
Table 51 as existence probabilities ao, 1, ..., 0, oo, an.

! This method of sampling is discussed in an article by Paul P. Coggins “Some
General Results of Elementary Sampling Theory,” Bell System Technical Fournal,
January, 1928,
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The next step 15 to calculate the probability that eachoit
possible lots could have given the observed sample. Tx
are the productive probabilities Bo, B1, .+« Bis - - -, sl
in Fig. 122-4 and Column 3 of Table §1. At this stage wesh

TasLe §1.—CALCULATION OF & posteriori PROBABILITY

o @) ® A
Number A priori A priori | A posteriori
Defective Existence Productive | Probability

in Lot Probability | Probability afi

M; a; Bi Saifi

0 1/101 o o

I 1/101 0. §00000 0.252475
2 1/3101 0. 505061 0.255026
3 1/101 ©.378788 0.191269
4 1/101 0.249922 0.126198
S 1/101 0.152947 0.077231
6 1/101 0.088870 0.044875
7 1/101 ©.049635 0.025063
8 1/101 0.026838 0.013553
9 1/101 0.0I4112 0.007126

1o 1/101 ©0.007237 0.003654

11 1/101 0.003627 0.001831

12 1/101 0.001778 0.000898

13 1/101 0.000854 0.000431

14 1/101 0.000402 0.000203

15 1/101 0.000185 | ©0.000093

16 1/101 0.000084 | ©.000042

17 1/101 0.000037 0.000019

18 1/101 0.000016 0.000008

19 /101 ©.000008 0. 000004

20 1/101 ©.000003 0.000002

*2I 1/101 0. 000001 0.000001

22 1/101 0.000000 | ©.000000

* Probabilities i .
robabilities in columns (3) and (4) for M = 22 do not affect the sixth place of @™

note that certain o
hundred containing
fifty-one defective p
For g’s correspondi

f the B’s are necessarily zero,—lots of ¢
}ess than one defective piece or mort t-
teces could not have produced the "
Ng to number of defects lying between
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limits, the probability if; that a lot containing just i defective
peeces existed and caused the sample is

1 e
aifi = — Ci Gl
0.10p
Eg oosf @)
2
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F1G. 122.—RELATION BETWEEN PROBABILITIES.

The a posteriori probability that the lot contains just 7 defective
pleces is

o671

N

X aiBi

i=¢

These probabilities are shown in Column 4 of Tables1. Hence,
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for the given special case, the @ posteriori probability 2 ‘
the lot contains more than the tolerance number (f-
defective pieces is found by summing the probabils
Column 4 corresponding to M = 6,7, ..., 100 Thus

100

_Z oy

Py = 22— =o0978.

2 i

t=0

Hence P; is the consumer’s assurance that the lotis
upon the basis of the given assumption and is repres
graphically by the sum of the ordinates of Fig. 1234 i
M = 6 to M = 100.

It is perhaps worthwhile to point out that, if the mt-
facturing process is controlled, the probability that a lo
N pieces contains the tolerance or more of defective pt
knov'vn as soon as the equation (58) of control is known. 1
a priori consumer’s risk, however, even under these condi
has an additional protective feature in that even amo
proportion of lots which contain the tolerance numb
defective pieces the consumer will accept only a certain fract
P of them. Among those lots containing more than the 1
ance number defective, less than the fraction P of then'!
be accepted.
of tif;:t;:ogzigz is controlled in 'the sense that the pro};‘a:”i
ratus i ; process producing a defe.ctlve piece O-;Pf,

Lus 1S p, 1t can b? shown that the 4 posteriori method of&*
condition just stat ac;, ¥ been' lnferre'd ¢ priori. | 1n faa}i 1[ :
a posteriori Probab?l'tls S}fltlSﬁed’ it can be sbown taf
defective pieces hav% y that the lot N contains [x""
of 7. is A ing found ¢ defective pieces in a %"

» 1s precisely

CI;_"QN‘"_XPX.

Thi ; .
LTI e s st e e 0
e balance (N — #) of the lot contal®!
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X defective pieces and is known as soon as the condition of
control is met.

Itis of importance to note that, in order to be able to state
the probability that a lot of N pieces of a product contains not
more than X defectives after examining a sample of #z in which
¢ defective are found, we must assume something about the
congtitution of the lot defore the sample of 7 was taken. Now,
a5 we have seen, we approach the condition where we can say
something about a lot of size N before the sample of size # is
tken as we approach the condition of control.

Hence we see that even from the viewpoint of consumer pro-
lection, it is an advantage lo have aiiained as nearly as possible
the condition of control.



Parr VII
Quulity Control 1n Practice

ASummary of the Fundamental Principles
Underlyving the Theory of Control and an
Outline of the Method of Attaining Control of
Quality from Raw Material to Finished Product



CHAPTER XXII
SummaRry oF FuNpDamMENTAL PRINCIPLES

L Introductory Statement

The subject of quality control as considered in the previous
chapters is comparatively new. The theory is based upon
certain statistical concepts—physical properties and physical
laws are both assumed to be statistical in nature.! With the
introduction of statistical theories and statistical laws comes a
need for a new concept of causation.2  Our understanding of
the theory of quality control requires that our fundamental
wneepts of such things as physical properties, physical laws,
and causal explanations undergo certain changes, since indus-
tfial development rests upon the application of the laws relating
the physical properties of materials.

The object of industrial research is to establish ways and
means of making better and better use of past experience.
Insofar as research continues to reveal certain rules or laws
which exist in the production of the finished product whose
quality characteristics satisfy some human need, we may expect
industry to be interested in research. That industries do have

'This development is in accord with modern physics in that statistical theory is
basic to a causal explanation of atomic phenomena. For example, Louis De Broglie,
rcipient of the Nobel Prize for Physics in 1929, says “Consequently there are no
longer any rigorous laws but only laws of probability.”~Wave Mechanics, page 9,
Metheun & Co., Ltd., 1930.

*This is true also in the field of pure physics. See for example Arthur Haas,
Ware Mechanics and the New Quantum Theory, published by Constable & Co., London,
1928, He says, “In contrast to the sharply defined causality which is evident in
Macroscopic physics, the latest theories have emphasized the indeterminate nature of
dtomic processes; they assume that the only determinate magnitudes are the statistical
magnitudes which result from the elementary processes of physics,”

351
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such an interest in this form of human endeavor seems tok:
well-established fact. It is estimated that during the yeri:
upwards of $200,000,000 was spent in industrial research
approximately 1,000 laboratories in the United States! T
gives the order of magnitude of the sum of money that isbe.
spent annually in the effort to find out how to do sometl,
tomorrow that we do not know how to do today. Al
however, in this direction is obviously not included in for:
research programs. Who, for example, in some way o o
has not made use of past experience?

It is rather startling to see how much progress was -,
by that part of the human race which never had any knosk:
of applied science as such. Long before any one worrled ¢
the physical principles which govern the use of the levers
of t.he wedge, use had been made of both of these mechar:
devices. Long before any one had arrived at the generalizai.‘
known as the Law of the Conservation of Energy, ouf*
fathers had transformed mechanical energy into heat enett’
start their fires. These two illustrations are sufficient to
that progress in the use of past experience does not &
upon the knowledge of scientific laws as we know them ©f
The rate of progress on the other hand does depend upor &
knowledge. In a similar way, we do not have to knov?
theory of control to make progress in the improveme
quaf! iy of p roduct. But, as the physical sciences have ki
efl enbcions Wi et e e ofpor

To indicate b rgle o the. prmc.lples of control. ;
bears to exact science a.tlo.ns.hlp Whl,Ch the thef)ry Of ¢ N

€, it is interesting to consider si¥ %

in th g
e development of better ways and means of making®™
past experience. They are:

1. Belief that

the f . -
the past. uture cannot be predicted in

2. Belief that the future js pre-

! Grondahl, L, 0., “T )
1929, pp. 175-183, »" The Réle of Physics in Modern Industry,” Scienct, Ao

ordained.
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3 Inefficient use of past experience in the sense that expe-
riences are not systematized into laws.

4 Control within limits.
5. Maximum control.

6. Knowledge of all laws of nature—exact science.

Itis conceivable that some time man will have a knowledge
of all the laws of nature so that he can predict the future quality
of product with absolute certainty. This might be considered
a goal for applied science, but indications today are that it is
nota practical one. Atleast we are a long way from such a goal;
for years to come the engineer must be content with the knowl-
edge of only comparatively few of the many conceivable laws
of nature where we think of the term law in the sense of New-
ton’s Laws of Motion. Furthermore, the engineer is fully
aware of the fact that, whereas it is conceivably possible with
the knowledge of these laws to predict the future quality of
product with absolute certainty, it is not in general feasible to
do so any more than it is feasible to write down the equations
of motion (were it possible to do so) for a thimble full of mol-
ecules of air under normal conditions. The engineer is fully
aware that, whereas in the laboratory one may often be able
to hold conditions sufficiently constant that the action of a
single law may be observed with high precision, this same
degree of constancy cannot in general be maintained under
what appear today to be necessary conditions of commercial
production. In fact, if we are to believe, as do many of the
leaders of scientific thought today, that possibly the only kind
of gbjective constancy in this world is of a statistical nature,
then it follows that the complete realization of the sixth stage
s not merely a long way off but impossible.! .

We have seen that the principle of control plays an im-
portant rdle in laboratory research in what is ordinarily termed
pure science. We have seen that it is necessary, in general, in
all such work to attain as nearly as possible to certainty in the

! Bridgman, P. W., loc. cit.
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assurance that the observations supposed to have been
under the same essential conditions have actually been tk
in this way. As an efficient tool in testing whether or nott.
condition has been satisfied, we have the criteria of Patl.
We have seen that the criteria for maximum control (Partl
give a test which indicates the limit to which it is reasont
that research may go in revealing causes of variability ina
of observations presumably taken under a constant systen
chance causes. We have also seen that many of the quanit:
with which we actually deal in the so-called exact sciences
but averages of statistical distributions assumed to be givert
what we have chosen to term a constant system of du
causes.

Let us now consider the need for control as an in:
part of any industrial program. In most cases we cn &

tinguish five more or less distinct steps in such a prog
They are:

I. A study of the results of research to provide prindfe
and numerical data upon which to base a design.

2. The application of such information in the constr”
of an ideal piece of apparatus designed to satisfy some
want, where no attention is given to the cost.

3- Produq;on of tool-made samples under supposedy @
mercial conditions.

4- Test of tool-made samples and specification of quallF‘
requirements that can’ presumably be met under comm™
conditions.

5. Development of production methods.

prog lll‘cc)gloflhlzr\f?evvrpmnt the results of design, developmes a
What is more img OUnded. on the initial results of reseaﬂ;‘}
often causes of vportil-’lF 1 our present study is the faCt.[':
by the very nat arlaf ility enter in the last four steps * hu:
e la}éorature of the problem are not experienc‘?d,‘.nv[",
rcsigmable ory. For example, we have the POSSlbdm‘,‘

: causes entering through different sources of
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the human element, and variable conditions which affect the
production process.

One possible method of obtaining satisfactory quality under
such conditions is to make wherever possible 100 per cent in-
spection of the product at the time it is ready for delivery. In
many cases, however, this cannot be done because of the
destructive nature of the tests; in any case the cost of inspection
must be considered. Furthermore, if indications of the presence
of assignable causes of variability are discovered in the quality
of final product, it is not easy to locate the causes because the
data of final tests may have been taken long after the causes
have ceased to function. Even more important, as we have seen
in previous chapters, is the fact that the quality may appear
controlled in the end and yet there may be assignable causes of
variability at one or more steps in production. For these
reasons, it seems highly desirable that the measurements
made in each of the last four of the steps mentioned above be
tested to determine whether or not there is any indication of
lack of control. If there is, it may be necessary that a further
study be made in the laboratory to assist in finding the assign-
able causes of variability.

We must emphasize the importance of control in setting
standards for the raw materials that enter into the production
process. Most physical properties are subject to the inﬁuenc'e
of presumably large numbers of chance causes. Therefore, if
we are to make efficient use of data representing these prop-
erties, the data must have been taken under controlled con-
ditions. Before we can use experimental results with any
asurance of their giving a controlled product, it is highly
desirable that we make use of tests to determine whether or
not the data have been secured under controlled conditions.

Furthermore, in the development of processes of production,
itshould be of advantage to apply tests to detect lack of control
and then to weed out the assignable causes of variability as
they occur, with the assurance of the kind already indicated in
previous chapters, that after this process of weeding out has
once led to a product which appears to be controlled, futurg
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product will remain in the same state unless obvious assin:
causes of variability enter.

Thus the theory of control plays an important partint
various stages of applied science. Itis desirable that thedgs
ments of design, development, and production keep the la
atory research department informed as to evidenc of &
existence of assignable causes wherever they arise up o =
time that product goes to the consumer.

The theory is also of value in the study of the life histr
of product. Obviously, when equipment goes into the fi
meets many and varied conditions, the influence of which
the quality of product is not in general known. Such ¥
example would be the varied conditions under which telephor..
poles are placed throughout the United States. A4 priﬂff,‘i
is reasonable to believe that the life of the pole depends -
large way upon the service conditions. Among the exceeding
large number of variables which may influence the life of
pole, little information is available to indicate the importé®
of any one. The value of laboratory research in improvingfhi
quality of a pole through life must take into account ways#
means of preservation suited to each of the various condit®
Néfturally, therefore, it is of interest to know when the %"
ability in the quality of the material at any stage in life is s
as to indicate the existence of an assignable cause $0 e
furtht?r research may be instituted to find ways and means
effectively removing this cause. Field engineers, therefore,nn;“
need fOY. analytical methods of detecting evidence of lackt
c_ontrol in the quality of product at any time as revealed ¥
life data so that they can call this fact to the attention of
laboratory staff.

In this chapter we shall discuss briefly such fundam

concepts as physical property, physical law, and caust,
to every step in control.

2. Object of Control

As already stated, the o

bject of con i able us v
o ] trol is to en

we want to do within economic limits,
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As we have seen in Part 1| it is necessary to postulate that
when we have done everything that we can do to eliminate
wariability in a quality X, we arrive at a state of statistical
wntrol in which we can say that the probability 4y of an
observed value X falling within the range X to X 4 4X is
given by the equation of control

dy = §(X, M, N, 0, Ny oL M)dX. (58)

3 Physical Properties

In the previous chapters we have seen that perhaps the
dosest that a physical quality attains to constancy is in the
sense that objectively it may be represented by a distribution
function (58) characterizing a state of control. It follows that
the complete specification of any quality requires the estab-
lshment of an equation of control of the form (58) both in
respect to functional form f and the values of the m’ parameters
cwontained therein. It has been shown in Part V that for most
practical purposes it is sufficient to attempt to specify simply
two characterigtics of this distribution, namely, the average or
expected value X and the standard deviation e.

Examples: To emphasize the statistical nature of materials
still often treated as constants, let us look through a microscope
at a cross section of a piece of ordinary steel,! Fig. 123. What
we see is anything but a homogeneous isotropic body. Why
this heterogeneous structure? The answer is—It is produced
by chance or unknown causes.

What is the effect of such irregularities upon the physical
properties of steel when produced in some useful form as,
fOf example, supporting strand, a piece of which is shown in
Fg. 124? The answer is that a physical property, say the
bre}iking load of such strand will, if we are able to eliminate
ass1gna:ble causes of variation, be some distribution function
% Indicated in Fig. 125. The smooth curve in this figure

'Lucas, F. F., “Structure and Nature of Troosti te,” Bell System Technical Fournal,
Jﬂnuary, 1930.
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represents the objective distribution of control (58) for ti
particular case, as inferred from the study of observed

F16. 123.—Microscoric Cross SECTION OF STEEL.

Fi6. 124.—~PiEce oF SuPPORTING STRAND.

ﬁf we have said above, it is usually sufficient to specify mere!
¢ average X and standard deviation o of such a distribute®
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Now let us look at a cross section of another important
structural material,—wood, Fig. 126. This time we do not
need a microscope to see the effects of chance causes upon the
structure of the material.

Fig. 88 in Part V shows roughly what such irregularities do
to the modulus of rupture of four kinds of telephone poles.
30 ’
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o

Fie. 125.—TENSILE STRENGTH DisTRIBUTION FOR STRAND Smown 1IN FiG. 124,

Note the wide spreads of these distributions as compared with
their means.

These two illustrations are sufficient to show that the
variation introduced by constant systems of chance causes into

Fic. 126.—Cross SecTioN oF PorE.

the physical properties of materials are so large that they need
to be taken into account in the use of these materials.
Shortly we shall see what methods are available in the liter-

Hure for establishing objective distributions for standards of
Physical properties.
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4. Physical Laws

In Part III we discussed briefly three different kindsd
laws, viz., exact, statistical, and empirical. In this sectionw
shall contrast the first two kinds in the hope that by so don
we may take over the part of the concept of exact law thati
common with that of statistical law, and that we may see cleatk
wherein the concepts of the two laws differ, insofar as ths
bears upon the theory of quality control.

Let us consider first the harmonic oscillation of a vibratng
system characterized by the equation

ED. ¢ ax
m g +k—2;+sX= o

where X is a linear displacement, ¢ is the time, m is the mas
k is the frictional force proportional to velocity and sXs
the restoring force. The solution of this differential equat

/.\\//\v/\v/\v,\vt

DISPLACEMENT — X

Fic. 127-2.—Basis ror Exacr Prepicrion.

gives us the displacement X as a function of the time /. I
other words, starting with a knowledge of m, &, s, and X
¢ = O, we can predict with great precision the displacement &
any future time . Fig. 127-4 typifies such a prediction.
Ijet. us now consider what is involved in prediction in &
statistical sense. Let us contrast with this simple PTOblem
that of predicting the number of times that a head will I
turned up in # throws of a penny. As was pointed out n



SUMMARY OF FUNDAMENTAL PRINCIPLES 361

Part 111, the practical method of making prediction in this
case is to assume that there is some point binomial

g+ p)"

where ¢ + p = 1 such that the successive terms of this ex-
pansion represent the probabilities of occurrence of o, 1, 2, 3,
...n heads in z throws. It follows that the standard deviation

~-

RELATIVE FREQUENCY —PpP

-
i
/
i/
!
!
t
|
Il
|V L L 1 I L il 1 1 L L L I n 1 L n 4
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Fic. 127-4—Basic InrorMaTiON FOR STaTISTICAL PREDICTION.

op of the relative frequency p of heads in # trials is given by the

relationship
’Pq
oy = 71—.

1

If p = % it follows from what has already been said that
approximately all of the observed values of p in future trials
should lie within the dotted limits,

pe %,
n

shown in Fig. 127-4. The dots in this figure indicate the experi-
mental results of throwing a penny two hundred times.

. Now let us compare the results in these two cases. Pre-
diction in the first case involves the assumption that the
d}jnamical system behaves in a way such that when we sub-
Stitute measurable values of 2, 4, and s in the differential
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equation the solution of this equation gives a satisfactor
prediction of the future displacement of the mass. Inu
analogous way, as indicated in previous chapters, it appn
that we may expect to find (in the objective sense) a valei
p for a given penny such that when used as indicated abors
we may establish limits such as those given in Fig. 127,

The two methods of prediction are alike in that they requr
the experimental establishment of certain parameters. Thes
differ in that one makes use of these parameters in a different
equation, the other in a binomial expansion. They are alike i
that we do not know @ priori that the mathematics used I
either case is the mathematics that should be used.

