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1. INTRODUCTION

Consider a channel which is capable of transmitting any one
of q distinet symbols. Such a channel is called a g-ary channel.
The special case ¢ = 2 is of particular importance. In this case
the channel is called binary. Similarly if ¢ = 3, we have a
ternary channel. The symbols successively presented to the
channel for transmission constitute the ‘input’ and the symbols
received constitute the ‘output’. Due to the presence of noise
a transmitted symbol may be received as one of the other ¢—1
symbols. When this happens we say that there is an error in
transmitting the symbol.

In this paper we shall confine ourselves to the case when ¢
is a prime or a prime power, say ¢ = p* where p is a prime, and
% > 1 is any integer. The symbols can then be put in a (1I)
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148 R. C. Bose
correspondence with the elements of the Galois field GF(qg).
For the binary case the field GF(2) contains only two symbols
0 and 1. Consider a set C of v << g» distincet n-vectors with
elements belonging to GF(q). Given a set of v distinet messages
we can set up a (1,1) correspondence between the messages and
the n-vectors belonging to C. The elements of C may be called
code vectors or code words. Thus each message corresponds
to a unique code vector (word). To transmit a message over the
channel the n elements of the code vector corresponding to the
message are presented in succession to the channel. The output
is than an n-vector (not necessarily a vector of C) which belongs
to the vector space V, of all n-vectors with elements belonging
to GF(g). A decoder is obtained by setting up a decision rule,
which specifies a unique vector of C, corresponding to any vector
of V, such that if this vector of V', is received as an output,
it is read as the corresponding vector of C. The code is called
a group code if the set C of code words forms a group under
vector addition. If C is a vector space (a subspace of V,), then
the code is said to be a linear code. Of course a linear code is
always a group code. By a code C, we shall mean a code, for

which the set of code words is . The number 7 is called the
length of the code?.

2. THE HAMMING DISTANCE

Let &' = (z,, @,, ..., z,) be any vector of V,, the vector space
of all vectors with elements belonging to GF(g). Then the

number of non-zero elements in #' is defined as the weight w(a’)
of ®'. Given two vectors

¥ = (2, T .., 2,), Y = (Y1> Yz> ++e> Yu)»
both belonging to V,,, the Hamming [9] distance d(x’, y') between

@’ and y' is defined as the number of coordinates in which &’
and y' disagree. Clearly

A, y') = wla'~y') = w(y' —a).

. # Here each code word is considered to be of the same length n. When this
18 not the case one has variable length codes,



Error Correcting, Error Detecting and Error Locating Codes 149

It is readily seen that the Hamming distance satisfies the
condition of a metric, i.e.,

(i) d@',y)=0, if and only if ' = y’
(i) d@,y)=dy’, x')
(i) d=,y)+dy’, &) > d', ?').
Let g, and g, be any words of a group code. Then g,—g,
is also a code word. Hence the distance between two code

words is the weight of some code word. Also 0 is a code word,
If g is an arbitrary code word then w(g) = d(g, 0). Hence

Theorem 2,1, If d is the minimum distance between the
words of a group code, then d is also the minimum weight of the
code words.

3. THE GENERATING MATRIX AND THE PARITY
CHECK MATRIX OF A LINEAR CODE

Consider a linear code C. Then the set of code words is a
vector space Vi of rank k. Any set of basis vectors of Vi, may
be regarded as the set of row vectors of a kX » matrix

g1 Y1z - Gn
go1 Y22 -+ Jon
(3.1) G =
9 Je2 0 T L -

Every other code vector is a linear combination of the rows
of G. The matrix G is called the generating matrix of the code.
Let ¢’ = (¢y, €, ..., C&) be any k-vector with elements from GF(g),
then ¢'@ is a code word. Since each of ¢, ¢,, ..., Ck CN be taken
in ¢ ways, the total number of code words is g¥. Such a code

is called a linear code.

Let V, be the null space of Vi. Then
(3.2) Rank V, = n—Fk = r(say).
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The number r is defined to be the redundancy of the linear
code and k is called the number of information places. Let the
row vectors of

“hyy by e By
gy hyy o By
(3.3) H =
__hrl hrz eee hrn

from a basis of ¥,. Then H is defined to be the parity check
matrix of the linear code. If H' denotes the transpose of H,
then

(3.4) GH = 0,

where 0 is the & xXr null matrix.

The code words can be regarded as the set of independent
solutions of the homogeneous linear equations

hy g1 higet... b9, =0

horgiFhosget ...+ ho,9, =0
(3.5) 219171 920> +hy,9

b9 bt 4Ry g, =0

for the variables g, g,, ...,9,. The equations (3.5) are called
parity check equations. The rows of G are a set of independent
solutions of the parity check equations.

Theorem 3.1,

g’ is a code word if and only if ¢H = 0 i.e.,
Hg = 0.

. Theorem 3.2, Let g’ be a word of weight w, belonging to the
linear code C, with parity check matriz H. Let the iyth, toth, ...,

z;,}tbk coordinfztes of g’ be non-zero (all other coordinates being zero).
en there ?s a linear dependence relation, with non-zero coefficients
among the isth, iyth, ..., iuth column vectors of H and conversely.
Let = !
et H (hl, h2, LR hn), and g = (gls Tas -oes g")' Then

Hg = glhl+g2h2+...—{—gnhn =0
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Now Jiyr 910 +++> 9y, 2re non-zero, and the other g¢’s are zero.
Hence

(3'6) gilhil+gi2hiz+"'+giwhiw = 0:

which proves the first part of the theorem. Conversely if (3.6)
holds with non-zero coefficients, then from Theorem 3.1 there
exists a code word whose 4th, i,th, ..., i,th coordinates are
G G > 93, and the other coordinates are all zero.

