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SUMMARY

In this paper, the univariate nonparametric analysis of variance tests by
Kruskal and Wallis and by Brown and Mood have been extended to the general
case of p{ » 1) variates and ¢( » 2) samples. This has been accomplished through
& conditional approach which makes the tests distribution-free under the null
hypothesis,. Various properties of the proposed tests have been studied and
their asymptotic powers compared.

1. INTRODUCTION

During the past three decades the pace of development of
nonparametric inference procedures has been tremendous. But,
from the point of view of applications, this development has been
confined mostly to univariste problems in the case of single
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as well as several samples and bivariate problems in the case of
single sample. Multivariate problems have received compara-
tively much less attention; so that, at present there are fow
nonparametric contenders to standard methods of parametric
multivariate analysis based on the assumption of multinormal
parent distributions. Among the few multivariate nonpara-
metric tests available, mention may be made of the bivariate
sign-tests by Hodges (1955), Blumen (1958) and Bennett (1962,
1964); for a comparative study of these tests, the reader is
referred to Chatterjee (1966). These tests actually relate to
the single sample case. In the several sample case, a permuta-
tion test based on Hotelling’s T?-statistic was suggested by
Wald and Wolfowitz (1944); but the test suffers from such short-
comings as are common to all tests based on permutations of
values. In course of a series of lectures at the Calcutta University
in 1962, S. N. Roy referred to a two sample bivariate location
test developed by Roy, Bhapkar and Sathe; but the test is based

on a step-down procedure in which the roles of the two variates
do not appear to be symmetric.

In an earlier paper [7], the present authors considered two
nonparametric testsfor the bivariate two sample location problem,
these being the generalizations of two well-known univariate

two sample location tests, namely, Wilcoxon-Mann-Whitney
I‘ar'lk—sum test and Mood’s median test. Later on, the same
principle has been used to formulate certain two sample non-
parametric tests for testing the identity of association of two

bivariate distributions. The object of the present investigation

is t.o generalize the results of [7] to the general case of p( >1)
variates and ¢ > 2) samples, and develop nonparametric proce-

d-}lre§ for testing the identity of locations of several multivariate
distributions.

the beat From one point of view, these results generalize
| ests by Kruskal and Wallis (1952) and Brown and Mood

:fjs;r;;ifmma‘ﬂtllvaﬁate case, and from another, they are the
and “others [see nz °§ues of the parametric tests by Roy (1942)
equality of m, naerson (1958, Chapter 8)] for testing the

%an vectors of several multinormal distributions.
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2.  THE PROBLEM

Let X — (X{, ..., X®), @ = 1, ..., nx be nx independent
and identically distributed (vector valued) random wvariables
(ilid.r.v.) having p(> 1) variate continuous cumulative distribu-
tion functions (cdf) Fi(x), k=1, ..., ¢, and let the ¢ samples
be distributed independently. Let Q be the set of all c-tuples
of p variate continuous cdf’s, and it is asumed that F = (F),
... F'g) belongs to Q. Later, some mild restrictions will have
to be imposed on £, and these will be stated as occasions arise.

On the basis of these ¢ independent samples we desire to test
the null hypothesis

2.1) Hy:F\(®) = ... = Fex), a.e.

In testing this null hypothesis, we are particularly interested in
detecting those alternatives which imply any difference in loca-
tions among the ¢ distributions; the phrase difference in locations
will be interpreted differently for the two tests to be considered
here. For the rank-sum tests this will mean that for at least
one of the p variates, the ¢ sample observations are not all
stochastically equal; the stochastic equality of two random vari-
ables X and Y being defined by the equality

(22) P(X > T}4+4P(X = ¥} = 1.

Precisely, this means that for some i(= 1, ..., p) there is at least
one pair of (k, g) such that

(23) PX® > XGHPED = X # hk£g=1, ..., 0

For the median test, let us denote by u{¥ the median (assumed
to be uniquely defined) of the random variable X¥, for ¢ =
1,..,p; k=1,...,c. Then the difference in location means
that the following pc(c—1) differences

(2.4) pP—p®, i=1,...,p; k#qg=1..¢

are not all zero. There will be a special class of alternatives
that will be of interest for both the rank-sum and median tests.
This will be the class of translation type alternatives, and may
be sketched as follows:
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(2.5) Fr(x)= Fx1o®), 0&) = (6B, . 00),k=1,..,c¢,

where 0%, ¢ = 1, ...,p; k = 1, ..., ¢ are all real constants. Thus
the ¢ cdf’s may be regarded to differ only by shifts in the loca-
tions. The proposed tests are valid for the types of alternatives
considered above.

3., PRELIMINARY NOTIONS

Let us rank the N observations X%, a =1, ..., m, k=1,
...,»¢ on the ith variate in an increasing order of magnitude
and let the rank of X{¥ so obtained be denoted by I{¥. Since
the cdf’s are all continuous, we can take the absence of ties for
granted, in probability. The observation vector X® thus
gives rise to the rank-vector

IP =18, I, a=1,..,mk=1,..c

The N rank vectors corresponding to the N observations can be
represented by the rank matrix (of order pXN)

R L Ie 19 L I9
1 (4
(3.1) Iy =
) . (1) (©)
I .. Izm1 Igfl) Iff"c

Each row of this random matrix is a permutation of the numbers
l,..., N. 'Therefore the matrix Iy can have (N!)? possible
realizations. We shall say that two rank matrices of the form
(3.1) represent the same collection of rank vectors if one can
be obtained from the other by a rearrangement of the columns.
Specifically, the collection corresponding to (3.1) can be repre-
sented by permuting the columns so that the first row becomes
(L,..., N). Let the ith row of the matrix so obtained be
Rars ooy 48), £ = 2, wop. If we write

(3.2) Apg=a, a=1,..,N,

the collection of rank vectors corresponding to (3.1) can be
represented by the collection matriz
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Au » vee AIN
(3.3) Ay =

App .o Apw
The matrix Ay being based on the random matrix Iy is itself
random. As each row of Ay, other than the first, can realize
all the permutations of the numbers 1,...,N, Ay can have
(N1)2-1 possible realizations. We shall denote this set of possible
realizations of Ay by Ly. Typically, we shall write Ly for a
realization of Ly where

ll!. Paes llN
(3.4) Ly —

lpl ‘v lz).N
(3.5) .=, a=1,..N.

