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PREFACE

It is both a pleasure and an honour to address
these lectures to the Indian mathematicians gathered
in Calcutta for the Indian Science Congress and
the first Indian Statistical Conference ; and especially
to make contact with the Statistical Laboratory
established in this city by the initiative of Professor
P. C. Mahalanobis.

The course is based upon numerous research
papers written during the period over which the
Theory of Estimation was making its most strik-
ing progress. To give a proper perspective I have
aimed at presenting each important step from
more than one point of view. Some repetition
has, therefore, been intentional in order to make
the course self-contained. Fo: advanced students
the lectures should be supplemented by a further
study of the papers referred to.

For the orderly presentation of the material in
book form, I am indebted to Professor Mahalanobis
and his colleagues at the Statistical Laboratory.

January, 1938, R. A. FisHER.
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1. Tae LoGicAL SITUATIONS IN WHICH
PRoOBLEMS OF ESTIMATION ARISE

in order to arrive at a- distinct formulation of
statistical problems, it is necessary to define the
task which the statistician sets himsclf: briefly,
and in its most concrete form, the object of statis-
tical methods is the reduction of data. A quantity
of data, which usually by its mere bulk is incapa-
ble of entering the mind, is to be replaced by rela-
tively few quantities which shall adequately repre-
sent the whole, or which, in other words, shall
contain as much as possible, ideally the whole, of
the relevant information contained in the original
data.

This object is accomplished by constructing a
hypothetical infinite population, of which the
actual data are regarded as constituting a random
sample. The selection of such a hypothetical
population may be called the problem of specifica-
tion. Thus specification is the hypothesis in the
light of which we interpret our data. The law of
distribution of this hypothetical population is
specified by relatively few parameters, which are
sufficient to describe it exhaustively in respect of
all qualities under discussion. Any information
given by the sample, which is of use in estimating
the values of these parameters, is relevant inform-
ation. Since the number of independent . facts
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supplied in the data is usually far greater than the
number of facts sought, much of the information
supplied by any actual sample is" irrelevant. It is
the object of the statistical processes employed 1n
the reduction of data to exclude this irrelevant
information, and to isolate t he whole of the rele-
vant information containe d in the data.

Coasider, for example, a sample in which we
have got values of the yield y corresponding to
different doses of manure z. Prof. Mitcheslich
and his students have taken the formula

Y= A[l—¢ k=~ b e ()

to denote the relation between the manure z and
the yield Y. It should however be uoted that this
gives us an ideal or undisturbed relation between
z and Y. The observed yields y will be distributed
about Y, so that Y is only the expectation. for a
consiant value of 2. We may reasonably take y to
be distributed normally about Y, so that y may
be taken to bg distributed according to the follow-
ing law :—

e

df=7(*2;;)3 - dy e {2)

where Y is given by (1).

This completes our specification. From the
sample the statistician will then want to estimate

the values of - the unknown parameters A, k, b
and v,
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The choice of specification is fundamental to
the statistician, There are all degrees of empiri-
cism about that choice as the above example would
have made clear. Sometimes, however, established
theory gives us the specification. For example
consider

AB, Ab, aB, ab

the four phenotypes in which a progeny of self-
fertilised- heterozygotes can. be distributed with
regard to two recognizable contrasts, e.g., the
maize factors, Starchy v. Sugary and Green .
White.

The frequencies with which these four pheno-
types are expected to occur are proportional to

2+p? 1-p®  1-p® p?
4 4’ 4 4
where p is the recombination fraction regarded as
equal in both sexes.

Here also errors of random sampling come in,
but the specification is complete with p®only for
the expected frequencies in -all distinguishable
classes are expressible in terms of p°.

The above is an example of a discontinuous
frequency distribution, but statisticians frequently
come across continuous distributions, the most
familiar being the Normal or Gaussien Law of
Error. This is given by

(x—m)?
1 20
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Skew variations may also be considered, for
example, we may consider the frequency distribu-

tion

_ 1 z—p P T a ‘Zﬁ
df—-—p—T( - ).e .

The specifications we shall consider can thus
involve one or more unknown parameters. For
example the one given above involves the three
unknown parameters p, u and «. From the data
we naturally want to make estimates of these para-
meters. Whether these estimates are good or bad
will be our problem. But for this we want to
know also how these estimates are distributed in
random samples.

Following specification, we thus come to the
problem of distribution, especially the distribution
of the statistics which we put forward as estimat-
ing our parameters. Such problems therefore have
a great importance for us. For it is in their light
that we can judge of the merits of our estimates.

