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FOREWORD

Professor . N. Roy’s monograph will be a valuable addition to the other
important publications on multivariate analysis. The monograph does not attempt
to cover the entire field of multivariate analysis but it includes a good deal of
new material which would be of interest to advanced students and research workers.

I have much .pleasure in writing this foreword. More than fifteen years ago,
when Professor Roy was working in the Indian Statistical Institute, he and I and
other colleagues had discussed the. question of bringing out a series of statistical
monographs. Professor Roy had undertaken at that time to prepare one on multi-
variate analysis and has now completed his voluntary assignment. He has very
kindly made over the copyright to the Indian Statistical Institute which is thank-

fully accepted by the Institute.

We should also like to offer our thanks to Messrs. John Wiley & Sons for
the help we have received from them.

P. C. Mahalanobis
27 July 1957.
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PREFACE

This monograph does not by any means attempt to cover the entire area of
multivariate analysis, or even a major part of it. Aside from certain basic notions
and results due to Fisher, Hotelling, Mahalanobis, Karl Pearson, Wilks, Wishart, Yule
and some of their predecessors, which have now become current coin, this monograph
is primarily concerned with those developments in multivariate analysis in which the
author has been specially interested and with which he and some of his collaborators
have been associated over several years. Part of the material presented here, as
far as the author is aware, has not been. published before, while the rest has been
collected from papers by various workers in this sector including the author and his
collaborators, It will be seen that in this monograph the statistical approach to
different problems and the mathematical treatment of all such problems are uniform
and perhaps somewhat individual, and that this applies to all specific results, no
matter whether they are due to the author and his collaborators, or to other workers
in the field or to both groups simultaneously.

What has not been discussed in this monograph has been developed and
adequately handled in important pﬁpers by Anderson, Bartlett, Bose, Hsu, Kendall,
- Mahalanobis, Mosteller, Narain, Rao, Votaw, Wald and Brookner, Wilks and several
other workers. Three excellent books touching upon but not primarily restricted to this
sector, ‘“‘Advanced Theory of Statistics” by M. G. Kendall, Vol. 2 [35], ‘“‘Advanced
Statistical Methods in Biometric Research” by C. R. Rao[14] and “Mathematical
Statistics” by S. S. Wilks [28] have, between them, brought together and competently
presented a substantial part of this material. For an adequate, unified and up-to-date
presentation of this whole material the author, among others, is looking forward to
the forthcoming book by T. W. Anderson, supposed to be dealing perhaps more or
less exclusively with multivariate analysis.

The preparation of this monograph within a relatively short period, has been
made possible only through the active co-operation of the entire secretarial staff of the
department of statistics at Chapel Hill including, in particular, Mrs. Bonnie Baker
Fathman, Mrs. Anne Kiley and Mrs. Mary Ann Taylor who did most of the typing
and of several students of the author including, in particular, K. V. Ramachandran,
A. E. Sarhan, V. N. Murty, R. Bargmann and R. Gnanadeshikan who rendered indis-
pensable mechanical and critical help. This job was supported, in part, by the
United States Air Force through the Office of Scientific Research of the Air Research
and Development Command. The printing and publication were kindly undertaken
by the Indian Statistical Institute and the Eka Press, Calcutta for which mention
musk be made of J. Roy, S. K. Mitra and R. G. Laha and other members of the
staff of the indian Statistical Institute and the Eka Press for their kind hélp. To
all these individuals and organizations are due the sincerest thanks of the author.

The author would be deeply grateful if errors were brought to his notice and
suggestions were made for improvement in form no less than in content.
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GENERAL INTRODUCTION

Multivariate analysis, till now, has been mostly concerned with point esti-
mation of or testirig of hypothesis on parameters or parametric functions ocecurring
in one or more multivariate normal populations, the estimation or testing of hypo-
thesis being of course in terms of random samples drawn from such populations.
Except for the last chapter of the main body (i.e., Chapter 15) which deals with
categorical data, this monograph also is concerned with “‘normal variate” data, but
here point estimation is not discussed at all; and although testing of hypotheses is
discussed a good deal, a careful reader will perceive that the main accent is on
obtaining confidence bounds on certain parametric functions, the testing of hypo-
theses (in so far as it is developed) being largely a means to that end. The para-
metric functions that figure in this monograph are, in each case, a set of natural
measures of departure from the customary null hypothesis, there being, in some
simple situations, a single such function (or a single measure), and in some more
complicated situations a set of such functions (or a set of measures). Thus, out of
the first fourteen chapters of the main body which deal with ‘“normal variate” data,
the first twelve chapters constitute a conscious attempt to lead up to confidence.
bounds on parametric funetions (which, in each case, is a measure or a set of
measures of deviation from the customary hypothesis), which then are discussed
in detail in Chapters 13 and 14.

In each case this measure (or set of measures) of deviation from the customary
hypothesis subsumes, as a special case, the prior notion of a distance function between
two populations (or dispersion between several populations) which had (i) its begin-
ning in the coefficient of racial likeness of Karl Pearson (who, however, did not con-

ceive of a distance function in this connection), (ii) its second stage of development in

the D? of Mahalanobis (who may have been motivated, among other things, by a
desire to fuse the notion of the coefficient of racial likeness with the notion of the
distance function of relativity), (iii) its third stage of development in the distance
function between two or more general types of populations, as evolved, among others,
by Bhattacliarya who in particular, showed a more statistical slant and (iv) a fourth
stage of development mostly in the U.S.A. with the same slant which may have
been independent of but which, in fact, postdates Bhattacharya’s own work.

However, from the general standpoint of this monograph, the reader will
notice three large gaps involved in the omission of the important sectors of (a) factor
analysis, (b) classification problems and (c¢) the multivariate generalization of vari-
ance components analysis in univariate analysis of variance. The reasons for the
omission are the following. Under (a) the author has long been looking for further
clarification of the issues and then for some means of bringing (a) into the framework
of confidence bounds on suitable parametric functions. Under (¢) the author has
been looking for some more clarification even within the univariate set-up, and then
a suitable multivariate generalization of the univariate set-up and finally a way
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to bring this into the framework of confidence bounds on proper parametric functions.
Under (b) the task for the author was one of merely bringing the problem within the
framework of confidence bounds. It has been only long after the manuscript went
to the press that all this has been accomplished to the partial satisfaction of the
author, and all this with such further developments as may occur meanwhile will be
presented in the next edition of the monograph.

_ In Chapter 15 a small beginning has been made in the direction of a certain
type of non-parametric generalization of ‘“‘normal variate” analysis of variance and
multivariate analysis. A lot more has been done in this area since the manuscript
went to the press and a great deal more remains to be done. The author hopes to
either incorporate all this in a fature edition of ‘this monograph or perhaps present
it in a separate monograph. Despite all the mathematical elegance and compara-
tive simplicity of ‘normal variate” analysis of variance and multivariate analysis,
one cannot help feeling that the non-parametric.approach (whether of this variety
or of other varieties) is far more realistic and physically meaningful, and is likely,
in the future, to supplant, to a large extent, the existing techniques of ‘‘normal variate”
analysis of variance and multivariate analysis, including those discussed in the first
fourteen chapters of this monograph. Nevertheless, it seems that the customary
“normal variate” techniques and concepts (and perhaps.also those discussed in this
monograph) will long remain a guide and a source of stimulus to non-parametric
developments, in both their mathematical and their physical aspects—a point which.
may be somewhat overlooked by those who are not thoroughly conversant with all

the current ‘“normal variate” developments that have occurred over the last forty
years.
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CHAPTER ONE

Notation, Preliminaries and General Objectives

1.1. Notation. As far as possible the following notation and convention will
be used, all departures being clearly indicated at the proper places. Greek letters
will stand for population parameters and Italic letters over the first half of the
alphabet for given (non-stochastic) quantities and over the latter part from, say, r to
the end for sample quantities. Matrices and vectors under consideration will consist
of real elements (these will be called real matrices or vectors) except occasionally when
they might have complex elements (these will be called complex matrices or vectors).
Capital letters will stand for matrices, small letters for scalars, bold face small letters
for column vectors and for row vectors if they are primed. The transpose of a matrix
or a column vector will be denoted by priming such quantities, the conjugate complex
transpose of a matrix M by M*, the set of characteristic roots of M (if it is square) by
¢(3), its trace by tr M, the modulus of the determinant of such a matrix by | M], the
modulus of a scalar m by |m| and the inverse of a matrix M (if it is square and
non-singular) by M-1. A real square matrix M(p X p) will be called | if itis
orthogonal, ie., if MM’ = I(p)( = M'M, necessarily), and if M(pxq) (p <gq) is
such that MM’ = I(p), then M will be called semi-orthogonal. To indicate the
structure, a pXg¢ matrix, say M, or a px1 column vector, say m, will sometimes
be written respectively as M(pxq) or m(px1). A matrix M whose typical element
is m;; will sometimes be denoted by (m;). The (i)-th element of a matrix M will
be denoted by (M);; or m;. A diagonal matrix whose diagonal elements are, say,
@y, Ay; ..., Gy, Will be denoted by D,. A diagonal matrix with 41 for its diagonal
elements will be denoted by Dy. A(pXp) or sometimes simply 4 will stand for the
triangular matrix

a;; O 0
o1 o 0 (L.1.1)
Gy Oy App

We have also ]fI] ~ 11 a;, and it is easy to check that if 4 is non-singular, then
i=1 -

ay # 0, and A1 will also be a triangular matrix with the same conﬁgura:tion as 4.
The product of two triangular matrices of the same configuration is a triangular
matrix of the same configuration. A’ is a triangular matrix of the opposite con-

figuration to A. If A(pXxq) = (ay), then dA will stand for lgI ﬁ day and if

=1 =1
. . P

a'(l1xp) = (a, ..., a,), then da will denote II da;, The Jacobian of the trans-
i=1

formation to an independent set of variables, say, X from any independent set of
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variables, say, y (with of course the same number of elements as X) will be denoted
by J(x : y), while a symbol, say, g%:—-,igk—k)l( gg
meaning as in the calculus. The terms ‘‘positive definite” and ‘‘positive semi-
definite”” will be abbreviated p.d. and p.s.d. respectively. “Almost everywhere’”’,
that is, “except for a set of (probability) measure zero” will be referred to as a.e.
As usual, p.d.f. and c.d.f. will stand respectively for the probability density function
and the cumulative distribution function (of a stochastic variate).

A stochastic variate z(—oo < 2 < 00) will, as usual, be called N, o?) if it
has the p.d.f.

) will have the same Well known

(1joy/2m) exp [—(x—E&)2[20%), ... (1.1.2)

where —o0 < £ < o0 and o > 0. It is well known that E(z) = & (to be called the
mean) and E(r—E)2 = o2 (to be called the variance). A stochastic vector x(px1)
(—o0 < @; < o) will be called Nz, X) if it has the p.d.f.

[1/|Z|V2(2m)»/2] exp [~} tr T4 (x—%) (x'—&')], .. (L13)

where —o0 < §; < 0 and where X is a pxp symmetrlc p.d. matrix. It is also well
known that

BE(x) = &.and Bx—§) (x'—§) = 3. o (L14)

g will be called the population mean vector and 2 the population dispersion matrix
[see Chapter 3].

The symbols ¢, U, [, “A statement &> another statement’’, “A state-
ment = another statemeht”, will all be taken over from the notation and termi-
nology of set theory and measure theory and so also w’ for the complement of a set
win a space X. The most powerful critical region of size, say, fz( < 1) (which under
fairly general conditions, will exist and which, under slightly less general conditions,
will also be unique) of a simple hypothesis H, against a simple alternative H (such
that H e Q where Q stands for the domain of possible alternatives) will be denoted
by w(H,, H, fi; ) and its complement, the acceptance region by w'(H,, H, ), to indi-
cate that, in general, both will depend on £, Hy and H. The union of regions
w(H,y, H,' By) over different H ¢ ¢ will be denoted by Upge.a w(H,, H, By) or simply
by {Ugw, and the intersection of regions w'(H,, H, B;) over HeQ By Naaw' (Hq, H, )
or simply by Nzw'. P(H,, H, Bg) will stand for the power of the most powerful

critical region of size £, for H, against H ¢, will usually denote the p.d.f. under
the hypothesis H.

1.2, Some preliminaries on testing of hypotheses. It is well-known that
(Ho, H, By) and w'(H,, H; ) are given respectively by

wilo, H, By) : ¢y > 285, w'(Ho H,fg) :¢g <Apg, ... (12.)
where 2 is determined by P[xew(H,, H, )| H,] = Bg. It can be shown [43] that

P(H,y, H, B;) > By e (12.2)
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Proof: Assume that ¢ is such that w defined by (1.2.1) is unique. Integra-
ting the first inequality of (1.2.1) over w(H,, H, 85) and the second one over w', we
have respectively, P(H,, H, fig) > Afy and 1—P(H,, H, fi5) < A(1—fy), from which,
after a slight reduction, we have (1.2.2).

Note that in general A will be of the form A(H,, H, ;) depending on all the
elements. Incidentally, any critical region of “size B for H,, whose power with
respect to an alternative H is greater than or equal to g, will be called an unbiassed
critical region for H against H,

Along with the more common terminology, namely the most powerful test of
H, against H, a locally most powerful test of H, (in those situations where it is mean-
ingful), a uniformly most powerful test of H, (if it exists at all with respect to the whole
relevant class of alternatives) we shall also use the less common terminology, narhely,
an unbiassed test of H; against H, a locally unbiassed test and a uniformly unbiassed
test. The result (1.2.2) shows that a most powerful test of H, against H, a locally most
powerful test of H, and a uniformly most powerful test of H, are also respectively an
unbiassed test of H, against H, a locally unbiassed test and a uniformly unbiassed
test. Of course, in general, unbiassed tests will be a much larger class, of which the most
powerful test will be just a member.

The likelihood ratio critical region at a level, say a, of a simple H, against
the whole class of simple H ¢ @, provided that it exists, will be denoted by w(a, H,).
As is well-known it is given by

w(H,, o) : §(x) > u(H,, “)¢HO(X): - (1.2.3)

where for a given X, ¢(x) stands for the largest ¢y (x) (provided that it exists) with
respect to variation of H over Q, and where u(H,, «)is given by

P(xew(H,, a)|H,) = a. ... (1.24)

Notice that ¢(x) is a function of x only, being independent of H ¢ 2, but may depend
on the fotal domain ©. The power of this test, aginst any particular alternative
He @, will be denoted by P(H,, H, o).

Assume now that H, is a composite hypothesis and H ¢ @ a composite alter-
native. In earlier papers [40, 41] the author gave a set of sufficient conditions on
P, for the availability of similar regions for H,, and a set of (further) restrictions on

bg and ¢H0 for the availability, among these similar regions, of one which is the most

powerful for H, against H in the following sense : Suppose that H, and H are compo-
site hypotheses, each characterized by some specified and some unspecified elements,
so that, if the unspecified elements were specified, both H, and H would be simple
hypotheses. Now suppose that, among the similar regions for H,, there is one whose
location in the sample space depends on the specified elements of H, and possibly
on those of H, but not on the unspecified elements of H, or H, but which is
nevertheless the most powerful critical region for any simple hypothesis within H,
(obtained by specifying the unspecified elements) against any simple alternative
within H (obtained by specifying the unspecified elements). But this ‘“most powerful”
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is “most powerful among similar regions”. If we drop the restriction of similarity
and set up in a straightforward manner the most powerful critical region for the simple
hypothesis in question against the simple alternative in question, then we may get
a (non-similar) region having a larger power than that of the most powerful similar
critical region just referred to. Such a most powerful critical region may be
conveniently called a bisimilar region for H, against H. The likelihood ratio critical
region for composite Ho against all composite HeQ (which we know how to construct,
provided that it exists), can be shown to be a similar region for H, under the restric-

* tions just referred to. In this situation the same notation will be used as introduced
in the previous paragraph for the case of a simple hypothesis against simple alter-
natives, and the result (1.2.4) will also hold, it being noted that, while the regions will
be independent of the unspecified elements in H, and H, P(H,, H, ) and P(H,, H, ay)
however, might depend on the unspecified elements of H though not usually on those
of H,.

1.3. General objectives. Throughout this monograph we shall restrict our-
selves to very limited objectives, namely solution of certain non-sequential, i.e., fixed
sample size two-decision probleins, in which, for a preassigned level « or a confidence
coefficient 1—c, we are interested respectively in obtaining (i) a (similar) region test
of a composite H, which has some kind of reasonably ‘good’ property against the
whole class of relevant (composite) alternatives H(eQ) or (ii) a set of simultaneous
confidence bounds on deviations from H,, naturally occuring in the problems to be
considered (all to be explained later), the confidence bounds, again, having some
kind of ‘good’ properties in terms of covering ‘wrong’ values of the deviations. The
scope of the discussion is thus professedly quite narrow and by no means fully
adequate for the needs of any possible user of statistics, but that is as far as we can
get at the moment. It is hoped that, in the near future, methods and techniques
will develop perhaps in extension of those offered here, which can cope with the more
recondite problems that are of real interest to the possible users of statistics. -

Towards these limited objectives, a heuristic method of test construction will
be offered which leads to a certain class of tests including in particular, two members
of special importance to be called respectively type I and type I1 tests and a genera-
lisation of type I test, to be called an extended type I test. The type II test will be
identified with the widely known likelihood ratio criterion, but it is the type I and the
extended type I test that will be used throughout this report, and, in the specific
situations to be considered, it will be possible, in every case, to obtain, by inversion
of these tests, suitable confidence bounds on certain deviations or measures of depar-
ture from the hypothesis that naturally arise in the case considered. As observed
at the outset, the general method is entirely heuristic and, therefore, the test or the set
of ¢onfidence bounds that emerges as the end product, in any specific problem, has to
be justified by its operating characteristics in that situation, no ‘good’ properties being
guaranteed in advance by the general method of test construction itself,



CHAPTER TWO
A Heuristic Class of Tests*

2.1. Definitions and some remdrks. Consider, for simplicity but without
any essential loss of generality (for the definitions could be immediately carried over
into the case of composite hypothesis and alternative), a simple hypothesis H, against
a simple alternative H € Q. .

(i) Put fy = f(He), and set up as the rejection and acceptance regions
for H,, Upew(H,, H, p) and its complement (N\g.qw'(Hy, H, f), to be called
respectively y and (. This is defined to be a type I test for H, against the whole
class HeQ, the level of significance o being given by

P(xel Jgeq w(H,, 4, P Hy) = a(HO,)B) > p. .. (2.1.1)

Let us for the moment assume non-triviality, that is, that, given & << 1, we can find
B = B(H,, a) > 0, for which (2.1.1) will hold.

(ii) Put, in section 1.2, A(H,, H, ) = p (a preassigned constant) for all Heq
and rewrite w(H,, H, fg) and w'(H,, H, fy) as w*(H,, H, p) and w*'(H,, H, p)
respectively.

Now set up, as the rejection and acceptance regions for Hy, U w*(H,, H, p)
and its complement (zw*'(H,, H, #), to be called, 1espectively, | Jj, and (3, where
‘the f,'s (HeQ) are sﬁbject to A(Hy, H, fig) =p (a preassigned-constant). This- is
defined to be a Type II test for Hy against the whole class HeQ the level of significance
a* being given by

P(xeUmeqw*(Hy, H, p) | Hy) = a*(Ho, p). .. (2.1.9)

Here again let us, for the moment, assume nontriviality, that is, that given a*(< 1),
we can find a u such that A(H,, H,u) = fy(> 0) and that (2.1.2) will hold. This
can be easily recognized as the likelihood ratio test by the following consideration..
Notice that w*(H,, H, p) (with a preassigned p) is given by

wXHy, H, 1) : ¢5(X) > pibp (X). . (213)

Any x would belong to \Ugzw*(H,, H, p) if for that x, there were at least one He Q for
which (2.1.3) holds. It is easy to see that this would be accomplished if for that x
the largest ¢5(X) (under variation of H over Q) were > /4¢Ho(x)'. Hence it is obvious
that

b ]

Ugw*(Hy, H, 1) : (%) > pg(X), Mg Ho, H, p) : (%) < pg(X). ... (214)

* See reference {43] in this connection.
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2.2.  An obvious property of the two types of tests. Notice that {5 includes all
w(H,, H, ) and Uy all w*(H,, H, p). Now putting

P(xel Uy |H) = P(Ug, H, ) and P(xe(Uy|H) = P(Uy, H, @)
we sKall have from Section (3.1), for the two fypes of tests,
B(Hy, o) = f < P(H,, H’ B) < P(Um H, o) < P(Hy, H,2) < 1;

PHy, H,a)>a .. (2.20)
B*(Hy, H, a) = f < P¥Ho, H, p) < P(Ug, H,a) < P(Hy, H,0) € 15
P(Hy, H, o) > c. ... (2.2.2)

(2.2.1) and (2.2.2) give respectively, for all HeQ, the lower bounds P(H,, H, )
and P*(H,, H, p) for P( Jg, H, a) and P({y, H, #) which, however, in general,
would be far from close except sometimes for large ‘“‘deviation” from H, With more
knowledge of the forms of qSHo and ¢g, it is often possible to get far closer bounds;

even the actual powers are often computable without much difficulty (and turn out
to be pretty high) as for example in most of the classical tests on normal populations.

It is easy to see that the results of (2.1) and (2.2) could be easily generalized
to cover the case of composite H, against composite H ¢ @ provided that we have similar
regions for H, and a bisimilar region for H, against H. This, therefore, need not
be separately treated.

2.3. Display of two classical tests as type I tests. (i) Almost all classical
tests on univariate and multivariate normal populations, (ii) most classical tests on
other types of populations and (iii) many tests on multivariate normal populations
proposed in recent years are known to be derivable (and indeed many of them have,
in fact, been derived) from the ‘likelihood ratio” principle, so that they belong to
type II. The author finds that all the customary tests in category (i), for example
the test of significance of (1) a mean; (2) a mean difference, (3) total or partial or
multiple correlation and (4) regressions, (5) the F-test in analysis of variance, (6)
the test based on Hotelling’s 72, all belong to-type I as well. Those classical tests
in category (ii) that the author has examined so far also all belong to type I. Coming
to those situations that are sought to be handled by tests proposed under category
(iii), the author finds that the likelihood ratio tests offered so far, while they
automatically belong to type II, do not belong to type I. On the other hand, if, in
these situations, one carries out the spirit and method of discriminant analysis, one

gets tests which belong to type I in a sense slightly more general than we have
indicated so far.

In this section we consider, for illustration, two well known classical tests
and"show that they belong to type I.

(i) For N(&;,0?%) and N(&,, 0?) the classical test of H(; = £,) = H, against
H(E, # &) = H at a level « is based on a critical region given by

L2t or < —1i, <o (2.3.0)
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where .t = (n,+n,—2)H{n,ny/(ny +15) (% — %) {(ny— 1)sf +(ny—1)s3}}, and £, is given
by P(t > ty|Hy) = «/2 and where (%;, Z,), (s;, s;) stand for the means and
standard deviations of two random samples of sizes n, and n, drawn from N(&,, o?)
and N(&,, 0?), respectively. This is well known as a likelihood ratio test, but it is
eagily checked as type I as well, in the following way. It is well known that ¢ > ¢,
is a one-sided uniformly most powerful (bisimilar) region of size /2 for the composite
H, against the composite H({, > &,) = H, and so also is t < —t, for H, against
H(, < &,) = H,; taking the union we have (2.3.1) of size «

(ii) Consider the testing of a general linear hypothesis in analysis of vari-
ance which, as is well known, can be formally reduced to the following. Suppose we
have random samples of sizes n,, means %, and standard deviations s;, drawn respec-
tively from N(,, 02) (=1, ..., k), and suppose we want to test H(E; =&, = ...

: %
= §;) = H, against the whole class H of (§, ..., §;) violating Hy. Put n = 3 n,;
h=1

E k
Z = 3 mFn; &= X mf/n. Now the classical F-test for H,, which is well known
k=1 h=1

to be a likelihood ratio or type 1I test has at a level « the critical region given by
F>F,y, .. (23.2)

whero F =13 m@—aE—1]=0 3 (m—Dstfn—b],

and where F, is given by P(F > F,|H,) = c.

To recognize this as a type I test as well we proceed as follows. It is ob-
served in earlier papers [40], [21] that among similar regions for H, (which exist) there
is a most powerful (bisimilar) region for H, against any specific (%,, ..., &) = § violating
H,, the region of size, say, § being given by

t> 4, . (2.3.3)

where t=+4/n—2cot 6,
and cos 0 =h§ (@, —%) (B, —E)/ hél {np(@,—7)2 (0 —1)s7} h§1 ﬁh(ih—Z)zl* ,
=1 — -

and where f, is given by
- P(t > 1| Hp) = B.

Tt is also noticed in those papers that this ¢ has exactly the usual ¢-distribution with
(n—2) degrees of freedom. Notice that f, = {y(n, f) and f = f(n, ). To obtsin
now the union of regions: ¢ > t, over different sets of (£, ..., §;) we note that a given
observation set belongs to the union if for that observation set there is at least one
(obtained by varying over &, ...,&;) such that ¢ > £,. The union is thus easily checked
to be given by: the largest ¢ (by varying over &, ..., E',,) > t, (which is fixed). But by
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(2.3.3) the largest ¢ would correspond to the largest value of cos 6, and, given z’s and

s’s, the largest value of cos @ (under variation over &, ..., &) is easily seen to be
given by
k K o
cos 0 = [hz nh(Eh—Zt)z]%/[hE {(mp—1) sp+m(@,—Z)2]E, ... (2.3.4)
=1 1 v

so that the largest ¢ is given by
] &
t = (n—2)} hz: (%, —2)%]2 /[ ’21 (n,—1)sE . ... (2.3.5)
=1 - (503

Therefore, the union of regions: ¢ > #,, is given exactly by (2.3.2), which is the critical
region of the F-test. Notice that, given the « of the F-test; F is obtained from (2.3.2)
in the form Fy(k—1, n—Fk; o); and next by identifying the union of regions t»/>; tos
with I’ > F, we have -

to = [(k—1) (n—2) Fo/(n—F)}}

and next from (2.3.3) we have
B = pn, t) = pk—1, n—k; «).

2.4, Some further remarks on the two _tyj)es of tests. It may be noted (see
Section 2.1) that by specializing the £;’s (the sizes of the most powerful ecritical regions
against different alternatives in {wo special ways we get in a heuristic manner the
two types of test. By specializing the £,’s in other ways other heuristic principles
could be set up, some of which, in special situations, might be ‘“better’ than the type
I or type II tests. It has already been observed that ih many situations type T
and type II tests would coincide. This does not mean, however, that in those situa-
tions, S(H,, H, a) of the type II test would be the £ of the type I test. Given H,
and the H’s, it would be possible to find a 7 for type I-and a p for type IT such that
the same critical region for H, against the whole class H ¢ @ could be looked upon
as \_zyw(H,, H, f) in relation to the first type and also as zw*(H,, H, 1) in relation
to the second type.

The following theoretical question or group of questions, now under investi-
gation, is extremely important. Under what general restrictions on the probability
law of X and on H, and H ¢ @ would either or both of the tests be nontrivial (in the
sense discussed in Section 2.1) and usable (in the sense of having a distribution problem
amenable to tabulation), and unbiassed (against all relevant alternatives) and/or
adpissible and/or reasonably powerful (in the sense of having not too bad a power
against all relevant alternatives)? So far as the author is aware, these questions have
not yet been adequately discussed in a general manner (let alone being answered)
even for the likelihood ratio or type II test (which has so long been extensively used
in practice), and no attempt will be made in this monograph to discuss these gquestions,
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The advantage, however, of having two such heuristic principles (with the possibility
of having two different tests in many situations) is that it gives us more elbow room
than we would have with one such principle, in the matter of construction of
nontrivial, usable and ‘“pretty good” tests.

One remark on the admissibility of a test (in the Neyman-Pearson set-up)
is especially important. In this set-up suppose we have a hypothesis H, and a class
of alternatives H ¢ Q. Assume, for simplicity of discussion, that H, and each H
are simple hypotheses. Now suppose that there is any critical region of size, say
o, for Hy. w, will be said to be inadmissible {(or admissible) against the whole class
H € @ according as we can find (or fail to find) another critical region of size «, say
wy, such that

P(x ¢ w|H) > P(x € wy|H) forall H ¢ Q,
and Pix ¢ w,|H) > P(X € wy|H) for at least one HeQ. ... (2.4.1)

Suppose now that w, is an inadmissible critical region in that we can find a w; satis-
fying (2.4.1) and, assume for simplicity of discussion that w, itself is admissible. It
is easy to satisfy oneself that from any physical point of view w; is better than w,.
Suppose now that w, is another critical region for Hy of size «, which is admissible
against all H ¢ 0. It does not follow from the definition of admissibility that w, will

necessarily have the property (2.4.1) in relation to w,. On the contrary it may well
be that

P(x ¢ wy|H) < P(X € wy|H) for most H ¢ Q, .. (24.2)
and P(x ¢ wy|H) > P(X € wy|H) for some H ¢ Q,
and P(x ¢ wy|H) > P(X € wy|H) for some H ¢ Q.

A precise definition of ‘most’ need not detain us here. In fact, if a most powerful
critical region of H, against a specific H ¢ Q is most powerful in the strict sense of
having a power against H, which is > and not just > that of any other rival, then
this critical region will be, by definition, an admissible one against the whole class
of H ¢ . But it may have a poor power against most other alternatives. In other
words, it is easy to convince ourselves that a particular inadmissible region may, from
any physical point of view, be much better. than many admissible regions, although
there must be at least one admissible test (and usually a whole subclass of such tests)
which satisfies (2.4.1) with respect to w, and is thus better than w, from any ‘physical
point of view. This is a point which is apt to be missed by the statistician, especially
the -theoretical statistician.

2.5.  On the operating characteristics of certain specific tests. It turns out that
in many specific situations (as in the cases to be discussed herein) it is possible to ob-
tain a class of admissible critical regions for H, against all He Q, each region having
a power which is a function of certain -parameters which are naturally interpreted
as measures of deviation from H,. This admissible class may not of course constitute

2
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the totality of all admissible critical regions. Now among this class, if there is a sub-

class which is not only unbiassed against all HeQ but is such that the power of

each is a monotonically increasing function of each of the ‘deviations’, then this sub-

class is, from any physical point of view, the really valuable subset and will be said to

be an admissible, unbiassed subset having the monotonicity property. In situations

where this is available and where all that we know about H is that HeQ, the rest of
the admissible class may, for most purposes, be thrown out. It seems to the author

that in such situations, this subset or subclass of critical regions is the best that we can

obtain as a whole and any further attempt at any choice among this subclass, on the

basis of some stronger optimum property or principle, would be open to controversy

in that the selection principle would be likely to be artificial and not universally
convincing. The author is aware of the asymptotic optimum properties of the
likelihood ratio criterion for simple and composite hypotheses, under certain
broad restrictions, but there are strong reasons to suppose that these asymptotic
optimum properties are not peculiar to the likelihood ratio criterion but must be
shared by a large class of criteria or critical regions. Where H, is composite there
is the further restriction of similarity which, of course, can be relaxed by just requiring
that any ecritical region should have size < o( < 1) under variation of the unspecified
elements of H,, in which case the region will be said to be a valid one, a special case
of a valid region being a similar region. In any actual situation (usually involving a
coniposite H,), if we can find a similar (or valid) critical region which is (i) unbiassed
against all HeQ, (ii) has the monotonicity or near monotonicity property to be defined
in chapter 10 and is also (iii) admissible, then we shall consider this to be a satisfactory
region and any attempt at getting a region with a stronger optimum property would,
in most practical situations, be futile for reasons already indicated. However, if, as in
most of thesituations to be discussed herein, we have a number of rivalregions available
satisfying (i)—(iii), then it is no doubt an interesting and useful question as to how the
powers of the different rivals compare over the whole range of HeQ one rival being
better than another over some part of the range with a reversal in another part of the
range and so on. In most of the rather complex situations. to be discussed in this
monograph this would not be possible, because not only are the actual powers not
available, but we do not even have, at the moment, methods and techniques of com-
paring powers (in the sense of greater or less) of two rivals without actually obtaining
the powers. It is hoped that such techniques will be available in the near future.
It may be noticed here that quite often it is possible to assert properties (i) and
(ii) and sometimes also (iii) without explicitly obtaining the power functions. It may
also be observed that among similar (or valid) regions satisfying (i)—(iii) an additional
consideration for recommendation might be (iv) reasonable simplicity of the null
distribution problem, i.e., the distribution problem under H o If we are also
iptgrested, as we shall be in all the problems hereafter, in simultaneous confidence
statements on deviation parameters (or functions thereof), then another additional
consideration would be (v) the possibility of inverting the test to obtain (without

running into excessively difficult distribution problems) such simultaneous. confidence
bounds (preferably intervals).
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It will be seen that the tests offered in this monograph are similar region tests
(in-fact, they will be shown to be stronger than that, in a sense to be explained here-
after) having properties (i), (ii), (iv) and (v). There are strong grounds for believing
(although we do not yet have a rigorous proof except for the degenerate special cases
which will be indicated as we get along) that the tests also satisfy (iii),. Furthermore,
the tests that are being offered for the different situations are such that it has been
possible to obtain for each test a ‘pretty good’ (easily available) lower bound to the
power function (and consequently a lower bound to the shoriness, i.e., the probability
of covering wrong values of the parameters or parametric functions, of the associated
set of simultaneous confidence intervals), ‘pretty good’ in the sense that the lower
bound itself is reasonably Iarge and rapidly goes up as the deviations increase. To
the tests considered hereafter there are certain rivals (better known but not discussed
_ in this monograph for reasons indicated at the proper places) for which some of the
above properties are well known to be true and some of the others are also conjectured
by the author to be true, but have not yet been proved.

2.6. Euxtended type I test. Consider a composite hypothesis H, against a
set, of composite alternatives H,eq, (7 € continuum). It often happens, as for example
in the broad situations discussed in Chapter 5, that, while there are similar regions

- for H,, there is among these no most powerful (bisimilar) region for H, against any
H,(? € continuum), but that we have, instead, the following situation. Suppose we
have composite hypotheses Hy; (€ continuum) such that (),H,; = H, and composite
alternatives H; (i ¢ continuum; j € continuum) such that (};H; = H;. Notice that
Hg; and H; have more unspecified elements than H, and H; respectively. It may
well be that we have (as in the cases discussed in Chapter 5) not only similar regions
for Hy; but also, among these, a most powerful (bisimilar) region for Hy; against any
H; (one for each i with j ¢ continuum; and then ¢ € continuum). Consider critical
regions w(Hy;, Hy, f) of size f# each. Then by our test procedure, over ();(); of
w'(Hy;, Hy, B) (which we call (0); for simplicity, we are anyway accepting [;Hy;,
that is, H, and over its complement | J; | J; w(H,;, H;, B) we are rejecting at least
one H,; and therefore H, itself. Suppose we set this up as a heuristic test for H,
against the whole class H;c0. Then the critical region will be \J; U; w(H,;, Hy, f)
or | J; of size «, given by

P(xel ;| Hy) = o
so that o = a(H,, p) and g = B(H,, a). .. (2.6.1)

As before, nontriviality will be assumed, and it is easy to check that we shall have
for all 4 and j the following inequality

B < P(Hy, Hy, p) < P(U;, Hi, o) < L. o (26.2)

It may be noted that while w(H;, H;, §), a bisimilar region of size § for H,; against

H,, is independent of the unspecified elements of Hy; and H; and while the location
of | J;; must be and its size might be (as indeed it is for all the cases considered in Chapter

5) independent of the unspecified elements of Hy; and, Hw the power P(Hy;, Hy, f)

.—wa

e A
\ ] f_e . "». J
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might involve the unspecified elements of Hy;, and P(H,, H;, a) involve those of H;.
As-observed in Section 2.2, the lower bound to the power of the test, given by (2.6.2),
while it is in general easily available, is, at the same time, much too crude. With
more knowledge of the probability law a much closer lower bound can often be found

as will be exemplified in later sections.

The gist of the heuristic union-intersection principle, in its application to the
two-decision problem of the Neyman-Pearson -variety, is this. Suppose we have a
certain type of hypothesis H, against a certain type of alternative H, such that H, and
H are mutually exclusive sets for which we have an acceptance region w'(H, H) and
a critical region w(H,, H) having some optimum properties and also some mathe-
matical simplicity. Suppose, furthermore, that there is an Hj formed by the inter-
section (or union) of H,’s of the previous type and H* formed by the union (or inter-
section) of H’s of the previoﬁs type, such that Hy and H* are also mutually exclusive
sets. Then theacceptanceregionfor H* against H* isgivenby ()

i cag, e (Ho H)
! . . .
or nHoc:H’g, . (H,O’ H) and the critical region by UH’S cH,, HcH*w(H"’ H) or

UH J— CHw(H‘,, H). Notice that, in particular, Hy; may be the same as H|
410 [eX]

and/or H* may be the same as H. There might be of course other variations on
this. It is found in many situations, that if the original test has certain optimum
properties, then the derived test has some reasonably good properties, and no test
with a strong optimum property of any physically meaningful kind may be avail-
able at all. The same type of heuristic principle can be and has been actually used
(though not in this monograph) on more general types of decision problems, too, the
general idea being that if a complex decision problem can be built up of less complex
decision problems each having a relatively simple decision rule with some optimum
properties, then a decision rule for the more complex problem can often be built up
from the (relatively simple) decision rules for the less complex problems. In many
situations this decision rule will have reasonably good properties, and any rule having

strong optimum properties (of any physically meaningful kind) may not be available
at all.



CHAPTER THREE
The Multivariate Normal Population

A univariate normal p.d.f. has the form (1.1.2) so that the probability law
can be rewritten in the form

(1fo/2m) exp |—3 e—B) (@) @—1) Jix, e (3)

where —o0 <z, £ <0, 0 >0, and E(x) =&, Ex—E&)® = V(z) =02 By analogy
let us write down for —co < (y, ..., %) = X'(1 Xp) < co, the probability law

k exp [-—% (x'—g’)B-l(x—ﬁ)] dx, . (3.2)

where —o0 < ' < 00, B(pXx p) is symmetric p.d. and % is a positive constant, and B
and k have not yet been interpreted in statistical terms.

To obtain k in terms of B, we use (A.3.9) to put B = 77" and have (x'—%')B~!
x(:i—g) = (x'—&) (T*l): T-Y(x—%). Nowput T-}x—§) = y(pXx1), so that (x—§)
= Ty and J(x:y)=| T| = |B|%. Now y has the probability law

k|B|* exp [—%y’y]dy, .. (3.3)
so that y,, ..., ¥, are independent N (0, 1) each varying from —oo to co.
- Integrating out over y;’s we have
k|B|¥(+/2m)? =1 or k= 1/(2m)*?|B|}, o (3.4)

which gives k in terms of B.

To interpret B statistically we proceed as follows. We first prove that for
any non-null a’(lXxp)

a’x is N(a’t, a’Ba). .. (3.6)

Proof: a'(x—§) = a'f’y, using the transformation in connection, with (3.3).
Now using (A.3.11) put al = (aff’f”a)* I'(1 xp), where Il =1. Next, complete

’

I'(1Xp) into an | matrix [IIJ ] 1 and now make the orthogonal transformation:
p—1
p

1

z(pXx1l) = p—1

ll
] y(px1)
1

P

13
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We have thus J(y:z) = 1land 2, =1y = a'Ty/(a’Ba)t = a'(x—k)/(a’Ba)t. Going
back to (4.3) we now have for z the probability law
@# exp[—%z’z] dz, ... (3.58)

so that z’s are independent N(0,1) and thus z; is N(0,1), and, therefore, a'(x—¥) is
N(0, 2’ Ba) and hence a’x is N(a'g, a’Ba), which completes the proof of (4.5).

Putting a’ =(0,...,0,1,0,...,0) (0’s everywhere else and 1 in the i-th
place) we check that x; is N(Z;, (B);). This means that any marginal x; is normally
distributed about ¥, as the mean value with a wariance, say oy; = (B);; = by, say
(t=1,2,...,p).
We next prove that

.o [0, 1[a) 13 .
if [a,ﬂ 118 of rank 2, then 1 [3'2 ] X(px 1) has the probability law:

p p

(?7%)|_C[* exp [—3 (x'~¥)[a, : a,] O [::] x—9]a[[2] x] .. 39)

2
where 0@x2) = 1 (%] Broxp) [ i alp,
2 1 1
P
and that covariance (a’ x, a, X) = a, Ba,.

Proof: [:,1] (x—E) = [2,: ] Ty, using the transformation in connection with (3.3).

2

Now, using (A.3.11), put }[::1] T(pxp)=T(@x2) LExp), where LL = I(2).
2

p
L 2
Next, complete L(2xp) into an | matrix [ :] and now make the orthogonal
Li1lp—2
P
transformation:
2 L
z(px1) = [: ] y(px1). We have thus J(y:z) =1
p—2 LI, »
p .
2] 1 . a7 _ [air
and ] = L2xp)y(px1)=U- [ ] Ty =U" [ :’(x—g). e (3.7)
zl2 1 a), a,

Going back to (3.3) we now have for z(px 1) the same probability law as (3.3), so that
'(zi’s are independent N(0, 1) and thus [zl] has the probability law
2

(1/27) exp [— 1z 2 [z;]]d [2] . (3.8)
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At this point, using (3.7) and noting that
ay] . [2X—EN g g0 =[] P e a — 23] ,
J [[z:] . [a};(x__z)]] = IUI ,UU" = [a';] TT(al P a,) = [a’;_[ B(a1 P ay),

so that |(7{ = ([2,‘] Bla, a,]

2

P lcli’

we have for [2}] x the probability law
2

[L/2m) | C|#] exp [—4(x'— &), a;] O-1 [2] (x—8)] d [[21] x], .. (39)

which proves the first part of (3.6). For the second part, we go back to (3.7) and
observe that

3'1.] x—t) = U7 [21] _ \i’“n 0 ][21] — [’“1131 ],  (3.10
[a,z (x—%) L22] Ugy Ugp 1129 Ugy?1+-Ugg?s - (3:10)
so that covariance [a] X, 2 X] = E(U132; X Ugi2; +Ugy2s) = [Ug; Us] (since 2z, and z, are
o ' a 1
independent N(0, 1)) = (UU’);, = [[2,‘ J TT'[a, : a,] le = a’ Ba,, from the definition
2

tion of U and 7' in terms of B. This proves the second part of (3.6).

Now taking a’ to be a vector with 1 for its ¢-th component and 0’s for the other
components and aj, a vector with 1 for its j-th component (¢ % j) and 0’s for the
other components we have Cov (z;, z;) = oy; (say) = (B);:

Denoting by X the variance covariance (or, in otherwords, the dispersion)
matrix of the «;’s and taking into account the statement just before (3.6) we thus see
that X = B, which thus provides the statistical interpretation of B. Now (3.2) can
be rewritten as

(zﬂﬁ}zﬁﬁ exp [—§ (x'—§)Z(x—§)ldx, e (3.10a)

which will be called the p-variate normal distribution. (8.10a) is also otherwise
expressed as

x: N, ), e (3.11)
and denoting by o;; the elements of % we have
- a’'(1xXp)x(px1): N(a'g,a'Za), e {3.12)
for any non-null a, of which a special case is

Z;: ‘N(E-"l:’ O'ii) ) 'i = 1, 2, ey Py ves (3-13)
and

oo (He 8 2 - e
p
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for any matrix [2%] of rank 2, of which a special case is

2
xi] . Nuii] [T ‘Ti']]. . (3.15)
[”j % ’-L%' Ty
The result (3.15) means in words, that any marginal (x;, x;) has the bivariate normal
distribution about &, and &; as means, with variances oy and o,; and a covariance ;.

There is a more general result than (3.14), namely, that for any A(r X p) (with » < p)
of rank 7,

A(rxp) X(px1) : N[A(rxp) &(px1), A(rxp) Z(pXp) A'(pxnr)]. ... (3.16)
Denote by ¢ the ij-th element of £~ and notice that ¢ = o'.

Now, starting from (3.10) and using (3.12)-(3.16), we have the following conditional
distributions:

x| %y : N[E(z,|x,), 1/o1

L (3.17)
O O12

_1 » .

] , and E(z;|z,) is a linear function
Gy O

12 T2

where o1 _ is the 11-th element of [
. 21,3

of &, (#,—&y),

and
Ty | Xgy Xg, ooy Ty 1+ N[E(@y |25, ..., 2p), 1[oM], o (3.18)
) Jouneop |
where o1 is the (1,1)th element of the matrix| . ... . - and E(z, |x,, ..., x,) is &
O'lp aee o-m

linear function of &;, (x;—&y), ..., (€,—&y)s

and also

Xy, Xy|2g, ... 2, @ N[E (2

Lol gl2i-1
T .:.,xp) , [0_12 022] ] , e (3.19)

where 011, 022 and o2 are the 11, 22 and 12 elements of the inverse of the full matrix 3,
and E. ( z; Zgy veny xp) are two linear functi_oné of &, (3—8&), ..., (x,—E,) and

22, (xa"‘aza) yeney (xp_ip)’

Taking the customary definition of the correlation coefficient from probabi-
lity theory as

Pay, @, = P1g = covariance (xy, 2,)/[V(z,) V(z,)]H, .« (8.20)
we define partial correlation coefficient between x, and w,|x,, ..., x, as
P24, 23|25y 7p = Pra-sye--p = COVATIaNCe (2, Xy | Xg, «ovy B) [V |25, ..., @)

X V(| 2, ..., 2,)]t = —012/(011 022)t using (3.19). e (820

Notice that this is independent of the values of a,, ..., Tps
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Going back to (3.13) and (3.17) we can, for the normal population, at any rate,
approach the concept of a correlation coefficient another way and reach the same for-
mula as (3.20). This is as follows. We have V(z,) = oy, and, from (3.17), V(2,|2,)
= (07 090—0%)[05» Which is independent of the value of z,. Therefore, in this case,
it is easy to show that if we define the correlation coefficient, as we intuitively can, as

conditional variance of z, |z, ]*
3

o 1—
P12 [ total variance of z,

we should have

. [o11— (041 90— %) /04972
Pz = [ = 110_22 1)/ 22] = (0%/011 Tap)t = pya- e (3.22)
n ' ,

It is clear that this approach also to the concept of partial correlation would, in the
case of a multivariate normal distribution, lead to the same formula as (3.21).

Using this approachA to the correlation coefficient between z, and (,, ..., %),
we define as multiple correlation coefficient between z, and (%, 3, ..., @)

, conditional variance of x;|%,, ..., P
p1.23n.p = 1~ -
' total variance of x,
— 1/t ,
= [Zu_i/‘f_] = [1—1/o™ gy . .. (3.23)

Notice that this is independent of the values of x,, @3, ..., %,

It is easy to check that for a multivariate normal distribution z; and x, are
independent if and only if p,, = 0, and , and («,, ..., %,) are independent if and only
if py.gg..p = 0, and =z, and x, are conditionally independent |, ..., z, if and only if

pl2‘34“'p = O-

To tie in with the customary definition (3.20) under which—1<p;,< 1, we allow
for both positive and negative square roots in the definition of p,, and similarly let
P1z-as --+ p» 3180 take both positive and negative values. But in the definition of
P1e23---p We allow only the positive square root, for obvious reasons.



CHAPTER FOUR

Random Samples from p-Variate Normal Populations

If X(pxm) = (Xy, X, --- X,,)p, Where X,’s (A = 1, ...,m) are an independent
set and each x, is N(¢; %) and p < m, then denoting by &(p X m) the matrix [, g ... lp,
11 1

we have the following probability law for X:

rm m

[fem® (27 exp[—f tr THX—g)'—E)| dX. o (4)

The elements of X, of course, lie between —oo and oo. If now we pass over from
X(pxm)to X,(pXm) by a transformation: X(p.x m) = X, (pXm)A(m xXm), where 4
is | (non-stochastic), then, by (A.5.4), J(X : X,) = 1 and we have also XX' = X, X/’
(since 4 is ).

- m
Putting now X'(1Xp) = (%, ..., %,), where Z, = T xp/m (¢ =1, ..., p), it is
A=1
easy to see that

X(pXm)E' (mXxp) = mX(pXx1)E (1Xp), &pXm)X'(mXp) = mE(px 1)X'(1 X p)
and. £(p X m)E’ (mx p) = mE(pX 1)E' (1 X p). .. (4.2)

Hence .
(X—E)X'—E) = XX'—mXE —mEX'+mkE. vee (4.3)

If we now choose the | transformation matrix (from X to X,) such that

"Vlm y/1jm ... 4/1m

A Qg Qog  +on oy — [V / Vi Vi ](say), e (4.4)
. B van . B(m__l Xm)
Q1 ) L
we have
T /mEy
’ '\/ﬁ z E. ’ T o ‘_'
X, = XA' = 2 D X(pxm)Bmxm—1) |=[y/m%: Ylp, e (4.5)
e, 1 m—1
(say). Thus
XX =X X, =mXX+YY, w. (4.6)
and hence substituting for XX’, the riéht hand side of (4.3) becomes
YY'+m XX'—m X¢'—mEX' +mEE’ or YY +mx—E)X' —E). e (47

18
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Remembering now that J(X : X,;) = 1 and transforming from X to X, we have for
X, the probability law:

m m

(1/2m)* [5]7) exp [—% trZ‘I{YY’+m(}‘;—g)(i’~—z’)}] dVaR)dY. ... (4.8)

Let us put

m—1l=nand X(pxm) =[X..Kp=| =~ =~ 7 ° .. (4.9)
1 1 “ee »

and recall that for a sample X(p X m), the sample dispersion matrix § or (s;) is  fined
by

nS = n(s;;) = (X—X)}X'—X'). vee (.10)
It is easy to check that

XX = XX’ = mxx', or (X—X)X'—%') = XX'—m%x%', ... (411)

so that, using (4.6), (4.10), and (4.11) we have

YY' = XX —mxx' = (X—X) X' —X"). e (412)
We note that if, as in this .case, the elements of X vary from —oo to o0, so do those

of X and Y, to make the transformation one to one.. Now inﬁegrating out (4.8) over
X(—o0 to o) we have for Y the probability law:

LI
(12 ® 12| Joxp [~ tr 22 ryay, . (413)
and integrating out over ¥ we have for X the probability law:
(1/2m)E|S|}) exp [w% e z—lm(i—g)(x'—gﬁ)]d(\/ﬁ %)
or

(1jem¥ [Z]4) exp [—’g ()—c’—g’)E"]();c—i)] dyms), .. (414)
which shows that % is N(Z, ”l% ).

For the purpose of any study of the sample or population dispersion matrices,
we could, without any loss of generality, start right off (as we will quite often do)
from (4.13) replacing Y by X, but with the understanding that now X is not the
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original matrix of pxm observations, but is a part of the transformed matrix (con-
sidered under (4.5)), being p X n in structure. We shall customarily call this the reduced
matriz.

For an X = EXII] 1(; (p+q < m) consisting of m independent ((p-+-q)x1)
2

m
column vectors, the reduced matrix ¥ = [?1]5 (p+q < n) will have the probabi-
2
n
lity law:
@iton  n :
ajem * 1B exp[— o (g 227 [P 171 : vy avyay (4.15)
T Ty LY, te 1ree e )

where X = [g}l 212] is the partitioned population dispersion matrix (symmetric
12 Zga

p.d.) for the (p4-¢g) normal variates.

For k random samples of sizes m, from k& N(%,, Z), we have for Y,’s and
Xn (IXp) =@y, ..., %,) (B =1,2,.., k) the joint probability law:

aen? (21 ep [~ 3 ez (S 11e S (%= E) &~} |

h=1 h=1
k k
x [ ax, || dvmz,), . (4.16)
h=1 h=1

E k
where m =h§1mh. Wenext put n, =m,—1,n=3% n, = m—k, Y(pXn)=[Y,, ¥,,...Y;]p;
- =1 Ny Mg Ty

ok _ k ) E .k
= ’Ezl mXyfm, § = hzl my, &y/m, with components Z; = 3 mZ,/im, & = = mE,/m
= = “h=1 k=1

(¢ =1, ...,p), and finally set

Ny &y o A g Ty
X(pxk) = = [Vmy By V/my Ry /My, Ty ]
VI Zy e Ay Ty
N e (417y
and  E(pxk) = =[vVm & ... Vi El
Vi o mEy /



RANDOM SAMPLES FROM p-VARIATE NORMAL POPULATIONS 21
Using now an | A(kxk) of the structure

Cafmyfm A/mafm A/ fm | Vmym ... A/mym _
A9y (i 298 cer Qg or R (say), ... (4.18)
B(k—1xk)
(27 %% [27%3 vee 2732

and transforming from X and & to X, and &, such that
X,=XA4 =[v/m%: Zlp and§ =Ed'=[v/mE: {p,
1 k-3 1 k-1
(4.19)
k (
remembering that ¥ Y,Y; = YY’,’and substituting in (4.16), it is easy to check
h=1 . .

for X(px 1), Z(px t—1) and Y(pxn) the following probability law :

[1/(2m) ® 31% exp [ —3 tr 50 TV +(Z—0Z —0)+mE—YE —E)} |
X dYdZd(r/mX). .. (4.20)

As before, all elements of (Y, Z, X) vary from —oo to co, and now integrating out over
X, we have for (Y, Z) the joint probability law :

p(m—1) m—1

[1@m * |g]2] exp[—% tr 2-1{YY'-}—(Z—{,’)(Z'-—g’)}]deZ. ... (4.21)

Denoting by (s;), T, &y, the dispersion matrix of the #* sample, the mean
of the A% sample for the i variate and the mean of the % population for the i,
variate (4,5 =1,2,...,p; h=1,2,...,k), we note that

k k o _—
YV =[ Smisy).| 22 = | L mEa—T@E—2)],
h=1 h=1 <
2 = | SmEa—m)E—y)|, ¢ - 42
¢ = (28 and @ = | S mla—E)En—5)| |

where all the’elements of the right hand side are either defined explicitly in terms
of the original set of observations or parameters or are directly calculable in terms of

k : LTS N H
that set. We shall denote[ P n,,(s,-,-),,]/n by S (to be called the sample ‘‘within
h=1

k ‘ :
dispersion matrix),[ pX mh(Eih—-ﬁi)(Ejh——s‘cj)]/(k—1) by S* (to be called the sample
r=1 '
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. .

“between’’ dispersion matrix), [hZ mh(iih—ii)(ijh—é";j)] / (k—1) by Z* (to be called
=1

the population ‘“‘between” dispersion matriz) and the vectors X and ¥ defined by

|(4.16) will be called respectively the sample and the population grand mean vector.

For k = 2 it is easy to check that Z(p x k—1) and ¢(px k—1) become respec-
tively the column vectors, say, z(px 1) and §(p X 1) given by

Z(p X 1) = myf3(E,—%,), &p X 1) = miF(E—Es)s e (4.23)
_ _mym,y
where My = e ,

and we have for ¥(pX(n;--n,)) and (X;—~X,) the probability law :

p(m—1) m—1

[en) = |2) F | exp [~ 3t BT bl —t—%oHE)
X (X’l——i'1~i’2—|—ﬁ’2)}]><dY d[mYH(E,—%,)]. e (4.24)

For the simple regression set-up corresponding to a one-way classification we have an
X(pxn) (with p < n) with a probability law

[1/(2m)P"2| 3 |™/%] exp [—-g- tr 2—1{(X —E(X)X' —E(X") }] X, . (4.25)

where ¥ is symmetric p.d. and

where

EX)pxn) =EpXn)+ upxq) Ulgxn). .. (4.26)

Here ¢ << n but might be > p or < Ap.%Without any loss of generality it is assumed
that £ (pxn) = (¢ ... £)p, i.e., £ is a matrix of unknown parameters consisting of the
same n columns' of unknown parameter vector ¥(px1). p(pXg)is also an unknown
parameter matrix, while U is a matrix of rank g of the so-called “‘concomitant’’ vari-
ates, i.e., a set of observations which are supposed to stay constant with the probabi-
listic set-up of the experiment and the analysis. Again, without anyloss of generality,
but for simplicity of discussion, we can assume that the row sums of U are zero (for
€
each row), i.e., that nti = 3 u; = 0 (where u; denotes the j-th column vector of the
=1 '
U matrix. As in (4.1)<(4.13) denote the j-th column vector of the X matrix by X;

and set X(px1) = ¥ X;(pXx 1)jn and use the orthogonal transformation X, = X4
i=1
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~=[vng: Y19, U =Ud=[ynu: V]q—[O V]q,€1—§A [\/ni 0]1',

1 n-1 1 n-1 1 n—1 n—1
where A="[1/y/n ay ... ay,"]
1/v/n Qg ... @y,

v ag, .. a,,m_J

is an | matrix. Since J(X : X,) = J(X : 4/n %, Y) = 1, we have, as before, the joint
distribution of X and Y given by

[L/2mP2 | S |72 exp [— 4 o2 (=R —E) + (Y—p") Y-V }]
d(r/nX)AY. v (427)

Integrating out over X from —oo to % , we have for ¥ the probability law

[/@rpe-n2| 3|5 exp [- P EY—pV)T'—V') ] dY. .. (429)

Using the results that (i) tr (AB) = tr (B4) and (it) for any square matrix 4,
tr A = tr A’, and recalling that -1 is symmetric, we have

SV Y =t Y VW St = e S Y V. o (4.29)

Substituting in (4.28) we rewrite (4.28) as
[1/(27) ‘”—1’/2[Z| ]exp[ P te ZYYY' —27 V’,u’—l—,uVV’,u')] dY. ... (4.30)

Now notice that YY' = XX'—nXX', VV' ' =UU—-nuw’' = UU’ and
YV =XU'—nXu = XU'(since il = 0). At this point let us use (A.3.11) to set

Vigxn—1) = g xq) L(gxn—1), where L, L = I(g), .. (4.31)
. . [y q
and use (A.1.7.) to complete L, into an | martix [_L] n—1—g' Next use on (4.30)
ol m—1—
n—1
the ftransformation

— — L
Y(pxn—=1) = ¥ (pXn—1) [L;] g e (432)

ny

or

Ypxn—1) = Y(pxn—1) [L,: Ly] n—1=[Z, : Zp, say.
q n—1l—q g n—l—q
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Check that Y, Y, =YY = Z, 24+ 24,2, YV = YL =z, T, TT'=7vV,
recall that J(Y : Z,, Z,) = 1, and obtain for Z, and Z, the probability law

n—1

[1/(2mpe-b2| 2| * }exp [—} tv B2, 2, + Z, 4, — 22, Tw +p T )]
dZ, dZ,. .. (4.33)

This shows that the joint distribution of Z,(p X q) and Z,(px n—1—gq) is exactly of the
same form as of Z and Y in (4.21), the m being replaced by » here and the £—1 there
being replaced by g here. It may be interesting to check again what is implicit in the
above, namely that the expression under the exponential is expressible very simply
in terms of the original set-up. Verify that 2,7’ = YV’ = XU, 77" = VV' = UU',
Z,Z, =YL LY =YVI'" -1V Y’ (using (4.31))= Y V'(VV") VY = XU (UU') UX’
and Z,Z'y = YY' YL/, LY = XX'—aXX'—XU(UUWUX'.