Corollary, Let C be a linear code with parity check matriz
H : (i) If no m of the columns of H are dependent then each word
of C has weight > m~-1. (it) Conversely if each word of C has
weight > m+-1, then any m columns of H must be independent.

(1). Suppose there is a word of C, with weight m—a, ¢ > 0.
Then there is at least one set of m—a columns of H which are
dependent. A set of m columns of H containing these is also
dependent. This is a contradiction.

(ii). If aset of m columns of H is dependent, then there is a
linear relation among these m columns in which there are m—«,
a > 0, non-null coefficients. Hence there is a word of weight
m—o, o 3> 0. This is a contradiction.

4. EQUIVALENT CODES

If G is the generating matrix of a linear code €, and G* is
obtained from G by column permutations, then G* generates
a linear code C* defined to be equivalent to O.

The generator matrix & of a linear code C is not unique.
If G, can be obtained from G by elementary row operations
(i.e., row multiplication and row addition) then G, also generates
C. If G* is obtained from G, by column interchanges, then G*
generates an equivalent code C*. Thereis a (1,1) correspondence
between the words of C and C* such that corresponding words
have the same weight.

It is readily proved that given an (n, k) linear code C, we
can find an equivalent code C*, for which the generating matrix is
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(4.1) G* =[I, P],
where I, is the k& X k unit matrix, and P is a kX r matrix.

Every word of C* is of the form ¢'G™ where ¢’ = (¢, €y, ...y
ck). But €G* = (¢4, Co, -, Ck3 €Dy HCoPoyt o HCkDEys o5 C1Dyy
63 Por+ .o +-Ck Prr).

Hence the first & coordinates of any word of C* can be arbi-
trarily chosen, then the (k--1)th, ..., nth coordinates are certain
linear combinations of these. A code of this type is called a
systematic code. The first k coordinates of each word are called

information symbols and the last r coordinates the check symbols.
We thus have

Theorem 4.1. Every linear code is equivalent to a systematic
code. '

Let G* be given by (4.1). Now

—P

(4.2) (Ix, P] [ } = —P+P =0.
I

Hence if we put '

(4.3) H =[—-P', I},

then the vector space generated by H* is the null space of the
vector space generated by G*. Hence H* given by (4.3) is the
parity check matrix of the systematic code generated by G*
given by (4.1), and conversely.

5. SYNDROMES AND COSETS

Consider an (n, &) linear code C, with generator matrix G
and parity check matrix H. Given any n-vector v', whether

belonging to C' or not, the syndrome of @' is defined to be the
row vector

s =vH'.
‘ From Theorem (3.1), o' belongs to C if and only if its syndrome
18 zero. Note that the syndrome of any n-vector is an r-vector.

Since the set of code words C, forms a subgroup of the group
of all -vectors, we can form the cosets of C in the usual manner.
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Let
p=9qgk—1, p= qr—1.
We form a table in which the elements of €' are written in
the first row, the null element being in the initial place.

TABLE 1

c ’ ’ ’ ' ,

€ =9y = 0 g, 9s 9,
’ ’ ’ ’ ’ , ,
C; e g,+e g, te, g,+e;
’ ’ . ’ ’ ; ’
C; e, gi+e, gy+e, g,+e;
’ ’ , ’, , ’ ’
C e, g,te, g,+e, g,te,

Let e; be any n-vector not belonging to C. Then the coset
C, is obtained by adding e; to the elements of C. The element
gi+e; of O, is written in the row corresponding to C,, below
g;. Now if e, is any n-vector not belonging to C or C; we form
the coset C, in an analogous manner. Proceeding in this manner
we get v+1 = ¢ cosets counting C itself as one coset. Each
n-vector with elements from GF(g) belongs to one and only one
coset.

The elements in the first column of Table I are called coset
leaders. Informing the coset C; instead of e; we might use and
other element of (; say e;+g; as the coset leader. This will not
change the coset 0;. Only the elements of O; will now appear
in a different order,

ei+gj, ei+git+g;, ..., €i+gut9i-

It is clear that two n-vectors belong to the same coset if and
only if their difference belongs to C.

Theorem 5,1, Two n-vectors belong to the same coset if and
only if their syndromes are equal.

Let ®; and v; be two n-vectors with the same syndrome.
Then ©,H' =uv,H'. Hence (v;—v,)H =0. Therefore v,—;
belongs to €, which shows that »; and v; belong to the same coset.

20
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Comversely if »; and v, belong to the same coset then
v,—v; = g’ where g’ belongs to C. Hence

(v;—v)H = g'H' = 0.
Therefore v,H’ = v,H’, i.e. v; and v; have the same syndrome.

6. USE OF SYNDROMES FOR ERROR DETECTION
AND ERROR CORRECTION

If the code word g’ is transmitted and the received vector is
©', then the error vector is defined to be

(6.1) e =v—-g’,
i.e. Received vector © = Transmitted vector ¢’ +-Error vector e’.

If there is no transmission error ¥ == g@’, and the error vector
e’ is null. If however w of the coordinates of g’ have been
wrongly transmitted, then ¢’ and g’ disagree in w coordinates.
Hence the weight of e’ is w. We say that w errors have occurred
in transmitting g’.

Theorem 6,1, If the minimum weight of the words of a linear
code C is 2t+d-+1, (¢ > 0, d > 0), then any t or a lesser number
of errors can be corrected, and if the number of errors lies between
t+1 and t4-d, they can be detected.

We shall first show that if e; and e; are any two n-vectors
Sl’lch that w(e;)+w(e’) < 2t+d, then the syndromes of e; and
e, are different. If possible let the syndromes be equal. Then
e.H' = e;H’ or (e;—e)H' = 0. Hence e;—e; is a code word.
Hence

2t+d+1 < wie;—ep) < wie)+u(—ep) = wie;)+-uley) < 2t+d
which is a contradiction.

