SOME ASPECTS OF UNIFIED SAMPLING THEORY

By T. V. HANURAV®
Indiun Sttistical Inatitute .

SUMMARY. Btarting with the basie concopta in ssmpling theory for finit populationa we pro-

ened 10 the fandamontal problem of optimum. fon p 10 estimato the popul tolal {or
equivalontly tho menn) frem & unifled appmach.

Tho inlrm-m proporties of sampling designs are denlt with and the problim of estimation ia cloarly
formulated, Fatimnbility of 7 o fanctions is dinumed. A somplets charaoterisation of dorigna
rmittlng bast ents fa givon. Various oriteria for tho roduction of minimal comploto clawg of oatima-
tora aro discumed inchiding the Intust criterion of *hyper mimiaibility' which is dus to tho suthor, A
aumbor of unsolved probloms ato posad in th asquel and somo new torminology ia intmducod in the hope
of stanlardising the ssmo. The Anal reduction of the problem and snmo opon probloms ars prossnted.

1. IxTroDUCTION

Sampling theory for finito populations—often called samplo survoys—has
scen some signifioant developments during tho last ten or twelve years. Whilo tho
eatlicr dovelopment of the aubjeot had been guided by intuitive considerations (which
no doubt were quite powerful) to obtain unbiased estimators, it is only during tho past
fow yoars that attempta aro being mado to formaliso the theory and to consider the
purely mathematical aspects of tho theory. Tho first attempts in this direotion can bo
found in the work of Horvitz and Thorpson (1962) and tho first formalisation i duo to
Godambe {1966) who g lised the pts of snmyling design and lincar estimators
and proved the Important result that for no sampling design docs there exist & uni-
formly minimum varianco unbiased cstimator of tho population total {or equivalently,
tho mean). As will bo scon in Seotion 4, thia result has soma oxceptions. Darring
these unhappy exceptions ( letely oharaoterised in Scotion 4), this result pointed to
the inadoquacy of tho then ow;tmg method of appl) ing tho famoua Markov'a theorom
on lenst squnres to derivo beat Jinear unbiased of the population total, nnd
made eloar tho main differenco between the classical theory of estimation for theorotd
populations and the theory for finito populations. Wo can Lriefly deseribe this as the
identifiability of units that exists in the latter theory,

In this paper we appronch tho problom of estimation for finite popul

in an orderly fashion. While inovitably disoussing the dovelopments in this fleld to
date, wo +hall alio give some results that are neoessary to fill tho gaps existing now.
The paper is neither a purely roview paper nor a purely original papor but is o mixture of
both. However, thero ia no scopo for any oonfusion about the points of fusion botweon
the two, sinco tho worka of other anthors ave clearly annotated. Whilo we indulge
fully in tho historicnl aspeots of the probk iderod here no prot is made
to claim that all the probloma treated by earlier authors are covered horo, and we eon-
fine oursclves only to speoifio lines of dovolopmient of tho theory.

* The papor was basod on a thosis submitted by the muthor 1o the Indian Statistical Institule.
Ths final drft of tho paper was prepared whon 1o was & Visiting Locturor at the Upiversity of Sheffeld,
England.
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A ‘simple finite population’ ¢¢ is a population of knotwn mumbor N of identifiable
units
Uy Uy ooy Uy . (LY

‘This definition exoludes such known finite populationa like tho finh in a lake for which
a priori neither X is known nor tho units are identifiablo (in fact the problom of main
interest In theso onses in to estimate tho unknown N); or a box of ‘unmarked’ bolts
produced by a hine b for thia though N is known, the unita, i.e., the bolts,
aro not identifiable a priori. The reason for the exclusion of suoh populations is that it
is not powsiblo to draw probability samples (na explained below) from such populations.
Samplea drawn from auch populations are assumed to be probability samples by meana
of a reasoning running like **becauso thore is no reason to beliove that the samplo is not
a random samplo...”’, In thoso cases thore is no way of testing {say with the help of
teated tables of random numbers) the validity or otherwise of the nature of randomness
of tho eample.

A samplo s from ¥¢ i3 an ordered finite sequenve of units from ¢ :
= {U,, U,’..., ”‘-(n" nyy < 0O we {1.2)

where 1 & 7, < Nforl <t  nls). Thei,s need not nocessarily be distinet but the
interchango of U,l and U,‘, for 4, 5= %, results in A new sample. n(s) is the size of
4, and v{s}, the number of distinct units of ¢, is tho cffective nizo of s.  While n{a) can
oven exoced N (beoruse ropetitions are allowed), W) < N.
While any specifio sample hea to bo of finite size only, thero is no reason,
@ priori, to restriot ourselves to snmples of a fixed size only (f.e. n(s) = #) nor is it
abviously juatified to reatriot to samples of size less than a given numboer Af say.
Accordingly wo dofine g, the ocolleotion of all possiblo sample 4 from ¢¢ as our basic
samplo apaco :
8 ={s . 13)

Evidontly 8 oontaina a oountably infinite munber of ramples, and
aup n(s) = 00.
g}

A simplo sampling dosign D = D(¢¢, 8, P), briefly called the design P Is a
probability measure P dofined on 8,

P,>0 and I P, =1, e (L4)
3

Tho above definition oxocludes designa such as thoss obtained this; ‘continue
simplo random sampling with roplacemont until tho sample varianco is leas than 10
per cent of tho samplo mean’. The reason for the exolusion of anch not uninterceting
designs is tho reaulting simplification in tho thoory.
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In practico, however, samplea are not drawn by listing the P,’s for all possible
samples. Instead, thoy aro drawn by what can be termed ss ‘sampling methods.'
Any sampling methed in which the samples are all ordered samples as in (1.2) gives
vise to a uniquo design. Of particular interest among these sampling methads are
the unit drawing mechanisms which are methods of drawing the sample by meana of
selecting tho units from ¢¢ ono by ono and with replacement. In its most general
form a unit drawing mechanism can bo rigorously defined as an algorithm