The way to handle more general regression problems which arise from other
types of designs will be indicated in Chapter 12.



CHAPTER FIVE
Statement of the Specific Problems to be discussed

The problemswill be formulated interms of testing of hypotheses, and, ineach
case, the associated problem in terms of simultaneous confidence interval estimation
will also be indicated, although the latter will be discussed in full in sections 14.1-
14.11. For each hypothesis to be considered here, the associated (set of) simultaneous
confidence bounds will be referred to as A.S.C.B. It will be seen later that .corres-
ponding to each hypetheses and its class of alternatives (to be presently stated) there
is a ‘natural, and ‘physically meaningful’ set of parameters (or rather functions of
the primitive population parameters) which can be easily interpreted.as measures of
deviations from the hypotheses. It will be also seen that the tests of hypotheses
going to be offered here are such that, for each test, it is possible to obtain by inversion
(and without running into any very difficult distribution problems) a set of simulta-
neous confidence bounds on these ‘deviations’ from the hypothéses. In this section,
for most (though not for all ) of the hypotheses stated, the structure of the correspond-
ing ‘deviations, are also stated without any attempt to show just why and how they
are ‘appropriate’ or ‘natural’ ; this is done later. The following are the problems:
(i) For N(§(px1), Z(pX p)) (where X is symmetric p.d.), to test H, : & = 3, against
H : 2 5 3; the associated simultaneous confidence bounds, as will be seen later,
will be bounds on characteristic roots of %, i.e., on all ¢(Z), or by using (A.2.5), bounds
on a’(1xp) Z(pXp)a(px1) (for all arbitrary vectors a’(l1 X p) of unit length each);
(ii) for NE(pX1), ZypXxp)) (h =1,2,and Z; and X, are both symmetric p.d.),
to test Hj : &, = 2, against H: X, # X,; the A.S.C.B. will be bounds on all ¢(%,351),
or using (A.2.6), on a’(1 X p)Z,(pXp)a(px1)/a’(1Xp) Z(pxp)a(px1) (for all arbi-
trary non-null a’(1xp)); (iii) for N(E(px 1), Z(pxp)) (r =1, ..., k; T is symmetric
p-d.), to test Hy : ¢, = &, = ... = §; against H: not H, i.e., violation of at least one
equality ; then the A.S.C.B. will be on a’'(1 x p) #(p X k)b(k x 1) (for all arbitrary non-
null a’(1 xp) and arbitrary b(kx 1) of unit length), where 7 stands for the (pxk)
population matrix with %k column vectors (each px1). vVt —8), Vng(Es—E)s .o

. B k

vVmEr—E) and ¥ = X n,€,/ = n,. Notice that # will be of rank < min (p, k—1);
h=1 k=1

(iv) for N[E((p+g¢)x1), Z((p+9) X (p+q))], where ¥ is symmetric p.d. of the form

T Zpp |2 . : .
(p<q), to test Hy:Z,(pXq)=0 against X, 7 0; the A.S.C.B.
i Ty

r 9
will be on a'(1Xp)Z.(pX )Tz (gxXq)b(gx1) (for all arbitrary unit-length vectors
a’(1xp) and b(gx 1)) [6].

A number of useful problems can be formally tied up with problem (iii), of
which the more important are the following: (iiia) For N(§;, X) (A = 1, 2), to test
Hy:%, =¥, against H : ¥, # §,, the AS.C.B. being now on a'(1xp)(E;—&)px1)
(for all arbitrary non-null a’(1 X p)); (iiib) for N(¥, =), to test H, :§ = &, against H :
£ + ¥,, the A.S.CB. being on a'(I1xp)¥(px 1) (for all arbitrary non-null a’(1Xp));
(iiic) given an observation matrix X(pXxn) (p < n) of stochastic variates with

25
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independent px1 column vectors X, (b =1, 2, ..., %) having p.d.f.’s N(E(x,), 2),
where E(X')nxp) = A(nXm)E(mXp) (m< n; & is a matrix of unknown popula-
tion parameters and 4 is a non-stochastic matrix of rank » < m < n, whose elements
are subposed to be given by the particular experimental situation), to test H,:
Clgxm) & (mXxp) = 0, where C is such that H, is testable (see (12.7.5)) against H :
not H,; the A.S.C.B. will be given in section 14.6; this H, is called the general multi-
variate linear hypothesis which includes the usual problems of multivariate analysis
of variance and covariance as particular cases and also of course the problem (iii)

as a very special case; mnext (iiid) for N, Z) (h=1,2, ..., k), where
& P Zn ZpT)P

g, = (say) and X is symmetric p.d. of the structure , to
Eon A4 T Zadq
1 P ¢

test Hy : £,(pX 1) = Zy(pxq) Z33(gXq) (g x 1) (h=1,2,...,k) against H: not
H,; the A.S.C.B. will be given in section (14.7); this H, is called the hypothesis of (a
'par‘cicular kind of) multicollinearity of the means; and finally (iiie) for the linear
regression model of (4.26) to test Hy: pu(pXxq) = 0 (or, say = p,) against H : p £ 0
(or say .5~ pe); the A.S.C.B. will be given in section 14.8.

Formally tied up with (iv) is the following : (iv) for N(¢, Z) where X is sym-
p g

. [ Zy Xy Zgg ]P
metric p.d. of the form £ = T Dy Zos |[9(p <K @), to test Hjy:Zy3=0,
13 Zgg gz 7
where Xy, 5(pXq) = Zga(p X q)—Z1a(p X 7) T35 (rX7) Ly (rxq) and where o, 5(qXq)
= (g Xq) — Zpalg X71) T3d(r X r)Zp5(rxg); the AS.CB. wil be on a'(1xp)
X Z1a.5(PXq) Z3a(gx q) blgx 1) (for all arbitrary unit length vectors a’(lx p) and
b(g < 1)).

In addition to those considered in the two previous paragraphs there are
several other problems whose solutions can be formally thrown back upon those of
(i)-(v) and these need not be discussed or even stated separately here. But even
within the very restricted set-up (considered in this monograph) of non-sequential, one
stage, fixed sample-size, two-decision problems of the classical type there are several
problems of great practical and theoretical interest which have had to be excluded,
because of the fact that (so far as the author is aware) no suitable and reasonably
easy techniques are known at the moment. Among such problems (unfortunately
to be omitted) a particularly important one is the following: for N(%,, Z,)(h =
L2,..,k>2), to test Hy: X, = %, = ... = X, against H :not H,; and of course
the A.S.C.B. on ‘appropriate deviations’ from H,,

In what follows chapter 6 will give the derivation of the proposed tests for
H, in the situations (i)-(v) and make the formal identification of (iiia)-(iiie) with (iii)
and of (iva) with (iv), chapters 9—11 will give the operating characteristics of the
proposed tests, 14 will deal with all the set of simultaneous confidence bounds asso-
cciated with each test of chapter 6, the operating characteristics of the proposed set

of simultaneous confidence bounds in each case being easily available from chapters
9—11.



CHAPTER SIX
Tests for the Null Hypothesis*

6.1. Direct type I construction not possible. 1t is well known [40, 41] that
for each composite H, above there are infinitely many similar regions but no most
powerful (bisimilar) region against any specific composite alternative, i.e., any compo-
site alternative in which the specifiable elements are given special values. Thus
direct type I construction will not work here.

6.2. Reduction to pseudo-univariate and pseudo-bivariate problems. At this
point suppose that, starting from an x(px1) which is N(§, ) we consider a linear
compound a’x (with an arbitrary constant, i.e., non-stochastic a’(1 X p) of nonzero
modulus). This a’x is a scalar well known to be N(a’§,a’Za). Notice that a’¢ and
a’Xa are also scalars. Suppose also that given

1P B lp [Zn Zn]p
X= : N ’ (p <9),
X5 q & - q Ty Zgd g
1 P q .
we consider linear compounds a’x,, b’x,(where a (p x 1) and b(gx 1) are each non-null

and non-stochastic); then these two scalars a’x, and b’'X, are well known to be distri-
buted as a bivariate normal with a correlation coefficient

p(a, b) = p;, = a'Sy,b/[(aTy;2)H(b'Zyb)H], e (8.2.1)

Now suppose that, in place of H, of (i)-(iv) of chapter 5 we consider respectively
(v) H@a'3%a =a'%a) (= H,,) against all H(a'%a # a'Xa) (= H,), (a. fixed),
(vi) H@'%a = a'Xa) (= H,,) against all H(a'Z,a #a'Za) (= H,), (a fixed),
(vii) H(@'t, = a'%, = ... = a'§;) (= H,) against all H, (# H,,), (a fixed),
(viii) H(a’ Z;,b = 0) ( = H,,,) against all H(a’ Zeb #0) (= Hy), (a, b fixed),
We now consider the totality of all non-null a for (v)-(vii) and all non-null
a and b for (viii). Notice that (a) N,H(a'Sa = a’S,a) = H(Z = %), (b)) H(a'Z,a
=a'X,a)=HEZ =3,), (¢) [.H (a’il =a'g, = ..=2a%) = H(, = G=...=
£:) and (d)N), ,H(@'Z;b = 0) = H(Z;; = 0). We could have worked in terms of any
subset of a’s which led by intersection to the same Hy, but this we do not do here.
It may be noted that, by the procedure to be used here, apart from set-theoretic diffi-
culties which, however, do not arise in these applications, the total set of a’s or any
subset of it (of the kind considered) will uniquely define an extended {ype I test
associated with the total set or with that particular subsei. Next suppose that, in the
alternative, under (v)-(viii), we substitute “specific’’ for “all” and thus have four new
situations (ix)-(xii). Tt is well known that for each of the situations (ix)-(xii, we };ave
one most powerful (bisimilar) region, so that from these we can construct respective
(modified in a sense to be explained in section 6.3) type I-iests for the pseudo-univariate

* See reference [43] in this. connection.
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situations (v) and (vi), straight type I tesis for the pseudo-univariate situaton (vii)
and the pseudo-bivariate situation (viii). From these modified type I and straight
type I tests we can tiy to construct the respective extended type I tests for the situations
(i)-(iv). This ties up (see section 4) the p-variate problems (i)-(iii) with the pseudo-
univariate problems (v)-(vii), the (p--¢)-variate problem (iv) with the pseudo-bivariate
problem (viii).

6.3. Modified type I tests. We now take over the notation and symbols
from section 4.

(v) Startingfrom(4.13), put x? = na’Sa/a’S;aand notice that, at alevel g,, for
H(a'Za = a’'Ya)(= H,,) against all H(a’Za > a’%;a) we have the one-sided uniformly
most powerful (bisimilar) region: y2>x3,(n), and, at a level §;, for H,, against all
H(a’'Ya<a’¥;a) we have the one-sided uniformly most powerful (bisimilar) region :
X< x3'(n), where x3.(n) and y3, (n) are the upper f, and lower £, points of the

x2-distribution with d.f.n. Notice that y? has the central y2-distribution with d.f.n.
Now consider the union [x2 > x3, (n)] U [x2 < x3.(n)] = \J(a), say, which, if we
decide to call it a new critical region, will be one of size 48, = f (say). Notice
that given B, we can regard B, and B, now as flexible, subject to f,+/8, = f. At this
point, we can so choose 8, and B, i.e., the tail ends 3, and x3, as to make U(a)
a locally unbiassed (here it will turn out to be also locally most powerful) critical region
(in the neighbourhood of H,,). It will be seen that the condition of unbiassedness

- imposes a relation between x3, (n) and xj,(r) which involves only » but isindependent
of the total size of the region 4. We now call these tail ends x&(p, n) and x3; (p,n).
We now recall from (1.2.2) thatthis| J(a) is also a uniformly unbiassed region (having,
in fact, the stronger property of monotonicity) and is also admissible. With this choice
of x{s(n) and x3; (n) we have now for H(a’Ya = a’5a) against all H(a’Sa # a’S;a) a
modified type I critical region of size §.

Xe = na’Saja’Z, a > x3s(n) or < xiz(n), ... (6.3.1)
which is uniformly unbiassed, monotonic and is also admissible.

(vi) Starting from the product of two distributions like (4.13), put F,
a’S,a/a’S,a and notice. as in the previous case, that, at a level f,, for H(a'Z,a— a’Zga)
(= H,,) against all H(a’ 3;a > a’ I, a) wehave the one-sided uniformly most power-
ful (bisimilar) region : F,> Fg,(ny, ny), and, for H,, against all H(a'Xa < a’ 5,a),

the one-sided uniformly most powerful region : F, < F,'gl(nl, 7,), where F,’,l(nl, Ngy)

and Fg (ny, n,) are the lower £, and upper f, points of the F-distribution with d.f.
ny and n,.  Notice that F, has the ordinary F-distribution with d.f. n, and ne. Take
the union of the two regions and as in the previous case call it a new critical region,

say Ua) of size f,+pf, = f(say), and given g, pick out the tails F,a (4, )
and FB (ny, m,) s0 as to make | J(a) a locally unbiassed region (in the neighbourhood
of Hy,), notice that this imposes an extra relation between Fpl(nl, ng) and

Fg, (ny, ny) which involves only ni, ny and not the total size of the region . Recall
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also from (1.2.2) that this is a uniformly unbiassed region (also having the monotonicity
property) and also admissible. As before, with this choice of g and Fg to be called

Fip(ny, ny) and Fyg(ny, n,) we have now for H(a’X,a = a'%, a) against all H(a’' Z,a
# a’ Z,a) a modified type I critical region of size £ (uniformly unbiassed, monotonic
and admissible)

F, = a'8,a/a’8ya > Fog(ng, ny) or < Fipng, ny). ... (6.3.2)

(vii) Start from (4.16)-(4.22) and recall from (ii) of section 2.3 thatfor H(a'g,
= a'§, = ... =a't;) (= H,,) against any specific H,( # H,,), there is the most
powerful (bisimilar) critical region (of size, say y) which is a one-sided {—region, and
by taking the union of these regions (for fixed a but by variation over &, &, s ),

we have the straight type I region of size, say g8, given by (notice that' F, has the
ordinary F-distribution with d.f. n; and »,)

F, = a'S*aja’Sa > Fa(n,, ny), .. (6.3.3)
where Fg(n;, n,) = Fy (say) is obtained from P(F, >> Fg|H,,) = p..

This is well known to be a type II or likelihood ratio region as well and is also
well known to have a number of desirable properties (including uniform unbiassed-
ness, the stronger property of monotonicity and also admissibility).

(viii) Start from (4.15) and put

[ Su v ) ] ; [ ]
= [ 4 ]n ... (6.3.4)
12 Sa

r 9
Next put
7. = a'Sb/(a’S,2)H (b’ Sy,b)E, ... (6.3.5)
and notice that, at a level g, for H(a’ Emb = 0) (=H,,,) against all H(aZ,b > 0)

- we have the one-sidéd uniformly most powerful (bisimilar) region : r,, > rg(n—1)
and for H,,;, against all H(aZ;;b < 0) the one-sided uniformly most powerful (bisimilar)
region : r,, < —rg(n—1), where rg(n—1) (= rg, say) is given by -

P(ry, 2 rg|Ho) = B ‘ _ .. (6.3.6)

Notice also that this r,, has the distribution of the central correlation coefficient with ‘
d.f. (n—1). Taking the union of the two regions we shall have a straight type 1
critical region of size 24 given by

[ap > Tﬂ(n—l)] U [ra, < —15(n—1)1. . (6.3.3)

This is well known to be a type II or likelihood ratio region as well and it is also well
known that this has a number of desirable properties (including uniform unbiassed-
ness, the stronger property of monotonicity and also admissibility).
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6.4. Actual construction of extended type I regions. _

(i) By the test procedure (7.3.1) over xi(n) < x2 < xsg(n) we accept
H(a'Sa = a’Sa), so that, by using the heuristic principle of section 2.6 over Nalxis(n)
< X2 < x3(n)] we accept (),H(a'fa = a'S,a)=H(E =2, =H, and thus
over its complement (J,[x2 > x3s(n) or < xZ(n)] we reject H,. This may be set up as
the extended type I test. To obtain [,[x7 < x2 < x#(n)] we note that a particular
S would belong to the intersection if , for that S, x7; < a’Sa/a’S,a < x3 for all non-
null a. This statement &= x7; < smallest a’Sa/a’Tya < largest a’Sa/a’Zqa < X3,
the “largest’” and “smallest” being under variation of a (for given §8). Now, given
S, and of course I, the largest and smallest values of a’Sa/a’S,a are easily seen from
(A.2.5) to be thelargest and smallest roots, say ¢, and ¢, of the p-th degree equationine:

[S;cEO] =0, e (6.4)

all the p roots ¢,, ¢,, ..., ¢, being in this situation, a.e. positive, since %, is given to be
symmetric p.d. and S is, by definition and the assumptions, a.e., p.d. Starting out
from the (modified) type I test (6.3.1) for HOI we have for Hy, i.e., HZ = Z;) the
extended type I critical region

¢, = Xsp(n) andjor ¢; < xis(n). co (6.4.2)

To find X3 and xiz we make use of the condition of local unbiassedness (which in-
volves only n) (see (v) of 6.3) and also 11.5) and write down the further condition
(which now completely determines y3; and y%;)

P(xis < ¢y < ¢, < x| Hy) = 1—at. .. (6.4.3)

Notice from (A.7.1.1) that under H, the distribution of c,, ..., ¢, and thus also of ¢,
and ¢, turn out to be independent of %, depending only on p and n thus the c.d.f. (6.4.3)
depends only on a, p and =, so that it will now be proper to write the tail ends
as (P, n) and c,,(p, ).

(ii)) The general nature of the arguments will be exactly the same as in the
previous case. Starting from (6.3.2), over F,;z < F, < F,; we accept H(a'S,a =
a’'S;a
a’S,a
accept (), H(a'Za = a’S,a) = H(Z, = %,) = H,, and thus over its complement

a’'Y,a), so that, by using the principle of section 2.6 over (), [Flg < <F23] we

Ua [——:gl: > F,; <or FIB]WG reject H,. As before we set it up as the extended type I
2

test and, using (A.2.6), notice that the statement F,; < a’S,a/a’S,a < F,; (where S,
8(2 and F,; and F,g are held fixed and a alone is varied) & F,p < ¢ < ¢, < Fy,
where ¢, and c, are the smallest and largest roots of the p-th degree equation in ¢:

| 81—¢8,| = 0, e (6.4.4)

all the p roots being here, a.e., positive, since 8, and 8, are by the conditions of the
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problem, a.e., p.d. Starting out from the (modified) type I test (6.3.2) for H, we
have thus for H(Z, = Z,) the extended type I region

¢y > Fop(ny, n,) and for ¢; << Fyp(ny, n,). ... (6.4.5)

As in the previous case, given «, to determine F,g and F,; we first take over
(see (vi) of 6.3 and also 11.1) the relation (involving only n, and n,) between Fyp
and Fg imposed by the condition of local unbiasedness and write down the further
condition (which now completely determines Fys and F,p)

P(Flﬁ <CI<CP<F2B[‘H0): 1—o. ‘er (6.4.6)

Notice from (A.7.2) that under H, the distribution of ¢, ..., ¢, and thus also of ¢, and
¢, happen to be independent of the common value of X, and X, and also of ¢, , &,, depend-
ing only on p, n, and n, and thus the c.d.f. (6.4.6) depends only on «, p, n, and n,, so
that the tail ends F,z and F,z can be more appropriately written as ¢,,(p, 1, 1) and
Coq (P, 7y, My). The actual distribution problem on which depends the evaluation
of the left side of (6.4.6) is solved in section (A.9.7).

(tii) By the test procedure (6.3.3), over F, = a'S*aja’'Sa < Fp(n,, n,) we

accept H(a'§; = ... = a'§;) (= H,,), so that using the principle of section 2,6 over
Q%
MNa [Fa= %i,—; < Fy ]We accept [ H(a'§ = ... = a'ik). =HE =8 =...=§&)

= H, and over its complement | [F, > Fy] we reject H,. We set it up as the exten-
ded type I test and, using (A.2.6), notice that the statement a’S*a/a’Sa < Fg (where
S* and S and Fg are held fixed and a alone varied) &> ¢, < Fgwhere c, is the largest
root of the p-th degree equation in ¢

[8* — ¢S|= 0. e (6.4.7)

From the definitions and assumptions of section 6.2 and chapter 4 it is easy to check
that S is, a.e., p.d. while 8* is, a.e., at least p.s.d. of rank r = min (p, k—1). It will of
course be, a.e., p.d. if p < k—1. In any case, we can say that, out of the p roots of
(6.4.7), p—r will be always zero, while r roots, to be called ¢, < ¢, < ... < ¢, will be,
a.e., positive where r = min (p, k—1). Starting out from the straight type 1 test
(6.3.3) for H,, we have thus for H(X* = 0) the extended type I region:

¢ 2> Fg(ng, ny), vn (6.4.8)

where, given the size o of (7.4.8), F is to be determined by
P(c, > Fg|Hy) = o .. (6.4.9)

Notice from (A.7.5) that under H, the distribution of ¢, ..., ¢, and thus also of ¢
happen to depend only on p, n; and n,, i.e., on p, k—1, n—k (where n is the total
number of observations and % the total number of samples or populations), being
independent of all other nuisance parameters. Also the c.d.f. (6.4.9) depends only
on a, p, k—1,n—k. Thus the tail end Fg can now be more appropriately written as
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calp , k—1,n—Fk). The actual distribution problem on which the evaluation of the
left side of (6.4.9) depends is solved in section 7.6 and chapter 8.

. , '8,,b)?
iv) By the test procedure (6.3.7), over 7%, = -ﬁ—lz,—_
) By P (6:3.7) b (@8 ,) (b5 b)

we accept H(a'S;,b = 0), so that, using the principle of section 2.6 over [Nu,[r2 <
rp(n—1)] we accept [ ), (2" ;b = 0) = H(Z,, = 0) = H,, and over its complement
U,, %, > 3 (n—1)] we veject H,. As before, we set this up as an extended type
I test and, using (A.2.3), notice tha tthe statement (a’Sy,b)?/(a’Sj;a)(b’' Syb)Krj(n—1)
(where Sy, 8,,, S5, and 75 are held fixed and a, b alone varied) & c, < r§ (n—1),
where ¢, is the largest root of the pth degree equation in ¢: :

<7 {n—1)

[c81;— 81,858, l = 0. ... (6.4.10)

From the definitions and assumptions of chapter 4 and section 6.2 it is. easy to see
that, a.e., Sy, is p.d. and so also §;,8715,,, so that, a.e., all roots will be positive.
Under these conditions it is known (from (A.1.16)) that the p roots will all, a.e., lie
“between 0 and 1, satisfying the condition, 0 < 0 < g <...<e, <1 Starting out
from the straight type I test (6.8.7) for H,,, we have thus for H(Z,, = 0) the extended
type I region:

¢, > rj(n—1), ... (6.4.11)
where, given that « is the size of (6.4.11), g is to be determined by
"Ple, > rg|Hy) = o co (6.4.12)

Notice from (A.7.3) that under H the distribution of ¢y, ..., ¢, and thus also of ¢, happen
to depend only on p, ¢ and n, being independent of all other nuisance parameters.
Thus the c.d.f. (6.4.12) also depends only on a, p, ¢, #n and hence the tail end rg can
be now more appropriately written as c,(p, ¢, n). The actual distribution on which

the evaluation of the left side of (6.4.12) depends is solved sin section 7.4 and
chapter 8.



CHAPTER SEVEN
Reduction of Some Distribution Problems and Some
Actual Distributions™

7.1. - Distribution of rectangular co-ordinates. As in (A.8.6), put X(pxn)
= T(p X p)L{p X n), subject to LL' = I(p), observe that 7' and L; have the distribution

pn n ~ - ’
20[1/(2m)? |S|2] exp [—3 tr S5 {1 gn-t af aL, /l ILL)
£

i=1

. (T.L1)

L,

‘Now, using (A.8.6.3) to integrate out over L;, we have the following distribution
for T' [31]:

Fe n 2(p-1)

| 1@ 77 & |3

Inr (”_”“ )] exp [—3 tr P T epiaf. . (1.1.2)

i=1 2 i=1

From (7.1.2), by usihg (A.6.1.12) and the fact that |nS| = |1~’|2=\12[ t% we have
. i=1

the following distribution for 8 (usually known as the Wishart distribution) :

n—p—1

(2 )’%,,,Mfl) S ﬁl r("*f;rl)] exp [— } & nE718]| 8| 2 dS. ... (1.1.3)

7.2: Distribution of characteristic rools of the sample dispersion matriz 8.
Using the results of (A.7.1) we start, without any loss of generality, from the canonical-
form (A.7.1.1), use (A.3.6) to set X(pXxn)= M(pXp)XD  Hpxp) L(pxn) where
LL' = I(p) and M is |, with a positive first row,. take over from (A.6.3.1) the
Jacobian J(X : M,, ¢’s, Lz) and have for M, ¢’s and L; the distribution:

»n R n—p—1
22 [ 1/(2m)? 10 exp [~ 3 tr Dy, DML o * e
7 aM dL
al o (e;—¢; 1 L o (121
X mo [i<j=1(c‘ c’)] sarry | |[e@ry (7.2.1)
0L, |ar,| 0y |,

Using (A.8.6.3) to integrate out over L;, we have for ¢ and M, the distribution
| o |
2Fp,m]| 1fem* 1Ly exp[—4 tr Dy MDY
i=1
n—p—1

X fi c; ? dc; mod [.pI_I1 (ci'——cj)]dMIl

i<i=1

(M)

—t 7.9.2
20L,) 7:3:2)

_ M,

* See references [24, 31, 32, 54] in this connection,

33



34 REDUCTION OF SOME DISTRIBUTION PROBLEMS
This is the point to which the reduction of the distribution problem for the general
case can be conveniently carried out. If, however all y; =2 constant = 1 (without

any loss of genérality), then tr D},VMDCM "= tr M DM = tr D, = 2 ¢;, and now

remembering that the first row of M is positive and using (A.8.6.4)——(A.8.6.8) to

integrate over M,, we have for ¢’s the distribution on the null hypothesis all
vs = const. = 1:

n zm i n—p—1

[1/(2) i ]F(p, n) F(j),p) exp [——%— Z‘,p c@-].ﬁ c; 2 de; mod [p

i=1 t=1 i<j=1

{c; —¢ )}
(7.2.3)
where F(p, n) and F(p, p) are given by (A.8.6.3) [31].

7.3. Distribution of characteristic roots of S;83. 'As in (7.2.2), using the
results of (A.7.2), we start without any loss of generality, from the canonical form
(A.7.2.1), use (A.3.8) to set X (pXny) = A(pXp)D 5(pXp)Li(pxn) and X,(pXn,)
= A(pXp) LypXxmny), where 4 is non-singular and L,L; = L,Ly = I(p), take over
from (A.6.2.11) the Jacobian J(X,, X, : 4, c’s, Ly, Ly;) and obtain for 4

, €8,
Ly; and L,; the distribution

Blra+ne) _ ,
2p [1/(277) 2 fg,y?llz] exp [—'%‘tr (DI/'YADcAf_l_AAt)]IAI’IT/1+7L2—I) dA

l..]
] .. (1.3.0)
2I

Using (A.8.6.3) to integrate out over L;; and L, we have for 4 and c¢’s the
distribution

X ﬁ M =P=Vlge mod [ (c;—¢;) ] [dLu/ ALyLy )
=t oLip)

O(L L,
x [dL”/ a(Lﬂf))

plni+ns) . ‘
2[ven 2 ) B n) Fip, na)exp [— § e Dy AD A+ 44

% ,Alnl-l—n»—-pdA H c(nl—P—l)/-'dc mod [ H (c; .._c)] (7.3.2)

=1 z< J=1

As before, this is the point to which, for the general case, the reduction of the

distribution problem can be conveniently carried out. If, however, all y’s, i.e., all
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¢(Z; £3') = 1 (which by (A.1.13), happens if and only if &, = 22), then further
reduction is possible and (7.3.2) reduces to

plny+ng)
2°(1/2m)- 2. F(p,n)F(p, my) exp [—3 tr (4D,,,4')]|4 |"1+"2_pdA>_< (factors

involving the ¢’s taken over from (7.3.2)). e (7.3.3)

Now putting AD ;7r, = B and using (A.5.2) we have for B and c¢’s the distri-
bution

p(n,+n,) . ‘
2[1/2m] ®  F(p,my) F(p,n,)exp[—}tr BB]|B|™T"~? 4B

40

B (—p=1)2 2 T (e .
X 591,61 de;/(1+¢;) mod [ i<l;_1=1 (;—e)) ... (7.3.4)

Now using (A.8.7.1) and remembering that

[ exp [—3tr BB’]‘B|" dB

over B with & positive first row

= zip exp[—} tr BB']|B|7dB, o (1.35)°

. over B (unrestricled)

we have for ¢’s the distribution (on the null hypothesis £, = %,):

) [ﬂm fir (____”1+"22_"'+_l) 518, ("I“Hl) T ("z—i+1) T (?’,,_%)]

=1 =1 2 2 -

ny—p—1 Ny +ne

x Te *  defi+e) * mod [ T )] .. (1.3.6)

i=1 1 <j=1

7.4. Distribution of canonical correlations. ‘As in the two previous cases,
start, without any loss of generality, from the canonical distribution fg)rm
(A.7.3.5) and let ¢; (St Zp 2t ') = v; (say) (=1, 2,...,p). Next, use
(A.3.17) to set X, (gxn) = T(gxq) Lygxn) and X (pxn) = Ulpxp)

L. 1n— ~
X [Mypxa—g) i D (pxp)Mopx gl [2|" 7%, where U, 2y, My, Ly and T are
n
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characterized in (A.3.17) and e; = (I;ci)/ci. Now take over from (A.6.5.1) the
Jacobian J(X,, X, : T, U, ¢'s, My, My, Ly;) and obtain for 7', U, ¢’s My, M,; and
L,; the distribution

D1/1—'y 5 _[D J;l(l_y)f 0]
", n+0) p n _ I
(fem * HO—ylespd —dtr | [DM,(H, } | [Dm-'v o - }
‘ 0 PLo I(g—p)
UD, U UM, ) s
| T 1 \U|reau L gt T o deymod [ ] T (e,— )]
7 MU e = i=1 i<im1

oM, M)
O(Myp)

oM, M3)
(M 5p)

| " JIEIAZS
aM ALy |22 20 (7.4.1
[ / Mu':| I: 2I/ Mal:l [ 21/ 9(Lsp) Lzl] 40

Using (A.8.6.3) to integrate out over My; and L,;, we have for T, U, My
and e’s the distribution

nipte) 2 n
22+ [1/(2m) 2 = 1L (1—)%] F(p,n—q) F(g, n)
i=1

Dyj1w [ —[Dyyp1—w | 0] : 5
! | UD,,.U" UM,T
X exp 3 tr Dyip— | [ Piny |0 - o
0 L0 ) I(g—p)d-
~¢ 2 ,
X | U ["~2dU H pri a1 e de;mod [TE (e,—e))] dMy /ﬂ__zMz) . (1.4.2)
=1 i=1 i<j=1 a(MzD) Ale

This is the point to which, in the general casé, the reduction of the distribution problem
can be conveniently carried out. However, if all c(Efl‘leEgz’-Z’m) = 0, ie., all y;’s
= 0, (which according to (A.1.17) happens if and only if ¥,, = 0), then further reduc-
tion is possible and (7.4.2) reduces to

2vH [1/27r] F(p,n q) F(g,n) exp [—4% (tr UD,, U+ tr TT)]| U |"2dU

r—g—1' —1
% n 27 dT 1 e 2 de; mod | I (ei'_,ej)]dM /

i= i=1 1<j=1

(M M)
(Mrzp) lM

(7.4.3)
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. q
Note that e T = X i
i>j=1

and [ exp [—itr TT’] f i 11 diyy = 2-o+omz oa-va r("“’;l)

7 i=1 ixj=1 i=1

and hence integrating out over 7' and M,;, obtain for U and e’s the distribution

22 n(ptg)  gle-117 ¢ —311
{122a 2"~ 1 (2 ') Fp.n—q) Fip, ) Flg, m)

i=

p  n—p-g—1 ¥
X exp [—4+tr UD, U] |U|*2dU 11 e, 2 de mod-[ 1) (ei—ej)]. . (7.4.4)
=1 .

i<j=1
Now put UD ;7= V, use (A.5.2) and (A.8.7) to integrate out over V and obtain for

e’s the distribution

Const [ i ei(”—ﬂ—”—l’/zdei/(l—f—ei)”/?] mod [ H (ei—e;) ] .. (7.4.5)

i=1 i<j=1

Putting e; = (1—c;)/c; we have for ¢;’s, on the null hypothesis Zlé = 0, i.e.,
(S0 TpZ5s Bh) = 0, ie., y; = 0, the distribution,

. - p—pg— —p— —1
Const 11 (1— i)_pzq - j En de; mod [pH (e;—¢;) ],
)

=1 i<j=1

where the

o = (2= | {1 g =i

(7.4.6)

An important special case is when p = 1 and this we shall consider both on the null

and on the non-null hypothesis. In this case there is only one non-zero (and here

positive) e or ¢ and only one posible non-zero (and Beré positive) . Thus
1 A

mod[pH (e;—e; )] or mod[ I (¢i—ec; )] will drop out. On the null hypothesis y = 0,

i<Y=1 <<y=1 . -
the distribution of e and ¢, as special cases of (7.4.5) and (7.4.6), will respectively be

U'(n(2) - [e(n—q-z)/zde/(1+e)n/2 ], e (7.47)
T(g/2)T(n—g/2) ’
_M_L:_ [( 1— c)(n—q-z)/zc(%z)/zd(;]. . (7.4.8)
['(g/2)F(n—q[2)
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For the distribution on the non-null hypothesis y £ 0, we start from (7 .4.2), put
U(1x1)=u (a scalar), so that UD,,,U’=(1+e)u? My(1 X q)=my(1 X q)=(my, My, ...,Mmy)
(say), and take ms, ..., m, to be the so-called independent elements of m,, so that

O(M,My)

(M 5p)

My

-and obtain for e the distribution

n{g-+41) n n—q—2

2[1em (=) |F(,n—qF(g, e 2 de

1

1 . (4
X g exp [—5(—1—_—7/—){(1+e)u2——2\/7ut11m1+t%1}—%.Z 2 t?j]

i=2 j=1
U, -,2'1’ m’2I
q q q §
X udu 11 eidd 11 dmi/(l—- 5 mz) . o (7.4.9)
=1 i=2 =2 .

q
Now putting m, = cos 0 so that 3 m} = sin? §, we note from (A.8.4) that
i=2

exp:}:ﬁutu 1—-§m3% I(!Idmi 1—-§m,§.ir
j : 1—y ( ] /

=2 i=2 =2

3
sin ¢ < ( m‘iz ) < sin 64 (sin 6)

Ma

2

= [(q—l)nq_;l/r(%ﬂ) ] exp [il\i 7’7 utyy cos 0] (sin Y240, ... (7.4.10)

Using (7.4.10) and also integrating out over tis (j=1,2,...,% and ¢ = 2,
3, ..., p), and setting v2 = (1-e)u?, we have (7.4.9) reducing to

N2 n

Const (which is easily obtained) e ° de/(1+¢)®

1 ' SRR - '
X j exp [ ~51=) (v24 t%l)-! cosh[ 1\17; Vi1 €08 Of4/11-¢ .'(vtu)”—ldvdtu(sin 0)-2dg,

v, 811, [}

(7.4.11)
tle limits of » and #,, being from 0 to oo and of @ from 0 to 7. To evaluate the integral

w 20}

I f exp [—a(z®+y*—2bxy cos 6)](xy)dz dy (sin )"0
=0 =z,y=0
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we proceed as follows

T 71‘/2
I exp [2abzy cos 0] (sin 0)"d0 = 2 I cosh (2abzy cos 0) sin™d dO
0 0
1\ 1 (1 N
=T (L; ) r (E) (abay) °I,(2abay), e (1.4.12)

where I stands for the Bessel I function in the usual notation [52] (Watson’s Bessel
functions, p. 79, formula (9)). Thus we have

_m -

‘Integral = F( Z'z’_;—l ) I‘( ;—) (ab) * [ expl—a(x®-y2))(xy) L (20bxy)dxdy.

z, y=0

(SR

(7.4.13)

To evaluate this put zy = z and x/y = ¢°, so that J(z,y :2,v) = 1 /2.and the range of
z and v could be taken as : 0 < z<<ovand —0 < v < oo. Thus we have, from the
symmetry of the integrand,

1 5T 7 o
Integral = (‘12) T ﬁi_) (ab) * I J exp [—2az cosh v]z ? 1,,,0(2ab2)dz dv.
z=0 =0

e (7.4.14)

But putting v = 0in formula (9), p. 181, Watson’s Bessel functions, and noting
that K stands for the Bessel K-function in the usual notation we have

ol
; lexp [—2az cosh vldv = K(2az). . (1.4.15)

=0’

m

(o]
j I(20b2)Ko(202)z * dz. ... (1.4.16)
0

m1§

Hence Integral = I‘( m—2i—1 ) ( L ) aé)

Now putting g =0, v=m/2 and A= n—m/2 in (1) of (13.45), p. 410,
Watson’s Bessel functions and checking up on- - the validity ‘conditions indicated
there, we have

[¢0] m

s K(2az)J ,,4(2ac2)2 2= [(2%)%[*2(“__'5_1) . _i(2a)"+1 I‘( m2 ) ]

0

X o, (n+1 n-t1, m—|—2 02)

7.4.17
i1, vkl (7.4.17)
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If now we put ¢ = b, we shall have J,,;,(2aibz) = (z) wro(2abz), so that substituting

in (7.4.16) we should have

e =2 {2 () (22

n+1 n—l—l m—|—2 2
X 5 1( = b ) . (1.4.18)

Substituting in (7.4.11) we have for e the distribution proportional to

)e 2 dej(1+e). . (7.4.19)

Now putting ¢ = 1/(1-}+¢), we have for ¢ the distribution,

5 ‘ " V n—g— q—
;((’2;12(_;;;/2; r (73 = %,7’6)(1—@ 2‘2 ¢ ?de ... (7.4.20)

- 1.5.  Distribution of partial canonical correlations. Notice that (A.7.4.5)

can be rewritten as

: . - I(p) : 0
n(p+éq+r) » g . :
[1/(277) .Hl(l—‘)’i) ]exp —gtr [—D./y/m] [:Dvll?'y : 0 :]
| 0 i Lo : Ig—p)

L) i —[Dyyyr= i 0]

"X, : R
X [ N ] (X, X%) '0 [D“/ﬁ t 0 ] — 1 tr X, X} [ dX,dX,dX,.
2 : . !

0 ilIlg—p)
- v , (7.5.1)
'Now using (A 3.19) niake the transformation X (rxn) = Ti(r x ) Ls(r X n)
) ?» »f 2, Z n—r
subject to Ly Ly = I(r) and [ 1] = [ " 12] [ ] where L is a
X, dg ¢ Ziyy Zig

n n—r r

L
completion of L, to make [ ] 1. We have, by (A.6.6),
L3

O(LyLig )

JX:2,7, Ly =21 tn-z/ .
3D

t=1
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We have also X,X; =T1". Hence from (7.5.1) we have for Z, T, Ly, the
distribution

D1/1—'v : _[DJY/I—'Y '5 0]
Mp+atr) n :

D ) H -
(ifem * M-y |exp { —ur [Dm-y ] [Dl,l_y 10 J
0 : 0 H 4

D1/1—'y —[lel—v : 0]

Zu‘ ’ ’ < e on - Z12 t e ot
X [Z1 : Zg 14 tr Djvp—v| i [Dip—y :0 [Zyg i Zg]
Zy - : : Zigg-d -

0 N I T |

— v TF Yaz, dZ, Zh, A2y N graialy |0 (7.5.2)
i=1 (Lsp) Ly,

It is thus seen that (Zy, Za1), (Z1g, Zsy) and (T, Lg;) are distributed as three inde-
pendent sets. Therefore integrating out over (7, Ly;) and (Zy,, Z,,) and noting
from (A.3.19) that the ¢’s of this section are exactly the same as ¢[(Zy; Z1,) N Z1uZg)
X(Zyy Zg Y NZy Z;,)], it becomes evident that both on the null and on the non-null
hypothesis the distribution of these ¢’s are exactly the same as the ¢’s in section (7.4)
with n of that section being replaced here by n—r.

7.6. Distribution of characteristic roots connected with the multivariate analysis
of variance. Without any loss of generality we start from the canonical form
(A.7.5.6) and consider two cases separately, namely where (i) p < n, and (ii) p > n,
involving respectively, a.e., p non-zero and n, non-zero ¢’s. '

(i) For case (i) use (A.3.8) toset X, (pxn,) = A(pXp) D j5(p X p) Ly(p X ny)
and X,(pXn,) = A(pXp)Ly(p Xny), where 4, L, L, satisfy the conditions of (A.3.8),
take over from (A.6.2.11) the Jacobian J(X,, X, : 4, ¢’s, Ly;, Lyy) and obtain for
4, ¢’s and L;; and Ly the distribution

p(ng+ns) s s
?jem] 2 exp[—3{trADy. A3 yi—2 3 (4D L] ]

2
[}

ny—p—1 1 - . B ’
X [A|mtm=PgA {1 ¢ 2 dc; mod T (c—c)]dL L) A LyLp)
I ' oy [i<j=l ( ])] 11/ a(LID) LlI 2I/ a(LZD) LZI
(7.6.1)
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Use (A.8.6.3) to integrate out over L,; and obtain for 4, ¢’s and L, the distribution

pls )

8 & -
27[1/2n] 2 F(p,n,) exp [——% { tr AD1+GA’+_§1%—2 §1 (ADJcLl)ii)l%}]
n—p—1 1
- — arL
w [4 [mne pdA‘ﬁ ¢c. 2 de|m d”f_[ 6—C) {2 . ... (7.6.2
4T ¥ [ © i<j=1( J)]Ia(Lqu) ‘ (762
0(Lyp) L,

This is the point to which, for the general case, the distribution problem can
be conveniently reduced. If y’s =0, ie., all 0(21251)’51 = 0 (which by (A.1.13),
happens if and only if 3, = 0, i.e., £ = 0), then further reduction is possible and using
(A.8.6.3) to integrate out over L,; we have for 4 and ¢’s the distribution

pns+ns) ,
21’[1/277] 2 F(_p, nl) F(p, nz) exp [_._ % tr ADI_H,A']!A lnl+n2_pdA

, m—p—l »t
x e, 2 de mod[ 1| (c,._c,.)]. ... (1.6.3)

=1 i<j=1

7

Now as in (7.3), integrating out over 4 we have for ¢;’s, i.e. for ¢(X; X} (X, X5)-1)’s
the following distribution on the null hypothesis ¥ = 0 :

me/2 ﬁ r wﬂ)/iﬁl 1“( nl—;:;l‘l) P("z—;'i‘l) 1-1( p—i+1 )

i=1 2 2

» ny—p—1 ny 4Ny -1
x| e, 2 dej(l4c) 2 ] mod[ It (ci——cj)], ... (7.6.4)

i=1 1<j=1

which is exactly the same form as (7.3.6).

(i) For case (ii) use (A.3.14) to set Xy(pXn,) = p—ny, [Ul] D, (nyX7ny)

ny LU,
7y

X Ln(ny X ny) and Xy(pX ny) = T(pX p)Ly(p Xﬁz), where U, L,, Lz and c satisfy thé
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conditions of (A.3.14), take over from (A.6.7.8) the Jacobian J(X,, X ie’s, U, L11:L21),
and obtain for C, U, Ly;, Ly; the distribution

p(ny+1hs) U, -
27[1/27] + 2. exp[ {tr UD,, (p)U’ -|— 2 vi—2 2 [[ ]D*"’LIJ fyi}]

=1 U2 i
-+ p'—““_nl—l 7y —1
X lUInj_ ’nz—p H (U )p ni —@dU H ¢ 2 dci mod 1 (Ci_cj)]
=1 =1 ¢ i<j=1
AL, I | ][ L, L)) } |
X | aL — ALy, [| D52 2e)) | (7.65
[ uf [ 0Ly |1, o 0Ly |1, (7.6.5)

D, 07 n
where D1+c(p) = . +I(p).
.0 0d p—n,
" P—M

Using (A.8.6.3) to integrate out over L,, we have for ¢’s, U, Ly, the
distribution

=1 z-l

p(n14-n,) e UI : .
21)[1/271] 2 F(p’ n2) exp [_% {tI‘ UD1+c(p)U + 2 Yi— p> ,- [ ] D'JCLI] %}]
’ U2 i

X | U|m+n2—deZ’ﬁ"l(ﬁ3)§—nl—i Tt ep—m— ldc mod L I (c,—c; )]dLu— 0Ly Ly)
= =1 i<t Lp) |1,
(7.6.6)

As in case (i) we shall stop here so far as the non-central distribution iscon-
cerned. For the central case, i.e., for the null hypothesis that y,’s=0,i.e., all ¢(Z, 25" )’s
= 0 (which happens if and only if £ = 0) further reduction is possible as in case
(¢) and, using (A.8.6.3) to integrate out over L,;, we have for U and ¢’s the distribution

P(n1+ns) ] 1
2e[1/2m) 2 F(p,m,) F(p, ny) exp (—} tr UDy, U | U|™+"~24U

i
'

p—n, . p___nl__]f : rn,—1
(OB~ ™. 2 de mod | " (i— )] . (1.6.7)

i=1 i=1 1 i<i=1
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Now putting UD g5 = V and using (A.8.8.2) we integrate out over V and
obtain for ¢’s the distribution,

7Tn./z[ i (nl—l—nz—{—l—@ )Pﬁnx F(p n1+ 1—1 )/ i F(nz—[—zl—i) F(.p_i_‘_l )

i1 i=1 i=1 2

ny Pmm—1 nytne ny—1 ‘
« i r("l““ )][iglci T degf(l+c;) 2 ]mod[ il (ci—cj)]. .. (1.6.8)

i=1 1<j=1

Another way to handle the distribution problem in this case is not to use
the transformation (A.3.14) and its Jacobian, but to use the transformation (A.3.15)
and its Jacobian given by '(A.6.4). This gives us for 7, ¢’s, L;, Ly and L,; the dis-
tribution

. ™
Const exp [— % r{tr(f’f"—}-—i’LiDcLlj‘")—z Z 71, Z tm i llm}]
i=1

p—n;—1

R ny—1
x Mt~ gF e, 2 mod I (¢—c;)
=1 i=1 1< j=1
dI, dLy; dL,,
Ly Lot 7.6.8.1
'a<LL) FLLY |l (7.6.8.1
L) |y, | )y, (O] |

It should be remembered that L(n,Xn,) is | while Ly(n,Xp) and Ly(pXn,) (with
n; < p < my) are semi-orthogonal. T and D, are of course p X p and n,; X n, res-

pectively. Integrating over L; and L,; by usmg (A.8.6), and absorbing in the cons-
tant, we have for ¢’s the distribution,

7y p_nl_]- rnl_
Const Me 2 de;mod I (¢;—c;)
i=1 i<j=1

. ~ . 71 i
X I [ exp [—-% {tr (Tf”—l—’j’LiDcLl’f")—~2 Z Yi = t; ¢k ll,ij}}

~

7 I =1 =1

D 4y —1 ~
gt gp Al

- ‘ ‘a(L—lL{) (7.6.8.2)

a (LID) LII

Since Ly(n, X p) is semiorthogonal, let us adjoin to it M,(p—mn, X p) so as to make

L, ™

»le, [L] Milp
Jl[l p—‘nl n]_ _p_‘nl
p

orthogonal,
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Now taking into account (A.8.6.11) it is easy to check by putting
Ly Ml=M (pXp) that the integral occurring in (7.6.8.2) can by replaced by

wp—r)  (w-r)p+r-1)
4

x | [ exp[—3r U DLIT 2T AE tyebmy)]
7

M =1 j=1

»
- aM
fptne=t g Mo SN e (7.6.8.3
<1 [a(MM'> (7:6:89)
L) |y

where D, stands for a p X p diagonal matrix with diagonal elements 14-¢;, 1+cy, .00
1-+c¢ny,1,...,1, and my; are the elements of M. Using first the transformation TM= U,
then UD Ji¥e = V, we observe that (7.6.8.3) now reduces to

Const I exp [ —% (tr VV’ —22 YXVD 2/(1_}_6)5)“)] |V|n1+nz—p av.
v
(7.6.8.4)
Thus for the distribution of ¢’s we have
: ny P—m—1 ny—1
Const Ilc; 2 dgmod II (g—¢;) eeo (7.6.8.5)
i=1 i<j=1 .
n1
, - — ny+ng—p
X I eXP[—-%-(tI' VV —2}_1 'y% V.D él(l_l_c) )n)-‘ IVl ! 2 dV,
. 14 i=1

where the elements of ¥ vary from —oo to o. For the general, i.e., the non-null hypo-
thesis we would leave the distribution problem at this. On the null hypothesis, i.e.,
when vy;’s = 0, the integral becomes

exp| —1 te V7’| V| "y,
[ esp| ~1 w7r] 7]
v

which we can evaluate by using (A.8.7) and which we can then absorb into the cons-
tant, thus reducing (7.6.8.5) to

ny 1"—”1—1 ' Pty ny—1

Const[l'[cz 2 def(14c) 2 ]mod T (¢i— ... (1.6.8.6)

i=1 i<j=1




46 REDUCTION OF SOME DISTRIBUTION PROBLEMS

The constant is easily seen to simplify into

Const = ﬂn”z-yﬁ I‘(M‘%ﬂﬂ)/;ﬁl p(nz—fp-l"ﬂl——i-{-l)

i=1 2

et s

It may be noticed that (7.6.4) which is the distribution of the roots on the null hypo-
thesis in the case p < n,, n,, goes over into (7.6.8) whichis the distribution of the roots
on the null hypothesis in the case n, < p < n,, if we make thesubstitution (p, n,, n,)
—>(ny, p, my—p+n,). It can be proved by a general reasoning, without working
through the distributions, that this tie-up will be true both for the two null hypothesis
distributions as well as for the two non-null hypothesis distributions.

“A special case of (ii), namely where n; = 1, is of considerable importance and
in this case not only the central but also-the non-central distribution is easily availa-
ble. Notice that in this case n; = 1, Xy(pXn,) = x(px 1) (say). &(pxn,) = E(px1)
(say), Ly(1x1), subject to L, Ly = I(1), is equal to 4 1 so that L,; drops

NL, L)

24 = 1/2 which we absorb in the constant. There is only one
9(Lyp) Ly,

non-zero (and positive) ¢ which is equal to x(X, X3)"'x [since, in general,

put and 1/

7y . n
tr D, = ‘21 ¢; = tr (X; X3(X, X3)™) = tr X;(X, X;)1X, and in this case 23 G==¢c
= - i=1
and tr X(X, X3)1X, = x'(X; X;)7'x] and also one possible non-zero (and positive)
y which is equal to ¥ =7' €. Also both in (7.6.6) and (7.6.8) the factor

n,—l

mod | I (¢,~¢,)| will drop out.
i< j=1

Substituting in (7.6.8) we have thusin this case, for ¢, the central distribution,
17,.17],

‘,f(ﬂ“)'r(nz_“l €. % dej(l4c) 2, . (7.6.9)

Toy

For the non-central distribution, i.e., when Y # 0, we have, in this case, ¥ ¥, =y,
% ’
=1

8 Ul A —_
El [[ - :' D e LI:] V7 = & uy4/cy and thus it is easily checked that by
2 - i ’
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substituting in (7.6.6) and remembering that L, could take jﬁst two values 4-1, we
shall have, for U and ¢, the joint distribution

' Lo -1 ;
Const exp [—4 (tr UDy,(p)U'+yF 203y 4/ep)] | U™+ 17 ' (0 )51~ dU o2
=1

(7.6.10)
or Const exp [— 4 tr UD,, (p)U’] cosh (un\/(;)l Ulnz-l—l—p
2=1 ]
X I1 (Ug)ti='dU or~* de. e (1.6.11)
=1 :
p—1TU, U] [Vite; 01 v, 7 jp-1
Now putting UD ji5,= : _
| 1lo, o, o irdp—1 Lv, v
1 p—1 1 p—1 1 p—1

= V(say), we have for ¥V and ¢ the joint distribution

Const exp (—% tr VV’) cosh (vy, v/ye[14¢)| V|2 F1=P ﬁ(?s)g;.—l-idv
i=1

(nz+1)
X ¢?2dc/(14c) 2 ... (7.6.12)

To obtain the distribution of ¢ by integrating over V, we use the same artifice as in
(A.8.8), change over to a solid matrix W and obtain for ¢ the distribution

Const 1";._2‘ | B2+l
. wonst T2 1 '
Fo—T.p—1) [c def(14-¢) ] n!: exp (—1 tr WW')
X cosh (wy v /ye[l4c) | W™ 1=2qw, ... (7.6.13)

where F(p--1, p—1) is given by (A.8.6.3).

To effect the integration over W, denote the row vectors of W by w;
(¢=1,2,...,p) and make the transformation

w,"]1 1[8;

= L(p X p) (where L is arbitrary | such that the first row vector
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of L is along w;). Thus, though L will depend on W', the Jacobian of this transfor-
mation is easily checked to be unity. In this case the new matrix is

B wl]_ wlz vea wlp ’wn w12 ces wlp
In G2 -+ Gz | _ 921 o (say).
9 YGpz - Gop- 9mn -
Wy
::': ‘ j' (say).
[g* G]
Th — ' I
- wiw wie[8]
WW' =] i,
Lg* . Glaw, g*8*'+GG'-
Wi tw; wyt 0][% ]
* ....... (W{wl)’f .......... S
HE | N | R
- oww, (W; wy)ig*’
—  g¥(wy Wyt ig*g*+GG
It is easy to see that |W| = |WW'|} = (w, w;)}|QG' [t Also tr WW’ goes over

. A
into tr w; w;+ 3 gi+-tr GG'.
: i=2

Now by using (A.8.7.1) it is easy to integrate out

»
] exp [— (2 gi+ tr GG')] sz dgu |G ™ P 4@,

=2

and obtaig a constant which we absorb into the constant factor and obtain for ¢ the
distribution

p—2 7+l
Const [c 2 def(l4c) 2 ]

» Ng—p-+1

x [ expl— 3wyl cosh (wan/po IOl Ewty * I duy,
= j=1 =

wl.’l(] =12, ..,p) = (7 6 14)
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» . . ‘
To evaluate this integral we put = wf = 7% and wy; = r cos 0, so that, using (A.8.5.1),
j=1
we have the integral = constant (which is easily obtained)
w wf2

: )
X I j exp [— % 2] cosh (r cos Gr/ye[(1+cy 7™ dr (sin O)~2 df. We
=0 =0

note that the integral over 0 could be taken from 0 to 7/2 and the result multiplied
by 2.

Using now the formula (9) p. 79 and formula (2) p.393 of Watson’s Bessel Func-
tions and remembering the relation between Bessel I and Bessel J-functions, this inte-

gral reduces to const lpl(nz-zl-l : 1; 1y 1__‘1’__) , so that the distribution of ¢ comes
2 ¢

out in the form
F(nzg—l) = 21 41

‘ 7) 2 2 1l P, Ye

ex ( — c 1-+e) F (———— H -——~)7[1]-

F(Q)P(ng—p—{-l) P73 [ I ]1 W vt gl
2 2 _ ‘

. (7.6.15)

It is of interest to note that on the null hypothesis ¥y = 0, the confluent hyper-geo-
metric function reduces to a constant and (7.6.15) goes over, as it should, into (7.6.9)

7.7. The distribution of charateristic rooots connected with the multivariate
regression model of (4.25)-(4.33). Going back to (4.33) and noting the identity of this
distribution form with that of (4.21), it is easy to check from section (A.7.5) that the
distribution of the ¢[Z; Z; (Z, Z;) s (= ¢;’s say) could not involve as parameters
obtaining anything except [(wTT W) s = f(uUU )2 1s (= v,’s, say). The
problem of the distribution of ¢[Z, Z,(Z, Z3)']’s can thus be thrown back, where
p < ¢, on the case (i) of (7.6) and, whenp > ¢, the case (ii) of (7.6), in both cases
putting n; = g and n, = n—1—g. The complete reduction of the distribution
problem, i.e., the derivation of the joint distribution of the ¢;’s on the null hypothesis
v: = 0( = 1,...,p) (which, in this case, can happen if and only if u = 0, since U
is not presumably 0), can be effected in exactly the same manner as for the
distribution on the null hypothesis in the cases (i) and (ii) of section 7.6. Turning
now to (Z, Z;) (£, Z,)™* and checking with (4.25)-(4.33), wesee that (Z, Z;) (Z, Z;)™*
= {XU(UU'YWUX'] X [XX'—axXX'—XU'(UU')WUX'TL '

An important special case is that of p = 1 which we can handle by putting,
in case (¢) of (7.6), p = 1, n, = q and n, = n—q, Ly(pXn,) = I'(1Xq) and A(1x1)
= a (say), a scalar.

Substituting in (7.6.2) we have for ¢ (note that there is only one non-zero
¢ here) the distribution

" q—2
2[1/271® F(l,n—q)c ® dc
[ 1 (2 7 n_17, 1 < 72
x | [ emi— d@Orotyieve)eda a3 B
a=01,, Iy i= i=

(7.7.1)
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To evaluate the integral proceed as follows

/2

S exp [+ar/cyl] i dl;/(1— §; )y = j cosh (a4/cy cos O)(sin )% d0,
i=2 '

Loy vy Iy = =0

so that substituting in (7.7.1) we have the integral under (7.7.1) reducing to

/2
j. exp [—3% a*1+c)] cosh (a\/é—jl cos B)a"da(sin 0)7—2d0.
0 =0

8

Const

a

I

Taking account of the discussion after (7.6.14) this integral reduces to

const F @-»; 1 s 1 e (14-c)”2, and hence we have for ¢ the distribution
R T R

D(n/2) 1=2

TN R e [y
F((]/Q) F(n—jq/Z) OXP( 2) [c 2 de/(1-+¢)2 1.7y (2 igs b ) , e (1.7.2)

the const factor being easily evaluated (since the constant factor at each stage is
known and carried over to the next stage).