Let Q, be the set of all n-vectors of weight ¢ or less. Also
let Q, be the set of all n-vectors whose weight is not less than
t+1, and does not exceed t-+d. Then the syndromes of any two
vectors -belonging to Q, are different from each other. Let S,
be the set of these syndromes. Then there is a (1,1) correspon-
dence between the vectors of , and §,, such that a vector of
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S;, is the syndrome of the corresponding vector of Q,. Note

that the null vector is contained in Q,, and corresponds to the
null vector in 8,.

Again the syndrome of any vector belonging to Q, is different
from the syndrome of any vector belonging to Q,. In particular
the syndrome of any vector belonging to Q, is non-null.

We now set up the following decision rule for decoding :
Let ¥’ be the received vector. If the syndrome of @' belongs to
S;, we conclude that the error vector is the corresponding vector
of Q,. The transmitted vector is then obtained by subtracting
this error vector from the received vector. If the syndrome of
v’ does not belong to §; we conclude that the received vector
is different from the transmitted word. Thus an error is detected
but we do not attempt to correct it.

We have now to show that this decision rule will correct up
to ¢ errors and detect up to ¢+d errors in the transmission of -
any word. Suppose the transmitted word is g’ and the error-
vector is e’. Then from (6.1),

Syndrome e’ = e'H’
= (v'—g')H'
=vH
= Syndrome v'.

If ¢ or a lesser number of errors have occurred w(e’) <¢.
Hence the syndrome of @' belongs to 8;. There is only one
member of Q,, viz., € which has the same syndrome as v
Hence our decision rule will correctly pick up the error vector,
and then the transmitted word is correctly determined as
v—e =g’

If between i1 and ¢-4d errors have occurred, then {41
< w(e’) < t+d. In this case the syndrome of 'l')"will be n0f1-
pull without belonging to ;. Hence our decision rule'z .wﬂl
correctly indicate that errors have occurred in transmitting,
but we will not be able to correct them.
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If more than t-+d errors have occurred, then the syndrome

of ¥ could belong to 8;. If this happens our decision rule would
lead to a wrong conclusion.

Corollary, If the minimum weight of the words of a linear
code C is 21+1 any t or a lesser number of errors can be corrected.

If the minimum weight is d-+1, errors up to d in number can be
detected,

7. ONE ERROR DETECTING LINEAR CODES

Taking ¢t = 0, d = 1 in Theorem 6.1, we see that for a one
error detecting linear code the minimum weight of each code
must be two. Let us take for H, the parity check matrix,
a single row vector, with non-zero elements from GF(g). Then
no column of H is dependent. From the corollary to Theorem
3.2, each word of the corresponding code has weight at least 2.
Hence the code must be one error detecting. Thus if

H=(h, by, ..., h,), h#0fors=1,2,..n
then ¢’ = (9y, 95, ..., 9,) is a code word if and only if

91 +g5het- ... +g 0, = 0.
We can therefore construct a one error detecting (n, n—1)

code for any n. If o' is the received vector, we decide that
there has been a transmission error if its syndrome

vk vk ... v R,
is non-null, and that there has been no error if the syndrome is
null. In case the error vector is non-null and belongs to the
code C, the syndrome of the received word will be zero, and

we shall wrongly decide that it has been correctly transmitted.
In other cases error will be detected.

8. THE FUNCTION ny(r, ¢y AND THE PACKING
PROBLEM

Let m =2l4+d, t > 0,d>0. We have shown in Theorem
6.1 that if the minimum weight of the words of C is m+1, then
We can correct any ¢ or less errors, and detect up to i4-d errors.
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From the corollary to Theorem 3.2 it follows. that one way of
obtaining C is to find an r X n matrix H, which has the property.
(Pm), that no m columns of H are dependent. Then C would

be the code with parity check mtrix H. One might ask the
following question :

For a given r, what is the maximum value of n, for which
there exists an rXn matrix H, with elements from GF(g), possess-

ing the property (Py), that no m columns of H are dependent %
We shall denote this maximum value by nn(r, q).

The case m =1 is trivial, since any non-null r-vector can
be taken as a column of H, and repeated as many times as we
choose. Hence n does not have a finite maximum. In what
follows we shall suppose m > 2.

If m > 2, and H is an rXn matrix with the property (Ppn),
then no two columns of H are dependent. The elements of a
column vector H may be regarded as the coordinates of a point
of the finite projective space P@r—1,¢), distinct columns re-
presenting distinet points. Hence alternatively num(r,q) is the
maximum number of points we can choose in PG(r—1,q) so
that no m are dependent. The problem of finding such a set of
points in PG(r—1, g) may be called the packing problem.

Lemma 8.1. ny(r, q) > r+1.

This is obvious since we can choose for columns of H, the »
unit vectors, and the vector all of whose columns are unity.

Lemma 8.2. For a given prime power q and a given m > 2,
nml(r, q) 18 & monotonically increasing function of r such that

(8.1) nm(r+1,9) > 1+nm(r,‘q)

There exists an 7 X npy(r, ¢) matrix H, no m columns of which
are dependent. Add an (r-+1)th null row to H, and finally a
last column for which the first r elements. are. zeArog and the
(r+1)th element is 1. This extended matrix still has the pro-

perty (Pm), which proves our result.
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Theorem 8.1. If H is an rXnm(r, q) matriz, with elements
from.GF(q), having the property (Py), then rank H =r.

Rank H < min[7, ny,(r, q)]. Hence from Lemma 8.1rank H 7.
Suppose then rank H = r, <r. Then we can choose r, indepen-
dent rows of H, such that the remaining r —r, rows are dependent
on these, The submatrix H, of H, consisting of these r; rows
has the property (P,), that no m columns are dependent. Hence
Nmlry, q) 18 not less than n,(r,q). However from Lemma 8.2,

(7, @) > (r—71))+nm(ry, ¢). We thus have a contradiction.
If follows that rank H = r.