A = A{gdU): gifs); aso, U})) e (15)
where

(1) g, is & probability measure on ¢¢ so that

QU2 0 for 1LigN and ‘i @lUy=1, o (L6)
w1

(2) g5(8) defined for any sample s€.8 is a number in (0, 1)

0 qy8) 1 for ee8 . LT
and

(3) q:8, Uy, defined only for those & for which g,{2) # 0, is a probability
measure on ¢¢ :

o U)20 for 1KigN if gfe) £0 and FN.”" U)=1. ... (18)

The sampling methed using the algorithm is as follows : Draw the first unit
using the measure ¢,. If the samplo thus obtained is denoted by 8y, imputo 4, in ¢,
If g,(8,5)) = 0 sampling is terminated. Otherwiso, a binomial trial with probability
of success as g,{s,y) is performed and sampling is terminated if the trial results in a
failuro. If the trial results in a success, a sccond unit is drawn using the probability
measure ¢y(8;, Uy) and the resulting sample (which is s, followed by the unit now
solcoted) is denoted by a,,,.  The operations of imputing a, in ¢y and using g8, Uy
oto., are repeated until a sample 8, of size & any, is reached for which gy{s,;)) = 0 and
8y is then acoepted as the final sample.

It is casy to sco that the various customary methods of sampling are particular
eases of tho above general mothod. Where & method of sampling docs not specify
tho order of the units in the samples, for each method of ordering of the units in the
samplo, there is an algorithm of the abovo type.

The advantages of the dofinition of the design as given by (1.4) is that it sup-
plics a unified framework within which to work for a aearch for optimum estimators
of & given paramotrio function. It is not possiblo otherwiso to discuss the apparently
diverso mothods of sampling all in & singlo framework. Since samples are drawn,
in prectice, by methods like unit deawing mechanisma and not from the design, a ques-
tion of primary interest then arises—can overy dosign be generated by a suitable
sampling mothod ¥ Tho answer to thia is given by tho following theorem.

Theorom 1.1:  To any given design D{¢¢, 8, P) there corresponds a unigue unit
drawing mechanism A(q,, g2 0), such that sampling according to A resulls in the design
P, and conversely.
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Tho result assures us that wo can work within tho unified framowork of designs,
for a scarch for op imati d and can thon gonorate suitablo sampl-
ing methods as unit drawing mwhnnlums, to achicve these optimum designs. The
proof of this result {(which was given in a less genoral form eatlicr (Flanurav, 1962a))
runsg thus:

Tho second part of the theorem is ovident. For, if A = A(q,, g5, ¢y) be tho
algorithm, then for any samplo

o= {Uy, Ugy ooy Uy} = iy by ) i) 903,

we have for the finnl probability of the sample, the unique value

0= Prts| 1= 00y "1 01U, Uiy U

nie)=1
X LI‘ (U . Ug) ”4»1)[‘—%((”«.' Uppven U,w)))]. o (L9)
It is easy to verify that £ @, = 1.
“3

To prove the first part, for 1 § i}, %y, ... € N, lot

={a:4, =1} Sym={aziy=14, i, =3} oto.
a _'E:P' ay ='§“P, oto.

o) = (U, oli) = {Us U} ote,
and Bi= Py, Py=Pup eto.
Clearly wo have

x
8=Ug
=1
¥
=\ SyUs)
5=
¥ PR
Sy =‘[__{ SykJeli, §) oto,,
x
wi Lhat Lgy=1
1

ﬂ(+;‘:¢u =
Byt g = ay eto,
0
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Dofining A{(g;. 95, 7} by the oquations

a(Uy) = o
B,
1_M if 2 e #0
Galoliy, g ey )y = Fitgenty el — (110)
0 otherwiso
. . Figor iyt . P
and aofsfiy, . iy), Uy = b 1ot it qalaliy ... ) % 0.

It is easy to chock that A satisfies all tho conditions (1.6),(1.7) and (1.8) of & unit draw-
ing mechanism. Further, from (1.9) (1.10) wo have, for any sample s, tho probability
Pr{s| A) given to & by tho algorithm A is given by

Pr(tlA)=a.,{ 1—25} :;‘_‘iir . 1—5'1'—’
t 4 ey Iy
X a«,_l,ll; -"{l—i“ e 4.;.51} > a‘l -:;.m 5«.',...:.‘,,
i T g 00 farnr-1 LR MO SRR AR V'S "-m.
=84y... w0
= P'.

This proves that sampling according to A given by (1.10) goneratea the given design.
That in faot A is uniquo can be proved by retracing tho above argument and wsing
(1.8). This completos the proof of the thoorem.

The proof of the above theorem is constructive and enables one to dorive A
from P. In several situations we have the design P, only pattially specified. In
such ocases, corresponding to any further istent speoificati that pletely
specify the design, we have a unit drawing mochanism generating a design with tho
specifications given. The simplicity of the Iting hanism depends on & clover
choice of theso further specifications. An oxamplo will mako this point olear.