The probability distribution of Ay over £x would, of course,
depend on the distributions F,, ..., F,. However, given a parti-
cular realization Lpx of Ay, the conditional distribution of Iy
over the N! permutations of the columns of Ly would be uniform
under H,, whatever the common parent distribution may be.
In this paper, we shall propose different functions of the elements
of Iy as statistics for testing H,. From the observation made
above, it follows that the conditional distribution of any such statis-
tic given Ay = Ly would be disiribution free when H, is true.

4, MULTIVARIATE MULTISAMPLE RANK-SUM
TESTS

On the basis of the rank matrix Iy given by (3.1), let us find
the mean ranks

. g
4.11) I®=QA/ng) Z L, i=1,....,p;k=1,..¢
a=1

for the p variates in each of the ¢ samples. We shall formulate
a test for H, on the basis of these mean ranks. For this we
shall derive first the expressions for the first and second order

26
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moments of the conditional joint distribution (under H,) of
the pc random variables defined in (4.1.1), and given Ay = Ly,
where Ay is given by (3.2) and (3.3), and Ly € oL is a parti-
cular realization of Ay given by (3.4) and (3.5).

Let the random variables Z%®, a=1,...,N; k=1,..,¢
be defined as

1, if @ = 19, ..., IV
(4.1'2) Z‘(!E) — { 11 l“k

0, otherwise.
We can then write

- g
(4.1.3) I =(lng) & Z®Lfori=1,...,p;k=1,..,c
a=1
When H, is true
zy o L ZY
Ze ... EY

wauld be a matrix obtained by permuting randomly the columns of

By By ,
~ At
i..1 0..0 .., 0..0

0..0 1..1 ..0..0

0..0 0..0 ... 1.1
and this will be true independently of Ay. Hence we obtain
(4.1.4) E(Z®| Hy) = mi/N,

(4.1.5)  Cov(ZP, Z(P| Hy) = [mp(8,sN—1)|N(N —1))[8x,—n,/N];

for &, p=1,..,N; k, g =1, ...,c, where 0,88 and {ys are
Kronecker deltas. Hence it is eagy to show that

4.16)  E(IP|LyH)y = (N+1)/2,6=1,.,pk=1,..,0

(4.1.7)  Cov(I®I|Ly, H,) — v +l)l(g;”N_”’") Tig(Loy),
k
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for i,j=1,...,p; k,¢g=1,...,¢, and where

@18) ryw) = 12 3 (4~ YL (o ML) [var—),

for 4,j=1,...,p, (it may be noted that ri(Ly) =1, for all
t=1,..,p).

Now under the null hypothesis, the apportionment of the
numbers 1,..., N to the ¢ sets (I{P, Iﬁ")), kE=1,....,c is

likely to be equlta,ble for each i (=1, ..., p), and hence we would

expect that for each 7(=1,..,, p), the mean ranks I®, k =
1, ..., ¢ would be close to each other and as a result to (N4-1)/2.
Since, only p(c—1) of these mean ranks are linearly independent,
it seems that we may base our test for H, on the set of p(c—1)
contrasts

(4.1.9) (igk)— N—"2"1 ) i=1,...,p; k=1,..,¢—1.

Again, for practical convenience, it would be necessary to for-
mulate the test on the basis of a single function of the elements
in (4.1.9), and for this we are to choose a function that would
reflect the numerical largeness of any of these contrasts. A
positive definite quadratic form in these contrasts seems to be
the most natural answer. Now, if we write

(4.1.10) R(Ly) = (ry(Iw))i,j =1, ..., p,

by (4.1.6), (4.1.7) and (4.1.8), the conditional dispersion matrix
(under H;) of the random variables in (4.1.9) (taken in that order),
is readily deduced to be

N+1

(4.1.11) -

N
("'ﬁ;— 8k‘q"—'l) k, g=15 -+ -1 ® R(LN)’
where ® stands for the Kronecker product [see Anderson (1958,
b. 347)]. Also, it may be easily verified that

(4.1.12) (%'Slﬂq—l) —1 _ (nlc s q+::2:;)

kg=1,.,c-1 kg=1...,0-}
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If now R(Ly) is assumed to be positive definite and its inverse
matrix is denoted by

(4.1.13) R-YLy) = (" (Ln) ),

then the inverse of the dispersion matrix in (4.1.11) would be
given by

(4.1.14) N +1 (Oxgni/ N +nxng/neNgy,... c-1 @ R~HLy).

Now we are in a position to formulate the test statistic. When-
ever, the collection matrix Ay of the pooled sample is such that
R(Ay) is positive definite, we take as our test statistic

12 S ng 2
4.1.15 w = by 2 (A
( ) YTWFL AV 4 =1 i)

[j(k)__ll’:%‘_l_] [jyc)_.ﬂ%}_],
which is a symmetzic expression in {I_S"), i=1,p;k=1,..¢.
When R(Ay) is not positive . definite and is of rank p’ < p, we
may choose a subset of p’. variables for which the rank correla-
tion matrix would be positive definite, and write down-for Wy
an expression similar to (4.1.15) but involving only the p’ varia-
bles chosen. However, as we shall see in Section 4.2, under some
mild restriction on Q, R(A ) will be positive definite, in probability.

From the remark made at the end of section 3, it follows
that the conditional distribution of Wy given Ay = Ly would
be the same under H,, whatever the cdf’s F,=..=F,=F
may be. From-this conditionally known distribution of Wiy it
1s possible to construct the test function ¢(W&) :

1, HWy> Wy (Ay),
(41.16) @ (Wy)=< Ay, (Ay), if Wy= Wy (Ay),

o, otherwise,
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where the constants Wy, (Ay) and Ay, (Ax) (Which may depend
on Ay,) are so chosen that

(4.1.17) E{¢(Wy)| Ly, Ho} =€
The last equation implies
(4.1.18) E{§Wy)| Ho} = e.

Thus we can always construct a size e test for H,. In practice,
the use of this exact test is forbidden (unless » and p are. very
small) because of the prohibitive amount of labor involved in
the numerical evaluation of the permutation distribution of W .
Therefore, we have to -consider approximations to the exact
permutation distribution of Wy that will be satisfactory at least
for large samples. We discuss this in the following sub-section.

4,2, Large sample permutation test

Here we shall assume that N is adequately large, and for
each N, there is a set n,, ..., n, such that

(4.2.1)

T Mo

ng = N, lim nz/N = vg, k=1,..,¢
1 N=w

where v, ..., v¢ are ¢ fixed numbers lying in the open interval
(0,1) and adding to unity.