2. METHODS OF SOLUTION OF PROBLEMS OF
DisTriBuTION

We shall consider in broad outline the methods
available for solving problems of distribution.
There are three general methods :

(i) Method of Euclidean Hyperspace.
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(11) Method of Mathematical Induction.
(i11) Method using Characteristic Functions.

(#) For example, suppose we have n quan-
tities =, x,, ... =, all distributed independently and
normally about zero with unit variance. Consider

x? = 8(z?)
and let us try to find the distribution of ¥’

We can consider z,, 75, .. » Z, as the co-ordinates
of a point P in a space of n dimensions. If O is
the origin of co-ordinates then

OP2 = x?

Therefore x* is constant over concentric hyper-
spheres. The hypervolume included between two
such hyperspheres is proportional to

X"~t dx
The joint distribution of x,, @, ... , . is given by
1\ _18@?)
df = (72;7) e BTy day. ..., day,

so that the distribution of x 1s
Const. e %ng"’"dx

The value of the constant can easily be shown to be

(2T
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using what is known as the Eulerian integral of
the second kind, and remembering that the total
frequency is unity.

This problem was actually solved by the
method of characteristic functions by Helmert in
1875. It emerged in a different form when Pearson
put forward his test of goodness of fit, and was
rediscovered by °‘ Student >’ in connection with
other problems.

(22) The same problem can be tackled by the
method of induction. If z,, a,, ... , 2, are in-
dependent values of a variate distributed normally
about zero, with unit variance, then the quantity

X?=2, 2422+ ... +x,2

has a distribution given by :—

1 - -
U= sy, GadTD B gy

n—
S
To prove this by induction, for =1 the ex-
pression reduces to

\/__2__ . o~ B dx

T

which is clearly the distribution of ¥’ for a single
observation. If, now, 2u is the sum of squares
of n independent values of the variate, and has
the distribution
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and x is an additional observation independent of
the others, then

x? = 2u+ta?,

and its distribution is to be inferred from the
simultaneous distribution

df= n;l-? \ VAR Lo B 8
(*z°)

If we now substitute
u=1% (x”—m"’)_,du =d (3x3)

we have

2 }n—2)

Iy, VT (5T

in which z takes all values from 0 to x. Integra-

tion with respect to z will therefore yield a factor

X" giving the distribution

af = L gt TR age)

(=5)!

in accordance with the general formula.

(i) Consider any frequeacy distribution

df = flx)dz
Then

eitw f(x)dz
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always exists and always lies within the unit
circle.

If now we pws

M,(t)=§ & f@)de

then M_,(t) isthe characteristic function of the
distribution

df = f(z)dzx..
Similar definitions can be given for the multi-
variate case. Consider now a bivariate (or multi-

variate) population with unkno.wn parameters 8,

¢, lll’
df=f(x, Y, 6: o, "l’) d%dy
Consider any statistic T
Ly, X 3 see o
T= F( 1 2 )
y“ yz, “on ,y"

based on a sample of size n.

Then the characteristic funection for the distri-
bution of T would be

itT
s‘---sse f@y 41 6.0, %) f(3, Yz, 6, b, ¥)f(@nr Yu, 6, ¥

x dx,dy,dz,dy,...dx,dy,.
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From this we could at least theoretically write
down the distribution of T'. Henee the method
of characteristic functions .is potentially a very
powerful method.

If z and y are two independently distributed
variates then the characteristic function of the
distribution of their sum is given by

M:ﬂv(t) = M_(¢). My(t)
If we put
log M,(t) = K,(t)

then K, () may be called the cumulative function
of the distribution of z. Then

K .p(t) = K (t) + K, ()

1f
S(x) =z, 42, +...+ 2y,
then
KS(J-‘)(t) = "Kz(t)
or again

K,&-S(z) (t) = nK,(t/n)

giving us the characteristic function for the
distribution of the mean of = quantities z,,
Tay 0oy Ly

2—(1116R)
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3. THE LiIMITING VALUES OF STATISTICS

If we have decided on a method of estimation
and if we apply it to larger and larger samples,
then, for our method to be of any value, our esti-
mates must show increasing agreement with one
another,  More rigorously, our estimating
statistic T must tend to a limit in the following
sense t—

1f T, be any statistic calculated from a sample
of n observations, there must be a limiting
value Te such that if € be-any positive number,
however small, the frequency (or probability) with
whieh | T,—Tw | exceeds e, tends to zero as
tends to infinity.

