
Interactive Co-segmentation Using
Histogram Matching and Bipartite Graph

Construction

Harsh Bhandari



Interactive Co-segmentation Using
Histogram Matching and Bipartite Graph

Construction

Dissertation submitted in partial fulfillment of the requirements
for the degree of

Master of Technology
in

Computer Science

by

Harsh Bhandari
[ Roll No: CS-1502 ]

under the guidance of

Dr. Bhabhatosh Chanda
Professor

Electronics and Communication Sciences Unit

Indian Statistical Institute
Kolkata-700108, India

July 2017



To my family and my supervisor



Acknowledgements

I would like to show my highest gratitude to my advisor, Prof. Bhabatosh Chanda,
Electronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata,
for his guidance and continuous support and encouragement. He has literally taught
me how to do good research, and motivated me with great insights and innovative
ideas.

My deepest thanks to all the teachers of Indian Statistical Institute, for their valuable
suggestions and discussions which added an important dimension to my research work.

Finally, I am very much thankful to my parents and family for their everlasting
supports.

Last but not the least, I would like to thank all of my friends for their help and
support. I thank all those, whom I have missed out from the above list.

Harsh Bhandari
Indian Statistical Institute

Kolkata - 700108 , India.



Abstract

Co-segmentation is defined as jointly partitioning multiple images having same

or similar objects of interest into foreground and complementary part is mapped as

background.

In this thesis a new interactive co-segmentation method using a global energy

function and a local smooth energy function with the help of histogram matching

is being proposed. The global scribbled energy takes the help of histograms of the

regions in the image to be co-segmented and the user scribbled images to estimate the

probability of each region belonging either to foreground or background region. The

local smooth energy function helps in estimating the probability of regions having

similar colour appearance.

To further improve the quality of the segmentation, bipartite graph is constructed

using the segments. The algorithm has been implemented on iCoseg and MSRC

benchmark data sets and the experimental results show significant good results com-

pared to many state-of-the-art unsupervised co-segmentation and supervised interac-

tive co-segmentation methods.

Keywords: Co-segmentation, histogram matching, Bhattacharya Distance, Bipar-

tite Graph.
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Chapter 1

Introduction

1.1 Introduction

With the steady growth of computing power and rapid decline in cost of memory, and

with the development of high-end digital cameras and ever increasing access to inter-

net, digital acquisition of visual information has become increasingly popular in recent

years. Users can easily capture more and more images and share them on internet

using social networks like Facebook and Twitter or using WhatsApp. Users generally

have several related images of same objects, events or places which the researchers

want to exploit for many tasks such as constructing a 3D model of a particular object

or developing image retrieval applications [30]. In such tasks it is imperative to ex-

tract the foreground objects from all images in a group of related images. The idea of

co-segmentation, first introduced in[23], refers to simultaneously segmenting two or

more images, where the same (or similar) objects appear with different (or unrelated)

8



1.2. Our Contribution 9

backgrounds, performing segmentation of similar regions (objects) in all the images

using suitable attributes of the foreground is a challenging task. The co-segmentation

problem has attracted much focus in the last decade, most of the co-segmentation

approaches [13, 18, 20, 21, 28, 29, 31] are motivated by Markov Random Field(MRF)

based energy functions, generally solved by optimization techniques such as linear

programming [20]. This co-segmentation of foreground objects from multiple related

images is the goal of this algorithm.

1.2 Our Contribution

We present a new framework to perform image co-segmentation problem by first

computing the probability of each pixel to be in foreground or background region by

applying the Bhattacharya Distance on segments of image. Next, to further increase

the quality of the segmentation we construct a bipartite graph by using the proba-

bility computed using the Bhattacharya Distance and using the size of the segments

we compute the matching coefficient which further reduces the misclassification of

segments.

We have provided mathematical analysis as well as simulation in details for our

algorithm. We have compared performance of our algorithm with the existing al-

gorithms with respect to accuracy of classification of each pixel into foreground or

background. Time complexity of our algorithm is O(
∑n

i=1 (N(Ri))2 ∗ L where, N(Ri)

is number of segments in image I i and L = number of bins in the histogram of a seg-

ment.
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1.3 Organization

The rest of the thesis is organized as follows.

• In Chapter 2 we have discussed previous work related to Co-segmentation.

• There is a brief description of required background in the Chapter 3.

• We have elaborated our proposed algorithm in Chapter 4.

• In Chapter 5 we have provided detail analysis of the algorithm.

• In Chapter 6, Section 6.1 contains performance of the algorithm visualized by

simulation and Section 6.2 contains the performance evaluation of our proposed

algorithm

• Conclusion and future direction research in this field is described in Chapter 7.