Theorem 4.2.1. If {Ly: Lye £} is a sequence such that the
corresponding sequence of mairices {R(Ly)}, defined by (4.1.8)
and (4.1.10), has a positive definite limit, then the sequence of condi-
tional distributions of Wy (defined by (4.1.15), ) given Ay = L,
converges to a chi-square distribution with p(c—1) degrees of freedom.

Proof, By virtue of (4.1.6), (4.1.7) and (4.1.15), it seems
sufficient to show that the set of p(c—1) contrasts in (4.1.9) has
jointly (under the conditional probability measure induced by
the N equally likely permutations of the columns of Ly) asymp-
totically a multinormal distribution. For this it suffices to
show that any nontrivial linear compound of the form

- [
(4.2.2) Mﬁfwm(mwm=wﬁhm)
k=1 i=1 k=1
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is asymptotically normal with zero mean and a nondegenerate
variance. Using (4.1.2), (4.1.3) and some simple algebraic
manipulations, we can rewrite (4.2.2) in the form

N
(4.2.3) m:mz(

a=1

s lia lipa),

=l

where we define [, as in (3.4) and (3.5), and write

(4.2.4) Ly=pf, a=1,..,N;

and where 7y of the #, have the common value (#/ng), for

k=1, ..,¢, i=1,..,p. Thus writing

P
(4.2.5) ;1 t(a "av = bg‘er), a, o = 1, ...,N
()
we have

N
N4 Ty =3 b

a=1 «

By (4.2.4), (B, ..., Bn) represent a random permutation of the
numbers (1, ..., N). Therefore, we can use a combinatorial

central limit theorem by Hoeffding (1951), and require only to
show that on subtituting

(4.2.6) a =§1 (ti,,_.Nl z”:’l t,.,,) ( l;,,,——g%l )

the following condition is satisfied

max {d&)?

4.2, i 1€ a,a’ <N .
( 7) l%llfi lu%v lzv {d(m}z =0
Z\Ta=1 a’' =1 ae

Now, by (4.1.8) and (4.2.6), we have

(4.2.8) §F§ {dums

a, o’ =%

2 rifLy) g (tia—i—l\, gl tf.) (t:ia' ! g t:‘a>-
=

a=1 Ng-l
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Hence, by (4.2.1) we get after some simple adjustments that

(4.29) lim s {0 2/N

N=w a, a’=1

(4
5w B (ve - 5 40) (we t(k)—z > 0) 1 Lw)-
12 k=1 i, j=1 g=1

As the matrix R(Ly) is positive definite (by assumption, for
N adequately large), the right hand side of (4.2.9) will be positive
unless
[+
tP— X @ =0forallt=1,...,p, k=1,...,¢,
g=1

which holds only in the trivial case #® =0 for t=1,..., p,
k=1,..,¢. Thus, as N»

(4.2.10) 117 { dMN2 = O(N).

ac’
o0 =1

Again, from (4.2.6), as LyeLy,

N—1 2 1 ¥ —1 2 £
) PRI ) N—2 { 21
|4a’] < 2 E ta N.Ext'“ S T3 i§1 1211?20 nE
1 [
~—5 = 2 } for a,0'=1,..., N,
k=1
and hence,
N—-1 Z N
4.2.11 max am 2 max | — #®
( ) 1<a..'sN| w | < {lsk‘c ng

-5} -a

as by (4.2.1), the right hand side of (4.2.11) converges to a finite
quantity as N— c0. (4.2.10) and (4.2.11) together imply that
the sets of numbers (4.2.5) satisfy the condition (4.2.10). The
rest of the proof of the theorem follows by routine methods and
henoe is omitted.
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We need to prove a lemma before the main theorem of this
section is proved. We shall write

— [4
(4.2.12) Flxy, ..., xp) = 2 veFylzy, ..., 1p)
k=1

and denote by (7, ..., 7p) & set of random variables following

the distribution law (4.2.12) v4; will stand for the grade correla-
tion coefficient between ; and 7y, and

(4.2:13) ¥ = (Yeg)i,j1,
will stand for the grade correlation matrix of (1, ..., 7p).

Here as well as later, we shall use the following notations
for the univariate marginal cdf’s associated with the distribu-

tions. Fg, k= 1,..,cand F. Let Fiyfn) and Fiaa) stand for
the marginal cdf of the ith variate X® and 7; respectively, for

i=1,..,pand k=1, ...,c. In terms of these notations Jij is
explicitly given by
(4.2.14) Yy =3 fp {2F o)) — L2 F oy — LA F (xy, ..., %p),

E

.,j=1,..,p
where E? stands for the p-dimensional real (Euclidean) space.
Lemma 4.2.2. 4s N— co, R(Ay) converges in probability
to W,
The proof follows as a simple extension of a similar lemma

(in the particular case of p = ¢ = 2) by the authors ([7], pp.
29-31) and hence is not reproduced here.

For the further development of the theory, we shall have to
assume that Q satisfies & mild restriction. This we state below :

Condition A. Q is such that for all pomts (Fy, ..., Fe)eQ
and for all v, k=1,...,¢, 0 < v <1, ka——l the grade
correlation mairiz ¥ deﬁned by (4.2.13), (4.2. 14) is positive definite.

Throughout the rest of Section 4.2, condition 4 will be
assumed.. This assumption, however, is not very restrictive,

because W is positive definite, unless one or more of the random
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variables {2F 4 (n:)—1}, i =1, ..., p can be expressed linearly
in terms of the others with probability one. This, by our assump-
tion of continuity of Fy, ..., F, for all points in Q implies that
one or more of the random variables 9, ..., 7p can almost surely
be expressed as functions of the remaining variables, the func-
tion being monotonic in each of the arguments involved. So,
if this form of singularity is excluded, condition 4 will always
be satisfied. We now prove the main theorem of this subsection.

Theorem 4.2.3. Under condition A on Q, the conditional null
distribution of W given Ay converges, in probability, to chi-square
distribution with p(c—1) degrees of freedom (d.f.).

The proof of this theorem follows readily from theorem 4.2.1.

and lemma 4.2.2. TFor the intended brevity of the paper, the
details are omitted.

Corollary, For any ¢:0<e¢< 1, let Wy, (Ly)and Ay, (L)
be defined as in (4.1.16) and (4.1.17) and let xi(c—1), ¢ be the

upper 100e%, point of a y? distribution with p{c—1)d.f. Then
as N-— o,

P
W, (AN} Xo-n,e and Ay, (Bx)S 0.
The proof is omitted (see [13, p. 171]).