In symbols

P{|Ta=T | >e}—>0

In the large majority of cases this quality of
tending to a limit is possessed. The criterion of
consistency then simply states that this limit Te
is the same as the parameter & estimated by T.
The criterion of consistency is defined only in the
case when a limit exists. The question is left
open when the limit does not exist. A good
example of a statistic not tending to a limit is
mven by Cauehy's.distribution,

dz

1
if = 7o 1+lz—u?’
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E(x) does not exist as

zdx L
1+ (z—p)*

cannot be integrated, since the integral does not
converge.

Suppose a radio-active source is placed at a
unit distance in front of a screen so that the foot
of the perpendicular {from the source on the screen
is at a distance p from the origin.

If then « 1s the distance from the origin of
any point where an a-particle emerging from the
radio-active source strikes the screen, then = 1s
distributed in the Cauchy distribution.

iForif @ is the angle that the direction ol
motion of the particle makes with the perpendicular
then

df=717~d0

z—p = tan 0

dz = sec?0df
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dzx

Therefore, df = T tan)
1 dz

I T TR

If we take n observations of this kind and if
we take an average of a sample of #, the average
is distributed in the same way as a single observa-
tion. To prove this we evaluate

E(eit@—m)

as a contour integral.

N

0 B

Writing 2 —p=2 and taking ¢ positive
M. () = EQHEH)) o ,LS._l__euzaz
T ow ) 1422
Equating this to the contour integral around the
pole, z=1i+¢, gives
de__ __, o

L o
T e +¢*

Similarly if ¢ is negative, M, (t)=¢,
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so that in general we can write M, () = e~/t!
Or’ Kz(t)-:_“‘tl

Therefore

t
K-}S(x) ) = nK,(;) = —-n

Hence the characteristic function for the distri-
bution of the average of n readings is exactly the
same as the characteristic function for the original
distribution. This proves that the average is
distributed in the same way as a single observa-
tion.

t

n

= - |t

If now one should want on the basis of our
observations to locate the radio-active source, or in
other words to find the value of u, then taking the
mean of a 100 readings, say, would amount to
throwing away 99 readings and retaining only a
single one of them chosen at random. In this
way oné loses therefore 99 per cent. of the infor-
mation.

The proof of the fact that the distribution of

the mean is the same as-that of a single reading
can also be given by direct analysis.

Let z and y be two quantities ‘independently
distributed in Cauchy’s distribution so that their
joint distribution is

_ dy dx
U= vy-p?) v e—p7)
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If we put

then, transforming the variables z, ¥y to u, ©
we get

2dudv
a2{l+u-v—p)?} {1+ @m+v—p?}

df =

Integrating out for v from —o© to 4+ we get the
distribution of u again in the Cauchy form

=___du
1= i =7
This shows thata sample of 2, 4, 8,.. .., 2*

readings is distributed in the same way as . To
complete the proof we may now show by the same
method that if

U = pxr+qy

lpl +1al=1

then u 1s again distributed in the same way.

Here the first moment of the distribution is a
very unsatisfactory statistic. But we can demon-
strate that the data are not worthless for the point
for which we want to use them. It is only our
method of estimation that is wrong.
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4. 'THE DISTRIBUTION OF THE MEDIAN

Let us consider how the median is distributed.
Let us suppose there are n = 2s+1 observa-
tions from a population distributed according to
the law

df = ydx
Let ¢(w)=y ydzx
med

Then, the distribution of the median is

2Dy b))t id+o(2)} fyde

sls!
or
const. {1—4¢2(x)}*ydx

If now y=y, at the population median then for
large values of s the distribution of the median
reduces to the normal limiting form

- 4sy0 Qw2
const. e

where z is the deviation of the sample median.
The variance of the median is equal to
1
85y, 2
which is approximately equal to

1
4ny3
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In the case of the Cauchy distribution under
consideration

ERES

Yo =
Therefore, the variance of the median

2
V (median) = T
4n

Thus the median has increasing precision as
the size of the sample is increased. Hence from
the median we could elicit a good deal of informa-
tion from large samples. The median satisfies the
criterion of consistency.

5. HR CRITERION OF EFFICIENCY

Among statistics which satisfy the criterion of
consistency we shall now consider a particular
class, viz., those which satisfy the criterion of
Efficiency. In a large and important class of
con-istent statistics the random samplihg distri-
bution tends to the normal (Gaussian) form as the
size of the sample is increased, and in sucha
way that the variance (the square of the standard
deviation) falls off inversely to the size of the
sample. The criterion of efficiency requires that
the fixed valu: to which th: variance of a  statistic
(of the class of which we are speaking) multiplied
by n tends, shall be as small as possible. An
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efficient statistic is one for which this ecriterion 1is
satisfied. If we know the variauce of any efficient
statistic and that of any other statistic under
discussion, then the efficiency of the latter may be
calculated from the ratio of the two vaiues. The
efficiency of a statistic represents the {raction,
of the relevant information available, actually
utilised, in large samples, by the statistic in
question.