Chapter 2

Related Work

The identification of similar objects in more than one image is a fundamental prob-

lem and has relied on construction of models [7, 33]. Most co-segmentation methods

are derived from single-image segmentation methods by adding similar foreground

constraints in the MRF based optimization framework. Early co-segmentation ap-

proaches [13, 19, 20, 23] and [28] only used a pair of images as input making an as-

sumption of sharing a common foreground object. Similar to image-segmentation,

co-segmentation can be classified into two groups: unsupervised and interactive co-

segmentation.

2.1 Unsupervised Co-segmentation

Many unsupervised approaches [5,9,11,15,16,21,22,24,25,27,31] have recently been

developed to co-segment multiple images and have achieved more accurate results

11



2.2. Interactive Co-segmentation 12

than any classic single-image segmentation algorithm. In [23] image co-segmentation

method is introduced by combining MRF framework and global constraints with fore-

ground histogram matching. Houchbaum and Singh [13] proposed a max-flow algo-

rithm by modifying the histogram matching and using clustering for co-segmentation.

Joulin [15] proposed a combination of normalized cuts and kernel methods to design a

discriminative clustering co-segmentation framework. Recently, they extended their

framework to multi-class co-segmentation [16]. Inspired by single-image interactive

segmentation methods [3, 4, 12] several co-segmentation algorithms have been pro-

posed in recent years. But these methods fail to perform well when the foreground

and background are similar in images as it is difficult to find common objects auto-

matically. The interactive co-segmentation methods alleviate these problems by using

interactive scribble.

2.2 Interactive Co-segmentation

Interactive co-segmentation algorithm [1,2] added user scribbles in some input images

to build two Gaussian Mixture Models (GMM) one for each of foreground and back-

ground classes. A graph cut algorithm is then used to co-segment these images. In

contrast to co-segmentation approaches within MRF, some researchers [5] proposed

an image co-segmentation method using random walker algorithm based on normal-

ized Euclidean distance of pixel intensity. However the random walk optimization will

make the co-segmentation results sensitive to the quantities and positions of the user

scribbles [26]. In [8] another approach was proposed where global scribbled energy

function using Gaussian Mixture Model and a local smoothness function using spline
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regression have been designed to improve the image co-segmentation performance.

This study formulates the interactive co-segmentation problem in terms of Gibbs

energy optimization followed by generating bipartite graphs of regions of images com-

plementing the existing MRF segmentation framework. This improves the accuracy

of co-segmentation of complex images having foreground objects with variations in

colour and texture. Higher order energy optimization [14,17,34] has been widely used

in many fields: computer vision and image processing like image denoising and single

image segmentation. Bipartite graphs are constructed using unlabelled segments of

the image as one set of vertices and the scribbled foreground and background seg-

ments as another set of vertices. Each unlabelled vertex is connected to the other

set obtained from scribbled region with a weighted edge. This strategy makes the

framework effective in realistic scenario as shown in Fig.2.1, parts of foreground and

background regions are similar in colour where the proposed algorithm efficiently

captures the foreground objects after bipartite graph formulation.
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Figure 2.1: Co-segmentation results. Left: input images Alaskan Brown Bear with
scribbled group. Middle: results of co-segmentation by composition [9]. Right: result
of the proposed approach.



Chapter 3

Overview of the proposed approach

Compared to the existing image co-segmentation methods, the proposed algorithm

offers the following contributions.

1. The proposed interactive co-segmentation algorithm can be divided into two

phases:

• probability estimation of each pixel to be in foreground/background region

• bipartite graph generation

2. A new segment classification method is presented using the histograms of the

segments of the image based on a global scribbled unary energy function and a

local pairwise smooth energy function subject to prior information. This results

in classification of each pixel into foreground/background regions and helps in

constructing bipartite graph for final co-segmentation results.

3. A bipartite graph construction method is proposed using the scribbled fore-

15
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ground/background regions as well as the regions of original image which need

to be properly classified.

The workflow of the proposed interactive co-segmentation framework using global

and local energy function along with bipartite graph construction is shown in Fig.3.1

Figure 3.1: The Left images are scribbled images indicating red foreground region
and green background region along with one no scribble image since the proposed
algorithm can segment some of the images without scribble. The right side images
are result of co-segmenting four images in the Flower class in the MSRC dataset[32].



Chapter 4

Proposed Algorithm

In this paper, a novel algorithm has been introduced that classify each pixel into

foreground/background regions.

Let S ={I1, · · · , In} be a set of n images and let P be a subset of k images selected

from S indicating foreground and background scribbles where k�n. Let pij denotes a

pixel of image I i with index j and aij,l be its probability for foreground/background

region with l= 0 indicating the background region and l= 1 as the foreground region.

