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1. INTRODUCTION AND SUMMARY

In statisfical experiments involving a set of multiresponse
treatments and replicated under appreciably varied conditions,
the assumptions underlying the usual parametric multivariate
analysis of variance (MANOVA) procedures often appear to
be quite stringent and dubious . The object of the present investi-
gation is to propose and study a class of nonparametric MANOVA
procedures, which not only remain valid for a broad class of
parent distributions but also leave scope for the variation of the
above distribution from one replicate to another in any arbitrary
manner. The performance characteristics of the proposed
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methods are also compared with that of the standard parametric
methods.

Suppose, we have N subjects (plots) available for the experi-
ment which are divided into r replicates (blocks) of sizes Ny, ..., Ny
respectively, so that N;+..+N,= N, The ith replicate con-
taining N¢ subjects are further subdivided into two subgroups
of sizes N¢; and Ny, respectively, and these two subgroups are
treated with two different treatments 4 and B. Thus,

(l.l) N‘=N{1+N{2, 1: = 1, essy Ty T>2n

The application of any treatment is followed by a quantitative

p variate (p > 2) response, which is a stochastic variable X ,
where

(1'2) x‘k.c = (nga, ""Xﬁz,)a)’ a=1,..,Ng k=12,

i=1,...,r.

It is assumed that Xy, @ =1, ..., Ny are Ny independent and
identically distributed random wvariables (ii.d.r.v.) distributed
according to a continuous p-variate cumulative distribution
function (c.d.f.) Fy(a), where it is given that

(1.3)  Fea) = F(x+0), Fy(@) = Fy(x), i=1,...,7;

0 being a real p-vector. In the sequel, it will be assumed that
r,p22.

In MANOVA, the standard parametric tools assume that
Fi, in (1.3), is a p-variate normal c.d.f. foreachi=1,...,7,
and further all these r c.df’s have a common dispersion matrix
Z. Infact, these MANOVA procedures are appreciably sensitive
to any departure from either of the two assumptions made above,
and hence, may be regarded to have only a very limited scope
of applicability. In many cases, the different batches of subjects
in the different replicates may be quite heterogeneous, and may
even be from appreciably different populations. Here, we shall
be oonoe.rned with the following two problems, where we make no
assumption regarding the specific forms of F,, ..., Fy in (1.3).
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First, referred to (1.3) we desire to test the null hypothesis

(1.4) Hy:0=0,

against the set of alternatives that 8 is a non-null p-vector.
Second, we may also desire to estimate @ (by a point as well
as region value), when we have the reasons to believe that 0 is
non-null. For both purposes, we have proposed and studied
appropriate nonparametric MANOVA procedures. The beauty
of the proposed method is that it not only remains valid for any
continuous p variate c.d.f., but also allows F, ..., Fy, in(1.3), to be
arbitrarily different from each other. The findings of this paper
generalize some of the single replicate nonparametric MANOVA
tests of Chatterjee and Sen ([2], [3]), Sen ([13], [14]) and Puri
and Sen [10] to the multireplicate case. The nonparametric
estimation procedure considered here generalizes the technique
of Hodges and Lehmann [9] and Sen [11] not only to the multi-
variate but also to the multireplicate case. This may also be
regarded as a direct multivariate generalization of a similar uni-
variate nonparametric procedure considered by the present author

(121, [16]).
2. REPLICATED NONPARAMETRIC MANOVA TESTS

We pool the N; observations of the ith replicate into a pooled
sample of size N;. Then with respect to the jth variate values
X{, a=1,.., N, k = 1, 2, we arrange the N; observations in
order of magnitude and denote the rank of X{),, in this set,
by R, fora=1, ..., Nug, k=1,2. So that Ry, ..., B} is
a permutation of the N; numbers 1,..., N;. By virtue of the
assumed continuity of Fj, in (1.3), the possibility of ties may be
ignored, in probability. The above ranking is done separately
for each j = 1, ..., p, within each of the r replicates. Thus, the

observed variate values in (1.2) are mapped into r independent
sets of p-tuplet rank values
2.1)  Ryg,=(RY,, .... BE.),x=1, ..., Nux, k=12
g =1,..7r
80
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Let
(2.2) R,; = (Rﬂ, 1 cee> R‘.zNia)’ 7 = 1, ey 5
(2.3) R=(R,.. Ry.

Then R is a p X N matrix which is partitioned into » submatrices
of orders pxN;, i =1, ...,7. Each of these submatrices is sto-
chastic in nature and contains random rank p-tuplets. Thus
R is a collection of r independent sets of random rank p-tuplets and
will be termed the compound collection matriz, and R,, ..., By
as the component collection matrices.