The following bounds for ny(r, ) are known [1], [8], [9], [12],
[13]. If n = mp(r, g) then

O 147 )@=+ () ) a1t (" Va1 >
(Gilbert, Varshamov)
(@) @ ¢ >1+( 7 Ja—0+(] =1+
n
+ ( . )(q——l)t if m = 2t, (Rao, Hamming)

®) > 14 )=+ Ja—12+.

+( ? ) (q—l)‘-l—(nt_l)(q—l)ﬂ'l if m = 2t+1. (Rao)

. Theorem 8.2. The mazimum value of n, for which there
em;ts an (n, n—r) linear code with given redundancy r and such
that each word has weight at least m-+1, is nal, Q).

We can find an 7 X np(r, q) matrix H, with elements belonging
to G‘-F(q), such that no m columns are dependent. From Theorem
8.1 ‘1ts ramk is 7. Let C be the linear code with has H for its
parity check matrix, then C is an (n, k) code where k = n—r,
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From the corollary to Theorem 3.2, each word of C has weight
at least m--1.

Suppose there exists a linear code (n,, 7,—r), n; < nu(r, q)
with redundancy r, such that each word has weight at least
m—~+1. Then its parity check matrix H, is an 7 X », matrix, with
the property that no m columns of H, are dependent. Hence
(7, q) > ny, which is a contradiction.

Theorem 8.3. For any ¢ < k, the existence of an (n, k) linear
code, for which each word has weight at least m--1, implies the
existence of an (n—c, k—c) linear code for which each word has
weight at least m-1.

Let C be an (n. k) linear code for which each word has weight
at least m|1. We can find an equivalent code C%, for which
the generator matrix G* is in the cannonical form

G* = [I, P),

where P is an (n—k) X k matrix. Let G} be the matrix obtained
from G* by dropping the last ¢ rows. Then each word of the
code generated by G7, belongs to C*, and must therefore have
weight at least m+1. Note that the (k—c-1)th, (k—c+2)th,
..., kth columns of G are null. Let G} be the (k—c)x(n—c)
matrix obtained from G? dropping these columns. Then G}
generates an (n—c, k—c) linear code, each word of which has

weight at least m--1.

Corollary, There exists an [nu(r, §)—C, nm(7s q)—r—c] linear
code, for which each word has weight at least m—+1, for any c,
0 < ¢ < nylr, g)—r.

This corollary follows at once from Theorems 8.2 and 8.3.

9. THE FUNCTION Fkp(n, q)

Let kmw(n, q) denote the maximum number of information

places for a linear code of given length 7, with symbols from
GF(q), and for which each world has weight at least m--1.



160 R. €. Bose
Theorem 9.1, If np(r, q) > n > np(r—1, q), then
kp(n, q) = n—r.
From the corollary to Theorem 8.3, there exists a linear code
[2m(rs )—0; nan(rs @) —1—l;

for which each word has weight at least m+-1. Taking ¢ =
Nm(r, ¢)—n, we get the existence of an (n, n—r) linear code for
which each word has weight at least m+-1. Hence

km(n, ) > n—r.
If possible suppose

km(n, q) = n—r+0, 6> 1.

Then there exists a linear code (n, n—r--6), with redundancy
r* = r—0, for which each word has length at least m+4-1. Hence
from Theorem 8.2
np(r—0, ¢) > n.
From Lemma 8.2,

nmlr—1,q) > n.
This contradicts the hypothesis.

Corollary 1. For a fixed m, kn(n, ) ts @ monionically increas-
ing function of n, but it may stay the same for two conseculive
values of n.

Corollary 2. If np(r, ¢) > n>n (r—1, q), then the minimum
redundancy for a code of given length n, and for which each word
has weight at least m--1, is r.

10. ONE ERROR CORRECTING (OR TWO ERROR
DETECTING) HAMMING CODES

In Theorem 6.1 put 2t+d+1=3, then eithert=1,d =0
ort=0,d=2. We thus see that if each word of a linear code C
has weight at least 3, then we can either use it to correct a
single error or we can use it to detect up to two errors (without
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attempting any correction). The parity check matrix H of
such a code must have the property (P,), viz. no two columns
are dependent. If H is an rXn matrix, then the columns of H
may be regarded as points of PG(r—1,¢). The columns corres-
ponding to any two district points are independent. Thus the
maximum value of n for given r and ¢, viz. nyr, g), is given by
r—

(10.1) nirg) = L1,

which is the number of distinct points in PG(r—1, q). Thus if
we take an rXnyr, ¢) matrix H, whose columns represent all
the distinet points of PG(r—1, ¢) and form the code for which
H is the parity check matrix, then we obtain a one error

fr—1 '
correcting (or two error detecting) (qqi_—, Ic) linear code, where
T ——
k= g—__—l} —7. Since
_.1___1
(10.2) ngr—1, ) = q_’q___l_

we have :

Theorem 10.1. For any given n, we can obiain a one eror
correcting (or two error detecting) g-ary code, with redundancy r
given by

g—1 -1
g—1 > ">

(10.3)

This is the minimum redundancy possible.
The proof follows from Corollary 2 to Theorem 9.1.

Example. Let ¢ = 3, n = 10. Then

331 321
51 2 0> 1

Hence the minimum redundancy is 3, and we can get a (10,’?)
ternary code by taking for the columns of the parity check matrix

21
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H, the coordinates of any 10 district points of PG(2,3). Thus
we may take

1 00011 0 2 11
H=|0 1010110 21

0O 01110 2 101
—e ——l
To use the code for single error correction, we form the syn-
drome of the received vector ¥'. If the error vector is e we
have shown that

vH =e' H'

If ¢ =(00,...,€;0,...,0). Then @ H' = eh;, where h; is
the ith row of H’. Hence the decoding rule is : Form the syn-
drome of the received vector. If it is e¢;h; conclude that the
error (0,0, ... e;, O, ... 0) has occurred.