Now suppose that we were to try to make N dynami
systems to have as nearly as possible the same values for n
k, and s. In the same way let us suppose that we takE_N
pennies that appear to be alike so far as we can determin
If we were to start oscillation in each of the N dynamical
systems with the same displacement and observe the resultan
displacement, we would expect that each of the systems woul@
follow the curve in Fig. 127-a2 quite accurately. Similarly, i
we were to throw each of the N coins a large number of times
we would expect to get something like the three records show
below, Fig. 128, representing the results of two hundred thro
of each of three different pennies.

The systems are alike in that the smooth curve in Fig. 17
represents what we may expect to get on the average when
we try to duplicate the dynamical systems as nearly as possibl
and the straight linep = 4 in Fig. 127-6 represents the expect®
value for a symmetrical coin. In the statistical case, howe'®
there is a certain indeterminateness as compared with the
caflled exact case. Although we can say in the statistical &
Vf’lth .COI}Slderable assurance that the observed values of p
Lie Wlth‘ln certain limits and that these limits will decress
proporiona) b e st e camor

e way the observed values will appro¥
the value p.

In the dynamical case, if ¢ is made indefinitely large,



SUMMARY OF FUNDAMENTAL PRINCIPLES 363

ai
»t
FAG
wi
3 A .
g L NN
E e T T g s N TS Rt ]
wl e -"
SPo-
MK
<[ -
-
[}
-4
e L " P SO VST WY S " L " P SO S SR )
pees
o
‘ F s
>
Ol
4
w
2t 3
o r -.'_/V.V’th,..." N
E e oo, o, O thbiihaa Yl s
[
W
>F
-
<l
o4
[}
-4
L L e " " ! PO S SR ST SO SO R |
-3
>
ot
Z
W
21
[+
W
E / =,
LX) o W AN Al o
g i .._...\:"_ PO \ T o A AN N
=
<}
a1 -
-4 ‘e
.
' 1 PO TR SO S W | : 1 PP S T W T FY
-] 20 40

s
100 120 180

OF TRIALS — N

140 160 200

80
NUMBER

F16. 128.—Basic INFORMATION FOR STATISTICAL PREDICTION.



364 ECONOMIC CONTROL OF QUALITY

can say that the corresponding value of X will approacht:
value zero as a mathematical limit. On the other hanw
can say in the statistical case that for each of the N pentie
the observed fraction p in # throws will approach as a statisi:
limit the value p. In the first case we can say very define
how the displacement will approach the value zero. In .
second case we can say scarcely anything about the wayt:
value p will approach p.

This fundamental - limitation of indefiniteness, howeve,.
not solely limited to the statistical case when we come toth:
of the determination of the parameters which must be fou”
either case. In Part III we pointed out that our sucees’
being able to predict a phenomenon by means of statis:
theory rests ultimately upon the assumption that we can f.
the parameters in certain functions through use of a statlst:
limit. In asimilar way, the values of m, &, and s can oilf b
obtained in practice through averaging observed values
tl}ese factors taken under presumably the same essential ¢
ditions. In other words the objective values of m, & and
are in themselves statistical limits.

Strictly speaking, all that we can say in the exact -
th.at the probability of the displacement at a given tme
lying within a given range is a certain constant value. Simli!
we can say in the case of throwing a coin under the &
essential conditions that the probability of observing a g
number of heads in a given number of throws is a const®
In other words in both instances what we really assume 0
constant is a certain statistical distribution. In both &

-there i§ the same kind of indeterminateness although it app®
n a slightly different way.

5- Causal Explanation

] }’lVe have made much use of the concept of a constant s
of chance causes. It is essential that we consider a little ™"
carefully the significant difference between causal explan

as 1t 1s usually accepted and causal explanation in the statst
sense.
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It is customary to think of a cause as being an antecedent
event which is always followed by one or more definite events
or consequents. The antecedent event in such a case is the
ause and the consequents are the effects of the cause. For
example, the presence of a tubercle bacillus in the lungs of a
human individual may produce many different effects, such as
a high temperature, change in composition of blood, loss of
appetite, and so on. Some of these effects, however, may be
produced by other causes. The situation in such a case is
indicated schematically in Fig. 129, in which 4 and B are ante-

ANTECEDENT A ANTECEDENT 8

c e £ g
CONSEQUENT

F1e. 129.—Scuematic oF CAusaL RELATIONSHIP.

cedents with corresponding consequents indicated by small
letters.

l'f Wwe can state in a given case all of the consequents be-
lnging to a given antecedent event, it is generally agreed that
Ve may go with certainty from effect to cause. Of course in
{h(.: practical case we meet with the serious difficulty of not
xing able to state all of the consequents corresponding to a
gven antecedent. This point, however, we do not care to con-
sder at present.
lti():hienpto}:mst that we do wish to make is this. Causal explan-
" antecedema;eptehd sense assumes that. v.vhenever we have
b e ot slllxecma)s mcilcated above, it Is alw:.iys followed
e op nowq $) 4,0, ¢, e, and f. With this picture of

contrast the concept of chance cause already
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illustrated in some detail in Part 1II and Appendix L. Imme-‘

diately we note a characteristic difference between the cone
of a chance cause and the older concept of cause. For exan:
in our discussion of Appendix I we treat of very simple systn
composed of m different causes. Itis assumed that each cuy
may be followed by one or the other of two events, thatisu
or the other of two different values of X. In other words:
appears that we can never hope to tie up a chance cause vt
a given event because for each chance cause more thano:
event is always possible.

Let us go a little further in the amplification of this i
ILet us suppose that we have # observed values

X1, Xoy oo, Xiy oo, X

of some variable quality X taken under controlled conditie
represented by the equation of control ( 58). We may thike
the cause of this sample as being the particular equation ¢
control representing the conditions under which the sampl
were drawn. It is apparent, however, that in general any s
of 7 observed values such as indicated above may have o

from any one of let us say N different universes which went
characterize as follows:

dyi = £ (X, N1, Mo, L. s Ny L, Ny dX,
d}’z =fy (X, )\21, )\22, ey )\zi, ey Xgm'z) dX,

A

dyj = f; (X, Nji, Nia, ..., Njiy oL, Njm’,) dX,

¢

dyy = fy(X, A1, Aye, oo, N,y L L » Avm/y) dX.

. Under the above condition we may never state with ¢
tainty what one of the V universes the observed sample G5
from. Each of the N universes is a possible cause but &
Interpretation of a sample must always be indefinite it e
un.d.er the above conditions we can never be certain as 0%
origin of that sample. Cause in the older scientific sense, 1"
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fore, has a certain determinateness about it which must of
necessity be absent in the statistical case.

The two kinds of cause, however, do have this much in
ommon that is very important from the viewpoint of the
theory of control—the choice of a cause in a given case largely
depends upon the intuitive faculty of the human mind. In
other words, we cannot in general write down rules for the
correct selection of a cause. It is, however, one of the objects
of logic to lay down ways and means of testing postulated
causal explanations.

An interesting illustration may be drawn from the field of
investigation as to the origin of the planets. Two fundamental
nval hypotheses are described in a popular way in a compar-
atively recent -article by F. R. Moulton.! The first of these
he describes as follows:

Laplace started with a heated gaseous mass rotating as a solid.
With loss of heat by radiation, it contracted and rotated more rapidly.
At various stages of the contraction the centrifugal acceleration
atthe equator of the rotating mass equaled the gravitational accelera-
tion toward its center. At these places. the contracting mass left
behind gaseous rings which were concentrated into planets by the
mutual gravitation of their parts. In six cases, after the contracting
rngs had assumed approximately spherical forms they  similarly
contracted and left behind smaller rings, which became satellites.
This theory is delightfully simple and can be stated in a few sentences.
lt makes few demands upon the imagination to conceive of its various
steps and it requires no sustained mental effort to organize them
o a unified whole. It raises no unanswered questions and arouses

no doubt_s. . The account of the creation and the origin of the earth
i Genesis is not simpler.

He then summarizes the second in the following words:

In striking contrast with the foregoing, consider the planetesimal
hypothesis. The fundamental point of view adopted in it is that
the stars of our galaxy constitute a group of mutually related objects,
the evolution of each depending in part upon its relationships to the
(:thers. They mix and mingl§ with one another, in the course of
me, somewhat like molecules in a gas. At the time of the dynamic

"The Planetesimal Hypothesis—Science, December 7, 1928, Volume LXVIII,
mber 1771, pp. 549~559.

Avu
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adventure of a suitable near approach of one star to another, pla:
are born from the parent suns. These planets grow up aw
nuclei by the accretion of countless little planets (planetesm
born at the same time. Not only in the broad sweep of err
leading to the birth of the planets as independent objects i
this theory differ completely from the Laplacian, but alsoal®
dynamical considerations involved in the growth and evolutr
the planets are wholly different. More than one commentat
the planetesimal hypothesis has regarded with favor the o
the planets by dynamic approach as being likely, and has thenutr
failed to realize that the growth and evolution of the planes -
not have been along the lines that are consonant with the Lapl:
theory. The new hypothesis gives an entirely new earth at
down a new basis for the development of dynamic geology.

In other words, these two hypotheses may be thoughtd-
A and B in Fig. 129. The effects in this case to be expli
are the characteristics of the solar family.

Now let us see how the process of checking an hypothe:
or cause in the older sense corresponds with that of checkin?
hypothesis or cause in the statistical sense. The essentidl &
ference is this. In the first case we may be able to find the
some of the observable phenomena cannot be effects o
postulated cause. In such a case it is customary to reject:
modify the hypothesis. For example, this is true in ¢
to the Laplacian hypothesis as to the origin of the earth ref
to above. In the statistical case, however, it is not so es!
reject an hypothesis, as we shall now see.

. Suppose, for example, that we attempt to test the by
esis that a sample of 7 observed values of a quantityXCf‘"
from let us say the first universe of (93). We have al&
tou.ched upon this problem in Part VI in the discussion o’
choice of statisti.c to be used in a given case and of the che
9f method of using this statistic. Let us look at this prﬁb:i'
rePreIs)ent allrll Zf dtl}r1n ensmx?al Space. In a similar way ¥ I
may be drown frOme aﬁosmble dlﬁ”er.ent sample§ of size L
space. T assumed universe as points in this 5¢n

0 get a test of whether or not the observed s
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ume from the assumed universe, it appears to be necessary to
stablish certain contours in this 7 dimensional space within
which the points corresponding to an observed sample must fall
if'we are to accept the hypothesis that it came from the assumed
miverse. Naturally there are an indefinite number of ways of
stting up such contours and the choice of any one is quite
abitrary on the part of the individual scientist as was the cor-
rsponding choice of statistic in Part VI.

In any given case there are in general an indefinitely large
umber of possible hypotheses. Hence, in addition to the
problem of establishing arbitrary contours upon which to test
agiven hypothesis, we must consider the problem of judging
between alternative hypotheses. Here again we come upon the
indeterminateness of the statistical method. It appears that
there is no ultimate ground upon which to base our final choice.!

% Measurement of Average X and Standard Deviation &

The concept of physical properties and phenomena as
frequency distributions introduces the concept of measurement
of such distributions. Since for most engineering purposes it is
sufficient to know the average X and standard deviation o of
such a distribution, we shall consider the problem of measuring
these two characteristics.

Assuming that the set of # observed values,
X1,X2,... ,Xi, e ,Xn,

‘:ﬂ 3 quality characteristic X satisfy the equation (58) of control,
:"fol]owi from the law of !ar.ge numbers that the observed
terage X and standard deviation ¢ can be made to approach,
n the statistical sense, as close as we please to X and o re-

‘pectively by making the sample size # sufficiently large. In
o ;&Sl n }::,s connection ttx‘e especially interesting and valuable article by J. Neyman
) Purpc;ses Or‘;cnsnt cptl.tlcd On the Use and Interpretation of Certain Test Criteria
. atistical .]nfcrence," Part 1, Biometrika, Volume XX-A, July, 1928,
7 M ; :eo, Part VII, Biometriks, Volume XX-A, PP- 263-294, December, 1928.

. ]9; . PP. 303-314 of A, N, Whitehead’s Process and Reality, Macmillan Com-
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other words, it follows from the law of large numbers a:
Tchebycheff’s theorem that, by making 7 sufficiently largy
can bring as close to unity as we please the objective probabii
P that the inequality

|X-X|=<e

will be satisfied, & being any previously assigned posi
quantlty.

In practice, however, it is not feasible to take an indefit
large number of observations. In fact, we must often bes
isfied with estimates of X and o derived from comparati
small samples. For example, we may wish to determit®
approximate standard for a quality X of a given kind of &
ratus from measurements of this quality on from five to twent
five tool-made samples. Or again, we may wish to adft:
standard for the physical property of some new materil ¢
alloy from measurements made on comparatively few pee
We shall now consider various ways of doing this.

A, A Posteriori Probability Method. —This method has bee
discussed in a very interesting and novel manner by Mol
and Wilkinson.! Assuming that the set of 7 observed valus’
the variable X have come from a normal universe

1 _(X-%p2
—_—— 202
0'\/27r ?

in which X and & are unknown, the « posteriori probab_ili:‘

}_)(X)dg _that the true mean lies within the interval ¥
X +dX s given by

S(X) =

n
T (x:.-%)2

0 rrr m _i=1
PR)AX = 4% | PR D™
0 a" ’

W[?‘(f're 4 1s a constant and (X, 0)dXdo is the a prion '
a 1d ity, before the observations were made, that the truem™
and standard deviation were within the intervals X to 3+
and o to o + do respectively.

! “The Frequency Distribution of

Bell System Technical Fournal, Vol. VI the Unknown Mean of a Sampled Unie

11, October, 1929, pp. 632-645.




SUMMARY OF FUNDAMENTAL PRINCIPLES 371

To get a definite answer in a given case, certain assumptions
mst be made in order to give the parameters in (94) specific
ulues in terms of the statistics of the set of 7 observed values
f the quality X, and in every case one must assume some
prticular form for the function 2#(X, o). In other words,
before any measurements are made, one must choose some one
function #(X,) out of the indefinitely large number of possible
functions. :

Assuming that X and o are independent, we may write

W&, o) = Wi(X)W:(0).

Making these various general assumptions and certain others
of a more detailed nature, the authors then assign to the param-
eters in the functions #; and 7, twenty-one sets of values
out of a possible infinite number of such sets, and find as many
probable and 99.73 per cent errors for a single example. Their
results are shown graphically in Fig. 130! The startling and
very important thing to note is the great significance that must
be attached to the choice of the @ priori existence probability
functions 7 (X) and #»(o) before any measurements are taken.
~ Of course, any one of the twenty-one or, in fact, of the
mndefinitely large number of probability distributions P(X)dX
of (94) gives us only the a posteriori probability that the true
mean lies within a specified range, whereas we wish to get
usable estimates of X and 0. Hence, even though one goes
thr0ugh. the @ posteriori solution under the conditions stated
aboxfe, it is likely that he will take the observed average X
s his t?est estimate of X. As for an estimate of o, it will be
®pressible as a multiple of the observed standard deviation,
“ Us say co, the value of ¢ depending upon the particular
358umpt10n§ made in applying (94). '
B Maximum Likelihood Method~1In the particular case
Jq ; thconSIdered the probability P of the simultaneous occurrence
the set of observed values X3, Xa, . . . s Xiy ..., Xn within

! “lC auth t 1 Howevcr
ors uscd hc prec15i0n const i i i
. ant A instead ofo' in thlS paper
,:' llaUc alSO ShOWn the distl'ibllﬁ . :

4 wsumptions. on of o (the dotted lines) for the first seven sets
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APRIORI PROBABILITY DISTRIBUTIONS ERRORS IN OBSERVED MEAN
MEAN PRECISIAY PROBABLE 99.73%
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the respective intervals X1 to X1 + dXi, Xz to Xz + 4Xo, . .
Yito X5+ dXs, .. .,XntOXn + dXnis

*)

Pl —— 5 ax,
= =1 202 )
(=1 J\/27r ’

where 7 and s are universe parameters. That value of 72 which
will make P a maximum is given by the solution of the equation

d(log P)
T2 =,
om

since P is a maximum when log P is a2 maximum. This gives
the observed average X as an estimate of X.
Similarly the condition

d(log P) -5
oS

gives the observed standard deviation ¢ as the estimate of o.

Since the expected value @ of the observed standard devi-
ation in samples of size # drawn from a normal universe is less
than the standard deviation o of the universe, it is obvious
that the estimates of ¢ derived by the likelihood method are
o small in the long run, particularly if the sample size 7 is
small,

C. Empirical Method—Assuming, as before, that we are
smpling from a normal universe free from agsignable causes,
there is perhaps no better estimate of X than the average X
of the sample. 1f, however, there is any reason to believe that
afew of the observed values were influenced by assignable
tauses, this fact should be taken into consideration.

If we assume that we are sampling from other than a sym-
metrical universe, it becomes all the more important that we
make use of the average X of the sample of size 7 as an estimate
of the average X of the universe of possible effects.

Coming to the estimate of the standard deviation o of the
"ormal universe, we have seen that a posteriori probability
theO'ry does not provide a direct method of establishing a
ecific value as the best estimate and that the likelihood
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method leads to an estimate which is too small in the longm.
Referring to Fig. 97 indicating the important characteristisd
the distribution of an observed statistic ©, say standard ds:
ation, we might be led to base our estimate of o on the assum
tion that the observed o is the modal ¢ of the distributini
this statistic. In other words, we might take as an estimate

n g
\f g=—
n—2 ’

1

where ¢, is given in column 2 of Table 2g. To do 5o, hoviert
means that in the long run estimates made in this way #%
large. An estimate that will be consistent in the long runt

ag . . .
& where ¢z is also given in Table 29.
There is thus some justification under these conditon

. o . VC:
adopting 7; 4 an estimate of 0. In any case the obs®

- : . e
standard deviation o becomes the basis of an estimat® He

it seems reasonable that it should be tabulated togethﬁf o
any correction thereof adopted as an estimate in 4 give" Cssi

The estimate of o of a non-normal universe Presemsadis-
tional difficulties since, in general, we do not knoV¥ he s
tribution function of observed standard deviations in amlznl
of 7. Here again the observed standard deviation " o
run are too small, in the sense that the expected value!?

of size n from a given universe is less than the st?"
ation ¢ of that universe.

e
7. Measurement of Average X and Standard DW””O”
Practical Example

. Let us consider the significance of previov® e
simple practical case. Four pieces of shoulder 16%f et
given source were found to have the following t€"S" "
expressed in pounds per square inch: ®

5,290

4,850 2’950

5,960
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Upon the basis of this information, what shall we choose as
stimates of the average X and standard deviation & of the
tensile strength of leather from this source assuming that this
quality is controlled.

From what has been said in the previous section it is appar-
ent that the answer to this question depends upon many factors.
It depends upon more or less arbitrary assumptions as do the
answers to many practical questions. In each case, however, it
is likely that the average X = 4,762.5 and the observed stand-
ard deviation ¢ = 1,118.6 will be made the basis of the estimate.
Furthermore, it is obvious that the interpretation of these
depends upon the size # of the sample, in this case four. For
these reasons it appears that in the tabulation of results of this
character the experimentalist should always record the observed
average X, standard deviation ¢, and sample size 7.