Let us again go back to our normal population

_ (z=m)®

df = _l_e 2 gy
\/27117

and suppose we want to estimate w.

The variance of the mean of a sample of n 1s

v
n

Hence n times the variance is equal tov. If on
the other hand we use the median then the variance
is

1

dnyd
where now
I S
Yo = Vo
so that the variance of the median is
71'_’0
2n

311168y
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Therefore n times the variance is %” Hence the

median is only 2 times as efficient as the mean.
T

It shall appear later that, in the case of a normal
population, the mean has the minimum possible
variance and is therefore efficient.

This naturally raises ths question whether we
can find a batter statistsic than the mean. A
certain a.nount of enlightenment on this question
can be obtained by noticing a special property of
the mean. The joint distribution of a sample of n
observations is given by

_Bz—p?

1 n P U
<*E—T> 3 2 d.l:l. dxz. e d:l:,,
T

Sx—p)? = nx - w2 +Slz—7)°
where z is the mean.

Here by using methods already explained the
distribution of z itself comes out in the normal
form

= —niz—p?

n ; -
— e 2 gz
)

RS
o

If we were to take the mean value as fixed and
consider the probability that the sample has a
given composition consistent with this constraint,
then by dividing the frequency of the sample, by
that of the mean value, it appears’that given the
meéan, the probability of the sample having any
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given composition is independent of x. Thus any
other statistic besides z gives us no further infor-
mation about p once ¢ has been calculated. 1f
T be such a statistic then the joint distribution of
-« and T will reduce to the form

f @ T, 4)dz dT = ¢ (%, #) . Y(T, @) de dT

so that for a given value of z, T is distributed
independently of u.

fMhus we have shown that the mean satisfies a
more penetrating criter.on, that is, the criterion
of Sufficiency.
J In general, if 0 1s any parameter, T, asufficient
statistic in estimating that parameter, and T, any
other statistic, the sampling distribution of
simultaneous values of T, and T, must be such
that for any given value of T, the distribution of
T, does not involve 8.

This will evidently be the case, if

(6, T, Ty) . dT; . dT,

be the probability that T, and T, should fall in the
ranges dT,, dT,, and if

f(6, Ty, Tg) = ¢ (6, Ty) . ¢' (T}, Ty)

It this condition is fulfilled for all possible
statistics T., then will T, be a sufficient statistic.

When a sufficient statistic exists it is equiva-
lent, for all subsequent purposes of estimation, to
the original data from which it was derived.
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6. THE Mrraop oF MaxiMalL LIKELIHOOD

The form in which the criterion of sufficiency
has been presented -is not of direct assistance in
the solution of problems of estimation. For it is
necessary first to know the statistic concerned and
its surface of distribution, with an infinite number
of other statistics, before its sufficicncy can be
tested. For the solution of problems of estimation
we require a method which for each particular
problem will lead us automatically to a sufficient
statistic if onc exists, and in any case to an
efficient statistic. Such a method is provided by
the Method of Maximal Likelihood.

If in any distribution involving unknown
parameters 6,, 0,, 6, ..., the chance of an obser-
vation falling in the range dx be represented by

f(l’, 6]v 0‘_), ...)dﬂ},

then the chance that in a sample of n, n, will fall
in the range dx,, n, in the range day, and so on,

will be
! e

The method of maximal likelihood consists
simply in choosing that set of values for the
parameters which makes this quantity a maximum,
and since in this expression the parameters are
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only involved in the function f, we have to make

S (log f)

a maximum for variations of 0, 6,, 6,, etc. In
this form the method is applicable to the fit@ng
of populations involving any number of variates,
and equally to discontinuous as to continuous
distributions.

T should like to make clear at this stage the
distinction between this method and that of Bayes.
Bayes put forward, with considerable caution, a
method by which such problems could be reduced
to the form of problems of probability. His
method of doing this depended essentially on postu-
lating @ priori kn>wledge not of the particular
population of which our observations form a
sample, but of an imaginary population of popula-
tions {rom which this population was regarded as
having been drawn at random. Clearly, if we have
possession of such a priori knowledge, our problem
1s not properly an inductive one at all, for the
population under discussion 1is then regarded
merely as a particular case of a general type, of
which we already possess exact knowledge, and are
therefore in a position to draw exact deductive
inferences.