In the example under consideration suppose
g’ == (19 2; 2; 0) 1’ 1: 2’ 0: 1’ 2):

was transmitted (it is readily verified that this is a code word)
and suppose

v =(1,2,2011,, 2 1, 2),
was received. Now
vH' =(1,0, 2) = 2h;
where hyg is the 8th row of H'. Hence we conclude that
e =(0,0,0,00,0, 0,2 0, 0).

Then g' =v'—e’ is correctly reconstructed.

11. ONE ERROR CORRECTING AND TWO ERROR
DETECTING HAMMING CODES

In Theorem 6.1 put 2t4-d+1= 4, then either ¢ = ,d=1
orf = f), 4= 3. This shows that if each word of a linear code C,
has weight at least 4, then we can use it -for correcting one error,
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and detecting two errors (or alternatively for detecting up to
3 errors without attempting any correction). The parity check
matrix of such a code must have the property (P,), that no
three columns are dependent. As has been shown before the
problem of finding for any given n, a code with the desired pro-
perty, and minimum redundancy depends on the solution of
the following packing problem: To find in PG(r—1,¢), the
maximum number of points, so that no three are collinear. A
complete answer to this problem is known when ¢ = 2, and r
is arbitrary, or when » < 3, and ¢ is an arbitrary prime power.

(a) First let us consider the case ¢ = 2. Consider the finite
projective space PG(r—1,2). The coordinates of any point on
a hyperplane X i.e. a linear subspace of dimension r—2, satisfy
a linear equation

(1L.1) @y 21+ ATyt Gy = O

where the a;’s are fixed constants (not all zero) belonging to
GF(2). Let S be the set of all points not lying on X. Any two
distinct points of S, lie on a unique line, which meets % in a
point. Since each line has exactly three points, it follows that
no two points of § are collinear. The number of points in z
is 2r-1_1, and the whole space has 2r—1 points. Hence §
contains exactly 2r-1 points.

Again from the Rao-Hamming bound on nm(r, ¢) given in
Section 8, nyr, 2) < 2771, Hence

(11.2) ng(r, 2) = 21

For simplicity the equation of the hyperplane ¥ may be
taken to be

(11.3) x,+x+...Fx, = 0.

Then S consists of all points with an odd number of non-
Let H be the rx2r-! matrix whose columns

zero coordinates. : '
or-1 2r—1—7) binary linear

Then the (
represent the points of S.
code which has H for its parity check matrix, has the property
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that each word has weight at least 4, and can be used for correct-
ing one error and detecting two errors. These codes were first
obtained by Hammng [9]. We can now state :

Theorem 11.1, For any given m, we can obtain a one error
correcting and_ two error detecting binary code, with redundancy r
given by

(11.4) 11> n > 2r2-1.
This is the minimum redundancy possible.

(b) For odd ¢ > 2, r = 3 it is known that [1],
(11.5) ny3,q) = q+1.

If we take the set of g1 points lying on a non-degenerate conic
in the plane PGQ(2, q), then no three will be collinear. In particular
the equation of the conic may be taken as

(11.6) T, = T3

If the columns of a 3x(q+1) matrix H, represent the co-
ordinates of the points lying on (11.6), then for the (g+1, g—2)
g-ary linear code which has H for its parity check matrix, each
word will have weight at least four.

(c) Again when ¢ > 2, r = 4, it is known [1], [11] that

ny(4, 9) = ¢*+1.

If we take the set of ¢2+1 points lying on a non-degenerate
unruled quadric in PG(3, q), then no three are collinear. The
equation of the quadric may be taken as

A3+ 011 Ty Age2F = 4y,
where a;,f*+-a,,t--a,, is irreducible over GF(q).

We. can mow use these points to construct a (¢+1, ¢2—3)
g-ary linear code, for which each word has weight 4, and which

may therefore be used for correcting one error and detecting
two errors,
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12, SOME TERNARY LINEAR CODES
Let ¢ =3. It can be proved by geometrical considerations

[2], [3] that the set of 12 points of PG(5, 3), whose coordinates
are given by the columns of

0 1 1 111100 0 0 0
1 01 1220100 00
110 2 219001 0 00

(12.1) H=
112 01200

0
1 2 2 1 01000 01 0
0

1 21 2 1200 o 0 1 |,

has the property that no 5 are dependent. From the Rao-
Hamming bound given in Section 8, 746, 3)  12. Hence
n5(6, 3) = 12. From Section 4, the generating matrix of a
ternary linear code C, with H for its parity check matrix can
be written as

0
01 0 0 00202 2 1.1
0

12.2 G =
(12.2) 00 01 002210 21

00 001 021120 2

0000012121 21|,

Since H has property (), the minimum weight of the words
of the linear code O, generated by Gis 6. As a matter of fact
it can be verified by actual computation, that all the words
have weight 6, 9 or 12. Putting 2t+d+1 = 6 in Thec')'rem 6.1,
we have the following solutions (1) =2, d=1, () t=1,
d = 3, (iti) t =0, d = 5. Hence the (12, 6) linear codfa C, can
be used either as a 2 error correcting and 3 error detecting code,
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or as a one error correcting and 4 error detecting code, or as a five
error detecting code.