Now for each combination of (5,5, ¢ =1, ..., 7, j =1, ..., p),
and for every positive integer V, let us define a sequence of ele-
ments (which are known fonctions of N)

(2.4) ED = (B, ..., B¢, j=1,..,p t=1,..,7

the rp different sequences need not be identical. However, in
the majority of cases, we would prefer having E§? = Ex for all
i,J. TFor the time being, we assume that

N
(2.5) % 2 |E{P|*+ < oo, forsome d> 0, and all N,
a=1

and later, we shall inpose some further conditions on E§7.
Then, let Z9, =1, if the fth smallest observation on the jth

variate values in the ith replicate is from the treatment A, and
let Z‘J)ﬁ = 0, otherwise;forf=1,..,Ny,j=1,..,23,¢=1 ..,

r. We also denote by
(2.6) Z(jz])‘ = (ZU)‘) ooy Zw‘N‘)’ j =1..,p $=1,.,r

and consider the rp random variables defined as

2.7) TP =(23). EGH(ZQ), - Z25})

M
= W e By Sl $=1 .
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Further, lot

r .
(2.8) T = Z (Na(N—)INIT,, j =1, ..., p

(2.9) Ty. = (T®, ..., TP).

Our proposed test is then based on T'y.. Before we present the
test statistics and the test procedure, we consider the rationality
of the test.

When the null hypothesis (1.4) is true, Xikz =1, ..., N,
k=1,2 are ii.d.r.v. distributed according to the c.d.f. Fy(zx),
defined in (1.3). Thus, by an adoptation of the rank-permutation
argument of Chatterjee and Sen ([2], [3]) we may conclude that
given the rank collection matrix R;, in (2.2), the conditional
distribution over the N;! permutations of the columns of Ry
would be uniform under H, in (1.4), whatever the c.d.f Fy(a),
may be. Consequently, given R;, all possible partitionings of
the N; rank p-tuplets into two subsets of sizes Ny and Ny, res-
pectively are equally likely (conditioned on the given R;) under
H, in (1.4), and the permutational probability measure for each

such partitioning is equal to ( %" )—1. We now consider the pro-
1t

duct permutational probability measure induced by the  inde-
pendent sets of partitionings arising out of the r component
collection matrices R,, ..., R,. Evidently, this is given by

N;

r
(2.10) 1 ( ¥,
r= 1

)" = yN* (say).

Hence, conditioned on the component collection matrices of the
compound collection matrix R to be all given, there are in all
N* possible partitionings and each such partitioning has (candi-
tionally) a common permutational probability 1/N*, when H,
in(1.4)istrue. 'Thus, if we denote this permutational probability
measure by #(R), and consider the permutation distribution of T'x-
(defined in (2.9),) induced by #(R), then any test function ¢(T'w-)
based on this permutation distribution of T'x. will have a strictly
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distribution-free structure when H, in (1.4) is true. The pro-
posed test is thus a permutation test and is based on an extended
rank-permutation argument.

To construct the test statistic Sy, we define first

@1 B =

1 N‘ @, N .
lv”ElEﬁ‘B, j=1.,p t=1..,7

— r —ra o
212)  EY = I Ny~ 1/NAER), j=1 ... p;

(2.13) Ey =(ED, ..., BEQ).

Also, let

(2.14) off = 1 {% lngw ED —N; BB
N'_l ol ot 1k, ke i Ny “ Ny }’

forj,l=1,..,p,i=1,...,r, where Ef), is the value of Eg,?

associated with the value of # = R, fora =1,..., Ny, k=1,
2,j=1,..,p; i=1,..,r. Further, let

7
(216) mg = NuNg/Ny, t1=1,..,r and n = I ny;

i=1
r
(2.18) vﬂ(R) =22Il mv}?/n, j’ l=1,..,p

Then, it can be shown following a few simple steps that

(2.17) E{Ty.|”R)} = Eu,
E{Ty.—Ey)(Ty.—E; =

here {Tn.—Ex)(Tn.—En) | #(R)} = nV(R),

(2.18) V(R) = (0(R)jstmss 9

we now let V-YR) = ((R)))j1=15- - »p.