To make the algorithm computationally efficient, each image I i is divided into small

segments rim ε Ri by using an over-segmentation method such as mean-shift [6] or

efficient graph [10] method and N(Ri) be the total number of segments in image I i

i.e. 1 ≤ m ≤ N(Ri). Let bim,l be the probability of segment rim belonging to region l

ε {0, 1}. To compute, bim,l, two energy functions are designed: a unary second order

global scribbled energy function Eglobal and a pairwise second order local smooth

function Elocal. Let S0 be the set of scribbled background segments and S1 be the set

17



4.1. Global Scribbled function 18

of scribbled foreground segments of set P.

4.1 Global Scribbled function

How to effectively utilize the user scribbles is the key for interactive co-segmentation.

The global energy function is responsible for providing the probability of segment bim,l

to foreground/background region based on the prior probability computed as below:

Let cim,l be the initial estimate of segment rim belonging to region l where

cim,l = 1− eim,l (4.1)

eim,0 =
mins0∈S0(− log(D(him, h

s0)))

mins0∈S0(− log(D(him, h
s0))) + mins1∈S1(− log(D(him, h

s1)))

eim,1 =
mins1∈S1(− log(D(him, h

s1)))

mins0∈S0(− log(D(him, h
s0))) + mins1∈S1(− log(D(him, h

s1)))
(4.2)

Note that D(x, y) stands for Bhattacharya Distance defined as

D(x, y) =
s=L∑
s=1

√
hix(s).hiy(s)

where hiq = normalized histogram of region riq in image I i and L = number of bins in

a histogram.

D(x, y) states the closeness of two distribution x and y. D(x, y) = 1 indicates the

two distributions are identical and D(x, y) = 0 indicates that the distributions have

no relation.
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Thus the unary global energy function can be defined as

Eglobal =

N(Ri)∑
m=1

(bim,l − cim,l)
2 (4.3)

Eq.4.3 can be solved by converting the equation into matrix form thus,

Eglobal = (~bil − ~cil)
T ∗ IN(Ri)×N(Ri) ∗ (~bil − ~cil) (4.4)

where ~bil and ~cil are vectors of size N(Ri) and I is an identity matrix of size N(Ri)×

N(Ri).

Eglobal is defined by satisfying a constraint that each segment tends to have the

probability bim,l of segment rim close to cim,l estimated through the Bhattacharya Dis-

tance.

4.2 Local Smooth function

The local smooth energy function considers the smoothness of segments i.e. it pro-

vides interactive constraint that all segments in the image have same probability of

belonging to foreground/background if having similar colour appearance. To com-

pute the local energy function, a graph Gi(V (i), E(i)) is constructed for image I i

where V (i) = bi1,l, . . . , b
i
N(Ri),l and E(i) = (bi1,l, b

i
1,l), (b

i
1,l, b

i
2,l), . . . , (b

i
N(Ri),l, b

i
N(Ri),l) i.e.

each vertex is connected to all other vertices including itself with weight wi
p,q where
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0 ≤ wi
p,q ≤ 1, p and q are the segments of the image

wi
p,q = e

∑s=L
s=1

√
hi
p(s)∗hi

q(s)−1

Elocal defines a constraint that all segments having similar colour appearance will have

same probability of getting classified into foreground/background.Thus the pairwise

local function can de defined as

Elocal =

N(Ri)∑
r,s=1

wi
r,s ∗ (bir,l − bis,l)2 (4.5)

Eq.4.5 can be solved by constructing Laplacian Le of graph Gi(V (i), E(i)), which is a

positive semi-definite matrix of size N(Ri)×N(Ri) represented as:

Le =



∑N(Ri)
r=1 wi

1,r 0 · · · 0

0
∑N(Ri)

r=1 wi
2,r · · · 0

...
...

. . .
...

0 0 · · ·
∑N(Ri)

r=1 wi
N(Ri),r


−



wi
1,1 wi

1,2 · · · wi
1,N(Ri)

wi
2,1 wi

2,2 · · · wi
2,N(Ri)

...
...

. . .
...

wi
N(Ri),1 wi

N(Ri),2 · · · wi
N(Ri),N(Ri)



Elocal = (~bil)
T ∗ LeN(Ri)×N(Ri) ∗ (~bil) (4.6)
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4.3 Total Energy Optimization

The total energy can be summarized as a sum of the global scribbled energy, Eglobal

and local smooth energy, Elocal.