Let H, be the matrix obtained from H by dropping the last
row and the last column. Thus

0 1 1111 1 0O0O0O
1 0112 2 01000
(12.3) H=|1102210 0100

112012 0 0010

1 22101 0 0001

It is readily seen that no four columns of H, are dependent.
In fact if any four columns of H, are dependent, then the corres-
ponding 4 columns of H and the last column would be dependent
contradicting the property (P;) of H. Also from the bound
given in Section 8, n,(5, 3) < 11. Hence 7,5, 3) = 11. If we
construct the (11, 6) ternary linear code C, with H, as the parity
check matrix, then each word of C; has weight at least 5. Hence
C, can be used as a two error detecting code, or as a one error

correcting, three error detecting code or as a four error detecting
code.

Let the points corresponding to all 11 columns of H, be
denoted by Py, Py, P,,...,P,,. In PG(4,3), each line has 4

points. Hence the line P P; has two other points say @; and
Qi. We shall show that the 20 points

(12'4) Pb Pza. sees PIO’ Qp Q:z, teey Qm

_have the property that no three are collinear. Three of the
points P, say P;, P;, Py cannot be collinear, as in this case
Py, Py, Py, P, would be coplanar. Again P;P;Q; cannot be
c'ollinea,r, since P lies in the plane determined by P, and the
line P;PiQr. This would make Py, Py, P;, Py coplanar. Other
cases can be similarly disposed of. This shows that ny(5,3) > 20.
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On the other hand it is known [6], that n4(5,3) < 26. The
exact value of ny5,3) is not known. If we take for the coordi-
nates of ¢; the sum of the columns corresponding to Py and Py,
then the matrix H whose column represent the 20 points (12.6)
can be written as

T111111000011111100007
01122010001220012111
(124) H,=| 10221001002100211211

12012000102012011121

1 22101000010021211112

The (20, 15) ternary linear code 0,, with parity check matrix
H, has the property that each word has weight at least 4, It
can be used either as a one error detecting and two error correct-
ing code, or as a three error correcting code.

13. THE BOSE-CHAUDHURI HOCQUENGHEM
CODES [4], [5], [10]

Let V; be the vector space of all s-vectors with elements from

GF(q). We can institute a correspondence between the vector*
o = (g, Gy, ..., B5_1)»
of Vs, and the element
o+ ayx+ a2+ .. o, x5l

of the GF(g*), where z is a primitive element of GF(¢®). This
is a (1,1) correspondence in which the null vector «, of Vs corres-
ponds to the null element of GF(g®). The sum of any two vectors
of V, corresponds to the sum of the corresponding elements
of GF(q®). We can therefore identify a vector a of V,, with
the corresponding element of GF(¢f). This in effect defines
a multiplication of the vectors of V; and converts it into a field.

Thus if
o = (Ggy Aps +oor As)s = (bgy by -+ bs),

are any two elements of ¥V, then we can identify o and g with
the element ay+a@+...~+@s_1 257 by+by+--.. 05257t of GF(g¥).
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Now z satisfies a certain minimum equation ¢(x) =0 where
¢(x) is a polynomial of the sth degree with coefficients from
GF(q). We can form the product of the elements « and 8 of
GF(¢%). Thus let

aff =y = cgte@+...+cs_ @52
Then the product of the vectors & and B is ¥ = (¢g, ¢y, -+ Cs—1)-

Each element of GF(¢®) can then be regarded as an s-vector
with elements from GF(qg).

Let o be a non-zero element of GF(¢%), and let ¢ > 0, and
2 £ m < ¢—2, be integers.

Consider the matrix

1 1 1 | -
ac oactl aete ... oetm—l
H =| (x°)? (oct1)2  (act2)2 cer (aetm-1)2 ,

s

| (ac)yn—t (actt)n-l (get2)r—1 (“c+m—1)n—1

where we shall suppose that 1, a, a2, ..., an-1 are all distinct.
Then H' can either be regarded as an » X m matrix with elements
from GF(¢°) or as n X ms matrix with elements from GF(g). In
this later case the element 1 of GF(g®) is to be regarded as the
vector (1,0,0,...,0) of Vs. When we form the transpose of H' i.e.,

1 ae (ac)? veo (acym—t
1 o+l (oct1)2 .. (ac"'l)”‘l
H=|1 oc+2 (act?)? cee (actt)n-1 ,
- 1 actm-1 (ac+m—1)2 ... (dc‘*'m‘l)""l

then H is an mX#n matrix with elements from GF(¢®) or an
msXn matrix with elements from GF(q). Now elements of

GF(g®) must be regarded as column s-vectors with elements
from GF(g).
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We shall show that H when regarded in the first way has
the property (Py) that no m columns of H are dependent over
GF(q%), and hence over GF(g). From this it would follow that
when H is regarded as a matrix with elements from GF(g), then
no m columng would be dependent over GF(g).

Let M be the matrix formed by taking any distinct m columns
of H. Then

(et @’ L "
(ac+1)j 1 (ac+1)j 2 . (ac+1)j ki
M =3
(ac+m—1)j 1 (acquma)j 2, (“c+m—1)jm

where 0 < j; <jp < ... <Jm < n—1L

1 1 1
ot &3 ocjm
dot M — “0(.7'14'.7'21- e +im)
(@ym-r Gyt L (@M
— ac(j1+52+--.‘*;jm) H (aju___ajv),

where 1 <u<v< m. But by hypothesis 1, o, ...,a"" are
all distinct. Hence det M = 0. This shows that the columns
of M are independent and proves the required result.

Now let H be regarded as an msXn matrix over GF(g) which
has the property (Pp) that no m columns are dependent.' Its
rank is r < ms. If we now construct the (n, n—7) q-ar).r linear
code C with parity check matrix H, then each word will have

weight at least. m+1.
22
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It can happen that many rows of H (or columns of H') are
dependent on others and so can be dropped without changing
the code ¢. This will now be illustrated by considering certain
examples and special cases.