If a sample of n independent observations each
of which may be classified unambiguously in two
alternative classes as “ successes ”” and “ failures *’
be drawn from a population containing a relative
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frequency z of successes, then the probability that
there shali be a successes in our sample is, as was
first shown by Bernoulli,

nl a (1__\n-a
al(n—a)!l @ (1~2)

This is an inference, drawn from the general to
the particular, and expressible in terms of probabi-
lity. We are given the parameter x, which
characterizes the population of events of which our
observations form a sample and from it can infer .
the probability of occurrence of samples of any
particular kind.

If, however, we have a priori knowledge of the
probability f(z)dz that 2 should lie in any specified
range dx, or if, in other words, we knew that our
population had been chosen at random from the
population of populations having various values of
x, but in which the distribution of the variate «
is specified by the frequency element f(x)dx of
known form, then we might argue that the proba-
bility of first drawing a population in the range dz,
and then drawing from it a sample of # having «a
successes, must be

n!

adm—gr = 1 —z)"=* f(z)dz

Since this sequence of events has occurred for some
value of z, the expression above must be propor-
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tional to the probability, subsequent to the obser-
vation of the sample, that = lies in the range dx.
The postulate which Bayes considered was that
f(x), the frequency density in the hypothetical
population of popuiations, could be assumed a
priori to be equal to unity.

As an axiom this supposition of Bayes fails,
since the truth of an axiom should be manifest to
all who clearly apprehend its meaning, and to
many writers, including, it would seem, Bayes
himself, the trath of the supposed axiom has not
been apparent. It has, however, been frequently
pointed out that, even if our assumed form for f(x)dx
be somewhat inaccurate, our conclusions, if based
on a considerable sample of observations, will not
greatly be affected ; and, indeed, subject to certain
restrictions as to the true form of f(z)dx it may be
shown that our errors from this cause will tend to
zero as the sample of observations is increased
indefinitely. The conclusions drawn will depend
more and more entirely on the facts observed, and
less and less upon the supposed knowledge a priort
introduced into the argument. " This property of
increasingly large samples has been sometimes put
forward as a reason for accepting the postulate of
tnowledge a priori. It appears, however, more
natural to infer from it that it should be possible
to draw valid conclusions from the data alone, and
without a priori assumptions. If the justification
for any particular form. of f(z) is merely that it
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makes no difference whether the formis right or
wrong, we may well ask what the expression is
doing in our reasoning at all, and whether, if it
were altogether omitted, we could not without its
aid draw whatever inferences may, with validity,
be inferred from the data. In particular we may
question whether the whole difficulty has not arisen
in an attempt to express, in terms of the single
concept of mathematical probability, a form of
reasoning which requires for its exact statement
different though equally well-defined concepts.

If, then, we disclaim knowledge a priori, or
prefer to avoid introducing such knowledge as we
possess into the basis of an exact mathematical
argument, we are left only with the expression

nl
m z®(1- z)"~*,
which, when properly interpreted, must contain
the whole of the information respecting © which our
sample of observations has to give. This is a known
function of z, for which, in 1922, I proposed the
term ¢ likelihood,” in view of th2 fact that, with
respect tn x, it is not a probabilivy, and does not
obey the laws of probability, while at the same
time it bears to the problem of rational choice
among the possible values of z a relation similar to
that which probability bears-to the problem of
predicting events in games of chance. From the
point of view adopted in the theory of estimation,



MAXIMAL PRECISION ATTAINABLE 25

it could be shown, in fact, that the value of z, or
of any other parameter, having the greatest likeli-
hood, possessed certain unique properties. in which
such an estimate is unequivocally superior.to all
other possible estimates.

7. THE MaxiMAL PRECISION ATTAINABLE

We shall now first show that if T be an esti-
mate of an unknown parameter € and if in large
samples T is distributed normally with variance V,

then the limit, as n tends to infinity, of niV cannot

exceed a value ¢ defined independently of the
methods of estimation.

Let f=f(z, §) stand for the frequency of a
particular kind of observation, ¢ for that of a
particular kind of sample and @ for that of all the
kinds of sample which yield a particular value T
of the statistic chosen as an estimate.

Then in general

logg = S (logf)

where S stands for summation over the sample;
next

® =73 (¢)

where 2 stands for summation over thé possible
samples which yield the same estimale; and
finally
1= 3 (D)
4—(1116 B)



£6 STATISTICAL THEORY OF ESTIMATION

where 3 stands for summation over all possible
values of the statistic. 'When continuous variation
1s In question, symbols of integration will replace
the symbols of summation 3 and 3.