Ei
Total = Eglobal + Elocal

Ei
Total = (~bil − ~cil)

T ∗ IN(Ri)×N(Ri) ∗ (~bil − ~cil) + (~bil)
T ∗ LeN(Ri)×N(Ri) ∗ (~bil) (4.7)

bil being the parameter to be computed can be found by differentiating Ei
Total with

respect to bil. Thus

∂Ei
Total

∂bil
= 2 ∗ IN(Ri)×N(Ri) ∗ (~bil − ~cil) + 2 ∗ LeN(Ri)×N(Ri) ∗ (~bil)

IN(Ri)×N(Ri) ∗ (~bil − ~cil) + LeN(Ri)×N(Ri) ∗ (~bil) = 0

bil =
cil

IN(Ri)×N(Ri) + LeN(Ri)×N(Ri)

(4.8)

IN(Ri)×N(Ri) + LeN(Ri)×N(Ri) can be written as AN(Ri)×N(Ri) where
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A =



∑N(Ri)
r=1 wi

1,r wi
1,2 · · · wi

1,N(Ri)

wi
2,1

∑N(Ri)
r=1 wi

2,r · · · wi
2,N(Ri)

...
... . . . ...

wi
N(Ri),1 wi

N(Ri),2 · · ·
∑N(Ri)

r=1 wi
N(Ri),r



bil =
cil

AN(Ri)×N(Ri)
(4.9)

Note that aij,l = bimj ,l, where mj indicates the segment rimj that pixel pij

belongs to.

4.4 Bipartite Graph Construction

The proposed energy function usually provides a good estimation for

the foreground/background region in each image. But for images hav-

ing complex textures and where the foreground and background regions

have close colour appearance, such regions may get misclassified since

the initial estimation may come close to 0.5.

To further increase the accuracy of the co-segmentation results, for each

image I i, a set X i is constructed where the set provides segments rir

having bir,1 ∈ {0.5 − ε1, 0.5 + ε2}. All segments having bir,1 > 0.5 + ε2,
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is classified into foreground region and those having bir,1 < 0.5 − ε1 is

classified into background region. Set Y i
r,l is constructed which contains

all adjacent segments of rir classified into region l. To make better esti-

mation of the segments in X i, matching coefficient dir,l is computed as

stated below:

dir,l =
N(rir,l) ∗ bir,l + uir,l + vir,l

N(rir,l) +N(ritv,l) +N(ritu,l)

where uir,l indicates the highest similarity value between segment rir and

its adjacent segments in Y i
r,l and vir,l indicates the highest similarity

value between segment rir and Sl. N(rir) indicates number of pixels in

segment rir.

4.4.1 Computation of vir,l

Let Gi
b,v(X

i
⋃
Sl, Ev) be a complete bipartite graph with X i and Sl be

two disjoint set of vertices. Ev is the set of edges between X i and Sl

having weight εir,t,l between segment rir ∈ X i and segment rtv,l ∈ Sl.

Hence

εir,tv,l =

∑L
j=1((h

i
r(j))− 1

L) ∗ ((hitv,l(j))− 1
L)√

(
∑L

j=1 (hir(j))
2 − 1

L) ∗ (
∑L

j=1 (hitv,l(j))
2 − 1

L)

vir,l = N(ritv,l) ∗max( max
rtv,l∈Sl

(εir,tv,l, 0))
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N(ritv,l) indicates number of pixels in segment rtv,l, which means a

large segment will have large weight and εir,tv,l considers the high-

est correlation that the segment can have with the scribbled fore-

ground/background segments and thus improves the segmentation qual-

ity.

4.4.2 Computation of uir,l

Let Gi
b,u(rir

⋃
Y i
r,l, Eu) be a complete bipartite graph with rir and Y i

r,l be

two disjoint set of vertices. Eu is the set of edges between segment rir

and Y i
r,l having weight εir,tu,l between segment rir and segment rtu,l ∈ Y i

r,l.

Hence, we can write

εir,tu,l =

∑L
j=1((h

i
r(j))− 1

L) ∗ ((hitu,l(j))− 1
L)√

(
∑L

j=1 (hir(j))
2 − 1

L) ∗ (
∑L

j=1 (hitv,l(j))
2 − 1

L)

uir,l = N(ritu,l) ∗max( max
rtu,l∈Sl

(εir,tu,l, 0))

dir,l =
N(rir,l) ∗ bir,l + uir,l + vir,l

N(rir,l) +N(ritv,l) +N(ritu,l)
(4.10)

aij,l = dirj ,l

All pixels pij with aij,1 > 0.5 are classified into foreground region and

rest to background region.
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Algorithm 1 Interactive Co-segmentation

Input: S = {I1, . . . , In}, set of n images,P = set of scribbled images,
Output: aij,1
1: Perfrom Mean Shift oversegmentation on S
2: Select segments from P .
3: Classify scribbled segments into foreground/background based on red/green scrib-

ble respectively.
4: Compute brm,l

5: Set ε1 and ε2 parameter
6: Construct Bipartite Graph
7: Compute uir,l and vir,l
8: Set dir,l using uir,l and vir,l
9: Set aij,l
10: Select aij,1 > 0.5 as foreground pixel.
11: return



Chapter 5

Analysis Of The Algorithm

In this chapter, brief analysis of the proposed algorithm is made. We

analyse Global Scribble function, Local Smooth function and the effect

of bipartite graph construction. At the end we compare performance of

our scheme with the existing schemes. We have verified the outcomes

of the analysis in Section 6.1.