(a) Let ¢ =2, s = 6. We then extend GF(2) to GF(2°).
Let « be a primitive element of GF(2%). Let us take ¢ = 1,
m =6, and n = 63. We note that 1, o, a2, ..., a2 are all dis-
tinct since o is a primitive root. Then

1 1 1 1 1 1
a o? oAl ot ab al
H, _ “2 (“2)2 <“3)2 (a4)2 (“5)2 (a6)2
aﬁl (aZ)Gl (a3)61 (a4)61 (a5)61 (a6)2
—_“62 (a2)62 (a3)62 (a4)62 (a5)62 (a6)62_—

Now z— 22 is an automorphism of the field GF(26). We also
note that if ¢ is an element of GF(2), then ¢ =c¢. Hence to
any linear relation with coefficients from GF(2), between the
elements of column 1 of H’, there corresponds the same relation
between the elements of the columns 2 and 4 of H'. Hence
if we drop the columns 2 and 4 of H’, then the code C for which
H is the parity check matrix will not change. Also the rank
of H will not change. In the same way we see that we can drop
the column 6. The matrix H’ has now been reduced to the form,

1 1 1
@ o? a®
| * @
a’l (as2)3 (aB1)s
o2 (as2)3 o
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Regarded as a matrix over GF(2) it is of order (63 x18).
Since m = 6, the (63,45) binary linear code with H, as parity
check matrix has words of weight at least 7 and can be used as
a 3 error correcting code.

(b) Now let ¢ =2 and let s > 2 be any positive integer.
Let GF(q) be extended to GF(q®). Let m = 2¢, ¢ = 1, and let
a be a primitive element of GF(¢¥). Then reasoning as before
it is easy to see that if we obtain H; from H’' by dropping the
2nd, 4th, ..., (2¢)th columns of H’, then the rank of H; will be
the same as that of H'. Hence this rank (when Hj is regarded
as a matrix over GF(q)), will be R < st. Hence by following
the method explained we shall obtain a (25— 1, 25— 1—R), ¢ error
correcting binary code where R  st.

The estimate st is only an upper bound for the rank of H'.
The actual rank may be less than this. This is illustrated by
the example which follows.

(c) Let ¢=2, s = 6 as in (a). Let ¢ = 1, m = 10, and as
before let « be a primitive element of GF(g®). We can as explain-
ed before drop the even numbered columns of H’ and obtain

1 1 1 1 1

o od ad a’ o®
H,=| (a3)? (a5)2 ()2 (a9)2

62 (a3)62 (@58 (a7)2 (a9)52

that )
such th Rank H’ = Rank H; < 30.

Now (of)? = a3 = 1. Thus o* and its powers constitute a
subfield of order 28 of GF(2) and o® satisfies a third degree equa-
tion with coefficients from GF(2). Hence the felements of the
last column of H; (when regarded as a matrix over GF(g®))



172 R. ©. Bose

can be expressed as a linear combination of 1, ¢ «'® with co-
efficients from GF(2). When H; is regarded as a matrix- over
G’F(Z) then only three of the six columns corresponding to

1
o

(@)?

()2 |,

are independent. Hence rank Hj = 27. Thus the code for
which H, is the parity check matrix is a (63,36), 5 error correcting
binary code.

(dy We can now see how the rank of ‘H' can be obtained in

the general case. Consider the factors of qu"l-—l, irreducible
over GF(q). Thus let
75—1

X° =1 =¢(X)Pe(X)...ulX),

where ¢(X) is a polynomial in X, with coefficients from G¥#(q)
fmd irreducible over GF(q). If §is an element of GF(¢®), then £
is a root of one and only one polynomial out of ¢,(X), ¢(X), --.»
du(X). On the other hand if §; is a root of ¢4X), then the other

2
roots are f4, B, .. Thus if v is the smallest integer guch that
—
B% = By, then the degree of ¢y(x) is », and f; must belong to a
sﬁub‘ﬁeld of order ¢» of QF(¢®). We will say that the index of
{1 18 0.

Now if among the elements of the set

(13.1) ac, atty, att | getm—1

more than one are the roots of the same polynomial ¢«(X), then
:)ve can immediately drop from H’ columns corresponding to all
ut one. For example in (a), , o, a? are the roots of the same

< . . 28
irreducible factor of X —1 and we therefore ecan drop the
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the columns corresponding to a? and at. Let a* be an element
of the set (13.1) the column corresponding to which has been
retained. When H; is now considered over G'F(q), this column
will become a matrix with s columns. However if ¥y 18 the
index of a¥, then out of these s columns only v, will be indepen-
dent. This gives us the following rule for the rank of H'.

Consider the set of distinct factors of Xps—l—l, irreducible
over G'F(q), whose roots oceur one or more times in (13.1). Then
the rank of H' is the sum of the degrees of these factors, the
degree of each factor counting only once, even if it has more than
one root in the set (13.1).

We shall conclude this section with a few more examples :

8) Let =2, =6, ¢c =1, m =4. Let a be the cube of a
primitive element of GF(2%). We can take n = 21 since, 1, «,

a2, ..., a2 are all different but a2 = 1. The set «ac, ..., actm-1
is now
(13.2) a, o2, od. ot

Now a, a2, at, a8, a6, x32 = a1l are the roots of ¢,(X) a poly-
nomial of the sixth degree (a% = a2 = 1). Thus @(X) has
roots among (13.2). Again o3, af, al? are the roots of ¢,(X) a
third degree polynomial (x2¢ = &3). Hence the rank of H'is 9,
the sum of the degrees of ¢,(X) and ¢,(X), and the general method
described will lead to a 2 error correcting (21,12) binary code.