Remark, In the theorem and corollary above, Ay corres-
ponds to F = (Fy, ..., F¢), where FeQ, but H, may or may not
be true. Further, it is not essential for the above theorem and
corollary that Ay should be the collection matrix corresponding
to samples taken from a fixed point FeQ. If Ay is any sequence
of random matrices, Ay assuming values of oL, such that R(Ay)
is positive definite, in probability, then the theorem and corollary
would hold.

Again, by an adaptation of the method of proof of corollary
3 t0 theorem 3.2.2. of [7], and using (4.2.12), we obtain the
following theorem on the unconditional distribution of W
(under H).
Theorem 4.2.4. Under H, the statistic Wy, defined by
(4.1.15), has asymplotically a chi-square distribution with pc—1)d.f.
27
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Theorem 4.2.4. enables us to suggest an asymptotically dis-
tribution free test based on the same statistic Wy, defined by
(41.15). This test consists in rejecting the null hypothesis
when Wy exceeds the value xZ,—1),. This test will be termed
hereafter as the asymplotically distribution-free rank-sum test.

4.3. Consistency of the tests

As in the preceding section, we define by Fji(#;) the marginal
odf of the ith variate 7;, ¢ = 1, ..., p, where (7, ..., 7p) has the
odf F, defined by (4.2.12). Also let

(4.3.1) d® = | 2Fp(a)— 1YdF iy, ..., Tp),
§o14

t=1,...,p, k=1,..,c¢

Theorem 4.3.1. The exact test (4.1.16) and the asymptotically
distribution-free test for Hy, are both consistent against the set of
alternatives that d¥(k =1, ...,¢; ¢ =1,...,p) are not all zero.
Thus, for translation type of alternatives in (2.5), these tests are

consistent against the set of alternatives that 8, ..., 8’ are not all
null vectors.

The proof of this theorem is straight-forward and is omitted.
By virtue of the consistency, for any fixed alternative (deviating
from the null hypothesis (2.1),) the power of the tests will be
asymptotically equal to unity. In the next subsection we shall

consider the usual Pitman’s type of shift alternatives and study
the power proporties of the tests.

44. Asymptotic power of the tests

' Let us consider the sequence of alternatives {Hy}, where Hy
18 represented by (Fyy, ..., Fen) :

(4.4.1) Fey(@) = F(x+N-12 %), k=1, ..., ¢;

where @) —= (6, s, E=1,..,c

. , are ¢ vectors not all
of which are identical.
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Just as in Sections 4.2 and 4.3 we define the marginal cdf
of the ith variate associated with F(x,, ..., xp) by Fyfx;), for
i=1,..,p, and write

(4.42) Yy =3 [ {2F ()~ T2 Fyy(g) — 1}dF(zy, ..., 2p),
E

ji=1 .. p;
¥ = (Yy), ¥ = () = (Yy)™

The grade correlation matrix ¥ and its reciprocal ¥ will be
positive definite by virtue of condition A, stated in subsection
4.2. Further, to simplify the expression for the asymptotic
power of the tests, we shall assume that the marginal cdf Fig(z)
is absolutely continuous (for all 4 = 1, ..., p) and write fie(x)
as the corresponding density function (assumed to be con-
tinuous), for ¢ = 1, ..., p. FRurther, the integrals

(4.4.3) hy = _E ot de, i=1,..p;

will be assumed to exist and the limiting relations

(-

im f f['](x+0(l/vm )dF[i](x) =hpi=1,.,p

1
N=w —w

(4.4.4)

will be assumed to hold. Finally, (4.2.1) will be implicit through
out this subsection. For each N, (X&), ..., X)) will denote
a set of random variables following the distribution Fyy, defined
by (4.4.1), there being nj observations from this distribution,
for k=1, ..., ¢. For notational simplicity, we shall keep the
subscript N understood, and denote the N observations by

(4.4.5) (X®, L, XE), a=1,...,m; k=1,.,c

Also, we define the mean ranks f‘,-"), t=1,..,p3 k=1, ...,¢
as in (4.1.1) and the statistic Wy as in (4.1.15).

Theorem 4.4.1. Under (4.4.1) through (4.4.5), Wy has asym-
ptotically a noncentral chi-square distribution with (pc—1) d.f.
and the noncentrality parameter

[ »? P - —~
(048) Ap=12 T v 3 3 yiop—B00P—Bhby
k=1 i=] j=

- [ .
where ;= T vg 08, fori=1,..,p.
¥=1
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Proof. Weshall prove first that \/N( ﬁ")—N+1> i=1,...,p;

k=1, ..., ¢, have asymptotically a multinormal distribution. For
this, let us define the usual sign-function s(z) to be +4-1(-—1)
according as z > ( < )0, and let it be 0, otherwise. Also write
” ﬂ
1
2 ¥ sXB_ X )
N Mg o=l B=1 ( $ %

for k £A2q=1,..,¢; =1, ...,p. Then we have

(4.4.7) Uk =

(4.4.8) \/F(.fg!ﬂ— N—;l ) = _15 q;l";\‘; VN U 0.

Now, by a well-known technique used in studying the asymptotic
distributions of U-statistics (see, Hoeffding (1948), and Andrews
(1954), ) and following some simple but essentially lengthy steps,
it can be shown that {V/NU&?, k£qg=1,...,¢; i =1,...,p}
has asymptotically a multinormal distribution which is essentially
singular and is of rank p(c—1) when W is positive definite. Hence,
using (4.4.8) and some routine calculations, it can be shown that
under (4.4.1) through (4.4.5) the vector

w2 L;l oI Mg HA

. N+1
(e—-1)y__ '~
I¢ n )

will have asymptotically a multinormal distribution with mean
vector

(m®, ..., m®), ..., mCY, ..., mE-D),
d di 11
an spersion matrix —— 13 ( 8kq—1) ® W, where
kg=1,...,0~1

(4.4.9) mP = —hO®—O)fori=1,..,p;k=1,...c
Hence, by simple reasonings, we may conclude that
~1 ¢—1

(4.4.10) N TSEE (vkakq+ ""Q) yris

k=1 g=1 {==1 §=1

(I l;ﬂ ) (I~ N;H )
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will be asymptotically distributed as a non-central x* with d.f.
p(c—1) and non-centrality parameter

Agp =12 Z Z Z E (wc8 . ""4),/,;; m"‘)m,(“)

k=1 gal i=l fa=l

@411]) =12 & zw{ 53 yemPm® 1 = 5 zv,,vm<k>m;«>}
i=l j=1 k=1 Ve k=1 g=1

=12 2 Vg 2 Z zﬁ*f(eﬁ")—Hi)(0<")~0,)h;h,

k=1 i=l f=l
Again, it follows from lemma 4.2.2, (4.2.14), (4.4.1) and (4.4.2)

that R(AN)—Pi) W. Hence the statistic Wy, given by (4.1.15)
is seen to be asymptotically equivalent, in probability, to the
statistic (4.4.10), and the theorem follows.