5.1 Analysis of Global Scribble Function

The unary global scribble function is responsible for the initial prob-

ability each segment of an image computed using the Bhattacharya

Distance. Implementation of Mean Shift [6] with small value of spatial

26
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bandwidth and range bandwidth provides a very good over-segmentation

result. All the pixels in each segment of the image have close colour

appearance to each other. Thus the expectation of the distribution of

the pixel value is close to the average value of the segment.

Histogram of each segment is normalized to make it distribution of

each segment. D(p, q) checks the overlap of two histograms p and q with

value 1 indicating that the histograms are identical and that of 0 indi-

cating no relation among them. −(log(D(p, q))) thus represent the dis-

tance between histogram p and q where 0 ≤ −(log(D(p, q))) <∞ with

value 0 indicating identical segments. For segment rim we look for the

segment with red/green scribbles representing foreground/background

segments and label the segment to foreground or background region de-

pending on the minimum distance between rim and that of the scribbled

segment.

Thus to compute the probability of each segment rim belonging to

foreground/background, we select a segment each from foreground and

background scribbled segments for which the Bhattacharya Distance is

minimum, computing the sum of two distances as a normalization factor

to the distance between segment rim and the segment from scribbled
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segment sets providing minimum Bhattacharya Distance.

Thus segment rim belongs to foreground region if its distance with

that of a red scribbled segment is minimum compared to that of green

scribbled segment as the probability which is 1 − eim,l is higher for

foreground then background. Hence we can write

cim,0 + cim,1 = 1 (5.1)

Thus the global scribbled function designed using the Bhattacharya

Distance provides a good estimation for each segment to part either

with foreground or background region.

5.2 Analysis of Local Smoothness Function

The pairwise local smoothness function defines an interactive constraint

on the image that all the segments of the image having similar colour

appearance must have similar probability of belonging to foreground

or background region maintaining the consistency of the segmentation

labels thus making the co-segmentation results more effective.

Implementation of the function is made by the construction of lapla-
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cian of the graph constructed using the segments of the image with an

edge of weight wi
r,s between rir and ris where

wi
r,s = e(D(hi

r,l,h
i
s,l))−1

indicating a similarity measure between the segments where wi
r,s close

to 1 shows the segments are very identical to each other and 0 indicating

segments with complete different colour appearance.

5.3 Analysis of bipartite graph construction

Use of histogram matching and computing the probability, provide a

good result for segments which are either close to foreground scribble or

that of background scribble. Thus for those group of images which have

distinctive foreground and background region will yield good results.

But for complex set of images where both foreground and background

region have similar colour appearance, the proposed algorithm provides

a rough and good estimation of the segments, but for segments which

have close colour appearance with both foreground and background

region, thus distance of the segment with both foreground and back-

ground region are close to each other. This will provide estimation
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close to 0.5. To further improve the accuracy of the segmentation, a

new segmentation algorithm using bipartite graph construction is de-

signed by selecting segments having foreground probability in the range

{0.5 − ε1, 0.5 + ε2} where ε1 and ε2 are user defined parameters where

0 ≤ ε1, ε2 ≤ 0.5. It is advised to set the parameters small so that more

number of segments adjacent to those in X i ∈ I i but not included in X i

can be obtained, as it will reduce the time computation and with higher

values of the parameter the number of adjacent segments will get re-

duce finally leaving only the foreground/background scribble segments

for matching coefficient computation.

For each segment rir ∈ X i, the algorithm finds the most similar

foreground and background segment from the user scribbled segments

by finding the highest correlated segments from foreground/background

scribbled set.

Next, the algorithm finds the most similar foreground and back-

ground segment from those adjacent to rir but not included in X i. This

will further increase the co-segmentation smoothness.

The matching parameter is used to estimate the segmentation qual-

ity which is based on region consistency assumption which encourages
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all pixels belonging to a region to take same label. The more pixels of

a segment have the same label, better is the segmentation quality on

this segment.

In the bipartite graph construction for rir, only quality of the segmen-

tation is considered since pixels in the scribbled segments have already

been classified into foreground/background region. Similarly, the adja-

cent segments which have been classified into foreground/background

region plays a vital role in estimating the quality of the segment rir.

Number of pixels in the best related scribbled and adjacent segment

can influence the matching coefficient. If segment rir is closer to fore-

ground, uir,l and vir,l is larger and N(rtu,l) and N(rtv,l) respectively plays

influential role in determining matching coefficient.

The proposed algorithm considers the similarity between segment rir

and the scribbled foreground/background segments along with the fore-

ground/background segments adjacent to it, which helps in establishing

the quality of the segment by maximizing the matching coefficient.