(f) Let ¢ =3, s=3. Let GF(3) be extended to GF(3?).
Let ¢ =12, m=3. Let o be a primitive element of GF(3°%)
and let n = 26. Now consider the set

a12, “13, ald,

al?, o1%, a4 are the roots of a third degree polynomial ¢,(X),
a4, o8, a2 are the roots of another third degree polynomial
py(X) and o3 is the root of a linear polyno.mlal X-2. Hence
we can obtain a (26,19) ternary code correcting one error and

detecting two errors,
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14, ERROR LOCATING CODES

Elspas and Wolf [14], [15] have recently introduced a new
class of codes called error locating codes, with properties inter-
mediate between error detecting codes and error correcting codes.
Consider the case of a g-ary channel; where ¢ is a prime power.
In an error locating (n, n—r) g-ary code each word is supposed
to be divided into N subwords each of length n,. Thus » = nN,,.
If errors belonging to a certain class of patterns E; occur within
sub-words, and if the sub-words within which the errors otcur
belong to a certain class of patterns E;, then we can detect the
presence of transmission errors, and can locate the erroneous
sub-words, but cannot actually pin point the errors. For
example £y may be the class of patterns consisting of d or a lesser
number of errors in a sub-words, and E; may be the class of
patterns consisting of ¢ or a lesser number of erroneous sub-words.
Then it is required to find an (n, n—r) linear g-ary code, such
that if errors oceur in not more than ¢ sub-words, and consist of
not more than d wrongly transmitted symbols in any sub-word,
then it should be possible to detect the presence of transmission

errors, and locate the erroneous sub-words. We shall now prove
the following theorem due to Wolf.

Thereom 14,1, Let Cy be a g-ary (ng, ny—r,) linear code

which detects the class of error-patterns Eg. Let Q= q°. Let
C* bea (N, N—R), Q-ary linear code for which the transmission
symbols are elements of GF(Q) and which is capable of correcting
errors belonging to a class of patterns E;. Then we can construct
an (n, n—r) linear g-ary code, with n — noN, and r = ryR, such
that if errors belonging to By occur within a pattern of sub-words

belonging to E:, then the errors can be detected and erroneous sub-
words located.

Let H, be the parity check matrix of Cy, where H, is of order
ToXmy. For example if ¢ = 2, ng =17, ro =3, and E; is the

class of patterns consisting of two or fewer errors in any word of
length 7, then we may take H, as
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~1 0 0111 0

(14.1) Hy=| 0 1001 1 1

001110 1
The columns of H, can be regarded as elements of GF(g")
or GF(Q). Thus in the example if a is a primitive element of
GF(23), satisfying the equation a+a2+1 = 0, we can write
(14.3) H,=[1 aa?adat ab ab]
In the general case H , is a row-vector of length », with elements
from GF(Q).

Let H” be the parity check matrix of C*, the order of H*
being EXN (when regarded as a matrix over GF(Q). Let
vis be element in the ¢th row and jth column of H*. Let be the
Kronecker product of H* and H, (regarded as a row vector over
GF(Q)). Thus

- yul Y H e vivH
vl Yool e YenH
(14.3) H =H'®H, =
_YmH  yrH e YrNH_

When H is regarded as a matrix over GF(Q), it is of order
RxnyN. However each element of H can be regarded as a
column vector of length 7y, with elements from G¥(q). Thus when
H is regarded as a matrix over GF(g)itis of order roRXn;N or
rxmn. Let C be the code (with symbols from GF(g), which has
H (regarded in the second way) for its parity check matrix.
Then C is the required (n, n—r) error locating g-ary linear code.

Let us now consider the error-correcting capabilities of C.
First consider the situation where errors occur only in the jth
sub-word, the errors belonging to the class Eq. Then the error
vector can be divided into N sub-blocks. All the sub-blocks
are null except the jth which is say (e}, €, ---> €,,); this vector

belonging to E; Let
Hy = (hy, by, s by )
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Then the resulting syndrome will contain the components
8; = (e teghot ... te, by, )vis = aiyi,

where ayy is a non-zero element of GF(Q). If errors occur within
several sub-words say ji, js: ..., j» and if the errors within each
sub-word are contained in K4 whereas the pattern of sub-words
in which the errors occur belongs to E;, the resulting syndrome
will contain components

8= 0y Vit Yyt Yy -

Note that a, , a,, ..., a,

31’ T2 Iy

and do not depend on i. Now if in the code C* the error vector
has agits j,th j,th,..., j,th coordinates the elements a5 Gy

and the other coordinates are zero, then the resulting syndrome
will have exactly the components ;. Since O* corrects all
patterns belonging to By, it is clear that the syndromes resulting
from all permissible errors in the error locating code C, are all
different. This proves our theorem.

To continue our example let C* be the (63,55) two error
correcting Bose-Chaudhuri octic code (@ = 28). Let 8 be a
primitive element of GF(2%). We can take 6 as a root of the
equation 6%-6-+1 = 0 [7, page 262). Then the elements of
the subfield GF(23) of GF(2%) are 6% (i = 0,1,2,3,4,5,6).” Let
6° = a, then a3+a2+41 = 0 and « is a primitive root of GF(23).
Using the relation 62 = a%+a, we can express each element
of GF(2) in the form A9+6 where B and & belong to GF(23)
so that elements of GF(2%) can be regarded as 2-vectors over

GF(2). Now we can take for the parity check matrix of C*
the matrix

are non-zero elements of GF(Q)

ooy @y
v

1 & 62 o3 . g2 _
(14.4) H*= L& @ @ . ()
1 63 (08)2 (03)8 .. (03)62 ’
1 6 @ (09 o
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where H* is of order 8 63, when regarded as a matrix over
GF(23), Hence using the method explained we first form the
Kronecker product H = H* ® H, This is of order 24x441
over GF(2), and then construct the code ¢ which has H as a
parity check matrix. We thus obtain a (441,417) binary linear
code in which each word is to be divided into 63 sub-words of
length 7. If then there are not more than two errors in not
more than two sub-words, then we can detect them and. locate
the erroneous sub-words.
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