Following then essentially the same argument as in Puri and Sen
(10, we may consider the following test-statistic

(2.19) Sy = %(TN.-—E_N)V_l(R)(TN-"EN)':
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which is a positive semidefinite quadratic form in (Ty.—Ey). S
will be small only when (T y.—Ey) consists of elements of small
magnitude. When H, in (1.4) is true, Sy will have have N*
possible (permuted) values (not necessarily all distinct), and the
permutational probability measure attached to each of these
points is 1/N*. On the other hand, if H, is not trueie., 0 # 0
(referred to (1.3), then it can be shown that by proper choice of
E(l’;}’;), i=1..,7,5=1, .., p Sycan be made large, in pro-
bability. Thus, it seems reasonable to base our permutation test
on Sy, using the right hand tail of the permutation c.d.f. of S
as the appropriate critical region. Hence, we propose the
following test function ¢(Sx):

1, ,if Sy> 8w
(2.20)  J(Sy) = axe, if Sy= 8y,

0, ,if Sy<Sye>
where Sy ¢ and ay, ¢ are so chosen that
(2.21) E{p(Sy) | P(R)} =e:0< e < 1,

€ being the preassigned level of significance of the test. Note that
(2.21) implies that BE{p(Sy)|Ho} =¢. So that ¢(Sy) is a strictly
size ¢ test. The values of Sy , and ay, , depend on the particular
R. 'In small samples, their values are to be evaluated from the
exact permutation c.d.f. of Sy. The problem though appears to
be deterministic, the labor involved in this numerical evaluation
increases prohibitively with the increase in the sample sizes.
In view of this, we present below the asymptotic permutation
theory related to this problem and later, we shall see how the same
can be used to simplify the large sample approach to this permu-
tation test procedure.

Extending the ideas of Chernoff and Savage [4] (see also
[5], [10]) to the multireplicate multivariate case, we write

(2‘22) E%‘;g) = J%:)(“/(Ni‘}‘l))’ I Ny j=1..,p

=1 ..,1
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where J‘J‘\;‘” need be defined only at «/(N;+1), a =1, .., N¢

and its domain of definition may be extended to the open interval
(0, 1) in any conventional manner (cf. [10}). Let then

(2.23) F{2() = Ni”, {number of X, <o} j=1, B,
i=1..,nk=12
(2:24) B, = 5 FaFRu@+NaFf@h §=1, .0

$=1..r

The marginal c.df. of X{2, is denoted by F} (x) for k= 1,2,
and let

(225)  BP) = g (N PR+ NaFHie),

t=1..,r j=1.,p.
Similarly, let

1
(2.26) Fi(z,y) = 5— {number of (X, XRo) < @ 9}
k=1,2;
1 . .
(227)  HfP@9) = g (NaF§h@ )+ Va0, 1))
j 7 l= 1; Yy 1= 1, ey Te

Also, the joint (marginal) c.d.f. of X{, X{, is denoted by
F¢P(z,y) for k=1,2, and we let

(2.28)  H{@y) = 1% (N, FEP (2, )+ N F(, y)}

j 7+ l= I, Ry ) t=L..,n
It may be noted that if we define
(2.29) /\5‘(}‘ = N[Ny, i=1.,n

then H{ and H{" both depend explicitly on 2@, § =1, ..,
We now impose the following conditions :
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(C.1) A‘l’ cees A‘l()' are regarded as fixed and are all bounded
away from zero and one.

(C2) JUNH) = lim J§(H) exists for all 0 < H < 1 and
Niyre

is not a constant. For our purpose, we impose further that
JUI(H) is monotonic in H, for all ¢ = 1, ...,7, j=1, .., p.

(C.3) If If), = { : 0 < HY)(%) < 1}, then

igy( _ N ) N o \1aro
)t [0 (o ) =74 ( ey 20 [P0
=o0p(N7¥),forallj= 1, ...,pand i=1, ..., 7
1
©4 | g T |< KHA—H)H,

for [ =0,1 and some & > 0.

©n [ (9] ED) 40 ( M my)-

v ,a) Ni+1
Nt Ng
) N, . . N ,
i L ) | gt LI ()] G, =
Joi (g B ) I 5y HY,) |4H§0e 9) = opt1),

for all j,l=1, ...,p, t=1,..,r
(C.6) Let us define

(230) P = [ [ [JONHP)TEH)EHI E, y)

~ § JeNEMIEPEL ] JEP)E ),
for j,l=1,..., p, and

(2.31) VO = ((igmt, p 8= 1o eir

Then v\ is positive definite for all 2 = 1, ..., . We shall see
later on that conditions (C.1) through (C.6) are less restrictive
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than the ones required in the parametric case. vConditions
(C.1) through (C.4) are the same as in the Chernoff-Savage theorem
((4], also [5]), while conditions (C.5) is required to study the
convergence of the matrix V(R) (defined in (2.18)), and the condi-
tion (C.8) is required to assume that V(R) has a positive definite
limit, in probability. Let us define now

r
(2.32) v =X nvn
i=1
where n,,...,n, and n are defined in (2.15). It then follows
from (C.6), (2.31) and (2.32) that v is also positive definite.
Theorem 2,1, For arbitrary continuous c.d.f.s Fy, ..., Fy
and any real and finite 0 (in (1.3),) under the conditions (C.1)
through (C.5), V(R)> v.
Outline of proof, If follows from Theorem 4.2 of Puri and

Sen [10] (which essentially relates to the unireplicate case) that
under the stated regularity conditions

(2.33) ofp 3 v for all j,1=1,..,p; i=1..,7

Using then (2.16), (2.30) and (2.32), we get after some simple
algebraic manipulations that

o) S vy for all j,1=1,...,p.
Hence, the theorem.