The effectiveness of bipartite graph construction for improving the

co-segmentation result is illustrated by running the panda image group

from iCoseg dataset with and without the bipartite graph construction.
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The algorithm without bipartite graph construction only includes the

global scribble function and local smooth function. The panda group

includes 20 images with common object panda and different complex

background. The initial part of the algorithm provides an average ac-

curacy of 86.30% and with the use of bipartite graph construction the

accuracy increases to 96.42%. Therefore, co-segmentation with the help

of bipartite graph construction outperforms that of using global and lo-

cal energy function.

Qualitatively, using the global and local function, some of the images

loses the foreground region and some provides redundant background

as foreground region as shown in Fig.5.1.The second row in the figure

shows that some foreground regions are lost and contain some redun-

dant regions. The third row shows the result after implementing the

whole algorithm which is much closer to the ground truth shown in

final row. The problem lies with the fact that the initial algorithm

does not work well in cases where the foreground and background are

very similar, since this will lead to the probability of a segment getting

classified into both foreground and background region close to each

other or lack of enough foreground object information. To overcome

this problem, bipartite graphs are constructed with the regions hav-
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Figure 5.1: Co-segmentation results on the panda set of images from iCoseg. The
first row: input images. The second row: result of the proposed algorithm without
bipartite graph. The third row: co-segmentation results by full algorithm. The last
row: ground truth. The algorithm is run on all 20 images and 4 are selected for
illustration purpose.

ing higher probability of getting misclassified. Thus selecting those

segments which have close probability of getting classified into both

foreground and background region with the scribbled segments and the

adjacent classified segments. Further complex foreground/background

images must be provided with more scribbles compared to those with

simple images as they contain lots of information. In summary, the

full co-segmentation algorithm provides more foreground information

to each image, thus improving the final results.



Chapter 6

Experimental Results and

Discussion

6.1 Simulation

In this section, the performance of the algorithm is evaluated by mak-

ing a qualitative and quantitative study on certain benchmark datasets.

The proposed co-segmentation method is evaluated on two benchmark

datasets: MSRC dataset[32] and iCoseg dataset[1] which have been

widely used by previous work to evaluate the performance of the image

co-segmentation method. The iCoseg dataset consists of 38 groups with

total 643 images that each group of images has a common object.The

34
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experiment has been evaluated on randomly selecting 35 such group of

images for perform evaluation. Similarly the MSRC dataset contains

20 group of images and we randomly selected 9 such group for per-

formance evaluation.Quantitative evaluation includes two performance

metrics: Accuracy (A) and Jaccard similarity (J). ’A’ indicates the ra-

tio of correctly classified pixels into foreground and background region.

’J’ indicates intersection over union of the segmentation results and

ground truth mask.

6.1.1 Parameter settings

There are some suggestions for our interactive method on how to pro-

vide user scribbles.

• Some images with complex background should be provided scrib-

bles first as it provides required information for making good esti-

mation of the background regions and to provide sparse scribbles

to images with simple background.

• The scribble should contain as many colour variations as possible,

so the regions with variable colour inside foreground/background

are good choice to put the scribbles on.
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• The regions with similar colours in foreground and background

region must be scribbled. User should add scribbles until these

scribbles have contained most colour information.

Once the scribbles are provided, mean shift over-segmentation algo-

rithm [6] parameter, spatial bandwidth hs = 8, range bandwidth hr = 7

and minimum size of the segment M = 20 are set experimentally based

on training images. Unless mentioned otherwise, the following param-

eters are used in the proposed algorithm, ε1 = 0.1 and ε2 = 0.1.

6.1.2 Simulation Environment

The matlab program is simulated under the stated computer configu-

ration: Intel Core i5 − 6200U CPU @ 2.3GHz with 4GB RAM. The

complexity of the proposed algorithm can be divided into two phases.

For finding the probability of each pixel to foreground/background re-

gion, the complexity is O(
∑n

i=1 (N(Ri))2 ∗ L . In case of bipartite graph

construction, let the number of regions used for increasing the segmen-

tation quality is S(Ri) which is less than that in computing the prob-

ability of each segment using the Bhattacharya Distance. Hence the

time complexity of the algorithm is O(
∑n

i=1 (N(Ri))2 ∗ L.
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6.1.3 Co-segmentation Results

In the experiment, we collect a variety of image groups from well

known image databases such as iCoseg dataset[1] or Microsoft MSRC

dataset[32]. These two dataset are most popular dataset for image co-

segmentation experiments where the ground truth segmentation mask

are also provided.

In the Fig.6.1 we have shown the scribbled images of 002 Alaskan Brown

Bear-Eukaryote museums Milwaukee Zoo 2006-Cmlburnett from iCoseg

dataset as it is one of the most complex image group in the whole

dataset.