With the help of theorem 4.4.1, corollary to theorem 4.2.3
and a result due to Hoeffding (1952, p. 171), we readily arrive
at the following.

Theorem 4.4.2. Both the permutation test and the asymptoti-
cally distribution-free test (bused on the statistic Wy, defined by
(4.1.15),) are asymptotically power-equivalent and have asymptoti-
cally (under the sequence of alternatives in (4.4.1),) a noncentral
chi-square distribution with p(c—1) d.f. and the noncentrality
parameter Ag, defined by (4.4.6).

5, MULTIVARIATE MULTISAMPLE MEDIAN
TESTS

We shall now generalize the well-known univariate median
test by Brown and Mood (cf. [16]) to the p(> 1) variate case,
following the same conditional approach as in section 3. We
adopt the same notations as in the previous sections. Among
the N values of {I®, a=1,...,m; k=1,..,¢ there are
exactly @ = [N /2] ([s] being the largest integer contained in s)
values which do not exceed @, for 2 =1, ...,p. Let us then
define a system of 2P-mutually exclusive and exhaustive cells

{J' Liri=0,1i=1, ...,p} by the convention that if for
1t
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any cell J, rTt = 1 (or 0) then for any observation belonging

to it I® > (or <) @, for ¢ =1, ..., p. Let among the N random
rank p-tuplets C , Observations belong to the cell J
-

) yeorps
for all(r . ) Then {Cry..r,} is a set of random variables,
1een Ty

depending on Ay, and we may note that

(5.1.1) 2 C =a(fa=0) o N—a (fa=1),

(8jq) v
where the summation S;, extends over all 7y, ..., 753, Pj41, o 0r Ty
(for a given r; = a), j = 4, ..., p. Thus we have a 2”-contingency

table for the pooled sample of size N, and we term this as the
basic table. Now, corresponding to the kth sample of size ng,

we have, by reference to the same system of cells{J , }, another
17

2%-table, whose entries are denoted by

(5.1.2) Mgy 78 = 01, i=1,..,p;

this table will be termed as table k, for k=1, ..., ¢. Obviously

[

(5.1.3) kz=1n"('1“"p
Now under the null hypothesis that the ¢ cdf’s Fy, ..., F, are all
identical, these ¢ (27)-contingency tables should be statistically
homogeneous and consistent with the basic table. By virtue
of (5.1.3), it is thus sufficient to test for the agreement of the
¢ tables (i.e., table k, k = 1, ..., ¢). Since the test to be proposed
is based on the system of cells demarcated by the pooled sample
medians, by analogy with the univariate case (cf. [16]), it is
termed the multivariate multisample median test.

)= 0'1--~'p’ for all (ry, ..., 7).

Now, under the null hypothesis H,: F, = ... F, = F (say),
and given Ay = Ly, all possible partitioning of the N rank
p-tuplets into the ¢ subsets of sizes n,, ..., n,, respectively, are

equally likely, each having the conditional probability (II§ ng !/N1)

which we conventionally put as ( [71:7]) _1. Let now for the
. k

given Ay = Ly, the realized values of {0,1._,,]'} be {c,r_',p}. Then
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by simple logic we derive the conditional probability function

of {nk(rl..-rp)-’ r =0,1,i1=1..,p, k=1, ...,c} conditioned

on Ay = Ly as given by

N Coport
(5.1.4) ([nk] )—1 {E ([ﬂ;(':_rp)]> }

Thus for any (N, Ly), the expression (5.1.4) is a completely known
function. Here also, we shall use a quadraric form in the vari-
bl ,ri=0,Li=1,...,p; k=1,...,clto formulat
a es{nk('lmrp) i i P } o formulate

our test statistic, and for this we consider first the first and
gsocond order moments of these random variables. It follows
directly from (5.1.4) that

= "k
618)  Bmy, o |LwH}="%c, . and

(5.1.6) Ly, Ho}

Cov {n o, ,
E(ryeoTp) ety s rp)

= mldtg N—ngl, _, (8wN—c, ) [N(N—1),

o
where 0y = 1if bk =q, Syo =0if b £ g, and 8y = 1if (ry ... 7p)
=(r] ... 7p) and Oy is zero otherwise.

5.2, The classification of median tests

The 2P¢ random variables{n y =01, i=1,...,p,
k(rl...r?)
k=1, ...,c} are subject to 2°+c—1 constraints, namely (5.1.3) and
(5.2.1) %I nk(rr“rp)= g, for k=1, ..., ¢

(where the summation § extend over all (ry, ..., r,),) and where
(5.1.3) and (5.2.1) satisfy in turn

[4
(5.2.2) Sy=N=3C .

k=1 g TiTp
Thus, the effective number of degrees of freedom of this set of
random variables is (2°—1)(c—1). Of course, study of all these

d.f. may not be necessary for detecting differences in locations
only. For this purpose, we define
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(5.2.3) n;u, =X n

yi=1,.,0k=1,..,c¢
i k(ry...7p) P »

where the summation Sj, extends over all (ry, ..., 7p) for which
rig = 0, i.e., ny; is the number of observations in the kth sample
whose ¢th variate values do not exceed that of the ath order
statistic of pooled sample ith variate values, for ¢ =1,...,p,
k=1,...,¢6. Using (5.1.4) it can be readily shown that

(5.2.4)  Enle|Ly, H} = am/N,i=1,..,p, k=1,...,c.