In tho theory of ratio-ostimators, we have tho valuos X; and U, Agigd)
of an auxiliary variate £, complotely boforchand. A probl idored and solved,
indepondently, by Midzuno (1952) and Son (1062) is as follo“s Given a positive integor
# and given that tho design P satisfics,

P, = 0 if n(s) 5 v(s} or n{s) = v(8) # n, e (1.11)
what should bo the sampling mothod to ensure the estimator

P =l' e (LI2)
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is unbiased for ' 1 In the above, z, and g, are the samplo means of 2 and %, and
X= ‘2". X It can bo scen that & sct of ncocssary and sufficient conditions is that P
untixﬁlce, in addition to (1.11)

1

for any snmple 2, and whero the sum on the Lh.s. is over all samples & that aro permuta-
tions of #,. (1.13) vemaina unaltered if &, is replaced by any samplo which is a permu-
tation of 2, Theso conditions do not complotely pin down the design P and we need
further apecifientions to allocato tho total probability on the r.h.a. of (1.13) to all the
individual samples that are permutations of &, Considering the simple allocation of
equal probabilitivs to all samples that are permutationa of one another, we have a fully
specified design P’ given by

\
p=l L nz e (L14)
Ty
“in=1

However, this results is an inconveniently complicated algorithm A’ = A'(43. 91, 93)
a4 oan be ensily seen even for the eimplo oaso of ¥ = 3, n = 2. Following the proof of
‘Theorem {1.1) it can be verified that

. X4X .
[AUAR %‘. i=123

aifeli)) = 1 and gyfefd, j)) = 0

XX L

e i jAs e {L16)
Glot), U)) = 4 X

0 if j=i.

Thus not only the initinl probabilities ¢i’s but also the conditional probabilities g3’s
have to be caloulated afrosh from the X,'s for each draw. For larger values of X' and
# thia will becomoe more laborious,

Considering now an alternative allocation proportional to the &-value of the
first unit in the samplo we get another design P also satisfying (1.11) and (1.13) given by
X,

4 1
pP=_t.___ 1 .
¢ nz, N—1 '
' X n—l)
X,
=h.__1 . e (118
X (N—l (.18)
n—1



SOME ASPECTS OF UNTFIED SAMPLING THEORY
It oan bo vorified that tho corresponding algorithm A*(g}, ;. ¢3) s given by

qi(Ud = :%:“
qele(in)) = gals(iia)) = ... = g3(6(iyfy mr $py)) = 1

1
s(otid = U i#Eh
gs(8liiy ... ia), Up) = N—F
. (L17)
0 otherwise
Gil8(iy, By, vy 5,0) = O
for 1§ty i e fuy K N and for 1<k n—l.

The algorithm thus gives & simplo unit drawing mechanism described thus,
‘solcet tho first unit with probabilitics proportional to tho original size mensures X,'s.
Omitting the selected unit, from the remaining (¥—1) units draw a simple random
samplo of size (n—1) without roplacerient’. This is in fact the solution obtained
by Midzuno and Sen though by other methods.

We sco thus that tho abovo theorem enables us to systematically investigato
the possiblo unit drawings mechanism that gencrates tho design with the required
properties viz (1.13) and to di incidentally tho simpl tuti

2. TAE DESION
Wo return to the unified framework of tho basio simplo space & and a probabi-
lity measuro P on S.
Given a design P, lot
m = n{P) =-‘§‘P,, 11N . (20

end ng=myP)= = P, 1Ki#j<N o (22)
[EX%)

where in (2.1) the sum on the r.h.8. ia over alt snmples that contain Uy and in (2.2) the
sum is over all samples that contain U; and U, m, Is the probability that a random
sample contains U, and m; gives the probability that a random sample contains Us
and U;. Tho n/s and mi’s can be called tho first and sccond order inclusion probabi-
lities reapectively. Higher order inolusion probabilitics can bo defined similarly
but aro not of immediato interest to us. Theso siructure constants m's and my's
play an important rolo in our theory.

It follows from the dofinitions that
ogmg1 . (2.38)
and 0 & my & min (7, m,) e (2.30)
for 1 & i # 3 < N, whero min (x, £) denotes as usual the smaller of a and f.
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Lot v bo tho oxpeotod offoctive samplo size of a design P
v=v(P)= Z v(s)P,. e (24)
"
Threo important formulae conncot tho m’s and my's and v,’s..

Thoorem 2.1 (Godambo, 1066) : For any design P

{‘. ]
=" e (2.5)
Theorem 2.2 (Hanurav, 19620) : For any design P
I X 7y = v(v—1)4V(v(e)). v (2.82)
14

Observing that for any design
1< V) K N
if v = [v]40 whore 0 0 < 1i.e. 0 i3 tho fractional part of v ono can show that
0(1=0)  V¥(s) < (N—v)(v=1)
and from (2.6a) follows that

W =1)+001—0) < E Zmy < Nv—1). v (2.8b)

Theorem 2.3 (Yates and Grundy, 1953): For a design P for which

P,>0ovs)=v forall s68 . (2)
we have, for any

Z 7y = (v—1)n, . (2.8a
A (v—1)m (2.8a)
and hence or otherwise from (2.6a)
ZZ my=vv—1) v (2.8b)
IE my=v—1) (2:8)
Somo interesting questions of internal consistency now arise. The answers
to these have a direct bearing on problems of estimation, as will be seen in Scetion 7.

(a) Given a set of numbers {m}, 1 < § ¢ N satisfying (2.31) does thero
exist a design P such that n{P) = n;for all {1 The answer is ‘yos', as is easily seen
from the design obtained thus: Conduct N indepondent bLinomial trials with pro-
bability of success for the i-th trial being equal to 7. If and only if tho i-th trial
rosults in a succoss do wo include U; in the samplo which is now mado to consist of the
units sclected, arranged in the increasing order of their indices i, Evidently for this
design 7(P) = n; for all i. Somo more solutions were given enrlior (Hanurav, 19820b).