If y =0, this reduces to

C(nj2) 22 A
Tai2) Tn—gp)® " I+ o (1)

For e given by ¢ = e/(1—e) we have on the non-null and the null hypothesis the
respective distributions

d (w2 R
- I(q/2) T(n—q/2) (1=e) e " de. . (1.1.5)

7.8.  Reduction of the various joint distributions of the characteristic roots to a
common standard form. On the respective null hypotheses consider the distributions
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(7.3.5), (7.4.5), (7.5.4) and (7.5.8) and check that they can all be reduced to the
following common standard form (expressed in terms of (7.4.5)).

_{'[ﬂs,zill r‘( 2ml+2m22+s+i+2~)/ i F(2m1+i+1) F(2sz;i+1) P(i)]

shi i=1 2 2

8 $—-1 $
X I 2™ (1—a)™ X mod[ N (x;—x,)] 1 da;, e (7.8.1)

i=1 i<j=1 i=1
where 0 < #;, ..., %, < 1 and, a.e., 0 <a, .., 2 < 1. If, however, we order the «’s

as 0y < e <., K 1, or, ae,0 <z <oy, <..<x, <1, then the above
distribution can be rewritten as '

[778/2 ﬁ T (2m1+2m22-¥-8+i+2)/ l's[ F(le‘;i_l—l) F(sz‘zi‘l’l) P(i )] .ls] x{n‘(l—xi)m’

i=1 i=1

x 11 (—x;) 1 da,. e (78.2)
i>4=2 i=1

s—1
It is well known that II (x;—=2;) can be written in another form, namely, as a Vander-
i<j=1
monde determinant

R S
ot Xyt xi?

(7.8.3)
1 1 1

Denoting now the constant factor (within the square brackets) of (7.8.1) or
(7.8.2) by k(s, m,;, m,), we can rewrite (7.8.1) and (7.8.2) respectively as

x5t L 257
s ’ o —2 _ _
:gl—‘k(s, my,my) 1 or(—a) "“daymod |17 o @ o (T.8.4)
! i=1
1 1
x5t L. xsl‘l.
8 m Mo ~
and k(s, my, my) I 2 (1—2x;) ~ dz; . (7.8.5)
i=1
1 ) 1 ‘
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or
el (g™ L eIl g )™
g™TEmE gy g2, |
ks, my, m,) , ' . Mdx, . ... (7.8.6)
- i=1
' (1—a,)™ bc;’z‘(lj—xl)m“

The following substitutions are to be made in (7.8.1) or (7.8.4) in order to obtain
(7.3.6), (7.4.6), (7.5.4) and (7.5.8). For (7.3.6) put x, =c;/(14¢;),s=p,

m = Zbi_;g:l:mz = —@Zzp—l s fOI‘ (7'4'6) put T, =206, Ss=0D, ml = q_pz_l ’
my — n*..f’__;q—l , for (7.6.4) put 2; = ¢;/(14-¢,), s =p, m1=”1—1;_1, My = "2—1;“1
and for (7.6.8) put x; = ¢;/(14¢), s = ny, my = p-—_zl'_l s My == _”’2_5'—1. It is of

interest to note that ordering the x,;’s is exactly equivalent to ordering the ¢;’s of (7.3.6),
(7.6.4) and (7.6.8); in other words, 0 < 2; < ... <7, <1&ES 0 < ... K, < v and
<y <. <, <1EES0< ¢y < e <6 << 0.



CHAPTER EIGHT
On the C.D.F. of the Largest and/or the Smallest Root

In this chapter starting from (7.8.2) or (7.8.5) we shall obtain the c.d.f. of z,,
L.e., P(x, < w,), where z, is a given constant <1 (from which it is easy to check that
one can obtain the c¢.d.f. of #; by merely interchanging m, and m,), and also obtain
P(xoLa, <x,<7,); where z, and z, are also given constants subject to 0 oL, < 1.
Starting from (7.8.5) and putting in (A.9.6.13) m, = m,+i—land n =m, (i =1, 2,
..., 8) we have ‘

POz < ... <2, < 2) = Pla, < x) = ks, my, my)
- mys—1,my my+s—2,my ... My, My
X Bl = . s . e (8.1
my-s—1,my, m+s—2,my ... My, My

where £ is to be successively and completely reduced with the help of the fundamental
formula (A.9.6.13).

For the c.d.f of the smallest root z, we note that P(x;<z) = 1—P(z;>%)
=1-Px <2 < .. <2 < 1). Going back to the c.d.f. of (x,, ..., ,) and using the

transformation x; = 1—z; (¢ = 1,2, ..., s) we have
11 T \
8
- (s, my, my) I { f Ha(—z)™ 11 (,—a;) 1 da;
- . i=1 t>4=2 i=1
r I Ts—1

1—x 2y 2ga

s . my [ ' 8
= ks, my, my) I I I Oz™2(1—2)"™ 11 (z—2) I dz; . .. (8.2)
o o o T>5=2 . i=1

i=1

It is now easy to see that the integfal on the right hand side of (8.2) is exactly the same
as that on the right hand side of (8.1) with just the interchange of m; and’m,, which
shows that the c.d.f. of the smallest root can be thrown back on that of the largest
root and vice versa. The final reduction of the exact c.d.f. of the largest or the smallest
root is necessarily lengthy and need not be given here. When m,+m, is large, which
is the case in most practical applications,there is a good approximation in relatively
far sinipler terms (especially when percentage points, up to, say, 109, are needed)
which will be given in a later monograph.
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In this chapter the final reduction for the exact c.d.f. of the largest root in
the case of s = 2,3, 4 will be given. This is as follows:

For s=2,

k(2
Px,Lz) = #ﬁz—)[—ﬁo(x} my+1, me-+1) flx; my, my)-+-2p(x; 2m+1, 2my+1)].
: (8.3)
For s = 3,

Pa,<z) :%[2ﬂ(m; 2m,+3, 2my+1) fla; my, my)—2f(x; 2my+2, 2my+1)
1 2

1

X flx; my+4-1, my) — mﬂo(w; my+2, mg+1)P(ry, < ®]. ... (8.4)
H 1> 2 °
For s =4,

k(4, my, m,) 1

P — 1 M) 5o

(o) = SRR s w3, ma ) s Pl < )

: 1 2

-20(x; 2 5,2 S —_—— ;

+2p(x; 2my+-5, m2+1)k(2,ml,m2) Pz, <2)+ P plx; 2my+-3, 2my+-1)

X{—Boles mit2, mot1) Bl my+1, mo) 42 2myt-3, 2myt )

2

—Wﬂ(gﬂ? 2my -4, 2mz+1){—ﬂo(w; my+2, my-t-1) Bla; my, my)

+h_m1+2 P(x, < x)+-20(x; 2m,-+2, 2m2-|—1)}] . (8.5)

k(2, my, my)

Again starting from (7.8.5) and putting in (A.9.7.2) m; = m,;+i—1 and
n=my (it =1,2 ..., s) we have . :

Plag <2 <. <o <o) = Plag < 2, < 2, < @)

myts—1, my myts—2,my, ... my, my,
my+s—1, m, m;-+s—2, m
1 e My, M
= k(s, my, my) B | x, xy; ) My Myt > e 152
my+s—1, my my-+s—2, My .. My, My

(8.6)

where £ is to be successively and completely reduced with the help of the fundamen;
tal formula (A.9.7.2). Below is given the complete reduction of the left side of (8.6)
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for s = 2, 3, and 4, the left side of (8.6) being conveniently denoted by P,, P, Py,
ete.

k(2
(rr(Ll—i—”:rIL;—T;)pﬁ(x Zg; 2my+1, 2my+-1)— Bz, 45 My, M) {Bo(2; My+1, myt-1)

T+ Bolwe; my+1, my+ 1)}]Q e (8.7)

k(3, my, my)

(m o, 1.3) P To; My, M) B(@, To; 2my+3, 2my+1)
2

3 =

— 2B(x, xo; my+1, my) P, 24; 2m, 2, 2my+1)

— 15(2—11:@_* {Bol; my+-2, my+1)— fo(@y; my+-2, my+-1)}, . (8.8)
1)

k(4, my, mz)

4=

(m1+m2+4)

P,
P(2 My, Mg)

[2ﬂ(az, To3 2my+5, 2my 1)

P,
T k(3, My, My)

{Bolx; my+3, my+-1) +/80 Zy; My+-3, my-+1)}

+ 2p(x, Ty; 2my -3, 2my-1)
(my+4-my+-3)

{—PBolz; my+-2, mz’f‘l) B@, 2g; my+4-1, my)

= Bolwgs myA-2, my4-1) B, xo5 my+1, my)+208(x, 245 2my+3, 2my+ 1)}

2B(x, zy; 2my+4, 2my 4+ 1)
o (my-+my+3)

{“‘/’)o(x§ my+2, my+1)f(, 2y; My s My)

2
— LBol@y; my+-2, myt-1) Blx, 245 my,my)-28(, xo;‘2m1+2, 2my+1)4- W%‘*—EZ;Z—)PZ}]-

(8.9)

For larger values of s the reduction of P, to exact expressions like those given by the
right side of (8.7)-(8.9) will no doubt be increasingly lengthy but the remarks made
after (8.2) will apply to this situation as well, so that if m;--m, is reasonably large, as
would be the case in most practical situations, we can use much shorter expressions
as good approximations.



CHAPTER NINE

Operating Characteristics and Lower Bounds on the

Power Functions of the Test Regions™

9.1. The operating characteristics of the test regioms. As of the moment the
exact (small sample) power functions of the regions (6.4.2), (6.4.5), (6.4.8) and (6.4.11)
seem to be, in the general cases, quite intractable. At any rate, so far as the author
is aware, no method is known at the moment by which the requisite distribution
problems could be solved and the final c.d.f.’s be given, except in very symbolic
(and, for practical purposes, quite useless) forms. However, it is possible even with-
out exact expressions for c¢.d.f.’s, to obtain a number of useful semi-qualitative and
semi-quantitative properties of the power functions, which, as will be presently seen,
are about all that would really matter for most practical purposes.

We observe from (A.7.1), (A.7.2), (A.7.5) and (A.7.3) respectively that the
powers of the critical regions (6.4.2), (6.4.5), (6.4.8) and (6.4.11) depend only on the

corresponding sets of populations roots, namely ¢(2% 25')’s (to be called y’s) for the
first case, ¢(Z,%;")’s (to be called 'y’s ) for the second case, ¢(2*X™')’s (to be called y’s) for

the third case and 0(241'112;12 S 2l)’s (to be called y’s) for the fourth case. For
convenience we write down the respectwe powers for the four cases as

Pic, > ¢, (p, n) andfor ¢, < Cro{ D> W) | HY = P(a, p, 75 V1, Vo vvvs Vip) . (9.1.1)

Ple, 2 ¢o,(ps my; mp) andfor ¢ < e1(p, 0y, 7o) [H] = Pl p. ys Ras Vi Voo -5 Va)s (9.1.2)

Ple, > c(p, k—1,n—k)|H] = P(a, p, k—1, n—k; ¥y, Va5 ..., ¥,) and - e (9.1.3)
Ple, > c(p, ¢ n)|Hl = P(a, P, 4, 05 V1, Vas «os Vp)e . (9.1.4)

Notice that, depending on the rank of £* and X,,, some of the y’s of {(9.1.3) and (9.1.4)
might be zero but the most general case will be one in which as many as are set down
will be positive. Notice also that in (9.1.3), » = min (p, k—1). Recall now from
(A.3.3) that for (9.1.1), 0 < all y’s <0, from (A.1.9) that for (9.1.2) and (9.1.3), 0 < all
7’s << o0 and from (A.1.14) that for (9.1.4) 0 <all y’s<1.

With this introduction we shall consider the power functions (9.1.1) and(9.1.2)
for the problems of one dispersion matrix and two dispersion matrices and the power
function (9.1.3) for the problem of multivariate analysis of variance and the power
function (9.1.4) for the problem of independence between two sets of variates. In
section 9.2, to each power function a lower bound will be obtained which will be called
a lower bound function and which will be seen to involve (aside from the degrees of
freedom) just those deviation parameters that occur in the power function itself. In
Chapter 10 it will be shown that for each power function the lower bound function
monotonically increases as each deviation parameter separately tends away from its

* Beo reference [43] in this connection.
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value under the null hypothesis. . Although, under the null hypothesis, the lower
bound function does not assume the value « which is the significance level of the test,
this value is attained soon enough under deviations from the hypothesis. Thus the
power function stays greater than.a monotonically increasing function of each devia-
tion parameter and is also shown to be unbiassed against all deviations from the hy-
pothesis for which the lower bound function is greater than or equal to the size «
of the test. In chapter 11, for each of the power functions (9.1.3) and (9.1.4) another
such monotonic lower bound function is obtained which is believed to be closer than
the lower bound functions of section 9.2; also for each of the power functions (9.1.1)
and (9.1.2) some near monotonic properties are proved.

9.2. Lower bounds on the power functions. The lower bounds are obtained
in three different stages to be called (9.2a), (9.2b) and (9.2¢).

9.2a. Reduction to canonical forms. Without any loss of generality we can,
for the case of (6.4.2), start right from the canonical form (A.7.1.1); for the case of
(6.4.5) from the canonical form (A.7.2.1); for the case of (6.4.8) from the canonical
form (A.7.5.6); and for the case of (6.4.11) from the canonical form (A.7:3.5). for
the case of (6.4.2) there is an additional point to be noted. Putting together (A.7.1)
and (6.4.1) it is clear that it will be appropriate, instead of using as we did in (A.7.1)
the transformation

X(pXn) = y(pxp) Y(pXn), whereX = pD u

(7’s being the roots of X), to use the transformation. X(pxn)

= pXP)A(p X p) Y(pxn), where T, = Ay Ag and AT'S(AG)-1 = uDyu',

y’s being the roots of Ag'S(A)), i.e., of (A, AY)E, dee., of X5 . Under this trans-
formation the 7y’s of the canonical form (A.7.1.1) will really be the roots of £ Z5* and
the roots of (Y Y’)/n will really be the roots of the equation (6.4.1) and thus we have
an exact tie-up with the problem involving the power function of (6.4.2).

© 9.2b.  The inclusion within the test regions (6.4.2), (6.4.5), (6.4.8) and (6.4.11)
of regions having simpler probability measures (under the respective non-null hypotheses).

(i) We recall from (6.4) and the canonical form (A.7.1.1) that the test region
(6.4.2) is really U,[a'Y Y'a/na’a>cyy(p, n) or < ¢,,(p, n)], where ¥ has the distri-
bution (A.7.1.1). We also notice from the canonical form (A.7.1.1) that the p functions
a;YY'a,lymala; (i =1,2, .., p) (with a; being a 1Xp row vector having 1 for
the i-th element and 0 for all other elements) are distributed as p independent y*’s
with d.f. » each. Putting these two facts together we have that the test region
(6.4.2) includes the union of p regions, each composed of the tail ends of a central
X?-region, all the p x?’s being independent.

(ii) We recall from (6.4) and the canonical form (A.7.2.1) that the test region
(6.4.5) is really U,[n,a'Y,Y a/na Y, Y52 > Cou(p, 0y, 15) Or < €,,(P, M1, Mp)], Where
Y, Y, have the distribution (A.7.2.1). We also notice from the canonical form (A.7.3-1)
that the p functions n,a;Y,Y18,/ym.a;Y,Ya; (i = 1, 2, ..., p) (with a/; beinga 1xp
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58 OPERATING CHARACTERISTICS AND LOWER BOUNDS

row vector having 1 for the i-th element and 0 for all other elements) are distributed
as p independent F’s with d.f. n, and n, each. Putting these facts together it is easy
to see that the test region (6.4.5) includes the union of p regions, each composed of the
tail ends of a central F-region, all the p F’s being independent.

(iii) From the canonical form (A.7.5.6) and from (6.4) we notice that the test
region (6.4.8) will really be U [(n—k)a’Y*Y*a/(k—1)a’'YY'a>c,(p, k—1, n—k)]
where Y* and Y have the distribution (A.7.5.6). We also notice from the canonical
form (A.7.4.5) that the p-functions (n—k)a;Y*Y*a,/(k—1)a;YY'a; (i =1, 2, ..., p)
(with a) being a 1Xp row vector having 1 for the i-th element and 0 for all other
elements) are distributed as p independent F’s out of which at least p—r are central
and at the most r are non-central with non-centrality parameters (y,, 7,,..., ¥,) (notice
that if s<r = min(p, k—1), then, out of these y’s, s will be positive and the rest,
i.e., r—s will be zero). Putting these together we observe that the test region (6.4.8)
includes the union of p regions, out of which at least p—r are central F-regions and at
the most r are non-central F-regions with non-central parameters y;’s (¢ = 1, 2,..., 1),
all F’s being independent and each being based on d.f. #, and n,.

(iv) We notice from the canonical form (A.7.3.5) and from (6.4) that the test
region (6.4.11) willreally be U, ,[(a'Y,Y;b)?/(a’ Y, Y a)(b'Y,Y;b) > c (p, ¢, n)], where
Y, and Y, have the distribution (A.7.3.5). We notice further that there are p func-
tions (a;Y,Y;b,)%/(a;Y,Ya,)(b;Y,Y3b;) (¢ =1, 2, .., p) (with aj(1 X p) being a row
vector with 1 for the ¢-th element and 0 for all other elements and bj(1 X q) beingarow
vector with 1 for the ¢-th element and 0 for all other elements) which are distributed
as the squares of p independent correlation coefficients (some of them centraland some
non-central, the respective non-centrality or deviation parameters being 7y, (notice
that out of these p y,’s, ¢ are positive and the rest, i.e., p—t are zero, where ¢ < p<q
is the rank of Z,, X35 =], i.e., of I, and all lie between 0 and 1; the positive y’s
can be conveniently arranged as 0<71<...‘<71<1).

Putting these together it is easy to check that the test region (6.4.11) includes
the union of p regions out of which (p—t) are central correlation (square) regions and ¢
are non-central ones, all being independent and each based on d.f. (n—1). When
g>p it is possible to improve on this in the following manner. Pick out linked a;
and b] (1 = 1, 2, ..., p—1) and at the last stage an a;, with a set of b/s (¢ = p, p+1,
..., q) such that there are p independently distributed correlation squares, of which
(p—1) are total correlation (squares) and the last one is a multiple correlation (square)
between the p-th variate of the Y,-set and the (p, p+1, ..., ¢) variates of the Y,-set.
The deviation parameters being v,’s (0<y; <...<7y;<<1), we could so arrange that the
first p—¢ sample (total) correlation (squares) had zero deviation parameters to go with,
the next {—1 sample (total) correlation (squares) had respective (one each) deviation
parameters (Y, ¥a, ...; ¥;3) to go with, and the last sample (multiple) correlation
(square) had 7y, to go with. Notice that the distributions of the square of a
correlation (central and non-central) are easily available from those of the central
and non-central multiple correlation coefficient (see (7.4.9) and (7.4.20)) by putting
p=1
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9.2c. Actual construction of the lower bounds. From (9.2b) it is now easy to
write down the lower bounds of the power functions (9.1.1)-(9.1.4) of (6.4.2), (6.4.5),
(6.4.8) and (6.4.11) as follows:

D
Pla, p,n; V1, 7a, -5 Vp) > 1— ,Hl[l—P(xz 2 Coo(P; R)Y; OF < C1a(p, 2)/75)]
1=, : °

(9.2.1)
(each x2 being based on d.f. =),
r
P(“’ P> M5 g5 V15 Yas «ees Yp) > 1— Hl[l"—P(F > cZa(p9 N nz)/?’i
i=
or < C1a(Ds 115 12) 7)), (each F being based on d.f. n; and n,), ... (9.2.2)

P, p, k—1,n—k; ¥y, Va5 --vr Vs) > 1—[1—P(central F>c(p, k—1, n—Ek)]p-*

X I§I [1—P (non-central F' > ¢, (p, k—1, n—k)|v))], ... (9.2.3)

i=1
(each F' being based on d.f. k—1 and n—Fk), and finally

P(o, p, 4, n5 Y15 Vs o5 Vi) > 1—[1—P(r* > ¢ (p, ¢, n) |null hypothesis]?—*

X I [1=P(* > offp, s m|p2 = 701, - (9.24)

i=1
(each r% being based on d.f. (n—1).

If p<q, it is easy to check from (9.2b) that this lower bound could be
improved by the following

Plot, p, ¢, 05 Y15 -ovs Vo) > V—=[1—P(r% > cu(p, ¢, ») |null hypothesis)]r~*

X T [1—-PUe>e,(p. g, m)|p} = yI1—P(E > o p, ¢, wpf = 7)), . (9:2:)
where all the factors except the last are on squares of (total) correlations distributed
with d.f. n—1, while the last is on the square of a multiple correlation, distributed with
n—1 and g—p d.f. and also where, out of the p—1 total correlations, p—i are central,
t—1 are non-central with non-centrality parameters 7y, ..., v,.; and the multiple
correlation is non-central with the non-centrality parameter 7,.

To compute in any situation the right sides of (9.2.1)-(9.2.5) we observe that
aside from the central, i.e., ordinary, ¥2 and F and the total correlation (squared)-distri-
butions (the last one being transformable to an F-distribution), which are all well
known and have their percentage points tabulated, we need, inaddition, tables for the
c.d.f. of non-central F and non-central multiple correlation(connected with the multi-
variate normal population). These tables are available in part [11, 22, 50] and could
be easily extended with modern computing facilitied,
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It may be noted that if in (9.2.3) we put £ = 2, i.e., s = 0 or 1, then each
side of (9.2.3) is computationally accessible, the left side being the power function
of Hotelling’s T2, while the right side is also easily availablé (in this as in all other
cases).

It is of considerable importance at this stage to ask how ‘“‘good’ the lower
bounds indicated in (9.2.1),(9.2.2)and (9.2.3) or (9.2.4) are. A lower bound to the power
could be said to be ““good” if it were (i) close to the actual power, and/or (ii) if it were
itself pretty large, being greater than the level of significance a for reasonably large
values of the deviation parameters and possibly getting larger as those parameters
increase. For all the three tests condition (ii) has been numerically checked to be
true over a fairly wide range of test values of the several parameters involved. With
regard to condition (i), in general, that is, for small samples, not only dowe not know
the actual power (in which case the search for a lower bound would have been redun-
dant) but at the moment we do not even know an upper bound on the expression:
(actual power—given lower bound to it)+actual power. In large samples, however,
the situation improves and it turns out that the relative error is “small”’, so that
the given lower bounds are “good” also in the sense (i).



CHAPTER TEN

The Monotonic Character of the Lower Bounds

on the Power Functions

10.1. The problem of one dispersion matriz. For convenience we rewrite
(9.2.1) as

P(at, p, 05 Y1, Var - Vp) > 1— _lfilp(f.lg(f’_”)< ¥ < &%}P_’Q) (10.1.1)

each x? being based on d.f. a.

Now denoting, for shortness, the factors in the product on the right side of
(10.1.1) by Py, ..., P,, we shall show that dP,;/0 (%) is positive or negative according
: » i
asy;is > or < 1, or in other words, P, decreases as v; tends away from 1, provided
that ¢;, and c,, are so chosen that

| oPfo (yi) ] L

i

Proof: Aside from a constant and positive factor of proportionality which is
free from 7y,;, we have

c2a./‘Y'i —ixz Tﬂ
P; = f et o 2 dx?), ... (10.1.2)
clal')"&
and thus
n—2 n—2
o5 = e_»c”ﬂw(gz—”’)—zcza—e‘°‘“’2“(91—a)7cm, .. (10.1.3)
a(i) . Vi Vs
Vi
where e—cm/2(c2a)§__e—cm/z(cla)z —o.

It is easy to check from (10.1.3) that_aPi/a(%) is positive if y;>1 and negative if

v; < 1 and also that P;—>0 as y;— o0 or — 0.
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Thus the right side of (10.1.1) monotonically increases as each v;, separately,
tends away from unity and the left side, which is the power function of the test,
always stays greater than this monotonic function. Furthermore although at H, i.e.,

when all y;’s = 1, this monotonic function is <a, it becomes greater than or equal to
« for all y,’s statisfying

fip (h <x < 9&1) <1—a. .. (10.L.4)
=t \Y; Vi

This means that the test itself is unbiased at least against all alternatives y;'s
satisfying (10.1.4).

10.2. The problem of two dispersion matrices. As in the previous case we
rewrite (9.2) as

o
Pot, P, 0yy M3 V15 Vas oees Vp) > 1— 1:[1 P(Cﬂ’;l_’@l <F< %—MB)),

(10.2.1)

each F being based on d.f. n, and n,, Now denoting, for shortness, the factors in
the product on the right side of (10.2.1) by Py, P,, ..., P, we can show exactlyas in the

previous case that aPi/a(i) is positive or negative according as y, > or < 1, provided
')I . .

i
that c,, and ¢,, are so chosen that [aPi/ 0 (7i

i
P,— 0 as y,— o or —0. Thus, as before, the right side of (10.2.1) monotonically
increases to 1 as each 7,, separately, tends away from unity and the expression to
the left side of (10.2.1) which is the power function of the test always stays greater
than this monotonic function. Asin the previous case it follows here also that the test
itself is unbiassed at least against all alternative y,’s satisfying

)] = 0. It is also easy to check that
vi=1

fir {cl_ <F<2lcia . (10.2.2)
=1 Yi Vi

N

10.3. The problem of multivariate analysis of variance. We rewrite (9.2.3)
as '

P(a, p, k—1, n—Fk; ¥4, Vay -+os ¥5)>1—[P(central F<c,(p, k—1, n—k))}p~*

X f[ P (non-central F << ¢, (p, k—1,n—Fk)|y,), ... (10.3.1)

=1

each F being based on d.f. k—1 and n—k and s = min (p, k—1). It is well known that
P(non-central F < ¢,|vy) is a monotonically decreasing function of |4/7|, which has
been and can be proved in varioas ways, perhaps the simplest proof being the following.
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It is well known that with a canonical p.d.f.. we can, except for a constant and posi-
tive factor of proportionality not involving y, write

: k-1 n—k n=k
P (non-central F <c,|y) = j exp { — %( X al X y? )} H dx; H dy;, (10.3.2)
FA i=1 =1

where the domain of integration D is

n—k

— k-1
(1 4+/7)+ Z ;< ¢, 3 Y2,
i= =1

and z;’s and y,’s are otherwise capable of going from —co t6 c0. We can thus rewrite
the right side of (10.3.2) as

“- -1 n—k - JY+F v
IT dz; I dy; exp [—-%( a4 3 yf)]{ g exp(— § x2)dx, }, ...(10.3.3)
zi(t = 2, .., k=1) i=1 =1 -
yi(t =1, .., n—k) — =S
~& :
where f2 = ¢, 2 yi— 2‘, 7 and only the positive square root of f2 s
i=1 i=2
supposed to be taken and the s and y;’s vary from —oo0 to oo subject
to f2 always staying non-negative. Thus we have _a(_aj./)_) = j Mdx; Idy,
» Y

k—1 n—k

exp | =3 (T af+ 'S 02)]{exe (— 1 vrtn) —exp (=3 (— vy +12))
=2 =l ] K

Remembering that f is, a.e., positive it is easily seen that accordingas +/y is positive

or negative (4/v-4f)2 is; a.e., > or < (—+/v--f)? so that exp (-%(\/y—{—f)z) is, a.e.,

< or > exp ( —3(— \/y-{éf)z), so that dP[9(+/v) is negative or positive. This means

that P is a monotonically decreasing function of |4/v| and it is easy to check that in
this case it—0 as [4/y|— c0.

Thus the right side of (10.3.1) is a monotonically increasing function of each
4/7; separately, tending to unity as each |+/y;|— oo, and the left side of (10.3.1),
which is the power function of the test, stays greater than this monotonic function.
As in the previous cases the test is unbiassed at least against all alternatives satisfying

[P (central F < ¢, )]P~* I P (non-central F < c,|v;) < 1—a. .., (10.3.4)
t=1

10.4. The problem of test of independence between two sets of variates. We'
rewrite (9.2.5) as

Plo, Dy @, 15 V15 Vas vvs V) > 1— H P(non-central 72 < ¢ (p, g, n)|7;)

i=1

X P(non-central E? < c,(p, ¢, n}|7,), ... (10.4.1)
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where all ¥’s are based on d.f. n—1 and R2 is the square of a multiple correlation based .
on d.f. n—1 and ¢—p and where 7, is the largest population canonical correlation
~oefficient. Notice that for a particular alternative some of the y’s might be zero
and in any case the y’s vary from 0 to 1. As in the previous case it is well known

and can be proved in various ways that both P(non-central r2<c,|vy) and P(non-central

" R?<c,|y) are each a monotonically decreasing function of |4/y|, which—0 as |4/y|

—1. The simplest proof of this theorem can be developed exactly on the same lines

as in the previous case. But this need not be spelled out here.

Thus the right side of (10.4.1) is ‘4 monotonically increasing function of each
| v/v:| separately, tending to unity as each |4/, |;->1, and the left side of (10.4.1),
which is the power function of the test, stays greater than this monotonic function.
As in the previous case, this test is unbiassed at least againstall alternatives satisfying

r=1
[T P(non-central 7% < ¢,|y;) X P(non-central R? <c,|y,) < l1—a. ... (10.4.2)

i=1



CHAPTER ELEVEN

Other Monotonic Lower Bounds on the Power Functions* .

11.1. . Multivariate analysis of variance test. We start from the canonical
form (A.7.5.5) and denote by ¢, the largest characteristic root of (¥, Y )(¥, ¥5)™L,
by H, the H(y, =0) ¢ = 1, 2, , s) and by H its complement, and observe that
for a given positive ¢y, P(c, < ¢y| H) = a function of vy, Vs, ..., Yo = ¥a(V1s VYoo +vvs V)
say. We shall prove that (11.1.1) P(c, < ¢o| H), i.e., Yry(¥,Va» --» Vs) Stays less than a
monotonically decreasing function of each |\/v,| separately (notice that each y; > 0),
which is different from the decreasing function on the right side of (10.8.1).

Proof: We recall from (A.2.2) that the largest characteristic root ¢, of
(Y, Y1) (Y, Y5) can be written as Sup,(a’Y,; Y;a)/(a’Y,Y,a) and the domain
¢, < ¢y can be rewritten as’

Sup, (a'Y, Yia)/(a'Y,Ysa) < ¢, or(,[(a’Y,Yja/a’Y,Y32) < ¢l ... (11.1.2)

‘It is easy to see now that the canonical p.d.f. based on (A.7.5.5) can be rewritten as

Const ex l('g‘ g“lxz 3 TE ? (11.1.3)
i P|—s3 i:l 2 1,]+i=1 i Yi . ol -

and region (11.1.2) can be rewritten as

Sup,[a’(X46)(X'+d)aja’Y Y a] < ¢, Or
Ma[8(X+8)(X 48/’ Y Y'a < o, e (11.14)
where &(pXn,) is such that &;=1+/y(if t=j=1, 2, ..., s) and = 0 otherwise, and where
Yipxn) = X(pXn)+0pXn,) and Yo(pXn,) = Y(pXn,). (11.1.5)>

Notice that all the components of X and Y will vary from —oo to c0.” Notice also that
r = min(p, n,), and s, i.e., the number of non-zero populaﬁon roots might go up to 7.
Observe further that the constant factor in (11.1.3) does not, in this case, involve
the y;’s. The problem is now one of integrating (11.1.3) over the domain (11.1.4)
(which let us call M),, for shortness) and showing that the integral stays greater
than a monotonically decreasing function of each 7; or [4/y;|, separately. Tt will

* See reference [35] in this connection.
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suffice to show the monotonic character of this integral with respect to variation of,
say, |4/7;]- To this end, remembering that a’is anon-null row vector (a,, @y, ..., ¢,)
we might, without any loss of generality, put @, = 1 and rewrite (11.1.4) as

Nal{(@n+ V1) +aza+...+a, p1}+ 2 {Ea( 01

002 (2 aY;)*1s wen (11.1.8)

j=1 i=1

where 0; = \/’)Z (ifi=j=1,2,..,8) and = 0 otherwise, and where @a; = 1.
To carry out the integration of (11.1.3) over (11.1.6), we first integrate out over z;,
and then check the total integral, which we call I,, is proportional to

Infalla
L= [[ [ exp(—4ahodoy|exp (b (Soh 4+ 5459 dudzdyy, .. (1LLT)
S“paIZa_

the symbols being defined in the following way. For Yy's, as in (10.1.3), ¢ =1, 2,
.,p and j=1,2,..,n, but for z,’s i =2,3, vy p. Also z; = x;,; with i =1,
2,...,p and j=2,38,...,k—~1, and

ha = [—VY1i~fia +H ol and Uy, = [—VV1—fra —F2a]; . (11.1.8)

where fia = 2o, and fo, = [6SE ;)2 —2(T ayz;4-6;;)2)F .. (11.1.9)
2 j i iz

Furthermore, (i) the constant of proportionality in (11.1.7) is free from v,’s, (ii) @y,

» Tpy vary from —oo to co while y;’s and z;’s from —oo to co subject to f,, always
sbaymg real, (iii) for f,, only the positive square root is to be taken, (iv) f1. and foa are
free from y;. Now with a; = 1, let a* denote the value of a for which f,, is a minimum.
Then it is clear that this a* is free from v, and x;,’s and is a function of 28, Yiy'Ss Co
and possibly also of d,’s. Notice that aj = 1. Also let I,.. and l,,« stand for the
values of /;, and I,, on substitution of a* for a. It is now clear that Inf lla < lh. )

Bup Iy, > lpx, s0 that Interval [Sup ,l,,, Inf ] < Interval [l , li» ]

Let us now introduce an I; such that, aside from a constant and positive
factor of proportlonahty (the same as for I,) it is defined by

lla."'-

L= H [ exp(- ?xn)dxu] exp {~}(Zak+ 2+ Toh)
123' ,

IiI 1;1 dxy dzy; dy;. . (11.1.10)

1t will be seen that, while I, is the integral of the, a.e., positive function (11.1.3) over
the domain (11.1.6) which is the intersection of a class of domains, I3 is the integral
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of the same, a.e., positive function (11.1.3) over the intersection of a subclass of the
previous class. In fact, thé subclass is formed by excluding from (11.1.6) all a’s for
which Inf 1, <1, < I, andfor l,s <, < Sup l,,. This shows that I, < I3.

It is now easy to check that, aside from a constant and positive factor of pro-
portionality, we have

or; _ ] o
== | [exp (—}E,4) —exp(— 1) lexp{—4(SaR 45 2+ Syd)] 1T doydeydy,
0
(\/71) : i i, ij

= [ [exB{—3(frur+ v PirHfont O — WitV Fa— o)}
X [exp{— 1(2] 1—{—2 z,—f—z Y2 H l'Idocu dzy dyy, L. (11.1.11)

by using (11.1.9). The domain of variation of #;’s, z;’s and y;’s has been already
defined immediately after (11.1.9). Tt will be proved that the expression on the right
side of (11.1.11) is negative for positive values of 4/, and positive for negative values
of 4/y,, or, in other words, I; is a monotonically decreasing function of [vV/71]-
To prove this we proceed as follows.

We recall from the remarks preceding (11.1.9) that fp,. is a function of 2;’s,

Yii’Ss Co and possibly also of the other d;;’s, while f)« is just a linear function of z;,’s

with a coefficient vector a* which is a function of the same quantities that occurin f, ..

Thus, “since w;’s are-each a N(0, 1), therefore, the conditional distribution of f; .,
} . ?

given a*, thatis, given z;;’s and y,;’s, is normal with zero mean and variance o2 = 3 a;2.
i=1

Therefore, aside from a constant and positive factor of proportionality, we can

rewrite (11.1.11) as

6\2,1) f [ eXP{ H it V71Hfowr )2}—exP { 3 frar A/ V1 —four)? }]

X exp (—- 557, = [ ) 0 exp { (Zz,]-{—Zyu)}l;I I]I dz;dy;. ..o (11.1.12)

Integrating out over f;,» it is easy to check that the right side reduces to

‘a

g. [exp{ (1+0'2 Sty V1) } p{ (1+02 Ty (V71— fz.')z}]

X exp{—%(zz§j+2y§;)}r_lI}dzijdy,.,.. e (11.113)

Rémembering that f,,« is, a.e., positive, it is now easy to check that, according

as 4/7; is positive or negative, we have a.e., (1/Vy+foas)2> O < (4/¥1—f2,+)2, that is,
a.e.,

‘exp { (1+0_2 \/'yl—l—fza.) }< or > exp{——w_—im ('\/Yl.—‘fgat)z}.-..(11-1.14)
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Thus, the integral (11.1.13) is negative or positive according as 1/7; ispositive or nega-
tive, which proves that I} is a monotonically decreasing function of each | V74l
separately, so that the power of the test stays greater than a monotonically increas-
ing function of each | 4/7;| separately and is unbiassed at least against all alternatives
v;’s for which I7 < 1—oa.

11.2. Test of independence between two sets of variates. We start from the
canonical form (A.7.3.5), denote by ¢, the largest characteristic root of (X 1Y)t
(Y Y )WY, Y3) Y, Y7), by Hy the H(y; = 0) (¢ = 1, 2, ..., p) and by H its complement
and then observe that, for a given ¢o(<<1), P(c, < ¢! H) = a function of vy, ..., 7,
= Yy(Y1, -» ¥p)» say. We shall prove that

P(e, < col H), L. Yrolyss s V), e (102.1)

stays less than a monotonically decreasing function of each |4/y;| separately (notice*
that each ;>0 and < 1), which is different from the decreasing function on the right
side of (11.4.1).

Proof: It will suffice to prove this monotonicity with respect to any one

parameter, say y,. Toward this end we proceed as follows. We first rewrite the
canonical p.d.f. based on (A.7.3.5) in the expanded form

Const exp [—%{ § 1

=1 1=,

R 2 .2 1 L L2
2 (Zg+Ya— 2YivgYa)+ X 2 yik}] e (11.2.2)
k=1 i=p+1 k=1

by putting ¥, = X and Y, = Y (the elements of the latter matrices being z; and
yz) and letting all new variates also vary from —oo to 0. We next use (A.3.9) to
find a triangular U(gXxq) such that

YY =00 andu; =0 if j>i(j=2,3,...,9). e (11.2.3)

We recall from (A.3.9) that given Y, the elements of U can be uniquely determined
by adopting a convention, say, that u; > 0 (¢ =1, 2, ..., q), provided that Y is of
rank g; as it will, almost everywhere, be. Now (see (A.3.15)) it is possible to choose
an orthogonal transformation: X(pxn) T'(nxn) = X* and ¥ = Y (notice that
although I' might involve Y, yet the Jacobian is 1), such that

XX' = X*X*, YY' =YY and XY’ = X* [I(g) 0

I: o ] (11.2.4)
7 0(n—gxq)
This is easily seen if we put Y{gxn) = ﬁ(qxq)L(qxn) (where LL’' = I(q), complete
L(gxn) into an orthogonal matrix [JLII] %_q = [V, say and then put X = X*IV,
n

to that XX’ = X*X* and X¥' =X* [ L] 0 = x+[{D T Thep.af
[M] [O(n—qxq)] . The p.d.f,

of X*, Y can now be conveniently written as

’ n P . [
Const exp [\—g % X (g —paux)/(l1—ph)—% X u?-], o (11.2.5)
\ k=1 i=1 i>4=1
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where p; = 0if k> ¢ and = /y,ifk <i. We now put
@ — Putar) [(1—pif)t = 2 e (11.2.6)

(being the elements of a matrix Z(p xn)) and g = pa/(1—p%)t, and obtain the p.d.f.
of 2y, and y,, (which vary from —oo to o0) in the form

n P q
Const exp [—%‘(2 S A+ 3 ufj)], e (11.2.7)

k=1 i=1 1> 4=1
where u;’s are given in terms of‘yi,c’s by (11.2.3). Notice from (11.2.2), (11.2.4) and
(11.2.6) that finally

(Y Y,) i’ —l’r’%l (z k+ﬁ1,kuzk z’k+ﬁ1’ku ‘h)(l p’bk) (l—p?’k)%> (11'28)

mm(m’)

(Y1 Y3); = 2 (zz,c+/21,a ) (1—ph)huy, and (Y, Yy )y = 2wt e (11.2.8)
(@ =1,2,..,p0; 4,57 = 1,2,...,9). Next we recallifror‘n (A.2.8) that the largest
characteristic root ¢, of (¥, Y)Y, Y)Y, Y5) Y, Y;) can be written as
Sup ,(a'Y; Yyb)?/(a’Y,Y a)(b'Y,Y;b) and the domain ¢, < ¢, as
Sup ,(a’' Y, ¥;bP @Y, Yia)b'Y, ¥3b) < ¢ ... (11.2.9)
or  Masl(@'Y, Yib)/(@'Y, Yia)b'Y, Yib) < c]
or ‘.alternatively as

Napl(@ Y, Y3b2/{(a'Y, Yia)b'Y, Yb)—(a'Y, Vb)) < ¢ (say)] ... (11.2.10)
or, using (11.2.8), as
»

Masl{ § §1 é:l (2 Pz, )b, Uiz} < { E g_z bjw]k) )}

X [2 (Z {2+ Ba¥a))2]—expression on the lett of < m (1L.2.11)
s (11.2.11)

Now, by using certain standard inequalities, and taking the intersection over
b, it is easy to check that (11.2.11) reduces to

na[ﬁ $ (zm+,6muw) <d 3 (§ aizf,c)z], .. (11.2.12)

k=1 Vi=1 b=q41 =1

in which, without any loss of generality, we can take ¢, = 1. The problem now is
one of integrating out (11.2.7) over (11.2.12), the u;’s being given by (11.2.3). To
carry out the integration of (11.2.7) over (11.2.12) we proceed exactly as in the previous

)
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case, integrate out over z;; and then check that, aside from a constant and positive
factor of proportionality, the total integral which we call I, » is given by [see (11.1.7)]

Intl,
I, = H [ exp (—‘%zﬁl)dzl'l],-exp{—%(szﬁzu%k)} Mdzgdug. ... (11.2.13)
Sup I,

In (11.2.13), (i) 2;; is omitted from 2y's, (ii) wy’s (for ¢ k) and z,’s vary from —oo
to co and w,’s from 0 to co, all subject to I;, and I,, staying real and (iii) J;, and I,
are given by

lia = [— /71 /(1—yy) un“fla‘l‘fza]andlza:[—'\/')’1/(1“')’1)’“11—f1a—f2a]’ . (1L2.14)

in which f,, and f,, are defined by

» .
J1a = 1_2_:2 “z(zi1+/”muu)

, n » 4 » . 2

and fo =1 3 (3 ) =3 (3 (2p+Buua)?]t. veo (11.2.15)
k=g+1 i=1 k=2 i=1

Arguing now exactly in the same manner as in subsection (11.1) we can establish that

I, stays less than a monotonically decreasing function I3 and thus the power of the test

stays greater than a monotonically increasing function of kY% v1/(1—v,)]|, that is, of

[7:%[, thatis, of any [v:it], from considerations of symmetry. Also the test is unbiassed
against at least all alternatives y;’s for which 15 < 1—a.

There are reasons to believe that the lower bounds indicated in sections 11.1

and 11.2 are closer than the lower bounds for the corresponding problems, indicated
in sections 10.3 and 10.4.

11.3.  Test of independence between two sets of variates under the regression model
of (4.25)-(4.33). It will be observed from section (7.7) that the distribution of the
roots (and therefore that of the largest root) in this case can be identified with that of
case (i) of (7.6) when p<q and with that of case (ii) of (7.6) when p>¢, in both cases,
by putting n; = g and n, = n. It will be also observed that this identification holds
for the distributions on both the null and the non-null hypothesis, We have, there-
fore, exactly the same kind of monotonicity property in this situation as in the case
(11.2) and no separate proof need, therefore, be given for this case.

11.4.  Modified test for the equality of two dispersion matrices against a special
class of alternatives.  We take over from (6.4.5) the acceptance region for the
hypothesis H, : £, = 3, and rewrite it as

C1a(Ds 1, M) < all ¢'s < Cao( D> Ty, My), (11-4-1)

where ¢,, and ¢,, are so chosen as to satisfy

Pleye < all 65 < €0 |3, = 5,) = 14, e (11.4.2)
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and

’rap(cla@u 68K Coo | Ty # ) ]
- dy; 71

Or [OP(GI;, cza, 717 sees yp)] -
"1

37, =0 (i=1,2,..,p),

===y, = l‘
(11.4.3)

remembering that if £, = 3,, the probability P is, aside from the degrees of freedom
n, and n, and the limits ¢, and c,,, purely a function of y;’s, the characteristic roots
of £, 2. Tt will be shown here that it Yy = ... = Y, = 7Y (say) (which means that
I, 37t itselt is equal to yI(p), i.e., I, = y3,), then P monotonically decreases, i.e.,
the power of the tést monotonically increases as this common y tends away from 1
which is the value of y on the null hypothesis T, = X,.

Proof: We start from the canonical :probability

nl
| Const /i ¥2] exp [~} tr (Dyyr, Xy Xy +X,X3))dX, dX,,

=1

where the constant factor is a pure constant not involving the parameters, D, g stands

for a diagonal matrix whose diagonal elements are 1/y,, | [7y» X1 and X, are pXn,
and p X n, (p<n;, n,) and where the ¢;’s of (11.4.1) are the roots of X, X (X,X5)™
We first show that the p equations under (11.4.3) are really equivalent to one
equation. To prove this we note that aside from the constant factor,

) Y / .
P = I EI (1jv)?® exp[—3tr (Dl/.,inX1 +X,X)]
ey < 8l [ X X (XX 1) 1] < c2q = ‘ |
“xdX,dX, ... (11.4.4)
Hence
9P : 5 _ ,
= f (1) ® [ M yi— 3 Dy, XaXiu ]
d ?’) c1q < all o[ Xy XHXX5)1] < €24 j=
X exp [—4 tr (Dy, Xy X+ X, X5)]dX, dX,. o (11.4.5)

Now using the transformation

Xi(pXny) = .U(p Xp)D DX D) Ly(pX ny)
and - Xy(pXny) = U(P X P)Ly(p X ), (11.4.6)
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where U is non-singular and L,L; = L, Ly, = I(p), and integrating out over L,; and
L,;, we observe that, aside from a positive and constant factor of proportionality,
(11.4.5) reduces to

or _ I 'S L2 n . 1
) = ) Ham® Ry DU 0] )
» n1—2
% exp[—}tr (Dy, UD, U'4UUN|U|™F"P Ul o 2 dckkl;lkl(ck—ck,),
where D, stands for a diagonal matrix with diagonal elements c,, ..., ¢, and the
domain D is
1, < allg’s < ¢y, and — 0 < all u’s < co. .. (11.4.8)
We have thus
op = [ [™ —ywb, v, —} tr (UD, U+ U
{W}71=~--=7p=1 J) {2 3( 6 )u] exp [—4 tr ( o + )
p Ma—p—l
X |U[MTmTPAU e 2 dg T (,—cp), v (11.4.9)
j=1 §>4

Having regard to the definition of the domain given by (11.4.8) and the structure
of the integral on the right side of (11.4.9) it is easy to check that this integral is in-
variant under a change of the subscript ¢, so that the expression on the left side of
(11.4.9) is the same for ¢ = 1, 2,...,p and hence the p equations (11.4.3) are equivalent
to really one equation. Now adding p formally different looking integrals like the right
side of (11.4.9) over ¢ = 1, 2, ..., p and cancelling a factor we. e that (11.4.3) is really
equivalent to »

f [ 1—}0131~ UDciU’] exp [—3% tr(UDci U'+UU')]]U|n1+n2_de
D .
p Ta—p—l
X He * do T (¢,—¢) = 0. ... (11.4.10)
i R

- It is easy to check that the left side of (11.4.10) is the same as if we had put all y,’s =
¥ in (11.4.4) and then differentiated the integral with respect to y and then puty = 1.
Ls will be presently seen this will enable us to rewrite (11.4.10) in a simpler form (which
can also be derived in a straightforward though rather lengthier manner). At this
point, remembering the definition of D by (11.4.8), we merely observe that (11.4.10)
gives one relation between c;, and ¢,, which we call the condition of local unbiassed-
ness and then (11.4.2) added te this determines e and c¢,, completely.
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Going back now to the problem of proving the monotonicity of the integral
on the right of (11.4.4) under the special assumption that y;, = ... =y, = v (say),
we proceed as follows. :

Putting Dy, 53 X; = Y; and X, = Y, we note that (11.4.4) reduces to
p ;

P = j exp [—3tr(Y, Y+ Y, Y)dY,dY,. .. (11.4.11)
c1g S alle [DinlY’l(Y2Y'2)—1] < €ag

Now putting all v; = v it is easy to check that this reduces to

P = exp [—3tr (Y, ¥, +Y,Y5)]dY,dY,. ... (11.4.12)
%o < Al T,V (Yo ¥5)1] < 22

We are thus back on the problem of the distribution of the characteristic roots on the
null hypothesis and we have, therefore, aside from a constant and positive factor of
proportionality not involving the 7,

p n—p—1 N1+
P = [_H ¢ % def(l4c) ® I (¢;—¢))
c1a/ Y<K Lopezay b =1 1>
CaalY €3 Ca
p
- [ [ fler, i) 1 de, e (11.4.13)
op= % 0y = i;—“ o= ”;/—“
where
pp Ta—p—1 n1+n2_' »
fley, -y cp) =11 [ci 2 /(1+c) 2 | I (¢;—¢) =11 ci"‘(l-}—ci)‘”.ﬂ' (¢;— ¢;).(say)s
t=1 1>] =1 i>J
(11.4.14)
It is now easy to check that
T caglY epr Ca
OP . ¢ -1
= [c, f [ s (cl, s €yt 2_) T de,
a(1 =
( /7) C1alY C1afY C1elY 4 ’
CanlY Cp c3 c "
— “e o, ..., . ... (11.4.15
C1a S j' j. f(y . Cy cp> ilzlz de; ( )
C1a/Y C1elY C1alY
n CanlY Ca _ Pt _1
— CoalCaalV)" § T e(1+4-c;)"de; Bil (¢;—¢;) 57 {(@ ——c.l-}
1 cﬁ’ i=1 P> j=1 i=1 ‘7Y
{ + ,y} ciolY CialY .
CaalY C3 » 1 ]
— (ML j g i1 e (l4-c;)™ de; Byl (c;—¢;) i ‘{c,; - (i'}
1 Con i=2 v t> j=g i=2 Y
{ + 7} cialY c1elY

= ky(y)1(y)—ko(y)oy), soy.
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The condition of local unbiassedness is that
k(DI(1) = ko I1). . (11.4.16)

We shall now show that subject to (11.4.16) the last expression on the right
of (11.4.15) > 0if y > land < 0if y < 1. The proof will thus be complete if we can
show that according as v > 1 or < 1 we have

€1 "
e n n
, 7 I,(y) Ciq ; 1+, )" (1) < 1+ 610" I4(1)
1 + ) Ioy) - (g) 1o = (1+02 ) I(1) o (1 +ce)  I(D)
(11.4.17)
Now according as ¥ > 1 or < 1 we have
( Cla) ’( 1+ 2a) > or < (1-+¢q0)[(14-c,). ... (11.4.18)

Thus (11.4.17) will bé proved if we show that I,(y) is an increasing function of y and
I(y) a decreasing function of 7.

Now
oly(y) _ M 0L5(y) _ CaalCsal V)™ v (11.4.19
8(1/7') - (1 + ) Ia d 1/7) (1 + %@) I’ ( )

where [ stands for the positive quantity

CoalY Cp-y’ C3

) p—1 r—2 -1
[ [ - [ O o(lte)™de; T (¢—c) 11 (ci— S’i@)
J i=2 : P> =2 i=2 0%
cln/y 610/”/ cl(uy
»—1
X (2 - o) (G — 2. .. (11.4.20)
i=2 Y Y 7

It is thus easy to see that 1"57; < 0 and 3(112;7_; < 0, so that P of (11.4.13) mono-

tonically decreases or the power of the test (6.4.5) monotonlcally increases as 7y tends
away from 1.

11.5.  Modified test of the hypothesis that a population dispe'rsion matriz has

a given (matrix) value against a special class of alternatives. We take over from (6.4.4)
the acceptance region for the hypothesis H, : £ = ¥, and rewrite it as

Cla(’p= 7") an C S c2a(p’ ’I’&) (11.5.1)
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where ¢;, and c¢,, are chosen so as to satisfy
Pley, < all ¢s < 6|2 =32)) = 1—« .o (11.5.2)
and
0P(c,, < all civ’s < g |2 # Zy) . . '
a =0@G=12..7p), .. (11.53
[ 3, |P———l ) (11.:5:3)
OP(Cry; Cogs Vs -vs Vo) .
or o 720 ARSI § =00=12,..,p).
[ a')’»b ]71:"':7}7:1 ( P)

Here the ¢;’s are the characteristic roots of % (X X251, v,’s are the characteristic roots

of =51 and X(pxn)(p g n) is the reduced observation matrix.. Exactly along the
same lines as in the previous case it can be proved that (i) the p equations (11.5.3)
are really equivalent to one equation and that (ii) if v, =y, = ... =y, = y (say),
in other words if ;! = v, i.e., Z = y%,, then the P of (11.5.3) monotonically .
decreases, i.e., the power of the test monotonically increases as y tends away from 1,
which is the value on the null hypothesis.

11.6. It can be shown by very lengthy and tedious calculations that the
two tests considered in 11.1 and 11.2 for multivariate analysis of variance and for in-
dependence between two sets of variates as also the modified tests considered in 11.4
and 11.5 for one and two dispersion matrices have each of them:the monotonicity
property, and not just the near monotonicity property which has been proved in
chapters 10 and 11. But this lengthy proof is not being offered, in the hope that a
much simpler and more elegant proof may be forthcoming in the near future.



'CHAPTER TWELVE

Least Squares and Univariate Analysis of Variance and

Covariance with Multivariate Extensions

12.1.  Statement of the problems. Let X(nx 1) denote a set of n uncorrelated
stochastic variates with the same (unknown) variance o? and let E(x) be subject to
the constraint:

E(x) = A(nxXm)§g(mx1), .. (12.1.1)

where m < n and & (m X 1) is a set of unknown parameters (to be estimated) and 4 is
a matrix of rank » < m < n, whose elements are given by the particular experimental
design.

Problem I: Given a non-null ¢’(1xm) (subject to certain restrictions to be
brought out in (12.2)) and given X, it is required to obtain for ¢’ a linear estimate
b’(1 xn)x(nx 1) such that (i) B(b'x)=c’¢ (for all §) and (ii) variance (b'x) is to be a
minimum. ¢’ will be said to be linearly estimable (or sometimes just “‘estimable”)
if and only if (i) is satisfied.

Problem II: Given ¢’ and x as above, it is required to obtain % so that

A

A .
(x'—§'A’) (x—AE) is a minimum. It will then be incidentally verified that b'x of

A
Problem I = ¢’t of Problem II

Problem II1: To the model of Problem I add the further condition that the
x;’s are independent N(E(x;),0%) (¢ =1, 2,...,n). Letusnow try to obtain (in terms
of given elements) the customary F-test for the hypothesis

Olgxm)(mx 1) = 0(gx1), . (12.1.2)

where r  m (r being the rank of the A-matrix of (12.1.1)) and C is a given matrix of
rank s < min (r, q).

The model indicated, under which the hypothesis (12.1.2) is tested, is usually
called the linear hypothesis model, or in more recent years, the model I of analysis of
variance. The hypothesis (12.1.2) is called the linear hypothesis. Now going back
to (12.1.1) we observe that for the usual types of experiments when they do not involve
regression, 4 is a matrix whose elements are ordinarily 0 or 1. For experiments
which also involve regression on the so-called ‘“‘concomitant variates’ which are really
certain observations supposed to stay constant within the probabilistic set-up of the
experiment and the analysis, 4 is a matrix some of whose elements involve these
“non-stochastic” observations, the rest of the elements being pure constants, mostly

0 or 1. That will be called the general regression set-up under the so-called model
I of analysis of variance and covariance.

76
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12.2. Solution of Problem I. Assume that A’(mxn) is such that A,(xn)
can be taken as a basis and let 4'(m xn) of (12.1.1) be factorized into:

r [4] o r [T,
= L{rxn), .. (12.2.1)
m—r LA}, m—r LT,

n r

such that LL' = I(r), and let L,((n—r)xn) be an arbitrary completion of L in the
sense of (A.1.15), so that

L7 r
Lynxn) = [ ] is { . .o (12.2.2)
Lyt n—r
n

Notice that L, is not unique. Also observe that
L LL' LL, L
I(n) = [L: L] = =[L": L] = L'L4+LiL,. ... (12.2.3)
I, LI’ LL L,

Furthermore, with an 4 having the structure (12.2.1), let (12.1.1) be rewritten as

3 r
E(x) =n[A, : A,] , o (12.2.4)
g, m—r
r m—r 1
and let ¢’ be rewritten as
]| 7
1[c): ¢}l ... (12.2.5)
go-l mM—7
rm—r 1 '

Now condition (i) (of unbiassedness) of Problem I of (12.1) becomes
' & g1

[c] & ¢) | = E('x) =b'Ex) = b'[4, | 4,] v (12.2.6)
& E»

= b’(Al E..1+A2 22)’

and, since this is to be true of all ; and ¥,, we should have

b4, = ciand b'4, = c;, . (12.2.7)

which imposes a number of restrictions (< m) on b’(1xn) but by no means fuldy
determines b’ (which has to be determined).

Substituting in (12.2.7) for 4, and 4, from (12.2.1) we have

b’ LT = c] or 'L’ = ¢|(T})~1, and b’E'T} = c}. ... (12.2.8)
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Now to minimize V(b'x) subject to (12.2.8) we proceed as follows:

V(b'x) = o2b’b (since X is an uncorrelated set with a cqmmon variance ¢2) ... (12.2.9)
— o' [L : L] [i] b (using (12.2.2)) = o?[b'L/Lb+b'L;L,b]
= o?[c)(T)Y(T,)c;+b'LyL;b] (using (12.2.8)).
The minimum Vi (b'x) is thus reached when
'L, =0, ... (12.2.10)
so that, combining (12.2.2), (12.2.8) and (12.2.10), we have
b — ¢\ ()L, .. (12.211)
and hence
b'x = ci(@)1Lx = ¢ (T} 1(T,)14;x (using (12.2.1))
= c;('_’l"'l'ﬁ;)—lA;x = cj(4}4,)14;x. o (12.2.12)
This gives the “unbiassed minimum variance” estimate of c g.
Restriction on ¢’. Now, going back to (12.2.8) we have
c; _ b'A, = c|(T))LA, = c;(T}) T, 74,4, (using (12.2.1))
= ¢,(4; 4,14/ A,. ... (12.2.13)

We have thus that, in order that c’%, i.e., [c] | ¢j] El] may be ‘‘estimable” (in the
2

sense indicated), ¢, must be related to c¢; by (12.2.18), which can be expressed in
another form that is more suggestive. From (12.2.1) we have

Ay = LT = AT T4 or 4} — Ty )24, L. (12.2.14)
which on substitution into (12.2.13) yields

cy = cj(Aj A, A A(T)T = (@) Ts, ... (12.2.15)

Thus ¢, is related to c; by the same post factor by which 4, is related to 4,.