In Fig.6.2 we have shown the scribbled images of Flower class from

Figure 6.1: Scribbled Images (Alaskan Brown Bear) from iCoseg dataset
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MSRC dataset. Their corresponding co-segmentation result using the

Figure 6.2: Scribbled Images (Flower) from MSRC dataset

proposed algorithm is shown in Fig.6.3 and Fig.6.4 respectively.

6.2 Performance Evaluation

In this section we have evaluated performance of our proposed algo-

rithm with respect to accuracy. The comparison is done by comparing

pixel by pixel of the mask of ground truth with that obtained from

the algorithm. In Fig.6.5 a comparison of the proposed algorithm is

made with Co-segmentation by Composition algorithm[9] using iCoseg

dataset and in Fig.6.6 that using the MSRC dataset.
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6.2.1 Accuracy Evaluation

In this section, we list the precision statistics i.e Accuracy (A) and

Jaccard Similarity (J) for each of iCoseg dataset group of images in

Table6.1 and MSRC dataset group of images in Table6.2 selected for

evaluation. We have also compared the corresponding statistics with

state-of-the-art co-segmentation by composition algorithm[9]. In Ta-

ble6.1 and 6.2, the first column indicates the name of the group image

followed by number of images in each group. The third column in-

dicates the accuracy of our proposed algorithm followed by which we

have provided Jaccard Similarity value. To evaluate the performance of

out algorithm, we have compared the result with Co-segmentation by

Composition algorithm[9] in the last column. From the accuracy value,

it can be seen that the proposed algorithm outperforms state-of-the-

art algorithm[9]. The average accuracy of the proposed algorithm on

iCoseg dataset is 96.33% and that of MSRC dataset is 91.19% which is

less compared to iCoseg as the images in iCoseg are less complex than

that of MSRC dataset.
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6.2.2 Time Comparison

In this section, Table 6.3 provides the total run time on each group

of image of MSRC dataset and Table 6.4 provides the total run time

for each group of image of iCoseg dataset. In Table6.3 and Table6.4

run time of the proposed algorithm has been depicted on MSRC and

iCoseg dataset respectively. All the run time values are measured in

seconds on Intel Core i5 − 6200U CPU @ 2.3GHz and 4GB RAM. It

can be observed that time taken for co-segmentation in MSRC dataset

is more than that of iCoseg dataset, as the images in MSRC are highly

complex compared to that of iCoseg. Thus it produces more number

of segments resulting in more time consumption.
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Figure 6.3: Co-segmentation Results (Alaskan Brown Bear): By the proposed algo-
rithm
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Figure 6.4: Co-segmentation Results (Flower): By the proposed algorithm
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Figure 6.5: Comparison Results: The First row contains the scribbles from ICOSEG
[1] dataset. The Second row is the co-segmentation results obtained by Co-
segmentation by Composition [9]. Third row contains co-segmentation results by
the proposed algorithm. Fourth row contains the mask obtained from the proposed
algorithm and fifth row contains the ground truth.
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Figure 6.6: Comparison Results: The First row contains the scribbles of Dog class
images from MSRC dataset[32]. The Second row is the co-segmentation results ob-
tained by Co-segmentation by Composition [9]. Third row contains co-segmentation
results by the proposed algorithm. Fourth row contains the mask obtained from the
proposed algorithm and fifth row contains the ground truth.
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Table 6.1: Performance Evaluation of the co-segmentation result obtained after the
implementation of the proposed algorithm with respect to the ground truth based on
accuracy (A) and Jaccard Similarity (J)(iCoseg Dataset)

Name of group-image #images A(OurAlgorithm) J A [9]

002 Alaskan Brown Bear 19 97.502892 0.873295 72.561460
006 Red Sox Players 25 96.535165 0.721738 81.933203

009 Stonehenge 5 96.513261 0.731919 72.703047
012 Stonehenge 18 96.261414 0.865248 54.087859

015 Ferrari 11 95.864048 0.836310 67.507976
017 Agra Taj Mahal 5 97.315093 0.841502 80.452388
018 Agra Taj Mahal 5 97.102474 0.837948 79.366940

020 Pyramids 10 97.403243 0.846149 69.739093
021 Elephants-safari 15 96.369770 0.820358 73.647929
022 Goose-Riverside 30 97.166887 0.889424 70.403854
023 Pandas-Tai-Land 25 92.957098 0.874784 55.740881

025 Airshows-helicopter 12 97.908192 0.861047 90.350304
025 Airshows-planes 39 96.589485 0.570366 91.423372

026 Airshows-Huntsville 22 99.346050 0.668831 88.533857
028 Cheetah-National Zoo-1 15 96.082177 0.731300 61.842540
028 Cheetah-National Zoo-2 18 95.974143 0.732347 60.793210