(b) Givon any set of numbors m;, 1  § < .V satisfying (2.3a) and such

X
that v = leﬂ‘ is a positivo intogor, does thoro oxist a design PP which satisfies (2.7
and for which #{P) = for all i 2 Tho answer to this is also ‘yes' as oan bo
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SOME ASPECTS OF UNIFIED SAMPLING THEORY
scen by the dosign obtained by tho ‘pps pling’ method of Goodman and
Kish (1950). However, if in addition to (2.8) wo imposo the further conditions
O<myqumm for 1IN o (2.9)
which ensure the exi of gati biased estimator of the varianco of an
important estimator (cf. Scction 7), then no answor is known for v> 2. For v=2

the author solved this problem satisfactorily (Hanurav, 1065; 1066), Constructive
solutiona for highor values of v are of importance in our cstimation theory.

Terhaps more complicated is the question of internal consistenoy of m,'a and
ms. (2.3a) and (2.3b) givo a sot of necessary conditions. It can be easily scen that
thoy aro not sufficient. For examplo for N = 3 there cannot exist a design with

m=.19 my=.8, My=.8
mMy=14, My=.7 and m=.6
which clearly satisfies (2.3a) and (2.3b). It can be proved that for any design P
#y(P) > n{P}{-n{P)~1 o {2.10)

for 1 {3325 N. To prove the above we need consider probability of tho event
that neither U nor U, are included in a random sample, and express the condition
that this quantity is nonnegative. However, even (2.3a), (2.3b) and (2.10) do not
constitute & set of eufficient conditions for the oxistence of a design P with
there as its m(P)'s and my(P)’s. For examplo there cannot exist a design with
m=.4, m=.6m=.4
13y = .08, my = .08, my=.06.
A compact sct of sufficiont conditions on n's and n,’s ate of some Interest.
Of course a complete et of ry and sufficiont conditions are provided by consi-
dering all possiblo 2¥—1 evonts that speoify tho units bolonging to a samplo and oxpresa
tho conditions that their probabilities Lio between 0 and 1. But these conditions in-
volve the higher order inclusion probabilitics also.

Another problem that arisos is as follows. Given a design P, with a set of
m{P,)'s and m{P,)'s, docs thoro exist a design Py such that
7P =nqPy) for 1Ki<N
and s (2.11)
ny(Py) K my(Py) for 1 i£fC N
More important ia tho question of oxistonoe of Py which further satisfies
/ :“',5 m{Py) = Wv—1)+-0(1--0) e (212)
where 0, as given in (2.0b), is the fractional part of v. Thoso questions play a crucial

rolo in tho choico of optimum strategics, as will bo explained later in Sootion 7.

© Rocontly the author salved this problora fully for all intogeal valucs of v. Tho sohution was read
at the 20th annusl mocting of the IM9 at Now Brunsewick and will bo publishod shortly,
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3. ESTDIATION

Consider now a variable % dofined on tho units (1.1) of ¢¢ toking the value ¥
on Ul < i< N). The Y,'s can bo vectors but no cssontial foature is lost by ros-
tricting as wo shall do in tho sequol, to tho onse that % is a real-valued function. The
vootor

Y =(Yy, ¥y .ty T) e {3)
is unknown a priori and is treated as o parameter and R¥, the N-dimonsional Eucledian
space is the parameter space.  Any singlo-valued function f(¥) of Y is called & pora-
metric functi The problem is to esti certain p io functions that are of
interest to us.  Of partioular interest is the population total

N
Y=31% . (3.2)
1

and a number of other interesting probloms can be boiled down to the problom of esti-
mation of ¥, as we shall sco, by a suitable redefinition of the varinble or the popula-
tion or both. For example tho estimation of any lincar parametrio function

x
L+ Z LY,
1

is tho enme as tho estimation of the population total 2 = Z:I’ Z, of & now variable &
dofined by Z, = % +4 Y, Similarly, to estimato a quadratio

I+Z 4,42, 714 ?ve%luylyj
wo can estimate tho first two terns as explained above. The estimation of the third

x
term is the samo as tho cstimation of the total @ = Z @; of tho now variablo 2 defined
t

by @ = ¥}, For tho estimation of the last term wo consider tho new population
¢¢’ whoso clements aro ordercd pairs of units of ¢¢, and dofine & new variable 2’ which

takes tho valwo Q'(U;, U) = Q(U,, Up) =%q,,)"Y, ifi#j and Q(U, U)=0.

Clearly the last torm equals the total Q' = ZZQ'(Uy, U)), and tho estimation of the
Inst torm je the samo as tho ostimation of Q' dofined over ¢¢'. Now from samples &
of ¢£ wo construct samples o’ of ¢¢’, aa follows. If

then s={(v, U ) (v, U) (0,0, )

(U", U"). ...(v‘.. U"m), ( LA U‘_m). (v‘.m, v,.m)}.
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Tho sot of nll such s"’s is a subset of tho bnsio samplo space 3° of ¢¢.  From tho given
design D(8, P) over ¢ wo construct a design D'(8’, I”') on ¢¢' thua:
| P, if &' i3 ono genvrated as above, by asamplos of 8
fi= { 0 otherwiso.
The problom of estimation of ie};: ¢y Yy now reduces to tho problem of extimation

the totalof tho variable &2° defined over ¢ from the design D/(¢¢, 8°, P’). Eatimation
of all polynomial parametrio functions of . on ¢¢’ in D(S, P) can bo similarly reduced
to tho estimation of the totals of some variables on somo populations. Thus it is the
estimation of Y defined by (3.2) that nced be of central interest to us,

A statistio T dofined for s € S, at any rato for thoso samples & for which P, > 0,
is a singlo-valued function of tho 3/-values of the units belonging to s,

T,=T, (r“. Y Y'.m). . (3.9)