Invariance of the linear estimate (12.2.13) under choice of Aj.  If, instead of
A;‘and c;, we choose another set of independent row vectors, say A4} and cj to match
it, then in place of the right hand side of (12.2.12) we should have the linear estimate
given by replacing the subscript 1 by 3. But remembering that

Ay(rxa) = T3(?‘><7*) L(rxmn), .. (12.2.16)
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where 7T’y is obtained by picking out from the right hand side of (12.2.1) the rows
corresponding to A’; and is necessarily non-singular (since A4'; is of rank r), and using

(12.2.15) and (12.2.16), we have
ColAjA,) 1 ALX = (T \TT (T ) 1A AT T Ty T )1 Ax
= i@ YT AL A) T (T T[T Aix = ey(did,) 24k, .. (12.2.17)
which proves the invariance.
Variance of the ‘‘umbiassed minimuni variance” estimate. From (12.2.9),
(12.2..11) this variance is given by
V(b'x) = a?b'b = o2c)(T)LL(T )1, = orc)(TT;) ¢, = o2c)(A;4,) ¢y,
(12.2.18)

which again by the method of the previous paragraph, can be shown to be invariant
under choice of 4.

12.3. Solution of problem II or the ‘“Least squares solution’.
’ ’ 14 14 ’ ! 1. s L \
('~ A")(x—Ag) = (£ g AL} L] [ |x—a8)
1
. /_/T’lv ‘. IL ___,"/: ’ .
=[xt (Tz)L] [L: Ll][Ll] [x—L/(F; ] .. (230)
1T ’ T Tt - .I e
- [xL —t (T:)] [Lx—(T}: TL)E}+x'LiLx

(using (12.2.3)). It is now quite easy to see that given x and A the minimum value
(x'—§A')(x—Ag), under variation of g, will be attained if -

Lx = [Ty T}k. o (1232)

If we now want the “least squares estimate’ c’é of an “estimable linear function”
c’g, we have from the above: c’£= c;£1+c;£2 = c{él—{—ci(f'{)—l’l’ééz (from (12.2,16)
= c;(T;)—l(f’éél—}—T{%z)l = c;(’f’{)"le (from (12.3.2)) = c{(f‘;)“l(Tl)“lA’x (from
(12.2.1)) = ¢;(4;4,)7*4,x, which proves the identity of the “least squares solution”
of an “‘estimable linear function” with the “‘unbiassed minimum variance solution”.
12.4.  Solution of problem III. It is well known that
if x(nx 1) is a set of n uncorrelated N(E(x), 02I(n)) (and thus also independent variates)
and if L(pxn) (p < n) is subject to LL' = I(p), then L(pxn)x(nx1) is a set of p
uncorrelated N(LE(x), o2I(p)) variates. .. (12.4.1)
It is also well known that
if li(px 1) is an independent N(0,0?) set and so is v(gx 1) and if w and v
are mutually independent, then u'ujo? is a }2 with p degrees of freedom, v'v/c?

is a y? with ¢ degrees of freedom and qu'u/pv’v is an F with degrees of freedom
p and q. ... (12.4.2)
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Going back to the model of Problem III in (12.1) and to (12.2.1)-(12.2.3) we
observe that
if xX(nx1) is an uncorrelated N(E(x),02I(n)) set, then L{rXn)x(nxl) is
an uncorrelated N(LE(x),o2I(p)) set and Li((n—r) X n)X(nx 1) is an uncorrelated
N(L,E(x), ot l{n—r) set which is also independent of the Lx set, since LL; = 0.
(12.4.3)
Now from (12.1.1) and (12.2.1)-(12.2.3) we have E(x) = L'[T} : T4]¢, so that
L, B(x) = L, L'[T;: T3¢ = 0. Thus L;x is an independent N(0, o) set, whence it
follows that we have a ¥ (with n—r degrees of freedom) given by:

x'L, L x[o? or X'({(n)—L'L)x/c2 or [x"x—x’Al(f’1 TH-14ix]jo? ... (12.4.4)
or [x'x—x'4,(4; 4,)7*4,x]o2.

Consider now the hypothesis C(gxm)§(m x 1) = 0, where C is of rank s < min (g, r),
r being the rank of the A-matrix and thus being  m<n. Let us rewrite the hypo-

thesis as ‘
s [C Cp 1] 7
=0, . (12.4.5)
g—s L0y Oy Ead m—r
1

r  m-—r

where [C;, C),] are a set of s independent row vectors and{ O1a 312] a maftrix, each

LUgy 22

row of which is of the nature of c, of (12.2‘). In this case the hypothesis (12.4.5) will
be said to be ‘testable’.

It is now easy to see that the hypothesis C¢ = 0 is equivalent to C1:811+C108,
= 0, so that we shall work in terms of this latter. Going back to (12.2.12), (12.2.3)
and (12.2.15) we note that

Cyp = 01’1(@1)—1975 ... (12.4.6)
and 0 = Oy +Cro¥p = E[G(414,)24;x] = B[CW(T, T) T, Lx]. ... (12.4.7)

Now (Tlf’{)—li’lL is a rXn matrix of rank r and Cy; is a s X7 matrix (s £ ) of rank®
s.  Then using (A.1.6) we note that 011(7~’1’.7’{)*1TIL, which is a s X » matrix, must be
of rank s  min (g, r) (note that r < m < n). Let

O[T Ty T\ L = P(sxs)M(sxn), . (12.4.8)

where MM' = I(s), and V of course is non-singular. Then we have

E(Mx) = (V)B[C(T,T)) T, Ix] = 0 o (12.4.9)
(from (12.4.7)) and furthermore
. ML, = (V)10 (T, 7T, LL =0, .
o thet MLy = (V)10 (@ T)~F,LL, = 0, e (12.4.10)
Mx is a s-set of independent N(0, 0?), Lyx(0f (12.4.9)) is a (n—r)—set of independent
N(0, o), Mx and L,x are mutually independent, .. (12.4.11)
and hence

(n—r)x"M' Mx[sx'L;Lx is an F with degrees of freedom s and n—r. ... (12.4.12)
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Using (12.4.4), (12.4.8) and of course (12.2.1) and (A.3.11), we can reduce
(12.4.12) to

(n—r)x 'A1(A Al)_loh[CnA A1)—1011] 10y,(4:4 )'lAlx (12.4.13)
s[x'x—x'A4,(A14,)724;x) v o

which is an F(with degrees of freedom s and n—r) for testing the hypothesis C§ = 0
and which is expressed in terms of quantities directly observed or given by the experi-
mental design and the hypothesis to be tested. The form (12.4.13) can be shown
to be invariant under the kind of choice indicated in (12.2), i.e. under the choice
of a basis of 4, in much the same way as there.

12.5. Conditions that k different linear hypotheses may be festable in a
quasi-independent manner. Suppose instead of the hypothesis (12.1.2) we bave the
following hypotheses:

OW(g; X m)g(m x 1) = O(g;x 1), with s =1,2,..,k ... (12.5.1)

or breaking down into submatrices,, we have in place of (12.4.5) the following:

s [CR .08 & r
o =0(g;x1), withi = 1,2, ..., k.
a—sLog ogd Le,dm—r -

r m—r 1 ... (12.5.2)
Now by (12.4.12) the -th hypothesis of (12.5.1) will have an F; to go with it, where
= (n—r)x'M;Mx/[s;x'L L%, - ‘ .. (12.5:3)
and is distributed as an F with degrees of freedom s; and n—r. Also x'M;Mx/o? isa
X% with degrees of freedom s; and x'L] L;x/0? is a 2 w1th degrees of freedom n—r. Itis
clear from (12.4.10) that each ¥ (1 =1,2,...,k) is distributed independently
of ¥2. The question is, when are the y?’s themselves mutually independent? . If
these are so, then the associated linear hypotheses (12.5.1) will be said to be testable.
in a quasi-independent manner. Going back to (12.4.8) we observe that x7 and y}

(¢ 5= ) will be independent if M; M; = 0, that is, if
Voo T, 7))~ T LL'T (T, ) egy Vit = e (12.5:4)

or since 17', and ¥, are noh-siﬁgula:, if
Cﬁ)(AiAl)'l(AiAﬂ(AiAﬂ_l CY =0

or O ALA) OFY =0, with i 525 =1,2, ..., k. . (125.5)

This, therefore, is the set of conditions for the linear hypotheses (12.5.1) being testable
in a quasi independent manner. From a practicai standpoint it serves; when an ap-
propriate breakdown of the sum of squares is not intuitively evident, exactly the same
purpose as Cochran’s theorem does when such an appropriate breakdown is intuitively
evident.

12.6. A quasi-multivariate generalizdtion of the problems considered in (12.1).
Suppose that in (12.1) we assurhe that X(nx 1) denote a correlated set with a p.d.

dispersion matrix o2X(n X n) where o2 is unknown but Z is supposed to be known
11
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and suppose that (12.1.1) is left unchanged. Also in problem IIT let us assume
that x is N(B(x), 02Z) but let us leave (12.1.2) unchanged. Then putting

SnXn) = f’(an)’f”(nxn) and T nxn)x(nx 1) = y(nx1), ... (12.6.1)
it is easy to-check that y(nx 1) is a set of uncorrelated variates with a common variance

o?, and also that if x is N(B(x), 02%), y is N(E(y), 02I(n)). Also in terms of y, (12.1.1)
reduces to

~

B(y) = T14%. .. (12.6.2)
It is now easy to check that (12.2.12) reduces to
AT T14,) 1417y = c)(A;514,) ATy = cj(4;5714,) 1 4;5 7.

(12.6.3)
Also (12.4.13) similarly reduces to

(n_r)X’Z—IAﬂAiE*lA] )10L[01(4, 271 4,) 71051 011(A12_1A1)iiA12-]x ‘
TS xS A (A7) A K]

_ (12.6.4)

Ttis easy to verify that, under this model, the ‘estimability’ condition (12.2.13)
and the ‘testability’ condition (12.4.6) will stay unchanged. The necessary modifica-
tions in the other expressions will also follow in an obvious manner.

12.7. Multivariate. generalization. The set-up for multivariate analysis of
variance and covariance, i.e., for a test of the general multivariate linear hypothesis
is an easy and direct extension of what has been considered so far in this section.

In place of the set-up of section (12.1), consider the more general set-up of
(iiic) of chapter 5, which is the following. Let X(p Xn)(with p and p(p+41)/2<n) be n
independently distributed column vectors, the r-th vector X, (p X 1) being N(E(x,), L)
(r=1, 2,...,n). In place of (12.1.1) we have

E(X')y (nxp) = A(nxm)(mXp), .. (12.7.1)
where £ is a matrix of unknown parameters and 4(n X m) is given by the design of the
experiment such that it is of rank r{m<n. Werecall the observations in connection
with (12.1.1)and note that here also, for the usual type of experiments where they
do not involve regression, A is a matrix whose elements are ordinarily 0 or 1. For
experiments which involve regression on the so-called ‘“‘concomitant variates”, 4 is
a matrix, some of whose .ements involve these “‘concomitant variates’ or non-stochas-
tic observations, the rest of the elements being pure constants mostly 0 or 1. Also

setting
AT o
A'(mXn) = [ J , .. (12.7.2)

Ay d m—r
n

let 4{ be a basis of 4’, i.e., of 4.
In place of the hypothesis (12.1.2) we shall have the hypothesis

O(qu) me = O X 3 “ee oda
where, as before, ( p) = 0g X p) (12.7.3)
Clgxm) = [ | ] . (12.7.4)
Cy Ol g—s

r o m-—r
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such that Cis of rank s, [Cy; : C},] forms a basis, and also that C satisfies the
testability condition of the nature of (12.2) which will be here

Cip] s = s | Cn .
[Ai(r x n)d,(n X r)] LA (r X n)AgnXm—r). ... (12.7.5)
: 022 q—s q—s 21 \
m—r

Just as, following (12.4.5) we observed that the hy -othesis C{gxm) (m x 1) = 0(gx 1)
&5 5[0 ¢ O] E(mx 1) = 0(sx 1), so also it is easy to check that C(gXxm)&(m X p)

r m—r
= 0(g X p) & 5[0, | O] §(mxp) = O(s X p)
r. m—r
Cyl r
or H, :E'(pxm) [ ] = 0(px8). ... (12.7.6)
Cpd m—r :
8
We also observe that
\ Cyr
H,of (12.7.6) &=, Hya =[.[2'(1Xp) E’(pxm)[ ‘J =0"(1xs)], ... (12.7.7)
Cigd m—r
8

where [}, is taken over all non-null a{px1).

Now, using (12.4.13), we have for H,, a critical region of size, say f, given by

(n—r)a’XA4,(4;4,)™* C1,[C1y(4,4,)71C/,11015(A,4,)7 14, X'a
sfa’XX'a—a’'XA4,(4,4,)*4,X"a)

K Fpls, n—r),

(12.7.8)
where Fy(s, n—r) is the g-point of the F-distribution with degrees of freedom s
and n—r. Now, as in (iii) of section (6.4) of Chapter 6, using the extended type I
principle, we have for Hy = (1, H,,, the critical region of size o > f) formed by the
union of the regions (12.7.8) over all non-null a{p X 1), the region being given by

¢, > (P, 8, n*—j), ... (12.7.9)

where ¢ = min(p, s), ¢, is the largest characteristic root of §*8-1, and
s8* = XA,(A1A4,)20 [C (41 44)71C 11720471 4) 41X ... (12.7.10)

and - (n—r)8 = [XX'—X4,(4;4,)7 4", X"]. . (12.7.11)
This largest characteristic Toot has the same central distribution as that of the
largest characteristic root that figured in (iii) of (6.4), with degrees of freedom p,¢and
n—r. '

The development given above really subsumes an apparently more general
development in which the hypothesis (12.7.3) is replaced by : ’

Clgxm) & (mxXp)M(pXu) = 0gxu), .. (12.7.11.1)

where u < p, M is a given matrix of rank » and C has the same structure as before.
The equation (12.7.6) will now be replaced by
: Cnlr
Hy: M'(uxp)E (pxm) = O(uxs). :.. (12.7.11.2).
1o 4 m—r
$
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That the development. of this case. is really subsumed under the one alréady
discussed can be shown in the following way. We note that if X(p X n) (with p < n)
be n independently distributed column vectors, the r-th vector X.(px1) being
N(E(x,), Z)r = 1, ...,n) then M'(uxp)X(pxn) will be n independently distributed
column véctors, the r-th row vector being N(E(M'x,), M'SM).  Putting
E(mxp)M(pxu) = E* (mXu), we can now replace (12.7.1) by :

EX'M)nXxu) = Anxm)g* (mxXw), ... (12.7.1L3)
and (12.7.11.1) and (12.7.11.2) respectively by
Clgxm) E*¥(mxu) = OlgxXu) e (12.7,11.4)
and
¢y r :
E* (uxm) = O(uXxs). ... (12.7.11.5)
Ciod m—r
s

It is thus easy to see that for the hypothesis (12.7.11.4) or (12.7.11.5) we can, in exactly
the same way as before, work out, step by step, a test of the same nature. In (12.7.8),
X(pXn) is to be replaced by M'(ux p)X(pxn); in ¢ (p,s, n—r) of (12.7.9), p is to be
replaced by %; and in ¢, of the same equation ¢ wil now stand for min(u, s); also in
(12.7.10) and (12.7.11), X will have to be replaced by M'(ux p)X(p X n). In subsequent
developments (specially in connection with confidence bounds related to multivariate
linear hypotheses on means) it will be understood that we can always switch over
from H,:Ct = 0to H,: CEM = 0, and back and forth. Thus the mathematical
treatment given there will suffice for this apparently more general case.

The direct reduction to the canonical form of the problem of the joint distri-
tribution of the roots ¢;<¢,<...<¢, and hence of that of ¢, is of some interest here,
and it also proves incidentally the statement made efler (12.7.11), which of course
can also be proved otherwise. For this reduction we proceed as follows:

P(X) = Const exp [~} tr T X—EX )X —E(X")dX, ... (12.7.12)
= Const exp [—} tr ZYX~E'A"( X' —4E)]dX,
using (12.7.1).
Next, using the factorization (12.2.1) and the completion (12.2.2), we have -
. L r
A(nxm) = L'nxr)[T;: Ty]r, and an | oo (12.7.13)
r m—r Lyl n—r ‘

n
Now use the orthogonal transformation

Z(pxn) = X[L' : L] = [Z, : Y]p (say), i.e.,
r n—r

X =1[2,:7] [Lj’ = Z,L+YL, . (12.7.14)
1

to obtain
o T, 3
P(Z,, Y) = Const exp[—3 tr Z1{(Z,— &’ o )(Z;—[T{ : T;] g - YY'}dZ;dY.
T

(12.7.15)
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Notice that the unbiased minimum variance estimate of [Cy, : Cplimxp) is
Cn(414,) ' x AjX’, so that under H,: E[C}y(4;4,)"4;X'] = 0. Also we have
OCn(4;4,)714; = Oy(T, T)"'I'"L = C,; T;7* L. Now put

011(s><r)1~’1—1(r><r) = V(sXs)M(sXr), where M, M; = I(s). ... (12.7.16)
) Ms |
Also complete M, into an |
M,
r

Next use the orthogonal transformation

Zy(pxr) = Z,[M) } My] = [Y*: Y]] p(say),ie.,

§ r—s
Zy,=Y*M,+Y1M,, and notice that
Y*= Z M, and Y] = Z,M,. e (12.7.17)
Similarly put
T T,
n* =&’ M;and 9 =¥ M. . (12.7.18)
- LT, T,

We now have for (Y*, Y3, Y) the distribution

7
P(Y*, Y7, Y) = Const exp[—3 tr Z-1{(Y*M,-}- YiM,)—-¥ Ii J )
: 2

X(MLY* MYy —[T) : TE)+ Y Y AY*dY; dY

— Const oxp [—} tr ZH(Y*—y*)(T* —p*)+(Ti—n))(¥s'—1})+ Y TN T*d¥}dY.
(12.7.19)

Integrating out over Y3, we have for (Y*,Y) the joint distribution
P(Y*, Y) = Const exp [—3} tr T Y*—p*)(T* —p*)+ YYAY*dY. ... (12.7.20)

Notice that Y(pXxn—r) Y'(n—rxp) is, a.e., p.d. (assuming of course that p < n—r)
and Y*(pxs8)Y*(sxp) is, a.e., at least p.s.d. of rank { = min (p, s). Also check that
YY' = XL,I,X = the right side of (12.7.11) and Y*Y* = Z, M M,Z; = AR
X OV 0 Ti17Z; = XL'T~ O (VV')t Oy T, -'LX’ = the right sids of
(12.7.10). Furthermore, check that

7, 7, |
= i' [ j| M; = i’ L T 10 Vl—l (&1 +E T2) 101]1/'—1 (say)
T, T,

= (5,1011‘*‘2.;0{2)17'—1:

so that, if C¢ = 0, i.e., if £;C},+,C;, = 0, then 7* = 0. Also notice, after some
calculations, that

7 = (01 +800)[Crn(4;4,) 7 C ] (T +Cpk)- .o (12.7.21)
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Thus, (12.7.20) may be regarded as a quasi- -canonical form of the joint distri-
bution problem of the roots, and now, using the same technique as in (A.7.5) and
denoting by Y§ and Y, the transforms of Y* and- Y (recall that Eh‘i_ roots are
invariant under this transformation), we have for Yg(pxs) and Y (p X n—r) the pro-
bability law

: D, o0 T o
P(Y;, Y,) = Const exp [—{,-tr{YoY{)—i— [ -+ YYy

0 0 p—t
t p—t
D, 0 ¢
~2Y3 (pXxs) [ :l }]dY;dYO, . 112.7.22)
0 0 8—t
! p—t

where, as usual, D, stands for a diagonal matrix whose diagonal elements are the

roots y’s of the matrix #* #*Z7* (some of which may be zero). Now notice that

D, © D, 0
tr 2 Y and tr Y0 E (Yohivit, ... (12.7.23)
o ol & o o it
and rewrite (12.7.22) as
| t , g
Constexp [—} tr (YYY LY, Yo) - 5 7—23% (Yurdld¥ed¥, ... (12.7.24)
i=1 i=1

which is, therefore, the canonical form for the joint distribution of the roots in the
general case.

In another monograph under the title ‘Least squares and analysis of variance
and covariance” which will be a sequel to this one, use will be made of the formulae
of this chapter to obtain the customary tests and estimates relating to the standard
classes of designs in the context of what is called model I. Adjustment of the general
theory given here to the situations of the other models and the derivation of some
actual formulae involved in the analysis of some concrete situations there, will also
be discussed in that sequel. In actual application we repeatedly run into the problem
of inverting matrices which have certain kinds of pattern. Methods will be discussed
of obtaining inverses of these patterned matrices in a very simple manner without
having recourse to Doolittle’s method or any other such method. These latter while

_extremely useful for general matrices, can be luckily dispensed with so far as these
particular patterned matrices are concerned.

¢ The above set up is specially useful for a general discussion of linear estimation

or testing of linear hypothesis, although it also leads, without much calculation, to the
formulae for the different customary designs. However, there is another set- -up
tobe discussed in the later monograph, which gives the different customary formulae
in an even easier manner, althdugh this is not so suitable for a general discussion,



CHAPTER THIRTEEN
Some Univariate and Bivariate Confidence Bounds*

13.1.  Some general observations. The general theory (to which nothing is
added here) of ccnfidence bounds like the general theory of testing of hypotheses and
tests of significance (with a part of which the previous sections have been concerned)
has been worked out in a series of papers, now classic. This is readily available not
only in papers but in standard books as well and need not be explained here. How-
ever, except for some comparatively recent work, most of the earlier applications
have been concerned with confidencé bounds on a single parameter or a single function
of the parameters. Simultaneous confidence bounds on several parameters or para-
metric functions offer nothing new in principle, being already inherent in the general
theory and will not, therefore, be discussed here from the point of view of the general
theory. In this chaptér several examples from univariate normal populations and one
from a bivariate normal population will be discussed (some of them simultaneous and
some of them “single’’) which will prepare the ground for the multivariate examples
(all of them simultaneous) to be discussed in chapter 14. In this chapter, in every
case except one we shall start from a current test of the corresponding hypothesis
(having a number of optimum properties in respect of power) and obtain by inversion
single” or “simultaneous” confidence bounds which, therefore, by the general theory,
will have similar optimum properties in respect of shoriness, i.e., the probability of
covering wrong values of the parameters or parametric functions.

13.2. Means of normal populations.

(i) For N(Z, 02) we have, in terms of a sample of size n with sample mean  and

sample standard deviation s, the following well known confidence interval for £ (With
a confidence coefficient 1—a)

sty (n—1)v/1n < & K T4t 0(n—1)/1/n, .. (13.2.1)
where tajf(n—1) is the upper «/2 point of the ordinary ¢-distribution with d.f. (n—1).-

(1i) For N(§,, 0% (h =1, 2) we have, in terms of two samples of sizes n,
with sample means and sample standard deviations %, and s, (h = 1, 2), the following
well known confidence interval for £,—£, (with a confidence coefficient 1—a)

(B —Tp)—8lasa(n—2)[/ Mgy < & —8y < (Fi—Tp)+8basp(n—2)[A/Nyp, ... (13.2.2)
where n == n;4-n,, % = [(ny—1)s3+(n,—1)s3]/(n—2), nyp = 0y Nofn and t,,(n—2) is
the upper /2 point of the ordinary {-distribution with d.f. n—2,i.e., n;4-n,—2.

(iii) For confidence bounds relating to £,’s of N(,,0%) (h=1,2,...,k,
where & > 2) we proceed as follows. Suppose we have random samples of sizes ny,
sample means z,, sample standard deviations s, (% =12,..k). Put

MH‘.

k 4
n= 3% ms= 3 (m—L)s/n—k), T =
h=1 - h=1 k.

I

&
WTp[n, $¥2 = T (% —F)2/(k—1),
1 h=1

&= él wEn. o (13.2.3)

* See references [27, 28, 29, 44, 49, 51] in this connection.
87
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For the hypothesis Hg : & = & = ... == &, i.e., =& (h=1,..., k), we have at
a level of significance, say «, the current F-test with a critical region

CF = s*sz > Fo(b—1, n—k), . (13.2.4)

where F (k—1, n—k) stands for the upper « point of the central F-distribution with
d.f. (k—1) and (n—k) (we recall the well known result that when H, is true s*2/s? is
distributed as the central F). When H, is not true, it is easy enough to see that
s**2/g2 ig distributed as the central F, where s** is given by

8**2_h2 Ty —TB—E,+E)2f(k—1) .. (13.2.5)

Suppose that we now start from a statemer.t with probability 1—ca, namely

M

%2 < F(b—1, n=k), ic., 3 my@—F—E+ DY(k—1)st < F (k—1,n—k).

h=1
(13.2.6)

Tt is easy to check (see (A.2.7)) that the statement (13.2.6) &>the following statement.

—8[(k—1) Fo(b—1, n—k)]F < 2 a (&, —F—E,+-E) L s[(k—1) F(k—1, n—k)Jt.

o

or Z an}/?(®,—2)—s[(k—1) F(k—1, n—k)]* <h2 a3, —E) < hE nlf2(z,—2)+

[y

+8[(k—.1) Fo(b—1, n—k)], : o (13.2.7)

for all arbitrary a,’s subject to}E ai = 1. (13.2.7) is obviously a set of simultaneous
=1

confidence bounds on all arbitrary linear compounds of n /2(35,,—&) (h=1,2,...,k),

the compounding coefﬁments a;’s being subject to Z a = 1. Ttisalso easy to verify
h=1

that the set of such linear compounds could be otherwise written as

%
h}] ahn,,/ze;,,, for all a,’s subject toh): a? =1 and Z ani/? = 0. .. (13.2.8)
h=1 h=1

(iv) For confidence bounds in the case of the general linear hypothesis we
proceed as follows from the set-up of chapter (12). Suppose we have z,’s (b = 1, 2,
:, ») which are n mdependent N(E(xy,), 0%) such that, putting x'(1xn) = (2, 25,

., %,), we have -
Ex)(nX1) = A(nxm)E(mx1), . (13.2.9)
where m <n, A is a matrix of rank, say » < m < n, given by the experimental situa-

tien and g (mx 1) is a set of unknown parameters.

Putting A'(mxn) = [ jé ] r

n
of generality, that 4{(rxn)is & set of independent row vectors which might be

__,» let us assume. as we can without any loss
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taken to be a. basis of A'(mXmn). . Suppose now that it is required to test a
“testable” hypothesis

Clgxm)g(mx1) = 0, ... (13.2.10)
where C is of rank s < min (g, 7) < m < n.
Putting
s [ O O &
Claxmg(mx1) = , o (13.2.11)
q—s L Oy Oy, o m—r
r m—r 1

assume, without any loss of generality, that [Cy;|C},] can be taken as the basis of
C and notice also from chapter (12) that for ‘testability’ we should have the further
condition

Ci,7] s s [ Cy R
[ ] = [ ] [Ay(r X n)A (n X 7)] 7 A5(r X n)Ay(n X m—r).
Op 4 q—s q—s Ca
m—r r
(13.2.12)

We recall from (12.4.13) that the current F-test for (13.2.10) (at a level, say a) has
a critical region given by
(n—r)x' A (A1A1) 1010 (A14,) 20117 Opy(A;4,) 1 4)x

: \ > F (s, n—r).
S[xX'x—x'A4,(474,)714:x]
(13.2.13)

Recall that when (13.2.10) is true, the left hand side of (13.2.13) has the central F-
distribution with d.f. s and n—r. Assume next that (13.2.10) is not true, but what
is true is

CGlgxm)g(mx 1) = 9(gx 1) (g being given), or say

8§ [ 011 Olvz ] [ 21 ] r ’71 8§
= l ' ’ . (13.2.14)
qg—s 021 C22 212 m-—r ”12 q—s

r m-—r

It is evident from the theory of linear equations that %, could not be just arbitrary
but that it must be related to %, through the same matrix prefactor through which
C,, is related to €, and C,, to Cys.

Then proceeding exactly as in chapter (12) we check that if in the left side of
(13.2.13) we replace xX(nx1) by x(nXx1)—B(nXxs) 7,(sx 1), the resulting expression
is distributed as a central F with d.f. s and n—r, B being given by

B(nxs) = Ay(n X r)(A34,) U r X r)Chy(r X 8)[C1y(414,) 71011 s X 8). ... (13.2.15)
If in (13.2.13) we now replace x by x—By, and also put

[Cra(A34,)7107, 17 = U(sxs)T'(s3ts) - .. (18.2.16)
12
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(noticethat by (A.3.7) T is determinate and also unique), then it is easy to see exactly

in the same way as in the previous case that the resulting statement &= the
following

x'4,(A14,)710;,0a(s X 1)—(BV)Y[sF (s, n—1)]*
< 7i(1x8) B'(s xn)d; (474,101, Ta < x'4,(454,)7C;,Ta+[BVIHsFy(s, n—s)T,
(13.2.17)

for all a subject to a’(1 X s)a(sx 1) = 1, where B is given by (13.2.15) and U by (13.2.16)
and the error variance EV by

= [X'x—X'A(A;4,)1AX]/(n—7). ... (13.2.18)
Substituting for B’ from (13.2.15) we check that

A4,(414,)7C;, = 1. ... (13.2.19)
Also putting T(sxs)a(sx 1) = b(sx 1) and using (13.2.16) we note that
l=a'a=b0-101b=000)b = b [C(4,4,)7C;;] b. ... (13.2.20)
The statement (13.2.17) thus reduces to the following:
X' Ay(A}4,)1C1b—(BV )is F (s, n—r)]t < 7} b
X/ 4,4} 410} bA-(EVIIF ofs, n—r) ]} . (13.2.21)
for all b subject to (13.2.20).

If we go back t0(13.2.20) and reasonas in (iii), it is easy to check that (13.2.21) implies

s*s*—(E’V) [sF (s, n—r)]t < {;[C4(414,)7101 ) g )
< s*s*—i—(EV)i’[sFa(s, n—r)]t, ... (13.2.21.1)

where ss*2 is the “sum of squares due to the hypothesis”’, given by the numerator of
(12.4.13) with the factor (n—r) taken out.

(13.2.21.1) is thus a confidence statement
with a confidence coefficient > 1—a.

This, therefore, is a set of simultaneous confidence bounds (with a joint
confidence coefficient 1 —a) on all arbitrary linear functions of %;. It is easy to see
that (13.2.21) subsumes as special cases, the confidence statements (13.2.1), (18.2.2)

and (13.2.7). Nevertheless, for expository purposes, it is worthwhile to dlsouss
sepamtely the simpler cases first.

“Two other particular examples of (13.2.17), of special practical interest are
also discussed, separately, in (v) and (vi). (v) Suppose we have y;’s (b = 1, 2
each being an N(0,, 02) such that cov(yy, Yp) = po¥(h £ b’ = 1, 2, ..., n), where
p is known, but 6, and ¢2 are unknown, but an independent estimate s2 of o2 based

on n' degrees of freedom is available.- It is required to obtain a set of simultaneous
confidence bounds on the mean differences

)

O0y—0p, with b, B = 1,2,....n, h R .. (13.2.22)
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We have now a finite set of parametric functions. Let z,+yg = Yu X7

"~ where 7 = (yl—{—y2+ Ay)n, § = (0;4-0,4...-460,)/n and the dlsposable constant
X is so adjusted that the z,’s are uncorrelated. Then

E(z) = 0, var(z,) = o¥1—p), with b = 1,2, ..., n. .. (13.2.23)
Let
(@ —0p)— (e —0On) . »
Yy = S—"\)/—(l(fp)—h—), with i, b = 1,2, ...,0n,h £}, o (18.2.24)
Then ' Vo (13.2.25)
implies Y=Yt —88/1—p < 0,—0, < yYp—Yprt+sdr/1—p. . (13.2.26)

Let Wo be the intersection of the regions (13.2.25). Then clearly the necessary
“and sufficient condition for the sample point to lie in W, is that

w
q= — .. (13.2.27)

where
w = supyy (2,—0,)—(2yr—by), with b, b’ = 1,2, ...,n; b £k ...(13.2.28)

Thus if we set d = q,(n, n'), where g (n, n') is the upper a-point of the distribution of
the studentized range with n; n’ degrees of freedom, that is the ratio of the range of
n independent normal variates with zero mean to the square root of an independent
estimate of their common variance based on n’ degrees of freedom, then the required
simultaneous confidence intervals for the parametric functions (13.2.22) are

Yn—Ynr—59,(n, ')/ 1—p < 0,— O < Yp—Yw+8q,(m, n')a/1—p. ... (13.2.29)

In particular y,, y,, ..., ¥, may be the means of # random samples of equal size drawn
from normal populations with a common (unknown) variance, or may be the estimated
treatment effects in a randomized block or a balanced incomplete block experiment.
(vi) In factorial experiments we are usually interested in estimatinglinear functions
of treatment effects whose estimates are independently and normally distributed
with a common variance which can be independently estimated by an appropriate
multiple of the error mean square in the analysis of variance. The distribution needed
for simultaneous estimation in this case is slightly different from that occurring in (v).

Suppose, for example, that we have observations for a 2x2x 2x 2 factorial
experiment with factors 4, B, C, D, and that we are interested in simultaneously esti-
mating the main effects and two factor interactions only. We shall suppose that the
experiment is so laid out that none of these is confounded in any replication. Let
t115 bag, Ba3, b4y denote the true main effects and ty,, t45, t14;‘ tags Loy U3 the true two factor
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interactions. The order of the subscripts in #; is immaterial, that is, {; =1{;. We
can then write in the usual notation,

iy = (1/8)(@—1)(b41)(c-+1)(d+1), .. (13.2.30)

tie = (1/8)(@—1)(b—1)(c+1)(d+1), .. (18.2.31)
with similar expressions for other main effects and interactions.- Let y;; be the esti-
mate of ¢;. 'Then reasoning as before we get the following simultaneous confidence
intervals for #;: :
' Yyy—8x,(n, ') < ty; < Yytsw,(n, n'); ... (13.2.32)
where s? is an estimate of V(y,;), based on »’ degrees of freedom available for the esti-
mate of error, and where n, which is 10 in this particular example, is the number of
linear functions to be estimated.

The meaning of z,(n, n’) is as follows. Let 2, %, ..., x, be independent nor-
mal variates with zero mean and variance % Let |x| be the maximum of |z,],
|%5],..., |, | and let s% be an independent estimate of o2 based on »n’ degrees of freedom.
Then »,(n, n') is the upper a-point of the distribution of |x|/s.

In a factorial experiment in which each factor is at more than two levels,
the above will still apply if the » linear functions to be simultaneously estimated (or
tested for vanishing) are so chosen that their estimates are independently distributed
with a common variance.

13.3.  Variances of one or two normal populations.

(i) Givena random sample of size n+-1 (mean: # and s.d.:s) from an N(&, 02),
we take over from (6.3.1) the following statement with probability 1—a: ‘

Xia(n) < ns?fo? < x5 (n), ... (18.3.1)

where x2,(n) and xi,(n) are the upper o, and lower a, point of y2-distribution with
d.f. » and o is partitioned into a, and «, such that (a) ;4 a, = « and (b) the comple-
ment of (13.3.1), i.e., the critical region is locally unbiassed (in the neighbourhood
of o) in which case it has also been shown to have the monotonicity property. We
now rewrite (13.3.1) as

183 x%a(n) < 02 < ns?(xi,(n), .. (13.3.2)

which gives confidence bounds on o2 with a confidence coefficient 1—« and having
properties in terms of shoriness similar to those possessed by ( 13.3.1) in terms of
the second kind of error, already discussed. '

(ii) Given two random samples of sizes n,--1 (mean: Z, and sd. i) (b =
L, 2) from two N(&,, 0}), we take over from (6.3.2) the following statement with
probability 1—e:
o}
'5_5 < F2a(nl’ n2)a (13-3'3)

51
Fra(ng, mg) < ) /
2

2

where F, (n,, 7,) and Fy,(n,, n,) are the upper «, and lower a, points of F-distribution
with d.f. n, and n, and o is partitioned into «, and oy such that (@) o, +a, = a and (b)
the complement of (13.3.3),%i.e. the critical region is locally wunbiassed (in the



COEFFICIENT OF REGRESSION FOR A BIVARIATE NORMAL POPULATION 93

neighbourhood of ¢,/o, ) in which case it has also been shown to have the mono-
tonicity property. We now rewrite (13.3.3) as

51

2 2
% | Fautnaing) < < | Frofng, my), o (1334)
02

Oy 82
which gives confidence bounds on ¢%/0% with a confidence coefficient 1—o and having
properties in terms of shortness similar to those possessed by (13.3.3) in terms of the
second kind of error, already discussed.

13.4. Coeffictent of regression for a bivariate normal population. Let z, and
x, be distributed as a bivariate normal with variances o? and o2 and correlation
coefficient p, and let the sample variances (on a sample of size n--2) be denoted by
s? and s3, and the sample correlation coefficient by 7. Also let by, = s;7/s, and
Br1a= o1p[o,. Tt is easy to check that the variates (z,—f,,%,) and @, are uncorrelated,
so that when the population parameters are oy, o, and p, nbr*/(1—r*%)! has the
t-distribution with n d.f. Here #* stands for the sample correlation between
(x;—pyo%,) and z,, that is,

r* = (8 & T‘ﬂlzsg)/(s%—‘2ﬁ1281527+ﬁ%3%)332

= (8,7 —P128:) [[(817 — f1282) 2+ (1 —r2)s]F = ‘(blz—ﬁlz)/[(bm‘"ﬂm)z’{‘(1*72)8%/8%]Q:‘

(13.4.1)
and, therefore, r*/\/lTr*2 =52 bia—Fre . . (18.4.2)
, ~ 8 (1—r?)t
Now consider the statement
—ty(m) < ntr¥(1—r*2)t < ¢t (n), . (13.4.3)

where ¢ (n) gives the upper a/2-point of the ¢-distribution with n d.f. This is easily
seen to reduce to the following confidence statement on f,, (with a confidence
coefficient 1—a): ' :

bro— 3‘%—) (L8 < fo < byt W™ 2 5 (13.44)

Vv 8y Nz 8y
By inversion of (13.4.4) the test that we obtain for the associated hypothesis H,: 8,
= 0, that is p = 0, is easily checked to be the customary test based on ““r’’ and hence
just the t-test. Similar procedures would go through for “partial regressions” or
“multiple regressions’’. The interesting point here is that it would be far more
difficult to give corresponding confidence bounds to p, because this would have to be
done by inverting the distribution of the noncentral r, which is quite complicated.

13.5. Difference tn mean wvalues between two wvariates having a bivariate
normal distribution. Let

Cer (] 1, 37
be N , |
2] &, o100 0%
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Then since (2, —,) is N[(E;—%,), (624-03—20,04p)], itis wellknown and easy to check
that in terms of a sample of size n with sample means %, and %,, sample variances
s? and s3, and sample correlation coefficient 7, we have the following confidence inter-
val for §,—E, (with a confidence coefficient 1—a)

B —Ty—stas(n—1)[v/n < & —Ey < By—Fytstap(n—1)[v/n, © ... (13.5.1)

where t,,(n—1) is the upper «/2 point of the ordinary {-distribution with d.f. .(n—1)
and s2 = s3-}53—2rs,5,. Mathematically this is no doubt deducible from (13.2.1)
and is also a special case of (13.2.7) but this is so very important in practice that a
separate and explicit statement may not be out of place.

13.6. Ratio of variances of two variates having a bivariate normal distribution.

["Ul} |: [‘21} [0’% ' 0'10'2/7} ]
be N , 1.
, £y o090 O3

Then for any constant A, it is easy to check that covariance (z,—A%,, #3-FATy) =
V(x;)—A2V(x,). Thus this will be = 0 if A2 = V(x,)/V(,) = o5/03. Thus, with a
positive A = o/, (¥;—Ax,) and (2, -+ Az,) will be uncorrelated and hence for a sample
of size n, with sample variances s? and s§, and sample correlation coefficient 7,
Vn—2 r¥/(1—r*2)t has the t-distribution with d.f. n—2 where

Let

r* = sample correlation between (x; —Ax,) and (z;+Ax,)
= (82— A23)[[($3+ A2G- 2A8, 8,7 )(87 -+ A255— 2A8,8,7) |}
— (62— A%2)[sf +Msd + 2222831 — 20)]¢ o (13.6.1)

'Thus starting from the statement with probability 1—a«

|¢n_:2¢*/(1;r*2)%; & toja(n—2), © .. (18.6.2)

and remembering that A = o/o, and substituting (13.6.1) for 7* in terms of Sy Sg, 1
- we have for 0}/c the following confidence bounds (with a confidence coeficient, 1—c)

8% 2 O 9 R 3 2
g% [(1+ n—2 t‘%’(z 1_72)_{(1_*‘ n—2 t‘%/z 1—72)2‘—1} ] < g%
2 _ 2
<4 [(1+i 2, i—mr{(1+_2 e, 1=mp_1\} '
@ [ 5= e —— faa 1—79)— } . . (13.6.3)

The cases discussed in 13.5 and 13.6 are relevant from a physical standpoint where
we have two comparable correlated variates, for example, the measurements on the
same characteristic of a set of individuals before and after the administration of a drug.



CHAPTER FOURTEEN

Multivariate Confidence Bounds*

14.1. A convenient nolation.

From now on we shall make use of a rather
convenient notation.

A random sample of size » from a p-variate normal population,
i.e., an X(pXn) having the p.d.f.

(2m) "2 | 2|2 exp [} tr ZT(X —E) (X'—E')]
where £(p X n)stands for a p X » matrix each column of which is the same px 1 vector
g (with components &,, ..., £,) will be referred to as X(pXn): N*(,, X). 4 matrix

Y(pxn) having the p.d.f.
' (2a)P2|Z -2 exp [— tr 271 Y Y],
will be referred to as¥Y(pxn): N¥0,XZ). We recall from (4.4)—(4.14) that starting
with an X(px(n+1)): N*(%,X) and transforming and integrating we can always
have an Y(pxn): N*0, X), such that _
nS(pxp) = Y(pxn) Y'(nxp) = X(px (n+1)) X'(n+1)x p)

I —(m4) X(px1) (11X p), ’(14.1..1)
;1?: X{pxn) {nx 1), {nx 1) being an n X 1 column vector with eompo-
nents (1, 1,...,1).

14.2. Confidence bounds relating to the mean wvector for a multivarite normal
distribution. Given an X(pX(n+1)): N*(,X), suppose we try to obtain simultaneous

"confidence bounds on arbitrary linear compounds of the population mean vector §.
Consider the statement that

-where X(pxl) =

(n4+1) 3‘|a' X—§)|/(@'Sa) < ¢
‘or (n+1) a'(X—§) ( —Ea/a'Sa < ¢, ..o (14.2.1)

where X is the sample mean vector and S is the sample covariance matrix, and
a(px 1) is an arbitrary non-null nonstochastic column vector and ¢ is a given
positive constant. The statement (14.2.1) stems from che customary Student’s
t-test and the associated confidence interval (both having well known optimum
properties) relating to the parameter a’(. Now, for a given (positive) ¢ and
given X, %, S and of course n, the set of all statements (14.2.1) for all possible
non-null vectors a is exactly equivalent to the statement that
4 sup, (n+1) a'(X—E)X'—&')a/a’Sa ... (14.2.2)
It is well known that this “‘sup’ comes out as tr (n--1) S-l(x—i WX i } or as tr(n—[—l)
—§') 83(X—§) (since tr AB = tr BA), or simply as (n+1)X' —&')S(X—§)
(smce tr scalar = scalar). It is also well known that under the null hypothesis, this
is distributed as the central Hotelling’s 72 with d.f. p and n+1—p and that if
in this statistic ¢ is replaced by §*(%), the resulting statistic is-distributed as the

* See reference {44, 45, 46] in this connection.

95
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non-central Hotelling’s 7% with the same d.f. and with the non-centrality parameter

V= (E_*'—i')E"'l (¢*—%). Going back to (14.2.1) it is thus easy to see that if,

1) a'(X—*)(X' —¢*)a
p [(pt1) A’ E—EHE —g¥)a 2p* == 1—a, v (14.2.3
[ a’'Sa < lg i] * ( )
then ¢® = T%is the upper a-point of the central Hotelling’s 7'2-distribution with
d.f. p and n+1—p and can be conveniently written as Tp, n-+1—p). From (14.2.3)
we have thus, with a confidence coefficient 1—a, the set of simultaneous or multiple
confidence bounds (for all ¢ and all nonnull a):

aX—[T%a'Sa)/(n+ )] < a8 < a'R+H[THa'Sa)/(n+ )] ... (14.24)

It should be noted that (14.2.4) gives the simultaneous confidence bounds on all arbi-
trary linear compounds of the p components of the population mean vector §. The
shortness (in the sense of probability) of this set of confldence bounds, that is, the pro-
bability of these bounds covering ¢* when, in fact, ¢* +# ¥, is obviously

1—P [noncentral 72 > TZ|72].

"From the well known fact that the power function of Hotelling’s 7'%-test is a mono-
tonically increasing function of the nonnegative 7, it follows, therefore, that the short-
ness of the confidence bound (14.2.4) tends to zero as 7— 0.

Let us go back to (14.2.4) and choose a’ so as to maximize a’g. Then it is easy
to see that (14.2.4) implies that (8'8)! < (XR)[T%(n+1)]kek (S). A

max

similar result follows for the other side of the inequality and thus (14.2.4) should imply
(XY —[T(n+1)]ick o () < E8) < @RI+ Denes(S)s oo (14.25)

which, therefore, is a confidence statement with a confidence coefficient > 1—a.

Back in (14.2.4), if we cut out the i-th element of a, the corresponding
element of X and ¥, and the corresponding row and column of § (with ¢ = 1,2,...p)
and reason in the same manner as in the case of (14.2.5) we have p -truncated con-
fidence statements of exactly the same form as (14.2.5). Likewise, cutting out any

two elements say the i-th and the j-th (¢ = j = 1,2,...p), we héwe <1§) truncated

confidence statements of this form, and so on. Thus altogether we have 27—1
confidence statements, on which the leading one is (14.2.5), all with a joint confidence
coefficient > 1—a, which, in a sense, provides a complete analysis of the problem.

14.3.  Confidence bounds relating fo mean differences in k multivariate
distribution. Given X,(px (n,+1)): N, Z), (h=1,2,..., k) let us try to obtain a set
of simultaneous confidence bounds on all arbitrary double linear compounds of the
p-components of the L population mean vectors measured from the weighted grand
mean vector. Consider now the statement

k
1,2, b+ DH®—R—E,+-8) | < [(k—)g%a’ Salt, L (143.1)
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where X, is the mean vector for the A-th sample,

H
ﬂ[v‘r

("1¢+1)Xh/ E (m+1), & = 75'1 ("h'f‘l)ih/h}:l (np+1),
where § is the pooled “within’ covariance matrix of the k-samples, given by
k k ! | ’
(2 )8 = 2 XX~ 0+ 1%,
k=1 A=1

and ¢ is a given positive constant, a(px 1) is an arbitrary non—null non-stochastic
column vector and the b,’s are arbltrary coefficients subject to 2 b2 = 1.
=1
If we now use the result that

f

\<+\/d2<=>zﬁ, < d2;

1 h=1

M?'

| 2
|
f

>
I

then it directly follows that, given all the other quantities including a, and under
all poss1ble varlatlons of b,’s subject to Z b2 = 1, the statement (14.3.1) is precisely

equivalent to the statement that

k
z [@'(m+ DHE,—X—§+E)PP/(k—1)a’Sa < ¢°

or

lgjla'(nh‘l‘1)(331»‘5‘-“‘5.7;'1‘i)(ii“i'—i;b+i')a/(k—l)a’Sa < gt ... (14.3.2)

Letting now a vary and putting

(k—1)8* = hg_l(-nh—{-1)(§h—i——§h+£)(ig——i’_——ii+i'), .(14.3.3)

the statement (14.3.2), for all possible values of the non-null a, is precisely
equivalent to:

sup, [a'S*a/a’Sa] < g% .. (14.3.4)

As observed after (6.4.7) S is, a.e., p.d. and 8* is, a.e., p.s.d. of rank ¢ = min {p, k—l)
(p.s.d. if p>k—1 and p.d. if p <k—1) and sup,[a’S*a/a’Sa] is just the largest
root ¢, of the p-th degree determinantal equation in ¢:|8*—c8|{= 0. Of this
equation all roots are non-negative, p—q. of them always zero and q are, La.e,
positive. Thus (14.3.4) and hence (14.3.2) under all permissible variations of a and the
b,’s, turns out to be equivalent to:

¢, < g2 .. (14.3.5)
13



98 MULTIVARIATE CONFIDENCE BOUNDS

The distribution of ¢, on the null hypothesisis known and relatively easy and involves

k .
as parameters p, k—1, ¥ n,. Computation of the 5 per cent and 1 per cent points
k=1

is in progress . Thus if
P[éq < ¢, |null hypothesis] = 1—a, .. (14.3.6)

we can write ¢, = ¢ (p, k—1, X n;), and now combining (14.3.1)-(14.3.6) we have,
: -~ h=l
with a confidence coefficient 1—a, the following set of multiple confidence state-

PG . k
ments (for all £,’s, all non-null a’s and all ,’s subject to h}_]1 b2 = 1:

{: ba'(n,+1)(X,—X)—[(k—1)c,a’Sa]?
he=1
< h§ bya (1), —8) < h§ bya’(n, 1D, —%)H[(k—1)ca’Salt, ... (14.3.7
=1 =1

A
where ¢, = ¢ (p, k—1, hz ).
1

This g{Ves simultaneous confidence bounds on all arbitrary double linear compounds
of the p components of the difference between the & population mean vectors ,’s and
the weighted grand mean of these which is . To discuss the shortness of (14.3.7)
consider the non-central distribution of ¢,» where ¢, is defined after (14.3.4), ie., ¢,
is the largest root of the equation in c:

| S*—cS| = 0, where 8* is given by (14.3.3). ... (14.3.8)
It is easy to see that the distribution of the non-central ¢, is reéally the distribution
of e, where ¢, is the largest root of the equation in e obtained by (¢) replacing in (14.3.2),
§,and & by £;( =« £,) and E*( # ¥) and (ii) substituting the resulting value of S* in
(14:3.8) and (iii) assuming that th’e_i true population parameters are ¢, and g. The distri-
bution is extremely difficult but is well known (see section7.6) to involve as parameters
the positive roots y,, ..., y(s < min(p, k—1) of the determinantal equation in 7:
| Z*—yX| = 0, where % is the common covariance matrix of the % populations and Z*

= (k—1)1 121 (my,4-1)(8;—8*—E,+E)NE* —¢* —k,+&). This Z* is necessarily at least

p.s.d. of fank min (p, k—1) = s(say), so that out of the p roots of the equation in 7y,
p—s aré‘zert)' and s positive. Usihg (9.2.3) and referring to section (11.3) we observe
that there is a good upper bound to the shortness of (14.3.7) and that the shortness is
a monotonically decreasing function of the deviation parameters and tends to zero as
these ter_l(d to infinity. With two populations (and samples), we have g=min{p, 1)=1,
and thus only one positive sample root, say ¢, and at the most one positive population
root, say y. It is easy to check that in this case

o = (Mm1)(ny+1 . % <o wt |y
¢ = m) tr S7UK, —Ry—§;+5) (X1 —Kp— &+ 25),

]_ ] - * * */! nt !’ ’
Y= (n;:_—i-zgl—?——; P 1(2.1—2.2*2.14“22)(21 —&'—E1+E), e (14.3.9)
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and it is well known that, on the null hyi)othesis, ¢ is distributed as central Hotelling’s
T? with d.f. p and n;+n,+1—p, and on the alternative as non-central Hotelling’s
T? with the same d.f. and with a deviation parameter y. It is also easy to check that -
in this case the confidence statement (14.3.7) reduces to.

e == Ny +ny+2 a’
a'(X,—X,)— [mf’za Sa] L a'(g—E)

N = Ny-+n,+2 a’
a'(%, X2)+[(n1'jﬁ)“(72§+1) ; Sa], .. (14.3.10)

where T2 = T%(p, n,+n,-+1—p) is the upper oc-pomt of Hotelling’s 7. The short-
ness of (14.3.10) is exactly known and of course tends to zero as y — co.

14.4.  An important subset of the set of bounds (14.3.7). Suppose now that
k

instead of all contrasts of the type: £ b,a’'(n,41)¥%,—&) (with given restrlctlons on
=1

a and the b’s) , we are interested in contrasts of the type :a’(§,—¥%;), for all non-null
a’andall h £1=1,2,...,k It is easy to offer a multiple set of confidence bounds
for contrasts of this type, which can be regarded as one kind of multivariate (under
unequal sample sizes) analogue of a somewhat similar set given by Tukey for the
corresponding univariate situations, and discussed in section (15.2). The proposed
set is built up as follows. With the same notation as before, and with
ny = (1) (+1)/(n,+n+2) note that

T% = ny (X — X —E,HE)S (&~ —§+8) =
ny, Sup,a’(X,—X—E,+ ENE,—X;—En+E)a/a’Sa.

Thus, for a given pair (h, 1), the statement that T% < T2 is exactly equivalent to
the statement that, for all non null a’s,

a'(X,—X)—(T7a'Sa/nylt < a'(g,— a’(ih—gl)—{—.[Tﬁa’Sa/nh,]i.
We observe that When the true population means are §;’s, T% is distributed as

k
Hotelling’s 7% with d.f. p and hE_Inh—l-l——p.

Now, considering all pairs (h, 1) out of k samples (and k populations), it is easy
to see that the statement: all T}’s < T%, is precisely equivalent to the statement
that the largest T% out of all pairs is T2, which again is equivalent to the state-
ment that, for all non-null a’s and all pairs (h, 1) out of k,

a'(X,—%;)—[T2a'Sa/ny,l* < a'(§,—§) < a'(F,— —%)+[T:a'Sa/nylt. ... (14.4.1)

1f the confidence coefficient of (14.4.1) is to be 1—a, then Ty = Tolp; mys g, -0y 1)
will ‘be given by

k

)palrs T, null hypothesis] = o, ... (14.4.2)

P [lafgest T?%, out of (
: ‘ 5
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It is obvious that the distribution of the largest 7% involves as parameters just p
and #y, %ig, ...n. 1t is easy to see that the distribution is manageable only when
the number of parareters is small. ‘In particular, the case that ny=n, = ... =m
and p = 1, is identical with the one considered in section 13.2. It may also be noted
that when k = 2, the largest T2, will of course be Hotelling’s 7" distributed with
d.f. p and n,-+n,+1—p. Also the shortness of the confidence bounds (14.4.1) can be
formally written as

k

P [largest T3 out of ( ) pairs < T2 (p, ny, Ny, ..., ny) | alternative].
2

It i important to obserx?e that while each 7% is individually distributed

k
(on the null hypothesis) as a central Hotelling’s 72 with d.f. p and & n+1—p,
h=1

the(lé) T2’s are not independent, nor do we know what the distribution of the

largest central T is, to say nothing of the non-central case, so that the confidence
statement (14.4.1) has not been reduced to practical terms as was done for the other
cases discussed in this section. The distribution problem arising in this situation is
now under. investigation.

For the associated problem of testing H, : §; = ... = ¥z, we set up as before
the rule that if, for all nonnull 2 and all pairs (%, ), the bounds (14.4.1) include zero,
we accept H, and reject it otherwise. The properties (including power) of this test
are tied up in an obvious manner with those of the multiple confidence interval state-
ment (14.4.1). '

Notice that so far, in testing of hypotheses by inversion of confidence state-
ments, we have considered two-decision problems. Suppose, at this point, for pur-
poses of illustration, we offer a multi-decision procedure, namely that, for a given
pair (%, 1), we accept or reject H(¢; = ;) according as all those bounds (14.4.1) which
involve X, and X, only include or exclude zero. It is obvious that in all other situations
considered so far we could set up similar multi-decision procedures.

14.5. Further observations. In many situations it might be of greater physical
interest to be able to make, instead of (14.3.7) or (14.4.1), a set of just px,(];)
confidence interval statements, each relating to just one variate and difference betwen
. k \ :' . : )
one of (2) pairs. In other words, if &, = (&, &op, -5 &pn) (B = 1,2, ..., k) denote
thep means for the h-th population, then we would like to make a statement of the form

fjhh’ (Xla X2’ vees XL) < Ejh__gjh' < thh' (XD X2: rees -Xk) i (145‘1)
(with obvious applications to subsection 13.2), for all A £ &' = 1,2, ..., k and all
J=1,2, .., p, where f,, and Fj,, are supposed to be two different functions of the
whole set of px h§1 (ny-+1) raw observations. It is clear that (14.5.1) is a sub-set of

(14.4.1) which again is a subset of (14.3.7). Whether it is possible to make a statement
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like (14.5.1) in an elegant and useful way (i.e., with manageable functions f;,, and
Fy,) and with a given joint confidence coefficient 1—a, that is, free of the nuisance
parameters X, is still an open question. It may well be that a range (not too wide)
for the confidence coefficient itself is called for. Furthermore, whatever set of confi-
- dence intervals like (14.5.1) we propose, be it under a fixed confidence coefficient or
under a confidence coefficient lying in a short range, the ‘“goodness” of such a set
would pose further questions. It is believed that in this situation a more promising
approach might be one involving a suitable two-stage procedure.