Theorem 2,2, Under the conditions (C.1), ¢ =1, 2, 3, 4 and
V(R) being positive definite, the permulation disiribudion of Sn
(defined in (2.19),) asymplotically, reduces to & chi-square distribu-
tion with p degrees of freedom.

Outline of proof, It folows from Theorem 5.1 of Puri and
Sen [10] that under the stated regularity conditions, the joint
permutation distribution of N 3[T(1{,')‘——E’—Sf,’?],j =1, ..., p asympto-
tically reduces to a p-variate normal distribution. Now, the

sets N.t[T?v)..—E%?],j =1,..,p(@#=1,..r) being all stochasti-
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cally independent, it follows from (2.8) that the joint permuva-
tion distribution of N—i{Ty.—Ey] can be obtained by convolution
of r independent and asymptotically multinormal distributions.
Hence, it can be easily shown that n—#{T y.— Ey} has a permuta-
tion distribution, which is asymptotically multinormal if V(R)
is positive definite. ~Again, if V(R) is positive definite, the above
permutation distribution is essentially non-singular and hence,
applying a well-known result on the asymptotio distribution of
quadratic forms associated with asymptotic normal distributions
(cf. Sverdrup [17]), we arrive at the desired result that Sy has

asymptotically a chi-square (permutation) distribution with
degrees of freedom.

Hence, the theorem.
By virtue of Theorem 2.1 and condition (C.6), we get, that

V(R)—P) v, which is positive definite. Hence, from the preceeding
theorem, we arrive at the following.

Theorem 2,3, Under conditions (C.1), ¢ =1, ..., 6, the permu-
tation distribution of Sy reduces asymptotically in probability, to
a x? distribution with p.d.f.

Thus, it follows from Theorem 2.3 that the test ¢(Sx) in
(2.20) asymptotically, in probability, reduces to

(2.34) #(Sw) =L, if Sy > X3
=0, if SN<X%,“

where y2 ., is the 100(1—¢)%, point of a ¥? distribution with p.d.f.
Using condition (C.2), it can be shown with little difficulty that

l—l\f{T N.——I—EN} converges to a non-null vector if 8 (in (1.3), ) is

non-null, Consequently, using (2.19) and Theorem 2.3, it is easy
to show that the test ¢(Sy) in (2.20) or (2.34) is consistent against
any 0 £ 0.

Now, as in most of the non-parametric tests in MANOVA,
the study of the exact power of ¢(Sy) seems to be considerably
81
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difficult and the same depends heavily on the parent od.f’s
F,, ..., Fy and the particular 6. No simple expression can be
attached to such an exact power-function. However, we dre in
a position to study the asymptotic power properties of the test
&(Sy), and this we do for a sequence of alternatives {8y}, so chosen
that E{¢(Sy)|0y} tends to a finite limit y:e <y <1 as N .
We now define # as in (2.15), and note that » is an increasing
fanction of Ng, & = 1, 2, ¢ = 1, ..., r, and it tends to c0 as N— 00,
subject to (C.1). Then, we specify the sequence of alternative
hypotheses {Hy} by

(2.35) Hy:0y=n1.6,

where § is any real and finite p-vector. We also define

(2.36) ay= | & JPEP@EPE), § =1, .ccrt, j= 1D

Niw = (éln‘aﬂ/n) 8.7: Jj=1 s P

(2.37) NN = (1,5 ++es Tp,N¥)

At this stage, we require to put some restrictions on n,, ..., %,
in (2.16). We assume that as n— o0, ng/n—> p;, ¢ =1, ..., r where
Py .., Pr are all bounded away from zero and one and they add
up to unity. Under this condition 9, in (2.37), tends to a limit-
vector, which is denoted by .