Tautologically, 7' is said to bo an estimator of a given parametrio function
S} if from a samplo & wo cstimato f(¥) by T. Recognising T' as & random variable
defined for 463 with tho given mensuro P wo can talk of the oxpectation, mean square
error, variance etc., of 7, It is said to bo an unbissed estimator of f(¥) iff

B(T)= I T,P,=[(Y), YeR". . {(34)
3

A given parametric funotion f(¥) is estimable in a given design P iff thero exists
a statistic 7' such that (3.4) holds. A sampling design P together with an cstimator
T of f(¥) constituto a sampling strategy or simply strategy, and is denoted by
Ii(3,P,T). Tho mean, varinnee oto., of J/ are defined to bo the con-cspondmg quan—
titics of I' with respeot to the P. Tho problem is to find

strategics for the estimation of & given pﬂmmclno function /(Y) optimality bemg
dofined in & rensonable way.

Wo first dofine somo classes of lincar estimators. The concept of ‘lincar esti-
mator’ has been genoralised by Godambo (1965) in this context, A general homo-
gonoous linear ostimator (g.h.l.0., for brovity) is of the form

T:{T,= E AnY,). e (3.8)
nghor order po]ynomml cshmntors can be defined similarly, For oxamplo a general
tor (g.h.q.0.) is of the form
T:{7,=Z qgu¥i+ I b g TY - (3.6)
e AR

and a g.q.0. is of tho form
T:(Ti=a+ X falot+ T z v.uf’+ ’Y:u'YAYx) . (3.7)
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A ghde. which is unbiased {(w.r.t. o given design), say, for Y, is called o ghlue.
of Y, and similacly for tho other. Lot L{P), Q(P) and M (P) donote the olasscs of
g.l.0.8, g.q.0."a and general polynomial estimators of r-th degreo reapectively and lot
LYP), @°(P), MYP) denoto the corresponding olasses of esti biased for

Y; 3(P) = ) MAP), and M*(P)=1{J JM%P); and lot LY(P) denoto the subolass
=l 1=l

of L*(P) consisting only of homogoncous lincar estimators. Corresponding Qg(P)
and J/;(P) ean bo shown to bo empty.

Tho ficst question that ia of intevest is regarding the eatimability of a given
parametrio function f(¥) in a given design P,  Godambo (1935) proved tho following
theorom.

Theorom 3.1: A set of necessary and sufficient conditions (0.9.0.’s, for brevity)
Jor the estimability of Y in a given design P is that

7P)>0, 1IN . {3.8)
Godambo proved this by restricting to Le{P) but the proof can bo easily carried
through for the class of all estimators, as in the proof of Theorem 3.2.

An unbiased cstimator of ¥, whon (3.8) hold good, s the Horvitz and
Thompson estimator of ¥ (Horvitz and Thompson, 1952),
Far=3 D e (3.9)
PPN

where tho sum on the r.h.s. is over all distiret units U, that belong to s.

4
As a simplo corollary we seo that a linear parametric function lo4-Z LY,
1
is estimablo in P iff

L#E0=3n{P)>0, for 1<ig N e (3.10)

Tho above theorem scems intuitively truo beeauso if for some § wo have
n{P) =0 thon tho corresponding ¥; is novor observablo from tho design P and
henes any paramotrio function that depends on ¥, cannot be estimated unbissedly.
However, tho following thoorom though froquontly used in a special form in the
litorature is not equally obvious—at any rato not to tho author—and we shall givoa
direot formal proof of the same.

Theorom 3.2: A set of n.s.0.’s for the estimability of the quadratic p ic
Sunction

=tk ST AT 0+ SIgn, w311
in a design P is given by
() m(P)>0 if I4ob>0
aul () mP)> 0 if qytgu %0, }
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Proof: It oan bo casily verified that (3.2) constitutes a sot of aullicicnt condi-
tions, for, whon (3.12) holds good the estimator

N 1.7, e LY, Y,
= p P S (YRR S Y D £V Y
Qur lo+w P +w "A +m,u Fve . (313)

is unbiased for @.  To prove that the conditions (3.12) aro nceessary, lot ¢ bo a statistio
unbinsed ( tho design P w.r.t.) for Q so that

£GP, =t S, Y+ S P E T g VY, - (314
"©3 1 1 ulel
To prove that {a) of (3.12) aro noccssary, lot thore oxist a k(1 € k £ .X) for which
Ti+4h > 0 and #,(P) = 0. Sinco (3.14) is an identity in Y, setting ¥, = 0fors # &,
wo soo that tho r.h.s, of (3.14) equals
Lth Yyt li

which depends on Y,. But since m (P) = 0 thoro is no sample & with P, > 0 and
ocontaining U,. Since G,, being a statistic, can depond only on the #%-values of the
units in tho samplo, the Lh.s, is indopendent of Y,. This leads to a contradiction
and hence tho nocessity of (a) of (3.12).