14.6. Confidence bounds connected with a general linear hypothesis. In place
of the set-up of section (14.3) consider the more general set-up of (iii ¢) of chapter
5, which is the following. We have an X(p X n) whose column vectors are independent-
ly distributed, the r-th vector x, being N(H(x,), Z) (r = 1,2, ..., n). Itis also given
that E(X')(nXp) = A(nxm)E(mx p) where £is a set of unknown parameters and
A(nxm) is given by the experimental situation such that it is of rank r < m < n.
Also setting

AT

A'(mXn) = [ :l , .. (14.6.1)
A/d m—r
n

let A] be a basis of A’, i.e. of A. Next consider a matrix C(gxm) of rank
s < min (¢,7) < m < n with a structure given hy

Chn O] S
Clgxm) = ... (14.6.2)
Opy Oyl g—s

r m—r-

such that [C}; (] forms a basis and also that C satisfies (13.2.12). Then combining
the results (13.2.9)-(13.2.21) with the results (14.3.1)-(14.3.7) it is easy to check that
the following is a set of simultaneous confidence bounds (with a confidence coefficient
1_“)9

a' (1 X p)X(p X n)A (nxXr)(A1A;) 2 (r X r)Ci(r X s)b(s X 1)
—(a’8a)iscy(p, s, n—1)]} < a'(1Xp)7'(pXs)b(sx 1)
< a’XA,(4:14,)710,b+-(a’Sa)[sc(p, s, n—r)] ... (14.6.3)
for all non null a’(1 x p) and all b(sx 1) subject to
b0y (41 47 Ol b =1, . (14.6.4)
where 7(sxp) is given by

s[Cyy  Oylémxp) = s Xp), .. (14.6.5)
r m-—r

and ¢,(p, s, n—r) is the upper o point of the distribution of the largest root of (6.4.7),
under (12.7,3) with d.f. (p, s, n—r7).
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The confidence bounds (14.6.3) are thus seen to be really on arbitrary double linear
compounds of [Cy, . Cp,)E. '

If we go back to (14.3.1)—(14.3.7) again, and normalize b(s < 1) into ) (s X 8)b*(sx 1)
where b* is a unit vector and UU’ = [C1,(4,A,)7C ], then it is easy to sce that the
statement (14.6.3) will imply

ek (88%)—[504(p, 5, n—7)rck . (S) < e [7(Cro(A741) 7105 M]

<t als8%) Flscy(p, s, n—r)Jtck, (). | ... (14.6.6)

where 8* and S are the dispersion matrices due to the “hypothesis”” and due to the
“error” and are given respectively by (12.7.10) and (12.7.11). (14.6.6) is thus a con-
fidence statement with a confidence coefficient > 1—a.

Also harking back to the remarks made after (12.7.11.5) we notice that if
Ot= 0 were replaced by C( M = C&* = 0 and [0y, Cplé =7 by [Cu Cul&
X M=[Cy; C 8% = 9*, then (14.6.3) would be replaced by a statement in which every
thing else would stay the same except that under ¢, p would be replaced by u, X would
be replaced by M'(ux p)X(pxn), S would be replaced by M'(wx p) S(pxp) M(pX u)
and all non-null a’(1xp) would be replaced by all non-null a*'(1xwu). Similarly,
in (14.6.6), in addition, S* would be replaced by M'(ux p)S*(px p)M(pxu) and
7(s X p) would be replaced by 7*(sxu) = 5(s X p)M(p xu), and similarly for 7".

With a confidence coefficient > 1—a, (14.6.6) will now be replaced by the
confidence statement

O B JS* M) — [t o0, 8,m — 1) e (M (S < o 0* foa( A7 Ay) ey 4]

max

< & (M]S*M)+[occy(u,s,n—r)ted (M [SM). . (14.8.7)

max max

This follows from a modified form of (14.6.3) obtained by replacing a*(p x 1) of (14.6.3)
by a*(ux 1) and introducing other modifications just mentioned. If now we cut out
the i-th element of a* and the corresponding row of M’ and #*' and reason in the
same manner we should have (for i = 1,2, ..., u) u truncated confidence statements
like (14.6.7). Likewise cutting out any j-th element of b and the corresponding row
of ¢;; and colum of #*’ and reasoning in the same manner as before we should have
(forj = 1,2, ..., 8) s truncated confidence statements like (14.6.7). Next, cutting

out 4,¢ (1 #¢ = 1,2, ...,u) we have-<g> statements like (14.6.7), and cutting out

3G #§ =1,2,...,8) we have(%) statements like (14.6.7), and so on. Thus we

have altogether 2“—1 statements (based on truncation on u) and 2¢—1 statements
based on truncotion on s) and, by combination, (2*—1)X (2°—1) statements of which
the leading one'is (14.6.7), all with a joiut confidence coefficient > 1—q«, which, in a
sense, provides a completc anaiysis of the problem.

14.7. Confidence bounds on departures from a particular kind of multicollinearity
of means. For k (p+-g)-variate N(§;, Z) (with k>p-+q), where Z((p+q) X (p-+q)) is
symuaetric p.d. with submatrices Z,,(p X p), Zpx(g X ¢) and Zi4(p X g), and E(lp+q)x1)
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has column subvectors ¥;,(px1) and ¥y (¢ 1), let us consider the hypothesis Hy:
Eu—2 ok =0 (1 =1,2,..., k). Notice (from (14.11.12)) that X, X3} can be
appropriately regarded as the matrix of regression of the set of p variates on the
set of ¢ variates. The hypothesis H, can thus be stated otherwise as the hypothesis
that the matrix of means of the first p variates, viz, (€, €15 .- &11) is equal to the matrix
of means of the remaining ¢ variates, premultiplied by the regression matrix of the
p variates on the ¢ variates. We are now interested in setting confidence bounds on

8 — S0 T G=1,2,..,k .. (14.7.1)

which, naturally, are departures from H,. More properly speaking, we shall be in-
terested in setting simultaneous confidence bounds on arbitrary bilinear compounds
a'(1 X p)f(pxk)b(kx 1), where f is a (px k) matrix with column vectors given by
(14.7.1).

Now taking the ‘residuals’ of the first p variates with respect to the remain-
ing q variates after the manner of (A.3.17) it is easy to check that for the i-th popu-
lation the residuals will be distributed as a p-variate normal with a covariance matrix
21 —2,55' 5, and about the mean vector §,—2,%3 &y (with ¢ =1,2,...,p).
Also the ‘within’ eovariance matrix of the ‘residuals’, pooled from %k samples of size,
say n each, will be given by

812 = 13— 81285 812, e (14.7.2)

where Sy, (pXp), Sa(@Xq) and Sy(pxq) stand for the submatrices of the ‘within’
covariance matrix (of the p-i-g variates) pooled from the % samples. The mean vec-
tor for the ¢-th sample will be given by

Xy;— Sy S Xy, with i = 1,2, ..., k. . (14.7.3)
Let B(p x k) stand for the (p X k) matrix with the k column vectors given by (14.7.3).

Thus exactly as in section (14.6) we have with a confidence coefficient, say
1—a, the following set of simultaneous confidence bounds (for all arbitrary non-
null a’(1xp) and unit length b(kx1)):

a’Bb—[k(a'S,..a)c, (p, b, nk—k)]F < a’fb < a’Bb+[ka'Sy.ca)ca(p, b, nk—Fk)L,
(14.7.4)

where ¢ (p, k, nk—k) is the upper a-point of the distribution of the (central) largest
characteristic root based on p, k and n—k degrees of freedom. The test for the asso-
ciated hypothesis H, is also easily obtained, the critical region being given by

¢, > ¢, (p, by nk—k), . (14.7.5)

where ¢, is the ‘largest root of Il (BB')S73. Notice that # and B are each a (pxk)
matrix with % column vectors given respectively by (14.7.1) and (14.7.3).

14.8. Confidence bounds on departures from another kind of multicollinearity of
means. It seems that when the population covariance matrix ¥ is not supposed to
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be known there are two kinds of multicollinearity of means (and departures from it)
which can be properly handled, namely, (i) that the matrix of means of the first p
variates is a constant matriz times, the matrix of means of the remaining g variates,
‘the constant matrix factor being equal to the regression matrix of the p-set on the
g-set, whatever this regression matrix might be and (i) that the matrix of means of
the first p variates is a constant (and given) matrix times the matrix of means of the
remaining ¢ variates. Case (i) is the one discussed in section 14.7 while case (ii) belongs
to linear hypothesis in multivariate analysis of variance of means and has already been
discussed in section 14.6.

14.9. Confidence bounds connected with the dispersion matriz of a multivariate
normal distribution. TLet us start from a Y(pxn): N*0, ) where X(pXp) is
supposed to be p.d. (so that its characteristic roots are all positive). For simplicity
we also assume that p < n, so that, a.e., YY’, that is, n8 is p.d., and hence all its
characteristic roots are positive. We now recall the well known result (A.3.3.) that
there exists an orthogonal I'(pXp) such that Z(pxp) = I(pXp)Dy (pXPp) IV(pX p)
where the y’s are the characteristic roots of XZ. If the roots are distinct then by
a convention, say by taking all the elements of the first row of I' to be positive,
the transformation could be made one-to-one. However, we do not need this for
our present purpose. Note that the number of independent elements on both sides
is the same. Except for the factor (—%) the argument under the exponential in the
probability density of ¥ can now be written, if we put A = y~*, as

tr(I'D,, I")-lYY’ =trI'Dy, D, T"YY' = tr (DA YYD, I'Yy
If we put Z = D,I"Y, it is easy to check that the probability density of Z is

pn

[2m1? exp [~% tr ZZ’]. .. (14.9.1)
For all non-null nonstochastic a(p X 1) consider now the simultaneous statement that
< a'ZZ'aja’a g% or g1 a'(D, I"YYTDA)a/aa < 93 e (14.9.2)

This statement, for a given Z and g% and g3, is precisely equivalent to the statement
that

or that F<e <ec, <%, o (14.9.3)
where ¢, and ¢, are the smallest and largést charactéristic roots of the matrix ZZ’,
both,. a.e., positive. The relevant distribution on the null hypothesis, i.e., when

the true population matrix is =, is known and we now pub

g% = Cra(P: n) and g% = Cgy (.p, n), e (14.9.4)
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where ¢y, (p,n) and ¢,, (p,n) are constants taken over from (6.4.3). If wé now tie up
(14.9.2), (14.9.3) and (14.9.4) we have, with a confidence coefficient 1—c, the set of
multiple or simultaneous confidence interval statements for.all non-null a and all
permissible values of the unknown parameters I' and A :

a’ac,, (p,n) < a'(D, I"YY'TD,)a < a’ac,,(p, n), ... (14.9.5)
or, remembering that nS =YY,
a’acla (p, n) < a'(D, I"oS8TD,)a < a’ac,, (p, n).

The shortness of the confidence boundsi(l4.9.5) is tied up ‘with the power of the test-
(6.4.3), which has been already discussed in Chapters 9-11.

Far more meaningful confidence bounds than (14.9.5) can be obtained in the
following way, starting from (14.9.5). As before denoting the characteristic Toots
of a (square) matrix M by ¢(M) and the largest and the smallest roots of M(if M is at
least p.s.d.) by ¢y, (M) and ¢y (M), and remembering that A = y—* and finally using
(A.2.5) we can rewrite (14.9.5) as

. ,lL 01(p, m) < all ¢(Dy, 5T7STDy, ./v) - c2a (ps %) e (14.9.68)
Now using (A.1.18) we note that

(Dy; 51" S[‘Dl,”)_-c(SI‘DI, ") = e(SZ7Y, o (14:9.7)

and obtam with a confidence coefficient l—oc, the confidence bounds
-ﬁc,n(p, n) < all ¢(8Z1) K c% (p,m), or ne;t (pyn) > all o(T8-Y) > nesl(p, n). (14 9. 8)

We now recall (A.1.25) and deduoe from it that
Crin( B-Yomnl AB) < all o(4) < tonns (B0 (AB). e (1409)
By using (14.9. 9) it is easy to see that the statement (14.9. 8)=}the followmg
neil(p, »)Cmax (S) > all () > nesl (p, »)onn (S) . (14.9.10)
We now use the £0H6Wiﬁg result of set-theoretic logic, namely that,
“If By, then E,” #@ “Hy is a netessary condition for B,” & B, C E, "
= P(E,) < P(E,), .. (14.9.11)

to observe that if the probability of (14.9.8) is 1—a, the probability of (14.9.10)
is > 1—a. Thus (14.9.10) is set of simultaneous confidence boun_ds with probab-
Cility > 1—a.

Also using (A.1.21) we observe that (14 9.8) == the followmg

[n011(27,n)]'t1't(8) tl‘z(z) [zl (0, WP t2(8), E=1,2,...,p) ... (14.9.12,
14
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which, by using (14.9.11), is thus another set of simultaneous confidence bounds on.
c(X)’s.

The derivation of the confidence bounds (14.9.10) can be simplified if we start from the
canonical p.d.f.

Const exp [—43 tr Dy YY'], o (14.913)

and recall that (i) S = YY'/n, (ii)c(¥YY') =c(4 YY'A’') for any | A and (iii)
tr D,y YY = tr Dy, 5 YY'Dy, 5, so that oDy, 5 YY' Dy, j5)s or ¢(Dy, n8Ys are
distributed as ¢(S)’s when y’s = 1, which distribution has been already used in the
-above derivation. However, the lengthier derivation is instructive in certain ways.

Going back ‘to (14.9.8) and using Chapter A.2, we note that the formula
(14.9.8) &=
a'Xa

nc,‘j(]), n) > a’Sa >'n0§o} (p, n),

or neil(p, n)a’Sa > a'¥a > nezl (p, n)a'Sa, o {14.9.14)

which is, therefore, a set o1 simultaneous confidence bounds on a’>a for all arbitrary
non-null a’(1 X p), and with a confidence coefficient 1—a.

_ 1f we start from (14.9.14) and choose a so as to maximize a’Za, then it is easy

to-check that (14.9.14) will imply that nci; (p; n) cnuy(8) > cpux (2); also if we
choose a so as to maximize a'Sa, then (14.9.14) will be seen to imply that
Coung () > nez(p, n)epax(S).  Similarly for the ¢yi,’s. Thus (14.9.14) will imply

77'Ci-a1(]” n) Cmax(S/) > Cnax(2) > nc2—a]z (P, 1) Ciax(S) . .. (14.9.15)

and ncfal(jp, %) Cain(S) 2 ey (Z) > nezd (ps 1) epin(8),

which, therefore, is a pair of confidence statements with a joint confidence coefficient
> l—a. - Incidentally, we notice that (14.9.15) implies (14.9.10) and thus provides
another derivation of (14.9.10).

Furthermore, there is a lot more to (14.9.14) than just (14.9.15). Since (14.9.14)
is supposed to be true for all non-null a(px 1), we can specialize by putting one, two
or more components of a(px 1) equal to zero and then we can take arbitrary values
for the other components. Now let us use the same argument as before, and denote
by- 8@, X0 the truncated (p—1)X(p—1) sample and population dispersion matrices
formed by cutting out the i-th variate, by St and 69 the truncated (p—2)xX(p—2)
sample and population dispersion matrices formed by cutting out the i-th and j-th

?arie?tes (4 #j=1,2,... p)and so on. Then it is easy to check that (14.9.14) really
implies (14.9.15) together with statements

TP, M) Cax(SD) > an(S0) > NGUP, M) Cpax(SD) ... (14.9.16)
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and

NEIM(Ps M) Cnin(SD) 2 € ZD) > nesl(p, n) enm(8D);
fOI‘ i = 1; 29 --.,p;

nc{i(p, ’I’L) cmax(S(i’j)) > canx(z(i’j)) = nCQa (p, n) (an\( S(”))

and ’le;(p; n) Cmm(S( ])) (Z“ ])) > n02 (27, ’IZ) cmin(S”’j));
for ¢ #j=1, 2, RN /R

and so on down to the stage of cutting out any p—1, i.e., retaining any one variate.

All these statements, 2 —1 in number have a joint confidence coefficient > 1-—a and

provide one type of complete attack on what the psychologists call the problem of
latent structure.

14.10. Confidence bounds on the characteristic' roots of T, Z5t. Let us start
from Y, (pxn): N¥0,3,) (b = 1,2), where we assume that p < ny, ny, and Xy
and X, are both p.d. so that the characteristic roots of I, X;' are all positive and
those of ¥, Y'(Y,Y, )1, ie., of (ny/n,)8,Sz! are, ae., all positive. We recall
the results of chapters A.4 and A.7 and start, without any loss of generality, from the
canonical probability density (in terms of transformed variates Y3, Y3 ).

Const exp [—} tr (Dy, V3 ¥y 4 Y33

— Const exp [—} tr (Dy ,Y1YVDy p+Y3¥3)). ... (1410.1)

It is to be noticed that c[(nq/ny)(8;851’s ie., (Y, Y1) ¥,Y;) s are the same as
(YY) Y3Y5 ) s and that y’s are ¢(Z; X;1)’s.

If we now put Z; = Dy Yiand Z, = Y}, it is easy to check that the probabi-
lity density of Z, and Zj is (2m)—plntn)2 exp [—4 tr (24,242, Zy)1.

For all non-null nonstochastic a(px 1) consider the set of statements
a’Z,Zala'Z,Zya < 93,
or g? < a/(Dl/ .j'Y_Y;)(le.J"/ Y;)Ia/al Y;Y;'a < Q:i

or . %z,gg < a'(Dy) gy 81Dy v)2fa"Spa < gz B o (14.10.2)
1 1

For given Z,, Z,, g and g3, this set of statements is precisely equivalent to the state-
ment that

92 < inf, ST%% < sup, Z?l‘g S SgiorgiKe<e, < g3, ... (14.103)
: 242 : 2 e
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where ¢, and ¢, are the smallest and the largest characteristic roots of (Z,2;)(Z,Z;)™,
both, a.e., positive. . The relevant distribution on the null hypothesis, i.e. when
%, = X, is known from chapter 8 and we now put

g} = C14(P) My, Na)
and g3 = Caa(Ps 1, My), o (14.10.4)

where ¢,,(p, 7y, Ny) and cy0(p, 7,, n,) are constants taken over from (6.4.6).

Changing back to §;, S, and ¢’s and putting ¢,, and ¢,, for ¢, (p, n,, n,)
and ¢,,(p, 7, ny) for shortness, we can now rewrite the second form in (14.10.3) as

:—lc]—; > all ¢(S,D 587D ;) >%c§} ... (14.10.5)
2 2

Now noting from' (A.1.12) that D 58;'D 5 and of course S;i'and S, are
symmetric p.d. and using (A.1.25) we have -

cmax(S1S§1) cmax(‘szD JVS.{-ID JF) 2 e
all  o(8,D 587D ) > cuin(8195")0mal S0 787D 7). .. (14.10.6)

Also using (A.3.9) and putting 8, = 7 and then using (A.1.24) we should have
Cmax(S,D JvSleJa) = oo TT" D 577 1D ) .. (14.10.7)
= nax(T'D 5T T-1D 5T) > all AT D 57-1), that is > all c"’(D ﬁ); that
is, > all y/’s.
Likewise werha,ve
Cnin($1D 781D 3) < all y/'s. ... (14.10.8)
Now combixﬁng (14.10.6)-(14.10.8), we observe that (14.10.5) =

;ﬁ—:c;: (D> M, Mo) Conax(S1857) > all v’s = all o(Z,Z5Y)

> Z—:cé} (P, 1, M) Cuia(8,57) . (14.10.9)

which, therefore, by using (14.9.11), is easily seen to be a set of simultaneous confi-
dence bounds with a joint confidence coefficient. say 1—f8 > 1—a,

Now using (A.1.22) we have

Cmax(81827) < Cmax(S1) Cmex(Sz), that is, K Cmax(81)/emin(S;) and

Conl895%) > Crun(19,)/cumns( ). . (1410.10)
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Thus (14.10.9) ==

,ﬁ;cl i (P, Ny, nz)cmnx(sl)/cmin(sz) all c(2122.1)

~. n - Y
= ;{2‘023(1” g5 M2) Cmin(1S1)/Cmax (S2), ... (14.10.11)

which, therefore, by using (14.9.11), is a set of simultaneous confidence bounds with
a joint confidence coefficient 1—¢ > 1—f > 1—o.

Gomg back to (14.10.9) and using chapter A.2, we note that (14 10.9) &

ny - - a'Za
’n—:cla(p:. Nys nz)._cmax(Sls2 ) > a,z:a >/:; Cz, I(P: '"/1: n'.’.) cmin(’ngZ )

| (14.10.12)
which is, therefore, a set of simultaneous confidence bounds on a’;a/a’%,a for all arbi-

trary non-null a’(1 X p) and with a confidence coefficient > 1—~a. Notice the essen-
tial ‘difference between- (14.10.9) and (14.10.12).

Let us now go back to (14.10.2), recall that that statement is supposed to be
true for all non-null a(p x 1) and specialize by putting one, two or more components of
a equal to zero and then use the same kind of argument as from (14.10.2) to (14.10.9).
Also use the same notation as in (14.9.16)' for the .truncated (p—1)x(p—1),
(p—2)X(p~—2), ..., sample and population dispersion matrices obtained by cutting
‘out any ¢-th variate (with ¢ = 1, 2, ..., p) any ¢-th and j-th variates (withi #j =1,
2, ..., p) and so on. Then (14.10.2) will not only imply (14.10.9) but also statements,

ACmax(SP SPY) > all (TP O™ > Aenun(SPSPT), ... (14.10.13)
for 1 =1,2,...,p;

AsComax( SEDSFI > all o(ZHITENT) > Aporia( SENSFH)
for i #j=1,2,...,p;
and so on, with a joint confidence coefficient > 1—a. The total number’ of such

statements will be 2?2—1. Here A, = 2 c1 a (p, Ny, Ng) | and Ay —_:—1 sk (p, ny, my).

. : .

14.11. Confidence bounds on re, ssion like parameters.

(¢) Some preliminary observatios . We now start with a random sample
of size n ( > p+¢; p< ¢) from a (p-+g)—variate normal population, and next reduce
for the means and set

(n—1) [ Su Si » ¥, R
, == [Y;: Y,
12 Sae q Y, P q

r q :
where S;;, S,, and 8;, stand respectively for the sample dispersion ‘sub-matrices of

the p-set, the ¢-set and that between the p-set and the g-set ‘and where Y, and Y,
have the p.d.f.

Zy Zp ]t Y1
Const exp | —34tr [Y;: Ys] S {(141L0)
12 E22 g . YZ
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For reasons which will become clear later we shall take # = =, S37 and B = 83,85
respectively as the population and the sample regression matrix of the p-set on the
g-set. Suppose we now consider two new variate sets X,(p X 1)—pB(p X q) Xylgx 1)
and X,(gx1). Then the population covariance matrix (X;—/fX;, X;) = 0, so0
that c[(Sn*Smﬂ'T‘/’)Siz""/’)sm/’”)_l(812_/3)822)82_21(‘812"Szzﬂ')],s are distributed as
[ 8728,55852 81]’s when g = 0, i.e. when Z;, = 0. '

(ii) Confidence bounds on the regression matriz . Consider the statement
all¢s < g2 or ¢, < ¢2, oo (14.11.2)

where ¢s (i =1, 2, ...,2; 0 < ¢; < ... < ¢, < 1) are the roots of the determinantal
equation in ¢:

[e(Sy3— 812" —BS12+ P80 ) — (81— S50) 853(81a—8eff) = 0. ... (14.11.3)

Now put e = ¢/(1—c¢), so that we havefrom(14.11.3), the determinantal equétion ine,

|e(Syy— S1a SiSie)—(Shy S5t —B)Sus(S5dSls—A)] = 0. ..o (14.11.4)

Notice that the statement (14.1 1 .2) can now bereplaced by the statement that the largest
characteristic root e, < ¢%/(1—¢?), ie.,

all 0[(811“81282-21812)_1(B—ﬂ)822(3"“ﬁ’)]<92/(1“92): (14;11~5)

where . B(pxq) = 8;,8:1, . (14.11.6)

which may be appropriately called the matrix of sample regression of the p-set on the
q-set.

We note that (14.11.5) & (14.11.2), and that ¢, has the distribution of the
largest characteristic root. of the matrix S;}S;,85487,, when X, = 0. The joint
distribution of these central roots and also of the largest root being known, all that
we have to do’to make (14.11.5), i.e., (14.11.2), a simultancous confidence statement

with a joint coefficient, 1 —a is to choose g = ¢,(p, ¢, n—1) where the quantity on the
right side is defined by

P [eentral ¢, > ¢ (p, ¢, n—1)] = a. e (1411.7)

Substituting now ¢,(p, g, n—1) (to be sometimes denoted more simply by c¢)

for g2 in _(131.11.5), we have a simultaneous confidence statement with a joint confidence
coefficient 1—a. |

»Now applying (A.1.18) and (A.1.22) (in the same manner as in the previous
sections), we have from (14.11.5), now with a joint confidence coefficient > 1—a, the
following simultaneous confidence statement

all G[(B—-/)’)(B'—ﬂ')]‘< li”c Cmax (Su_SI2S§21S;,2)6111:1X(’S2-21)~ oo (14.11.8)
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Using (A.1.22) again, we check that (14.11.8) can be replaced by the following
wider bounds (with a confidence coefficient > 1—a):

all c[(B"’ﬂ)(Bl "‘ﬂl)] < (00/1 __ca)[l —‘cmin(Sl_ll‘S(lz‘SéZ]Si;z)]clxlax(sll)cluztx(S2_21)-" . (14'11'9)

We next recall the following two well-known results (A.2.5) and (A.2.7) which we re-
member for convenience as

all ¢(M) < g (for a pxp real matrix M with real roots) &=

di(1xp) M(pxp) dy(px1) (for all arbitrary unit vectors dl) < (14.11.10)

and X(Ixg) X(gx1) < M > 0)e&= X (Ixq) dlgx 1)1 < /b ... (14.11.11)
(for' all arbitrary unit vectors.-d,).

Applying (14.11.10) and (14.11.11) to (14.11.8) we have (with a joint confidence
coefficient > 1—a) the following simultaneous confidence statement (for all arbitrary
unit vectors dy(px 1) and dygx1),

di(B—p)d, < [right side of (14.11.8)}} T (14.11.12)

or ultimately
| &, Bdy,— /B < d.fdy < dBdy4-+/E, o (14.11.13)
where B = [Caj1—olCumax(S11~ 512852815 )Cmax(S53). . e (14.11.14)

A set of simultaneous confidence bounds on just the elements f;; of the f-matrix would
be a subset of the bounds on the total set d;fd,. It is worthwhile to check that if
p = g = 1(14.11.13) reduces, as it should, to (13.4.4). Also if p = 1, we should have
another special case of (14.11.13) giving a set of simultaneous confidence boundsonall
linear functions of the partial regressions of one variate on several others. Thus, in
soveral ways, (14.11.13). seems to be an appropriate generalization of (13.4.4).

As in the derivation of (14.6.6) from (14.6.3) itvis easy to check that (14.11.13)
will imply

A BBY—vE < ¢t (BF) < ek ((BB)++E, ... (14.11.14.1)

where E is defined by (14.11.14). (14.11.14.1) is thus a confidence statement with a
confidence coefficient > 1—a.

Furthermore, if we now go back to (14.11.5) and replace it by

A(B—f) 8B _/fla_ <9 n (14.11.14.2)

a (‘511-312822 12)2 1—g? ,
for all non-null a(p x 1), then we observe that (14.11.14.2) implies (14.11.13). Now
we can specialize a(p X 1) by putting one, two or more components equal to zero and
theén, in each case, take arbitrary values of the other components and reason as from
(14.11.5) to (14.11.13). Thus, if, as in the two previous cases, we denote by SQ,
S{, B®, g SEH - §GH, BEGH G0, ete., the truncated matrices obtained by cutting
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out the i-th variate of the p-set. (with ¢ = 1, 2, ..., p) the i-th and j-th variates of
the p-set (with i 5 j == 1,2, ..., p) and so on, it is easy to check that (14.11.5) will
altogether 22—1 in number imply not only (14.11.13) but similar statements on the
truncated matrices as well, all with a simultaneous confidence coefficient > 1—a.
The same applies to a set of statements on the truncated matrices, similar to the
statement (14.11.14.1). We also obsérve that we can extend this still further by
doing a similar truncation with regard to the variates of the g¢-set, but this will not
be discussed in the preééﬁt-monograph: ' |

For an alternative set of confidence bounds we proceed as follows. Going
back again to (14.11.14.2) we rewrite it as

a'(B—f)8y(B—p)'a Ca 14.11.15
aI(SII“S12S2—21S;2)a < 1—c, ... (14.11.15)

for all arbitrary non-null a(pX1).

Now using (A.3.9) and putting S,, = 77" and using (14.11.10)., we have
(14.11.158) reducing to

a'(B—p)TT(B—pya < 1_"“0 a'(Sy;— 8,853 88 ... (14.11.18)
g c, \? . ~
or aBTb—-{l_“ } [a’(Syy— 8108548, )a) < a’ATb
1 R Ca Y -1Q7
< a'BIb4 | 2= b @8~ 8188 Sip)al, e (14.11.17)

o

for all arbitrary unit vectors b(gx1). Now put T(qxq) b(gx 1) = c(gx 1) say, so
that (14.1_1.17) reduces to the following set of simultaneous bounds with a confidence
coefficient 1—a:

a’Bc— {i%} ! [ a'(8y,— 81285 Syp)a ] ' < a'fe

Co

’ - G H [} - 1 H
<ch+{1_aca} [a(811—8125’221812)a] , e (1411.18)

for all arbitrary non-null a(px 1) and all c(g X 1)subject to
1 = b'b = cT'-1T-1¢c = ¢/(FT")1c = ¢’ S5} c. o (1411.19)

These confidence bounds are no doubt closer than those of (14.11.13) but these
seem to be useful from a physical standpoint only when we have, in the customary
sense, a regression problem of a p-set on a g-set such that the p-set is stochastic -
while the g-set is fixed, so that 8, (and hence S32) are neither unknown parameters nor
stochastic variates but just a set of given constants.



CHAPTER FIFTEEN

Some Non-Parametric Generalizations of Analysis of

Variance and Multivariate Analysis™®

15.1. Preliminaries and notation. In this chapter we shall be concerned with
the statistical analysis of data in the form of observed frequencies in discrete (and
finite) categories; a typical category being the (ij)-th cell of a lattice, with 7 = 1, 2,

' 8
eonandj=1,2,..,¢8 andjzz1 r;=rs(say). Let n; be the frequency in the (ij)-th cell,

and p,; be the probability of getting an observation in that cell and let us assume that
the observations are independent (in probability). Also let T My = My, 3 Ny = Ny

. J g '
t_z]. Ny = Ngg = NS8Y), T Py = Py, TPy = % Py = Pojp % Pij = Poo- Now let us
A j i i i o
assume that the sampling scheme is such that n,; is fixed from sample to sample and
Poj = 1, with j = 1,2, ..., s. Then the likelihood function (which, in this case, is the
same as the probability) is given by

Nl M
¢ =11 [TOL._ szj]] . (15.1.1)

In most realistic problems, however, r; = r (i.e.,.independent of j) which is what will
be assumed in the following discussion, although the possibility of a general form
(15.1.1) will also be kept in mind. Notice that (15.1.1) or its special case when r; = 7,
is based on the product of s separate multinomial distributions. Now suppose that
¢ is a multiple (here k—ple) subscript i, 4,...7; and j also is a multiple (here I—ple)
subseript jijs...jp, With ¢ = 1,2,...,r5 6, = 1,2, ..., 79 ..; 4, = 1,2, ..., 7y and’
G16(81)jsdn g J2€(S2)ia i eees J1a€(Si-1)in i = 1, 2, ..., & Where (sy)j,...5, is a subset of s,
depending on j,...j;, and so on up to (s_,)j; This will be said to be a k-variate
body of data arranged in I ways of classification and each of the running subscripts
%15 gs..., 1 Will be said to be a ‘variate’ and each of the runningsubscripts ji, ja; ...s i
will be said to be a ‘way of classification’. As observed before, it may be noted that
in most realistic problems j will drop out of the range of iy, 4y, ..., ¢, i.e., that i, =1, 2,
ves?y3 B9 =1,2,...,7,, and so on. Also, in one class of problems the range of the
subscripts j;, fa, ..., j; Will be as indicated before while in another class of problems
the range will be less general, being given by j; =1,2,...,8; Jo = 1,2,..., 8
v =12, ...,8,

In this chapter certain types of composite hypothesis on the p’s will be
considered, the more general types of composite hypothesis and more general decision
procedures involving the p’s being reserved for a later monograph. As will be observed
later, a composite hypothesis, to be physically meaningful, will have a particular slant

* See references [1, 2, 8, 9, 10, 13, 25, 30, 33, 47, 48, 55] in this connection.
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with regard to the ‘variate’ ‘4’ or its components Tys U9, ... 4, and another slant with
respect to the ‘way of classification’ %’ its components jy, ja, ..., i

In many (though not all) problems to be discussed here either (i) k¥ = 1 and
l=1or 2,withi, =¢=1,2,...,7, andgl—g_—l2 s orgy =12 ..,¢,and
jo=1,2,...,8 or (ii) k=20r 3 and I = 1, w1th1,1_—12 ces 713 22_1‘2,...,7*2
and (when Ic— 3)i3 = 1,2, ..., 7,5, and with j;, = j = 1 (which subscript will, therefore,
drop out). Case (i) will be called a univariate problem under one or two ways of classi-
fication and case (ii) will be called a bivariate or trivariate problem with one popula-,

tion. We shall now discuss some problems under a two-way or three-way frequency
table.

15.2.  Problems in a two-way fable. To fix our ideas, consider first a two-way,
say rX s table with observed frequencies n,; in the (ij)-th cell (with ¢ = 1,2; ..

j=1,2,..,8). Also let Zn” = Ty;» Enw = ny and X ny; = gy = nfsay). .
i,

L rand

15.2.1.  Both ‘i’ and j° are ‘variates.

Assume that we have a sample of n independent observations such that p;;.
is the probability of an observation in the (ij)-th™ cell, and » is fixed from sample to
sample. Also let X p; = pip, Zpy; = Poj» & Py = Poo = 1. Then the likelihood

j i 4.3

function is given by

! .
¢ = r%' 11 P} oo (15.2,1.1)

The composite hypothesis [47, 48] we shall be inlterested in testing is that 4’ .and j are
independent, that is, that Hy : p,; = pypy; against H £ HO, ‘where p,,’s and p,’s. are:
-arbitrary positive nuisance parameters subiect to Z D= 2 Po; =.1. . This is the ana<
logue of the hypothesis of no correlation in a blvarlate normal populatlon “Under™
H, we shall have the likelihood functions ¢ given by

! nij n! . ) B
M I (popo) ~ = Tfh:]T IT pltio I1 Do (15.2.1.2)

4 Wi

950:-‘

15.2.2. %’ 4s a ‘way of classification’ and §’ is a ‘variate’.

Assume that we have 7 independent sets of sizes 10> Mags ---5 Nyo Of ind'ep'endent

observations such that ny (¢ =1,2,...,r) is fixed from sample to sample and Pi; 18
the probability of an observatlon in the (ij)-th cell. Also we notice that- E Pii = Pio

=1. Then the likelihood functlon is given by

;0! .
¢ = \I;I"[Tﬁ%_!-l;[ Z’Z”}: ee (15,2:2.1)
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The comiposite hipothests we shall be interested in testing is that py, forany j, is indepen-
dent of i’ or in other words, that H, : p; = qo;(say against H # H,, where ¢,’s are
arbltrary positive nuisance parameters subject to % 9o = S‘ 3 py = Py = 1. This is’

the analogue of the hypothes1s of the equahty of means for r homoscedastic uni-
variate normal populations. © Under H, we shall have

v I n!
¢y =11 [——nﬁ—ﬂqnﬁ] no Hq i Lo (15.2.2.2)
=T b, %) T .
; .

U -
%

This ¢, ¢ouldalso have been obtained by startingfrom the ¢ of (15.2.1.1), then putting
H, V' py; = pipy; and then finding under H, the conditional probability subject to
n,'8-being fixed. But it seems.that physically this is far less realistic than the
model here used, although historically this is more or less what has been done so far.

The case of 4’ being a “variate’ and §’ a ‘way of classification’ is exactly similar
and need not be separately considered.

15.2.3. Both ‘i’ and ‘j’ are ‘ways of classiﬁcation’. Here we have a sampling
scheme in which n,'s andfny’s (i =1, 2, r;j=12,

.., 8) are supposed to be
fixed from sample. to sample.

In this s1tuat10n on the hypothes1s of independence
between ‘i’ and-j’, we can write down the likelihood function ¢, without assuming

that the observations are independent. For this we start from an urn problem model

in which there is an urn containing n,4, 7y, .., 7, balls of » different colors from

which we draw successively without replacemént) Mgy Nogs .5 e balls (with E Ty

= 2 ng; = n). The joint probablhty that the j-th bunch ng; will contain ny;, nz,,
balls ‘of different colors (with j = 1, 2, ..., s) will be given by

Po = Myl T mg;lfmt L mygl. e (15.2.3.1)
[ ¥ LA

The great advantage of this scheme is that the different observations need
fiof.be assumed to be mdependent and the- great dlsadvantage is that we would not
know how to write down ¢(under a general H as distinct from the null hypothesis
H, of independence between ‘> and j°). -This means that here it is not only that we
do not have any idea of the power of a test for H, against alternatives but also that
it Would not be pos51ble to obtain a one tailed x? test for H, by using the same kind
pf heur_lstlc arguments that we shall use for the first two situations. Wevcan use a
one-tailed y2-test here just by analogy with what we do in the first two cases.

This gbo could also have been obtained by starting from the ¢ of (15 2.1.1), then
putting H0 Dij plopoj and then finding under H, the conditional probablhty
‘subject to n,,’s and ny;’s being fixed. But, for one thing, this except for some very
special situations, “would be less realistic than the model here used and, for another
thing, this would deprive (15.2.3.1) of the one great advantage it possesses in that
the' successive observations do mot have to be mdependent Notice that (15.2.1.1)
is based on the assimption of the observations being all mdependenb.
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It will be seen that the apprcach here is not one of conditional probability at
all. It will also be seen that there are three different sampling schemes each leading
in a natural way to a particular probability model and a particular type of hypothesis
to be tested. From a physical standpoint it would not be proper to break this tie and
use a particular probability model and test a particular type of hypothesis when the
sampling scheme is something different. It will be noticed that in most situations
of life the natural sampling schemes are those of (i) or (ii) but there are situations, e.g.
Fisher’s tea tasting experiments or those connected with the extra-sensory perception
experiments or with the claims of astrologers as to prediction, etc. where (iii) might
be a natural sampling scheme.

15.3. Problems in a three-way table. As a natural extension of a two-way
table consider a three-way rxsX¢ table with observed frequencies n,; in the (ijk)-th
cell (with ¢=1,2,...,r; j=1,2,...,8 k=1,2,...,t). Also let Zny = ny,

1
z;"”ijk = Wik Zk i = Dyjos Ez:'] Nygg, == Moop’ %k Mgk = Tojos Jzk Nijr = Migos iﬁknijk= Mo00
= n(say).

15.3.1. ¢’ 4’ and ‘K’ all ‘variates’. Assume that we have a sample of » inde-
pendent observations such that p,; is the probability of an observation in the (ijk)-th
cell and n is fixed from sample to sample. Also let %]pijk == Pojrs jEpiJk = Diops %pﬁk.
= Pijos 2 Piir = Poors 2 Py = Pojos E Pijr = Dioo> E Pisk = Pooo = 1.

i,J i.k ik . i,k

The likelihood function will be given by

_ ! ik
¢ = St 7;1;1;' 15 D v (15.3.1.1)
1,5k

In this case, as indicated in [47, 48] we shall be interested in testing a class of compo-
site hypotheses, a typical one being,

15.3.1a. Hypothesis of conditional independence between ‘©° and §’|‘k’. This
will be

H,: Lo — Pk Poik op o~ PiorPoir 15.3.1.2
o DPoor; Poor  Poox P Pook o (15:3.12)

against H # H, (fori=1,...,7; j=1,...,8 k=1,...,¢).

This is the analogue of the hypothesis of no partial correlation (between « and
y)|z in a three-variate normal population. As shown in [47], if we superimpose
on this the composite hypothesis of independence between i’ and ‘K, and between 5’
and ‘K, i.e.,

Pior = DiooPoo. and Doz = Pojo Poors ... (15.3.1.3)

(which is the analogue of the hypothesis of no total correlation between (z and 2)
and (y and z) in a three variate normal population) we should have

Pyx = Dioo Pojo Pooy o (15.3.1.4)

which is the condition of complete independence of ‘¢’, ‘%’ and ‘%’
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Following [47] we shall also be interested in another class of composite
hypotheses, the typical one being,

15.3.1b. Hypothesis of independence between (i, j)’ and ‘k’. This willbe
H,:py,. =pij0p00kagainst H=+£H,(for i=1,...,r; j=1,..,8
k=1,..,%. ... (15.3.1.5)
This is the analogue of the hypothesis of no multiple correlation between
(%, y) and 2z in a three variate normal population,

As shown in [47], (15.3.1.5) implies the composite hypotheses,

Piok = Pioo Pook 30d Do = Dojo Pook- ... (15.3.1.6)

But (15.3.1.6) will not imply (15.3.1.5). The extra condition that was needed
on top of (15.3.1.6) to lead to (15.3.1.5) was shown [47, 48] to be the composite hy-
pothesis

Hy : p,;, = Tu0 diok Jojt .. (15.3.1.7)

0k 00 900 Foox »

where ¢;; Qior, qojz Were defined to be arbitrary (positive) functions of (i, j), (¢, k) and

(3, k) and g,09, Goj0, Goox arbitrary (positive) functions of 4, j and k, with no summation

convention connecting them as in the case of the p;,’s. By analogy with analysis
of variance this will be called the hypotheses of ‘no interaction’.

15.3.2. ¢’ and ‘§’ are ‘variates’ and ‘K’ a"way of classification’.
Assume that we have ¢ independent sets of sizes ngq;, ..., Rog Of independent

observations such that ngy(k = 1, ..., #) is fixed from sample to sample and p;; is the
probability of an observation in the (4jk)-th cell. Notice that X p;, = poy = 1.
Y]
The likelihood function will be given by
' | Mk
=1 Tk’ Tlpye .. (158.3.2.1
¢ k [ Hnijk! 'i,j ’ ] ( )
i,
Here we shall be interested in testing,
15.3.2a. Hypothesis of independence between ‘i’ and ‘j’ for each ‘K, i.e.,
H, : py, = Diok Poyi against H # H, (fori=1,..,r;j=1,...8
E=1,...,1). ., (15.3.2.2)

If we superimpose on this the composite hypothesis that the marginal @
(oblained by summing over §) is independent of ‘k’ and similarly for °j’, i.e., that pr 18
a pure function of ‘v’ and pyy is a pure fnnction of f’, ie.,

Pior = Gioo(58Y) and Do, = dojo (88), v (15.3.2.8)

we should have P = Gioo Jojo- ... (15.3.2.4)
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Notice from. (15.3.2.3) that 2 gjpy=-2 piop-= Pop;, = 1-and.also-that X g5 = Z Pojr
? ? 3 7
= Poox = 1.
We 8hall also”be interested in the composite (15.3.2b) hypothesis that pyy is
independent-of K’ ie., Py is d pire fidnction of ‘(i) i,
Hy : pyr = qio (s3y) againéi; H # H’(,;(for all 7,5 and k). ... (15.3.2.5)

This is the -anologue of the hypothes1s of the equality ot ¢ mean vectors (each

consisting of 2 components) for ¢ bivariate normal populations, each havmg the 'same
variance-covarianee. matrix.

- Jf we sum over ‘j’ and ‘i’ separately, this would imply

Pior = Z quo = qi3) (say) and Py =2 o = ¢sh (say). o (15.3.2.6)
b

As in the case where 4°, %’ and ‘%’ are all ‘variates’, so also here, (15.3.2.5)==(15.3.2.6)
but (15.3.2.6) does not imply (15.3.2.5). Exactly in the same way as in [47, 48] it can

be shown that the extra condition which when superimposed on (15.3.2.6) will ==
(15.3.2.5) is

Py = Jiio Do ok . {15.3.2.7)
Qi00 90jo !loozc

15.3.3. 4’ is.-a ‘variate’ and ‘)’ and ‘K’ are ‘ways of classification’.
Assume that we have sx# mdependent sets of sizes n,;;, of independent obser-

vations such -that nojk(g = 1 e85 k= ., ) is fixed from sample to sample and
Pijiis-the. probablhty of an observatlon in the (@jk)-th cell. Notice that Zpy = Pop= 1.

The-likelihood function will be given by

— n()jk Nijk
¢ =11 [ MIn,, pr,c_] ... (15.3.3.1)

i1

Eoa ooy
Ve eshe L0

Here we shall be interested in the composite 15.8.3a hypothesis that for any
‘B, pyr ts independent of §, i.e., that py;, is a pure function of ‘¢ and ‘K, i.e.,
Hy : pjr. = qior (say) against H £ H, (for all 4, j and k). ... (15.3.3.2)
Notice that Z qu.= 2 pi]-k = .pojk =1,

‘We shall be also interested in'the other ‘composite (15.3.8b) hypothesis that for
" Py 18 independent of “k”, i.e., that p,, is a_pure function of ‘i’ and 5, i.e.,

“ ”

any. ¢
Hy @ gy == q;0(8ay), against 'H £ H, (for all ¢,j and k). ... - (15.3.3.3)

Notice that Z Qijo = 2 Py = Pojr = 1. We now observe that (15.3.3.2)+
{15387 3 implies that pm isa pure funétion of '+ ; 1.e.; that

I O R er
e e lie .l‘.),

Pk = Qigo (88%), for all i, §. and. k. ... (15.3.3;4)
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If,ina one-way classification inthe usual analysis of variance, ‘¢’ corresponds
to the ‘variate’, %j” to the so-called ¢ concomitant variate’ and ‘&’ to the ‘way of -classi-
fication’, then it will be seen on a little reflection that (15.3.3.1) will be  the analogue
of the hypothesis of no regression and (15.3.3.2) will be the analogue of the hypothesis
of no covariance. - On the other hand, suppose we take 4’ and ‘%’ as just two ‘ways of
classification’, for example, we take ¢ as, say, blocks and ‘%’ as, say, treatments in

a randomized block experiment (with more than one and in general unequal number

of replications in each cell). Then (15.3.3.1) will be the analogue of ‘no block effect’

for.each treatment separately and (15.3.3.2) will be the analogue of ‘no treatment effect’
for each block separately. In other words, in the usual parlance of analys1s of variance
(15.3.3.1) lumps together one ‘no main effect’ and ‘no 1nteract1on while (15.3.3.2)
lumps together another ‘no main effect’ and ‘no interaction’.

15.34. 4’ is a variate and §’ and ‘k’ are ‘ways of classification’ in the sense of @

‘balanced incomiplete’ or ‘partially balanced’ incomplete’ or a more genéral type of “incom-
plete’ block @xpemment

Assume as before that there are r ‘¢>’s, sj”s and ¢t ‘k’’s. Assume further
that’y’isablock and ‘%’ a treatment and that, for any, %, there is a set of treatments

(T'); to go with it, of number ¢;. In other ‘words, for a given j, k takes on the set of values

(t) Where (t)] sa set of mdlces of number #; out of 1,2, ..., ¢ NOW assume that we

have L L 1ndependent sets of sizes nOﬂc of 1ndependent observatlons such that Mok
j=1

(ke();; j=1,2,...,) is fixed from sample to sample and p,; is the prqbab1hty of
an observa’oionv in the (ijk)-th cell. As before ¥ p; =:poy = 1. . The likelihood

function will be given by

¢ = £1 1(1) [Hn“, 1}%] . (15.3.4.1)

We can take .over -the hypothesis '(15.3.3.2) "of ‘no block effect for- each: ‘treatment
separately and (15.3.3.3) of ‘no treatment effect for each block separately’. For a
‘balanced incomplete design ’ all t;'s will be equal and there will be a highly symme-

trical pattern while for a partlally balanced design ”’ all s will be equal and there will
be a less symmetrical pattern.

15.3:5. . 4’ 4s.a ‘way of classzﬁcatwn and ‘j, k> also are. ways of classzﬁcatwn
wn the'sense that Nig0 8 and nyy's are ﬁxed from sample to sample Following case (iii)
of section 2, we can’ write down ¢, in this case (exactly the same way as we wrote,

down the ¢, in that case) on the hypothesis of independence between ‘4’ and ‘(j, k).
This will be

¢0 = Hnbo' H nojk‘/n' H n ves (15.3.5.1)

'L:J)

Starting from thi: we ‘canttest the-hypothesis. of indépendence between %4> and:” &’.
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The case of “4°, ‘5" and ‘%’ being ‘ways of classification’ in the sense of n,’s,
Ng,0’s and ngg,’s being fixed from sample to sample (but not ny;’s) is also of some
interest. But we shall not consider that case in the present paper.

The extension of the problems of the two-way tables of sections 2 to those
of the three-way tables of section 3 is a rather big conceptual jump, but the extension
from three-way tables to those of higher dimensions involves no such jump and will
not be discussed in this chapter except for some remarks toward the end.

15.4. The derivation of the x*-test by the union-intersection principle.
Let a random sample of size n from some population be classified into k( < »)

mutually exclusive and exhaustive categories according to some observable charac-
teristics (qualitative or quantitative) and let the probability of a random observation

k
falling in the i-th category be p; with p; > 0 and ¥ p; = 1. Let n; denote the ob-

i=1

served frequency in'the i-th category with of course 3 =»,=mn. Also let
: i

n'(1xk) = n' = (ng, ny, ..., %) and p’ (1 X k) = p' = (py, Pas ..., Pr). We have now

‘ ! ni
Pin'|p]l="_Tp". o (15.4.1
' P] = 7 U (15.4.1)
. 15.4.1. A simple hypothesis H, : p’ = p, against the composite alternative
H:p #p,. ‘

Consider first the most powerful test at a level say 8, of H, : p’ = p, against
a specific p; 7 Py, which, by the Neyman-Pearson lemma, will be as follows:

reject H, if
Pn'|pi]/Pn’|po] > e (15.4.1.1)
and don’t reject H, otherwise, where, given u, the size of the critical region (15.4.1.1)

under pg should be A(u, pg, p;, n). Substituting in (15.4.1.1) from (15.4) and taking
logarithms on both sides we see after a little simplification that (15.4.1.1) &=

a'(p;)(n—np,) log p—na’(p,)p, e (15.4.1.2)

va'(p,) A%a(p,) ©~ Va'(p,) a®a(p,)
that is, > c(py, Pp., n) say,

Wher e. a'(Pi)*_—DO.g (P11/D10), 108 (D21/D30)s- - 10g (D11/P10)], aDA A0 = (69;) is the variance-
cctvarlance'matrlx of ny, ng,..., nyunder H, : p’= p,,and where Bp, is supposed to vary
with, that is, depend upon p,. Itis thus evident that, for a fixed ¢, the critical region

w(pl, ¢) = {n’: 2 ®Jn—np,]
1 { Va' o) ctan] > } .. (15.4.1.3)

is the most powerful critical region for testing p’ = p; against a specific p’ = pi(% Po)
at a level of significance A(p!, c, n). Since the composite H: p’ == Po is the union



x*-TEST BY THE UNION-INTERSECTION‘ PRINCIPLE 121

of all H; :p' = p; (5 pg) we use the union intersection principie [45] and take for H,,
against the composite H, the critical region

wlc)= U w(p’,ec). . (15.4.1.4)
PFP,
Thus we should have

Compl t =i{n: apn—npo)] '\ (15415
ploment wio) = {n: sup T B o} e 15419)

Since ¥ n; = n and ¥ p;; = 1, we can write
i i

a'(p)n—np,] _ b'(p)[n*' —npy]
va'(p)aalp) VD' (p)ALDD) ’

(15.4.1.6

where
n*' = (M5 Mgy +ves Mgy PB'_. = (Z’w DP2gs ++vs Pr-130):
b'(p) = (b4(P), bx(P), ..., b4—1(D)),
b(D) = aD) — @(p) = 10g (Papsolpupie) (or i = 1, .., k—1);

and A9, is the matrix formed by cutting out the k-th row and the k-th column of
A®. Notice that each b(p) can assume aliy value on the real line and conversely,
given any real vector b6 = (byg; ---» by_1» o), the equations: b'(p)= by, have always
a unique solution in p, e.g.

Pilpe = (.Z"io/Pko)@biu = Ay, 88Y
k-1 . . . =1
or p; = Apf/(1+ T Ayp) (fori=1,2,.., k1) a,ndz; = 1/(1+4 )] o)
=1 i=

Hence we have [25]

su a'(p)n—npo] _ sup P_@_I_;%LB‘! = -4 [n[n*——np{,]'/\;?k _[n*—-np'o]]
p'Fp’, \/a’(p)(\oa(p) v /D ARD '

‘We next observe that
Oy = —NPyPjoif ¢ # jand oy = 1P 1—Dy0)-

It is easy to check that if /\2,: 1= (o), then oy = 1/np, if i5j and
oy = 1/np;y+-1/npy. We have, therefore
a@ln-mpil _ [§ (o]’
p'sp’, V/2'(p) A%a(p) =1 MPi
16
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Going back to (15.4.1.5) and thence to (15.4.1.4) we now notice that (15.4.1.4) reduces
to

k

w(c) ={n: + [El (Li_;;ﬁ%i)z]& > c}. e (15.4.1.7)

Since the left side of the inequality in (15.4.1.7) is essentially non-negative it iseasy to
see that we obtain a non-trivial solution only when ¢ > 0. It is thus seen that the
x2-critical region is obtained by using the union-intersection with respect to variation
over the alternatives p’(4pj), keeping fixed a quantity ¢ defined (in terms-of p; and n)
by the right side of (15.4.1.2). This means of course letting # vary with p in an
appropriate manner. Now if » is large, we go back to (15.4.1.3) and observe from
the asymptotic normality of the left side of the inequality (15.4.1.2) that, as n — oo,

CJ

1. [ o112 df. o (15.4.1.8)
¢

A(py,c, n)— \-/27}

In large samples it is thus seen that keeping ¢ fixed means making £ the same for all
p.’s, which means that in large samples the y? critical regioh (15.4.1.7) comes out as
a union-intersection critical region of type I [43]. For large ;s (the approxi-
mation would be good enough even for moderately large values of »;’s) it is well known

that the left side of the inequality in (15.4.1.7) is asymptotically distributed as a x®
with d.f. (k—1). For a satisfactory proof see [10].

15.4.2 Test of a certain type of composite hypothesis on p’s against a certain type
of composite alternative.

Suppose that the composite hypothesis is given by

Hy: {p;=pfby, 0y, ..., 01‘)}(01, wes B7)EQ°

where p(f;, ..., 0,) are k known functions of #( < k) unknown parameters. The

hypothesis does not specify the values of the parameters except that they belong to

a certain parametric space 0. The (composite) alternative is H, # H, For any

- specific (69, 63, ..., 8°), we obtain, as in the previous section, a heuristic test of the
hypothesis H,, : {p, = p (), ..., 09)} .against H, = H,, which has a critical regibn

k . —nm. (G
wie, 09, ..., 00) = In: 3y T mPl0L ..., O)) >c2}. (15.4.2.1)

T =1 np@(e% ':02)
This critical region is the region of rejection of

Hy : {pi = pif} ..., 09)} for a specific (6), ..., 69).
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Now to reject H,: {p, = pb;, ..., 0,)}(011’ .., 0)eg Would be to reject
H, :p; = p(,..., ) for every (6),...,0)eq

and thus, using the union-intersection principle for the second time, we have for H,
the critical region.

_’UJ(G, Ho) = n 'l/U(C, 01, iy 0,,)
(615 ..., 0r)eQ
E (ny—npyby, ...,0,))* '
=In: Inf a1 Ak TEASEAS LN N1 . (15.4.2.2
{ (615...,00)e0 =1 npi(ﬁv eres 61') ) } ( )

“which is precisely the minimum x2-critical region. The equations giving 6;s in terms
of n,’s, in the form, say 6,’s for minimum y?2 are :

o X (n;—npiby,..., 6,))? .
T a7 el =0 (f =1,2,...,7). ... 4.2,
30, = w0y, . 0 (for j , 2, r) (15:4.2.3)
It has been shown [10] that for large »,’s the equation (15.4.2.3) can be replaced by
the maximum likelihood equation (so much easier to work with), the likelihood func-
tion being ‘

! .
Po = H’;_! 0 g (0, ..., 0). . (15.4.2.4)
P T

The maximum likelihood equations can be put in the form

0 k op; E n—np, Op, , . ' :
0= =5 = ¥ L = =N (=12 .7 .. 4.2,
00; log G i=1 np; 00; i§1 np; 00 (j : ) (15.4.2.5)

1t has been proved (and will be published in a later monograph) that if we
start from the more general probability model of (15.1.1), pose a composite hypothesis
problem of the type of section 15.4.2, and then use the union-intersection principle
in the sense of sections 15.4.1 and 15.4.2, we obtain the corresponding y?-critical region
with a structure which is just stated in the following sections.

15.5. Some wuseful theorems on X2

We state here several theorems the first two of which are well known. For a
-careful statement and satisfactory proof see, e.g., [10]. The remaininhg theorems
have been proved, and the proofs will be offered in later. papers.

Theorem 1. If we start out from a P(n/p®) or ¢, of the form

¢ho = n! fI p:%/ 1 n;l(under X n, =n and X p, =1 and p; > 0), as n— o0,
=1t i S

C A=l

the sampling distribution (under ¢o) of p> (n;—npd)?/np} tends to the y2-distribution
: isrribul :
with -d.f. r—1,
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This is used for testing the'simple hypotheéis H,: p. = p° against the composite
alternative H : p % p° under the.general model: ¢ = - nl II P / I n! associated
" K3

1
with a sampling scheme in which only = is fixed from sample to sample but not any
of the n;s.

Theorem 1. Let P(n|H,) or g, be of the form gy = n! IL g% (0, ..., 6,
' =1 .

fI n;!, where Zn; = n and where p,(0y, ..., 0,), ... p{0,, ..., O,)(s < 7) are r functions

=]

of thé s parameters such that, for. all pomts of a non-degenerate interval 4 in the
s-dimensional space of the 6,’s, the p,’s satisfy the following conditions:

{(a) . E pl( s e 0) =1, (b) py(by, ..., 0,) > 2> 0.for all 4, (c) every p; has conti-

nuousderivatives g 0‘ and az g éj and (d) the rxs matmx{ gg; } is of rank s. Then,

assuming that A is so deﬁned that the. true population: parameter point (6Y, ..., 62)
. (=0%,say) is an interior point of "A, (i) there exists one and only one solution
By, ..., 0)( = 8, say) of the equation (15.4.2.5) such that 8 — 6% in probability
as m—> o0, (i) Furthermore, this 8 has the property that, as » — oo, the sampling

distribution of % (n—npB., ..., 8,))2/npy8,, ..., §,) tends to the y2-distribution with
i=1 :

with d.f. (r—1)—s. The probability measure ¢y, under which (i) and (ii) hold is one
which we obtained by sticking into ¢, the true populaﬁion point 6%,

This is used to test ,the composite hypothesis. H,:p, = 0y, ... 6,)
(i =1, ..., r) against the composite alternative H = H, under the general model of
‘theorem I associated with the same sampling scheme. Under H,(and H, alone) will
@ be of the form ¢, of this theorem.