_ Ingeneral it is perhaps reasonable to believe that the exper-
mentalist who is in charge of taking the data is in the best
position to make a reasonable assumption upon which to base
an estimate. For this reason it is desirable that he record what
he considers to be the best values to take as estimates of the
average X and the standard deviation o of quality X assumed
o be controlled. It is likely in this case that the average X
vill be taken as the estimate of X. In the same way it is likely
that o will be taken as a quantity larger than . As we have

sy . . . . .
sad in the previous section, the estimate — is a consistent es-
C2

fmate in that in the long run the average of an indefinitely
large r_mmber of such estimates would give the true value o
assuming that the universe of control is normal.

Anyone who wishes to make use of these results may use the
tbserved average and standard deviation and the sample size
% basis for his own estimates of X and o, or he may choose

o use those selected by the experimentalist himself. In this

“V . : . 0 . .
¥ay he is free to make his own postulates basic to estimating
Land o,



CHAPTER XXIII
SAMPLING—MEASUREMENT

1. Place of Measurement in Control

In any program of control we must Start.wi_th b
data; yet data may be either good, bad, or indifferer
what value is the theory of control if the observed dﬂ
into that theory are bad? This is the question rast:
and again by the practical man. L

Evén though it is necessary, as a starting pointin the”
of control, to tabulate the results of # measurements®
physical quality X in terms of the average X and t‘he s
deviation ¢, the engineer often reacts in something h":
following way. He will likely admit that this methﬂdf
excellent one to follow if, as he says, the data are knowt?
good, but he will often argue in a given case that the daﬂ’
not good enough to make it worth while to record n*
perhaps the average and the range. He may go % fe?
throw out one or more of the observed values beforc”
even the average and the range. In fact I have heard &
research men say that they can get more out of @ st
Just by looking at it than anyone without their expr
get by the most refined analysis. .

In discussing this point at a recent round-table coi

on presentation of data, one prominent engineer had ¥
say:

b Most frequeptly we are confronted with expressing resu‘l‘[;“
ave been obtained by empirical methods in the hands ¢’

! Conference held in N

American Society of Me

o
ew York, December 5, 1929, under the 8™
- chanical Engineers ican Society
Materials. & and the Ameri

for -
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operators on more or less representative samples of generally very
heterogeneous materials. When we go to discuss the precision of
our methods, we always have three factors which have not been
controlled. We have the question of the authenticity of the sample;
we have the question of the operator; and we have the question of
the method itself. Hence it becomes a very complicated problem
to apply the mathematical methods of analysis to these data.

Anumber of years ago I read somewhere an expression which has
always struck me. It said something about mathematics being a
mill that grinds with exceeding fineness and yet a mill that is no
better than the grain that is put in it. So it always seemed that in
our work the first thing we had to do was to attempt to develop
the limit of precision of our methods after we had at least some-
thing to start with; then we could determine the effect of the
presence of the operator. From that point we could determine
the authenticity of our samples and we would be in a better posi-
tion to analyze our crop of results.

Not only in the fields of industrial research and engineering
doweget such a reaction. We find it also in the field of so-called
exact science—for example, physics. Thus in a recent paper by
Millikan discussing the value of electronic charge,! emphasis is
laid upon the importance of the human judgment of the exper-
imentalist, as is typified by the following paragraph:

This value of the electron is also that at which Birge finally
arrives as a result of his survey of the whole field of fundamental
constants. It is true that he reanalyzes for himself my individual
oll-drop readings and weights them so that he gets from them the
value 4.768 = 0.005 in place of my value 4.770 +0.005, a result
that is so much nearer mine than my experimental uncertainty that
l am quite content—indeed gratified—but I may perhaps be par-
doned for still preferrmg my own graphical weightings, since 1
thought at the time, and still think, that I got the best obtainable
results in that way from my data. The person who makes the
measurements certainly has a slight advantage in weighting over
the person who does not, and the graphical method by which I got
at my final estimated uncertainty is, I think, in the hands of the
experimenter himself more dependable than least squares.

In this way we get into the following dilemma: The en-
gineer questions the usefulness of refined methods of analysis

1Loc. cit., Part 11,
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because his data are not good; the research man questo
use because he does not need them. The sooner aneg
appreciates this situation, the sooner will he becomeani
in getting good data such that he can use in the theoty ot
to effect certain economies previously discussed.
Everyone will admit that in the literature there arcn.
ous sets of bad data. As an illustrative case we fird &
lowing statement ! in a recent paper on thermionic enis.
Most of the observations on emission made up to 19l

considerable number of those made since then, are almost v
because of the poor vacuum conditions under which they wet:

2. All Measurement a Sampling Process

An element of chance enters into every measuremen; k
every set of measurements is inherently a sample of certai
or less unknown conditions. Even in the few instants®
we believe that the objective reality under measurener
constant, the measurements of this constant are influen
chance or }mknown causes. Hence, the set of measurent”
any quantity, even though the quantity itself be a const"
a §ample of a possible infinite set of measurements whid
mlgh.t make of this same quantity under essentially the
conditions.

.From this viewpoint, measurement is a sampling I"
d:emgned to tell us something about the universe in whid
live that will enable us to predict the future in terms of ¢!
through the establishment of principles or natural la¥%
fact, we may think of the process of examining a subgro!
a larger group of N7 things along this same line in the senst”
we look at the # things and try to predict what we ¥’
if WIe were to look at the remaining N — # things.

v ariSer;l the measurement of anything four kinds of erm® -
Theoretical
Instrumental
+ Saul Duch P ersonal
man, Reviews of Modern Physics, Volume 11, pp. 381-476’ i

4. Constant
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Manipulative
B. Mistakes { Observational
Numerical

C. Effect of Assignable Causes, Type 1
Methodological
D. Effect of Constant Chance Systems 1 Instrumental
Physiological
3. Good Data
Three prerequisites of good data are:

4. They shall come from a constant system of chance
causes—in other words, they must satisfy the criteria of Part VI
if they are sufficiently numerous that such tests can be applied.
[t this condition is not fulfilled, we must rely upon the experi-
mentalist’s ability to eliminate all causes of lack of constancy
in the chance cause system.

B. They shall be free from constant errors of measurement
and mistakes.

C. They shall provide a basis for estimating the error of
measurement.

4. Correction of Data for Constant Errors

Let us consider the simplest kind of measurement, viz., that
of a so-called physical constant such as one of those in the
equation of electron emission as a function of temperature of
the form

1= aT%e‘%v
where
I = emission per unit area,
T = absolute temperature,

and ¢ and & are constants characteristic of the emitting sur-
face.

Dushman ! considers in some detail the constant errors that

!Loc. cit.
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must be taken into account in making such measurene:
Some of the most important sources of theoretical instruner.
error are:

Error in measurement of surface area at man
temperature.

Temperature gradients along emitting surface.
Presence of adsorbed and occluded gases n emitit:
Presence of gases in tube.

Cooling effect of leads.

Effect of anode voltage.

Error in measurement of temperature.

A

QMBI O®

Errors (4) and (E) are largely eliminated thrOUgl; (;?L
(B), (F), and (G) are such that the observed dace cii thee:
rected with the aid of available but Compltl)cateroPerb‘w
Errors from sources (C) and (D) are eliminate yaI;ion o &
ing of bulb, flashing of the filament, and evact
system. red eithe’

Thus we get a picture of the technique reqmi‘it et
correct for or remove two of the sources © co ore Jetti
one very important physical measurement constant erro:'
study of this problem of correcting data for will &7
will emphasize the fact that the degree of suc hett™
among other things upon the intuition re .
knowledge, experience and technique of the ear
Is.lt any wonder that engineering and eV ; from
fail to satisfy the prerequisite of bein8 fr@;'s' i
errors of the instrumental and theoretica! in e erro® ©

It is also true that to correct for P€ Oofda
presents a real problem. Often one finds # set e ©
the PSYChqlogical tendency on the pa'" o oted ¢
g::rofge:}:a:rrln r;umbers, a case of which f"’f,is of such

st troublesome characte!S" g fro” el
the fact that many of ccal €70 emin Ty
Yy of the psychologic? ¢ the® o
hature are such that we do not readily det€® fezl th
Witness for example the tendency for us

datd o
con
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Ines 2 and & in Fig. 131 are not of equal length although we
know better.

The method of detecting and eliminating assignable causes

has been discussed in sufficient detail in Part VI and hence
need not be considered here. It would perhaps be of interest

e
LN
N -/

Fic. 131.—How Mucn LONGER 1s & THAN §?

to show how mistakes can often be singled out even by analyt-
ical methods. To do so, however, is out of place here because
the best method of correcting for these is to take care not to
make them, or to provide two independent observers.

5. Ervors Introduced by Constant Systems of Chance Causes

After the state of constancy in the chance cause system has
been reached, the problem of correcting data for errors of

TRUE EXPECTED OBSERVED
VALUE VALUE AVERAGE

I
L

F16. 132.—ProBLem or ELiMmiNaTING ERRORS OF MEASUREMENT.

measurement may be schematically indicated as in Fig. 132.
Inthis the true value is represented by X, the expected observed
value by X and the average of a sample of size # by X. The
distance AX represents the resultant constant error whlch must

“
be taken care of as indicated in the previous section, ,;".-?7
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Under the assumption of constancy of the cause sy

follows that o
Ls X =X
77—

where the limit Ls is statistical. _

In practice we usually take the observed average X
best estimate of X and hence make our constant error corr
with X as a base. Our problem is not solved, however,
we form some reasonable estimate of the probability thar
inequality | X — X| < e is satisfied where ¢is some preass
positive quantity. To do this it is necessary to obtans
estimate of the true standard deviation ¢ of the objective-
tribution of observed values. Except in the case of g
samples we usually take the observed value of standard ¢
ation as the best estimate of o. If we let

£

o/Vn

then we may, subject to the usual assumption of normall!
the distribution of error, use the normal law probability &
to estimate the probability that the absolute difference &5 |
20/\/ .

Thus we see that the complete discussion of the me&”
ment of the simplest kind does involve the use of statisti®
well as physical theory. ‘

An interesting illustration of such a system of errors &
utah}e to a physiological source is that shown in Fig. 133"
senting the distribution of minimum audible sound it
IF 1s particularly interesting to note how closely the obser
distribution is approximated by the normal law.

P4

6. Correction Jor Constant Chance Errors of Measurement

, ﬁet us next consider the case where the thing meast®™
S€if a constant chance variable with average X, and stan®

deviati
1ation oz. Furthermore, let us assume that the e
! For a discussion of these results see

€« . . . gt Methﬁ‘
by W. A. Some Applications of Statistical M€
y Shewhart, Bell System Technical Fournal, Vol. 111, No. 1, Januaty, 1%
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measurement is such that the expected value of the measure-
ment coincides with Xz and that the standard deviation of the
error of measurement is os.

Assuming that the error of measurement compounds linearly
with the true value and that there is no correlation between
them, it follows 1 that

G0 = (95)
2es
200
175
. 1so}
V]
b4
o 125
2
o
M
1 4
Lost
sof-
25f
)
A 5

Fi. 133.—ID1sTRIBUTION OF MiniMuM Sounp INTENSITY.

where gy is the standard deviation of the object}ve distribution
of observed values. Fig. 134 shows sc_hem.atlcally the rela-
tionship between the ob.ject.ive true dlf?_trlb;l,tlon f(X) and the
objective observed distribution fo(X). 24.7%i4 N
Example: Table 52 gives two observed distri utions- on?
s the distribution of single measurements of eﬂic;lenqes }?
15,050 pieces of a given kind of equipment; the ot ler.1s t:t e
distribution of five hundred measurements on a Tllng }f mshru-
ment. It had previously been shown experimentally that there

tween the thing measured and the error of measure-
d value X as being the sum of a true value Xr :Lnd

Another

i f Chapter XVI, Part IV, we get (95)- )
i  Hence from section 30 ;i get (5 o
1r1 err?r E. ) ent this result is given by W. A. Shewhfilrt in an article ‘(jorrectlul)1_126
;):‘t’ ofarrli:v“;%saof Measurement,” Bell System Technical Fournal, Vol. V, pp-. y
a for Err

1926,

1[f there is no correlation be
ment, we may think of an observe
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TasLe §2.—TyricarL CarLcuraTioN InvoLvep IN EvLiminativg Fue
OF MEASUREMENT

Measurements on ; Single Measurement on
a Single Instrument Each of a Number of Instrun:
]

Cell Midpoint Frequency Cell Midpoint Frequexc
2.8 2 0.0 i
3.1 16 0.§ 10
3.4 46 1.0 ¢
3-7 88 1.§ 4
4.0 138 2.0 1
4.3 113 2.¢ 33
4. 6 7 1 3.0 I,'/'ﬁl
4-9 22 3.5 g
5.2 4 4.0 3l
4.5 3
§.0 :!165
55 fr
6.0 v
6.5 i
7.0 :

7 =500 n = 15,050

XE = 4.0606 Xo = 4.0281

Tk =0.4423 oo = 0.8116

was no correlation b
Since the numbers
that 0o = g9 and

etween efliciency and error of measurt
of measurements are large, we may &
Oz = gr where ¢y and o5 are the ob

standard deviationg given in Table 52, With this asu:
we get

ar = \/‘.’02—\0192 = V(0.8116)% — (0.4423) = 0.6%

7. Analysis of Bad Data

We are now in
pr O.blem of the en
go in analyzing hi

a better position to consider the P;a»‘
gineer 1n trying to determine how farl
sresults.  Again take as a simple il"



SAMPLING-MEASUREMENT 385

measurements of some so-called physical constant such as those
considered earlier in this chapter.

There is no known method for estimating the true value X
of the constant and the true standard deviation o of the error
of measurement from a set of n‘bad data—data that do not
satisfy any one of the three prerequisites of good data. We
cannot say, however, that the man who took these data cannot
intuitively arrive at good (or at least practical) estimates of
both X and . Men of genius such as Poincaré claim often
to advance intuitively first and logically afterwards.!

We have seen how intuition, hypothesis, imagination, and
the like are basic to the process of finding and correcting for
constant and assignable errors of measurement, If we turn
to the history 2 of science and scientific method, we do not

OF OBSERVED
VALUES, fo (X)

OBJECTIVE DISTRIBUTION
OF TRUE VALUES, f1 (X)

Fi1c. 134.—EFrrect oF ERROR OF MEASUREMENT.

find, however, many (if any) of the accepted gstimates .of
so-called physical constants that have been obtained by in-

v i ifljf,‘
tuitive use of bad data. -7 = .
Let us go a little further and see what would happen if we

were to accept results obtained from bad data through the

'See Dubs, Rational Induction, Chicago University Press, 1930, on this point.
Such questions lead us into the fields of logic, psychology, and Philosophy inan attempt
10 reduce to a rational basis the role played by each of these in measurement. Other
tferences along this line are given in Appendix III,

*References in Appendix I1I,



386 ECONOMIC CONTROL OF QUALITY

intuition of the experimentalist. Immediately the analyss
data would be removed from the field of logic and we wo.
have to accept a result simply on the basis of the authoris-
the experimentalist. Then we would face the difficult taskof::
termining the ultimate authority. Suchamethod is certainly
scientific, nor does history reveal much ground for belief the
is a method which can be relied upon to give satisfactory e

In the light of this situation it seems reasonable to belic
that we are not justified in basing industrial developmer’
intuitive analyses of data. This does not mean that ey
mental science has not profited by hunches that have com’
those in the process of collecting data later found to be
The very fact that an experimentalist feels that his dat
bad is usually an incentive to get good data. A reseafd‘f’
is usually concerned with the fact that he may unknow:
get bad data. Here it is that the mathematical theof?'_'
detecting the presence of assignable causes (Part VD) oo
his aid.! To get the best results through the U -
criteria requires that the data be divided into rational Subgrii,
and that at least the averages and standard deviations® "
subgroups be known. !, 47>,

8. Analysis of Good Data

(.;OOd data in general are expensive, In the Proc:'
getting them many measurements are usually take™ from
a few are finally chosen as being good. J g
F urtherr.nore, even though the cost of getting goo e
la}rge, experience shows that the cost of making * !
clent analytical study of such data is relatively 5™ b~
In Part VI the problem of choosin statistics ® st
and of choosing the best way of USinggthem was <"

1 In - . . -
by A Rthl; COnnecF10n t,h ¢ fOIIOWing quotation from Mathem® s L atics ‘:"ﬁ‘”;‘
subst:t ) fOFSYth - of interest. “Briefly, the science of ma® ts ant”
tion l :iltt; or essential experiment; but it can show how 67‘Perimerll>ef""een ‘

S, duly systematized inaté€ <"

. ca q . _min L des
principle and what ; » can be elucidated so as to discrin™ riterlf*d K’
Part VI help ¢ ; 18 detailed consequence of principle.” e ot

0 discrimin i
chance. ate between what should be and WH®

'(ﬂﬂj:’,

¢ Should n
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The fact that one statistic is often much more efficient than
another is of considerable economic importance. For example,
ingeneral, the standard deviation of good observations is just
s good as the mean deviation of I.14 7 such data. To take
on the average one hundred and fourteen observations where
one hundred would do is an unnecessary waste of money which
becomes significantly large in extensive industrial research
pmgrams.

To use the range in such a case instead of the standard
deviation effectively results in throwing away a very large
fraction of the information in respect to dispersion contained
i the observed data.  For example, if the sample size # is
approximately sixty, the efficiency of the range is only about
& per cent when compared with the standard deviation. _ As
#increases beyond this value, the efficiency of the range rapidly
decreases.  In the face of this fact we sometimes find the range
instead of the standard deviation tabulated in the literfzture.lgf'-??gm

Table <3 is taken from an engineering report, and gives the
modulus of rupture for three species of telephone poles. To

Tamiv ¢35 Tuer crmanse Inerricient Meruoo oF Tasviating Darta
Modulus of Rupture in psi .
Number » o Eﬁicnency.of
Species of Poles in Max.—Min.
Sample Average | Maximum | Minimum
3 ,, SR 1 5690 2,980 100
B 1 LR ] 74090 4460 75
¢ 3 GRS TVT790 3,490 35
!

have tabulated only the ranges in Cases B and C amounted
“rthrowing awav ;;ppmximately 25 per cent and 65 per cent
“he information available in the original dara, This state-
Tent s based upon the assumption that th.e original data were
2vai and that thev came from an approx;matel‘y normal uni-
eree. O course, the range 1n bad data may give the experi-

[ ’ 21 t edition of the very inter-
BFrarjaen ot thae kv are Tables ‘4 and 12 in tlfe ﬁgsH on of the very e
Cigwwa, Timber, J1: Steemgih, Scasoning, and Grading by Harold S. 3

Ho Revw ompany, pp. e and g, 1919,
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mentalist some indication of the effects introduced by assign:
causes of Typel. Asindicated in the previous section, hower:
the interpretation of the range or any other statistic deri
from bad data should be made by the experimentalist andw
be accepted by another only upon the authority of the exr:
imentalist.

For a sample of four, practically all of the information @
tained in the data is retained by using the range.

It is for such reasons that efficiency in analysis and
sentation of data has been considered so often in the previ
chapters. Graphical methods of analysis have not been giv
any attention simply because experience has shown them tok
inferior to and less efficient than analytical ones.? .