To prove tho nooessity of (b} of (3.12) (which form tho crucial set in this
contoxt), as beforo lot thero oxist & and K{1 & & 3 &' & N}, such that m,(P)=0and
@' # 0. The sum on tho Lh.a. of (3.14) can be written as

¥ GP+ E 0P+ % G,P,+ L G,P, e (3.15)
"y (7Y LAY gy
where
Sy = {8:Upes, Upds}
Sy={8:Ups, Upes}
Sy={o:Uits, Upgg}
and Sy = {s: Uses, Upes}.
Since m,,/(P) = 0, S, carrics zoro probability and henco oan bo omitted. Substituting
(3.15) in (3.14) and sotting Y, = 0 for ¢ # k, &’ we have
5, OFct 3, OFct T G,

=l (3 Y3+ Y HGe Yo +ove Yo) +Hgu o) Ya Yy . (3.16)

Tha Lh.s. of the above can bo writton as
a(¥y)+alYy)ta,
whore a, is a function of Y) only, ay is & funotion of Yy only and a, is a coustant,
80 that (3.10) oan bo rocast as
ST+ T )+ds = (Qw+ )i Yy v (3.17)
where @y, ¢, are functions of ¥, and Yy respootively and gy is a tant. A relation
like (3.17) is thon clearly impossiblo and henoo the necossity of (b) of (3.12).
This complotea the proof of tho thoorem,
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For a given design I’ vt (3.8) hold good and lot TeZ{’) be an unbiased estima-
tor of Y. If m,{P) = 0 for somo integors & and ¥ (1  k # &' N), thoen in the
oxpression

V()= X T:P,—1"  (3.18)
s

tho cocflicient of Y,Yyp equals—2. Honco the following corollary from the above
theorem.

Corollary :  V(T') is not estimable in P, and the n.s.0.’s are given by
7(P)>0 for 1 i £ o (3.19)

Remark 1 (a) of (3.12) hold good then from Theorom 3.1 and the discussion
given at the beginning of this scotion (regarding tho change of the variablo) it follows
that thoe first threo terms of (3.11) aro cstimable in D{S, P). Hence if Q itself is
estimable it fullows that the last torm of (3.11) also is estimablo. Referring ngain to
tho begiuning of this scction regarding the estimability of @ = £ I g,Y,Y; it follows
from an application of Theorem 3.1 that @ ia estimablo in D'(¢¢’, 8, P') iff

#l(i,j), P')> 0 for all i,j such that g,+g#0

whore (3, j), ) is tho probability of including the unit (U, U,) of ¢¢' as given by the
dosign D'(¢¢, &', P’). From the definition of P’ it follows that

(i, i) P')+a(, i), P') = m(P)
and from tho above we soe that @ is estimablo in D'(¢¢, §', P') if
ny{P)> 0 forall 4,j such that gy+qy # 0.

Howover this axgumont does not suffico to form & rigorous proof of Theorom 3.2 for
two roasons. Firstly it has to bo ostablished that tho necessary conditions for the cati-
mability of @ In D'(¢¢', §', P’) aro tho samio as those for its estimability in D(¢¢, S, P),
and sccondly tho ncocssity of (b) of (3.12) given (a) of (3.12) docs not mean tho
necessity of (a) and (b) put togother. Becauso of these logical intrioncics, which
however can bo sottled ensily, wo preterred a diroct proof as given abovo,

Thooroms 3.1 and 3.2 can obviously be gencralised along the linos of the proof
of Thoorem 3.2, to bo estimability of any parametrio function which is a polynomial
in¥y, Yy .., Yy

Wo ean now pass on to the problem of ‘opti ) gies for tho
of lincdr paramotrio functions. Sinco any such function can be reduced to tho form
{3.2) by a change of variablo, wo shall b forth ider tho population total ag our
poramotrio function. Wo ghall take, as usual, tho squared orror as our loss function,
and attompt to minimiso tho oxpeoted loss i.o. the mean squaro errot (m.s.e.). Thus

the prablom ia to ohooso 2(S3, P, T') such that

mao. ()= X (T,~T)P, e (3.20)
”e

is minimum for all ¥eRY. To avoid trivialitios, ns alo Lo have a meaning(ul practical
interprotation, wo have to rostriot I/ to n olass & of strategies mombors of which are
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oqually proferablo in all rospocts othoer than their m.s.o's. Tho coneopt of coat function
onturs hore and if C(2/) donotes tho cost of thoe steategy {in somo units) and if Cy iz a
given budgot, thon wo rostrict X to
H(Cy) = {11 :C(ll) = Cy} . (3.21)
and procood to find tho ‘bost® strategy M, = U8, Po, Ty) in MC,) for which
m.s.0.(/ly) € ms.o(ll), V UeHC,) and VYeRY,

Wo assumpo that C(If) dopends on Jf only through P so that C(/f) = C(P). At this
stago wo bronk up our problom into two stopa. Firat, for a givon I wo shall choose
the P-optimum ostimator To(P), if it oxists, for which

m.s.o. (TP)) € m.s.0.(Ty(P)) . (3.22)

for all ¥eR¥ and for all T\(P) belonging to a p ibed class of osti . Wo then
choose tho optimum P, say Py, for which

ns.e.(To(Py)) & m.s.0.(Te(P}))

for all P, such that C(Py) € O, and for all ¥eRY. Wo shall ficst tako up the first
stop in Sootions 4 and 6.

4. UNDIASEDNESS, LINEARITY AND UNICLUSTER DESIONS

If in (3.22) we allow 7 to vary over the class J(P) of all statistics then it is
eovidont that thero does not oxist a Ty which ia optimum in &. This i3 ovidont by
considoring tho ostimator Ty which is idontically equal to a constant g eay. (3.22
thon roquires that

I TiP-1*
e

vanish for all ¥ such that ¥ =a. If T, is tho best in & this should hold good for all
such 7,'s obtained by varying a and this is cloarly impossible.