029 Pandas-National Zoo 20 96.421212 0.771936 43.487349
032 Kite-Brighton kite Festival 18 96.820681 0.685849 88.534857

033 Kite-kitekid 10 96.511733 0.720002 61.273948
034 Kite-Margate Kite Festival 7 96.970021 0.722711 64.935258

035 Kite-Colt Park 11 98.403306 0.698228 87.890952
036 Gymnastics-1 6 98.238750 0.704026 88.726963
036 Gymnastics-2 4 82.997000 0.698005 81.780667
036 Gymnastics-3 6 97.309679 0.703186 82.840889
038 Skating-ISU 12 98.218711 0.704730 88.551300

039 Women Soccer Players 27 95.707246 0.739985 74.375408
040 Monks-LAO PDR 13 94.925941 0.744649 65.479467

041 Hot Balloons-Skybird 23 98.805484 0.799611 84.675067
042 Statue of Liberty 40 98.216293 0.928956 73.727867

043 Christ the Redeemer 13 96.972800 0.924596 62.273722
048 Windmill 17 98.317459 0.812920 88.171369

049 Kendo-Kendo 30 95.915531 0.876146 73.800025
050 Kendo-EKC 2008 11 92.680533 0.848536 74.375234

brown bear 5 95.369518 0.826762 64.155689
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Table 6.2: Performance Evaluation of the co-segmentation result obtained after the
implementation of the proposed algorithm with respect to the ground truth based on
accuracy (A) and Jaccard Similarity (J)(MSRC Dataset)

Name of group-image #images A(Our Algorithm) J A [9]

Bird 34 95.258065 0.746541 79.288703
Cat 24 86.291968 0.648297 67.583714
Cows 30 92.909918 0.781766 71.746577
Dog 30 95.415200 0.801606 67.683955
Face 30 85.187451 0.612260 70.083138
Flower 32 88.799500 0.764719 56.607330
Horse 31 93.559808 0.817670 55.498203
Plane 30 92.156005 0.746793 67.583284
Sheep 30 94.247457 0.820877 68.882825

Table 6.3: Total Run time of each image group in MSRC Dataset

Name of group-image #images Time in seconds

Bird 34 348.664514
Cat 24 373.634910
Cows 30 215.129028
Dog 30 312.903621
Face 30 282.047000
Flower 32 364.819080
Horse 31 427.936972
Plane 30 328.946860
Sheep 30 205.964417
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Table 6.4: Total Run time of each image group in iCoseg Dataset

Name of group-image #images Time in seconds

002 Alaskan Brown Bear 19 273.378694
006 Red Sox Players 25 123.091477

009 Stonehenge 5 23.474778
012 Stonehenge 18 92.575113

015 Ferrari 11 85.999046
017 Agra Taj Mahal 5 27.914493
018 Agra Taj Mahal 5 32.061741

020 Pyramids 10 31.593410
021 Elephants-safari 15 67.858999
022 Goose-Riverside 30 125.441273
023 Pandas-Tai-Land 25 147.521080

025 Airshows-helicopter 12 29.975221
025 Airshows-planes 39 95.618304

026 Airshows-Huntsville 22 58.404713
028 Cheetah-National Zoo-1 15 158.205491
028 Cheetah-National Zoo-2 18 288.341946

029 Pandas-National Zoo 20 122.379261
032 Kite-Brighton kite Festival 18 75.099656

033 Kite-kitekid 10 157.997829
034 Kite-Margate Kite Festival 7 24.750165

035 Kite-Colt Park 11 35.523028
036 Gymnastics-1 6 34.626192
036 Gymnastics-2 4 17.952251
036 Gymnastics-3 6 30.970778
038 Skating-ISU 12 27.694076

039 Women Soccer Players 27 156.078715
040 Monks-LAO PDR 13 57.381250

041 Hot Balloons-Skybird 23 64.288494
042 Statue of Liberty 40 217.014995

043 Christ the Redeemer 13 68.684512
048 Windmill 17 67.754779

049 Kendo-Kendo 30 152.994766
050 Kendo-EKC 2008 11 34.333841

brown bear 5 29.915491



Chapter 7

Conclusion and Future Work

In this work, a new framework for solving the interactive co-segmentation

problem has been presented. The proposed algorithm consists of one

global unary function responsible for providing prior probability to

each segment belonging to foreground/background region by match-

ing each segment histogram to all the scribbled segments histograms

using the Bhattacharya distance. The local function is responsible for

maintaining smoothness of the outcome by providing similar probabil-

ity to those segments which are similar in colour appearance. Bipartite

graph further improves the segmentation quality by considering the

segments which are prone to be misclassified due to similarity in both

foreground/background colour regions. The experimental results show

48
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that the proposed algorithm provide good results compared to other

co-segmentation algorithm. In future the algorithm can be extended to

provide co-segmentation on videos or multi class images.
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