9. Minimizing Cost of Measurement—Simple Example

Let us consider the following simple problem: Whatis te
most economical way of measuring a quality X controlled by’
constant system of causes to insure with a given probalbilit}"P
that the average of the measurements will not deviate!
absolute magnitude from the average Xr by more than a*
assigned quantity e&. Let us assume that:

@1 = cost of selecting each unit and making it avaiibk
for measurement,

@2 = cost of making each measurement,

71 = number of units selected,
72 = number of measurements made on each unit,
o5 = objective standard deviation of errors of mes

and ment,

@r = objective standard deviation of true magnituds”
the measured characteristic.

! Whittaker and Robinson mak. i T 1.3
. e the foll face of ¢
dlassic, The Caleulus f Obsor ollowing statement in the pre

. A : ations: ““When the Edinburgh Laboratory ¥ &

lxi:ed u:i IfgI 3, a trial was made, as far as possible, of evers method which b {.

graggisceal mi):,hr? so]x;lnon of problems under consideration, and many of thest ;

b alm.o ot ol t’)‘ege: ebte" years which have elapsed since then, graPhical me!

presem pone 2! .a andoned, as their inferiority has become evident, #1d#
¢ the work of the Laboratory is almost exclusively arithmetical.”
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Let us take P = 0.9973, then the range X, + 3o, includes
9973 per cent of the observed averages Xo, and hence & = 30%,.
The average of 7, measurements made on one unit is to be
taken as the observed value Xo of the true magnitude Xz for
that unit. This average has the standard deviation az/~/7,.
Hence, from (95), the objective standard deviation of the
observed values is given by
o2
oo = 0,7 + "'E;,‘;2 = 0% 4 —,
n2
where o5, is the objective standard deviation of errors of aver-
ages of 7. Thus the objective standard deviation %, of the
average of 7, observed values is

20 / T z (96)
T Vm N
which gives the relationship

0';;2

o7~ +
n2

ny = >
ox,;

between 7, and ..
Taking the cost of inspection as

C = ayn1 + azninz,

and using customary methods this can be shown to be a min-
imum when
Or |41

Hy = .
aOr ao

The following values correspond to one practical case:

€ = 0.3 unit a, = $0.50
Gx = 0.3 unit az = $0.02
Gr = 0.9 unit P = 0.9973

With the aid of this theory we find that the most economical
method of measurement in this case requires two observations
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on each of cighty-six units. Here, as in general, we
observed values of ox and or in large samples as estimats
oz and o7 respectively.

10. How Many Measurements?

Perhaps the question most frequently raised by thost -
terested in the control of quality is: How many measurent:
shall be taken? Of course, for such a question to be answerbs
it must be understood to mean something like this: Howm
measurements shall be taken in order that one may ha:
given assurance that such and such is true subject to cere”
specific assumptions? When so stated the question usualy b
an objective answer.

Sometimes the question is put briefly as follows: Hov lg
a sample shall be taken? When so stated, however, care 1%
be exercised to differentiate between the size of sample, meant
thereby the number of things measured, and the size of sampe |
mc?aning thereby the number of measurements, whett
thing may be measured more than once. The significanc®
these rc.:marks will be apparent as we proceed.

To introduce the subject, let us ask a very simple quest”
A§sum1ng that we know that a quality X is normally controlt
w1th. standard deviation o, how many measurements of 0
quality must we make in order that the probability will be €
us say, 0.9973 that the deviation of the average of # obsert®
values from the true but unknown arithmetic mean Xber
greater 1n absolute magnitude than some given value AX

From what has previously been said we see that the s

of the Sample requi i : <. . o
. quired in this ca ven by
relation se is rigorously g

5 a
AX = 3—
Vi
In i
practice, however, we do not know o. In fact, this fa”

onl i ..
! n}ffla(glbtz.lmable' as a statistical limit when the sample "
¢ Indefinitely large. What we can do under sih*
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ditions is to estimate ¢ from available data. Calling this
etimate o, we may solve for 7z in the equation

— o
AX = 3@

We can then say that the size 7 of the sample thus obtained is
the one required, assuming that o = o.

Perhaps the most important thing to note in this connection
isthat the standard deviation of the average decreases inversely
as the square root of the number of observations, because this
indicates the order of increase in the precision of the average
with increase in the number of observations under the assumed
conditions.

In general, if we know that we are sampling from a constant
system of chance causes, we can say that the standard deviation
of an estimate of any one of the objective statistics, fraction
defective p, average X, standard deviation o, and correlation
cefficient r, decreases inversely as the square root of the size
of the sample, even though we do not know the magnitudes of
the respective standard deviations in a given case. Further-
more, given the standard deviation as a function of sample
size, for any statistic derived from a sample from a specified
uiverse, we have, as indicated, a means of determining the
sighificance of increasing the sample size.

It is very important to note that the answer given to the
question of how many measurements is in each case limited by the
assumption that the variable X is controlled. If we ask a similar
Question in a case where we are not willing to assume to begin
with that the data are controlled, it is first necessary to try
to determine by criteria already described whether or not the
variable under consideration satisfies this condition.

Example: Recent investigations ! have been made by the
American Rolling Mill Company to determine the life of ferrous
materials under different corrosion conditions. Data obtained

'R. F. Passano and Anson Hayes, “A Method of Treating Data on the Lives of

};errous Materials,” Proceedings of the American Society for Testing Materials, Vol. 29,
art11, 192g.
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from a certain kind of sheet material immersed in Washing:
tap water showed that the average time of failure of w
samples was X = 874.89 days and the standard deviationdi:
time of failure was ¢ = 85.31 days. One kind of pracc
question of interest to the research engineer of this comp
is: What sample size #» must be used in order that for sl
test conditions, the probability shall be 0.go that the aven
time for failure determined from the 7 tests will be in emort
not more than § per cent of the average of the universe! |

Assuming that the observed values of average and stand:
deviation are the true values for the universe, and that avers:
of samples of # are distributed normally, we may answe i
question as follows: The allowable error is § per centof &+
days or 43.74 days, and this must correspond to a probabit
of 0.90 or to an error of 1.645 o/+/7 as found from Tabled®
Part II. Hence # is found by solving the equation

1.6450/\/n = 43.74

having assumed that o = 85.31. In this way, we getn="

11.. Law of Propagation of Error—Practical Significanct

Most measurements are indirect in that the quality re
be rr_le.asured 1s derived from measures of let us say 7 ot
qualities

Xl,Xz,...,Xi,...,Xm

to which it is either functionally or statistically related. In thf

section we shall consider the functional case, examples of W
are met 1n everyday work

A simple illustration j i
of a solid by the formula is the measurement of the denst

D=

Wy — wa

where w; and wy are the

. weigh s s i oand W
respectively, ghts of the solid in air a

If the solid ; o
solid is such that we can measure its volume/"
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more direct way than by determining the difference w; — w. we
may use the formula
w1
D=2
14
toobtain the density.
The choice of method of measurement involves at least two
things:

4. Determination of effect of errors of measurement in each
of the m qualities upon the standard deviation of the calculated
values of Y.

B. Choice of most efficient method of measuring Y.

Let
Y = F(X1, X, -« 5 Xy - - -, Xn)

be the functional relationship between the quality Y to be
measured and the m other qualities upon whose measurements
the calculated (measured) value of ¥ depends, as the calculated
v;lue of D depends upon the observed values of w; and ws
above.

Assuming that F can be expanded in a Taylor’s series
and that terms containing higher powers in the ¥’s than the
first may be neglected, we have

- - - oF oF oF
oo oo ZE) e ZE) o ol 25
(Xl) X2, ,Xm)+x1 aXl i‘-*_ X2 aX2 X:+' + Xm aXm xi)

where x; = X; — X;, and the derivatives are formed for the
mean values of the X’s. Under these conditions we have as
in Part V

Y = F<Xl) —X_Z) LIRS Xm))
and

0y = Va20.2 + 2202 + . . . + @202 + . . . +am20m?, (97)

Where
a; = 3 X; ‘)

%is the standard deviation of the measurement of X3, and oy
S the standard deviation of the indirect measurements of Y.
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Equation (97) is the law of propagation of error, and gi
us the information called for under (A).
If for the simple problem of measuring density we let

W = expected weight in air,
W. = expected weight in water,

o, = standard deviation of measurement of wy,

o> = standard deviation of measurement of w,,

and op = standard deviation of error of measurement oD,
we have on applying (97)
1 —_——r——5—3
0p = - W~_)20'12 + W12°'22.

(W, — Wo)?
By a process exactly similar to that used in Paragaph
Chapter XVII of Part V, we can determine the mea vl

Xl’)_(Q,--.,Xi,...,Xm

(lf: Fhey exist) which will minimize oy. By compari’g t
minimum values of 6y obtainable by different methods ¥
arrive at the most efficient method of measuring Y.

12. Measurement through Statistical Relationship

I:et us consider the problem of measuring some s
quality such as tensile strength which cannot be meas*
except through the use of some statistical relationshp w
we resort to a destructive test.

Let us start with a simple question. How can ¥ be s
as to yvh.ether or not the tensile strength of the bar in Fig
yes within specified limits Yy and Y,? The answer is: Brf?f
it and find out. However, since we cannot break it and ¥
too, we must be satisfied with the answer to a slightly diﬁeri
ili::isctlﬁn: How shall we test the bar indirectly thro‘lgh.?:
e :n}i' t:corgelatec} variables? Let us start with 0¢"
correlatit;nrobeli::irllntf:sritl:,si ig. 14. Let us consider ﬁrsf“,
can ney ength ¥ and hardness 2

er expect to be sure that the tensile strength? w
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material will lie within two specified limits Y} and Y2 by making
sure that the hardness lies within some two limits X; and Xo.
The situation is shown! schematically in Fig. 136, for the

Fic. 135—TEsT Bar.

data of Fig. 14-a. In such a case values of tensile strength
may be expected to be found in the shaded area of the figure
between the limits X; and X; and outside the limits ¥7 and Y.

5
T
|

|

|

|

|

{

|

— 4

TENSILE STRENGTH
<

HARDNESS

kg, 136.—Wny ONE CaNNoT BE SURE THAT STRENGTH LIES WITHIN SPECIFIED
"LimrTs.

If, and only if, the product is controlled in respect to the two
trrelated variables Y and X, can we predict how many Dieces

! Mathematical details considered in Part I1,
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of material having quality X within the range X1 to Xy uillk
quality Y within the range Y, t0 Ys. In other words, ths
of indirect statistical measures must be based upon the asur;
tion that the probability P that the point corresponding b+
observed pair of values X and Y will fall within a given rectr;
is constant.

A. Calibration.—Suppose one has a lot of N pieces Ik
one shown in Fig. 135, and wants to mark each of themi:

TENSILE STRENGTH — Y

A-LINE OF REGRESSION X ON Y
B-LINE OF REGRESSION Y ON X
C-LINE OF BEST FIT

A L A i [E—1
HARDNESS = X

Fiec. 137.— .~
37-—SuALL ONE OF THESE LiNes BE UsEp FOR CALIBRATION

value of tensile str ength derived from the corresponding he-
;Sssh:llleabsure. What func.tional relationship betweet :

. ¢ t.aken as a basis? In other words, how shé
calibrate ¥ i terms of X assuming that thesé w0 varii?-"

are normally corre] > o
llustrated in g, 1355 ) e take one of the

Let 0y = - . .
y=st andard deviation of objective distributio? o
sile strength ¥,
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oz = standard deviation of objective distribution of

hardness X,

r = correlation coefficient between X and Y in objec-
tive distribution of X and Y.

ltfollows from the discussion of lines of regression in Part II
that the line of regression of tensile strength on hardness
o
y = r—yx,
Oz
wherey = YV — Yandx = X — X, gives the expected or aver-
age value of y to be associated with a given valueof x. In other
. .
words, if we were to mark with —Yx each of a verylarge number
O
ntest pieces that gave a hardness value X + x, and then we
were to break these to determine their tensile strength, we
should expect to find that the average tensile strength of the
. ro .
npieces would be —Yx, although the observed tensile strengths
Oz
would be distributed about this value.
Furthermore we should expect 99.73 per cent of the 7 pieces
to have tensile strengths measured in terms of deviations,
within- the limits

10 —
c_yxi 3oyV 1 — 1%

z

snce as we have seen in Part II, the standard deviation of
iy y array about its mean in this simple case is

sy= oy V1 — 12 (98)

In fact, if the regression of y on x is linear and the scatter
of points is homoscedastic, then the standard deviation of each

imay of y’s about the mean 1Yy is given by (98) and we can

Oz
¥y by virtue of Tchebycheff’s inequality that more than
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IOO<I — I—2> per cent of the y values may be expected vk
I3

within the band
Oy
—x = ISy,
Oz

Where the correlation surface is normal, the numbe
points lying within such a band is given by the normal #
integral. Under the same conditions, similar sta.tements .ho"
with respect to the regression of x on y. It is som™
argued that some line other than the line of regression shﬂ?»:
be used as a measure of y in terms of x. One such SUgge;Ff
is that line for which the sum of the squares of the perP™
lar distances of the points in the xy plane to this fn -
minimum. The reason for choosing the line of regﬁ;z
instead of this or any other line is that this is the On?ou;‘
about which we can make the general statements pret”
made in connection with the range (99). he s

In the discussion of Fig. 14 it was pointed out thafdncss'f
of the plane of regression of tensile strength Z oB har e
and density X is a better measure of tensile strengt thaEecau:»’
the line of regression of Zon Xor Zon Y. This follows
the standard deviation,

%
I — rzyz b ryz2 - rzzz —+ 2rg,-yf?/ﬁﬂ]

Oz.qy = o'z[
1- l'xy2

ression:
of the values of tensile strength from the plan€ of 18

less than either
Szr = 0,V 1 — 1.2

or

Szy = 02V -1y, ol

sile¥
where s;; and szy are the standard deviations of " sPCC““?r
from the lines of regression of z on x and z on ) r;e '

. B.dEﬂect of Error of Measurement.—Thus {2 uch ”wﬂ;
i i i :I
sidered the problem of measuring some quantltY.sh son®’

strength Y through its statistical relationship **
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quantity, let us say hardness X. In general, the observed
values of both tensile strength and hardness are in themselves
subject to error. Let us assume for example that

o,, = The standard deviation of the objective distribution
of the observed values of hardness,

o,, = The standard deviation of the objective distribution

of the observed values of tensile strength,

¢z, = The standard deviation of the objective distribution
of true values of hardness,

I

oy, = The standard deviation of the objective distribution
of true values of tensile strength,

ro = The true correlation between the observed values of
hardness and tensile strength,

The true correlation between the true values of
hardness and tensile strength.

and r

It can easily be shown that under these conditions

o & ‘c—zfﬂr- (100)
Tz%y,

From this relationship we see that the correlation between the
vhserved values of two correlated variables is always less than
the correlation between the true values, unless the error of
measurement of each of the variables is zero. In other words,
*he smaller the error of measurement for each of the variables,
the more precise will be the regression method of measuring
e in terms of the other.

C. Conclusion.—To be able to measure through the use of
“atistical relationship, if is necessary that the variables be con-
muied. In the simple case of normally correlated variables the
ne or plane of regression has certain advantages as a calibration
“ne or plane over any other.

It should be noted, however, that the use of a statistical
aibration curve involves the introduction of a concept quite
dfferent from that underlying the use of a calibration curve
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based upon a functional relationship. The use of statisi
relationship introduces a certain indeterminateness not presa
in the use of the functional relationship. To make this pi
clear let us suppose that we had, say one hundred bars, s
as shown in Fig. 135, and let us suppose that we wishedt
test these for tensile strength indirectly through the use ot
Rockwell hardness measure.
If we assume that tensile strength ¥ is functionally relaed
to X, as
Y = f(X), (108

where f is a single valued function, then for every X ther B
one and only one value of Y. If we use such a calibra®
curve, we can mark each of the one hundred bars with a va!
which will be the tensile strength of that bar except for ertos”
measurement.
I, however, the two quantities ¥ and X are related &
tistically and we use a line of regression
g 2l
y {1t°
= 1
Y Pty
where y= Y-—Yand x = X - X, then we cannot s e
f_or a given va.lue of X there is only one value as givet bYt
line of regression of y on x. Instead for every X there® !
> . oms
array of ¥’s, the mean of which under controlled Condmone
glll be Fhe value. of ¥ given by (102). Here we run it
m% of indeterminateness discussed in the last chapte::
uati i "
of quation (80) expf'essmg T as a measure of the comm” "
helcausationf under simplified and controlled conditio™ iw
one to for i S ¢
P orm a better picture of the significance ol

. . i[‘
ct)}t;ell.-eg‘gressloln (102) as a calibration curve. Unless 1 ¥ uneﬂ"
. Af are always causes of variation in ¥ that are not Presrf
in X. Even under thes .

that the correlation coee simple conditions if we coul
trolled, we could not
could not be sure of t
except in the sense tha

g

he interpretation of y as given
t the mean value of y for a givet

flicient r and the variable X wered it
be sure that ¥ was controlled (e
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tegiven by (102). A priori, however, it seems unlikely that Y
vl be uncontrolled if both r and X are controlled. At least it
ipears that the best we can hope to do in trying to control Y
trough the measure X is to try to control 7 and X.

D. Example: Since the use of statistical relationship plays
sch an important rdle in measurement, it may be of interest
toconsider another simple problem. Many machine measures
f quality depend upon the use of statistical relationship. A
very important type of machine in the telephone plant is that
nmoduced to supplant measures depending upon the human

CURRENT

J L 1 1 1 1 1 1 —
0 10 20 30 40 50 60
TIME IN SECONDS X (073

Fic. 138.—OsciLLocram oF “‘Noise Current.”

ar, such as in testing the quality characteristics of telephone
Isttuments. )
Fig. 138 shows the oscillogram of a greatly magnified ““noise
wrrent” attributable to chance fluctuations in the resistance
of a certain kind of telephone instrument. It is obviously
desirable to go as far as one can in reducing such noise to a
minimum and in controlling the effect of this kind of distortion
s measured by the human ear. Consequently, all instruments
of this type are tested to make sure that they meet specification
fequirements in respect to this kind of distortion. Of course,
Fhe cost of doing this by ear would be prohibitive; therefore

tis desirable to secure the economic advantages of a machine
Measure,
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A little consideration will show, however, that it is almw
hopeless to expect to be able to find a machine measure of st
fluctuations in current that will be functionally related to t
measures of the human ear. The best we can hope to doisn
find some machine measure X which is statistically relatedu
the ear measure Y.

28.95 !
)
24.35 1 2 | 1
|
stz a3l ]la3]as]n '
_——T-"
19.75 | 6 | 3l 9| 7] a
w -
o ~ i
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MACHINE MEASURE

F1 T § —) g i
G. 139.~How SuaLt. WE Caviprate Macuinge MEAsure 1n TERHS O B
MEASURE?

Fig. 139 shows the calibration scatter diagram of 2 mach
measure X and ear measure YV on 942 instruments. Thet
data were obtained under conditions of control as determi®®
by the criteria described in Part VI. The solid line it ©
gﬁuﬁl ereprc—:s}?lts the line of regression of the ear meai’

macnine m el
”_'lyx2 — 72 approxi;a;st‘::i; j; o 11‘26 fact }tlhat the edl-flflesrtiﬁa:
In assuming linear re i icates that we ar Jhat ®
should e § gression. This incidentally is ¥

Xpect to get for reasons outlined in Part 111
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For reasons given previously in this section, it appears that
there is good ground for the belief that we may control the
quality Y determined by the ear by controlling the quality X
determined by the machine in respect to both the average X
and the standard deviation oz in samples of size 7. To check
the calibration of such a machine, it is necessary that the cor-
relation » between the ear measure Y and the machine measure
& for a sample of #» instruments be controlled in the sense of
the criteria of Part VI



CHAPTER XXIV
SAMPLING

1. Fundamental Considerations

Table 54 gives the results of measurements of modulus o
rupture on twenty-four telephone poles of species D. Base@
upon these data, what can we say as to the strength of ths
species?