Theorem 111, W1th the same ¢, as in theorem IT and with p,(8,, ...,6,)’s being
defined as functions of (4, .. A sub]ect to the same conditions as in theorem 11,
suppose that we have furthermore ander the null hypothesis Hy: f(0y,...,6,) = f3,
"where f°’s are fixedand k: 1,2, ..., t < s, such that over 4, (e) each f, has continuous

) T
denvatlves a{;’: and 5, ‘; ’; : .and (f) the tx s matrlx {6f "} 1s‘ .of rank ¢ Next, let us

write down likelihood equations snb]ect to the given constraints on (9, 8:

r B

n,—np0y,..., 0,). ap.l + tE Mcafk =0

=1 np@(glzr-p 0,) 8 k=1 agj (.7 1 veey 8) (15.5.1)

Jdby, s 8) = fO(k = 1, 2, ...,1).

Then (i) there exists one and only one solution @, .. 9 o)s (1, e, i) -Of .these equa-
tions such that 9 —0% in probability as n—oco. (ii) ThlS 6’ has the further property
that, as n — oo, this sampling -distribution of. X(n, n—npyd,, ..., 0, N2 npBy, ooy B))

tends to the y2-distribution wish d.f. (r—1)—(s—t). Asin theorem I1, the probablhty
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measure ¢y, under which (i) and (ii) are true is of course the..one which we obtain by
sticking into ¢, the true population point 6.

~This is used in the same general situation that ties in with the'o'rem_ 11, the

only difference being that here the composite hypothesié is given as Hy: p; = p{6;,

, 8,) subject to additional constraints on 6;s. Theoretically, under certain reason-

able restrictions, we might try to use the constraints on 6;’s to eliminate some of the
G;’s and express the p;’s in terms of the proper number of independent §;’s.

But in domg so we might well obtain the p;’s as functions of these independent
;s such that they have one set of functional forms for one domain of values of the
eliminated parameters, another set of functional forms over another domain, and
go on. We shall of course be concerned with the functional forms assumed over a
sufficiently small neighbourhood enclosing the true (but unknown) parameter point.
But this is not directly known and hence in general this problem cannot be thrown
back directly on theorem II. A simple illustration will make this clear. Suppose
that p; = p(0y, ..., 0)¢ = 1,2, ...,r > 8) and we have furthermore the hypothesis:
6% 4- 62 = 1 and that (,, 6,) may take all values on the euclidean plane. Then we
have 6, = 4++4/1—6%, so that we have p, = p,(v/1—05,...) or p; = p{—+/1=6%,
0y, ..., 0,) according as the eliminated parameter 6, is + ve or — ve. It is this that
prevents a direct appeal being made-to theorem II.

But in most practical situations, it is far more convenient to use the customary

method of Lagrangian multipliers, and this theorem provides the justification for that.

Theorem IV. With a general ¢ of the form n' II p”' / H n,! under En = nand

2‘2’1 =1,p > O), suppose that we have the constralnts f,(pl, e D) = O(J =1,2,
.;8 < r.and T p; = 1 is one of the s constraints), where f;’s are defined over an interval

. [1
A in the r—-dimensional space of the p;s such that (a) f;’s have continuous derivatives

Next,'propeﬂy using the condition X p; = 1, let us write down the maximum
-

likelihood equations subject to the given constraints on p;’s:

menpiy s %0 i=1,2 r)
", El_,u, B t=12..,
filpgs onp)) =0 (j=12,...,8s< 1) © . (18.5.2)

Then assummg that the true population parameter point p* = (j),, 235 ...y P9)
is an 1nter10r pomt of 4, (1) there ex1sts one and only one solutlon p = (131, v By)
,.and ﬁl, vy ﬁ,) of (15.5. 2) such that p—) p°’ in probablhty as n—>oo (11) ThlS p has the
further property that, as n—co, the sampling distribution of i}.“l (n,—np;)?np; tends
to the y*-distribution with df. r—(r—s) = s,
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This is used in the same general situations that tie in with theorems Il or
III, the only difference being that here the composite hypothesis is given as H,:
fi{p1s ) = 0(j =1, ..., 8). Theoretically it is possible (under certain mild and
‘reasonable restrictions) fo move back and forth between the set-ups of theorems
11, 11T and IV, but in practice, depending upon the form in which the hypothesis is
put forward, it might algebraically be more convenient to follow one method rather
than the others.

» Theorem V. 1If, instead of a ¢ corresponding to a single multinomial distri-
bution, we have a ¢ corresponding to the product of several multinomial distributions,
given by

,

- op = s;
II [nm! II p;?ii/ﬂ 7! ] , with II p, = p, (say) = 1,6 =1,2,...,7)
i=1 L j=1"Y iz j=1

then the theorems I-IV will all hold good as n,,’s— co with n,/n held constant, with
the difference that (i) the statistic concerned will be I (n;— n,gp;,)2/np; and (i) the
. i.J

limiting sampling distribution will be a x2 with d.f. = total number of cells—number
of independent multinomial distributions—number of independent parameters p;;8 that
are to be estimated from the data. Corresponding to theorems I, II, III and IV there
will be respectively (i) a simple hypothesis Hy: p; = p%, (ii) a composite H,:p; =
Py(0y, .., 0,) (with u < s—r where s = X s;), (iii) a composite Hy : py = py(0y,...,0,)
subject to fi(f;, ..., 0,) = f2 (with £ = 1, 2, ..., v < u) and (iv) a composite H, which
is defined in terms of constraints on p;’s of the form: fi(py's) =0k =1,2,...,u <
8—r). It should be remembered that all the hypotheses (i), (ii), (iii) and (iv) must be
o framed as not to violate the basic conditions Lpy=pp=1i=12,..7) Also,
J

even in considering the alternatives, these basic conditions must not "be violated.
Notice that j may be a double or a multiple subscript like j;, 45, ..., j;, in other words
it may be a ‘bivariate’ or a ‘multivariate’ situation. Also ¢ may be a double or a
multiple subscript like ¢,, i, ..., %;; in other words, it may be, in addition, a ‘two-way
classification’ or a ‘multiway classification’. In practice, the number of categories
8; of j for a given 4 will, in general, be independent of ¢, that is, the same for all i’s;
but it i better to consider a moré general theoretical formulation.

This should be used when we have a mixed model with both ‘variates’ and
‘ways of classification’ (as e.g. in subsections 15.2.2, 15.3.2, 15.3.3 and 15.3.4).

Theorem VI. TUnder a hypergeometric gyle.g. of the type (15.2.3)), as Ny S
and  ng’s— co, with n,/n and ny/n held fixed, the sampling distribution of

) ‘ 2
P (nij — M) / "0 tends to the xy2-distribution with d.f, (r—1)(s—1).
4] n n

The proof of theorem IIT that has been constructed is on the same lines as
tha’p of theorems I and II, and is rather long. Theorem IV can be thrown back upon
either theorem II or III, without much difficulty, Theorem V is proved on the same
lines as theorems I and II. More than one proof of theorem VI are available, but
a more straight forward and rigorous proof can be constructed on the same lines as
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in Feller’s book [12]. All this material on theorems ITI-VI will be given in a later
monograph.

Going back to theorems III-V, we may note that in each case a part of -what
is included in the hypothesis might be moved overinto the model and the rest retained
under the hypothesis. This would mean that under the relevant non-null hypothesis
(in-connection with the power of the test) the part that comes under the hypothesis
could be violated but not the part that has been moved over into the model. This
will not affect the distribution on the null-hypothesis, i.e., the significance points, etc.,
but would of course change the structure of the power function. For example, going
back to theorem III, we can, if we wish, make p, = p,(0,, v B) @ =1,2,...,r>5s)
a part of our model and define the null hypothesis as fy(f;, ..., 0,) = fi(k =1, 2,...,
¢t < s). Under this changed set-up even if we used the same test (for the null hypothesis)
as discussed in connection with the original set-up of theorem III, we would have
a power function which would be different from the one associated with the original
set-up. _But of course another test (which is not discussed here) with a greater power
would-be more appropriate in this situation. It is obvious that we can introduce
similar changes in the original set-up of theorems IV and V.

It may be further observed in connection with theorems IT—V, that each
gives two main results listed as (i) and (ii). For example, if we denote the maximum
likelihood estimate of the parameter point 8 by 8, and the true parameter point by 6°,
theorem II gives that under H, and for large =, (i) 8—8° in probability and (ii)

! (m,—np;)?np, tends to have the x* distribution with appropriate degrees of freedom.
i=1

Now result (i) will hold if we take for & any BAN [30] or best asymptotically normal
estimate and not just the maximum likelihood estimate which itself is of course a BAN
estimate. For example, the minimum y? estimate would be one such and so also
the minimum x? estimate whose y? is defined by él(nl—npi)zlni. Next, result (ii) can
be replaced by the result that under H, and large n,

i) T [n—np(BAN)Pn, orél [n,—np(BAN)P/np(BAN)
=1 i= '

each tends to have y* distribution with the same degrees of freedom as for (ii). We
here denote by p(BAN) the value of p; obtained by substituting in p,(6) any BAN
estimate of 8. We have of course similar results associated with theorems III, IV
and V. This gives us a good deal of latitude and leeway so far as large sample tests of
the hypothesis associated with theorems II-V are concerned. In a sense this has been
adequately proved in [30], but a proof which is more on the lines of the’ present
development will be given in a later monograph.

15.6. Large sample X tests of the null hypotheses in a two-way table.
15.6.1. The problem of section 15.2.1. We consider section 15.2.1, start from
(15.2.1.1), maximise log ¢, with respect to p,’s and py;’s subject to Zp, = % Do =1

(using Lagrangian multipliers) and end up with the maximum likelihood solutions:
Bio t Ny/n and py; = ng;/n. The number of independent parameters estimated from
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thé data is r-s—2 and hence by section 15.5 the test of independence here
is based on a statistic which has the y2-distribution with degrees of freedom rs—1
—(r+-s—2) = (r—1)(s—1) and whose form is

: 2 \2
( n.—n %0 Ty, ) (%_'__ Ny Toj ) .
] (i n .
> " n _ (15.6.1.1)
e e e TR L e
i - i3
n . o Mo Rio Ny
n n n

A 15.6.2. The problem of section 15.2.2. We start from (15.2.2.1) and maximise
log ¢, with respect t0'qq,’s subject to X g, = 1 and end up with the maximum likelihood
p .

solutions: ¢o; = m;/m. The number of independent parameters estimated from
the data is s—1 and hence by section 15.5 the test here is to be based on a statistic
which has the y?-distribution with degrees of freedom r(s—1)—(s—1) = (r—1)}(s—1)
and whose form is

' Tog\2 Ryo Moy
_(,nl’_ni°-' n)_zz (”“— n ) (15.6.2.1)

z

= M4

ngp 0 b Dol
n ¥

15.6.3. * The problem of section 15.2.3. We start from (15.2.3). Here we have
already (under the null hypothesis) p;; = nn,,/n* and using the remarks of section
15.5 we note that the test is based on a statistic having the y2-distribution with-
degrees of freedom rs—(r4-s—1) = (r—1)(s—1) and the form

My, @Qj)z ’ Mg Mg ... (15.8.3.1)
. n .

) ( -
0 i n
15.7. Large sample 2 tests of the null hypotheses in a three-way table.
16.7.1. The problems of 15.3.1, @'.é., where %, 4§’ and ‘k’ are all ‘variates’.

15.7.1a. The problems of 15.3.1a.

Independence between i’ and §”|*k’. Under H, of (15.3.1.1) we shall have

Po ~i?k (Paor: PojrlPoor) 7. .. (15.7.1.1)

To test the hypothesis here we maximise log ¢, with respect to Pioi’ S, Poj'8 and pog;’s
subject to % Diop = ?”j,’“ = poor and % DPoor =1, and end up with the maximum
?ikelihood solutiops : ﬁ“’k.: Pigk[T,  Poji, = Non and Py, = Noor/n.  The number of
independent parameters estimated from the data is (r—1)t-+(s—1)t+(@—1). And hence
by section 15.4.2 the test of conditional independence is here based on a statistic
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which has the y2-distribution with degrees of freedom rét—1—tr—1)—t(s—1)—(t—1)
= {(r—1)(s—1) and whose form is

. \2
) (n e oeik )] ot e (18.7.1.2)
gk Moor~ ' ' Toor .

Independence between ‘i’ and ‘K’ and also between ‘j and ‘k’. This can bo
Vhandled exactly on the lines of section 6 and will not be discussed separately.

Independence between ‘¢’ j’ and ‘k’. 'To test this we start from the hypothesis
of (15.3.1.3) giving

Po ~ 11 (paoopmopom) o, w (15.7.1.3)

1:»

maximise log ¢, with respect to p;y’s, Pojo’s and pyy’s subject to Tpioe = Tpy =
- ‘ : i i
kEpook =1, and end up with the maximum likelihood solutions: P, = B/2, Pojo

= Mgjc[n and Door, = Nyer/n. The number of independent parameters estimated from
the data is (r-s+¢—3) and hence by section 15.3.2 the test is here based on a statistic
which has the y2-distribution with degrees of freedom rst—1—(r+-s-+t—3) = rst—r—s
—1+4-2, and whose form is

(15.7.1.4)

2 Tomse
s (% _nioonw‘ono%) / Ti00™0j0"00 .

ik
ik n? n?

15.7.1b. The problems of 15.3.1b.
Independence between ‘(i.j.) and ‘k’. Under (15.3.1.4) we shall have

$o ~ il'jlk (Do Doo) " . . (15.7.1.5)

I'o test this hypothesis we maximise log ¢, with respect to Pijo’s and po’s subject
to X p,; = X poor = 1 and end up with the maximum likelihood solutions: f;;,= n,/n
i ) : ' '

and g = Ngr/n- The number of independent parameters estimated from the data
‘is (rs—1)-(t—1) and hence by section 15.5 the test is based on a statistic having the
x2-distribution with d.f. rst—1—[(rs—1)--((—1)] = (rs—1)(t—1) and having the form

; L ’nijonook}2 [ Mo Moor .
o {n”" n 1T . (15.7.1.6)

Independence between ‘i’ and ‘K’ and belween G and k. _ Since this can be
handled on the same lines as in section 15.6, it will not be separately discussed.

) . The ‘no interaction’ hypothesis of (15.3.2.6). This has been discussed in detail
in [47] and will not be given here. The test will be based on a statistic having the
x>-distribution with d.f. (r—1)(s—1)(t—1) and having a rather complicated form which
will be reproduced in a later monograph.

} 7
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15.7.2. The problems bf 15.3.2, i.e., when 4> and §° are ‘variates’ and ‘K’ isa
‘way of classification’.

15.7.2a. The problems of 15.3.2a.

fndependence between ‘i’ and ‘j> for each k. Under H, of (15.3.2.1) we start
from

B0~ T (Pos o)™, o (187.2.0)
Hls

and maximise log ¢, with respect to p;;’s and pyy’s subject to Ep; = X Pojr = Powk
i J

= 1, and end up with the maximum likelihood solutions: Door = Moe/Toors Dojp =
Ngju/Mooz» The number of independent parameters to be estimated from the data
is #(r—1)--t(s—1) and hence byéection 15.5 the test here is to be based on a statistic
having the y2-distribution with d.f. #(rs—1)—#r—1)—ts—1) = #(r—1)s—1) and
having the form

r

- o Mo, 2 R0k ank] 7.9.9
5[ 2 {n—ron . BT [ R ] (18.7.22)
The problems under (15.3.2.2) or (15.3.2.3) will not be discussed separately.
15.7.2b. The problems of 15.3.2b.

The hypothesis that py, is independent of ‘¥, i.e., that py, is a pure function
of ‘(¢,7). Under H, of (15.2.4) we start from

P ~ I gzi* e (15.7.2.3)
(AR

maximise log ¢, with respect to g;;,’s subject to 3 ¢, = 1, and end up with the maxi-
- ‘sz

mum likelihood solutions: &m = My;e/nn. The number of independent parameters to
be estimated from the data is (rs—1) and hence by section 15.5 the test is to be based
on a statistic having the y%-distribution with d.f. t(rs—1)—(rs—1) = (rs—1)(t—1) and
having the form

> [E{nﬁk-nOOk . %ﬂ}z/nm. ”_:%9] e (15.7.2.4)

The problems under (15.3.2.5) or (15.2.2.6) will not be separately discussed
here.

~ 15.7.3. The problems of 15.3.8, i.e., when ¢’ is a ‘variate’ and 7 and ‘K are
‘ways of classification’.

15.7.3a. The problem of 15.3.3a.
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The hypothesis that for any ‘K, py is independent of §’, i.e., that Dy 18 @ pure
Sunction of ‘0’ and ‘k’. Under H, of (15.3.3.1) we_ start from »

$o ~ II ¢ifF, .. (15.7.3.1)

2] &

and maximise log ¢, with respect to ¢;i;’s subject to ¥ g5, = 1, and end up with -
r .

the maximum likelihood solution (‘I}wk = Myp/Ngez- The number of independent
parameters to be estimated from the data is {(r—1) and hence by section 15.5 the test
is to be based on a statistic having the x2-distribution with d.f. st(t—1)—t(r—1) =
{{(r—1)(s—1) and having the form »

Ry | ® "iok] :
NN » — g -2 |, oo (15.7.8.2
%k[zz:{ w0k nOOk} / o Roox ( :
15.7.3b. The problem of 15.3.3b. This will be exactly on the same lines as

the previous case and will not be discussed separately. We shall also omit a dis-
cussion of the problem under (15.3.3.3).

15.7.4. The problems of 15.3.4, i.e., when %’ is a variate and ‘§° and 'k’ are
ways of classification in -the sense of an incomplete design.

The hypothesis that p; is independent of j’. i.e., that py, is a pure function
of ‘v and ‘K. We start from (15.3.4), put p; = ¢, and thus have ¢, ~ II Gk,
‘ i3k
maximise log ¢, with respect to g;y,’s subject to = ¢, = 1 and end up with a solution
i

%ior's in terms of w;;’s which is a set of functions of n's of the same structure
as the corresponding least squares solutions in linear estimation. One or two
such solutions for some linked block designs will be discussed in a later paper.
However, this solution, stuck into the ‘x2 functions will have the x2-distribution

with d.f. (r—1) % t,—(rt—0).
j=1 -

The hypothesis that p,y, is independent of ‘f’, i.e., that p; is a pure function of
‘¢’ and ‘§’ can be handled on exactly similar lines and need not be separately considered.

15.8. Linear hypothesis. Linear hypothesis in the sense of chapter 12,
on the p’s or the logarithms of the p’s, can be put forward, distinguishing as in
chapter 12, between the model and the hypothesis, and such hypothesiscan be tested
either in terms of x? or in terms of ¥%, in either case, substituting for the unknown
free or nuisance parameters any BAN estimates and in particular, say the maximum
likelihood or minimum ¥? or minimum x} estimate. There are theorems in this
sector closely analogous to thcse leastsquares andanalysis of variance theorems in the
customary set-up, most of which have been considered in chapter 12, In terms of
this it is possible to develop and study the analogoues of most of the things we custo-
marily do in the usual uninormal or multinormal analysis of variance, including
contrasts in general and ‘main effects’ and ‘interactions’, ete., in particular. If some
numerical quantities or measures are attached to the categories we can also, in terms
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of such numorical measuras, - study ths hypothesis of equality of the population
‘msans’ or other linzar hypothesis involving these ‘means’ or population ‘variances’
or other ‘parameters’ of the probability distributions. This will be discussed in a
later monograph.

15.9. Asymptotic independence of test criteria in certain situations. In
many situations in which a particular hypothesis H, with an associated x2 is the
intersetion of several hypothesis Hy,, Ho,, etc., with associated xf, x3, etc., it so
happeas that x2=yx} 2 fete. and that ¥, x3, ete., are also independently distributed
but unlike what happens in ordinary least squares analysis of variance set-up, the
additivity isnotin the usual algebraicsense; itis only in probability and asymptotically
as n—oo and the independence is also in the asymptotic sense. Take, for example,- the
hyposhesis (15.3.1.1), (15.3.1.2) and (15.3.1.3), and let us call them Hy,, (Hos Hygs)
and H,. We note that Hy= Hy [ Hos [} Hos. - S

Let the associated ¥¥'s be denoted by ¥2, x3 and y3. Then, in this case, it has
been shown [23], that, in large samples and under the null hypothesis H,, A3, 2% and
X3 are independent central x2's and y2+x%+32 — x? in probability. We have an
exactly similar situation for the group of hypotheses (15.3.1.4), (15.3.1.5)and (15.3.1.6).
These are situations in multivariate analysis. There are similar situations in analysis
of variance also, for example, with the group of hypothesis (15.3.2.4), (15.3.2.5) and
(15.3.2.6) or with the group (15.3.3.1), (15.3.3.2) and (15.3.3.3). But this will not be
true, for example, with a similar group of hypotheses on an incomplete block design
or more general types of designs indicated in section 15.3.4. - For linear hypotheses
on p’s or their logarithms, the mathematical conditions for this asymptotic indepen-
dence and asymptotic additively in probability are strikingly similar to the corres-
ponding conditions for the customary least squares set-up discussed in chapter 14.
For more general types of hypotheses under more general types of models these condi-
tions are a little more complicated with no obvious analogue in the usual least squares
theory developed so far. All this will be discussed in a later monograph.

15.10. On asymptotic power functions. For analogous null hypotheses under
different probability models we have, in many situations, eventually the same X2
with the same distribution under the respective null hypotheses.. This is exempli-
fied in sections 15.6.1, 15.6.2 and 15.6.3, also again in 15.7.1, 15.7.2b and 15.7.3a and
so on. But the power, of these tests, which depend upon the distribution on the res-
pactive nonnull hypotheses of the corresponding statistics, are not comparable and
in that sense different. It is well known [30] that these tests are consistent i.e.,
that in .l_arge samples these powers tend to 1 in each case. But the asymptotic
powers in the sense of Pitman and Lehmann can be obtained and compared. The
asymptotic power function (for analogous hypotheses under different probability
Xosirzltse)n}ll:t\;z (;Zﬂf;‘mt sZn;c.turles(.i' Some bre:sulf;s' are g.iven' %n the follov;ring paragraphs.‘

5101 Tc;gn;snmnzt; ing proofs v&tﬂl be given in 2.1 later monograph. ~
15.5. Let us <.30nsider a-’i ﬁfernai);?\l::?{fundwn C.onnecte.i wak tﬁeorem 1 Of ’Sectio n
b » (depending on'n) given by
HnZPi5=P9+-8L(i»='1'2 i3 = 3 0 1510
F 2t TPe =Xl =1), ... (1510.1.1)

«
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where &’s are fixed. Then, as # — oo, under H,, x* = 3 (ny—np?)%/npl tends to
s

have the noncentral -y2-distribution with d.f.(r—1) and a noncentrality parameter
A = 3 8%/l
i=1

15.10.2. The asymptotic power function connected with theorem II of section
15.5. Suppose we have an alternative (which has tobe simple in this case) H, given by

H, : p,, = pj(6%, 63, ..., 09)+

s T TP =2pl=1).. (15.10.2.1)
i 1

‘Then, as n —> 00, under H,
y . T P N . - .
X =2 [u=np By, ... BB /mp By, .., 8)

tends to have the noncentral y2-distribution with:d.f. (r—1)—s and a non-centrality
parameter ‘A = §'[I—B(B’ B)-! B']6, where §(1xr) is a row vector with elements
Si/v/p6, ..., 09 (i =1,2, , r) and B stands for the r X s matrix {g—g’}
i
(t=1,2,..,rj=1,2,..9).
15.10.3. The asymptotic power function connected with case (+3) of theorem V
of section 15.5. Consider an H, given by

Hn ! Pijn = py(03, ..., «93)+ \/; with 2 < s—r and s= 2' s, and also of course

de=1

2 Py = Pion = 1, i=1,..,r ... (15.10.3.1)

Then under H, and as n—>o0 subject to g; = ny,fn being held constant with
i = 17 2, ceey Ty
X2 = 2 [nu._"niopi,(gl’ sees ou)]zlniopu(ol, --wpu)'
t,J . .. .
will tend to have the noncentral y2-distribution with the same d.f. as indicated there
and with a noncentrality parameter A = 8[I—B(B'B)~1B']8, where

i : V' op;; . : ;
B — B L | hj=1,2, =1,2,..
(s xu) { VD08, - 60) [aak] 0} W1t J 83 ¢ ,2,..,7r and

kE=1,2, ..., uand where §(1 X s) is a row vector with ele‘m‘ents \/%/\/Pu 9, ..., 09).

Another way to compare the relative efficiency of two comparable and consis-
tent tests in a particular situation would be to consider theratio of the exact probability -
of the second kind of error for the two tests and study the limiting form of this ratio.
as n — oo. - This also will be discussed in a later monograph.

15.11. Remarks on more general decision problems. The problems discussed
in this monograph, whether based on the ‘normality’ assumption as in the previous
chapters or on the nonparametric model as in this chapter, have been either in terms
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of the. Neyman-Pearson-testing of hypothesis or, in several cases, in terms of confidence
bounds on meaningful sets of parametric functions which might be regarded as natural
measures of departure from certain null hypotheses. In many situations, however,
itis of considerably more physical interest to consider more general decision problems.
For example, in the analysis of variance situations with say ¢ treatments (whether
on the ‘normal’ assumption or on the nonparametric model) we may be likely to
be far more intérested on a decision rule for picking out the ‘best’ or ranking the ¢
treatments in terms ‘of some characteristic. The decision rule has to have certain
desirable (if not always optimum) properties in terms of some rational criteria.
Some such decision rules already developed, both on ‘normal’ variate data and on
‘categorical’ data, and on various types of problems including those of factor analysis
and classification will be discussed in a later monograph.

15.12. Some remarks on factorial experiments. Looking for a possible moti-
vation behind the customary (and mostly ‘normal’ variate) analysis, one can not help
feeling that factorial experiments (whether on the ‘normal’ variate type of data or
more general types of data) present a problem which is essentially different from
that of the rest of analysis of variance, e.g., the usual tests of significance of treatment
differences. Assume, for simplicity, in the beginning, that there is just one factor
at, say, k levels, One might regard these as treatments, and test whether there
are significant differences between these, or, in terms of some characteristic, pick
out the ‘best’ among these or rank these in some order. - But that doesnot appear to be
the relevant question here. The (second) characteristic in terms of which we have the
levels seems to be a continuous variate which is observed at & levels for practical
convenience, and what is of interest seems to be to lay down a statistical rule by which
we can, in terms of the observations at discrete levels, decide ‘about the ‘best’ or
‘optimum’ point, the ‘best’ or ‘optimum’ being in relation to the first characteristic.
Likewise, taking for example, two factors at k and [ levels respectively the problem
seems to be not to test whether there are significant differences between these &/ com-
binations regarded as treatments (which would, really, be a linear problem) or to pick
out the ‘best’ among these or to rank these (in terms of some characteristic), which
again would be each a really linear problem. It seems that there is a (second) charac-
teristic in terms of which we have the k levels of the first factor, and a third charac-
teristic in terms of which we have the [ levels of the second factor, both these (second
and third) characteristics being supposed to be continuous variates. The problem
is to lay down a statistical rule by which we can decide about the ‘best’ or ‘optimum’
point (in relation to the first characteristic) on the plane- of the second and third

characteristics, regarded as two continuous variates, the decision rule being in terms
of observations at the kI discrete level combinations.

This of course canbe generalized
to several factors.

: ‘ The customary analysis into ‘main-effects’, ‘interactions’ of various
orders, confounding etc., all seem to point very strongly in this direction. Some work
has already been done from this standpoint and further work is under way. This
will be -discussed 'in a later monograph:



APPENDIX 1

Some Preliminary Results in Matrix Theory

(A.L1):  Given four matrices A(pXp), B(pxq), Clgxp) and D(gxq), if D is
non-singular, then v

|4 B
! = |D| |A—BDC|
¢ D
Proof:
|4 B 4 B|| Ip) Opxq) | |A—BD'C B .
| = -1 = =|D||A—BD C|.
\C D ¢ Dl||—-D7'c Iy 0 D

(A.L.2): r[A(pxq)B(gxs)] < min [r(4), 7(B)], where min (x, y) denotes
the lesser of two real numbers x and y.

(4.1.3):  r[A(pxq)] = r[B(px p)A(p X q)] = r{A(pX 9)0(g X 9)],
if B and C are non-singular.

(AL4): 1A(pxq)] = A" (gx p)] = [A(pX ) 4'(gx p)].

(A.L5): tr[A(pxq)Bgxp)] = #[Blg X p)A®X Q).

Proof: 1f A = (a;) and B = (b;;), then by the definition of trace we have
t(dB) = $ ¥ apy= 3 % b0, = tr(BA).

i=1 j=1 , J=1 jml
(AL6): r[A(pxq)] = rA(p X 9)Blgxt)] = r[Clsx p)A(p X 2)],

tf ¢ <t p<sand B and C are respectively of ranks q and p.

Pmof: Using (A.1.2)-(A.1.3) we have

A(p X )] = r[A(pX )B(g X 1) B'(t X 9)] < min [r(AB), 7(B')],

i.e.,, < {AB). But r(4B) < r(d), whence 7r(4) = r(4B). Likewise, starting with
A’C’" and noting that r(CA) = r(4'C’), we should have, in an exactly similar manner,
r(CA) = r(4), which completes the proof of (A.1.6).

(A7) If Ly(pxn) (p <n) is subject to L,L; = I(p), there exists an
Lyn—pxn) such that [ —171_11 ] is | . L, will be called an arbitrary completion of L.
. 2

(A.1.8): If M(pXp) is symmetric and at least p.s.d. of rank (< p), then,
out of the p ¢(M)’s (i.e., roots of the determinantal equation in c: | M—cl| = 0), r are

136
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positive and the rest, p—r in number, are zero. Ifr = p, the number of mon-zero roois
will of course be p.

(A.1.9): If My(pXp) is symmetric and at least p.s.d. of rank r( < p) and
M A(pxp) is symmetric and p.d., there are exactly r positive roots of the following
equation in ¢: | Mi—cMy|= 0, the rest, p—r‘ in number, being 0. If r = p, the number
of positive roots will of course be p.

(A.1.10): X(pxn) X'(nxp) will be symmelric and at least p.s.d. of the same
rank as X or X', the common rank r being < min (p, n), where-the symbol (which will
be frequently used later) denotes the lesser of p and n. It is easy to see'that if p < n
and X is of rank p, then XX’ is p.d.

(A.1.11):  If A(gXq) is symmetric p.d., B(pxq) A(g X q) B'(gXp) 1s symmeiric
and at least p.s.d. of the same rank as B.

Proof: Since A is symmetric p.d., there exists, by (A.3.9), a non-singular
T(gxq) such that A =T 7. Hence BAB — (BT')(BT), which, by (A.1.10),
is symmetric and at least p.s.d. of the same rank as BT. But BT is of the same rank
as B, since T' is non-singular, whence the theorem follows.

(A.1.12): If A(pxp) is symmeiric and at least p.s.d. of rank r < p and
B(p x p) is non-singular, BAB' is symmetrw and at least p.s.d. of rank r.
Proof: If A is symmetric and at least p.s.d. of rank 7, then by (A.3.10), there

exist a non-singular 1~’1(r x7) and a T'y(p—r X r) such that without any loss of generality

we can put A = [ g; ] 7 T3] Therefore; BAB' = B( [Z:;} ) B( [ g: ] )I which,

by (A.1.10), is symmetric and at least p.s.d. of the same rank as B [ T ] But, since
‘ 2

B is non-singular and [ T J is obviously of rank r, therefore, B [ g ] is of rank r
2 2
and thus BAB' is of rank r.

(A.1.13):  If M,(pXp)is symmetric and at least p.s.d. of rank r ( < p) and
My(p X p) is symmetric p.d., then (i) all the roots of the equation in c: |M,—cM,| =0
are zero if and only if M, = 0, and (ii) all the roots are unity if and only if M, = M,

Proof:  Part (i) of (A.1.13) is a direct consequence of (A.1. 9). To prove part
(ii), put ¢ = 1—e. We have then the equation in e: (My;—DM,)+eM,| = 0 whenceit

follows that all roots of the equation are zero, (i.e., all roots of the equation in ¢ are
unity), if and only if M,—3, = 0, i.e., M; = M, which proves part (ii) of (A.1.13).

(A1.14): If M is a (p+q) X (p-+q) symmetric matriz shown as, say,
o [Mu ‘111_12,:, 10,
’ Mi2 My 1 g
p q
and if M,y is non- -stngular, then (3) My~ M, M3 My, is s ymmetric, and (i1) of rank

r—q, where q is (cvidently) the rank of My, and r denotes the rank of M (evidently
satisfying ¢ < r < p+q).
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Proof: Part (i) is obvious if we remember that My, My, (and thus M3})
are symmetric and so also M;, Mz M},. For part (i) we first observe that the rank
of I would be unaltered if it were pre-multiplied and/or post-multiplied by two con-
formable non-singular matrices. . Post-multiply M by the conformable non-singular

matrix (of rank p--¢):
- —MzEMy, T4 g

p q

and premultiply by the transpose of this matrix. Then we have:

Ip) —MuMzg7 [ My My, [ Ip) 0
rank of M/ = rank of '
0 I{(q) Miy My, —MzxM, 1)

My —M M52 M, O

i.e., rank of l: } But the rank of this last martix is

0] M,,
evidently the same as that of M,, (which is ¢) plus that of (M,,— M, M5 M;;). This
proves part (ii) of (A.1.14).

(A.1.15):  If M has the same structure as in (A.1.14) and s, in addition, at
least p.s.d. of rank r (¢ < r < p+q), then My, —M M3} M, is also at least p.s.d. of
rank r—gq.

Proof: Since M is symmetric and at least p.s.d. of rank r(qg < r < p+9q),
premultiplying and post-multiplying it by the same conformable non-singular matrices
as in the proof of (A.1.14) and using next (A.1.12), we observe that

|:M11"‘M12M§21M12 0 _J p

0 M,y
p q

q

is at least p.s.d. of rank ». Hence My, — M,, M3 M1, is evidently at least p.s.d. and
since (A.1.14) shows that it is of rank r—g, the theorem (A.1.15) follows.

My My | p . :
s symmetric and at least p.s.d. of rank

M, My,
p q

(A1.16): If M = [
q

rig < r < ptq), and if p < q and My, and My, are both non-singular (i.e., in this
situation both p.d. of ranks ‘ p and q respectively) and if s denotes the rank of
M (pxq) (evidently s < p < ¢) then the p roots of the p-th degree equation in
¢ |eMy—M,Mst My, | = 0 have the following properties; (1) 0 < all ¢'s < 1, (it)
out of the p ¢’s, r—q are 5= 1 and the rest, p—(r—q) (= p+q—r < p) in number,
are 1; (iit) also out of the p ¢’s, s( < p) are 7% 0 and the fest, p—s( < p) are = 0,
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Proof:: We note that since My, and hence M3} is p.d. of rank ¢ and M,
is of rank s, therefore, from (A.1.11), M,, M5} M, is symmetric and at least p.s.d.
of rank s ( < p < q). Also My, (p X p) is supposed to be p.d.. Hence by (A.L.9), out
of the p roots of the equation in ¢: |e¢My,— M Mz Mi,| = 0, s are>0 and the rest,
p—s in number, are = 0.

Next, putting ¢ = 1—e, we have the equationin e: |eMyy—(My— M M3z M 12)]
= 0. But M, is symmetric p.d. and, by (A.1.14) and (A.1.15), My, — M, M3} M,
is symmetric and at least p.s.d. of rank r—¢q(< p). Hence, out of the p roots of the
equation in e, r—q are < 0 and the rest, p—(r—gq) ( = p+g—r < p) in number, are
= 0. Since ¢ = 1—e, this means that, out of the p roots of the equations in ¢, r—gq
are << 1 and the rest, p--¢—r in number, are = 1. This completes the proof of
(A.1.16). }

(A.1.17): With the same set-up as in (A.1.16), the roots of the equation in
o: |eMy—M M3 M| = 0 are all zero if and only if the rank of M,, is zero, i.e.,
M,, s the null matriz. ' :

This is a direct consequence of (A.1.16). With regard to theorems (A.1.16)
and (A.1.17) we observe that in statistical applications we shall always be considering
the special case, » = p-+g¢, that is, the case where M is symmetric p.d.. In this
situation we state and prove two theorems on transformations, (A.3.16) and (A.3.17).

(A.1.18): Ewvery mon-zero characteristic root of A(pxq) Blgxp) is a (non-
zero) characteristic root of B(gX p) A(pXq) and vice versa.

Proof: 1If ¢ is any (non-zero) characteristic root of AB, we have by definition,
|AB—clI| = 0 or, by using (A.1.1),

cl A P
(A.1.18.1) = 0.
B I q
r q
Since ¢ is non-zero we can obviously rewrite this as
¢ B q
(A.1.18.2) =10, or,
A I P
q P
(A.1.18.3) " |BA—cI| = 0, which proves (A.1.18).

There is, in fact, a stronger result than (A.1.18), namely that, not only is every nonzero
characteristic root of AB a root of BA and vice versa, but that each such root has the
same muitiplicity in relation to both matrices AB and BA. This follows if we notice

that the left sides of (A.1.18.1) and (A.1.18.2) are the characteristic functions of 4B
and B4 and then relate 4B to BA by using (A.1.1).

(A.1.19): (2) If B(pxp) is mnon-singular, the roots of the equation in
| A(pXp)—cB(pXp)| = 0 are the same as the characteris'ic roots of AB! or of
B~'4; and (i%) in (A.1.18) the roots of the equation in c: leMyy— M,y M3 M3, | = 0 are
the same as the characteris.tic roots of Mij My, M3 My, or of MMM, M} (with
the exception of zero roots in the case where p < q). The proof is obvious.

C:
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(A.1.20):  tr[A(pxp)] = 3 ¢, (A)e; (A)...c, (A), where tr, A stands
i Ay=1 T *2 i

Jor the sum of all t X t minors (found by the intersection of any t rows of A with t columns
bearing the same number), and, in particular,

trlA-_Zc_Z,a"andtrA ﬁc—lAl

t=1 i=1

(A.1.18) coupled with (A.1.20) supplies another proof of the relation:
tr (AB) = tr (B4) (see (A.1.5)).

(A.L21): If (a) dy < all (ABY) < dy(dy > 0), then (b) (d,) tr(B) < trfd)
<(d)'ir(B) (t=1,2, ..., p), where A and Bare two pxp p.d. matrices. Notice
that (b) is a necessary (though not a sufficient) condition for (a).

Proof: Tt is éasy to check that ““d, < all (4B1)” & (4—d,B) is p.d.
&4, —4dB) (t=1,..,p)is pd. (where 4,—d,B, is a submatrix formed by
the intersection of any ¢ rows of (4—d,B) with ¢ columns bearing the same numbers)

& dy <alle(4,Bi') (¢=1,...,p). Now, if all ¢(4,B;') > d,, one consequence
is that

(A.1.21.1) 0 ofd,BiY) > (), ie., [4,] | | B | > (dy)

i=1

For a given ¢, summing over different possible submatrices, we have

(A.1.21.2) tr, A > (d,) tr,B.

Using the same kind of argument for the other half of the inequality
and remembering that ¢ = 1, 2, ..., p, and combining, we have the following result.
(A.1.21.3) If d, < all (AB~) < d,, then (d,)* tr(B) < tr, (4)

<(@dftrdB) (t=1,2,..,p)

By a slight reﬁhrasing (which is obviously permissible here) we have the resuit (A.1.21).

(A.1.22): If A(p X p) is symmetric p.d. and B(p X p) is symmetric and at least
p.8.d., then (i) all c(AB) are non-negative and (i) ¢(A)c(B) < all (AB) < c(4) ¢(B),

min min max mazx

where (M) ‘and ¢(M) stand respectively for the largest and smallest roots (both non-
min maz

negative) of any M which is symmetric and at least p.s.d. [45]

Proof: By (A.3.3) there are | matrices L, (pxp) and Lg (pXp) such that
A - LADG(A)L a:nd B L.B O(B)LB’ and tvhus AB LADc(A)L LB ¢(B) L

Now using (A.1.18) (and noting that here p = g, so that all characteristic roots
are the same in both products), we have the two-way relation

(AB) = (Do yyL} LpD 5 LLia) = Dy MDypM’),

where M stands for L, LI;. Notice that MM’ = L LglyL, = L)L, = I(p) (since
L, and Ly are each ), so that M itself is | Also note that D, nM is



140 SOME PRELIMINARY RESULTS IN MATRIX THEORY

non-singular since M, being | , is non-singular, and D,4 is non-singular, because all
the ¢(A4Ys are positive.

Using (A.1.18) again we find that ¢(4B) = (D jz4 MDum = "D
and since D,p, is obviously symmetric p.s.d. by virtue of B being p.s.d., we noticé
by using (A.1.11) that D j;4) MD,g, M'D Jjocay is symmetric and at least p.s.d.,
and thus all ¢(4 B) are non-negative. This proves part (i). For part (i), let us go back
to D, yMD, zM', denote by A; and u; the characteristic roots of A and B, observe
that here all A; > 0 and all z; >> 0, and next observe that, if ¢ is to be a characteristic
root of AB (here all roots are non-negative), there exists a set of (real) numbers z;,
%, ..., Ty, not all of which are zero, such that the following set of equations are satis-

fied.

(A1221) 3 Amgmmgm, = oz, (3 =1,2,...,p) (notice that (M) = (M)y).
j,k:l

Remembering that here A; > 0 and g; > 0 (both sets being real), dividing

by A;, and squaring any member of (A.1.22.1) and summing over ¢ = 1,2, ..., p, we
have
2’ D
(A.1.22.2) S OZ M M My T == €2 .zle//\? .
i g4 kR b=

Now, since M is |, we have X mym,;; = &;; (where & is the Kronecker symbol),
i

so that (A.1.22.2) reduces to

(A.1.22.3) 3 @A} = .kZL PEMy M 220
[ Gikk!

It is easy to check that the coefficients of A? on the left hand side and those of /sz on
the right hand side are each non-negative. Hence, if we replace all u;’s by pimax
and all A’s by A,y the right hand side is increased (or at least not diminished) and
the left hand side is diminished (or at least not increased). We have thus

2 2 2 , 4
(A.1.22.4:) (CZ/I\max) 2 x; < Hmax Ek% mkj mm xk :I,‘k,, 1.e,, < ;urznax Z 6“.,:1:‘. Ly
< J kR g

(since M is | ),i.e., < pdax }]x? Since ¥ 7 is positive, it follows that ¢ < A2, p2as
%

Le., ¢ < Amax [Mmax (taking the positive square root on both sides). Thus we have

[3

(A.1.22.5) all ¢(AB) < emax(4) Cmax (B).

Likewise in (A.1.22.3), replacing all A;’s by Amin and all p’s by

lmin @0d arguing in a
similar manner, we have

min

(A.1.22.6) Cmin(4) Cmin(B) < all o(4B).

Combining (A.1.22.5) and (A.1:22.6) we have pars (ii) of (4.1.22).
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Replacing 4 by a complex non-singular 4, B by any complex B, remember-
ing that AA* is hermitian p.d. and BB* is hermitian and at least p.s.d. we have the
following more general theorem, proved elsewhere [45]):

(A1.23): Cpin(AA*) Cpin(BB*) < all o(AB)-H(AB) < €pul AA*) Cpee(BB¥).

However, this result will not be needed in the present monograph, although a special
case will be needed.

Put B = I and let A be a real matrix with real roots. If A is real symmetric
this will be true but this might be true even if 4 were real but not symmetric. We
can now put A* = A’ and have, as a special case of (A.1.23), the following:

(A1.24): c,n(4A7) < all X(A) K Oy (AA").
The following matrix lemma is also repeatedly used in the text:
(A125) cmin(AB_l) Cmin(BO) < all C(AO) < 'G'ma:c(AB—I) cmax(BO)>

where A, C and B(and hence B-1) are real symmetric positive definite matrices of order
p each.

Proof: Using (A.3.9), put B = 77". We have now,

(A.1.25.1) Crax (ABY) Opay (BO) = Cnyx (4 1T ey (T T70) =
emax (F1AT Veno (I'C T), using (A.1.18), > cpux (T-2A0T), using (A.1.22) and
(A.1.12), that is > cpax (A0), using (A.1.18).

The other side of the inequality in (A.1.25) follows in a similar fashion and completes
the proof of (A.1.25).



APPENDIX 2
Some Results in Quadratic Forms

(A.2.1): If A(pxp)is symmetric and at least p.s.d. of rank r( < p), then
()a'(1xp) A(pXxp) a(px1) is at least a p.s.d. quadratic form in a;’s 1=1,..,p),
(i3) the stationary values of a'Aaja’a (under variation of a over all non-null a’s) are the
characteristic roots of A (all non-negative) and (iii) in particular, the largest and smallest
values of a’Aaja’a (under variation of a) are the largest and smallest characteristic roots
of A.

Proof: Part (i) is given in all textbooks and need not be proved. For part
(i) putting a’4a/a’a = ¢ and differentiating ¢ with respect to the elements of a, we have
the vector equation giving the stationary values of ¢ : Aa—ca = 0, whence by eli-
minating a we have, for the stationary values of ¢, the p-th degree determinantalequa-
tion in ¢: |A—cI| = 0. The roots of this are the so-called characteristic roots of
A, which proves part (i), In this case the proof of part (iii) is obvious and will not
be separately discussed.

(A.2.2): If B(p X p)is symmetric p.d. and A(p X p) is symmetric and atleast p.s.d. of
rank r( < p), then for all non-null a’s (1) a’(1 X p) A(p X p)a(p x 1)/a’(1 X p) B(p X p) a(p x1)
s non-negative, (it) the stationary values of a’ Aaja’ Ba (under vartation of a) are the roots
of the determinantal equation in c¢: |A—cB| = 0 and (:3) in particular, the largest

and smallest values of a’Aaja’Ba are the largest and smallest roots of the determinantal
equation.

Proof: Part (i) is obvious. For part (ii), putting a’4a/a’Ba = ¢ and differ-
entiating ¢ with respect to the elements of a, we have the vector equation giving the
stationary values of ¢: 4a—cBa = 0, whence by eliminating a we have, for the sta-

tionary values of ¢, the p-th degree determinantal equation in ¢: |[A—cB| =0,
which proves part (ii). The proof of part (iii) is now obvious.
My M) op
(A23)y If M= ) (p < q) is symmelric p.d. (from which
My, Myl g
p q

it follows easily that My, and M,, are each symmetric p.d.), then, for all non-null
a(px 1) and ay(gx 1), ()[a;M,a,12/(a;.M 4,2, ) (25 M 5,8,)is non-negative, (i1) the stationary
values of this expression are the roots of the equation in c: |c My — MMz} M}y| =0
and (ii3) in particular, the largest and smallest values of the expression are the largest
and smallest roots of the determinantal equation.

’ Proof:  Part (i) is obvious. For part (ii), putting ajM 1085 = o, A My 8, =04
and a,Mppa, = a,,, and (ay5)%/ay,a., = ¢ (say), and differentiating ¢ with respect to
the elements of a, and a,, we have the vector equations giving the stationary values
of ‘("): Mypa5—(aypfa;)Mya;, = 0 and aiﬂflz_(alz/azz)aéﬂfzz == 0 0r (@15/@0y) M2y — M1,3;

142
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Eliminating a, and a, between the two vector equations, we have, for the
stationary values of ¢, the p-th degree determinantal equation in c:

M Aol M,y |
(A.2.3.1) 12 (@12/a11) M1y —0

(@1o/ag0) M 5, M,
or, by using (A.1.1) and remsmbering that ¢ = a%,/a,;0,,
(A.2.3.2) |eMy—M, M3t Mi,|= 0,
which proves part (ii). The proof of part (iii) is now obvious.

My My Mig—p
(A24):. If M=| M}, M,, M, |9 (p<q) is symmetric p.d., then,

My My Myy-r
V4 q r

for all non-null a[(p+7r)x1] and a,f(g+r)x1], (i)

) My, My, , My, M| o , My, My,
[a) , a,]*/[a; ; aj[a, , a,]
Moy M My; My My My

is non-negative, (i1) the slationary values of this expression are the rools of the equation
n ¢
|o(M g — My M 33 M) —(Myy— M3 Md Mys) X
X (Mopp— Mo M3 My ) Y(Myy— Moy M33 Mi3) | =0

and (iii) in particular, the largest and the smallest values of the expression are the largest
and smallest roots of the delerminantal equation.

Proof: As before, part (i), is obvious. For part (ii) putting the expression
under (i) = ¢(say) and procesding in exactly the same manner as in (A.2.3) we have
for the stationary values of ¢, the determinantal equation in ¢’

(A.2.4.1) c [# . o] [Mm M) |
La, M, M, M,
= 0.
[M;2 My [M22 M,
M, Mg My, My,

A-2
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As in (A.1.14)—(A.1.15), premultiply the left hand side of (A.2.4.1) by the determi-
nant of the non-singular matrix F (and postmultiply by its transpose), where F is

given by
— n
[I — My M53 :I r o
0 I ' r
P 7
F =
o [ I — Mo M. 531:| q
0 I r
q '3
— -
The equation now reduces to
My — M M3 M, O] "My~ My M5d My O 7]
¢ .
| @ 7 0 My
=0
M ip— Mo M53 My, O 7] Moy~ Moy M3d My O 7]
— 0 . M33 o . 0 .leaa__
or,
(A.24.2) | (M gy — My M3 M3 g)—( My~ M 1o M sd M o5 )(M oo~ M og Mg M)~

X (Mp— My M3 Mi,)| = 0.

Arguing as in (A.1.14)—(A.1.16) it is easy to see that (i) the roots of this p-th
degree equation in ¢ all lie between 0 and 1, (ii) if M of (A.2.4) is p.d., then all roots
are- < 1 and (iii) if M;,— M ;M58 Mj4 is of rank 7 (< p), then r of these roots are > 0
and the rest,i.e., p—r are = 0. All the rootsarezero if and only if M,,— M, Mz} M 23=0.

(A.2.5): If M(p X.p) ts symmelric and at least p.s.d., the stalement:
“g, < a'(1xp) M(px pla(pxl)ja’a L g, for all non-null a” is exactly equivalent
to “gy < ¢, < ¢, < gy, 7 where ¢, and c, stand for the smallest and largest characteristic
roots (both non-negative) of M. Notice that the last statement gives also the lowest
permi§sible value of g, and the highest permissible value of g,, both in terms of the
roots of M. The proof is obvious from (A.2.1). |

, (A.2.6): If M, (pxp) is vsymmetric pd.and M, (pXp) is symmetric and at
east p.s.d., the statement: “g, < a'(1 X p)M,(p X pla(pX1)/a’(1 X p) M (pXp)a(px 1)K g,
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Jor all non-null a” is exactly equivalent to “g; < ¢; < c, < gy where ¢, and ¢, stand
Jor the smallest and largest roots of the the equation in c(all positive):

|My—cM,| = 0.

Notice that the last statement gives also, in terms of the roots of MMz, the lowest

permissible value of g, and the highest permissible value of g;. The theorem is a direct
consequence of (A.2.2).

(A.2.7): The statement: “x'(1xXp)x(px1) < glg > 0)” is exactly equivalen
to “—v/g < X'(Ixplapx1) < ++/g (for all a subjet o a’a = 1) The proot
follows easily from Cauchy’s inequality in algebra,



APPENDIX 3
Some Resulis in Transformations

(A.3.1): Ifx(nx1)=A(nXxn)y(nx1), whereAis | ,then xX’x=y' A'Ay=y'y.

(A3.2): If x(nx1) = A(nXn)y(nx1) and ulnx 1) = A(nxn)v(nx1), where
A is |, then xXu=yAd'Av=y'v.

(A.3.3): If M(pXp)is symmetric and at least p.s.d. of rank r{ < )p), then de-
noting by ¢ the roots c¢(M) of (A.1.8), there exists an orthogonal matriz A(pXp) (not
necessarily unique) such that M = AD,A’.

(A.3.4): Under the conditions of (A.1.9), namely that M,’pXp) is symmetric
and at least p.s.d. of rank r( < p) and M,(pXp) is symmetric p.d., there exists a non-
singular A(p X p) (not necessarily unique) such that M, = AD A" and M, = AA’'.

(A.3.8): The matrix A of (A.3.3) will be unique, except for a post-factor
Dy, if M is p.d. and all c(MYs are distinct [31].

Proof: Suppose there are two orthogonal A’s, say 4, and 4,, satisfying the
condition of (A.3.3). Then we have A4,D.A; = A,D A, or A3'A,D, = DA, (A;)™
or A,4,D, = D,A3A, (since for an orthogonal A4, 4! = A’). If we now denote
434, by B with elements b;;, then the above equation gives
(A.3.5.1) b,¢; = cb; or by(c;—¢;) = 0.

U

Thus, if ¢ # j and ¢; # ¢,, b;; = 0, which means that B is a diagonal matrix D, with

elements, say by, ..., b,.

since D, = B = A,4,, we have
(A.3.5.2) DyD;, = Dp» = A34,414, = I(p),
so that bf = -1 and so b;= £1, (s = 1,2, ..., p).
(A.3.5.3) Thus D, = D, and hence A;4, = D, or A, = A4,D,;

this proves (A.3.5). We note that 4 can thus be made unique by adopting the con-

vention, say, that its first row be positive. It is easy to check that the transformation
is now one-to-one,

(A3.6): If X(pxn) (p < n) is of rank p (in which case, by (A.1.10). X X’
18 symme{ric p.d.), then there exists a transformation X(pxn)= A(pp) D {pxp)
X L(pxn), where 4 is | , LL'= I(p) and where ¢’s are the cl.cracteristic recis (all gesitive)

of the matriz X X'. If all ¢’s are distinct this transformation is unique except for a post-
factor Dy to go with A.

Proof: By (A.3.3) there exists an orthogonal A(pxp), which may not
be unique, such that XX’ = AD,4’. We now define a Lipxn) by X = AD ;L
and note that, given X and hence ¢’s and 4 (which we can find but which may not be

146
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unique), this is a linear equation in L uniquely solvable in terms of the above ele-
ments. Also LY = Dy, A7 XX'A'""1Dy;,, = Dyy 1 A*AD A’ A" Dy, = I(p). We
have thus the transformation X = AD , L, where 4 is | and LL' = I(p). Notice
that, if the ¢’s are distinet, A is unique except for a post-factor D, and that L will
go with A, being defined by L = D,;,,A-1X. This prdves (A.3.6). It is easy to
check that for distinct roots the transformation can be made one to one by adopting
the convention, say, that the first row of 4 be positive.

(A.3.7): The matriz A of (A.3.4) will be unique, except for a factor Dy if
M, is p.d. and all the roots are distinct [31]

Proof: Suppose there are two non-singular 4’s, say 4, and A4,, satisfying the
conditions of (A.3.4). Then we have

(A.3.7.1) A,D A} = A,D A, and A,A]= 4,4}.
These lead, after a little reduction, to
(A.3.7.2) A3A,D,= D,A3'A, or BD, = D,B, where A;*4, = B.

If now B = (b;), say, then (A.3.7.2) leads to

(A.3.7.3) b;ic; = ¢;bjor by(c,—¢;) = Oorb,; = 0if ¢ £ j and ¢; # ¢;.

Thus B = D, (say) and so we have

(A.3.7.4) D,D, = Dy = BB = A;'4,4}(45') = 454,44, =I(p)
so that b, = +1, ie., D, = D;.

(A.3.7.5) Thus 4;'4, = D, or 4, = A,D,,

which proves (A.3.7). As before, we note that 4 can be made unique by adopting

the convention, say, that its first row be positive. Check that the transformation in
this case is one-to-one. '

(A.3.8): If X (pXn), XpXn), (p < ny,ny) are each of rank p (in which
case, by (A.1.10), X,X; and X,X; are both symmetric p.d.), then there exists a transfor-
mation Xy(pXn,) = A(pX P)D,;(pX D) Ly(p X 1y), and Xo(pXny) = A(pXp) Ly(pXn,)
where A is non-singular, ¢’s are theroots (all positive) of the equation | X, X]—cX,X,| =0,
and L,L; = L,L, = I(p). If all ¢’s are distinct then this transformation is unique
except for a post-factor Dy to go with A.

Proof: By (A.3.4) there exists a non-singular 4, which may not be
unique, such that X,X;= ADA’ and X,X, = AA’. We now define L,(pXn,)
and Ly(pxn,) by X, = AD ,,L, and X, = AL, and note that, given X, X, and c’s
and A (which may not be unique), L, and L, are uniquely solvable in terms of these.
Also LL; = Dy, A7*X,X{4'"'Dy},;, = I(p) and LyLy = A1X,XA'1 = I(p). This
proves. the existence of the transformation (A.3.8). Notice that if all ¢’s are
distinet, then by (A.3.7) 4 is unique except for a post factor D, and that L, and L,
will go with 4 being defined by L, = Dy,.47X, and'L, = A-1X,, Check that the
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transformation in this case is one-to-one if we adopt the convention, say, that the
first row of A is to be positive.

(A.3.9): If M(pxp) is symmetric and p.d., then there exists a non-singular
T(pxp) such that M = TT, and this T is unique except for a post factor Dy and so
T will be called near unique T is a triangular matriz.

Proof of the near uniqueness: Suppose there are two 7"s, say T, and T,, satis-
fying the condition. Notice from (A.1.10) that since M is p.d. T must necessarily
be non-singular. Thus we have '

(A.3.9.1) T = T,F, or 75T, = Ty
Now making use of the remarks made after (1.1) we note that f’;‘f’l is a triangular

matrix with the same configuration as 7', and T'(7;)- of opposite configuration.
Thus it is obvious that

(A.3.9.2) T:'T, = D, (say),

whence D,D., = D, = T8 T (T;y = T5'T,TyTy)-t = I(p), so that ¢; = £ 1,
ie.,, D, = D;. Thus
(A.3.9.3) 717, = D, or T, =T,D,,

which proves the near uniqueness. It is easy to check that 7' can be made unique by
adopting the convention, say, that the diagonal elements of T be positive, The
transformation in this case is one-to-one.