Theorem 2.4, Under conditions (C.1), i = 1, ..., 6 and the
one on my's .stai:‘ed above Sy has asymptotically, under {Hy}, a non
central x* distribution with p.d.f. and the noncentrality parameter is

As = nviy.
. Proof: For arbitrary F,, ..., Fy and 0 in (1.3) (not necessarily
© sequence {0x}), the joint asymptotic normality of [NY{T
— B . — ) ‘
B j=1,.., p] follows readily (under conditions (C.l):

t=1,,

+»4) from Theorem 6.1 of Puri and Sen [10). Thus,
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again by simple convolution, we get that for arbitrary F,, ..., Fy

and 6, N-H{Ty.—Ey] has asymptotically a multinormal distri-
bution, under conditions (C.i), ¢ = 1, ...,4. Now, under {Hx}
in (2.35), it follows by more or less routine computation that

(2:38) EnTy—~ExN]/Hyx}—> 0 as N o0,
and further it is also easily shown that

(2.39) E{nTy.—Ey)[Ty.—Ey]/Hy} - v as N— o,

where v is defined in (2.32). (Note that, in this case, in (2.30)
and (2.36), H{), H{" are to be replaced by F{» and FU res-
pectively, for all j,l=1,...,p and ¢ =1, ...,r). Consequently,
by a well-known limit theorem, we get.that under {H y}

(2.40) 8% = — (T~ BTy~ Ey]

has asymptotically a noncentral yx2? distribution with p.d.f.
and the noncentrality parameter Ag, defined in the theorem.
Finally, using Theorem 2.1 it is easy to show that under {Hy}

P
in (2.35), V(R)— v, where V(R) is defined in (2.18). Consequently,
from (2.19), (2.35) and 2.40) we get after a few simple steps that

P

under {Hxy}, Sy = Sy
Hence, the theorem.

Let us now consider the standard parametric MANOVA
test which is based upon the assumption that the c.d.f.’s #,, ..., Fy
(in (1.3),) are all p-variate normal with a common covariance
matrix . The test-statistic (say Ry) is essentially a likelihood
ratio test criterion (c.f. Wilks [18, p 561]) and it is easily seen that
under H,, in (1.4), Ry has asymptotically a y? distribution with
p d.f., while under {Hy}, in (2.35), Ry has asymptotically a non-
central y distribution with p d.f. and the noncentrality parameter

(2.41) Ap = 8§18,
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Thus the asymptotic efficiency (in the Pitman-sense) of the permu-
tation MANOVA test based on Sy with respect to the standard
parametric MANOVA test based on By comes out as

(2.42) egg;é},{RN} = v 1n'[62-1 &' = ¢(5, J, F),

where F=(F,...,Fy) and J=(JOV, Joo J6D,
«eey J"P), Further, in the parametric case, if Fj,..., F, are
normal and have covariance matrices X, ..., &, respectively,
which are not all identical, the statistic By has no simple distri-
bution for small samples. However, for large samples, it can
be shown that under {Hy}, in (2.35), R has asymptotically a

noncentral y? distribution with p d.f. and the noncentrality
parameter

—_ 4
(2.43) Az = 8Z-18, T = 3 nZy/n;
i=1

(consequently, under H,, By hasasymptotically a y? distribution
with p df). In this case, the asymptotic efficiency in (2.42)

will have to be adjusted only by replacing = by Z.

It may be noted in this connection that a second type of non-
Parametric MANOVA tests may also be constructed for the above
purpose. This type of tests are somewhat restrictive in the sense
that it allows F, ..., F, to be continuous p-variate c.d.f’'s but
assumes that F,, ..., F, have the same . functional form apart
from possible variation of the location vectors only. In a sense,
it is thus essentially the parametric MANOVA' test with the assu-
mption of normality replaced by a broad family of continuous
e.d.f’s, but the assumption of identity of the covariance matrices
being implicit. This type of tests is based upon rankings after
alignment and may be regarded as a direct multivariate
generalization of a similar clags of univariate rank-tests consi-
fiered by Hodges and Lehmann [8]. The study of such tests
in the multivariate case poses some further problems, connected
with rank-order tests, and because of the somewhat different
type o.f approach, the solutions in this case and their lengthy
deduations will be considered in.s ‘separate issue,
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3. ESTIMATION OF 6 USING RANK-ORDER
TESTS.

We shall now consider the problem of estimating 0 in (1.3),
without assuming the functional forms of F,, ..., Fr or their co-
variance-matrices to be all identical. For this, we write

(3'1) ch) = (X(;L 1000 Xfi{Nik)’ k= 1, 2:j= L s Dy v = 1,..r;

82 Xu=(XP, . X k=12 ¢=1,..7r;
33) XP=(X@,...X9), k=1,2, j=1,..,p;
(34) Xp=(XP, .. .XP), k=12
Let I, be an m-vector with unit elements, and we denote

(8.8) (xy+a, ..., zpt0) = Xp-talp
We then consider a rank-statistic A(Xj, ¥,) which statisfies
the following two conditions:

(a) MXp+aly, Y,) is increasing in a,

(b) If the elements of X, and Y, areiid.r.v., then A(X,,,¥,)
has a strictly distribution-free structure, and the c.d.f of A( Xy, ¥j)
in this case is denoted by Gy(k/m, n).