If T is distributed normally about 6 with
variance V,

_ (T—0)
o=—a—06 NV gp
V27V
Hence
82 1
“p BT =y

Since this is independent of T, we may take
the average for all values of T, and obtain

Hence

/ 2
1 1 [B®
V=2$GW)

since 3'(®) is independent of 4.

Now consider
¢

6

u=

S |
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as a variate, among the samples which lead to the
estimate T. Hach value of u occurs with frequen-
¢y ¢, so the variance of u is

L S(pu0)- 5-3%u)

)41

but the variance of u is positive, or, in the limiting
case, zero ; in taking the mean for all values of T
it follows that

' 0¢ oe
(%) -+5l(35)
is positive or zero. In-other words,
1 1{ O¢ \?

where 1t is to be noted that the quantity on the
right is the average value for all possible samples

of
(34

and is therefore independent of the method of
estimation. To evaluate it we may note that

% ' 92
33 P (80) -3 29’6‘07108 ®,
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which is the average value in all possible samples
of

(52
~5g% 108 ?

or the average value for all possible individual
observations of

82
—-n =1
692 og |

1 o |2
"[T ,ao]

It appears then that, in large samples in which
the statistic is normally distributed,

or of

1 .
nV =

where 1 is the average value of

1o |
Fooee ]

or, if =" stand for summation over all possible

observations,
2
iy (2]}
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We shall come later to regard i as the amount.

of information supplied by each.of our observa-
tions, and the inequality

‘17 <ni =1
as a statement that the reciprocal of ‘the variance,
or the invariance, of the estimate, cannot exceed
the amount of information in the sample. To
reach the conclusion, however, it is necessary to
prove a second mathematical point, namely, that
for certain estimates, notably that arrived at by
choosing those values of the parameters which
maximize the likelihood function, the limiting
value of

2 =i

nV

Proposition. Of the methods of estimation

based on linear functions of the frequencies, that
with smallest limiting variance is the method of
maximal likelihood, and for this the limit in large
1

samples of o

is equal to .

Let z stand for the frequency observed of
observations having probability of occurrence f and
let m =nf, the expected frequency in a sample of
n. Consider any linear function of the fre-
quencies,

X = S (kx)
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the summation being for all possible classes of
observations, occupied or unoccupied.

If the co-efficients k& are functions of 8, the
equation
X =0

may be used as an equation of estimation. This
equation will be consistent if

S(kf)=0

for all values of 6. Differentiating with respect to
6 it appears that

5 (1-5% o) o
(%) s (12) =0
Since the mean value of X is zero, the sampl-
ing variance of X is
S(k*m) =n 8 (k2f)

but as the sample is increased indefinitely, the
error of estimation bears to the sampling error
of X the ratio

1 1
X T ok
30 ¢ gy
If, therefore,
n



MAXIMAL PRECISION ATTAINABLE 31

tends to a finite limit,

_ 1
ok
S(f*'a?

the sampling variance of our estimate is

S(k2f)
nS® (f g_;f )

or, using the condition for consistency,

S(k2f)
of
n82 (k 21)

We may now apply the calculus of variations
to find the functions % of € which will minimize

the sampling variance. Since the varianee must

be stationary for variations of each of several values
of k, the differential coefficients of the numerator
and the denominator, with respect to k, must be
proportional for all classes. Hence,

af
kf oo 36
which is satisfied by putting

k:l.if

KL
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This also satisfies the requirement that
S (kf) =0
for all values of 8. The equation of estimation

thus obtained,

s(_’;.—a%f =0

1s the equation of maximal likelihood. The limit-
ing value of the sampling variance given by
the analysis above is

1
nV=
1 8f"
s 2D
or %]:S{;_ ,(%)’}:i

The condition for the validity of the approach
to the limit is seen to be merely that ¢ shall be
finite. Cases where 7 18 zero or infinite can some-
times be treated by a functional transformation of
the parameter; other cases deserve investigation.
The proof shows, in fact, that, whereiis finite,
there really are I and no less units of information
to be extracted from the data, if we equate the
information extracted to the invariance of . our
estimate.

This quantity 4, which is independent of our
methods of estimation, evidently deserves careful
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consideration as an intrinsic property of the popu-
lation sampled. In the particular case of error
curves, or distributions of estimates of the same
parameter, the amount of information of a single
observation evidently provides a measure of the
intrinsic accuracy with which it is possible to eva-
luate that parameter and so provides a basis for
comparing the accuracy of error curves which are
not normal, but may be of quite different forms.