(A3.10): If M= [ M, M, ] p is symme'ric and p.s.d. of rank p and if
M;.Z ‘a/‘[22
: P q -
the first p rows can be taken as a basis, then there exists a non-singular_’f’(px p) .and

a Ty(gxp) such that
[Mu M12] {le’ [T" .
, 1= 1 s Tal,
M, My, T,

.
and furihermdrel_g;.l s unique except for a post-factor D,.

q

Proof: Since M is symmetric it is evident that, if the first p rows of M can
be taken as a basis, then the firs* p columns of M also can be taken as a basis. Thus
no row of My, is a linear funct'on of the other rows of M, and no column of M 1 isa
linear function of the other columns of M,,. Hence M 11 is non-singular. Here, of
ccurse, My, is symmetric p.d.. We can also look at the picture in a reverse way,
na‘mely that, since M is symmetric p.s.d. of rank P, we can find a non-singular
| rincipal minor of order p which is of course symmetric p.d. Renumbering the rows
(and the corresponding columns) of that principal minor, we can call it M,,. Then

itf ‘is-ezsy,'to show in this case that, we can take the first p rows or the first p columns
as a basis.
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Now notice that if the first p rows can be taken as a basis then there exists a
non-singular A(pXxq) such that M, = AM,, and M,, = A M,,. Combining the two
we have My, = M1, MilM,, (note that M ,; is non-singular and thus we can take the
inverse). We next cbserve that in this set-up M,, is p.d. Therefore by (A.3.9),
we can find a non-singular 7'(p X p), unique except for a post-factor Dy, such that
My, = T\T;. Now find a T defined by 7' = T;1M,, and check that M}, = (F,T,y
= T,T{ and My, = M{;Mi} My, = T,T}, which proves (A.3.10). We observe that,

asin (A.3.9), \_gl] can be xﬁade unique by adopting the convention that the dia-
: 23 S

gonal elements of f’l be positive. Check that the transformation is now one-
to-one.

(A.3.11): If X(pXxmn)(p < n)is of rank (K p)such that, say, the first r rows of
X can be taken as a basis, then there exisis a transformation

X ) r r f’l
= L{rx n),
Xyd p—r p—r LT,

n r

where LL' = I(r) and f’l is non-singular and unique except for a post-factor D,.

Proof: By (A.1.10) X,X; is symmetric p.d. of rank r and by (A.3.9) there
exists a (non-singular) 7', (unique except for a post-factor ;) such that X,X] = TIT;. ‘
We now define an L by L(rxn) = Til(rxr) X,(rxn) and note that given X, and
hence 7', (which is unique except for a post-factor D), L is uniquely solvable in terms
of these. Also LL = T{X,XT7ty = T7\7 73T = I(r). Next define a T,
by T,L = X, or T,LL' = X,L’ or T, = X,L’ and note that, given X,, X, and hence
L (which is near unique), 7', is also uniquely solvable in terms of these. We note further
that now X, = T,L = T,T{'X, = B(p—rx7)X; (say), where B = T, T, This
is obviously the condition that X be of rank 7 and X, be a-basis. Hence the transfor-
mation is proved to exist with the near uniqueness already stated. By adopting a
convention, say that of (A.8.10), the transformation can be checked to be one-to-one,

(A.3.12): If X (pXny), Xy(pXn) (p < n1,~nz) are each of rank p (see(A.3.8)),
then there exists a tramsformation: X (pXn,) = T(pXp) L(p X p)D (p X p)Ly(px ny)
and X (pxn,) = T(pxp)Ly(pXny), where T is non-singular, L is |, L,L; = L,Lj
= I(p) and the c’s are the (all positive) roots of the equation in c¢: |X;X;—cX,X,]
= 0. If the ¢’s are distinct, the transformation can be made one-to-one by leiting 7
have a positive diagonal.

Proof: Start from the transformation (A.3.8) and, using (A.3.11), put A(p X p)
= T(pxp) L(pxp) where Lis | . Next put LL, = L; and note that L;Ly = LL,L;
x L' = I(p). The proof of near uniqueness in the case of distinct roots follows along
the same lines as in (A.3.8) and (A.3.11). This completes the proof of (A.3.12).

(A.3.13): If My(pXxp) is symmelric p.d. and M(pXp) is symmelric p.s.d.
of rank r(< p) then there exists a transformation, which, without any loss of gemera-
lity, we can write as
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(A.3.13.1) My(pxp) = p—r [Al» } Dyrxr) [4]:4;] r, and

r L4, p—r 7

, :

(A.3.13.2) Mpxp) = p—r [Al ﬁq [A; A;‘J r

rLa, ad La adp—’

r p—r  p—r T
where the ¢’s of D}, stand for the r non-zero roots of the equation in c:|M;—cM, | =0
4, 4,

and where A = [

matriz A is unique except for o post-factor Dy(p).

:l is non-singular. If the non-zero roots are distinct, the

Proof: TUsing (A.1.9) and (A.3.4) we can find a non-singular G(pXp) such
that My(pXp) = G(pXp) D{pxp) F(pxp) and MypXp)= GpXp) G(PXP),
where the ¢’s of D, are the roots of the equation in ¢: | M;—cM,|= 0. We recall
that under the conditions of the problem r of these roots are positive and the rest zero.
Let us call these r positive roots ¢,, €5, ...,¢,. Then the r columns of the G matrix
(and the rows of the G' matrix) that go with these positive ¢’s have to be numbered
i, 2,...,7. :

Now denoting the matrix formed by these » columns of G(px p) by A(pXr),

the remaining submatrix of G(p X p) by B(pXp—r) we can set

(A.3.13.3) Mpxp) = Alpxr) Dirxr) A'(rx p),
Mypxp) = p[4 : B] [A] r
r p—r
; Bl p—r
p

Since @ is non-singular, [4 ! B]p is non-singular, and hence A(pxr) is of rank r and
B(p X 5:7) is of rank (p—r). We can, therefore, choose p—r rows from B to form a
non-singular (square) matrix of order p—r. Let these rows be numbered 1,2, ...,
p—r.- Let us denote the matrix formed by these p—r rows of B(pX F:f) by
By(p—r Xp—r) and the remaining submatrix of B(pxXp—r) by Byrxp—r). Let
us denote the submatrix formed by the corresponding rows of A(px7) by Ay(p—rxr)
and 4,(rxr). We can now rewrite (A.3.13.3) as .

(A.3.13.4) M, = p—r [ Al] DXrxr) [A7 i 43 »r,
p—r r

r L 4,

,

M2=p—-r[A1 _B3] [Ai A2] ’
r L4, B, J LBy B, ’

r p—-r p—r r
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where Bj is non-singulat and ljl g"] is also non-singular. Notice that with re-
2 Dy

numbering of the rows of B and of 4, i.e., of G, the rows (and the associated) columns
of M, and 3, have also to be renumbered. Assuming now that Bj; is non-singular we

can, by (A.3.11), find a transformation By(p—7 X p—r) = 3(p~r><p——r) Lip—rXp—r)

where Lis | . Now put Brxp—r) = Ay(rxp—r) L(p—rx p—r) (which defines 4,
in a unique way in terms of B, and L). Thus we have

I:Al Bs] I:Al &‘J [](r) 0} r
A, B, A, - A4, 0 Ld p—r
r p—r

and thus (A.3.13.4) is replaced by

(A.3.13.5) Mz_—:[Al ﬁ} [A; A;]
©ol4, a4 dla oald

(A.3.13.3) and (A.3.13.5) taken together give us (A.3.13.1) and (A.3.13.2). Now for
the near uniqueness in the case of distinct roots under D, remember that

- r[D;, 0 4, A4, .
D, = , put U= and write M, =UD,U’
p—r LO od A, 4,

rp—r

and M, = UU’. If now there is another matrix V satisfying the same conditions,
then arguing in the same manper -as in (A.3.7) we have V-1UD,= D,V-1U or
BD,= DB, where B, = ViU = b, say. This, as in (A.3.7) leads to the
equation be; = ¢;bD, whence b{}= 0 if i #j and ¢, # ¢;, Note that here ¢; = 0
(t=r4-1,...,p). This shows that the B, matrix is of the form

D, | 0 r D,| 0
— = — | (say)-
0. solidd p—r 018

Remembering that 'Bl = V-1U, we have

Dy 0
B,B, — [ ‘ ] = VATV = PRV V) = I(p),
0 S8

whence D, = D, and S is seen to be an orthogonal matrix. = Using the structure of U
and ¥V and the relation V-1U = B, we have

[UI ﬁs‘J [Vl 173] [Dk 0] [Vle 1738]
g, v,d Lv, v,dLo s v,D, V.8J

A-3
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where S is an | matrix. But, since U g = 1738 , therefore, S must also be a triangular-
matrix. Hence S is necessarily of the form Dy(p—r). Thus B, is of the form Dy(p),
which proves the near uniqueness in the case of distinct non-zero roots. This com-
pletes the proof of (A.3.13). In this case the transformation is easily checked to be
one-to-one if we adopt the convention that the first row of A, and the diagonal elements
of A, be positive.

(A.3.14): If X, (pXny) (p > ny) be of rank n, such that the last n, rows form
a square malriz which is non-singular and X,(pxXn,) (p < ny) be of rank p. then there
exists a transformation

D—1

) I]1
Xy(pXny) = [U :‘ D jz (1 X 1) n(ny X my),
2

7y

ny

. p—n, [U, ﬁs
Xo(pXnyg) = Lyp X ny),
ny LU, U,

T ot 1

such that Ly is | and L,L; = I(p) where c¢’s stand for the non-zero roots of. the
o , . ) v, U,

equation in ¢: - | X Xi—cX, X, | = 0, and U = is non-singular. Also

. v. U,

if all the non-zero roots ¢ are distinct, U is unique except for a post-factor D,. Notice

that, by (A.1.9), all the c’s are anyway non-negative and ny of them are positive, the rest

being zero.

U, Ua] P—m

Proof: By (A.3.13) there exists an [ not necessarily unique

U, Upd my
Ny P—ny
, Uy v, 0, Uy U,
such that X, X] = Dny xny)[U7 ¢+ Upland X, X} = | ks .
U, v, U, u v,

Now define an Ly(n;xXn,) and Ly(p X n,) by

X p—ny [ Y, p—n, [ U,
X(pxn,) = = - D js(ny X ny) Ly(ng X ny)
2

n, YZ N
o oMy
p—n Ul 1‘73
Xo(pXny) = [ jl Ly(p Xn,),
n, LU, U,
7 p_nl

and notice that L, is given uniquely by L, = U-1X,, in terms of X , and U which itself
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may not be unique and similarly L, is given uniquely (in the same sense) by
L, = Dy, 5U'Y,. Next we check that

LIy = U X, Xy(UYY = U-tUU(U')"1 = I(p) and

LiLy = Dy, s U Y, Y (U YYDy,

= Dy, cUs'U,D UyU3)1Dy, Ji= I(ny).

We observe also if the non-zero roots are unique, then, by (A.3.13), U is unique except
for a post-factor Dy(p) and thus L, and: L, which hang on U are also indeterminate
to the same extent. This completes the proof of (A.3.14). As in the case of (A.3.13)
also here, for distinct roots the transformation can be made one-to-one by adopting
the same convention as at the end of (A.3.13).

(A3.15): If Xy(pxXny), Xy(pXny) (n, <p < my) are of ranks m, and p
respectively, then there exists a transformation: Xi(n,Xp) = L(n,xXn,) D Jalny X ny)
X Ly(ny XP)T’(P X p) and Xy(pXny) = T(px p) Ly(pxny), where Lis |, LiL'y=I(ny),
L,L; = I(p) and c’s are the n, characteristic roots (all positive) of Xi(X,X;)1X,.
For distinct roots the transformation can be made one-to-one by letting T have a
positive diagonal.

Proof: Using (A.3.11), put Xy (pXmn,) = ’f’(pxp) Ly(pxn,), subject to’

L,L; = I(p) and now using (A.3.6) put Xj(n, X p)(P)(pxp) = Lin, xn,)D s, x m,)
X Ly(ny X p), where Lis |, LyL; = I(n,) and ¢’s are the roots of X;(T’)—l(f’—l)Xl, ie.,
of X;(f’i”)—le, i.e., of X](X,X})'X,. Postmultiplying both sides by 7" we have:
X! = LD ;;L,T" and for X, we already have X, = TL,. Near uniqueness, in the case
of distinet roots, follows along the same lines as in (A.3.11) and (A.3.14). Check, by
using (A.1.18), that these ¢’s of (A.3.15) are the same as the non-zero roots of the equa-
tion in ¢ (considered in (A.3.14)): |[X,X]—cX,X | = 0.

My M) p

(A.3.16): If M = [ :I (p < q) s symmetric p.d.
M3, Mypl q
p q

(note that, in this situation, M,, and M,, are both necessarily symmetric p.d.) and
of My, is of rank s( < p < q)and if D(sxs) is the diagonal matriz based on the 8
non-zero roots of the p-th degree equation in ¢:|c My — M M5 M1, = 0, then there exist
non-singular A(pXp) and B(qgxq) which, without any loss of generality in the sense of
(A.3.13), we can take to be of the structure

4, 21'3 p—s B, E:& q—s
A= and B =
A, A, ds B, B,ls
s p—s s q—s
(4dy and B, being non-singular), such that My(pXp) = A(p_x p) Ay , Mg xq)

Dj(sxs)  _Osxg=$)] p
0(p—5x5) O(p——sxq——s)] (axq)

— Blgxq) Blgxq) and Mypxq) = Alpxp) |

— til] D B] 3. B;); also, if the ¢’s are distinct, A is unique except for a post-factor
2
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Dy(p) and, for a given choice of A, B is unique except for a post factor Difq—s) to go
with Es, .

Proof: Since M,, is symmetric p.d. and My, M33 M7, is symmetric and at
least p.s.d. of rank s( < p), there exists, by and in the sense of (A.3.13), a transforma-
tion M;; = AA’ and

~

0 A, A7 p—s
—— | 4’, where 4 =

0 4, A; 8
s p—s

D,
MM3My,=A | —
0

is non-singular, g3 is non-singular and ¢’s stand for the s non-zero roots of the equa-
tion in ¢, the rest, p—s in number, being zero. Next, since M,,(gXg) is symmetric
p.d. it follows from (A.3.3) that there is an orthdgonéﬂ E(g x ¢) such that M,, = EDE’
wlier_e e = (e, ..., e,) denotes the ¢ characteristic roots {all positiveA)‘ of the p.d. matrix
M,,. Substituting this in M,,Ms3 M, we have

D, 0
(A.3.16.1) M, (ED,E) M}, = A [ ] A,
| 0o 0

or (since £ is | and 4 is non-singular),

D, 0] s
(A.3.16.2). AAM LED, B M1 (A1) = [ ]

0 0. p—s

s p—s

We now define a G,(sxgq) by

(A.3.16.3) D z(sxs) Gy(s X q) = the submatrix formed by the first s rows
of (A*M,ED,, 7).

Ttis easy to check that, given the other elements, (A.3.16.3) defines G, uniquely
‘and also that Gy(sxq) Gi(gxs) = I(s). Tt is well known that if G(s X q) (s < q) satis-

fies ¢,G; = I(s), then we can adjoin a G'g(q:x_q) to G, such that[ gl ] isan |
2

matrix. With this adjunction we can now write

s[Dys 077G, s
(A.3.16.4) (A7M,EDy, )5) p = l- ’ :, [ 1]
q p—s L 0 Gyl g—s
o $ q—s q
‘ ‘ ’ D 071s
(A.3.16.5) (A7 M EDy 2)[Gy Gyl = [ i J
’ 0 0d p—s
s  g—s
Next put (EDy, 2)[@4 @] = F'—t (say), so that
s @
(A.3.16.6) Flgxq) = l: 1]D,—eEf
g—s LGy
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(remembering that E is |- ). Notice that, given-the submatrices of the M matrix.

we can find a 'noﬁ-singﬁlar A, an | E and an _]_ [Gll (none being necessarily
2

unique) and thus a (non-singular but not necessarlly anique) £ given by (A.3.16.6)
Using now (A.3. 16 5), (A.3.16.6) and the definition of 4 (in the begmmng of the proof)
we check that we have non-singular 4 and F satisfying

(A.3.18.7) Myuy(pXp) = Alpxp)A'(pXp),

D 07s :
Mi(pxq) = A(p X p) [ J x F'(gx q) and My(g X q) = F(gXq)F'(gxq).
0 0d p—s o

8§ p—s§

F, qg—s
We next partition F into [ } , assume in the sense of A.3.13 that F,
F, Fils
s qg—s
is non-singular (as we obviously can), note that F; and F, do not occur in the
factorization of M,, and put F; = B,, F, = B,,Fy(g—sxg—s) = Bylg—sxq—3$)
X L{g—s X q—s) (where L is | ) and F, (sXg—s) = B,(sXq—s) L(g—s X g—s). Asin
(A.3.13), remembering the structure of 4, we now rewrite (A.3.16.7) as

. p—s[4, A7T4, As
(A.3.16.8) ﬂfu(p X_’p) = . s
sl4, 4,4 L4; A’ p—s

s p—s p—s$ 8

p—.-s ’-Al 1. ’
My(pxq) = D j{sxs) [By: By
42

8 g—s 8

: 9—s [ By Ea By By s
and Moy(gxq) = ‘ 5 _
sLB, B, B! Bil g—

o
8  qg—s g—s 8

which establishes the existence of the transformation (A.3.16).

To prove the near unique 4 and B where the c’s are distinct,
we first recall the definition of 4 and observe, as in the proof of (A.3.13), that
A is unique except for a post-factor Dy(p). The second equation of (A.3.16.8) shows
that at this stage B, and B, are unique except for the post-factor that goes with 4.
Now consider the third equation of (A.3.16.8) and partition M ,, into four submatrices
and rewrite the equation as

[Ms}; 'Ms'*g] g—s [BlB; + BB, BIB;+B‘33;J

M MY B,B; + BB,  B,B;+B,B
g—s S

(A.3.16.9)

whence, from the relation: B,B,+B,By — M), remembering that B; is already
known and using (A.3.10), we see that B, is uniquely determined. except for.a post-
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factor D,(g—s). The equation B;By-+B,B; = M) now uniquely defines B, except
for the post-factors that go with the other B,’s. This completes the proof of the near
uniqueness in the case of distinct ¢’s. If s = p, i.e., if M, is of rank p, then all roots
become positive, i.e., I, becomes px p, A becomes a solid matrix while B retains its
own structure with g¢—s being replaced by ¢—p. If ¢ = p, then B itself becomes
a solid matrix. As before, for the case of distinet roots, the transformation is checked
to be one-to-one by adopting the convention, say, that the first row of 4, and the dia-
gonal elements of fis and 1§3 are to be positive.

: Xl
(A.3.17): If [X ] (p < ¢, p+q < n)is of rank (p+q)
2 q
n

and X, X3 is also of rank p, then there exists a transformation
Xylgxn) = T(gxg) Lylgxn)
p . : LAt 4
and  Xy(pxn) = Upxp)D sl X p)Alpxn—a): Molpxplx (1]
n 1
where T and U are non-singular, MMy = MM,y = I(p), LyLy = I(g), and L, is a
completion of L, (see (A.1.7)) such tkat[L | is | and e = (l~ci)/ci or¢; = 1/(1+4e,)
L,

(t=1,...,p)and ¢ ‘s are the roots of the equation c:
(X X7) — (X, X)X, X)) UK, X | = 0.

Proof: Using (A.3.11) put Xo(gxn) = T'(qx q) Ly(q x n) where T' isnon-singular
and L,L," = I(g). Complete L, by an L, such that [%1] Z_q is | .
2
n
Now using (A.3.8), put
Xypxn)[Li(n X n—gq) : Ly(nxq)] = U(pxp)[Dj5(pXp) My(pxn—q) : My(pxq)l
where U is non- -singular, M, M| = M, M, = I(p) and ¢’s are the roots of the equation
in e: . |(Xy LIy X7)—e(X, L3L,X})| = 0. Multiplying both sides of the X 1-eéquation
by [ Ll] and taking into account the X o-equation we have the transformation

(A.3.17), except for the requlred interpretation of e, which is as follows. L, = (T) -1X,,
so that LyL, = XQ(TT )X, Also LiL = IT—LyL, = I— Xz(TT )2X,. Hence
the equation in e becomes: }Xl[l Xz(TT )1 X)X — e X, XY T T X, X, | =0
or 'm XlXinlX;(XzXé)‘leXl
proof of (A.3.17).

0 (since X,X; = T7") which completes the

. [X. )
(A°3'_18)- If X = L X, ] P (P < ¢, pt+q < n; rank = p-+q) 1s such that X, X,
n

s of rank s < p (in which ‘case it is easy to check that X,X; and X,X} are each
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symmetric p.d. and X, Xy(X,X;)1X,X; is symmetric and at least p.s.d. of rank s, so
that s roots of the p-th degree equation in c: |¢(X,X|)—(X, X)X, X5)YX, X)) = 0
are positive, the rest being zero), then there exists a transformation

p—s| A4, A3 TD =50 s L, s
(A.3.18.1) Xipxn) = [ :' [ J [ :l
std, A, 0 Idp—s L L,dip—s
s p—s & p—s n
p—s[4, .
+ [ J Dy sX8)Lg(s X n),
sLA, ’
g—s [ B, B, Ly s
(A.3.182) xoam=""[" ]
‘ sLB, B LLdg—s

s g—s n

where the D(sXs) is based on the s positive roots of the equation already mentioned
and where the A and B are non-singular matrices defined after (A.3.168) by -

4, A4 4
(A.3.18.3) X, X, = ~ ,
L4, A, LA 4
5 BB B
X, X, = - and
B, BJ LB, B

[Dﬁ o"Js [B; B;]
0 0lp—s LB, B

A7 | 4, 4,
XXy = 4 DB, Bj]= 4 A
o’ 2 4

s ¢—s
and where the L matrices are subject to
s L,
- L ’ : ’ 1
Pl g Ly L Lile =l
§ L, 8 p—Ss 8 q—s8
q—S8 Ly
n
Proof :
p—s[ 4, 23 Ms
(A.3.18.4) Put Xipxn) = and
sLA, A, L, p—s
s p—s n
qg—s | B,y E3 Lyl s
(A.3.18.5) X,(gxn) =
* s LB, B, L, g—s

s, g—s *n
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Now check that; since A4 and B are non-singular, the above equation defines M s Ly,
Ly, Ly uniquely except for the indeterminacy in 4 and B. Now, using the first two
equations of (A.3.18.3), it is easy to check that

M L,
(A.3.18.6) [ jl[M' YL = I(p) and [ ] (L, L] = I(g).
Ly ' Ly

Substituting for X; and X, (in terms of the 4 B and M, L,, L, and L,) in the
third equation of (A.3.18.3) we have

4 4 D;; 0][B, B
(A.3.18.7) [1 , ‘3] [ v ] [: 2]
4, 4,1 Lo ol LB, B

4, A THM B, B,

=, ) | Ly Ly . |

4, Al L L, ' By B;

whence it follows that

M '-D./c_ 0]s
(A.3.18.8) [Lh: L =
L2 A ;—0 0 p“—vg

Let us now put,
(A.3.18.9) M(sxm) = D 5(sx8) Lyfs X n)+ My(a x n),

which uniquely defines . 1 in terms of M, L, and ¢’s.

Now substituting in the equations (A.3.18.6) and (A.3.18.8) for M the right hand side
of (A.3.18.9), we have

(A.3.18.10) ML, vLg, : Ly =[0,- 0; 0] dnd
(A.3.18.11) 1(s) = MM’ = D s LILD st MM, = o+ D .
If follows from (A.3.18.11) that

(A.3.18.12) MM} = I(s)—D, = D,_,,

so that if we put

(A.8.18.13) My(sXn) =D o1 (8 X 8)Ly(s X ),

we shall have, from (A.3.18.12) and (A.3.18.10)

(A.3.18.14) Lk = Xs) and Ly{L;, L3, Li] =10, 0, 0,
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Substituting from (A.3.18.13) for M, in (A.3.18.9) we have
(A.3.18.15) M(sxn) = D j5(sxs) Ly(s Xn)4-D 1= X 8) Ly(s X n),
where L, satisfies (A.3.18.14).

Now substituting for M from (A.3.18.15) in (A.3.18.4) and using (A.3.18.6),
(A.3.18.8) and (A.3.18.14) we have '

A 40 1(D,= LD L)
(A.3.18.16) X=| [ e e J
L4, 4 L,
4, 47 D,— 0][L A,
= . —l— DJ;L:; and
L4, A4, 0 I4 LL, A,
_Bl §3— Ls-
(A.3.18.17) X,= [ J ,
B, B, L,
where the L’s satisfy
Ll
L2 ’ ’ ! g 1
(A.3.18.18) L, |[Ly i Ly i Lyt Ly] = I(p+q).

3

L,

This proves (A.3.18). If s = p (which is the case that will be actually considered in
this monograph), L, will be absent, and ¢—s = g—p and we shall have

' L} p

(A.3.18.19) Xy(pxn) = Alpxp)UD 1= : D j3)p] [ ]
V4 V4 3= 7

n

g—p [ B, B L p
and Xo(gxXn) = ;
p LB, B, Lydq—p

P 4P n

where the L’s satisfy

p[ Iy
(831820 p| Lo| I L L n= I+,
g—plL L, .} p » q—p
n .
As to the indeterminacy on the right hand side of (A.3.18.1) and (A.3.18.2)
(for the case s < p) and of (A.3.18.19) (for the case s = p), it is easy to check that in
either case, if the non-zero roots are all distinct, there is near uniqueness in the sense

of (A.3.16), the only indeterminacy arising out of a post-factor Dy(p) going with the
A4
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total 4 matrix and a post-factor Dy(g—s) going with B,. In this case the transfor-
mation can be made one-to-one by adopting the same convention as, say, at the end
of (A.3.16).

X, P

(A.3.19): For X = X, g (»p<qp+q+r < n,of rank p4q+r),
X, A
n

(i) there exists a transformation: Xg(rXn) = T(rxr) Ly(r xn) subject to LsL;~ = I(r)
and

o L 7 n—r L | n—r
XypXn) = plZy;, Zy,) [ ] and Xy(gXn) = q[Zyy i Zgp)
' n—r 7 Lyd r n—r r Lydr
n n

where L is just a completion of L, so that [é ] is | . (ii) Putting M = XX’ (ob-
. A

serve that, by (A.1.10), M will be symmetric p.d.), the roots of the equation in ¢, namely

(A.2.4.1) or (A.2.4.2) arc the same as the characteristic roots of (Zyy Ziy) ™%y Zy)
X(Zgy Zél)_l(zz_lzil)'

Proof: 'The proof of (i) is obvious from the preceding sections. For (ii) we.

observe that L, — (T)-1X, so that Lj = XyT")1 whence LijL, = XyT7T") 1 X, =
Xy(X,X3)1X,. Therefore L'L = I(n)—LiL, — I(n)— X4(XX5)1X, and thus

712y = X LLX] = XX — X XX X)X X = My, — My Mz My,
Zy1Zgy = X\ L'LX) = X Xo— X XX X)X X = Myp— Mg M3t Moy,
and 22y = XILX} = Xy Xy X XyX, X)X X = My Moy Mg My,

This completes the proof of (ii)

(A.3.20):  For an M of the structure (A.2.4) there exists the transformatiovn

pl 4; 0 4, — I [D,; O]I =l » “ A4 00
— — I .
rio0 o |4 . 0 : g—p L 43 A{| 4’
P q —_—
I_ 0 I |

P p g—pr

where 4, 0 A4; 7] is a non-singular matriz and ¢’s are the roots of the eguation
0 4, A4,
0 o0 4.

m ¢, (A.24.1) or (A.2.4.2).
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Proof: We can write

[~ My My, My T My — My M My - My M MMy 0
My My My |=| Mig— M MMy My My Mz3M, o
Mis My My, - | 0, N 0 ‘ 0.

MMM MMM

+ ]ust:;?»lMis ﬂ’fzaM?:?,lMé?, Moy

Mis Mg My,

Using(A.3.9)and (A.3.16) we cannow put My,—=A A, M, — M, MM} ;= A, 4!,
Mog— Mo Mzd Mys = A,4;, and M12—‘M1_3M§31M;3 = Ay(pXp) [D_,/E 0] Aygxq).
’ : p q9—p
If we next put M (pxr)= A:,(pxr)fi'f',(rxr) and  Mo(gX 1) = A4('q><r)z4~;(r>< r),
we observe that 4; and A, are determinate. We check furthermore that now
My M3 Mg = A3Af, My M3 Myy = A A and M Mgl My, = AzA,/, so that. alto-.
gether we have

— A1A1+A3Aé Al[DJ—c".O]Aé'FAa‘Z; Asgé -
D5 : .
M =14y .;o' A hA4.4, A A5+4,45 4,45
_ 4.4 A4 A4y

which proves (A.3.20).

(A.3.21): The passage from L matrices to L; variables. Consider the trans-
formations (A.3.6), (A.3.8), (A.3.11), (A.3.14), (A.3:15), (A.3.17) and (A.3.18) and
(A.3.19) and notice that everywhere we have, on the right hand side, a post-factor
of the form L(pxn)(p < n) subject to the constraint LI’ = I(p). Check that the
actual number of independent constraints is just p(p+1)/2. Suppose now that
instead of transforming to L subject to LL' = I(p), we take a slightly different set
of variates in the following way. Putting

o g Iy
L{pxXn) =| . e = . (say),
| Lom I
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we notice that LIL = I(p) & I}, = 8; (4, j = 1,2, ..., p), the kronecker delta, so
that, by virtue of the p(p+1)/2 constraints, L really consists of prn—p(p-+1)/2
independent elements, although the (p X n) matrix itself is naturally one of pn elements,
From L let us choose an independent: set, say, (I3, s, .-+ U, no1)s (laxs logs +oos b, na)s oo
(p1> bz --o> Ly, neyp) @nd let us call this set L. Throughout this monograph L; will
stand uniformly for this set of variates.

(A.3.22): It will now be shown that if no elements of L are 0, then the corres-

pondence between L; and L is one-to-2%.

Proof: Having regard to the constraint LL’ = I(p), under our set-up, we
are going to treat I, (i = 1,2, ..., p; j = 1,2, ...,n—t) (= L; say) as the (so-called)
independent variates and I; (i = 1,2, ...,p; j = n—i+1,...,n) (= Lp say) as the
(so called) dependent variates. This notation will be uniformly followed. We have
now the following equations in the dependent variates (in terms of the independent):

For the first row of the L matrix
-1
(A.3.22.1) B,=1—3B

j=1

For the 2-nd row of the L matrix
; =2 n—2
(A.3.22.2) lz,n—l ll,n—-1+l2nl1n = - .leljl% ; lg’n_l—}—l%,, =1-3 l%)"
g j=1

And in general for the ¢-th row of the L matrix (with{ = 1, 2, ..., p)

. ‘11 17— v n—t
(A.3.22.3) 3 Lly=—Z ly I B=1-313
j=n—it1 =1 j=n—i+1 i=1

for ¢ =1,2,...,1—1.

It is easy to see that, for the first row of L, the equation (A.3.22.1) gives (in
this case) two real and distinct values of I, in terms of (L, ..., ,.;). Next, for the
second row of L,~the equations (A.3.22.2) give (in this case) two real and distinct pairs
of values for (I, ,_,, ly,) in terms of the first row (now supposed to be given),. and so
on. In general, for the i-th row of L, the equations (A.3.22.3) give (in this case) two
real and distinct sets of values for (L, neiga, --+» bp) in terms of the (i—1) previous'
rows (now supposed to be given). This proves (A.3.22).
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Invariance of the Characteristic Roots under Certain Linear
Transformations

(A41): If X(pxn)(p < n)isof rank p (in which case, by (A.1.10), XX is
symmetric p.d.), then the characteristic roots bf XX’ are tnvariant under the trans-
formation: X(pxn) = A(pxp) Y(pxn) B(nxn) where A and B are any two |
matrices.

Proof: oXX') =c(AYBB'Y'A') = c(AYY A')since B is | )= ¢(YY'A'A)
(using (A.1.18)) = ¢(Y Y’) (since 4 is | ), which completes the proof of (A.4.1).

(A4.2): If X(pxmny), Xo(pXny,) (p < ny, ny) are eack of rank p(in which
case, by (A.1.10), X, X; and X, X are both symmetric p.d.), then the characteristic
roots of (X, X)X, X3)' are invariant under the transformation:  Xy(pXmn,) =
A(pxp) YypXn)By(ng Xn,) and Xy(pXny) = A(pXp) Yo(p X ny) Byngxmy), where

4 is any non-singular matriz and B; and B, any two | matrices.
Proof: ¢[(X,X1)(X, X)) = o[(AY,B,BjY;A')AY,B,B; Y;4')"]
= c[(4Y,Y A'(AY,Y34")"] (since B, and B, are D
= AT, F)(F, ¥ 47 = (¥, Vi)Y, Y5 A-24]
(using (A.1.18)), which completes the proof of (A.4.2).

(A.4.3): If X\(pxny) be of rank ny(< p) and Xy(pXn.)(p < m3) of rank
p, then the characteristic roots of (X, XN X,X3)t are invariant under theé transfor-
mation:  Xy(pXny) = A(pxp) Yy(pXng) ByngXn) “m:d Xo(pXny) = AlpXp)
X Yo pXng) By(ngXny), where A is any non-singular matriz and B,'and B, two

arbitrary | matrices. The proof is on the lines of that of (A.4.2) and is thus obvious.

Xlp
(A.4.4): For X = [ ] (p < g, p+g < n, rank = p-q) the charac-
Xodq
n

teristic roots of (X, X7) X, X)X, X5)UX,X{) are invoriant under the transfor-
mation: Xy(pxn) = A(pxp) Y(pxn) Binxn) and Xy(gxn) = Ay gXq) Yy(gxn)
X B(nx n), where A, and A, are any two non-singular matrices and B is any | matriz.

Proof:  e[(X, X)X X)X X5) H(XX3))
= o[(4, Y, BB VA4, Y, BB Y3 A1)(4,Y,BB Y3 A;) A, Y, BB Y} 4))]
= of(A, Y, VA A, Y, V3 ARN A, Y, Y3A5) (A, Y, Y545 since B is | )
= (A7) WY, Y)Y, Vo) YY) T, YA
= of(Y, Y)Y, (Yo Ve U Y, YA (AN (using (A.1.18))
= (T, YUY, Y)Y, Y)Y, Y})], which proves (A.4.4).

X, |»

(A.4.5); For X =1 X5 lg  (p < g, p+g-+r < m, rank=p+g-+1),
X3,._'r
n

163
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1he roots of the equation in ¢ of the form (A.2.4.1) t.e., of

INVARIANCE OF THE CHARACTERISTIC ROOTS

¢ [X.X; X, X5 ‘:XIX; X, X5
XX,  X,X;. XX, XX
[ X,X7  XpX5T] [XzXé X, X3
9.69.¢4 X, Xg X, X, X, X
t.e., of
(A.4.5.1) ¢ [X|] P )
(X; Xl (X2 X3l
L X, X, |
=0
X, ] ' [ X.] -,
J[Xi X;] [(Xp  Xi]
L X, X,
are invariant under the transformation
X, |2 | 4 0 ¥ Y, | »
X, |lg=4q |0 4, 4, Y, q.. XBnxmn,
Xg 7 r 0 0 A4 Y,
n P q r n
» 4, 0 A,
where Bis | and A = [0 Ay A4] 18 any non-singular matriz.
0 0 A4,

Proof: The proof follows' by noting that B will pass out of th
the equation (A.4.5.1) can be written in terms of ¥’s and A’s as

Al A3 Y1 ] . r Yl ]
0 c [Y2: Y3)
0 A, Y, L Y,
4, 4, Y, T o Y, ]
0 [Yi: Y3l
0 A, Y, L v,
| T47 O l
| 0 !
| 4 A
x| =0
.‘ Ay 0
4, 4,1
. . . T 4 A
then, since 4 is non-singular, 1 31 and 2
‘ & [ 0 AJ : { 0

checked to be non-singular,

e picture and

[Ys: Y3)

RERREY

j‘:] are both easily



APPENDIX 5
Some General Theorems in Jacobians

(A1) If xX(nx1l)= Anxn)y(nxl), where A
J(x:y) = |4].

(A.5.2): If X(mxn)= Almxm) Y(mxn), where A is non-singular, then
JX:Y)=|4]|"

is mon-singular, then

(A.5.3):  If X(mxm) = A(mxm) Y(mxn) Bnxn), where A and B are non-
singular, then J(X : Y) = |A|"|B|™

' (A.5.4): IfAandBareeach | ,then |A| = |B| =1 and (A.5.1) and (A.5.2)—
(A.5.3) will reduce respectively to J(x :y) = 1 and J(X : ¥) = 1.

(AB.B):  If y; = fl@y, «oos Ty Tppis ovvs Tgn) (8= 1, oo, m)- where z)’s (j =1,
2, ..., m+n) are subject fo n constraints
Ji@1s oves Zpys Tpgts voos Tpyy) = 0 ¢ = m-t+1, ..., m-+n),

then (under the wsual conditions for the existence of the Jacobian, including the
non-vanishing of the numeraior and the demominator in the following) we have, [42],

'I(yl’ iy ym :xl’ ""xm) — 6(f1’ -"rfm>fm.+1’ '-"fm+n) - a(fm+1’ "~>fm+n) .

a(_xl’ voes By Lyppas oo xm+n) a(xm+1’ s xm-m)

Proof: Let us denote by g—y’ , t,4, = 1, ..., m, the partial differential coeffi-
Z;

cient of y; with reespect to z; after having expressed y; (¢ = 1, ..., m) in terms of (=,

.0y @), that is, after eliminating (., .

vor X)) With the help of the constraints.
Next denote by

|
i
|

By . . |
axj ': (7" ,7 —_ 1" 23 m)’

the absolute value of the determinant of the m Xm (square) matrix

[a‘% :l , (6,j=1,2,...,m).
ox,

Then we have

dy, ..
(A.5.5.1) Ty ooes Y T Tpy nn» Bg) = ai’ , G, i=1,2,..,m),
’ j
' i
— of; min ?fz_?”i (G,j=1,2,..., m).
ox; kem+1 0%y 0%;

165
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Notice that in gji or élfi , [, is supposed to be expressed in terms of all the (m+-n)
x, 2,
2’s and the partial differentiation is supposed to be with respect to «, or z, assuming

all the other (m-+n—1) independent variates to be kept fixed, while in g_% or gﬂ
% 2z,

it is supposed that y; (¢ =1,2,...,m) or 2, (k=m+1,...,m+n) has ﬁ;st; been
expressed in terms of ;’s (j = 1, 2, ..., m) and then the partial differentiation is made
with respect to a particular z;, assuming the other (m—1) ‘independent’ variates to be
kept fixed. Now from the set of » constraints on ,’s (j = 1,2, ..., m+n) given

by the conditions of (A.5.5) we have

6f,-+ " ifi a—xiz (t=m+1, .., m+n,andj =1, ..., m),

Ab5.5.2 ==
( ) 0x,  kemy1 0%, Ox;

or, in matrix notation,

(A5.53) — [ O | - [ o ] [ﬁ@] (i, b = m+1, ..., mtn;§ =1, ..., m), or

0z, | oy, O,

om | _ _ | o |7 ok
2 ox;, ox;
(note that, by the conditions of (A.5.5),[g_fi ] can be assumed to be non-singular).
z, |

Substituting from (A.5.5.3) in (A.5.5.1) we have

(A.5.5.4) JWY1s oor Yy 1 %y, ooy 2,,)0
E ] ’ - :
2] [ ,@fi} I _afz_] [ %“]
L Oy, | ¢ — 1, ...,m L 0% 0% || — mi1,..., mdn
k=m+1,...,min J=1L..m

(by using (A.1.1))

o A u]
Bl =1, mdn L% i omdd,  mden

which proves (A.5.5).
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The real use of this theorem (as also of the néxt one) is in those situations where

it would be difficult to express y,’s in terms of xs (j = 1, ..., m) (after elimination

ofz, .4, ..., %, with the help of the constraints), but where it is much easier to express
the right hand side of (A.5.5.4) in terms of (z,,

.es &), Oor where even this explicit
expression is not directly needed.

(A5.8):" If Fyy, oos Upps Tt ovvs Ty Tppps v, Tppy) = 0 (3 =1,2, ..., m4-n)
are a set of equations solvable in the real domain in the sense that corresponding to
real (x4, ..., x,,) we can find real (Y, ..., Yy) AN (Xyyqs -.os Tpiy)> then, under the other
usual conditions for the exisience of the Jacobian (including the non-vanishing of the
numerator and the denominator in the following), we have, [42]

T oor Y 22y e ) = 2 F) o O,y F,..)

a(xb :vm+fn) ' a(yla .. ../m m+1 "'>xm+n)

Proof: As before we have

Ty cons Y 2 Tpy oo By ) = l 9y; } i,j==1,...,m.
)

But from the basic conditions of (A.5.6) we have

oF, _
+ G =

‘ W OF, dy, ™t OF, O
A.5.6.1 E 2 > k
( ) igl ayl axj 1= m+1 (?x, a.’lf

(k='1,..,m+n;j=1,2,.. m).

Notice that in ZF’” and %F’" af k¥ F,is supposed to be expressed in terms of all the (2m+4-n)
Yi 4 7 : : .
variates (g, .-+» Y T1s s Ty Tyt > Tun), a0 the’ partial differentiation is with

respect to y; or x; or x;, keeping all the other (2m+4-n)—1 variates fixed.

Also notice that, in gy‘ or g_;i’, Y (or rl) (G=1,2,..,m: L =m-+1, ...,m-+tn)
Zj {] ]
is supposed to be expressed in terms of s (j=1,2....,m) and then the partial

differentiation is with respect to a partlcular keeplng all the other (m—1) of the
x;’s fixed.

(A.5.6.1) can be written as

aFL 6?/1 : |' aFk axl ] { aF‘] = (),
(A.5.6.2) [a—%J { o2, J+ | x| | *| o ,

where each side is a (m--n)Xm matrix.
A-5
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Taking, say, the first m rows of this matrix equation (A.5.6.2) we shall have
the square (m X m) matrix equation:

) OF: 11 oy, e 1 om | [%Fn ]
(A.5.6.3) l:ayt_J[_aif + -~ax,J ax]j axj~=0

FoF,
where now 4,5,k =1,2,....m, and Il =m+1.....m+n, and 3 J is square
L 9y

(m X m). ‘
Again taking the last n rows of the matrix equation (A.5.6.2) we have

oF, ’> 0 oF,, | - OF; ~|
2 Yi o O | =
(A.5.6.4) [—52/7:' | “0a, } +[ ox J [ Ox; J +[ oz, _] >

or,
where now 4,5 = 1,2,...,m and k,, I = m+-1, ..., m-+n, so that l:_b_.—z] is now

Z
square (nXn).

Treating (A.5. 6 3) and (A.5.6.4) as a pair of simultaneous equations 1n[g?/1]

Z;

(t,j=1,...,m) andtg-;—cl] l=m+1 ... ,m+nand j=1, ...; m), and solving for
]

them we have for [gﬂt] the following:

Z;

(A.5.6.5) I'_ayi J _ [61%1' _ ’>0Fkl asz -1 asz 7)1
. axj L ayz i ‘ axl i axl ayz J
X <r [aF#l J N [aFk_l 1 asz 17 [oF ky
L axj 0.’(), _| axl _ ax] '
oF, 7 OF; oF, T 1[oF,
0, J _v 0z, || Oz 2 ]
| aFI” 1 aFL oF i -1 oF k

But we have by (A.1.1),

A.5.6.6)m Fﬂ] [0}'_] oT
P -I[%]

Hence

|0_?z_ _

D

”:(?Fli] oF, 0Fk2 -1oF,
' ox, Oz, oz,

Oz,
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and
m n
F&Fkl ] r'aFk1 ]
m '
mor,7) [or, | 1L 2 N R L oy |
" L 0y, | | Oz |

Substituting from (A.5.6.6) in (A.5.6.5) we have

0y,
(A.5.6.7) WYty coos Yy 1Ty, oo B) = |5
Y Y, 1 m) axj
m n m n
FoF, | [oF, 1| |[oF, | [oF,
m 1 1 m 1 1
| Oz; | L 07 | | Oy, | | Oz |
Cor, 1 (or. 1| [oF. [or,
n 2 2 n 2 ‘ 2
_ IFy, s Frpi) Wy )
a(xls A4 x’m’ xm+1’ R xm+n) a(yla e ym’ a:m+1’ vl xm+n)

which proves (A.5.6).

(A.5.5) is really a special case of (A.5.6), which can be shown by putting in
(A5.8), F;=9y,—fi21, s Tpyn) (0= 1,2,...,m) and mnext. F;=flx;, ..., Tpyn)
(¢ = m+1, ..., m-+n), that is, by assuming that the last n.equations are free from the
y;’s. Substituting in the right hand side of (A.5.6.7); we easily check that it goes over
into the right hand side of (A.5.5.4).

It seems that (A.5.6) is a very general theorem in Jacobians and yields as
special cases practically all the usual well-known Jacobian theorems.



APPENDIX 6
Jacobians of Certain Specific Transformations

We shall consider the transformations (A.3.6), (A.3.8), (A.3.11) with rank
= p, (A.3.14), (A.3.15), (A.3.17) and  (A.3.18:19) and, in each case pass on to L,
from _the postfactor and prefactor of the form L or M (subject to LL" = I)and
discuss, for the different cases; the respective Jacobians (i) J(X : My, ¢’s, Ly),
(it) J(X,, Xo:4, ¢’s, Lyg, Lyy), (iil) J(XT,Ly), (iv) J(X,, X, Ul,U‘,,f]3, U,,¢’s, Lz, Lyy),
V) J(Xy, Xy o P, 08 Ly, Ly, Ly), (Vi) J(Xy, Xp: T, U, &'s My, My, Ly) and
(vii) J(X,, X, : A, By, B,, By, By, ¢’s, L), where, in (vii), L;’s are respectively the
(so-called) independent elements formed, as in section (A.3. 21) out of the matrices

"L, p
L, D
Ly N q—p
n

We shall first obtain the following two Jacobians which will be basic to the
derivations of all the othér ones.

(A.6.1):  Jacobian of the transformation (A 3.11) (with rank=np), i.e., J(X:T, L,)
where T(p X p) is non-singular with a positive diagonal. To obtain the Jacobian
from X to 7' and L; we use (A.5.5), remembering that now X = 7L takes the place of
Y; = f; and LL'—1I(p) = 0 takes the place of f; = 0. We also note that d(LL'—I(p))
= d(LL'). 'We have now, using (A.5.5),

(A.6.1.1) JX:T, L) =

I(X, LL’, O(LL)|_|XX, LL )l ;a(LL’)L,
AT, L) L TaIp)l Vo, L) Vr.z, " 1o(Lyp)lz,

where on the extreme right, for practical usability, everything is expressed in terms
of 7' and L;. The calculation of the numerator in the Jacobian of (A.6.1), (A.6.2) and
(A.6.7) can be considerably abridged by expressing, in each case, that numerator
in terms of Kronecker products (and sums) of matrices, otherwise known as direct
products and direct sums. However, in this monograph, for expository purposes, a
more familiar and straightforward, but lengthier method is given in each case. It is
hoped that, for each problem, the reader will have no difficulty in verifying the
main steps by spelling out in further detail on a sheet of paper. To calculate the
numerator of (A.6.1.1) we proceed as follows.

e ’

g %1, Y

X = C e = . (say);
L 2, - X,
Ty L, I
Ly o1, -
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Also put LL' = K with clements F, (6,5 =1,2,...,p; ky — ky). Then (A.3.11)
can be written as X} = (f; ... 4; 0... O)X L (i = 1,2, ..., p) or

— 4
— =
L lig
(A.6.1.2) S N S R ) G=1,2..,p).
|l
— 0 —

X, LL') ¥X,K)

o, Ly ~ AP, L)
cients of X and K (= LL')with respect to the elements of 7' and L (all elements of L
being temporarily regarded as independent for purpose of the present differentiation):

To calculate we display below the partial differential coeffi-

iy ta - bt e o 1 | A A 4
X[, 06 . 0;0 .0{. .:0 D, 0 0
X0 1L, . 0l .0 .0 | D, D, 0 0
x, | 0 Lio .1 ', D D, o1 Do,
Fyy 2 0 . . . 0
Epp 0 21,
bye | 1 Lo 0

0
Fyy v 0 0 Y
Fptsp 0 A [

where D, will stand for a diagonal matrix with diagonal elements all equal to a.
Recall that x} is 1xmn, I} is also 1xn(i =1,...,p) and K(pxp) has p(p+1)/2
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independent elements so that the above is really a (np--p(p--1)/2) X (np+p(p+1)/2)
matrix. Now put

(A.6.1.3) My (p(p+1)/2Xp(p+1)/2) = 0;
- 1 0 0o -
0 . . LI .
Moo(p(p-+1)/2 % np) = ;
L L., 0
- 0 . L L, _]
— L 0 0.0 0 0i.. 0 —
01 .., 0 . 0.L.&.
Man(np X p(p+1)/2) = 5 P ; and
0 Lio L i L,
T D, 0 .00 ]
_ D, D, .00
Mog(np X np) = oo _ |(notice that each Dis n x n).
D, D, D,
By (A.1.1) we shall now have
(A.6.1.4) %((Jf,lff) _ o7 My Mo | plp+1)/2 ‘,pro My
T; == :
) P My My | mp M, M,
1
p(p:L ) np

P

Y 4 ; - )
=2 M| |00y, Mzl My |=2" | M| |My Mz My
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Recalling the structure of 7' we have

S T 0 ] — Dgm 0o .. 0 ]
_ 1z 22 9 Dp> D22 0
1= ’ "M2-21: . ’ 3
W A o S 7 _ v | Dupp Dpr . D _
so that | My,] = || We have furthermore
(A.6.1.5) L o0 . 0 0 . 0 . o0
L2 L2 . 0 il . 0 .l 0
MM, = — L
L L dger DL L L [ L |
— 1 0 0!0 . 0 .10 | . of P -
; P ! P .
0 1 0il, . 0:.} L0 Fh o |p
- ! x '
: 1 #ov :
: | ' i v
0 L0 . Li.iL. e o0
o L0 p—1
g el
§ Lo
| ——
— 0 Lo 1

= M, N,, (say) where N,, stands for the right matrix factor. We note that Ny, is
p(p+1)/2 X p(p-+1)/2 and is non-singular if T is non-singular. We note also that

Moo(plp+1)/2 X pn) My(pnX p(p+1)/2) is p(p+1)/2Xp(p~+1)/2 and non-singular,
so that

(A.6.1.6) | M M5 My, | = | MypMy| | Nyl

It is easy to check that

(A.6.1.7) |Npg| = Hg=5/|T|» and || = 11 ¢,
’ k3 i==1

=1

It is also easy to verify, by using the condition LL' = I(p), that

]

(A.6.1.8) [ Myy Mosi| o=y = 1.
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Hence (A.6.1) will now reduce to, {31, 32],

5 (X, LL") oL
A.6.1.9 JX T, L) = ) |
( ) ( 1 A7, L) |7, 1, ~|9(Ln) |L,
Z i . |O(LL)
= 2" Il gt
i=1 oLp) |L,
so that we have
(A.6.1.10) dX - J(X : T, L)dT dL,
where J is given by (A.6.1.9).
It is easy to check that. with n.8 = 77", we have
(A.6.1.11) J(8 Ty = 27 .12[ i @+ 12,
so that
(A.6.1.12) TN [nﬂi<p+l>/2+<2p fill tﬁ.““f‘)] ds.

Another transformation (together with its Jacobian) that is useful and inter-
esting is the following: '

b A}
(A.G.1.13) Xr+1,p(p_"'><n) =
X,
= " obaa o bga,en 0 0 li
tp el - e lpp - 1;:

3

This transformation is obtained if we start out from the transformation (A.3.11),
cut out the first r rows of X and the first » rows of 7 and assume that the first » rows
of L are given constants, in other words, that the transformation is from the variable

and tx/‘uncated X to the variable and truncated 7' and the variable L, ..., 1, and
that I, ..., I are assumed to be given constants such that the whole LI/ — I (p)- It

is eas ; . .y . ;
¥ to show that, with byps +-o5 ey, ryy beIng, say, positive, this transformation
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is also one-to-one. Let us denote the truncated T by T, +1,p> the truncated L by L,

+1,p
and the initial block of (constant) I by L, ,. Then(A.6.1.13) can be rewritten as

~ Ll,r
(A.6.1.14) Xy =Thin, :

r+1,p

where the variable L, , is subject to

(A.6.1.15) Lr+1,p L;'-l-l,p = I(p—r) and Lr+1p L;,f =0,

L, being a given matrix of constants, subject itself to L, L;, = I(r).

It is easy to see that the independent elements of the variable truncated
Lfi.e., of L,,, ,) in this situatiorn can be taken to be the same as of the truncated L, ,
in the original set-up. Let us denote this by L,,, ,; consisting of 1,.5,, ..., Liju 1>
e lp1s ooy Ly as elements and the dependent part by L, +1,zw-' We are now

interested in the Jacobian J(X,,;, : T,.1 ,, Lyp1 ), Which, by using (A.5.5) subject
to (A.6.1.15) comes out to be

Xy i1,90 Lrsnp Lra Lrsa oLt
a(Tr+1,p 4 Lr+1,p) [j’

(A.6.1.16) T Xy i1 Trips Livagr) =

r+1,p> r+l,pI

- \ a(LH-l,p L;'+1,71’L7+1,pL£,7‘

a(Lf+1,ﬂD) LH'], oI

To calculate the numerator on the right side of (A.6.1.16) we proceed in the same
manner as in the beginning of this section, go back to the scheme of partial differen-
tiation shown after (A.6.1.2) and observe that the same scheme will serve, subject
to the following modifications. Omit all columns below #,;,.... 44, ... ¢, and below
1,...,I, and all rows along X,,..., X, and along ky, by, Kap, +-n» Kyps Kgps oos Ky 1
now we make the.same kind of calculation as from (A.6.1.3) to (A.6.1.9) we can verify
that the numerator on the right side' of (A.6.1.16) will reduce to

- » .
(A.6.1.17) 2 I,
t=r4-1
and thus we have

(A.6.1.18) dX,, -2 o AT, 11p ALvsy g1

t=7r+1

1 O(Lr+1,17 ;+1,p9 Lr+1,17 L;,, ‘
| a(Lr+] 71)D) ’

i Lr+]'171
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(A.6.2): Jacobian of the transformation (A.3.8), ie., J(X,, X,:4,¢’s, Ly,
Lyy), where Xy(pXn,y), Xo(pXny) (p< 1y, ny) are each of rank p, ¢’s are distinct, and
A is solid pXp non-singular with a positive first row. Putbing ¢} =1¢ (¢ =1,2,...,p)
and using (A.1.1) we have

DX, X, LaLi, Lo
B(A, ti,S, Ll’ L2) |A, t’s’ le L‘.Zl

(A.6.2.1) J(Xy, Xy 0 A, s, Ly, Lyp) =

I U7 I O
M) |1, [0a0) |1,

To evaluate the numerator we proceed as follows. Denote, as before, the row vectors
of Ly, Ly, X;, X, by I3;, 15;, X33, X5; (¢ =1,2,...,p) and L L] by (ky,) and L,L; by
(ky;). Then the transformation can be written as

an b i
(A.6.2.2) Xy = [l - 1y,) : Xy = [loy .. 1]
aip tp J 'aip

(it=12,...,p), or in full,

, .1, .0 . 0

r =1 %uh ]

alptp

Oty

n .
Yy tp

»




JACOBIANS OF CERTAIN. SPECIFIC TRANSFORMATIONS 177

The scheme of partial differentiation is given below.

l a” t 1 |4
X, g U t) (anly) (@, 2) - O
X, l G 0 0 (a)
K, I 0 0 ) O
k, ' 0 0 0 (L)

where 2’ = (@33 . @y . Gy « @), U = (. 1), 1y = (33 Lip . 15, ,y 11,),

Xn X1
Iy = (13 1 . lé. p=1 lép)’ X, = . Ty Xg = . ,
le E xzp .
BT [ ke T
k k
1pp | 2pp - T T S
: kyio kgo
klz s ky = s Iy, 8) = .
' ' 0 Lite - Lyt
kllp k21p
| Fip1sp —Fop1sp ]
@y ly ayplip | Dautl(nl) Dalptp(nl)
(ay, Iy) = . . . , (@y, t) = . R
Apylyy o a;; 1y, - Dapltl(nl) I Damtp("]fl)
Iy Ly, 0 Y Dau(nz) D,,lp(nz)
(L) = s (@g) = ,
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— 2, O 0 — 2L, O 0
0 21;, 0 2L,
I, I O 0 e Iy O 0
(4) = » (lg) = .
L, 0 1, L, © 0 1
_ 0 0 112 | M | 0 I R

We are interested in the absolute value of the determinant of the above matrix
(which is really the numerator in the Jacobian) and which is: {p2+p+(ny+ns)p} X
{p2+p-+(n,+n,)p}. After some obvious manipulations we can take omt a factor

Fi
2 1 £27P 50 that we have the whole determinant reducing to

i=1

(A.6.2.3)

where

Mi{pry X p?) =

Ml?(pn1 ><p) =

My, My, My O b1y
M 0 0 M
o .ﬁ f=p 21 22 | P ’
=1 0 0 M; O p(p+1)/2
0 0 0 My | p(p+1)/2
P2 p  pny Py
Lt - llptp . 0 0 1,,
;3 Moy(png X p?) =
0 . 0 .l llptp 0 .
" aply Ayl D, (m)
; Mos(png X pry) =
%1111 amlllp Dam("h)
Dan(nz) Dalp(n2)
Moy(pny X prg) =
'Dam(nz) Dapp(n2)

palp(nl)

D, (n;) -
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0

M, ( .’p(p;j‘l) Xp’nl) —

liztz Lty

0

— 1, 0
o, (P2 D)= | e Ky

_ o

Hence we should have

Mll M12 M13 0
Mz] 0 0 M24 M13 0
(A.6.2.4) =| -
0 0 My O 0 M,

p(p+1)

[o 0] 2 ‘:M33' 0 :l-lem

o odrtl) | o g, J 0
2

[]l[33 0 :] M3

0 My, 0

MyMid My, My,)

My M3l [My: 0]

X

‘M13 0

0 My,

=1-M13H-Mz41

-0 0 -
1
0

Lipty 1y, peitpy

0 0 —
0
lép lém— 1

0 :‘—1[7 My, M12J|
Moy My O

][Mu 11[12]
-2'124 ]”21 0

179
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It is now easy to check that

Dari(ng) . Darr(my)
(A.6.2.5) | Myg|=|A|™, | My|=]A4|™and also [ M |=

Daip(ng) .  Dave(ng)

and M;} is exactly of this form, each D being of n, dimensions. Hence we shall have

Calllye L atllyt, .oarllyt, . el
(A.6.2.6) MM, = '
a2l . aWlyt, . arPlygt, . aPPlyt,
Lt . l],],,»tp .0 . 0 Dari(p) . Dar1(p)
L 0 . 0 . llltl . llptp Dal?(p) . Dapp(p)
=M 11D(sxupposse) where we denote the right hand matrix factor by D. In an exactly
similar manner we have Mzl My, = M, D. Next we have '
L, . 0
(A.6.2.7) MMy, = © 0t | = Ny, (say)
0.1,

(using UU-! = I(p)). Thus we have

D 07 p?
(A.6.2.8) Mid (M, 2 M) = [M11D : Nigl = pmy{ My, 1 Nyl [ :l
2 I

p P P
PP
D 077 p?
and M3 My ¢ 0] = png[ M, : 0] [ ] ;
Lo Idoyp
P’ p
so that (A.6.2.4) now reduces to
(A.6.2.9) ’Alnl_}_ml[ My X My M33><N12] [D 0 ]
L Myax My 0 dL o Ky
EYPRERE Mg X Myy 0 MagX Ny
= |4] (Remembering that |[D|=|4|—*
Myx My, 0

and | I(p)] = 1).
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Using L,L; = L,L, = I(p) the structure and reduction of the 2nd factor
(which is a determinant) can now be displayed and visualized by considering p = 3
which ‘will make immediately obvious the corresponding structure and mechanism
of reduction for the general case. Below is given the case of p = 3.