Let pm,, be any convenient measure of location of G, and as
@Gy is distribution-free pp , is a known function of (m, n). For
the definition of iy, ,, we may adopt the convention in ([9], [16]).
Let us then define

. 1 r ‘ )

(36) A (XP+aglys XP) = z b XP+ady,, X9D),
=

for j = 1, ..., p, where n,, ..., ny and n are defined in (2.15).
The appropriate location of the c.d.f. of h(XP4-6;1y,, X9)
can be easily derived from ,u(lf\}il, Ny N, ¢=1,...,r and is de-
noted by uf, j=1,..,p. So that pgy= P, ....s¥) is 2
known p-vector. Let us again define
(37) Opy = Inf {0 : B(XP+0Lx;, XP) > uf),

(38) 0o = Sup {0: KEP+00y1 XP) <l j=1, ..., 8.
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Then our proposed estimate of 8 in (1.3) is

(3.9) 8=y ..., 0p); O =(Oratbii2, G=1 ....p.

The proposed method is a generalization of a similar univariate
method considered by Hodges and Lehmann [9] and Sen [11]
not only to the multivariate but also to the multireplicate case.
Incidently, this also generalizes Bickel’s [1] results not only to
the replicated two sample case but also to a more general class
of test statistics. Finally, in the univariate replicated case,
Sen ([12], [16]) has considered a similar method and the present
one is a direct generalization of the same to the multivariate case.

Following then essentially the same technique as in [9], [16]) it
is easily shown that if F,, ..., F, are all continuous (absolutely

continuous) so also is the estimate 8. Further 8 is translation
invariant, i.e.,
(3.10) (X 1t+alxy, Xg) = 8X,, X,)+a,

for any real p-vector a. Finally, if either N;, = Ny, for all
=1, ot or Fy, ..., Fr are symmetric and if {h(X{, X+
hy( X3, X} = constant (which may depend on j), for all j =1,

.-.» P, then the distribution of (AO—-O) is symmetric about 0.

We shall now consider the asymptotic properties of the esti-
mate 8. We then define #,, ..., n, and » as in (2.15), and let

Bll) mrn=p:0<p<lforalli=1,...0r.
Further, we impose an asymptotic condition on ( ); namely,

we assume that under (1.3), the joint distribution of

(3.12) [l XD +(0;+n; )y, XD~ mh § =100
is asymptotically p-variate normal with & mean vector (@, B (Fy),

--» @pBYFy)) and a dispersion matrix v, ¢ =1,..,r. Let us
then define

(3.13) ByF) = é (@) .
(I i=110¢Bj (Fe), =1, v p, F=(Fy, ..., Fy);
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T

(3.14) v =2 pp¥, t = ((r2)),
i=1

T = v B(E).ByF), 1, j = 1, ..., p.
Then essentially by an adaptation of the same technique as in
(9], [16]) with more or less straight forward generalization to the
multivariate case, we arrive at the following theorem, where

fin (3.9) is replaced by a sequence {6,,} for the sequence of =.

Theorem 3.1, Under the conditions stated above, n*(8,—0)
has asymptotically ¢ multinormal distribution with a null mean
veclor and a dispersion matriz %, defined in (3.14).

It may be noted here that if we now work with the class of
rank-order tests TH), i=1,...,7, j=1,..,p and assume the
conditions (C.i), ¢ = 1, 2, 3, 4 of section 2 to hold, then the condi-
tions (a) and (b) (of this section) imposed on A( ) are also satis-
fied. Further, in this case, the quantity B{"’(F;) reduces to ay,
defined in (2.86). Thus, the same class of rank-order tests may
also be used in estimation problem.

In the parametric case, the conventional estimate of 6; is
r . s .
=3 pZP, j=1,..,p, where Z{? is the observed difference of
=1

means of X, and X, j=1,...,p,¢=1..,r IfF, .., F,
have a common covariance matrix =, it is easily seen that the co-
variance matrix of ni(f—8) is also I, (where & = ({1, ..., lp)).
IfF,, ..., F, have covariance matrices Z, ..., Z,, then if we define

T as in (2.43), the covariance matrix of ni(f—8)is . The asymp-
totic multi-normality of this vector estimate follows readily from
the Central Limit Theorems. Thus, if we employ the generalized
variance as a measure of efficiency, the asymptotic efficiency
of the estimate (3.9) with respect to the parametric estimate
t comes out as