Assuming that no assignable causes of variation of Type!
are present, or in other words, assuming that these poles cant
from a constant system of chance causes, it follows from te
discussion of the previous chapter that reasonable estimatest

the average X and standard deviation & of the distribution

Taste ¢4-—MobuLus oF Ruptore of Twenty-Four Tree D
TevEPHONE PoLES

|
Pole Modulus of Pole Modulus of 1‘(
Number Rupture Number Rupture
1 3,643 13 5,385
2 5,195 14 5,843
3 3,925 15 6,905
+ 4595 16 5,696
§ 4,482 17 7,392
f 2,24_8 18 6,184
7 012 19 4,885
8 6,697 20 6,182
9 7,117 21 6,201
10 5,340 22 75334
i 8,712 23 5,497
12 5,819 24 4,621
|

Average = 5,829 psi
¢ = 1,159 psi
404

i
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modulus of rupture given by the assumred constant system of
causes are

X=X

i

5,829 psi

13 .

— =0 = 1,197 psi.

e

So far as the distribution of the twenty-four observed values is
concerned, there is no definite evidence of lack of constancy in
the chance cause system. Under these conditions one would
be led to the conclusion that the average strength and standard
deviation of this species of telephone pole are §,829 psi and
1,197 psi respectively.

Any one who knows anything about the strength charac-
teristics of timber would likely and justly challenge such a
conclusion.  For example, such a one would likely ask what
effect moisture content has on the strength of poles of this
species, knowing as they would that moisture is at least for
most species an assignable cause of variation in strength.

Dividing the poles in respect to moisture content in this
case leads to the results shown in Fig. 140. There can be little
doubt that moisture content is an assignable cause in this case.
How then, does this affect the validity of our conclusion arrived
at upon the assumption of constancy?

From Fig. 140 it appears that there is a difference of the
order of magnitude of 1,000 psi between the strength when
the pole is dry and that when it is wet. What strength
one may expect to find in the future then may be something
nearer $,000 psi than the predicted 829 psi if the poles
to be tested are wet. If appears that prediction based upon
dsample coming from a non-constant system or non-controlled
?}'stem o.f chance causes may differ widely from what the
Cl;;ur;_e wigc ;gvsra].l. Wllm'at rdia{lci then, asks th'e engineer,
diction Eased u onsa;mp mgl rFSU 5 e answet i t'hat pre
shich che cause}: oflaslim}) e ron; a non-controllled. universe in
o be i o p asca1 of control are unknown is likely always
errors always in the lmeasuremer}t Hhoorrected for. constant

ong run 1s in error. Sampling theory
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applies to samples arising under controlled conditions. Toomi
emphasis cannot be laid upon this fact. To be able to mik
accurate predictions from samples, we must secure control fri
just as to make accurate physical measurements, we must eliminat
constant errors.

In this section we have approached the problem of int-
preting a sample from a practical angle, and in so doing, have
been led to see the importance of control. Having read Pars
II1, 1V, and VI, one sees that the only theoretical basis of

9[- )
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Fic. 140—W .
40.—Wuy ConsTancy oF Cause System 1s ESSENTIAL FOR PreDICTO®

interpreting a sample is the assumption that it arose ud’
controlle‘d conditions characterized by (45) in the most geret
case, or in other words, by the fact that the sample was tak
under the same essential conditions that will maintain throuf®

out th X :
bl;rs a;pflli];:.re so that the universal physical law of large W™

2. Random Sample

A sample taken under ¢

df 1 M‘
(#5) applies will be termeon itions where the law of large v

d a random sample. This concept
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random 1s of fundamental importance in the theory of control.
By simple illustrations we shall now try to make clear how this
wncept differs from that of some of the prevalent definitions
of random 1in order that no confusion may arise in the use of
the term in this book.

Yule in that treasure house for statisticians, /n Introduction
to the Theory of Statistics, indicates that the usual concept of
random sample is one drawn with replacement, though he crit-
icizes the use of the term random because it is so often taken
to be synonomous with haphazard. Caradog Jones ! apparently
would also have us believe that a random sample is one drawn
with replacement. For example, he says in effect: To select
99 sheep from ggg, number each sheep and place in a box 999
tickets numbered 1 to 999, one to correspond to each sheep,
then pick out gg tickets in succession being careful to replace
each and shake up the box before picking out the next; if
there were absolutely no difference between the tickets such
as would cause one to be picked more easily than another, the
selection made in this way would be random.

Now, if a random sample were only that kind of a sample
and if the theory of sampling had to start with that kind of a
sample, one can well imagine how enthusiastic a purchaser of
999 sheep would be about the theory. To such a man that
method of sampling would be foolish.

Not only is it foolish from a practical viewpoint in certain
cases to try to take this kind of a sample—very often indeed, it
Is impossible to take a sample with replacement. As an illus-
tration: How would you take a sample tensile strength test
with replacement from the coil of wire in Fig. 141°?

The kind of sample described by Yule and Jones is random,
of course, but so are other kinds of samples as will be apparent
from a study of the generalized law of large numbers (45).
Thus either a sample without replacement or a Poisson sample
may be random in this general sense.

v A First Course in Statistics, G. Bell & Sons, Ltd,, London, 1924.
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3. Sampling for Protection

Various methods of setting up sampling schemes to g
definite consumer’s risks were outlined in the last chapter o
Part VI. A study of the subject matter of the references ther
given shows that the conclusions drawn rest upon the assun}
tion that samples are selected at random. In other wor
assuming that there are /V items in the lot to be inspected, It
necessary that the sample of 7 required by one of these samping

F1c. 141.—How Snoutp WE Cuoosk 4 RANDOM SAMPLE oF THE TENSILE SREN
oF THIs CoiL oF WIRE?

schern.es, for a certain consumer’s risk, be drawn at randor
The risks calculated in this way apply so long as the sath]es
are random. If, however, the samples are not random, the rifs
do not necessarily hold.1

’Il;he kind of random sample required by the risk the
can be thaln?d bY. sampling without replacement from a bov
cgntalmng Nldentlcal chips marked 1 to IV where it is assu™
t fat the chips have been thoroughly stirred before the st
zc lﬁtilz C}rawil. dWe can see, therefore, the nature of the &
s involved in gettin Jes fron

the pole yard of Fig,ghﬂ. g a random sample of the po e’
. Cﬁs aflother llustration let us consider the problem invol®
awing a random sample of soldered terminals from {t{

panels such as the on in I
. e shown in Fig, 1 re are 4%
terminals on each panel g 143 where the

Jved

1 Cf. Sec. 1 of this chapter.



SAMPLING 409

We need not go further to see that it is very seldom feasible
todraw a sample in which the experimental conditions requisite
for randomness have been secured. Therefore we must rely
upon the engineering ability of the inspector to divide as in
Part VI the total lot N to be sampled into, let us say, 7 sub-
groups which z priori may be expected to differ assignably.
A'sample may then be drawn from each subgroup of the right
size to insure that the chosen risk is met by the sampling test
for each particular group. These remarks are sufficient to
emphasize the importance of a priori information about the
ot prior to the taking of a sample.

Now let us consider the problem of selecting a sample from
a shipment of ten carloads of boxed material, there being
twelve items in a box and roughly 1,000 boxes in a car. Obyvi-
ously it is not feasible to arrange experimentally for a random
sample to be drawn. The next best thing is to try to divide the
total of NV = 120,000 items into s rational subgroups. If,
however, we know nothing about the manufacturing process
or the conditions under which the lot was produced, we are
faced with the necessity of doing something that we cannot do;
yet we know that unless the sampling is done as it should be,
sampling theory does not apply.

THIS YARD?
F16. 142.—How Suoutp We CHOOSE A SAMPLE OF THE POLES IN



410 ECONOMIC CONTROL OF QUALITY

Thus we see how important it is that the consumer kny
assignable causes of variation if he is to devise a sampling pln
to insure that the product accepted is of satisfactory qualy.
If the product is controlled, one can easily set up a satisfactoy
sampling plan, but if it is controlled, the plan is often
needed. If the product is not controlled, the consumer neeis
to know the assignable causes of variation so as to establish an
adequate sampling scheme.

Fic.

143.— ]
43-—How SeouLp W& Croose a SAMPLE OF THE SOLDERED TERMINST
THIS PANEL?

In this way we come to see the advantage of control ©
both consumer and producer. Just as each of these now st
advantages t.hrough Cooperating in laying down SPeCiﬁcadOns
for qua_llty, it is reasonable to believe that each will soon ™
to obtain the mutual benefits of control.

4. Representative § ample

A sample that is r

. epresentative of wh ay expect
get if we take additio at we may o

nal samples, is one satisfying the gent”

1 On this point see H F Moore’s Text Book of the a
iti 1 int . . ’ -, f Materials of Engiﬂfﬂi’%‘
s apter X II, MCGraW-HiH Book Company 193
Edition Ch V s O.
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condition (4%8) of the law of large numbers. In other words,
if we let V be the total universe, finite or infinite, to be sampled,
we should try to divide the universe on an 4 priori basis into m
objective rational subgroups as represented schematically in
Fig. 144. The total sample of 7 should then be divided between
these 72 subgroups in such a way as to give some indication of
what we may expect to get from each group.

FiG. 144.—ScuEmaTIc oF DivisioN INTo RatioNaL SuBGROUPS.

5. Size of Sample

We have seen in the previous chapter and in the last chapter
of Part VI that the size of sample always depends upon what
we assume 4 priori to be the conditions under which we are
sampling. In any case the interpretation of the samPle rests
upon the assumption of control, or upon the assumption that
the law of large numbers holds in the particular case. _Thus
we need to know if the quality of the product gives evidence
of control, and in this way we are forced to come back to the
problem discussed in Part VI.

A very simple case will illustrate this point. Several years
30 an engineer reported trouble on the job bc'acf':luse the Wlfith
of saw-slots in the screw heads was under minimum require-
ments so that the available screw-drivers could not be used.
The question was raised as to how large a sample 7 should be
ispected in each lot of size V to protect against the recurrence
of this trouble. Investigation revealed that a sampling plan
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was already in use in which a certain fraction was .taken from
each lot of N. Just a little engineering investigation shoved
that the only assignable cause of the kind of trouble reported
was wearing of the saw blade that made the slot. The obvious
thing to do was to inspect the blade and not the screws. Thg
important question was not ‘“how many,” but rather “how.
A few measurements of the saw blade to control the produt
were worth far more than many measurements made blindly,
as it were, on the screws to find trouble that should have been,
and could easily have been, eliminated.

6. Size of Sample—Continued

To summarize, we may say that the answer to the question
as to size of sample depends first of all upon whether or not %
can assume that the product is controlled. However, to dete-
mine whether or not the product is controlled, it is necessary
use the sampling process after the manner discussed in detaq
in Part V. The answer to the question—How large a sample!

depends upon the following five important things considered
in that chapter:

A. Ability of engineer to divide data into objective rational
subgroups.

B. Choice of statistics.

C. Choice of limits for statistics.

D. Choice of method of using statistics.
E. The way control is specified.

Iustrative examples showing the importance of each of
these five factors have already been considered in Part VL It
may be of interest, however, to give one more illustration here
to show the importance of choosin

. g the right statistic in de-
tecting lack of control.

ki Fig. 145-2 shows the observed fraction defective in a certall
l1:)r1d of apparatus over a period of ten months. Beginnit
about April, the rejections for this kind of apparatus becamt
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excessive. It is of interest, therefore, to see how this trouble
wuld have been detected through the use of a control chart on

fraction defective. Such a chart (Criterion I, Part VI) is shown
50+

40

o N o] J F M A M J
MONTH

¢_L

Fi1c. 145-¢—WnEN Dip TrouBLE ENTER?

n Fig. 145-4. An indication of the presence of ' assignable
auses of variation is given by this chart eight weeks in advance.
Ivestigation revealed that it was very likely that the assignable
tuse at this particular time was the same as that found to have
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Fie. 145-6.—EvEN AN INEFFICIENT ControL CHART CAUGHT TROUBLE
Eigut WEEKS IN ADVANCE,
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caused the trouble beginning about the second week i
April.

- As shown in Parts V and VI, the average is usually 2 mud
more sensitive detector of assignable causes than is the e
tion defective. It so happened that the quality of a few instn-
ments of this particular kind had been measured as a variatk
each week over this same period. Applying Criterion I
these data, we get the results shown in Fig. 145-c. Evident
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of lack of control is given by this chart sixteen weeks prior®
that given by Fig. 1454,

Such rt.asults are typical of those experienced every I
the anal.ys1s of inspection data to detect lack of control.

Having assured ourselves that the product is controll?
about a certain level of quality, it may be desirable in ¥
Instances to set up sampling limits to give a certain assurtn®
that the quality in a given lot meets certain limits. Fo?
what has been said in previous sections, it appears, howet®

ple equlred to 1ve tlle dES

Kind of risk.
Magnitude of risk.

Kind of sampling scheme.
- Kind of specification,

fevious information as to the quality of produc?

&0 >N

)
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Obviously, therefore, the answer to the question—How large a
sample—even when product is controlled—depends upon
several factors. Of course, the need for protective sampling
schemes is very much reduced when we have the assurance that
quality is being controlled.

1. Size of Sample—Continued

To emphasize the importance of the conclusions stated in
the previous section, let us consider very briefly four typical
problems.

4. Quite recently, the head of a large organization inter-
ested in the production of linseed oil raised the following
question. Three shiploads of flaxseed constituting a lot of
approximately 65,000 bushels had been received. A test sample
for chemical analysis had been taken from each shipload, the
manner of taking being unknown. An order had been accepted
for several thousand dollars’ worth of oil at a price based upon
the results found in the sample. When sufficient oil to fill the
order was extracted from a portion of the flaxseed, it was found
that the average oil content was so much less than that of the
umple that the producer suffered considerable loss. The
Question asked was: How many samples should be taken under
smilar circumstances in the future in order to prevent the
ttcurrence of such loss?

If we turn to almost any book on the specification of prop-
erties of materials for design purposes, we shall find problems
of which the following three are typical.

B. Given the observed distribution, Table ¢z, of resistance
ofa sample of goy pieces of a given kind of apparatus, what is
the tolerance limit X, that will not be exceeded more than,
ler us say, 0.5 per cent of the time?

C. The tensile strength of Code A wire shall not be less than
*1000 pounds per square inch. How many samples shall be
tken in order to insure that the specification is being met on
tcarload Jot?

D Fig. 146 shows a typical cross section of a coating mate-
"l One of the specification requirements is that this coating
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shall have an average weight between twenty-five and fity
milligrams per square inch. The question is: How shalw
sample this product to insure that this quality specificaion
is being met?

TasLe §s.—How Suouip We CaLcurtatE TOLERANCE Limirs?

Resistance Number of . Resistance Number of |
in Ohms Pieces ‘% in Ohms Pieces \
Iy
31.25 ‘ 2 | sr2s 0
33-75 3 \\ 5375 |

36.25 3 % 56.25 10
38.75 99 ‘1 $8.75 1
41.23 189 ‘ 61.25 9
43.75 228 l\ 63.75 3
46.23 175 ‘{ 66.25 1
48.75 76 ‘i 76 .23 1

It follows' from what was said in the previous section thit
we cannot give definite answers to these questions If thel |
present form. It will be noted that in no case are we justiﬁed.
in assuming that the material is controlled upon the basis

FiG. 146.—~T - i
4 Y;’I&AEL CR]C;SS SEcTION OF A ProTECTIVE CoATING—NOTE T

WINE OF DEMARKATION BETWEEN COATING AND METAL.
the informati : ;
tion given. On the contrary questioning reveﬂf:
> o

in each of these tvp, .
grounds for the be]}"pfl'cal cases that. a Przori there were ® r
tef that the quality was not controlied

not one of th .
e four cases did the engineer proposing the pro

i
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know what assignable causes were likely to influence the par-
ticular set of data giving rise to the question.

Without this kind of information, any answer to the question
—How large a sample’—is likely to be greatly in error because,
as we have seen, the presence of unknown assignable causes may
play havoc with the conclusions derived upon the basis of any
sampling scheme which tacitly assumes, as it must, that the
sample is random or, in other words, that it has come from a
controlled system of chance causes. Before any one of the
four questions previously proposed can be given a reasonable
answer, it is therefore necessary to know whether or not we
are justified in assuming control, and if control cannot be
assumed, 1t 1s necessary that we employ the sampling scheme

that will make the best use of @ priori knowledge of assignable
causes.

8. Sampling in Relation to Specification of Quality

In Part V the advantages of specifying control of quality
were considered in some detail. It was pointed out that
wherever possible we should specify the average X and stand-
ard deviation ¢ of the objective distribution of control. It is
of interest to note that we are led to this same conclusion from
the viewpoint of sampling theory because, strictly speaking,
it is only under the condition of control that we have a basis
for interpreting samples.



CHAPTER XXV

Tue ControL PrROGRAM
1. Résumeé

Five important economic reasons for cqntrolling the qH;l"Y
of manufactured product were considered 1n P;.J.rt I. . In Chap
ter XXI of Part VI, we saw that, from the viewpoint of con-
sumer protection, it is also advantageous to have attained thff
state of control. If only to assure the satisfactory nature’
quality of product which cannot be given 100 per cent nspe-
tion, the need for control would doubtless be admitted.

In a very general sense, we have seen that the scientit
interpretation and use of data depend to a large extent U
whether or not the data satisfy the condition of control (SS)i
The statistical nature of things and of relationships or naturé
laws puts in the foreground this concept of distribution of effect
of a constant system of chance causes. For this reasot “]15
important to divide all data into rational subgroups !t t'e
sense that the data belonging to a group are supposed art
come from a constant system of chance causes.

We have considered briefly the application of five impor"
criteria to check our judgment in such cases. We have %
however, that such tests do not take the place of, but rath
supplement, the inherent ability of the individual engin®® ;i
divide the data into rational subgroups. Thus we se¢ clear”
how statistical theory serves the engineer as a tool.

2. Control in Research

Since observed physical quantities are, in the last analf®
statistical in nature, it is desirable that the results of resﬁa“‘\v
be presented in a form easily interpreted in terms of fregt® L'T
distributions. As a specific instance, the design eng™

418
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mist depend upon the results of research to give him a basis
ir establishing the requisite standard of quality character-
ued, as we have seen in Part V, by the arithmetic mean X
ud the standard deviation ¢ of a controlled quality X.

Naturally the research engineer is always interested in
tetecting and eliminating causes of variability which need not
beleft to chance. Hence the criteria previously discussed often
become of great assistance as is shown in Part VI. The data
of research are "good or bad, depending upon whether or not
isignable causes of variability have been eliminated. In most
nstances the data which have been divided into rational sub-
groups can best be summarized by recording the average, stand-
ud deviation, and sample size for each subgroup.

3 Control in Design

Our discussion of this phase of the subject in Part V in-
dcated the advantages to be derived through specification of
the condition of control in terms of the arithmetic mean X and
standard deviation o of any prescribed quality characteristic X.