Thus, generalizing the univariate median test [cf. Andrews
(1954)], and keeping in mind shifts in locations only, we may
base our test on the p(c—1) d.f. carried by the discrepancies
{N-¥(npp—om/N), t=1,..,p, k=1,...,¢}. Such a median
test would be termed a T'ype A median test. It can be shown that
the remaining (22—p—1)(¢c—1) d.f. are sensitive not only to
shifts in locations but also to any heterogeneity of the associa-
tion patterns of the different cdf’s. Tests based on these
(22—p—1)c—1) d.f. may be used to test for the identity of
association patterns (assuming the identity of locations) (cf.
Chatterjee and Sen (1965), for p = ¢ = 2). Such a test would
be termed the Type B median test. Finally, the test based on
all the (27—1)(c—1) d.f. is consistent not only against shifts in
the median vectors but also against any difference of the asso-
ciation patterns; such a test will be termed the Type C median
test. Since we are mainly interested in the location problem,
we shall consider only type A4 median test and append very
briefly the case of type C median test.
To formulate the test statistic, we write

(5.2.5) Cul= 3 C
G:9) 8084 Ty Ty

where the summation S, g, ; extends over all possible i, ...,7p
for which ry=a, r; = B; a,f=0,1; and let

1 1
2. = N— ’ ) A = .
(5.2.6) dy =N I.Eo p-zo (—1)petB g, for 4,j =1, ..., p;

(6.2.7) D = (dy).
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If aﬂ{C',.lmrp} are positive, it can be shown that D is a positive
definite matrix. The positive-definiteness of D may also follow
when some of{O',.ln_rp} are equal to zero. However, it will be
geen later on that under some mild restrictions on Q, D will
be positive definite, in probability. If D is not positive definite,
as in the rank-sum test, we may work with the highest order
positive definite principle minor of it. Thus, on denoting by
D-1=(d¥) the reciprocal matrix of I}, we may formulate

(following some simple but somewhat lengthy deductions involv-

ing the use of (5.1.5), (6.1.6) and (5.2.3), the type A median
test-satistic as

(5.2.8) My =4 5 38 di{ng . —ang | N ng s —am [N} ng.

k=1 {=l j=1

For small values of ( N ,{0,1,__,,?} ) , the matrix D can be readily

evaluated and the exact null distribution of My (given Ay = Ly)
may be derived with the aid of (5.1.4). The test function will
be essentially similar to (4.1.16), (4.1.17) and (4.1.18). The
large sample approach is considered below.

5.3. Large simple distribution of M,, under H,

In this section we make N indefinitely large, subject to
(4.21). We define F as in (4.2.12), and let 5= (g, ..., 7p)
follow the cdf F. Let the medians of 7, ..., 7, be denoted by
Mas s Jlp and are assumed to be uniquely defined. Also we

determine %-cells{ng__.rp}by the rule that for any observation
belonging to the cell J(r)l---rp’ r;is equal to zero (or one) according

as gy (or > ) jgg, for i=1,...,p. Let then

(6.3.1) P{n € ng"’rp} = '1321”.'?, for all (ry, ..., 7p).

In the rest of Section 5, we assume the following condition :
28
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Condition B. Whatever vy, ...,ve 0 < vp <1, Elv,, = 1),
Jor all FeQ,
Inf. P° >0.

Fyeoof
(ry e tp)es 172

If X =(XP, ..., X®) follows the distribution ¥, and

(6.3.2) P{X,,e ngu_rp} = P®¥

...rp’
then ﬁgl---r,,“: ch vk?(r’;)__‘ rp and hence, the condition B is
k=l
equivalent to: whatever vy, ..., ve
(5.3.3 Inf Inf (P® > 0.
) (s B4

If as in Section 2, we write z{, ..., ) for the median point
of the distributiion F%, then (5.3.4) will be satisfied, if and only
if, none of the 27 cells formed by taking any arbitrary point
within the simplex spanned over the ¢ points (u{, ..., sd),
k=1, ..., c and drawing lines parallel to the axis through that
point have zero probability content with respect to all the dis-
tributions F,, ..., F.. Then we have the fbllowing.

Theorem 5.3.1. Under H, in (2.1) and subject to the condi-
tion (4.2.1) and condition B in (5.3.1), the statistic My, defined by
(5.2.8), has asymptotically, in probability, @ chi-square distribution
with p(c—1) d.f.

Proof, Avoiding the details of proof, we say that under
the condition B, as N is increased (subject to (4.2.1), all the

{(O’, " _,p)/N} can be made strictly positive, in probability. Con-
sequently, we can apply Stirling’s approximations to all the
factorials in (5.1.4) if N is taken adequately large. This will
lead to the asymptotic multinormality of the set of random
variables {n;‘(nk(rlu-rp)_(nk/N)cfl'"fp)’ for all (ry,...,7,) and

k=1, ..., ¢}, (under the conditional probability measure, given
An =Ly.) Since {n,} are all linear functions of these 2%-c
random variables, by means of linear transformations of variables
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it can be shown that [nz¥(ng,—ane/N), s =1, ..,p, k=1, ..., €]
has (jointly) asymptotically a multinormal distribution with a
null mean vector and dispersion matrix D, defined by (5.2.8)

and’ (5.2.7). The rest of the proof is simple and is omitted.
Hence the theorem.

Corollary 5.3.1. It follows by the same technique that on
defining the type C median test statistic as

¢ 2
634) My~ = Nfm) 2{n k(r,...rp)—(”k/N)Orl...rp} / €,

under H, in (2.1) and conditioned on Ay = Ly, the statistio
My has asymptotically a chi-square distribution with (22—1)
{c—1) d.f.

By virtue of theorem 5.3.1. the large sample type 4 median
test may be formulated as follows. Let xZ, be the upper 100€%
point of a chi-square distribution with ¢ d.f. Then, if

> Xop-ne-n, e reject Hy in (2.1)
(5.3.5) My

2
< Xip-nie-),e > accept H,.

(For the type C median test, replace My by M} and the d.f.
(p—1)c—1) by (22—1)(c—1), respectively).

5.4. Consistency of the tests

We define the population medians aé in section 2 (cf. (2.3),)
and consider the following theorem whose proof is omitted.

Theorem 5.4.1. The type A median test is consistent against
the set of alternatives that the pe(c—1) differences in (2.3) are not

all zero. The type C median test is consistent against the set of
alternatives

(5.4.1) sup [ sup

U@ Lryery)
and as such, tt will be consistent not only fo shifts in the median
vectors but also to the difference of the association patterns.

By virtue of theorem 5.4.1 for any fixed alternative different
from H, in (2.1) the power of the tests will be asymptotically

k (@)
P() _Pq

ri-eorp rie-fp

]>o
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equal to unity. Thus, for the study of the asymptotic power
properties of the tests we shall again consider the sequence of
alternatives in (4.4.1), and this study is made in the following
subsection.