4 0 0 0 0 0 00 0 1 0 0

0 0 0 0 ¢ 0 0 0 0 0 1 0

= mod (§—B)(#E—B)(E—15).

o 0 o0 o o0 1T o0 1 0 O 0 O

=1
In the general case this is easily checked to be replaceable by mod II (##—#?),
i<j=1
so that, substituting in (A.6.2.3) and noting that {7 = ¢;, we have

(A.6.2.10) [P&X1 X, LnLy, LyLy) — 2% i 1P| 4"+ Pinod T (12— 1),
by Ly, Loy

(A, t, In, Ly) I I (4
so that
(A.6.2.11) J(Xy, Xy : A6, Ly, Lyy) = !a(Xla;(iz,fii}’ngLé)l
. Pz ez
R ]
— 4 ["1+n2—pili[16:£_—z——l mod :;I:-I; (6, — )~ % o %%Lﬂ

It may be noticed now that (A.6.2.11) is the Jacobian (i) mentioned in the begin-
ning of (A.8), i.e., J(X;, X, : 4, ¢’s, Lyy, Lyy) and (A.6.1.9) is the Jacobian (iii) men-
tioned there, i.e., J(X : T, L;), (31, 32].
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(A.8.3): Jacobian of the transformation (A.3.8), i.e., J(X : My, ¢’s, Ly), where
X(pxn)(p < n) is of rank p, c’s are distinct and M has a posztwe first row. By
straightforward methods of exactly the kind used in the preceding subsection (A.6.1)
which is rather lengthy it can be shown that

n—p—1
(A.6.3.1) J(X : My, s, LI)—Z Hc 2 mod H (¢;—¢;)
=1 Toai=1
a(MM') |ar)
Mp) \u, l 9(Lp) i1,

But a shorter proof of this result can be given by combining (A.6.1.9) and (A.6.2.11)
in the following way. By (A.6.2.11) we have

n—p—1

(A.6.3.2) J(Xy, Xy 4,08, Lyg Lyy) = 27| A" ™2 flc. 2 mod M (c;—c;)
i=1 i<j=1
o Ly) 6(L2L;)
o) [, [0(Zep) Lﬂ’
where Xy(pxn) = AD 5L, and X,(pxny) = AL,.
Also, using (A.3.11), we put
(A.6.3.3) A(pxp) = T(pxp)MpXp)
where M is |, and using (A.6.1.9), we have
(A.6.3.4) J(A T, M) — 2o B i = aﬂf_@'
i=1 Mp)|ar
Next put
(A.63.5)  Xy(pxn) = pxp) X(p>xn), M(p X p)Lofp X ns) = My(p X ny)(say)

(so that X = M D -L,, X2 = TM 2) and note from orthogonality of M that

(A.6.3.6) |4] = |T ] H ty and M,M, = ML,L, M = I(p).
We thus have

(AB.3.7) J(Xy, Xy i A,0's, Ly, Lyp) = J(Xy, X, T, My, os, Ly, Lop)+-J(4 : T, M
= J&X X)) S, Xy T, My, 08, Ly, Myy) J(Myy - Ly [J(A = T; M)
=X X) S Myses, Ly) J(X T, Myy) J(My: Ly)d(A : T, 31,
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Now notice that

(A63.8)  J(X,:X)=|T|" =1 a3, J(X, : T, My) = 2" tnz—@{ (M, M)
=1 i=1 o M,p) M,
and J(A T, My = 2 T1 i PILID)
] oM p) M

Now to evaluate J(My : L,;) we temporarily regard M as a constant but | matrix,

notice that L,L; = I(p) is equivalent to M,M, = I(p) and now using (A.5.5) we find

Ly P — MLy, M) . (oM, — MLy, 3,D0)

(A.6.3.9)  J(My : Lyy) = 20( M2D2,L) 0(L2D,2 5 |
o, — MLy, M1y oM — ML, LLy)| a(MM | LL2)
(M yp, L) 3(Lap, M) M) || 0L |

Now substituting in the left hand side of (A.6.3.7) from (A.6.3.2) and (A.6.3.6) and

in the right hand side from (A.6.3.8) and (A.6.3.9) and putting L, = L (say), we have
the Jacobian (A.6.3.1).

(A.6.4):" Jacobian of the tramsformation (A.3.15), i.e., J(X,, X,:T,¢’s, Ly,
Lyg, Lyy) where T is non-singular with a positive diagonal and ¢’s are distinct. Using

(A.6.1.9) we have J(X, : T, Ly) = 2" Htﬁz_/' (Lp L)

T

Next, using (A.6.3.1) we have

a 7y p__—n1—1 wy—1
JEE Ly, s Ly = 2 e, ® mod T (o—c)+ loz 1)) L Lol
i=1 i<j=1 |a Lp) lL L) |z,
From these it is easy to check that
1y p—nqg—1
(A.6.4.1) J(A—]_, .X T c S LI’ L]I’ L2I) — 2p+77/1 H tnl+n ’I/H C 2
g=1 i=1
m—1 6(L’L A(L,L}) d(L,Ls)
x mod II (¢;—¢; Aaie)
i<i=t )/ 0(Lup) |L,,| 9(Lap) |L.

(A.6.5): Jacobian of the. tmnsformation (A.3.17), t.e., J(X{, X, T, U, ¢s,
My;, My, Lyyp), when the ¢’s are distinct, T is non-singular with a posztwe dmgonal and
U is non-singular solid with a positive first row. Using (A.6.1.9) we have J(X,: T, Ly;)

08 s /| O(L,LY)
= 2 H tm /
i=1 (0Lsp)

Next, notice that J(X,: X [L;: Ly]) =1 (since

Lor
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Next, using (A.6.2.12), we have J(X,[L; : L;] : U, €’s, My, My

P 'n‘_gi__l —1 a(M M! ) M M. )
= 2°|U e 2 mod II (g—e o it i %4 .
1™ i1 i<j=1(z 2 0M1p) o, | 9 Man) a1,
It is easy to check by combining the three Jacobians, that
n—q—p—1

~ — T— 2
(A8.51) J(Xy, Xy 1T, U, 08, My, My, L) = 27 118 zJUl i

=1 i=1
e
X mod I (¢,—e¢))
i< j=1

We recall from (A.3.17) that if ¢, = (1—¢;)/¢;(¢ = 1, ..., p), then the ¢;’s are the roots
of the equation in c¢: |¢(X,X;)—(X X)X, X;)Y(X,X,)| = 0. In terms of the ¢s,
therefore, we should have the Jacobian given by

| oz,
M, I 0(Lyp)

O(M, M)
(M ,p)

J‘I 1p) Loy .

(A.6.5.2) Xy, Xy B, U, 0 Mg, Moy, Ly) = 2 1857 |U]~
n—p— q—-l n—q42 — !
H(l—c) 2 c, 2 mod pII (e;— )—laMM )l (MM )I
L= ¢ i<j=1 I (M ,p) IM M,p) IM21
JozaLa)
(L) | L2I

(A.6.6): Jacobian of the transformation (A.3.19), t.e., J(Xy, Xy, X3 : Zyq, Zyy,

0(LyLs)
I Lsp) |L,

Zyy, Zng, T, Ly;). Using (A.6.1.9) we have J(X;:T, Ly) = 2' 11 et
i=1

Next we notice that J(X;, X, : Z11, Z1or Zog, Zsg) = J [( §1 ) : ( Zy 212) (L )] =1,
. 2 21 22

. L.
since [_ La] is | . Therefore it is easily checked that the total Jacobian

L »
= 2" Il api

i=1

D/ \Lyy

(A.6.7):  Jacobian of the transformation (A.3.14), i.e., J(X,, X, : Uy, U, U,
Uy, ¢, Lyy, Lyy), where Xy(pXny) (p > n,) is of rank ny, 2(go><'n2) (p < ny) s of rank
P, the ¢’s are distinct and U, has a positive Jfirst row and U, a positive diagonal. We
start with the transformation (A.3.15) and use the Jacobian result(A.6.4.1)and rename
the symbols. The transformation is X pxng) = T(pxp) Lipxny) D z(nyxXny)
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X In(my Xmy), Xofp X ) = T(pXp) My(pxny) subject to Ly being |, MM = I(p),
L’'L = I(n,) and 7' being non-singular, and the Jacobian being given by

- . ny Pl
(A.6.7.1) J(Xy, Xy i T, &5, Ly, Ly, My) = 22 1 gatre— 1o 2
i=1 =1
-1 7 ’ ’
x mod nll'[ (e;—¢;)=+ AL'L) | 0L Ly) (l(MzM.zl .
1<j=1 a(LD) »LI a(Lw) LH a(le)) Mzz
Let us write
K, p—m
L(pXny) = .
Ky, 1 ny
LG
. K; 1 p—my
To this L now, if we adjoin, as we could, a matrix such that K(p X p)
K, dn
—1
K, Ky |p—m
= is orthogonal (note that this could be done since L'L = I(n,)),
K, K,dn
" Pp—m

it will be seen that the number of independent elements in K is the same asin L. This
is verified as follows:

In L (by virtue of L'L = I(n,)) the number of independent elements are
pny—nq(n;+1)/2. In K the total number of elements is p*—(p—mn,)(p—n,—1)/2 and
by virtue of KK’ = I(p), the number of constraints is p(p+1)/2, so that the number

of independent elements is p2—(p—mn ) (p—ny—1)[2—p(p-+1)/2 = pny—ny(ny+1)/2.
If we now put

U, [73 p—ny p—M {T’l 0 K, ks pP—1
(A.6.7.2) U(pxp) = = ~
LU, U, dn mi T, T, K, K, dn,

mp—n P N P~
(by examining the right hand side we note that the left hand side is really of the struc-
ture indicated), we observe that the number of independent elements in U which
is p?—(p—mn,)(p—mn,—1)/2, is the same as in (T, K), i.e., as in (T, K,, K,), which is
p(p+1)/2+pn,—ny(n,+1)/2. It will be shown in the next article (and we assume
the result here) that

. A _ . A _ o™ ¥ apei . ot A\p—ny—i 0(L’L)
(A613) IO T K= I T, L) = 2 Mgt T ) ) |,
so that, by taking the inverse, we should have
~ ~ p—n . ’
(A674) J(T, KI: U) — J(T, LI: U) =11 l(umi)p_'n]—’b a(L L)
=1 G(LD) Ll

? .z
A L 7
i=1
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Also if we put

(A.6.7.5) Ly(p X ny) = K(pxp) My(pXny)

(where by virtue of KK' = K'K = M,M, = I(p) we have L,L, = I(p)), then exactly
as in (A.6.3) (treating K as a constant | matrix) we have

(A.6.7.6) J(My: Ly) = |2206Ma) [ (oUale)|
a(AMw) M2I a(L2D) or
Thus we have
~ ! ’ p—'n
(A67.7) I, Ly, My 2 U. Ly) = 230 [ JOUL) (P
NLp) M, a(Ly;) L, =1
2”1 ﬁ is_z a(L2Lé)
i= HLyp) Loy
Using these and remembering that [U| = |T| = lg’[tii, we have
i=1
(A.6.7.8) J( X Xy 2 6, U, Ly, Lyy) = J(X), Xy 0 e, T, Ly, Lyy; My)

: ‘ _mg P—m—1 ny—1 p—n‘ . , ’
— 21’] U[7L1+712 P !—[ Ci 2 m()d' 1H (Ci_c]) l_I 1(u31i)p—N1—Z . a(LlLl
i=1 i<j=1 i=1 a(Lm) Ly
y a(LzL;>L
ALop) |1,

which gives J(X,, X, :¢, U, L,;, Li;p).

Now for the prqof of (A.6.7.8) with a transformation of the form (A.3.14) we
proceed as follows. We start from (A.6.7.2), postmultiply both sides by the pxp

) I 0 ny
matrix » Where M is | and then write
0 M I p—mn,
« nl p _—nl

U, U J
(A.6.7.9) U:[ ’ 3] [I O:I=[U1 USM]—_—[VI V3] (say)
v, U dlo n U, UM v, V,

= V(say)
_ [1 o] _
=TK = TN (say).
lro 2 (say)

b
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Then using (A.6.1.9) and (A.5.5) and (A.5.6) we have

(A.6.7.10)  J(V:T, K) =21 tg;—i/ 2000 N t%_i/ (KK
=1 (N p) N, i=1 0(Kp) K,
(M M)
AMp) |m,
and also
pr—n . ’
(A.6.7.11) J(V U, My) = 9P —m .H 1(u3ii)29—"1—’b (MM
= 0(Mp) M,

Using (A.5.6) and taking account of the remarks after (A.6.6.1) it is easy to
check that

(A.6.7.12) OEK) oD
) i, [0z,

Now combining (A.6.7.9), (A.6.7.10), (A.6.7.11) and (A.6.7.12), we have

p—n ) ’
AV — 227 AL (wg)P ™™ AU A M, / oM M)
=1 a(MD) M;
- 27 121 t{;‘idf' dLdM, ~ 6(L’L)I oMM’) , which proves (A.6.7.3).
i=1 9(Ly) ILI (M p) M,

(A.6.8): Jacobian of the transformation (A.3.18.19), d.e., J(X,;, X,: 4, By,
B,, ﬁ:,, B,, ¢’s, L), where the ¢’s are distinct, ~A s non-sigular with a positive first row,
Bl 3
B, B,
be derived in the same manner as in sub-section (A.6.2). We shall not need it in
this monograph and so will not derive it. We merely state without proof that

B, has a positive diagonal and B = [ ] is non-singular. This Jacobian can

(A.6.8.1) J(X,, X,:4,B,¢s, L) = 2°| 4|2 BT Byger
=1

nop—gml ool g oL
X ﬁ (1—c,) 2 ] 2 mod 1’1_[ (Ci—-cj)/ M ,
=1 i<j=1 o(Lg) .
L4 p
where L=1{ L, | q and is subject to LL' = I(p-+q),[31].
Ly ~q—p



APPENDIX 7
Canonical Reduction of Certain Distribution Problems
(A.7.1): If X(pxn) (p < n) has the probability law (4.13):

(1J@emT|2|% X exp [— } tr 27 XX'1dX,

then the distribution of the characteristic roots bf XX’ (to be called ¢’s) could not involve
as parameters anything except the characteristic roots of = (to be called ’s).

Proof: Note that, a.e., XX’ is p.d. so that, a.e., all roots ¢(XX') are positive.
Notice also that, a.e., they are also distinet. It is of course assumed that % is sym-
metric p.d., so that all ¢(Z)’s i.e., y’s are positive. Using (A.3.3), set & = uDyp’,
where 4 is | . We have now tr T1XX' = tr(uDyp') X X" = tr D g5 ' XX'uD yi75
(using (A.1.5) and the orthogonality of p). Now put #'X = Y or X(pXn) = u(pXp)
X Y(pxn) and observe that, by (A.4.1). ¢(XX') = ¢(YY'). and tr Dy, p'XX'pp =
tr Dyy YY'. Also by (A.5.2), J(X : ¥Y) = |p|"= L

Remembering further that || = [u]|? il v;. it is easy to check that Y has
i=1
the probability law:

pn n

(A7.1.1) [1/2m)? i ¥¥]exp[— ttr Dy, Y¥7]a¥

1

which, in view of the fact that ¢(XX') = ¢(YY’), proves (A.7.1). For the distribu-
tion of ¢(XX'), therefore we can, without any loss of generality, start directly from
the above form of probability law which is accordingly a canonical law for this purpose.

(A7.2): If X(pxmny), XopXn,) (p < ny,n,) have the joint probability law:

plng4-ns) Ny Ny

[1/(277) 2 |zl|?|22]?] eizp[—%tr (21—1X1X1—|—22“1X2X;)]XmdXz,

%, and I, being each symmetric p.d., then the distribution of (X X)X, X)) (fo
be called ¢’s) could not involve as parameters anything except the c(Z,Z57Y)’s (to be
called y’s).

Proof:  Notice that, a.e., ¢(X,X{(X,X;)"1) are positive and distinct. Since
Z, and X, are each p.d., use (A.3.4) to set I, = uDypu’ and I, = pupu’, where x is non-
singular and all y’s are positive. We have now. using (A.1.5), tr X X =
tr Dyt X, X'~ and tr T30 X, Xp=tr X, X;n'l. Now put p-1X,=7Y,; and y1X,
= Yy, ie., Xy(pXn) = ppxp) Yy(pxn) and XopXmp) = u(p X p) Yo{pXny) and
observe that, by (A.4.2), ¢(X,X}(X, X5 = oY, Y (Y, Y5)™). Also, by (A.5.2),
J(Xy, Xy 0 Yy, ¥Vy) = |p|matne,

188
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Remembering further that |X,|=u|2 il viand | X, =|p|2 we check that
. =1
Y, and Y, have the joint probability law:

pitny) | m
[Uem o Ty | x exp 3 telDy, ¥, 75+ ¥, Y)Y, ¥,

(A.7.2.1)

t=

which, in view of the fact that ¢(X, X (X,X;)) = «(¥Y,Y (Y,Y,)1), proves (A.7.2).
If we are interested in the distribution of these roots, i.e., of the ¢’s we can, without
any loss of generality, start right away from the above form which, for the purpose
of this problem, will thus be called a canonical distribution law.

X, ]
A73): If X=| | (p < ¢ ptq< n)has the probability law (4.15):
)

X, g
n
n n ( 21 Y | X , , l
[1/(2m)#tD2 | X |2 ] exp < —tr J [X, X,] aX, dX,,
L S Sy X, J

o Zp | P . ) . .
where 3 = is supposed to be symmelric p.d., then the distribution
Zpp g d g

p q

of e[(X; Xy UX XWX X)) HX X)), (o be called ¢’s) could not involve as parameters
anything except ¢(Bt Bip551 Z1,) (to be called y’s).

Proof: Notice that, a.e., the p ¢’s are positive and distinet and also that
v’s are all non-negative. Use (A.3.16) to set X, (pXp) = py(p X p)py(p X D),

SoalqX q) = #o(d X q) #elq X 7) and Zyo(pXq) = m(pxp)[Dy5 0] (PluslgXq),
p 9—p
where u, and p; are non-singular. We have now
-1
/ I D50

D i w0 (p) [Dy» 0] sl 0
(A7.31) I = = , D,

2!y Sae 0 py1 l_ . I(q) 0 pgt
Also

I(p) [Dy5 0] - 1(p) 0

Kq)
0 ) 0 0o Ig—pd.

Ip)y [Py 01~

X D= 0
0
0 Ig—p)d--
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where we notice that, on the right hand side, one matrix factor is the transpose of
the other matrix factor. Taking the inverse on both sides of (A.7.3.2) we have

1

[ 1) s o [ —Dm=y O]
(A.7.3.3) D5 , = D«/-ITI-:"Y 0
I(q) 0
0 - 0 Ilg—p)J.

I(p)

0
X l:Dﬁ/T—‘v] [Dﬂ/l—v 0 ] = M(y)M'(y) (say).
0 0 I(g—p)d.-

Taking into account (A.7.8.1), (A.7.3.2) and (A.7.3.3) and using (A.1.5) we have

X o [art O X,
(A.7.3.4) trx [ 1} (X, XJ] = br M'(y) [ ! :l '- 1]
Xz 0 /451 L Xz

!
1 0

x[X; X3] [ } M(y).

st
Now put py'X; =Y, and pg' X, = ¥, ie., Xy(pXn) = py(pxp)¥y(pXn) and
Xo(gxXn) = py(qXq)Yy(gxn) and observe that, by (A.4.4), ¢(X,X;)UX, X }X,X,)™!
X(XpXj) = (Y, Y)Y, Y (Y, Y YY,Y)). Also, by (A.5.2), J(X; Xp: Yy, Yy)
= || pal™
I(p) [Dy O
Next check that [ZI% = | |"| || [ D5 == |,ul|"i,u2|"ﬁ [1~’}’i];, and
o I(q) =t

finally check that (¥,, ¥,) have the probability law:

qu)n » n Y1
(A.7.3.5) [1/(2#) : H[l—-yi]{] exp !:— % tr M'(y) l: j]
) i=1 Y,

X[Y! Y;]M(y)] dy, 47,

In VierOf the fact that C[(XIX;)—I(XlXé)(XgXé)—l(Xin)] = ¢[( Yl Y{)_l( Yl Yé)( Yz Yé)—l
X(I./ Y. 1)! the probability law (A.7.3.5) proves (A.7.3). Thus, as in the two previous
sections, if we are interested in the distribution of these roots, ie., the ¢’s, we can,
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without any loss of generality, start from the probability law (A.7.3.5), which is thus
a canonical form for this purpose.

- X, p
(A7.4): If X = X, 1 9(p < q, ptagtr < n) has the probability law (4.15):
Xy 7
n
Ty Dy 2 P
preinm
[1/(277) 2 |Z|’Z] exp [—3 Z1XX'1dX, where T = | Z, X5 Xy | ¢
i Ty Zgg - 7
VY g r

s supposed to be symmetric p.d., then the distribution of the ¢’s could not involve as
parameters anything except y’s where ¢’s and y’s are respectively the characteristic
roots  of [X X;— X, Xq(X, X)X X 17X X, — X, Xy( X, X)X, XX, X, — X, X,
X (X X)X X [ X X — X Xy Xy X3) ™ Xy X ]and [y — 13Ty Tia] [ Z1p— 21y T
X [222_22322_312;3]—1[212—2232§’,1213]-

Proof: Notice as in previous section that, a.e., the ¢’s are positive and dis-
tinet and that the 7’s are all non-negative. Use (A.3.20) to set

- Zn s Xy r My 0 2

r D“’TY |
(A.7.4.1) S Za Z | =| O pa|m . I ;

Sl Tl g 0 0%~ |
#y 00
x| 0 uy 0 |,

My 1l jis -

and check that

ty O|pg—~t =N 01_\;3
(A.7.4.2) 0 ftg| g is of the form 0 v, | v
0 |7 0 |9,
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Proceeding as in the previous section we have now

— I —[D__—_ 0] -
gl 0( 0 — YR 0
D___ 0
(A.7.4.3) 2= 0 4l 0 0 ( e J
e L 0 I
AN
5 B 0 I J
[ I 3 0 |
o p | e Oy pe
y “L Jyll—yJ::[: = ]]0 0 fg|pta | =p'TMy)M'(y)u(say),
0 i 0 L ‘1 ‘ - —
‘: ,.«.; l——' 0 0 1265 -
- 0 L
and thus, as in the previous section,
- X,
(A7.4.4) e OX, | [X; X, X
X,
&
=t[X; X, Xé]/l'“lM(V)M'(Y)/FILXz
X, -
- Xy M0 g Y,
Now set X, = 0 uz py Y, |and note that the ¢’s are invariant
X, - -0 0 Ji- Y, -

n

under this transformation. Also J(X:¥) =|ul|" and]Z]2_= |p|® i1 (1—7’1)2_- Thus,
/ im1
finally Y has the probability law

 nptatn) n
(A.7.4.5) [—1/(271) 2 (1—%-)2]

s

.

- -~ Y,
X exp'| —ttrM(y) | ¥, ([¥Y; Y; Y]My) | dYdY.dY,

Y,
which proves (A.7.4) which we take to be a canonical form.
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(A.7.5): If Xy(pXng) and X, (pXn,) (p < ny,but might be < or > n;) have
he joint probability law (4.21): [1/(2m)p(r1+n2)2|S|(ra+n2)/2] exp [—3 tr ZYX,X,
A X, &)X —EN1dX dX,, where Z(pXp) is symmetric p.d. and & is pXn,, then the
distribution of o(X,X(X,X,)), to be called ¢’s, could not involve as parameters any-
thing except c(EE'Z1), to be called ’s.

Proof: Notice that, a.e., out of the p c¢’s, r are positive and p—r are zero,
where » = min (p, »,) and also that y’s are all non-negative, and, out of them s are
positive and p—s are zero, where s < min (p, n,) is the rank of ££’, i.e., of £(p X n,).

Assuming, as we can without any loss of generality, that the last s rows of &,
1.e., the last s rows of ££’ can be taken as the basis, use (A.3.13) to set

, p—s[ ] . , ,
(A.7.5.1) (EE)pxp) = Dy (sXs) [py o] and
S Lty p—s s
8
wy fis | [m me7)s
Z(pxp) = AL, ;
P [y Hs Py P—S
p—s 8
o . ) .
where y = and Ji; are non-singular and D* stands for the diagonal matrix
Sl fly
with s (non-zero and here positive) roots. If we now set
E, | P—s p—s * .
(A.7.5.2) E(pxn,) = = D’ 5(s X 8)v(s X ny),
& s S Ly
n, $§

—1
it is easy to check that v is determined by v.= D*ﬁ,uz—l £, and that w = I(s). Let

Dy 07 s
Dy(pXp) = .
0 0J p—s

s p—s
Recall that s < min(p, n;). Recalling now that #r X&' = tr £'X, and using (A.1.4),
(A.7.5.1) and (A.7.5.2) we have
(A.7.5.3) tr SYX, X;-HX, —ENX,—E)} = tr p X X+ X, Xy — 2%
X D* 5lny ¢ pal-pDyp Yy
Now using (A.1.7) complete v'(n; X s) into an | &'(n, Xn,) and rewrite the right
' D*,5 07 s
hand side of (A.7.5.3) as tr p~YX, X, + X, X;—2X (pXn,) 6'(ny X ny) X 0
.0 n,—$

s s—p
X (PXP)+pDyp}p’ . Put now p7'X, =Y, and pX, 8" = ¥y, ie., Xy(pXm)
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= u(p X p) Yy(pXny) 0(n; Xn) and’ Xg(anz) = u{pXp) Yo(pXn,) and observe that
by (A.4.3), (X, X{(X,X5)™) = (Y, Y (Y, Y;)™Y) since x is non-singular and &’ is 1.
Also, by (A.5.2), J(X;. X,:Y,,Y,) = |p|mtn. Also observe that |Z| = |u|%

Finaly check that (Yj, Y,) has the probability law

p(n1+ns)
(A.7.5.4) [1/271 2 ] exp ,:—%tr‘{YZY;—}—DY—}— Y, Y;—2Y(pXny)

D*./V 0 )
X } 4y, dY,,
0 0

which, in view of the fact that ¢(X,Xj(X,X,)1) = (¥, Y {(Y,Y,)7?), completes the
proof of (A.7.5). We also note as before that for the purpose of any discussion of the
distribution of ¢’s the probability law (A.7.5.4) can be taken as a canonical form. 1In
(A.7.5.4) notice that

D*\/V 0 8 5 N 3
(A.7.5.5) tr Y(pxn,) =2 (Y uvis tr Dy = Z v,
0 0ldn—s = =1
8 p—§

Using (A.7.5.5) the canonical form (A.7.5.4) can thus be reduced to the more
convenient form

p(n14ns) .
(A.7.5.6) [1/2m] exp [—3{ (7, Y{+ Y, ¥+ 29— 25(Fi)o} || dT:d Y
=1

The reader must be cautioned against stretching any further the theorems (A.7.1),
(A.7.2), (A.7.3), (A.7.4) and (A.7.5). TFor example, taking (A.7.1), suppose that 0 < ¢,
S6S .. <eg<owand 0Ky, ... < y,<oo. The joint distrjibution of ¢;’s could
not involve as parameters anything except v,’s and, in fact, it does involve all
these parameters. But it must not be inferred from this (and it is not true either)
that the distribution of ¢; involves just v, wWith 4 =1, 2, ..., p. In fact, the distribu-
tion of any ¢; will involve as parameters all y’s. Nor do the distributions of the
usual symmetric functions of the ¢;’s involve, in general, the same functions of the
7:’s.” The same thing is also true for (A.7.2) — (A.7.5).



APPENDIX 8

Some Results in Integration

(A.8.1): I ﬁxfi_ldx,, — 1 I‘(%) a%’i/l"( 5 &—I—l) ﬁqi.

i=1 =1 s =1 ¢; =1

Z(zifa)% < 1
where ; > 0 and p;, ¢;,4,> 0,V =1,2,...,n. An important special case is where
a,=r,p,= 1 and ¢; = 2, in which case we have
n

(A.8.2): | 11 do, = [1‘(_;_)] r”/2"I‘<%+1).

=1

n
% o} < r(w;>0)

i=1

n .
If, however, we integrate over z,’s inthe domain X 2} < 72, after dropping the restric-

i=1
tion that x; > 0, i.e., if ;s could take both ve and —ve values, subject to ‘21 xr L 13
then from considerations of symmetry we shall have
1 n
: 1 de, — JI R R
(A.8.3): [ 11 do; [I‘< . )] . /F< ot )
3 22 L r?
i=1
Differentiating the above on both sides w.r.t. r we have
1]
. 0 _ n1 n
(A.8.4): | I do, = n[ I‘<§>] r dr/I‘( : +1>.
r < ( b x? )1/2 < r4-dr(r>0)
=1
17 =1 n-1
X (n—1) [1‘(%)] r .
(A.8.5): f II da; = —3 dr(sin 6)"2d0.
= o("g +1)
1/2
n /
r (wa) L rddr(r > 0)
i=1

0 < cos™? [éxia,i/ (éle >*( 5 a? )*] < 64-do

i=1

195
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n n
Proof: Make a transformation y; = X g,/( T ai )t = r* cos 6*, say, and
i=1 i=1

Taja ayla ... a,laT]
n for Moo oo Hon
y; = S py%; (6 = 2. 3, ..., n) such that (@ = % afanda > 0)
j=1 i=1
. fua Pz lumz_

is an orthogonal matrix.

Then using (A.5.4) and remembering that J(x : y) = 1 /J(y 1 X),

2

we shall have 1 dx; - H dy;, i.e., >dy, I dy;, We have furthermore % Yz =y}

i=1 =2 i=1

n n n n
+ S yf= 3 af=1* so that 3 y?=r*2—y} = r*? sin?0*, whence (T y7)!
i iz1 i=2 iz2

= r*sin 0* = u* (say). It is easy to see that the domain: r  7* < r+4drand 6 < 6*
< 0-+d0, is exactly equivalent to » < u* < utduwand v < y, < v+dv, so that

n n
(A.8.5.1) f I do, — | 1 dy,
i=1 i=1
r re rHdr ﬂ<y1<v—|—dv%
0 L 0% < 6+d6 u L u* < utdu
n
= dv 11 dy,
i=2

= dv(n—1)[T($)]" " w"-2du/T (& -+ 1) (using (A.8.4)) = (n— V)[T'E)" " dr

X (sin 0)"-2d0T (_— +1)

which proves (A.8.5). Notice that y, = r* cos 6* and u* = r* sin 6%, whence J(y;,
w¥* 1 1¥, 0%) = r* so that the dy,du*—r* dr* do*.

NLL)

= F(p, n) (say), where L is pXn
O(Lp) \LI

(A.8.6): The iniegral | dL/’
L’'=I(p)

withp < n. This can be evaluated directly but we shall use an artifice to derive
this. Consider the integral

(A.8.6.1) f [1/(2m) % Jexp [—} tr YY" 4,
Y
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where the elements of Y(pxXn) (p < n) vary from —oo to co. It is of course known
that this integral is equal to 1.

Using now the transformation (A.3.11) we have Y(pXn) = T(pxp) Lip Xn)
under LL’' = I(p). Notice that almost everywhere YY’, and so 7' will be non-singular.
The ¢;’s vary from 0 to co and t;’s (¢ #j) vary from —o0 to co. Observe that

YY =77 and tr YY' = % t%. Using now the result (A.6.1.9) we have

i,§=1

pn

(A.8.6.2) 1 =§ [1/(217)2] exp [—% tr YY']dY
Y
- ] Y e’
LL=I(p)

2
x | exp|—t & g fin
! 1>j=1 =1 izg=1

0< fy's < ©
—0 < 1,8 <<
(@ > j)-
But the last integral on the right hand side of (A.8.6.2) is easily evaluated to be

g-ptoni2gpp-D/a 1] T [_nji] . Hence we have the following result (to be repeatedly

=1 2
used):
- ULL)  _  onje-sp —1)/4/ A plr—itl
(A863) Fp,m= | dL 3L LI_n »(p i I‘[ . ]i
LL =I(p)
Another integral that is useful is
(A.8.6.4) [ ane= OLL)

WLI= Fl(p’ ”) (Sa'Y)s
LL'=I(p)

where L is p X7, p < n and where the first row of L is to be non-negative. To evaluate
this we consider the integral

(A.8.6.5) [ [1/(27;)%] exp [—% tr YY'|d¥
Y

where Y(pxXn)(p < n) is such that the elements of the first row vary from 0 to oo
and the other elements vary from —oo to co. Now using the transformation (A.3.11)
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we have Y(pXxXn) = T(pxp) L(p xn), where LL' = I(p) and the first row of L is to
be positive. Then proceeding exactly in the same manner as in the previous case
we should have

? n—i-}1
— 9—Rppn/2—p(p—1)/4
(A.8.6.6) Fy(p,n) = 27"a? ’ /1131 F{ 2 }’

or in other words,

(A.8.6.7) Fy(p.n) = 27"F(p, n),
and hence
(A.8.6.8) Fy(p, p) = 277F(p, p).

Another integral that is useful is the one that arises out of (A.6.1.18), namely,

(A.8.6.9) [ Lo | , a(LTH,?g’;zl,p, Lyl |
Lria,1 (Frem) Ly

where the variables L,,,, are subject to constraints among themselves and also

in relation to the constants L,, which are described by (A.6.1.15). The integral

can be obtained by going back to (A.6.1.18) and equating the integral of the left side

over (X; X{)* < 1(¢ = r+1,...,p), and the right side over (2%: t5) < 1, subject to
. ot

t; > 0(i =r+1,..., p)and over L,,, ;. By using (A.8.1) modified by using a factor
of 2 to allow for each #y(j = 1,2, ..., i—1andi = r41, ..., p) to be both positive
and negative we observe that this leads to the equation

p—r) (p—rip+r-1) .
(A8610) @ T r(24a)—n f i 1‘(”_2’“) (2 41)

i=r+1

X the integral (A.8.6.9),

whence it follows that

(A.8.6.11) I d Lr+1,p1 / l a(Lr+1,pL;+l,p,Lr+1,pL1,r) [

I, gl a(L1'+1,pD) ' LI
wp—7r)_ (p-1)p-r-1) » .
— g 2 4 / it F(n—z—}-l)-
f=r1 2

It is worth a careful notice that this result is inde

pendent of the set of given
constants L ,.
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(A.8.7): The integral l_gexp [—3 & UU|U|? dU, where U(p X p) has its ele-

ments varying from —oo to 0. Using the transformation (A.3.11) we have U(px p)

== T(px p) L(p X p) with an orthogonal L. Notice that | U|= |T|= I t, and that
=1

=

s

almost everywhere 7' is non-singular. Also, as before, tr UU’ = t%. Hence we

z}j:f
have, by using (A.6.1.9) and (A.8.6.3), [31, 32],
(A.8.7.1) j' exp[—} tr UU']| U |%4U = 2° l‘ L, / ! ALL")
U LIZI( 0(Lyp) |1
=I(p)

» » . D
X f exp [—} = g]Ilagte=i I dyy
i>d=1  i=1 i3> =1
0 < tii < 0,
—00 < t,,;j < 00
(>3

_ oz 2’2 & (g—|—p;i+l)/ fir ( p—i+1 ) -

i=1 i=1 2

Since U(pXp), (with a positive first row) = T(p Xp) L{pxp) (where LL'
= I(p) and L has a positive first row), therefore, from (A.8.6.8) and (A.8.7.1) we -have

(A.8.7.2) j exp[—%tr UU']|U|*dU
Ulwith a positive first row)

— o? @212 P2 i 1y (q+j)gi+1) /EII P (p—;’—}—l ) .

=1

(A.8.8): The integral | exp[—} tr vU| U T (@ )i v,
=1
[

U, fjs p—mn .
, -where the first row of U, and the diagonal

U, U,

where U(p X p) = [
n

of 173 vary from‘O to co and the rest from —oo to co.

V, V, p—n U, UM
To evaluate this integral, let V = =

V, Viod n U, UM
n p—n

p—n [ Uy Us1 1 0 n
= , where M is | and with a positive first row.
0 Mip—n

n p—m N Pp—n
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Then we have VV’' = UU and |V| = |U| and

JV:U)= J(Vs, Vo 37MI: U4)“J(V3 Ua:MI) J(V4 U4)

= 2 T (O g 1| /‘a(al(WMM’)l —er B @ [y

i=1

Thus we have

(A.8.8.1) j exp[—4 tr VV'|V]|edV

v

=2 exp[~4te VU U T Opgr=iar x [ diy ‘“IM) .
L i=1 , M,
1
Now substituting from (A.8.7.2) in the left hand side of (A.8.8.1) and from
(A.8.6.3) and (A.8.6.8) in the right hand side of (A.8.8.1) we have, [31],

(A.8.8.2) [ expl—4 r UV U|T (@t aU
i=1

(25

= vyt T p (b i (2t frofp=it)
; :

=1 i=1



APPENDIX 9

Some Results in Integration Connected with the Distribution of
the Largest and the Smallest Roots

(A.9.1):  Evaluation of the integral

z i s E e (1 — )™ e (1—x,_)™ ... 2 (l—z,)™
| | | B e .
fe . - Mig— _. » _
=0 X3-1=0 xe=0 w1=0 =1 x:ns 1 (l_xs)ns t xsii (l_ws——l) =1 s xl # l(l_xl) ot
oy (1 — z)™ wg ) (1—mg_,)™ ... 2t (l—a)™ l
My Ny My 15Mgq on My, N
=ﬂ[x’ Mgy M3 Mg_y, Ng_y; oons My, Ny (sa'Y):ﬂ z; S »
Mgy Mg Myg_qs Mgy --r My, My
Mgy My Mig_qsMgq -en My, My

, (say).
The last expression is in the form of a pseudo-determinant whose meaning is made
clear by considering, for illustration, the case of s = 3, for which

- Mg, Ny My, Ny My, By
(A.9.1.1; Bl = M3, Ny My, Ny My, My

Mgy, Ny My, Ng My, Ny —J

z x3 T2
= .‘. Ty (1—x,)" dag [ I 2y (1—a,)"™ dey I " (1—w;)" d,
0 0 0

T3 Ty
— § Tyt (1 —2,)" da, I a7 (1—x,)™ dxl-J
° :

@ X3 Lo
- J. 5 * (1—~,)" doy [I g (1= day j. 2y (1—xy)" da,
0 0 0

x3

Zg -
[ dmaayde, [ o (1—xi)"”dx1J
0

z X3 X2
+ f 25t (1—a)™ das [[ &y (1—2,)" dav, f 22 (1—z,)" da
0 0 0
&3 2
[ ape—aym day | w;”su—xl)”mxl] .
0 0

201
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In opening out the pseudo-determinant it is very important to stick to the
order of the factors, indicated in the expansion on the right side of (A.9.1.1) and to
keep in mind that the factors are non-commutative. It is also clear that the whole
expression will be zero if any two columns become equal in

ms_l, ’n/s_]_ e ml, nl

Mg, Ny
My, N Mg qs Mg_q oo My, Ny
My, Mg Mog_q, Mg - My, Ty
Next we use the notation
(A.9.1.2) Plac; mgy Mg Mgy My_15 e 3 My, Ty)

@ . Tg
= [ a—a) do, | oyt (1—p ) de,,
0 0o

&3
.. j. xgt (1 —a,)"* da, j M (1—a,)™ da,
0 0

k3
so that f(z; m, n) = ({ r{(1—x,)"dx, = the incomplete f-function, using a slightly

different notation from the usual one. Also let 2a™(1—2)" = f(x;m n). In
terms of (A.9.1.2), the expression (A. 9.1.1) can be rewritten as

(A.9.1.3) B(; my, 0 Mg, Mg My, Ny)— P75 My, Mg My, Ny ; My, )
—B(; My, My; Mg, g My, My) PS5 Mg, Mg; My, 1y Mg, M)
+Bl@; my, ny; mg, ng; My, ng)—pPl; My, Ny My, Ng; Mg, Ng)

and (A.9.1) can be rewritten as

(A.9.1.4) T p(x; my, mg; my_y,m,_g;...5 My, ny),
1 7’ ’ ! by .
where (mg, n;) (m}_y, n,_y),..., (m,, n,) is any permutation of (my, n,), (my_y, my_4), ...,
(my, ny), the summation is taken over all such permutations, the positive or negative
sign is taken exactly as in the usual expansion of a determinant, care being taken
to preserve the izati '
P order of factorization from u, through #,_,, 2,_, down to z;.

(A.9.2): Lemma;:
:}oxm( 1—a)f(x)dz

— 1 m, n ¢ ¢
—“ﬁ_’m [NxO (1 _xo) +lf(x0)+ I xm(l _x)n+1 fl(x)dx“‘m j‘ xm—l(l _x)"f(x)dx] N
0

0
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where m, n > —1, 2y < 1, and f(x) is such that f'(x) and the three integrals on two
sides of (A.9.2) exist.

Proof: 'The proof can be carried out by integration by parts, the integration
being with respect to the function (1—2)™*" and the differentiation being with respect
to the function f(z)z™/(1—x)™. A

' 3
(A.9.3) Lemma: X B(x; m,, n,; My_y, Mgy} -3 My, M) =.II1 Blx; m;, n;),
=

where on the left hand side (mg, ny), ..., (my, n,) is any permutation of (mg, n,),...,(My, Ny),
the summation is taken over all such permutations and where the factors on the right
hand side have been already defined.

Proof: The nature of the proof will be evident by considering, for simplicity
of algebra, the case of s = 2. We have

X 2
(A.9.3.1) [ am—ay) e, | o —ay)™ doy
0 0
X Xy
+§ 2yt (1—,)" da, i 72 (1 —a,)" da,
0 0
z 2 z T
= ey dz, | Q)™ dut | ol ()™ Aoy [ (1) ey,
0 h 0 @5

(which is obtained by interchanging, in the second term on the left side of (A;9.3.1)
the variables z, and z, and rewriting the domain of integration in the appropriate
manner)

x

@
- § a5 (1—a,)"* da, j oyt (1—y)" day = f(x; my, ny) Blw; my, 1y).
0 0

(A.9.4): Lemma: I B%; My_1; Byqs -3 My, By My N5 Myg, By_y 5 o0 My, Ny)
T

= flx; m, n) B(&; Mg_y, Ng_y5 ...; My, 1), where B, is the result of putting (m, n) in the
place and filling up the other positions with (m,_y,My_y), (Mg_2,Ms_9), ---» (M, M), T running
from 1 to s. . Notice that each B, is an s-fold integral, while B(x; My_y, Mgy -.0r My, M) 1S
an (s—1)-fold integral.
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Proof: The mechanism of the proof is brought out by considering, in part
cular, the case s = 3, where we have

(A.9.4.1) P mg, ng3my, my; M, )Py Mg, Ng3 My N My, Ny)

+Byla; m, 15 My, Ng; My, M)

v

l
O ey &

T3 x
xy 2 (1—,3)" davg I Tpt (1—,)" da, 5 (1 —az, )z,
0 0

z T3 X3

+ .‘ xgﬂz ( 1 _x3)n2 d:lt3 jl x’;”q (1 —xz)nl dxz 5 xin ( 1 —‘xl)ndx
0 0 b
x og o

-+ j' xg’bz (1 —x3)n2 dx‘, J. x;nl (1 _xz)m dx2 I .’I/‘;n(]. _xl)n([:)
0 S w3

tby interchanging the variables and suitably adjusting the domain of integra o
= flx; m,n) Bla; my, ny; mb ny).
(A.9.5): Lemma:

Mgy My oee My, Ny .
—_1y-1 . Y ) ’ '
TE( 151 =; My, Ny oo My, Ny
\
_ Mgy My e My, My J
- Mg, Ny vvn My, Ny

== ;(_‘ 1) f(x; m;—/r+1a n;—r+1) B Z;
Mgy Ny o My, My
where B[z ; ...] on the left side is the result of replacing the ™ row of Plz;...]5y

' o ’ ’
(Mmgy M), -, (mg, ny) and B lx; ...] on the right side is the result of suppressing the r™

row and ** column of flz; ...]. Notice that Prlz;...] isan sxs and B, [x;...] an
(8~—1)X(s—1) pseudo--determinant,
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Proof: The mechanism of the proof will be made clear by considering for
simplicity the case of s = 3 and picking out from the expansion of each pseudo-
determinant on the left side of (A.9.5) (for the case s = 3) the term involving the index,

say, (mg, ny) and putting together all such terms (with index mg, n;). We have thus
the following contribution from such terms

(A.9.5.1) Bl my, ng; My, Ngy5 My, Ny — (5 My, Ngs My, Ny5 My, Ny)

+B(m; myyng; mg ngs my, ny)—fla; My, nys Mg, NG5 My, M)+ (@5 Mgyng; My ng; My, M)
—Bla; my, g5 My, Na; Myyng) = S5 my, n)[ BT My, Ne; My, 1)) — P My, Ny5 Mg, Wy)]

. ., : My, Ny My, Ty
= fB(x; mq,n x;\ '
P; ma, ms) ’ My, Mg My, Ny

(using (A.9.4))

Mg, Mg Mg, Ny My, Ny
’ ’ .
= p(x; mg, ng) fyy zil Mg, Ng My, Mg My, Ny

My, Ny Mg, Ny Ny, Ny

fusing the notation introduced in the beginning of lemma (A.9.5)). This immediately
shows that if, in the general case, from the expansion of each pseudo-determinant
(with the proper sign) on the left side of (A.9.5) we pick out the term with the index
(m, n,) and add together such terms (with the same index (mg, n,)) we shall have the
following contribution

Mgy, Ny .. my, n]_
(A.9.5.2) Blx; mg, mg) fra| ®3

m

g5 70

S

whence the proof becomes obvious by combining different expressions like (A.9.5.2)
involving the different indices (m,,n,) (r=1,2,..., s).

(A.9.6): Reduction and evaluation of the integral

My, W My_1, M oo My, N

18 xi; . . . ’

Mgy W My, M e My, M

where m, > My_y > ... >my > —1 and n > —1 and the m’s differ by integers.
& - B
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We have already seen from (A.9.1.4) that the pseudo-determinant can be ex-
panded into XAf(x; m;, n; ...; my, n) where (m;, ... m;) is any permutation of (m,,
.., my), the summation is over all such permutations, s! in number, and the positive
or negative sign is to be taken according as it is an even or an odd permutation. Re-
calling from (A.9.1) that £ will be zero if any two columns of the pseudo—deﬁerminanb
are equal, let us try to reduce m, to m,_; by successive integration by parts. Toward
this end consider the typical term in the expansion and in that term let m, be the largest
exponent == m, (of course). To reduce this exponent by 1 we proceed as follows. By
definition

m’
(A.9.6.1) Blas mg, ns oimy g, ngmy, 0y my_y,m; ..., m, ) = !. x5 {(1—a,)" du, ...
0
Tpt2 ! Zr,1 r ,
. [ er Y(1—a,,,)" dx, ., j " (1—z,)" dx,f Ty (1 —a,_y )" da,_,...
o ° 0
Ty

j. 1 Y1 —a)" dz,.

0

Now using (A.9.2) we have

Lyr—y Ty T2

(A.9.6.2) [ arm gy da, | o1 —a e, o | 20t (1= day
0 0 [}]
Zre1
*-I 2 L=z, )'de,  fla,; m!_, n; ... my, n)

1
o myt-nt+1 [ 8 (A =2, )" Bl iy; my_y, 255 My, )

Zr+y

+_" (1—2z,)" 8" (x,; m,_;. n; . My, n)da,

L 2%

-1 ’ ’
+-om, .“ & (1—a, )" Bz, ; My_y, M5 .05 My, n)dm,:‘

— 1 m
= 1 10— 2 B my_y s s i, )

FB@ps1s my_y by, 20 im) o, ;.5 ml, )

+ M2 ime—1, 05 mi_y, w; L ml, w)]
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(notice that f'(x,; m,_y, n;...;m;, n) = x:”r’-l(l—x,)” play; m)_y, m; ... m;,n) and also

that on the right hand side of (A.9.6.2), the first and second f’s are each an (r—1)-fold
integral while the third # is an r-fold integral).

Now substituting the right hand side of (A.9.6.2) we have (A.9.6.1) reducing to

1 . .
(A.9.6.3) | [—Bla; mg, 05 ... My -Fmg, 2n--15my_y, m; ., my, 1)
8
+-B(x; Mgy 05 s My, M5 Mgy g, 20415 My, 1 Ly My, M)
N ’
+mf(x; my, ;.. My, myme—1, ng L my, 0],

where the first and second f’s are each an (s-1) fold integral while the third 8 is an
s-fold integral with the index m, reduced to m,—1. It is easy to check through
(A.9.6.1) to (A.9.6.3) that the reduction to (A.9.6.3) holds for r = s—1,5—-2, ..., 2.
If r = s, it is easy to see that (A.9.6.3) will be replaced by

. 1 / '
(A.9.6.4) - [—folx; my, n+1) pl; my_y, m; ...; my, n)

mytn41
+B; my_y+my, 2n+1; my_y, m; .0 my, 1)
+m,Blx; my—1, n; my_y, n; ...; my, )],

and if r = 1, (A.9.6.3) will be replaced by

1

(A.9.6.5) Tt

[—B@; myg, n5 ..o5 mg, n; mgt-my, 2n4-1)
+mgBa; my, n; ... 5 mg, n; M—1, 0))

We can now use the rather convenient notation

(A.9.6.6) Bxs ml, ny .o; ml g+, 2015 m,_y, 0.5 My, )
4 ’ -(_— (——. ’ . . !
=B(x; My, N; ...; Mypq, N3 Mgy 015 my_y, 15 .05 My, )

where ((;n-,, Zti—_l) is supposed to be added to the (m,,;,n) on the left so as to reduce
the integral by one dimension,

/
(A.9.6.7) Polee; my, n+1) flz; m:"‘.l’ N s My, M)
— ,
= f(x; my, n+1; my_y, 03 ...; my, n), and

(A.9.6.8) Bla; mgy ms .5 my_g Mg, 20415 My_gy W «nn} My, N)

! ' — . ! . 4 . . 4
= (w5 My Ners Mgy =15 My_g, N5 My_n, W5 .05 My, M),

A-10
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- —
where (m,, n+1) is supposed to be added to the (m;_,, #) on the right so as to reduce

the integral by one dimension.

Mg, N My_q, T my, N
(A.9.6.9) Ll z;
My, M My, N my, 1
(_ (_,——
mg, n+1 Mg 4,0
1 , —
=— m,n+1 m, {, %
myt+n—+1 ’ w M -1
—
mg, n+1 Mmg_y, 1
- —
mg, n+1 my_y,n
- —
+ 1 sl = My, N1 my_q, N
my+n—+1
— U My, N
/ms——l,n My_q, T
m ‘
+ — x; .
my+n-+1 A ’\
me—1, % m_;, n

Using now (A.9.6.1)—(A.9.6.8) we have

My, N

mqy, M

My, N

my, M

my,n /-

where, in the second pseudo-determinant, [] indicates that the corresponding terms in
the formal expansion are not to be considered at all, [] being introduced merely to
write the pseudo-determinant in a complete form. Recalling the notation (A.9.6.6)—

(A.9.6.8) and the lemma (A.9.5) it is easy to see that

R
My, 1 my_y, n
(A.9.6.10) i z;
— —
my, 1m0
My_q, 1
= ﬂo(x§ m‘sy n‘l_l)ﬂ x;
ms_l, n

My, N

ml, n



DISTRIBUTION FUNCTIONS OF SMALLEST AND LARGEST ROOTS 209

Mgy, T o my, M ]
5—1
+ = (_l)rﬁr €r; ms+ms—17 2n+1 ms+m12 2n+1 ’
Te=1
L Me_1, N e My, M 4

where Blz; ...] is an (s—1)-fold pseudo-determinant obtained by substituting

(m,4+m,_y, 2n4-1) ..., (my+my, 2n+-1) for (m,_y,,n), (Ms_g, 1), ... (my, n) in the 7%
row of

— My g, B oo Mg, N\ =
the (s—1)-fold pseudo-determinant g} x;
| My_gs M oo My, n /A
— Mgy T oo My M\
Thus (A.9.6.10) = fy(x; my, n+1) | x;
— My_q, M oo My, N =
My g, B ... My, N
-+ E(—l)’ Bla; my—+my_,, 2n+1) B, | %5 g
My 1, N oo My, T

where 4,, is the (s—2)-fold integral obtained by suppressing the " row and r** column
of the (s—1)-fold pseudo-determinant f already referred to. We have likewise

- -
Mg, n+1 My_y, M ... M, N
(A.9.6.11) Bl = 5 —
mg, 41 My _y,m ... My, N
O My1s T -ee my, N _
— My_q, T My, N ]
8—1 )
= S (—128, | m|  metme, 2l o mybmyg, 2]
r=1 )
_ My_y, N my, n _

My gy T oo My, M

=8—21 (‘_"1)1‘1 ﬂ(x’ ms+ms-r’ 2"’+1) ﬂrr x;

r=1

M_y N o My, N
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‘Now substituting from (A.9.6.10) and (A.9.6.11) in the right side of (A.9.6.9)
we have

my, N My_q, N my, N
(A.9.6.12) pi o
my, N My_q1, N My, B
M1, oo My, N
—_— 1 .
= — ﬂﬁiﬁflﬂo(x’ mg,n+1) f | x;
£
Mg 1, N oo My, N
ms_l,n cer ml,'n
9 s—1 re1 '
+ mtmgl(—l) Blx; my-+m,_,, 2n4-1) B, x;
My_1s N oo My,
my,—1l,n - MmN iee My, N
m
4 2z
m, +n-+1 B
m,—1,n Mgy, N my, N

It may be noticed that the left hand side is an s* order pseudo-determinant while,
on the right hand side, the first A «; ...] is an (s—1)* order pseudo determinant,
the second group of terms involves f3,,, each such B, being an (s—2) order pseudo-
determinant, and the last term has a £ which is an s-th order pseudo-determinant with

the exponent m, reduced to m,—1. It may be also noticed that £, may be con-
veniently written as

7 My 13N oo My_pq, W My o g, B ooe My, N

My 13T cos My, MW My 1, N is My, N7

(A.9.6.12) 'thPs gives us a recurrence relation, whereby, proceeding along the chain
and reducl'ng m, to m,_, (in w(hich case the pseudo-determinant will be zero) we have
the following reduction of the integral by one dimension.
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- mg, M ... My, N
(A.9.6.13) gl =
Mg, ... My, N
" ms_l, n ... ml’ n
Mg 1, ... My, N
Mg — Mgy
o« I
X “21 /”o(x: ms—r +19 n+l)(ms)7’—1/(ms+n—{_ 1)7"
My 1,1 vov Mypi3, N Mgy g, W oo My, T
§—1 . Mg~ Mgy
23 (-1 = Bl x
r=1 77=1
Ms_1, M oo Mgpy 1, N My_pqs M oo My, N

x ﬁ(wa ms+'ms-—r—‘rl+ 1, 27L—I— 1)(ms)r’—1/(ms+n+ 1)1" H

where (m), stands for m(m—1)...(m—p-+1). The s-th order pseudo-determinant
is thus thrown back on (s—1)* and (s—2)" order pseudo-determinants, and these
again on (s—2)** and (s—3)” order ones and so on till we get to first order pseudo-

determinants which are easily evaluated from the incomplete f-function tables.

(A.9.7):  Evaluation of the integral

x Xg 3 Lo
8
J. . I _‘. I MU dx, = plz, xgim,, n; ..., my, nl (say)
i=1
Tg==xo Xs-1==%0 Ly=To T1=%o
My, B My, N .. My, B
| myn myy,m .. m,n
= pl =, (say})
| Mgy W My, N oo My, [

where M stands for the determinant under the integration sign in (A.9.1). We shall

also- use the nolation
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(A.9.7.1) B, Tg; Mg, Tgs Mgy Mg_y; +ens My, Ny)
x Zs
= s 2y (1—2z,)" da, I 2t (1 —,_,) " sy
Zo Lo
&g Xy
| ey dn, a1y e,
Zo o

Proceeding now exactly as in sections (A.9.1), (A.9.2), (A.9.3), (A.9.4) and
(A.9.5) with obvious modifications at each stage we have in place of (A.9.6.12) the
following result

— My, W My_g, N . My, N =
ms,n My, N . M, N
{A.9.7.2) £ |z,
- My, B My_1, N . My, N
- My_q;n ... My, m\
=—p x
o My_1, T My, N
Mg—Mg—y
X rrz.:—=1 [(ms)r'—l/(ms+n_+1)7'][ﬁ0(x; ms—r’+1, n+1)‘—(_1) 8ﬂ0(x0; ms—rl+1: ’fb+1)]
— Mgy, M oo Mypq, M Mgy gy M oen My, M
8-1 Mg—mg—y My 35N oor My prg, M. Mgy g, M onn My, N
+2 3 — 1) .
— 1'IZ=1 ( ) ﬁx,xoa
| Mgeqs T oo My 1, N Mgy g, M oo My, N —
(ms)r' 1 ’
— x, Xy, My+m, ,—r 41, 2n1-1
(ms+n+1)r' ﬂ( bl 1 3 8 87 + 3 + ):

where (m), = m(m—1) ... (m—p~-1) and y(x; m, n) stands for 2™(1—=z)*. The s-th
order pseudo-determinant is thus thrown back on the (s—1)" and (s—2)"* order
pseudo-determinants, and so on till we get to first order pseudo-determinants which
can be easily evaluated from the incomplete beta function tables,
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