4 Control in Development

From the results of measurements of quality on tool-made
“mples supposedly produced under essentially the same con-
ditions, we may attain tentative standards of qu?hty express-
ble in terms of averages and standard deviations. These
tentative standards may then be used as a basis for the con-
sttuction of control charts in accord with Criterion I for the
Purpose of detecting and eliminating assignable differences of
Quality between tool-made samples and those produced under
shop conditions.

§ Control in Commercial Production

It is obviously desirable that a method of detecting ‘lack of
ntro] be such that it indicates the presence 0f assignable
@uses of variability before these causes have had time to affect
alé\rge per cent of the product. For this reason, the method
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to be used on the job should involve a minimum number o
computations. Here again Criterion I usually proves st
isfactory.

6. Control in the Purchase of Raw Material

As is to be expected, a prevalent source of lack of contrl
is selection of raw material. It is not necessary that the dit
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ferent sources of material come from what could be considert
to be the same constant cause system, but it is desirable the
each source of a given material be controlled within jself. &
an example, a physical property such as the tensile strend’
of a given species of timber may be assignably diﬂferent.or
different sections of the country although within on¢ sect”
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TasLe §6.—~ScueEmaric Form oF Summary Quarrty Contror REPORT

Quality Indication

Action Taken

Quality Nature of Cause
' or Called f
Controlled | Not Controlled o
X N4
Xy Vv New source of raw| No other source of
material. raw material availa-
ble. Nothing can be
done unless we change
the kind of raw mate-
rial called for in the
design specification.
X Vv Raw material Should secure mate-
comes from sources | rial only from sources
assignably different. | A, B, and C.
X Vv Poor assembly oc-| Source of trouble
casioned by new oper- | eliminated.
ators.
Xs V4 Unknown. Further investiga-
tion under way.
Xe V4 Low insulation| Source of trouble
caused by improper | eliminated.
washing of insulation
material before as-
sembly.
Yo | U PR UUR ESPRPPPPPY
—_— R

this variability may be such as to be attributable to a constant
Ystem of causes. In the same way, we may have sources of
supply of piece-parts produced by different units of an organ-
fation or different manufacturers wherein there are assignable
differences between the product coming from different sources '
%en though each source represents a controlled product mn
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itself. Such a condition can easily be taken care of in theus
of the material, since the object of securing control fromadesip
viewpoint is, as we have seen, the prediction of variability

the finished product.

7. Quality Control Report

The quality report should, in general, do two things:
a. Indicate the presence of assignable causes of varitin
in each of the quality characteristics,

&. Indicate the seriousness of the trouble and the steps th
have been taken to eliminate it.

Fig. 147 is a page from a typical quality report which fi
fills the first requirement. Information similar to that show
schematically in Table §6 meets the second requirement.
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APPENDIX 1
ResuLtanT EFrects oF ConsTaNT CAUSE SYSTEMS

L Introductory Remarks

Our discussion of the problem of establishing the necessary
ind sufficient conditions for maximum control was based upon
the following three assumptions:

4. The resultant effect X of the operation of the 7 causes
sthe sum of the effects of the separate causes.

B. The number m of causes is large.

(. The effect of any one cause is finite and is not greater
tan the resultant effect of all the others.

ltwas stated that under these conditions the distribution of
tsultant effects of a cause system approached normality as the
umber 7 of causes was increased indefinitely, at least in th.e
tnse that the skewness v/Bizx and the flatness Bazx of this
tstribution approach o and 3 respectively. We shall now con-
sder the basis for this statement in more detail. .

To start with it will be found helpful in trying to get an
“preciation of the significance of the three limitations to carry
Brough the details of finding the distribution of resultant
fects of a few simple systems. For this purpose we shall
tnsider eight such systems characterized as follows:

m =3

@)y »: o1; o1; 01; o 1; oI
o ihikih e 8
™=

(b)Y @ o1; o025 03 4; ©5
o vE bR 8% B4
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m=5 .
(c){x o 1; O 25 3 43 5
p: %%’ %%‘r %%r%%!%%“
m =7
(d){x o1; ©2; o3 04 0% ©06 O
p Eh i L iLEEEE e &
m= 10
(e)‘x o 1; ©2; ©3; 4 ;3 o6; o7 o8 0g oW
» %%;%%;%%;%%;%%,%%;%%;%%;%%;%%
m=5
(f)\x: o1; olI; oI; ol; oL
m ih e 3L EE GG
m==6
(g)‘x: 0I; 02; O4; 04 02; OI
» I EE IR B IR 54
m=3
(h) »: o1; o2; 04; 08 oI6b.
i h PR B IR B

The notation used in describing the cause systems can be made
clear by considering only the first one. Here we have a syste?
of m = 5 causes. Each of these five causes may produce a
effect of either o or 1. For each cause the probability of zer0
effect is & and that of unit effect is %.?Eib%%?é.

Using this cause system we may illustrate the method o
finding the distribution of resultant effects. Obviously te
magnitude of this effect may take on values o, 1, 2, 1 b 5
The probability that the resultant effect will be zero is the
compound probability of each component cause producing%®
effect or (})°. In a similar way the probabilities of getting *
resultant effect equal to 1, 2, 3, 4, or § are respectively 5(8) @
10(8)* (8%, 103) ()2, 5(3)* (B)%, and (§)S. In this wayweg’

the following distribution:

Resultant
Effect X ° 1
2 §
- 3 S
Probability | 0.401878 | o.401878 ‘ 0.160751 | 0.032150 | 0.00321§ 0.
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Ths is shown graphically in Fig. 1-a. The distributions of
he resultant effects of the seven other systems are also shown

wFig. 1. What significance do these results have?
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Fie. 1.—
- L—DisTrisuTion oF ResuLtant EFrECTS OF StMpLe CAUSE SYSTEMS.

ePfeIn the. first case we see that the distribution of resultant
eCts 'w1ll'always be characterized by the point binomial.
nee 1t will always monotonically decrease on either side of
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the mode—in other words, it is a s#zooth distribution. Dis
tributions 4, ¢, 4, and ¢ indicate the effect of lack of uniformin
among the component causes. From this viewpoint smooth-
ness is a necessary condition. That it is not, however, 2 s
cient condition is evidenced by systems £, g, and A4

As long as the component causes are the same, we hav
already seen (Fig. 53) that the distribution of resultant effect
approaches normality as the number of causes is increastd
The condition that there shall be an indefinitely large number
of causes is, however, certainly not sufficient as is shown br
systems g and 4, for in these cases the shapes of the distributios
will always be those shown in Fig. 1-g and 4. Of course, if v
admit that the effect of any cause must be finite, systems such

as g and 4 with an indefinitely large number m of causes ar
ruled out.

2. Practical Significance of Results

In practice one is confronted with an observed distributio:
and from its nature must often decide whether or not it &
worth while looking for assignable causes of either Type |
or Type Il. We shall concern ourselves here only with the
problem of deciding whether or not an observed distributie

TaBLE 1.—TuermaL Units pEr Cu. Fr. or Gas

1,391 1,318 1,203
1,416 1,268 1,380
1,367 1,294 1,349
1,258 1,368 1,360
1,289 1,330 1,313
1,199 1,254 1,361
1,275 1,226 1,289

gives ev@ence of the presence of a predominating cause, th
1s, an assignable cause of Type II.

Let. us consider a typical problem. The operation data he
a certain gas plant for one month expressed in terms of arbitra"
thermal units per cubic foot of gas produced from oil by cracking
are those given below in Table 1. The data are tabulated ”
the order in which they were taken. Ideal operation calls fer
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shigh and as nearly constant value as can economically be
attained.

The following question was raised by the Director of
Research of the large organization interested in these results:

If I understand the methods of statistics correctly, it should be
mssible to determine from these data whether or not there 1s a pre-
lominating cause of variation, and hence to determine whether or not
tshould be reasonable to expect that a marked improvement in
moduct can be made by controlling one or at least a few causes of

ariation.  Am I right in this interpretation of the possibilities of
datistical methods?

_ Inanswer to such a question we can at least say something
ke the following. If we divide the data into subgroups of
‘our in the order in which they were taken and apply Criterion I
?f Part VI, we get no evidence of lack of control, as may easily
% verified by the reader. Assuming that the quality is con-
volled, we may now consider the evidence for the presence of a
predominating effect. An examination of these data shows
that they are more or less uniformly distributed over the range
o variation as one might expect with a cause system such
5(h). Inother words, the observed results are consistent with
e hypothesis that a predominating cause was present. Need-

8 to say such evidence is not conclusive: it is suggestive. ,[f. ao”s“;;/

v dnalytical Results

Let us now find expressions for the skewness v/Bizx and
mess Bazx of the distribution of resultant effects under
*mplifying assumptions.

) If we let p;, represent the ith moment of the effects of the
" tause about their expected value, it may be shown ! that

fat

O =W =024 024 .. 4024 ... 402,

od Ba= o+ Moy + ..+ Bg, 4.+ B,

b= 121(““/ = 395%) + 3k,

"See for exam ;
ple Elements of Statists A. L. Bow i i
tSan Ltd, 1930, pp 291_2; :f atistics, by A. L. Bowley, published by P. S. King
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where pi is the ith moment of the resultant effect of then
causes about the expected value of the resultant effect.

From these results we get

and

X (B — 305 + 382 2 (i — 395
=1 i=1

E — +n \’*\\
Po? o h po? .

B22x =

As a simple case let us assume that the distribution of efet

of (m — 1) of the component causes are the same, at least n

respect to their second, third and fourth moments, all of whid

are assumed to be finite, which we shall denote by My M

and M, Let us assume that the remaining cause Is pre

dominating in the sense that the corresponding three momei®

of its effects are 4 Mo, &3Ms, and &M, where &s, b5, and by at

all positive and greater than unity. Under these condifio®

we get

(rm — 1+ b3)? M52

Blzx =

(m — 1+ 62)3 M2?

and
(m— 1+ )My — 3(m — 1+ b22) M2
(m — 14 62)° M2

B2zx =

+3

' ?wdently these two expressions approach o and 3 resp
tively as the number 7 of causes becomes indefinitely %
assuming that 4y, b5, and &, are finite. In this way we @

to see that the skewness and flatness of a distribution of

sultant effects will, in general, be approximately o and 3 if the

number m of causes is very large. "7,

4. Economic Significance of Control from a Design V fewpoitt

In Chapter 111 of Part T we called attention to the fact tba:.
as a result of control we attain maximum benefits from qua““”'
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pduction.  Only general statements as to obtaining these
knefits were given at that time. In Part 111, however, we
tveloped the theoretical basis for control, making it now
pssible to show specifically how coretrol enables us to attain
tiese benefits. We shall consider here only the simplest kind of
mmples.

A. Example 7.—Suppose that an assembly is to be made in
shich two washers are to be used, one brass and the other mica.
dsume that it is desirable to maintain as closely as possible a
uiform overall thickness of these two washers. This could
ke done, of course, by selecting the pairs of brass and mica
washers to give the desired thickness. Such a process, however,
would tend to counterbalance the benefits of quantity produc-
tion, since the economies rising from assembly processes result
fom interchangeability of piece-parts. .

Table 2 gives the results of measurements of thickness on
one hundred tool-made samples each of mica and brass washers
tobe used in the manner previously indicated in the assembly
of an important piece of telephone equipmenF. .The. reader
may easily satisfy himself that both of these dlstrlb\.ltlons are
wfficiently near normal to indicate that each of thc? piece-parts
was controlled, and we shall therefore assume Fhls to be the
ase. For this size of sample we are perhaps justified in assum-
ing that the observed standard deviations of these two _dls-
tributions may reasonably be taken as‘the. sta_ndard de\.rlatlons
% and 05 of the objective controlled distributions (?f mica a:nd
brass washers respectively. The theory of the previous section
shows that under these conditions the standard. devgatlon of a
random assembly of two washers, one of each kind, 1s

0= Vo024 092

Furthermore, it follows that the distributign of the sum of the
thickness in such a random assembly will be normally dis-
tributed about a mean value which is th‘gs;{m of the mean
values of the two objective distribution's. ,5;'35»_-.;; L
Upon this basis, therefore, the design engineer is justified
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Tasre 2.—Typical DIsTRIBUTION ReqQuIsITE FOR EFFICIENT Desiox

Thickness Thickness Number of

Nugber of
of Mica W,:‘;shers ‘Of Brass Washers
in Inches in Inches

0.0088 1 oc.0182 1
0.0089 I 0.0184 1
0.0092 1 0.0186 2
0.0093 1 0.0187 2
0.0094 1 0.0188 2
0.0095 I 0.0190 2
0.00g8 2 0.019t 3
©.0099 1 0.0192 3
0.0100 2 0.0193 3
o.olol 5 0.0194 5
o.0l02 2 0.0196 6
0.0103 3 0.0197 5
0.0104 7 0.0198 4
0.010§ g 0.0199 1
o.0106 8 ©.0200 3
0.0107 j{o) 0.0201 3
0.0108 10 0.0202 4
Q.01cg 7 0.0203 5
0.0110 5 0.0204 7
0.0111 3 0.020% 4
! 0.0112 5 0.0206 3
: 0.0113 6 0.0207 3
i oollg 6 0.0208 6
| 0.011§ 3 0.0210 3
o.o116 3 0.0211 1
©.0119 1 0.0212 1
0.0213 3
0.0214 2
0.021§ 3
0.0216 | 2
0.0220 I
0.0222 1

n Pljedic'dng that the overall thickness of random atssembl'les
of mica an.d brass washers will be distributed as shown i Fig~
The dot.s in this figure show how closely the first one hundred
a§se.mbhes made from manufactured product ch eck the o
diction. Furthermore, if the observed average thickness "
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each distribution is taken as the expected value of the distribu-
tion, the design engineer can easily calculate the percentage of
assemblies that will be defective in respect to overall thickness
subject to the assumptions that have been made.

40 ¢ OBSERVED DISTRIBUTION
———EXPECTED DISTRIBUTION
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B. Example 2—For a shaft to operate in a bearing it is, of
course, necessary to have a certain clearance. Thus, if p; and
n represent the radii of the bearing and shaft respectively,
then the specification will, in general, state that the difference
m — p2 must satisfy the inequality

dy < p1 — p2 < da,

where 4, and 4 are both positive. This situation is represented
shematically in Fig. 3.

In most instances the shaft and bearing are fitted. Some-
times, however, it is of economic importance to be able to
moduct shafts and bearings separately and to assemblf: the.se
n the job. The question, of course, that is always raised is:
What will be the expected rejection of such assemblies because
o failure to satisfy the clearance specification?
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From the theory of the previous section we see that this
question can be answered readily, at least if we assume that
radii of bearings and shafts are normally controlled with stand
ard deviations o, and o> respectively. Under these conditions
the difference p; — p2 between any bearing and shaft chosen
at random will be distributed normally about a mean vale
p1 — pe with standard deviation

o = Voo

| i
o d 5 -8 d
L
SHAFT AND BEARING DISTRIBUTION OF DIFFERENCES BETWEEN
RADII OF SHAFT AND BEARING

Fic. 3—How Many REejections Swoup We Exprcr 18 AssemsLy?

Hence, the probability of a random assembly being rEjCthd
because the clearance fails to come within the required limits
is given by

22

1

I — __3—22/2dz
0 V2T i
where
(o= ) - (1~ o)
o
I el Tt D)
o
gp = 227 (1= P2)
0. b

and the value of the in tegral canberead directly from Table 3
C. Example 3—~We shall now consider a problem involvint
maximum control. Many instances arise in production wher
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materials must be covered with protective coatings. Of such
e the various kinds of platings, nickel, chromium, zinc, etc.
Irother instances we have coatings of paper or lead. %",

In practically every instance of this kind it is very desirable
tmaintain a uniform coating that is never less in thickness
ian some prescribed value. It is obviously desirable from the
rewpoint of saving to reduce the variability to a minimum.

Table 3 gives an observed distribution of one such kind of

TasLe 3.—Do THE Variations IN THICkNEss INpicatE A PossIBLE Saving?

Thicknessin | """ Thicknessin | S umPer

Inches of Inches of .
Observations Observations
0.123 2 ©.131 20
©.126 12 0.132 1
0.127 21 0.133 3
o.128 18 0.134 o
©.129 33 0.135 3
©.130 33

mating supposed always to be more than 0.124 inch in thick-
kss. The histogram in Fig. 4 shows this distribution. What
40
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does the theory of maximum control tell us about the uni
formity of coating? In the light of the previous section the
lack of smoothness in this distribution is indicative of the
presence of assignable causes of variation which can be removed,
In fact, an investigation revealed assignable causes of variation,
and on removing these, the resulting quality approached the
distribution shown by the smooth curve of Fig. 4, representing
the state of maximum control for this particular kind of coating
By attaining this state of maximum control, it is apparent
that the average thickness of coating is materially reduced

without i mcreasmg the probability of obtaining a defective
3ress

thickness.7g ro"

Not only does control lead to a saving of material in such
cases but it also leads to a more uniform product because &
shown in Chapter XXIV of Part VII, it is practically impos

sible to sample for protective purposes unless the quality is
controlled.)



APPENDIX II

PrEseENTATION OoF ORIGINAL EXPERIMENTAL
Resurrs Userul 1N OsTainiNg AN UNDER-
STANDING OF THE FUNDAMENTAL PRINCIPLES
UNDERLYING THE THEORY OF QuaLity CoNTROL

The six tables in this appendix give in detail the results of
4000 drawings from each of the three experimental universes
referred to in the text. Tables A, B, and C give the original
rawings divided into groups of four in the order in which
they occurred. Tables D, E, and F give various statistics
for these samples of four. It should not be inferred that these
statistics are arranged to correspond to the samples as this is
ot always the case. We have made extensive use of these
lata in our discussions of the theory of quality control, and
it is advisable to reproduce these data if for no other reason
than that the reader may wish to carry out for himself com-
putations similar to those referred to throughout the text.

There is, however, a far more important reason for present-
ing these experimental results. It will have become apparent
by this time that statistical theory rests upon a fundamental
natural law—the law of large numbers. In the last analysis
we must always appeal to experimental evidence to justify our
belief in such a law and to give us a feeling for its physical
sgnificance. For example, in the discussion of the theory of
statistics, we always have to talk about doing something again
ud again under the same essential conditions; or, as we have
wid, under a controlled condition where the chance cause
lystem is constant.

We have used these data in various places throughout the
book to illustrate a controlled phenomenon. In particular we

437
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have shown how they can be used in checking the results of
the mathematical theory of distribution, and in certain other
instances, in indicating the probable character of some distri-
bution function not yet determined a priori. Most of this
discussion was limited to the statistics of samples of four.
Often, of course, we wish to investigate in a similar way the
nature of the distribution functions for sample sizes other than
four. This can readily be done for the three types of universes
through the use of the data in Tables A, B, and C.

These data have been used in many ways other than those
mentioned in the text. For example, they have been found
to be of great use in the experimental determination of the
correlation between the average and range, which correlation is
sometimes required in the establishment of an efficient inspec-
tion method where it is not feasible for one reason or another
to calculate the standard deviation.