(315)  |E.xv={|E|/|v]}¥? = e(r, B), (say)-
We can easily imagine the closeness of (2.42) and (3.15) and
later we shall study these further.
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Before that we consider the following problem of confidence re-
gion of 6 based on rank:order tests. In the -univariate case,
it has been shown by the present author (cf. [11], [16]) that distri-
bution-free confidence interval for 6; can be obtained from the
distribution of A}(X{+0;Ix;, X9), for any j = 1, ..., p. How-
ever, there are certain difficulties associated with the simultaneous
confidence region for 0. This is due to the fact that marginally
each A} (X{46; In,, X9P) has a nonparametric distribution
forj =1,...,p. But, jointly these p statistics has a distribution-
free structure only under permutation model, and the permuta-
tion covariance-matrix in this case depends on the unknown
0 and the given X ;, X, Thus, the permutation distribution
depends on the unknown 0 in a somewhat involved manner, and
it seems to be fairly difficult to suggest any procedure for very
small samples. The procedure sketched below remains valid for

moderately large samples, and may therefore be regarded as an
asymptotic procedure.

For the confidence region problem, we assume that the rank-
order tests of Section 2 are used and borrow therefore the same
notations. We can estimate v from the ¢th replicate in the fol-
lowing manner. Since, under (1.3), Fy; and Fy, have the same
functional form and they differ only by a location vector, if we
adopt the ranking procedure in Section 2 for each of the two
samples (sepa,ratel_y) within the ith replicate, and for each sample
we use an estimate essentially similar to the one in (2.14), then
by combining these two estimates within the ith replicate (with
weights equal to Ny, 1 and Nj,—1 respectively), we get an esti-
mate of v, for j, I1=1,...,p i =1, .., 7. It can be readily
shown using Theorem 5.2 of Puri and Sen [10] that these are all
consistent estimates. Once these are obtained, we estimate
vjin (2.32), by the same linear function (i.e. (2.32)) in the estimates.

We denote these 3 Vi1, 4 l= 1, ..., and the matrix by 9. Conse-
quently, we replace (2. 19) by

(3.16) Hp(0) = 7 {(R*(6)—pw)V—2(h*(0)— pn)'),



Two-Treatment Multiresponse Case 649
where

(3.17) h*0) = (AYXD+0Iny, XD), ..., BXP+0 I, X))
Then, proceeding precisely on the same line as in Theorem 2.2,
it can be shown that under (1.3) and asymptotically

(3.18) P{Hx®) < x2.|0} = 1—¢, 0<e< 10

where x7 . is defined in (2.34). We now select 1—¢ as the desired
confidence coefficient. Now Hn(0) < x3. describes an ellipsoid

in h*(®) with origin my. For any point @ on the boundary of this
ellipsoid, we have

(3.19) r*®) = a.
We then solve the set of p equations in p unknowns in (3.19),
and denote this solution as é(a) where we adopt the following

convention to achieve uniqueness of 6(a) for any a.
(8.20) 6(a) = {h*('é) =a:|6(a)—0| is maximum},

where 0 is defined in (8.9), i.e., for any @, we take the extreme
(distant) value of 0 for which (3.19) holds. Now using the method
of (3.19) and (3.20) and allowing @ to assume all possible values
on the boundary of the ellipsoid H y(8) < xp,. it is easily seen
(using the monotonicity of h*(@) with 6) that the set of points

6(a) obtained in this manner describes a closed convex set in 0

which contains © as an inner point. This closed convex set is
our desired confidence region for 8 and it is readily seen that this
also remains translation invariant.

In actual practice, the problem of finding out this convex
close set in 8 (say C(8)), is not very complicated. It can be shown
(cf. Sen [15]) that under the regularity conditions of section 2,

(3.21)  nHE(Of@)—uP) & ByF) n¥Ga)—0)j =1, ..., p,

where E(F), j=1,...,p are defined in (3.13). Thus, asympto-
tically C(@) reduces to the following from

(3.22) C(8) = {0 : n(0—6)v-2(0—0) < 3.}
82
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where 1 is defined in (3.14). If we take any point @ on the boun-
dary of the ellipsoid Hn(0) < x%,. then using (3.19),(3.20) and
(3.21), we have

3.23)  B(F) X (a—p)ba)-b), j=1, ...

Thus, on considering one or more points @ on the boundary of the
ellipsoid Hy(0) < x%,,., we can estimate —Bj(F) and then using
(3.14) and $ (defined just before (3.16),), we get T = ((7z)), where

?u = u/B}(F) B} (F), j,1=1,..,p, and Bj}(F) denote the esti-
mate obtained by (3.23). Once 7 is obtained, if we define a set

&) by
(3.24)  C(0) = {0 : n(6—8) 0—0)’ < x%, .},

then it is easily seen that €(8) £ C(8). Consequently, in actual
practice, we may recommend (3.24) as the working confidence
region for 6 with confidence coefficient 1-¢. The simultaneous
confidence region (3.22) or (3.24) remains valid for all F,, ..., Fy
with covariance structures not necessarily identical. A word of
clarification is necessary here. Though (3.24) is an asymptotic
confidence region, in actual practice, if we select h* some simple
functions (e.g., rank-sum ete.), this remains valid for moderately
large samples, where the wusual parametric confidence-regions

(under heterogeneity of dispersion matrices) may not be very
simple.