For example, take the Mendelian case consider-
ed earlier, where the frequency distribution in the
four classes were taken to be

2+ 1-6
4’ 4

where 8=p*

Then
of _ _ a1
—6—0—-# 1 i 1
and
1_(312_1 11 11
f \69 T*2ver 1-8° 1—-6" 6

Therefore

i = 1+2¢
T 2%(0-8) 2+6)

which is the information each seedling observed
contributes relevant to the estimation of the value

of 6.
5—(1116 B)
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If we take the Normal distribution

_ fe—p)?
fdz= 1 e 2 gg

o

1 af\ oot

where V is the variance of the mean of the sample.
This shows that the mean contains all the infor-
mation about the parameter that the sample can
supply.

Let us next turn to the Cauchy distribution

then

1__ _ dx .
7 ° 1+ (z—p?)

L 6]‘.2—‘ ( 3 2
e

+ 72
o 4tan%6
T sectd
-7 [2

fde =

where z—pu = tan 6

n

2

t.e., amount of information is n/2, and the least

. . . 2
possible variance 18 —-. 'We have already found
2
that the variance for the median is z—,; Hence

the efficiency of the median is ~8§.
w
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8. FREQUENCY SPACE

Suppose there are s classes and the probability of
an individual falling in the kth class is p;. If n is
the size of the sample then the expected frequency
in the kth class is n.p,. Of course p, is a function
of the parameter 8 to be estimated. Any sample
of n observations is distributed among the s
classes, the observed frequency in the kth class
being a;,. Then

S{a)=n

The following representation by means of
hyperspace geometry will be useful to us. The
sample in which the observed frequency in the kth
class is aj is represented by a point with co-ordi-
nates (a;, Gg,...04,...0,). In this way every sample
is represented by some point of an s dimensional
space. Since a,, 0, etc. are integral, only the
lattice points of this space can represent samples.
Corresponding to any given value of 0 if

My, Mo, eas Mgy o.My

be the expectations in the different classes, then
we get the Expectation point (m;, ms,...m,...m,).
For different values of & we have- different expec-
tation points, their locus constituting what - we
may call the curve of HExpectation. When =
is increased indefinitely the lattice reduces to a
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continuum about the -expectation point. The
frequency with which our sample is observed is

a3 ag ax a,
l.az l.a, | P Pe PP,

with the restriction

Sa)=n

Supposing now we choose the size of our
sample at random from a Poisson series with mean
N, so that the chance of getting a sample of size
n is

e 5 1

Hence the frequency with which the sample
(ay,as...0z,...a,) will be obgerved becomes

e’—N Eﬂ . ‘n! ap paz pak pa'
nl  aylaeglia, l..a, ! p1 2 T

Also as N is the expected size of the sample
N Pe = My
Hence the frequency becomes

a, ag ay a,
mm*S.m ...m
-8 (my). ) ) E s

€
a’l ,az !"‘ak ‘I,..a, !

s
=1II
1



FREQUENCY SPACE 37

The a’s are now all independently distributed
in different Poisson distributions. If now m is
increased without limit, then the Poisson distri-
bution tends to Normal with the same mean and
variance.

Then

2, = i‘_"v_;'%%
tends to be normally distributed with unit variance.
Thus we get a Normalised 1isotropic distribution.
The sample points (x,, ;,...2) now form a
globular cluster of normally distributed points
about the expectation point, and

x? =8 (22?)

is simply the distance of the sample point from
the expectation point.

The problem of estimation is to find from the
sample point the most appropriate point on the
curve of expectation. Thus every method of es-
timation is virtually equivalent to dividing up space
into what may be called equistatistical regions
such that every sample point on the same region
leads to the same estimate. The criterion of con-
gistency then simply states that the equistatistical
region leading to any estimate of 6 should actually
cut the curve of expectation at the point corre-
sponding to this value of 6. Efficient statistics
have the peculiarity that the equistatistical region
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corresponding to such a statistic cuts the curve of
expectation at right angles in the transformed
space. The maximal likelihood solution is unique
in that, in addition, its equistatistical region is
linear. The equistatistical regions for minimum
x? are not linear and touch the maximal likelihood
regions on the curve of expectation.

9. AMOUNT OF INFORMATION FROM FINITE
SAMPLES

If now we want to apply our ideas to small
samples, then instead of 1V we must consider the
quantity

2
,1{ 8@
3 cIT( ao>

.

which we may regard as the amount of informa-
tion extracted by our method of estimation. It
has already been shown that

2 2
1/09 1{ 0¢

\

so that the amount extracted can never exceed the
amount supplied. We have now to consider the
condition under which the whole of the available
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information can be extracted. The condition is
that

O¢
96

~s|r—~

should be constant over any equistatistical region
for all values of 8. In this case the equation
of maximal likelihood will provide a sufficient
statistic.