In this connection it is perhaps worthwhile to illustrate the
use of these data in indicating in a somewhat more concrete
manner than was done in the text the nature of the statistical
limit involved in the statement of the law of large numbers.
For example, suppose we consider a thousand drawings from
any one of the universes, let us say the normal one. It will be
recalled that half of the 998 chips were of one color ! and half
of another. If we let p represent the ratio of the number of
chips observed to be of one color in a series of 77 drawings to
the number # of drawings, then this fraction p should obey
the law of large numbers and approach 4 as a statistical limit;
that is,

Ls p=41.

n-—> o0

Fig. 1 shows the statistical approach of the fraction p inone
suich series of 1,000 drawings. ' .
Obviously, as a result of the first drawing, p will be either
%ro or unity. In fact, p will continue to remain zero or unity
wtil a chip is drawn which is of a color different from that of

1 Colors used instead of plus and minus.
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the first one drawn. Thereafter p will never become equal too
or 1, but will always lie somewhere within this range. In the
definition of a statistical limit, it was pointed out that there
is no value of # such that for » greater than this value, the
absolute value of p always becomes and remains less than some
preassigned quantity—characteristics which belong to a mathe.
matical limit.

The experimental results shown in Fig. 1 illustrate how the
fraction p oscillates back and forth. A student of the theory of
control can well afford to carry out similar tests of this nature

until he has gatir‘:lweandd a clear picture of the significance of the
statistical limit. 73 ¢ 44
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TABLES

TABLE A—4,000 drawings from a normal universe consisting of
998 approximately identical chips marked as indi-
cated in Table 22 of the text.

TaBLE B—4,000 drawings from a rectangular universe of 122
approximately identical chips marked as indicated
in Table 28 of the text.

TaBLe C—4,000 drawings from a right triangular universe
made up of 820 approximately identical chips
marked as indicated in Table 28 of the text.

TaBLe D—Observed distribution of arithmetic mean X, me-
Max. + Min.
a9

dian, , mean deviation u, standard

deviation ¢, and ratio z = = for 1,000 samples of

a [

four from the normal universe.

TaBLE E—Observed distribution of arithmetic mean X, stand-
. . X
ard deviation o, and ratio z = — for 1,000 samples
g
of four from the rectangular universe.

TaBLE FF—Observed distribution of arithmetic mean X, stand-
) X

ard deviation o, and ratio 2 = — for 1,000 samples
a

of four drawn from the right triangular universe.
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APPENDIX III

A BisuLiograrHic GUIDE WITH SUGGESTIONS
FOR STUDY IN THE PURTHER DEVELOPMENT
OF A Scientiric Basis ror TtHE Economic Con-
TROL OF QUALITY OF MANUFACTURED PrODUCT

As stated in the preface, the present book is but an initial step
toward the formulation of a scientific basis for securing economic
control. Much remains to be done. In presenting a list of references
for further study, an attempt has been made to include those sugges-
tive of what appear to be profitable lines of further development.

Throughout the book we have had occasion to give many specific
references. The object of the present bibliography is to suggest refer-
ences of a more or less general nature to be read in connection with
each of the sevenparts. It is hoped thatin many instances these ref-
erences will be suggestive of work which may be profitably done in
extending the theory of quality control, particularly in the direction
of the development of improved ways of securing good data through
the more thorough application of the scientific method.

REFERENCES FOR Parts I anp 111

1. Exact and Statistical Laws

In Parts I and 111 the rdles of exact, empirical, and statistical laws
in helping us to do what we want to do are touched upon.

The recent book, A4 History of Science, C. D. Whetham, 2nd
edition, Macmillan Company, New York, 1930, gives an inter-
esting and up-to-date survey of the results of hu.man effort in gstab-
lishing laws of nature. To get a more exact picture, }_)owever, we
must turn to some such book as Introduction to Theoretical Physics,
A. Haas, 2nd edition, Constable & Company, London, Vol. I, 1928,
Vol. 11, 1929; or the book of the same title by L. Page, D. Van
Nostrand Company, Inc., New York, 1928.

473



474 ECONOMIC CONTROL OF QUALITY

With the development of the atomic structure of matter and
electricity, it became necessary to think of laws as being statistical
in nature. The importance of the law of large numbers in the inter-
pretation of physical phenomena will become apparent to any one
who even hastily surveys any one or more of the following books:
Statistical Theories of Matter, Radiation, and Electricity, K. K. Darrow,
The Physical Review Supplement, Vol. I, No. 1, July 1929, also
published in the series of Bell Telephone Laboratories’ reprints,
No. 435; Introduction to Statistical Mechanics for Students of Physics
and Physical Chemistry, J. Rice, Constable & Company, Ltd,
London, 1930; Statistical Mechanics with Applications to Physics and
Chemisiry, R. C. Tolman, Chemical Catalog Company, New York,
1927; Kinetic Theory of Gases, L. B. Loeb, McGraw-Hill Book Com-
pany, New York, 1927; The Kineiic Theory of Gases, E. Bloch,
Methuen & Company, Ltd., London, 1924; Iniroduction o Modern
Physics, F. K. Richtmeyer, McGraw-Hill Book Company, New York,
1928; Modern Physics, H. A. Wilson, Blackie & Son, Ltd., London,
1928; Introduction to Contemporary Physics, K. K. Darrow, D. Van
Nostrand Company, Inc., New York, 1926; and Atoms, Molecules
and Quanta, A. E. Ruark and H. C. Urey, McGraw-Hill Book Com-
pany, New York, 1930.

One cannot return from even a brief excursion into the field of
modern physics and chemistry without having caught a glimpse of
the importance of the concept of the statistical limit in all of the
latest developments. Even in this field of exact science nothing is
exact. In the last analysis the influence of chance causes is felt.
Almqst the only things that appear to be constant are distribution
functlons or statistics of these functions—and this constancy is only
in the statistical sense. For example, one interested in the specifica-
tion of quality of materials need read only Chapter IT1T of The Physics
of So{z'd; and Liguids, P. P. Ewald, Th. Péschl and L. Prandt],
Blackie and Son, Ltd., 1930, to see how far we are from being able

to explain some of even the simplest mechanical properties in terms
of atomic physics.

2. Empirical Laws

1aWTO cobntrast the way in which the so-called exact and statistical
: s er}xla le one to predict with the way in which an empirical la¥
0€s, the recent excellent book Business Cycles, W. C. Mitchell, Na-
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tional Bureau of Economic Research, New York, 1927, should prove
to be of interest. The author of this book discusses in a critical
manner the very extensive amount of work that has been done in
trying to develop a rational basis for predicting cyclic movements
with a net result that is not so very encouraging. Even a casual
reading of this book must impress one with the serious hopelessness
of trying to predict the future in terms of the past when the chance
cause system is not constant. In the present state of the scientific
method of induction, it appears that empirical relationships such as
time series give little basis for prediction. This conclusion is con-
sistent with that so admirably presented in a recent paper by S. L.
Andrew in the Bell Telephone Quarterly, Jan., 1931, and also with
conclusions set forth in the recent book Business Adrift, by W. B.
Donham, Dean of the Harvard Business School. Such reading
cannot do other than strengthen our belief in the fact that control of
quality will come only through the weeding out of assignable causes
of variation—particularly those that introduce lack of constancy in
the chance cause system.

3. Frequency Distribution Functions

In Part III we considered very briefly the problem of determining
the kind of frequency distribution function or functions that we
might expect controlled quality to follow. In this connection we
touched upon the philosophy of frequency curves as laws of dis-
tribution. -

Two systems of curves were mentioned in particular, namely, the
Pearson and the Gram-Charlier systems. Although we have not had
occasion to make much use of these functions as such, a serious
student of control of quality will find it greatly to his advantage to
read some of the original memoirs dealing with these two systems of
curves. Those of Pearson are naturally available in English and
cannot help but prove stimulating. The more formal part of Pearson’s
work in this field has been summarized by Elderton in the interesting
book, Freguency Curves and Correlation, second edition, Layton, Lon-
don, 1928. T.L. Kelley, a former student of I?ear§on, also has fm.1ch
of interest to say about this system of curves in his book, Statistical
Method, Macmilian Company, New York, 1923. o

Very interesting and stimulating accounts of the S3gmﬁcance of
the Gram-Charlier series have been given by Arne Fisher, Mathe-
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matical Theory of Probabilities, 2nd edition, Macmillan Company,
New York, 1922; by F. Y. Edgeworth in a series of articles referred
to in his article Prodability in the 13th edition of the Encyclopedia
Britannica; and by T. N. Thiele, Theory of Observations, London,
1903. J. F. Steffensen in Some Recent Researches in the Theory of
Statistics and Actuarial Science, Cambridge University Press, 1930,
makes some very interesting and pertinent remarks on the theo-
retical foundation of certain types of frequency curves.

It is of particular interest to note the way in which Edgeworth
arrives at the Gram-Charlier series as a method of expressing the
results of the joint action of a complicated system of causes. Of
course, the Pearson system can be given somewhat similar causal
interpretation although great emphasis has not been laid upon this
point by many of those writing about the Pearson system.

The sythentic building up of a frequency curve in terms of the
effects of component groups of causes forms a basis, as we have seen,
for our discussion of the necessary and sufficient conditions of max-
imum control. We have emphasized the significance of the fact that,
as the number of causes of variability is increased, we seem to ap-
proach closer and closer to what we have termed the point (0,3)
of maximum control in the g1 B2 plane.

In this connection The Behavior of Prices, F. C. Mills, National
Bureau of Economic Research, Inc., New York, 1928, should prove

interesting reading, particularly that part having to do with the march
of the §'s back to normalcy, as he puts it.

4. Probability

Probability and its Engineering Uses, T. C. Fry, D. Van Nostrand
Compapy, New York, 1928, and An Introduction to Mathematicsl
Probability, J. L. Coolidge, Oxford University Press, New York, 1925,

contain interesting discussions of the meaning of probability and the
difficulty involved in defining it.

5. Quality Control

T}{e on.ly book touching upon the subject of quality control in
anything like the sense of the present text is that by Becker, Plaut,
and Runge, referred to in Chapter I of Part 1.
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RErERENCES FORrR Part II
1. Economics

The problem of economic control of quality in its broadest sense is,
as we have seen, that of doing what we want to do within limits which
are economical. To do this, we must establish economic standards of
quality. A brief outline of the economic considerations which must
be taken into account in attempting to establish such standards of
quality is given in an interesting article, “Standard Quality,” G. D.
Edwards, Bell Telephone Quarterly, Vol. V1L, pp. 292-303.

For example, in establishing such a standard, we must consider
the relationship between cost and value. Value, however, is not so
easily defined in a way that will cover all of the prevalent concepts
of this term. To attempt to do so leads us into difficulties touched
upon in our discussion of the definition of quality.

Naturally, value in some way or other depends upon the degree
to which a given quality satisfies human wants; but, in turn, human
wants are not constant even for the same person. Furthermore, the
degree to which a thing having several quality characteristics tends
to satisfy the human wants of even a single person is to a large extent
a complicated and unknown function of the magnitudes of the phys-
ical characteristics of the thing. FEven assuming that the value
determined on the basis of the wants of a single person is a constant,
it is apparent that the values for different people differ among them-
selves so that, in the last analysis, value, if it can be expressed quanti-
tatively, is presumably a frequency distribution function.

A brief, terse exposition of the fundamental economic problems
involved in attaining a dynamic measure of value will be found in
the Mathematical Introduction io Economics, G. C. Evans, McGraw-
Hill Book Company, New York, 1930. Having obtained a picture of
the complicated nature of this problem, one may feel inclined to
despair of its solution. However, for some time to come, it is likely
that we shall not get away from the desire on the part of all of us to
find some measure of quality which is common to all qualities.

In our discussion of economic control, we left out any detailed
consideration of this problem of finding an adequate measure of value,
even though such a measure apparently woul'd serve a very useful
purpose. We started with the tacit assumption that ?thn sych_a
measure of value can be found, it will have two characteristics: it will
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be a statistical quantity, and it will be statistically related to the
measurable quality characteristic of the product.

Beginning at this point, we have shown, particularly in Part 1,
that certain economic advantages can be attained in the production
of a controlled quality. This means, of course, as previously stated,
that the quality standard is some frequency distribution function.
We emphasized the importance of at least two characteristics,
namely, the average X and the standard deviation & of this function.
To insure that the specified parameters in a given case are economic
standards would require a consideration of the fundamental prob-
lems involved in establishing measures of value already referred to.
In such cases we must choose standards which to the best of our
knowledge at the present stage of the development of the subject
appear to be reasonable estimates of economic standards.

2. Texts on Statistical Theory

The ninth edition of Yule’s 4n Introduction to the Theory of
Statistics, C. Griffin & Company, Ltd., 1930, should prove to be 2
veritable storehouse of knowledge in respect to many of the things
discussed in Part II.  This is particularly true in respect to measures
of central tendency, dispersion, and correlation. As supplementary
reading for the more technical part of the discussion, Mathematical
Statistics, H. L. Rietz, Open Court Publishing Company, Chicago,
1917, should prove of great value, particularly in connection with the
consideration of the analytical aspects of correlation. A. L. Bowley’s
Elements of Statistics, Chas. Scribner’s Sons, New York, 1926—in
particular the second volume—contains much of interest in regard to
the point binomial and the second approximation (23). The Mathe-
matics of Statistics, R. W. Burgess, Houghton Mifflin Company,
New York, 1927, will be found helpful as a general elementary text.
It also contains references to several elementary books dealing with
statistical methods and their application in other fields such as eco-
nomics. Two of these should be mentioned here: Statistical Methods
Applied to Economics in Business, F. C. Mills, Henry Holt & Com-
pany, New York, 1924, and Principles and Methods of Statistics, R. E.
Chaddock, Houghton Mifflin Company, Boston, 1925. Attention
should also be called to the recent book, The Mathematical Part of

Elementary Statistics, B. H. Camp, D. C. Heath & Co., New York,
1931.
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3 Curve Fitting

In connection with our discussion of the derivation of empirical
formulas to represent relationships, the little book, Empirical For-
mulas, T. R. Running, Wiley & Sons, New York, 1917, is of interest.
The method of moments is discussed in some detail in Elderton’s
book, Frequency Curves, previously referred to. The method of least
squares is admirably treated in the Calculus of Observations, E.T.
Whittaker and G. Robinson, 2nd edition, Blackie & Son, London, 1926.

REFERENCES FoR Parr IV

In 1922, R. A. Fisher presented in The Philosophical Transactions
of the Royal Society in London an article, “The Mathematical Foun-
dations of Theoretical Statistics,”” in which he characterized three
fandamental problems, namely, specification, distribution, and esti-
mation. At least the first nine paragraphs of this paper should be read
by any one interested in the application of statistical theory in the
control of quality. In Part IV, we are particularly interested in the
theory of distribution which has been developed to a marked extent
during the last few decades at the hands of R. A. Fisher, “Student,”
J. Neyman, L. Isserlis, A. E. R. Church,V. J. Romanovsky, J. Wishart,
E. L. Dodd, B. H. Camp, H. Hotelling, Karl Pearson, E. S. Pearson,
L. H. C. Tippett, P. R. Rider, A. A. Tchouproff, A. A. Markoff,
M. Watanabe and E. Slutsky.

Perhaps one of the best ways for a newcomer to orientate himself
in this field of investigation is to read the excellent ““Report on Sta-
tistics”> by H. L. Rietz, published in the Bulletin of the American
Mathematical Society, October, 1924, pp. 417-453. References to later
work of the men mentioned in the previous paragraph and others on
the theory of distribution will be found in the bibliographies of the
books by Yule, Rietz, and Kelley, already referred to. In connection
with the discussion of Tchebycheff’s theorem, one of the most inter-
esting articles is that of A. A. Tchouproff, “Asymptotic Frequency
Distribution of the Arithmetic Means of # Correlated Observations
for Very Great Values of 7,” Fournal of the Royal Statistical Sociely,
Vol. LXXXVII, 1925, pp. 91-104. This article gives detailed
references to the work of Watanabe, Markoff, Slutsky, and others
touching upon this same problem. o .

A recent paper, “British Statistics anc.l .Statlst1c1a.ns. Today,
H. Hotelling, Yournal of the American Statistical Association, June,
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1930, pp. 186-190, gives an interesting brief account of what is going
on in England today in the development of statistical theory. If
one is interested in tracing the development of the theory of dis-
tribution or, in fact, any part of statistical theory back through the
ages, Studies in the History of Statistical Method, Helen M. Walker,
Williams & Wilkins Company, Baltimore, 1929, will be found helpful.
Perhaps our best general source of information on the important work
of the Scandinavian School of statisticians is the book by Arne Fisher
previously mentioned.

RerereNCEs FOR Parts VI axnp VII

1. Estimation

Two fundamental statistical problems are touched upon in Parts
VI and VII. One is that of going from a random sample of size n
to its universe.

Today there are in the literature the following three general
methods of going from a sample to its universe:

(@) The @ posteriori method.
(#) The method of maximum likelihood.
(¢) The empirical method.

‘Fo mention these three in the same breath in the presence of a group
of statisticians is almost certain to start an argument, for there is
wide divergence of opinion as to the comparative validities of these
methods.

For this reason, the reader will find it advantageous to consider
in some detail the original memoirs dealing with these separate meth-
ods. The a posteriori method is tied up with the theory of causes and
the name of Bayes. The recent important article, “ Frequency Dis-
tribution of the Unknown Mean of a Sampled Universe,” E. C.
Molina and R. I. Wilkinson, Bell System Technical Fournal, Vol. V111,
PP 632-645, October, 1929, should prove an interesting starting point
fqr the consideration of this method, although the reader will doubtless
vv_lsh to read other original memoirs referred to in connection with the
fhscussxor.l of Bayes’ theorem in the general bibliographies mentioned
In a previous paragraph.

The method of maximum likelthood is tied up largely with the

work- of R. A. Fisher, starting primarily with his article in the Phib-
sophical Transactions previously mentioned.
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A recent article, “On the Use and Interpretation of Certain Test
Criteria for Purposes of Statistical Inference,” E. S. Pearson and
J. Neyman, Biometrika, XX A, pp. 175-240, 1927, and XXA, pp. 263~
94, 1928, is perhaps the best critical discussion of the available
methods of solving the problem of estimation. It should certainly
be read by any serious student of this subject.

The third edition of Statistical Methods for Research Workers,R. A.
Fisher, summarizes most of the detailed methods of estimation de-
veloped by him. It is a book of particular value to scientists and
engineers, although one must keep in mind the serious limitations of
all methods of estimation based upon small samples as noted in the
text and discussed in such references as that of Pearson and Neyman,

It is of interest to note that a divergence of opinion is expressed in
the literature as to the usefulness of the theory of the so-called small
sample. Perhaps most of the critical remarks are based upon the
assumption that this theory is to be used as the basis of estimation,
and that it may give the impression that we can replace large samples
by small ones. In the first place, a careful reading of the available
literature does not reveal any specific suggestion to substitute small
samples for large ones. In the second place, it should be noted that
the application of small sample theory used in this text is required in
handling large numbers of data in a rations/ way by breaking them
up into rational subgroups. In this work the distribution theory
for small samples plays a prominent role.