5.5. Asymptotic power function of the median tests

As in section 4.4, we shall conceive of a sequence of values
of N, and for each N, ¢ subsequences of random variables. The
condition (4.2.1) will also be implicit in this section. F(x) will
be assumed to be absolutely continuous and the corresponding
(continuous) density function will be denoted by f(x). Further,
without any loss of generality, we assume that the median vector
of F(x) is a null vector. As in the bivariate case (cf. [7]), we
require the following conditions :

« o l.
(5.5.1) _l ....:Lf(xl, ceey Tpoqs ﬁ) d.’tl, ceny dxp__l

= _j: F@s oo tpy, Oy ... dp_y  + OQUN),

and similaxly for each of the other p—1 coordinates in f(zy, ..., %p)-
Let then

a]_ ‘_—’_i -..—L f(O, xz, ey xp)dxz e dxp
(5.5.2)

.3

[}
=_£ ...__!;f(xl, ey Tp_g, 0)d2y ... dap;

0 .

We define Prl,_,,pa.s in (5.3.1) with the only change that n has

the cdf "F(x) instead of F(x). Also we rewrite these s
Py..o= PY; Py...o1= P, Pg,--q,o = P3,
Pg,---1,1 = P2. ceny P?l...l =P

oP*

Let us then define a set of P vectors y, ..., Yp as
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(8.6.3) vs = (eum, agVPs, ... eiz'\/—ls';;);j =)..,9;

where eq = 1iffor Pjry=10 i=1..,p
for
= —1if for P, rg =1 k=1,..,29

Then obviously ¥, ... Y, are linearly independent of each other
and are all of unit length. Also let

Py =YYy for 4,5 =1, .o, p; and
@ = (py), D7 = (pi) ™ = (#¥).

Then it is easily shown that ® or €~ are positive definite. Then
we have the following.

(6.5.4)

Theorem 5.5.1. Under the sequence of alternative in (4.4.1),
the statistic M x has asymplotically a non-central x* distribution with
p.(c—1) d.f. and with the non-centrality parameter

P p ¢
Ay =43 % ¢u( S ve S ajk) o .
i=1 j=1 k=1

Proof, Let ;fl ... X, be the pooled sample medians (a-th
largest value; a = [N/[2]) of the p variates based on the samples
(4.4.5) taken from the distributions Fgn, k=1, ...,c. We define

the cells {Jn---rp’ rg=011=1, ...,p}as in the beginning of
gection 5, i.e., by means of the sample median vector (X0 Xp).
Also, let X denote a random vector following the cdf Fiy,
for k=0, ..., c, where Fy = F. Then we write p::)n_rp as the
probability content of the cell J,,l_._rp with respect to the cdf
Py, for k=0, ...,¢, and the successive derivatives of these
probabilities (with respect to Xy, 4 = 1, ..., p) are denoted by

k) ¢ (k);4,§ &5, 00 .
'1""’ p’]“'f” b4 p'l"'fp ("7.7, eee = 1’ "'7p)’ fOl' k = O, sevy C;

(rp...rp)eS. Then there are 27 values of {pﬁ)---r,,} for each
k=0, ..., c, p2? values of{p(r?_;f.rp} for each k =0, ..., ¢, and so

on. We now adopt Mood’s (1941) technique of finding the joint
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distribution of the sample medians in a sample from a multi-
variate population with an extension to the multisample case,

and get that the joint probability function of {nk(fl'“rp)’

k=1, ..., 0, (ry... rp)eS} and (the density function of) 511, coes X,,
is the sum of the following terms :

(i) If the pooled sample median vector is determined by p
different observations of the pooled sample, then the contribu-
tion will be

¢ ng
(5.5.5) {Igl [([nk(rl...rp)]> l:sl(p('kl) P) E(ry ’p):l }

(xz[f Toee. e 2]} Rk

n * LY
Sy S* j=1{ kj("'l"'rp) =1 4t ‘T J=1

where {gk,-k;} are Kronecker deltas with %ko = 0; the product S

extends over all the 22 terms (r; ... 7p)e8, the sum Sp over the
c® terms: kj=1,...,¢; j=1,...,p; and the sum S* over all
the possible terms like the one within the third bracket succeed-
ing- 8*. 1In the particular case of ¢ = p = 2, reference may be
made to [7] for some simplification of this procedure.

(ii) If the pooled sample median vector is determined by less
than p observations, say p—h observations (& > 1), then pro-
ceeding precisely on the same line as in Mood (1941), it can be
shown that the corresponding probabilility terms would amount
to a term of the order N—%, as compared to (5.5.5). Thus, for
h > 1, the contributions of the probability terms may be neg-
lected. Further, it follows from the results on the univariate

median test (cf. Mood (1954)] that NiX; is bounded in pro-
bability, for j=1,..., p. Hence, it can be shown by simple

but somewhat lengthy algebraic manipulations that under the
sequence of alternatives in (4.4.1)

@) =, ey )/[ ”'?] = 14+-0,(NY),
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(ll) = Oﬁ(N_i)$

@i | o —p = Op(N—3), for i = 1, ..., p;

Pty Lrpe
. (0) (0) -
(lv) prl. e pl-—rB l_rp , = Oﬁ(N i)’

for all (ry ... rp)e8, k=1,...,c. Hence, it can be shown by
some simple but somewhat lengthy algebraic manipulations that

(5.5.6) 2 o =[a;+0p(N~*)], fori=1,...,p;

where the summation 8; extends over all possible 27-1 values
of (ry...mp); Mp=0,1,5=1,...,p (5£14), for i=1,...,p, and
where a;’s are defined by (5.5.2). Hence, from (5.5.5), (5.5.6)
and some simplifications, the joint probability function of the
set of random variables {nk(rl,__rp) sk=1,..,¢/(r... rp)eS}

and Xl, cees Xp asymptotically reduces to

NP i iy
(5.5.7) “1 s ap [kl;ll { ([n]c(rl...rp) ]>

k LETPSION - ~
E(Prl...,p) i(ry rp)}:, ax, ... dXP+OP(N-1/2)'

Again, by using (multivariate) Taylor’s expansion it can be
shown that

i) N¥

(k) (k) (0) (0)
(pn Prl or ) (prl-urp'—Pq---rp)

P
=0,k=1,...,¢;

" ® )

(i) P r(:---rpf"P:-:...rp = Op(N-*)s
pe(0) s ) i
() prL.py = 2w [p2.,,]+0pB),

for all (ry ... rpeS.
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Hence, (5.5.7) can be shown to be reducible asymptotically to

/2
N?a, ... ap| 4] [(2m)2p—1
(k) 1
5.5.8 1 §z[n"(”'"'P’—n"pfl""pr .
( Ri N ) exp ’?k=1 S P(k)
MLy,