For any olass G(P) of estimators wo dofino T',¢G(P) to bo admissiblo iff
{T£C(P), Ty # Ty} == (A ¥ = YT, TykR"
3 MA0{T)] yuey < M8.0.AT) | yuio} o (D)

whore the m.s.e.'s aro ovalunted at the particular point 119, A subclass @(P) C &(P)
is said to bo comploto in &(P) ifT

T @—C = (AT @), ma.0(Ty) § ms.o(Ty), VIeRY. e (42)

Tho intorscction of all comploto classes in @(P), if it oxists, is called tho minimal
completo class in €(P) and coincides then with thoe class @(P) ot all admixsiblo estimators
in @P). For an invostigation of P-optimum ostimators in @(P) wo noed restrict our-
solvos only to a comploto class in @(P). Sinco a ‘bost’ oskimator dvss not oxist in the
oloss ZP) of all ostimators, we shouldl proceed to idor somo blo subcl
of Z(P) and 800 if a bost oxists in that subclass,
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As a first but a big jump, wo shall rostrict to tho clasa Li(P) of g-h.l.u.o.'s
of Y. It should bo noted hero that tho criterion of unbinsodness is taken for its well
known statistical intorprotability and mathematical simplicity and that tho exclusion
of tho class B of binsod ostimators in proforonco to Ly(P) is not a consoquonco of the
completonoss of Li(P) in B |) LyP). On tho other hand wo have tho following
lemma.

Lomma 4.1: The class Ly(P’) is complete in B\) Ly{P) if and only if for the
design P we have n(P)=1for 1 i N.

Proof: 1f possiblo lot Ly(P) bo complote in B{J Ly(P). Consider TyeB,
given by

T, = 8, a constant not equal to zoro.
From hypothesis, thoro oxists a Ty¢ Ly(P) such that
V(Ty) € ma.e (T) = (@0-Y)
for all YeR™.
If To=2 fp Y,
ree

thon  VZg=% { ZAP-1 AT T Aaalimt)Tidy
A= A A Lo’

1>
For Y =(0,...,0, 9, 0,..., 0} whore ¥; = 9, wo have m.a.0. (T))] yo =080 that
V(To)| g should also vanish. Minimising V(7)) given above for variations of ¥ wo
obtain the minimising equations to bo

):‘.vlb,,l’,=0 foe k=1,..,N
re
whore

% AP—=1  if k=2

DX

bu= .
I fabab—1 if k#£X
=R Y

Since the above set of minimising equations has to ba satisfiedd for ¥ = ¥ it-follows
that
by= X piP—1=0,
Y
But from the conditions of unbinsedness of T, it can bo seen that
1
.§ . P> i)

80 that wo havo #(P) = 1. Considering tho voctors ¥ for i=1,2..., N (sinco at all
theso voctors m.s.e. (T;) = 0 and honco V{T,) = 0) wo havo

a{P)=1 for 1IN,
If theso conditions hold, clearly Lg(P) has & momber with I'(T,) = 0. Hence the

lemma.
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It sullicos only to add that tho abovo situation i.o. #{P) = 1 (i.e. & complcto
census) is uttorly unintorosting from the point of viow of sampling theory and wo
concludo that Ly(P) is not comploto in B | ) Ly(P) in situations of any intercst to us.
Thus tho reatriction to Ly(P) is purely arbitrary. Though the inclusion of the criterion
of unbiasednoss has some important statistical significance and interpretations, no such
defenco can Lo put forward for demanding the linearity of tho cstimators. Ve shall
comment more on thoso aspocts, in Soction 5.

Godambo (1955) proved that oven whon wo rostrict oursclves to Ly(P) thero
docs not oxist a bost, whatovor may bo tho design P. Later (1985) ho oxcludes the
‘trivial dosign’ P for which every samplo of positive probability contains the wholo
pn— sulation, from this mult ){o“ovor, this is not all the truth and we givo a comploto

tion of all pling dosigns P that admit a bost in Ly(P).
Thoorem 4,1: A sel of ns.0's for a design P to admil of a best member in
Ly(P) is that
(1) n{P)>0, 1KigN

() P >0, P >0==5sy=gor s~

(4.3)

where ¢ denoles the null set and 8, ~ 8, (in words 8, and &, are effectively equivalent)
implies that every unit belonging lo &, also belongs to 8, and vice versa.

The best eatismator in LyP) for P satisfying (4.3) is the corresponding Horvitz and
Thompson estimalor defined by (3.9).

Proof :  Trom Theorom 3.1 it follows that (1) of (4.3) aro n.s.o.’s for Ly(P)
to bo nonempty. We necd vorify (2) of (4.3).

Lot T: {T, =)(::.!’,y,x 1;} e (44)

bo any member of Ly(P). Tho conditions for unbicsodness of T', as can bo ensily verified,
are given by

LpnP,=1 1€AKN v (4.5)
=29

whero tho sum on tho Lh.s. of (4.5) is over all samples that contain U,. For tho vari-
ance of 7' wo have
V(T)= I T'P,—1". o (4.6)
"3

If there exists a best in Ly(P), any
Tot{Tou= S fn s }
Iy

it is obtainod by minimising (4.6) for variations of 4,,’s subjoct only to (4.5). Intro-
ducing tho Lagrangian multipliors aj, ..., &y, wo scck to minimiso

;s—“zsr'P —P— z ax( Z nP, —1) . (47
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with respect to f,,’a and &,'s.  Tho minimising oquations are given by (4.5) aud
2
P (ﬂpn)l,_,.o—ﬁxl’. =0

for 1 € A< N and for overy s D X. From (4.4) this gives
2T P Y, —a P, =0, 1AL N, 4D U,
and if P, 50

=2
Tu= 2Y,
This implies that for any two samples 8, and s, that have a unit in common
ie. o, # ¢, ond for which P, > 0 and P, > 0, we should have
T, =T, VYeR". e (49)

At thia polot Godambe closes his t saying that this is clearly imposaiblo.
Howoevor, we shall carry tho argumont furthor.