It may be noted that if we borrow the idea of asymptotically
smallest confidence region (cf. Wilks [18, pp 384-389]) then the
asymptotic optimality or efficiency of the confidence region
(3.2.2) or (3.24) with respect to the standard parametric confidence
region for 6 (that may be derived with the help of likelihood ratio
function) comes out to be

(3.25) {1Z]/1%]} = {e(x, E))ore,

where T =
ere Z, © and e(v, ) are defined in (2.43), (3.14) and (3.15)
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respectively. Thus, the asymptotic optimality of the confidence
region and the point estimate of @ are functionally related to each
other.

4. CHOICE OF RANK-ORDER TEST AND THE
RELATED EFFICIENCY OF THE MANOVA
PROCEDURES

We have so far considered a general class of rank-order statis-
tics and developed some nonparametric MANOVA procedures.
Now, we shall consider some specific rank-order statistics and study
the related asymptotic efficiency factors. In particular, we shall
consider the following three types of statistics, where,

Eny = (Eny, -, Eny), Eng= JIn(e/N+1]) e =1, ..., N;
are characterized as follows.
(1) Median procedure: Here
(4.1) By, =1, if a < [N]2],
= 0, otherwise.
(2) Rank-sum procedure. Here

(4.2) By,=a for 1 <a <N

(8) yr-score procedure. Let Y be any specified c.d.f., and let
En, be the expected value of the ath order statistic in a sample
of size N drawn from a population with the c.d.f. . In parti-
cular, if ¢ is taken to be a standardized normal c.d.f, the proce-
dure will be termed the normal score procedure.

In the univariate analysis of variance problem, it is known
(cf. [6]), that against normal alternatives, the median procedure
has an efficiency only 2/, though the same may be quite high for
some non-normal c.df’s. The asymptotic efficiency of rank-
sum procedure for normal alternatives is 3/m, and it has a lower
bound .864 for any c.d.f. (cf [6]), though it can be arbitrarily
large for some typical c.d.f. The normal score procedure has
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always an asymptotic efficiency greater than or equal to one,
for all continuous c.d.f. (c.f. [7]).

In the multivariate case, it can be shown easily that all these
procedures satisfy the regularity conditions (Ci), 1=2,3,4,5.
Further, if the c.d.f.’s F,, ..., Fy are non-singular in the sense that
the cluster of the points is not confined in any p—1 dimensional
subsequence of the p-dimensional Euclidean space, then it can be
shown (cf. [10]) that (C.6) also holds. Regarding the expressions
(2.42), (3.15) and (3.25), it can be shown that for normal Fy, ..., F,
these are all equal to unity if we adopt the normal score procedure.
Thus, the use of normal scores preserves the distribution-free
property of the MANOVA procedure and at the same time,
makes them asymptotically full efficient against normal alter-
natives. The efficiency factors can be shown to be greater than
one for various non-normal c.d.f.’s but it can not be shown that
they are greater than or equal to one for all F =F,, ..., Fy)
of the continuous type. Bickel [1] while considering the efficiency
of Hodges-Lehmann [9] estimate of shift in the p-variate single
sample case, came across a similar situation. He, however,
considered only the rank-sum and median procedures. In the
particular case of bivariate normal c.d.f., he deduced a lower
bound (about .87) for the minimum efficiency of rank-sum proce-
dure, while the minimum efficiency of the median procedure may
be arbitrarily low. However, for more than two variates and/or
for non-normal c.d.f.’s it is very difficult to prescribe any lower
bound for the efficiency factors (2.42), (3.15) or (3.25), as they

depend expﬁcitly on the associated matrix «, v and Z, and nothing
can be said, in general, about the magnitude or bounds for the

characteristic roots of v2-1 or -1, However, if the p-variates

:I‘;:yi :}llet:fa’ny dependent .and have jointly a p-variate normal
norn;a,l — ommon cor?elatlon p, then it can be shown that the
which i P.I‘Ocedure is better than the rank-sum procedure,
In turn is better than the median procedure.
In .
simpliﬁa:;:::l P;"&Otlce, the rank-sum procedure results in great
of the actual computation, while the normal score
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procedure is anticipated to have a better performance charac-
teristic for nearly normal c.d.f.’s, and the choice will depend on the
practical convenience and the degree of precision aimed at.
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