» . ¢ P
H dX; H H de(l),
=1 =1 J=1

where A has the principal minors 4y = 1/P{®+ 1/P:2, i=1,
..., 22—1, and the off-diagonal minors Ay = 1/P0, i #j=1,
2

ceuy 21)_._1, Zk(j) == n]:* (nk(j)_nk_p§k)), j == 1, cosy 2p—]., k= 1,
..., ¢; the number ¢ or j (= 1, ..., 2?), being attached to (r, ... 7p)
in the same convention as in just before (5.5.3). We now write

(%) 0)
(55'9) dfl"'fp = nlﬁ (p"llc""p_p('l"'fp)’ k= 13'-'902 (rl oo Tp)ES,
7 .
(6.5.10) Bl = {nkm - Fk C’m}/\/nk

forl =1,...,2°—1;k =1, ..., ¢;and

Wy ={Ca—NQYVN forl =1, ..., 20—1.
Then, we have

(5.5.11) Zrqy = Eb—db+vVm/N Wy,
forl=1,..,22—-1; k=1,..,c¢;

5.5.12) 3% 22 5 &g
(5.5.12) ’El El Zigy = Ed El (&G —de, 2/ P,y
L
+121 W[ Py+op(1).

By noting that d’,‘lmrp=n,g( p(:l)mrp—p::)mrp) +op(1), forall k =1,
«s¢ and all (r... rp)eS, we get from (5.5.8) through (5.5.12)
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and on integrating over the range of the variables Xl,

X,, that the joint distribution of £, 1=1,...,22—1, k=1,
..., ¢ reduces to

(5.5.13) JL “A ‘ /(27,)2”“’1\@—1-)/2

k x 2
¢ E —d, ¢=1 2P—1
exp __;_ 55 [ rleeefp Ty rp],} o1 d&f.-)}.

k=1i=1
riterp

Hence it follows by some routine algebra that

c 2 P
(6.5.14) Ty = I I I ¢Y4{n;q —ang/NHnygy—ang/ N} ng

k=l i=l j=1

has asymptotically a noncentral chi-square distribution with
plc—1) d.f. and the noncentrality parameter

c 9 P _ -
(5.5.15) AM =4 X Vi DYDY (piiaq;ocj(ﬂg")—ﬁi)(ﬁg‘)—(),),
k=l =1 j=1
where ay’'s are defined by (5.5.2), 6%, k=14, ...,¢c by (4.4.1),
and 8 by (4.4.6). Further, it is easy to see that under (4.4.1).

(5.5.16) D3 @, ie, D5 @1

(as @ is assumed to be nonsingular), and hence, from' (5.2.8),
(5.5.14) and (5.5.16) it follows that under (4.4.1),

(5.5.17) My R Ty

The rest of the proof follows by some standard procedure and is
therefore omitted.

6. ASYMPTOTIC POWER-EFFICIENCY OF THE
TWO TESTS

Since, under {Hy} in (4.4.1), both the test statistics have
noncentral chi-square distributions, differing only in the non-
centrality parameters, a comparison of the two noncentrality
parameters will reveal their asymptotic relative efficiency (A.R.E.).
However, such an AR.E. depends on the vectors 8%), k =1,
...»¢ a8 well as on the two matrices W and ® entering into the

29
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expressions (4.4.6) and (5.5.15). Moreover, interpreted as the
Pitman-efficiency, it also depends on the level of significance .
Thus, unlike the univariate case, no single measure of efficiency
(independent of 6%, k=1, ...,¢ and €) usually exists (unless
the p variates in F(x) are independent or totally symmetric),
and we may have to be satisfied with the assessment of various
bounds for the A.R.E. (for any specified F(a), which are inde-
pendent of 0%, k& = 1,...,¢c. In the particular case of F(x)
being a p variate normal distribution with a null mean vector,
unit variances and a correlation matrix p = (py), it follows
from well-known results that

(6.1) Yy = (6/m) sin~ (4/2), ¢y = (2/m) sin (py),

for ¢,j=1,..,p;
and hence, the A.R.E. becomes a function of 6%, k=1,...,¢
and p. In the particular case of p = 2, it has been shown
by the present authors [7] that the A.R.E. of the rank-sum
test with respect to the median test is uniformly greater than
unity (ie,> 1, for all 6®, £=1,2 and ¢). In the multi-
variate case of p > 3, really the bounds for this A..R.E. depend
on the characteristic roots of W®-1. Some result of this type
has been considered by Bickel (1964) in the multivariate one
sample problem, and it appears that the same bounds are also
applicable in our case. We therefore omit these results. Finally,
comparison of the rank-sum test or the median test with the
parametrically optimum test (viz., the likelihood ratio test)
for multinormal parent distribution, requires the comparison of
the noncentrality parameters in (4.4.6) or (5.5.15) with that of

(6:2)  Ap=13 v B 3 pHop—B)OP—By), (oY) = p~
k=1 i=1 j=1 '

For the case of p = 2, the present authors [7] have shown that
the A.R.E. of either of the two proposed tests with respect to the
Hotelling’s T2 test (equivalent to the likelihood ratio test) is
uniformly less than one, (for bivariate normal distributions).
Bounds similar to the one given in Bickel’s one sample paper,
can again be considered for the multisample case when p> 2.
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7. CONCLUDING REMARKS

In this paper, we have considered the p variate ¢ sample case,
for p, ¢ > 2. For the case of p variates and 2 samples, the
expressions for the two statistics in (4.1.15) and (5.2.8) can be
gimplified as

12 i _ ny(N+1)
) W= (N’I“l)'nlanlelQ// (A ){ 2 }

{Rj—n1(2N+1) }

4N
2 2 dt]{nl“,)_%nl}{nl(j) ing},

My =
NNy =1 j=1

where R; is the sum of ranks (with respect to the ith variate)
of the first sample observations, for ¢=1,...,p. Further,
if p = 2, these expressions can be more simplified as in [7].

The two nonparametric tests developed in this paper have an
important role in multivariate analysis. Not only the assump-
tion of multinormality of the parent distribution is waved here,
but also the scope of the inference procedures is increased to
data where the observations may be available on an ordinal
scale, (thus creating much difficulties to the applicability of usual
methods); in the field of Psychometry there are numerous instances
of this type of data. The authors believe that the proposed tests
are also more robust than the usual parametric tests, though
the detailed study of this aspect is appreciably computer-depen-
dent and is left to such interested readers.
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