For if this is the case

%9 (log )

depends, apart from 6, only on the set to which
the sample belongs ; in other words, it is a function
of 8 and T only (where T is the maximal likelihood
estimate). Thus if f is the frequency with which
any sumple, or group of samples having the same
T, occurs, then

1 9

7 ..6% = (6, T).
Now let the frequency of samples such that T lies
in the range dT, and a second statistic, T’, lies in
the range dT’, be F(6, T, T)dTdT’, then since the
above equation will be true for all values of 0, we
shall integrate it with respect to @ and obtain

log =5 $(6, T) do+C
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where C does not involve @, but does involve the
sample readings. If now we find the joint dis-
tribution of 1" and T", it will come in the form

£, T). 5(T, T). dT. dT’
so that F is of the form
£(6, T). 9(T, T)

Hence it is demonstrated that T is a sufficient
statistic.

10. ANCILLARY INFORMATION

When no sufficient statistic exists, then the
original data cannot be replaced by a single statist:c
without loss of accuracy. It is of interest to see
what can be done by calculating in addition to our
estimate an ancillary statistic which shall be
available in combination with our estimate in
future calculations.

‘We have traced the loss of information, in
cases in which no sufficient statistic exists, to the

1 . : .
fact that E)g—z"ls not constant over the equi-
statistical surfaces. By using the maximal likeli-

. 1839 . .
hood equation 5706 =Q, we do in fact impose
this constancy over our chosen region, but only

A A .
for the value 6 =0, where @ is tha estimate at
which we actually arrive. Since, ‘in general, this
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will not be exactly the true value of 6, o gz will-

not generally be constant over our chosen equi-

2
statistical region, if gwlog ¢ shows any variation
among samples leading-to the same estimate.
The expected loss of information due to such
variation has for large samples been evaluated in
the form

e inll SRR

m
m

where
m! = .__am
6
and
v__ 0%m
T

Since the loss is due to using estimates for
different samples having different values of the
second differential coefficient of log ¢, or of the
logarithm of the likelihood at its maximum, we
may examine the effect of using this second

6—(1116 B)
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differential coefficient itself as ancillary informa-
tion respecting our ‘sample. The effect of this

. . 1 8¢ .
is that the variance of 3 5%)—, which measures the

information lost, will now have to be measured
not over the entire equistatistical region, but only

i . . 2 (1 .
in a zone of that region for which @_t%__gqb) is

constant. A higher degree of precision still would
be obtained by using also the third, fourth,.........
differential coefficients, supposing the likelihood
function to be differentiable.

The utilisation of the information recovered
by ancillary statistics is an interesting process.
Suppose different large samples furnished maximal
likelihood estimates T;, T,,...,T; .. T, having
second differential coefficients A, A,...,Az....A,
then from these reduced data we can reconstruct
the likelihood function in the form

1

s 3 Au0-Tye
1

of which the maximum is given by

27AM0-T)=0

of
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It appears in fact that the ancillary information
furnished by the second differential coefficient is
simply equivalent to giving our different estimates
correct weights in place of the average -weights
appropriate to the sizes of the samples from which
they were drawn. Such correct weights will in
fact recover the whole of the information lost in
the limit for large samples, although some informa-
tion will still be lost from finite samples.

In other cases, as explained in *‘ Two New
Properties of Mathematical Likelihood,”” it is
possible using the configuration of the sample as
ancillary information to recover the whole of the
lost information; these cases constitute a second
group of solutions besides those in which sufficient
statistics exist, in which estimates may be made
exhaustive.

In general, the problem of recognising the
character of configuration to be used in this way,
is the Problem of the Nile, which T stated in the
Mathematical Conference of the Tricentenary
Celebrations at Harvard in 1936 : —

‘“ The agricultural land of a pre-dynastic
Egyptian village is of unequal fertility. Given
the height to which the Nile will rise, the fertility
of every. portion of it is known with exactitude,
but the height of the flood affects different parts
of the territory unequally. It is required to divide
the area, between the several households of the
village, so that the yields of the lots assigned to
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each shall be in pre-determined proportion,

whatever may be the height to which the river
rises.”’

In many cases a solution of this problem can
be perceived intuitively. At present, however,
no general analytical approach has been put
forward. Consequently it cannot yet be said that
exhaustive estimation is possible in all cases.
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