In general the problem of estimation presents the universal dif-
ficulties involved in all induction. If one reads such a book as 4
Treatise on Probability, J. M. Keynes, Macmillan Company, New
York, 1921, he may feel at first very much discouraged, because his
attention will have been directed to many of the serious difficulties
involved in the application of probability theory. A useful tonic in
such a case is to read any one or more of the following books: The
Nature of the Physical Worid, A. S. Eddington, Macmillan Company,
New York, 1928; The Logic of Modern Physics, P. W Bridgman,
Macmillan Company, New York, 1928; The Analysis of Matter,
Bertrand Russell, Harcourt, Brace & Company, Inc.., Ne\fv ?’ork, 1927.
At least, these three books should prove to bea tonic, lf 1t Is true th'flt
misery loves company. Certainly the serious dlfﬁcul.tles involved in
the interpretation of physical phenomena are common 1n all fields, and
the discussions in these books show how much we must .rely upon the
application of probability theory even in an “exact’ science,
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2. Detecting Lack of Control

The second fundamental statistical problem is that of determining
whether or not a given set of data comes from a constant system of
causes, or more generally it is the problem of dividing the universe of
objective values into rational subgroups schematically represented in
Fig. 144. In our discussion of ways and means for detecting lack of
control, we have pointed out again and again the necessity of sub-
dividing the data into rational subgroups. To do this requires the
exercise of human judgment.

In the last analysis we must depend upon the use of scientific
method—that is, upon human intuition, imagination, reasoning, and
knowledge. Itis perhaps only through the application of this general
method that we can hope to attain good data, one characteristic of
which is that they be subdivided into rational subgroups. It may be
of interest, therefore, to sketch briefly a course of reading which will
be found helpful to the student in the application of scientific method
to the further development of the theory of quality control. Todoso
necessarily takes us into the fields of psychology, philosophy, and
logic; into the field of psychology because we must get some sort of
picture of the way the mind works; into the field of philosophy be-
cause we need some hypothesis as to the nature of reality and the
function of laws, theories, and causal explanations; into the field of
logic because it presents what we know about the formal methods
available in the theory of deduction and induction.

How do data depend upon the mind? What is the effect of factual

experience and the effect of reasoning upon an observer? These are
important questions. What we sense through any one of our senses
depends partly upon previous use of these senses. Thus a child
looking at a straight stick extending beneath the surface of a pool of
water sees a bent stick. Similarly, the first time one sees what is
shown in Fig. 131, he sees the length of the line (2) to be different
from that of line (%), although they are of the same length. In this
way, factual experience influences what we sense through any one of
our senses.
) Pel:haps more important, however, is that the mental experience
1nvolv1ng. reasoning influences to a marked extent what we sense.
One looking at a’line 4B, Fig. 1, and thinking of the points on the
line, sees those points In an entirely different way after he has tried
to place such points as +/3 and = on that line.
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Almost every day one hears of some physical discovery which has
ken influenced by a conceptual theory. A trained experimentalist
#ho is at the same time familiar with the current theory or theories
having to do with the phenomena which he is investigating will, in
many cases at least, be able to get better data for the particular
purpose in hand than he would be if he did not know the theory.

3
A >

4

Fie. 1.

In this same connection, it is important to note some of the
applications of the theory of frequency curves in assisting one to
break down an observed set of data into rational subgroups or to
indicate in ways other than those described in the text whether or
not this can be done. For example, the fact that an observed point
in the 1 B2 plane is in the neighborhood of (o, 1.8), Fig. 2, is consistent
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with the hypothesis that the observed set of data came in approx-
imately equal proportion from, let us say, m rational subgroups. In
a similar way, an observed value of skewness may be consistent with
some rational hypothesis in respect to the causes of variation. In
other words, an observed set of statistics can be suggestive of a
working hypothesis in much the same way that.a rc.Jugh plot of an
observed frequency distribution may bg suggestive in the sense in-
dicated by E. B. Wilson in his article, The Development of a Fre-
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quency Function and Some Comments on Curve Fitting,” Proceedings
of the National Academy of Sciences, Vol. 10, 1924, Pp. 79-84.

Another very important use of the knowledge of the theory may be
that of detecting mistakes in computation. For example, if one found
a point (B, f2) below the line B2 — B1 — 1 == o, Fig. 3, he would
know that a mistake had been made because, as was originally shown
by Pearson, it is not possible for a frequency distribution function
to have a point in this area.

Broadly speaking, we see again why it is so necessary in the control
of quality of manufactured product to have data accumulated by
someone acquainted with the available factual and conceptual expe-
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rience relating to the particular problem in hand. Books such as:
Scientific Thought, C. D. Broad, Harcourt, Brace & Company, Inc,
Ne\.av York, 1927; The Function of Reason, A. N. Whitehead, Princeton
University Press, Princeton, New Jersey, 1929; The Analysis of Mind,
Bertrand Russell, George Allen and Unwin, Ltd., London, 192%
Conflicting Psychologies of Learning, H. B. Bode, D. C. Heath &
Company, New York, 1929; The Principles of Psychology, William
James, Henry Holt & Company, New York, 18g0; The Revolt Against
Dualism, A. L. Lovejoy, W. W. Norton & Company, Inc., New York,
1930; and Human Learning, E. L. Thorndike, The Century Co., 1931
contain 'much of interest in this connection. ’
H.avmg‘seen what an important part conceptual experience may
play in taking dat.a, one is likely to become more interested in formal
logic. The meaning of the laws of thought and the application of
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syllogistic reasoning take on a new interest. For example, a funda-
mental understanding of the theory of control tacitly involves such
mathematical concepts as function, limit, continuity, and so on,
developed to a degree of refinement which comes from the study of
the discussion of these subjects in such a book as G. H. Hardy’s
Pure Mathematics, Cambridge University Press, London, 1928,

Perhaps of even greater interest, however, is the consideration of
what we mean by judgment and common sense—two things which we .
find we must use so often in experimental work of all kinds. One
soon finds that there is a considerable divergence of opinion in respect
to such matters as will be evidenced by a more or less systematic
browsing in the following treatises on logic. Elementary Logic, A.
Sidwick, Cambridge University Press, London, 1914; Principles of
Logic, H. W. Bradley, Vol. I and Vol. II, 2nd Edition, Oxford Univer-
sity Press, London, 1922; A7 Introduction to Logic, H. W. B. Joseph,
and Edition, Oxford University Press, London, 1922; Formal Logic,
J. N. Keynes, 4th Edition, Macmillan Company, L.td., London, 1928;
Logic, W. E.. Johnson, Cambridge University Press, London, Vol. I,
Logic, General, 1921; Vol. 11, Logic Demonstrative Inference: Deduc-
tive and Inductive, 19225 Vol. 111, The Logical Foundation of Science,
19243 The Logic of Discovery, R. D. Carmichael, The Open Court
Publishing Co., Chicago, 1930; Rational Induction, H. H. Dubs,
The Chicago University Press, Chicago, 1930; and Scientific Inference,
Harold Jeffreys, Macmillan Co., New York, 1931.

It will be noted that the application of the formal scientific method
in discovery involves a human choice at every step. For example,
in the discovery of a functional or statistical relationship, the follow-
ing choices must be made:

1. Choice of data.

2. Choice of functional form.

3. Choice of number of parameters, at least in certain cases.
4. Choice of method of estimating parameters.

To a certain extent this field of choice is a kind of methodological
No-Man’s Land. '

History of science shows, however, that t.he d{scoverers o_f the
past have, in general, been those broadly trained in the particular
field of discovery of their choice. They .have been 'those‘ famlh'ar
with the status of experimental and the.oretlcal. results in their partic-
ular field. The importance of theory in helping one to choose the
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right thing to be discovered is illustrated by the fact that several
elements in the periodic table have been looked for and found because
their existence was suggested by the blank spaces.  So it is that many
of the discoveries of science have been suggested by theory.

Furthermore, it is of interest to note that important discoveries
have usually come only after the investigator has surrounded himself
for a considerable period of time with the facts bearing upon the
subject and during this period has kept these more or less constantly
in mind. It is true, however, history also indicates that many of
these discoveries have only come after the investigator has dropped
the search for a time more or less completely from his conscious con-
sideration. In all cases, however, it appears that preliminary con-
scious attention to the facts in hand is essential.

Coming now to the more or less formal treatment of scientific
method, the following books will be found helpful in something like
the order listed: The Foundations of Science, H. Poincare, The Science
Press, New York, 1929; The Principles of Science, W. S. Jevons,
Macmillan Company, Ltd., London, 1924; Essentials of Scientific
Method, A. Wolf, Macmillan Company, New York, 1927; Scientific
Method, A. D. Ritchie, Harcourt, Brace & Company, New York, 1923;
and Physics, The Elements, N. R. Campbell, Cambridge University
Press, London, 1920, together with Vol. III of Johnson’s Logic noted
in the previous paragraph.

Books such as the Quest? for Certainty, John Dewey, Minton Balch
Company, New York, 1929; and in particular, A. N. Whiteheads
Process and Reality, Macmillan Company, New York, 1930, contain
much of interest. Just as a simple example, it is necessary for us to
think of a quality characteristic as an entity in the sense adopted by
Whitehead if it is to be general enough to be of use in the many
practical problems that arise in the interpretation of a sample.

OTtuer REFERENCES

\. Errors of Measurement

It is assumed that the reader has available one or more of the
following books on the discussion of the errors of measurement: The
Combination of Observations, David Brunt, University Press, London,
19175 The Calculus of Observations, E. T. Whittaker and G. Robinson,
Blackie & Son, London, 1924; The Theory of Measurements, A. D.
Palmer, McGraw-Hill Publishing Company, New York, 1930; and
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The Theory of Measurements, L. Tuttle and J. Satterly, Longmans,
Green & Company, New York, 1925.

Brunt’s book contains, in addition to the ordinary discussion of
the theory of errors, an interesting introductory chapter indicating
various ways of developing the normal law. The book by Tuttle
and Satterly gives a particularly good elementary discussion of many
things which must be considered in correcting data for errors of meas-
urement. Palmer’s treatise is of particular value in outlining things
which must be considered in planning physical measurements so as
to reduce the errors of measurement to a minimum. -

2. Tables

Of course, every one needs a table of squares, reciprocals, and
square roots such as that of Barlow published in revised form by E.
and F. N. Spon, Ltd., London, 1930, and a table of logarithms such
as those of Vega published by D. Van Nostrand Company, New York,
1916. In addition to these, any one interested in the theory of quality
control will find much use for Pearson’s Tables for Statisticians and
Biometricians, published by the Cambridge University Press, London,
1924. The second volume of these tables which is now in the process
of preparation is supposed to contain the tables which have appeared
in Biometrika since the publication of the first volume in 1924. In
a way, the promised second volume will be even more helpful than the
first. The booksby Fry, Arne Fisher, and R. A. Fisher contain many
useful tables. For a more complete bibliography, the reader is
referred again to that of Yule.

3. Magazines

Without question, one magazine which has been found most
useful in our study of quality control has been Biometrika, edited
by Karl Pearson and his son Egon Pearson, and published by thé
Cambridge University Press, London. IF has carried many of the
important papers of “Student,” R. A. Fisher, L. H. C. Tlppett, J.
Neyman, J. O. Irwin, Karl Pearson, E.S. Pea}rson, J Wishart, and
their associates. The Skandinavisk Akiuarietidskrift, Stockhol'm,
contains many important articles in Engiish' as wel.l as in f_orelgn
languages. The same is true of Metron, an international review of

statistics published in Rome, Ttaly.
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The Fournal of the American Siatistical Association, New Y.+
contains many discussions of the applications of the more clemesta.
theory of statistics in the field of economics. The same can b .
of the Fournal of the Royal Statistical Society, London, although 1
Journal has also published several important articles on the the:
of statistics. Both of these Journals are of value becausc ot *
reviews of current literature. The Annals of A{athemat:’m{ Nttt
a Journal recently started in cooperation with the American M
tical Association. It is devoted to both theory and applicat
mathematical statistics. . . i,

A glance at any of the complete bibliographies prev.ums\'_\n!: ( .
to will show that important articles have appeared in man
journals than those listed here.

4. Mathematics
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TO.G
NOMOGRAPHIC REPRESENTATION 0.7000 T
OF PROBABILITY (Pn) THAT AT ERROR (%-X') orioot
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ful and artistic layout of the graphical presentation. In this con-
nection, Layout in Advertising, W. A. Dwiggins, Harper & Bros.,
New York, 1928, should prove to be suggestive.

In closing, we should note that in the application of the method
of control, it is sometimes advisable to substitute nomograms for
tables in shop practice. For example, Fig. 4 gives a nomogram which
enables one to read off the standard deviation ¢ in terms of a given
sample size 7 and probability p’. Ina similar way, Fig. 5 presentsin
graphical form the very complicated table of “Student’s” integral.
For a discussion of this nomogram and of the application of nomog-
raphy in this way, see the paper by V. A. Nekrassoff, “ Nomography
in Applications of Statistics,” published in Mesron, Vol. VIII, 1930,

PP- 95-99-
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of correlation coefficient r, 217-223

conditions under which significant,
221-223

of flatness or kurtosis 8y, 197

of fraction defective p, 178-179

of other measures of central tendency,

197-199

of other measures of dispersion, 199-20¢

of quality characteristics, 44-46

of skewness &, 197

ofstandard deviation o, 184-188;191-196

of statistic in relation to control, 175

of throws of dice, 125

of variance o2, 188

Pearson types of, 138-139

statistical, 22

“Student’s,”

theory
importance of, 232
mathematical, 233-245
phases of, 230-232
simple illustration of, 169, 171

Eficiency
definition of, 172
of arithmetic mean, 27g-284
of Criterion I, 315
of measures of dispersion, 287-289

. max. -+ min.
of median and ——————

189-191

) 279-284
Errors
correction of data for, 379-385
different kinds of, 378-379
law of propagation of, 392-394
of grouping, 78
of measurement, 61; 379-385; 486-487

Flatness or kurtosis
distribution of, 171, 197
importance of, g6-98
measure of, 71
method of calculation of, 75
significance of, 75
Fluctuations (see Sampling fluctuations)
Fraction defective
definition of, 71
distribution of, 178-179
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Frequency
definition of, 66
distributions, 63-68
histogram, 67
polygon, 67
relative, 66

Histogram
cumulative, 68
frequency, 67
surface, 68

Index of quality, 48
Information
essential, definition of, 58
total, definition of, 85
Inspection
reduction in cost of, 26-27
sampling in relation to control, 341-347
to detect lack of control, 275-422

Judgment
references on use of, 482-486
réle of in choice of criteria, 338-340

Low
comparison of exact and statistical, 140-
144
exact, 1215 140-144
normal (see Normal law)
of large numbers
evidence for existence of, 125-130
statement of, 122-12§
physical, 360-364; 473-474
statistical, 133-144; 473-474
Limits
basis for establishing control limits,
275-277
for detecting trouble (see Criteria)
statistical, 361-364; 437-439
tolerance (see Tolerance limits)

Maximum + Minimum

2
as measure of central tendency, 71
distribution of, 171; 197-199
efficiency of, 279-284
Mean Deviation
as measure of dispersion, 71

SUBJECTS 499
Mean deviation
distribution of, 199-20¢
efficiency of, 287-289
Measurement
a sampling process, 378-379
how many, 390-392
minimizing cost of, 388-390
of average X and standard deviation G,
369-375
place of in control, 376-378
through statistical relationship, 394-403
Median
as measure of central tendency, 71
definition of, 63
distribution of, 171; 197-199
efficiency of, 279-284
Method
graphical, 103
of least squares, 103
of moments, 103
Mode
as measure of central tendency, 71
definition of, 63
Molecular motion, 10-12; 129-131; 133-134

Normal law
definition of, 12
graphical representation of| 94
table of integral of, go

Normal surface
analytical expression for, 100
graphical representation of, 101

Porameters

definition of, 99

four methods of estimating, 103
Point binomial in relation to control, 12¢
Polygon

cumulative, 68

frequency, 67

surface, 68
Probability

a posteriori, 342-3473 370-371

a priori, 123, 168

constant, 12

mathematical, 123, 168

objective, 123,

references, 476
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Quality
allowable variability in, 17335 273-347
as an attribute, 40-41
as a point in space, 40
control
in practice, 351-422
ohject of, 356-357
report, 421-422
distribution of, 44-46
importance of correlation coefficient in
specification of, 228
index, 48
objective, 53
of a number of the same kind of things,
41-44
of product, 44-47
popular conception of, 37
rate, 47-49
relationship between several qualities,
113-11§
representation in m space, 39, 49
set of characteristics, 38
standard
detection of failure to maintain, 298-
300
specification of, 262-272
statistics, 46
statistics to be used when quality is
controlled, 89-94
subjective, 53
tolerance on controlled quality, 256-
259
true versus observed, 61
uniform, 31

Range, 63
arithmetic mean of, 203
as measure of dispersion, 71
distribution of, 201204
efficiency of, 287-28¢
‘standard deviation of, 203
Rate, quality, 47-49
Rational subgroups, 299, 304, 308, 309,
312, 313; 409-412
Regression
line of
definition of; 106
standard deviation from, 106

INDEX OF SUBJECTS

Regression
plane of
graphical representation of, 33
standard deviation from, 114
Rejections, reduction in cost of, 27-29
Relationship )
between several qualities, 113-115
functional, g9
general comments, I16-117
measured by correlation coefficient,
104-11§
measured by correlation ratio, 115
116
measures of statistical, 71, 80
observed, 101-104
statistical, 100

Sample
definition of, 163
random, 406-407
relation of to universe, 170
representative, 410-411
size of, 313-314; 411-417
Sampling, 404-417
for protection, 408-410
in relation to specification, 417
theory, 405-406
Sampling fluctuations, 69, 163-245
experimental results, 164-167
in correlation coefficient, 214-217
in simple statistics, 167
problem of predicting, 167-170
Scatter diagram, 68
Second approximation
definition of, g4
in relation to controlled quality, 159
table of integral of, go-g1
use in Criterion V, 329
Significant figures, 79
Skewness
distribution of, 171, 197
importance of, g6-98
measures of, 71
method of calculation of, 74-75
significance of, 75; 86-88
Specification, 249272
of standard quality, 262-272
sampling in relation to, 417
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Standard deviation
as measure of dispersion, 71
distribution of, 184-188; 191-196
efficiency of, 287-289
measurement of, 369-375
method of calculation of, 73
significance of, 86-88
use in general, g4-96
use when quality is controlled, 89-94
Standard quality
detection of failureto maintain, 298-300
specification of, 262-272
Statistical
comparison of statistical and exact
laws, 140-144
indeterminateness, 362
laws, 133-140; 473-474
limit, 361-364; 437-439
magazines, 487-488
measurement through statistical rela-
tionship, 394-403
nature of macroscopic properties of
matter, 128
nature of modulus of rupture, 23
relationship, 100
tables, 487
theory
role of, 22-24
texts on, 478-481
Statistics
calculation of, 72-81
choice of
to detect change in average quality,
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278-284; in correlation coeffi-
cient, 290; in standard deviation,
284-289; in universe of effects,
297

choice of method of using, 290-300

classes of, 80-84

‘consistent, 284

expected and modal values of, 212

quality, 46

simple, 71

sufficient, 279

to be used when quality is controlled,
89-94 -

why average and standard deviation
are always useful, 94-96

Tolerance
for quality of finished product, 252-
256
importance of control in setting, 2§0-252
limits
definition of, 249
reduction in, 32
on controlled quality, 256-259
range, 249
where 100 per cent inspection cannot be
made, 250

Value, use, cost, esteem, exchange, §3
Variability, design limits on, 249-272
Variance
as measure of dispersion, 71
distribution of, 188
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