To prove that (2) of (4.3) aro nocessary wo need observe (sco bolow) that Ty,
has to take into account all tho ¥-valucs of all the units that bolong to 8. If
then for two samples s, and &, (2) of (4.3) is violated but (4.8) is satisfied,

wo have P, > 0, P, >0, 8,() &, 7 ¢ and , is not offectively equivalent to s, so
that thero ia a Up; Lelonging to, 8, say, but not belonging to #,. In thia caso Ty,
does depond on Y, while Ty, cannot dopond on ¥, which contradicts (4.8). Thus
(2) of (4.3) aro noccssary.

To prove tho sufficioncy part wo uso tho fact (cf. Theorem 5.1) that every

admissiblo estimator in Lg {(and in fact fn tho clasa Z° of all unbinsed cstimators of Y)
must satisfy tho condition

T,=7,
for nll s and o’ for which P,>0 P,>0 and sa~s'. e (19)
Thus in LYP), T given by (4.4) is admissiblo only it
Bor= P
for all s and o' for which P,>0, P,>0 and s~¢". e (410)

If T is an admissiblo mombor of LJ, wo then have from (4.5)

1 ='=z,:x PP, =,E,°ﬂ‘0‘ P, forany 5, DR

(becanso, from (2) of (4.3), sinco 5, D X and s D A, s ~ &)
=8 L P, from (4.10)
0

"0 g,

=/ )
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80 that for any 8, A, wo have

B == e {411

This shows that the only possible admiesiblo estimator in Ly(P) is given by

- ¥,
Ype=2 =2,
MG

But it is known (Godambo, 1060 ; Roy and Chakravorty, 1060) that f’m
is admissible in Ly(P) for any P satisfying (1) of (4.3). Henco Ypris the best, i.e.
uniformly minimum variance estimator, in Ly(P). This proves that (2) of (4.3) are
1lso sufficiont. Honco the theorom.®

We ghall term sampling designs  satisfying (4.3) aa unicluster designa. Tho
term is dorived from tho analogy of those designa to designs obtained by cluster sampl-
ing with ono cluster being chosen, With a general definition of cluster as a subsct
of tho population a design entisfying (2) of (4.3) can be locked upon as one obtained by
sampling ono cluster from ¢¢, if one treats all samples that are cffectivoly equivalent,
a8 a singlo aamplo.

Tt can bo casily verified that, except for trivial designa for which #(P)=1 for
all 4, thero oxist pairs § and j such that 7y = 0.

For unicluster designs wo enn in fact provo s atronger result fully characterising
tho class of all admissiblo estimators in the class M*(P) of all polynomial unbinsed

estimators of ¥, which is much wider than L{P). Wo havo the fullowing thoorem.

Thoorom 4.2 :  For any uniclusicr design any estimator Ty in M*(P) i3 admis-
asible in M(P) iff

Ty = K,+¥arlP) e {412)

where K8 are (Le. independent of X) salisfyi

74

L KP,=0.
ICS

Proof : From Theorom 5.1 of Scction 5§ wo know that overy admissiblo
ostimator 7' I of tho form (4.9).

*Thix rorult I also obtained indopondontly by Vijaya Tloge {1005).
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Lot T bo any admissiblo estimator in 3I*(P). Since thero aro only (2¥—1)
possible equivalenco classea of samples (i.0. s ~ &' for 2 and &' belonging to the same
oquivalenco class) 7', which is a polynominl in Y,‘, . Y'-(-) for every 8, has a finite
upper bound for the degres of 7, Let this upper bound bo r and lot

T:T,= Tot+Ty=.. +7, . (413)

whero T, s a constant (Indopendent of ¥) and T, is a homogencous polynomial of
degreo k in tho %-values of the units belonging to the sample. From the unbiascdness
(for T) of T follown that

ET)=7Y

and ET)=0 for k1 e (414
we shall prove that

Tye=0 for k0,1
Considering the case k = 2,let

Ty = E‘ T+ ZL*\EX,YM' Ty
and if possible let 7' ¢ 0 80 that there oxists a sample & with P, > 0 for which

Yog, # 0 for somo U, s v (4.14n)

or Your &0 for some U, Uyres. o (4.14b)

Since tho design P is assumed to boe a unicluster design satisfying (1) and (2) of (4.3)
any other sample &’ (with P, > 0) for which 8[#’ 5 0 is such that s ~ &'. Howover,
T being admissible, from (4.9) we have

T,=T,
80 that
Tpo=Thy for 0 kLr,
and in partioular To=Ty
80 that Yage = Teng, forany €2 if (4.14a) holds
and Yonr = Yen forany & A, A if (4.14b) holds.

Tho term containing ¥¥ in E(T,) is
YapoTagm, # 0
or that for Y,Y,:is
Your DYy # 0.

In eithor caso this contradiots (4.14). Thus T, = 0 and similarly it can bo
proved that

Ty=0 for k3#0,1
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As already contained in tho proof of Theorom 4,1, it follows that

Ty= FpdP)ax B
e M
This showa that tho only possible sdmissible estimators of ¥ in (P} aro of
tho form (4,12). That overy such extimator in admissiblo in JM*(P) can casily bo proved
by comparing, without loss of generality, any two mombors of tho form (4.12), Heneo
tho thoorem.

Even though restriction to unicluster designs solves our first siep mentioned
at the ond of Scction 3, at any rate when wo restrict oursolvos to Ly(P), theso designs
have a sorious draw-back. In practice wo not only aim to ostimate ¥ by means of an

estimator ¥ say, in an optimum way if we can help it, but would also like to havo an

estimato of ¥(T) to be ablo to know tho procision of our cstimato T. From corollary
of Theorem 3.2 aad from Theorom 4.1 wo seo that thia is not possiblo for uniclustor
dosigns, This boing a serious limitation, we turn our attontion to designs for which

(1) ;>0 for IIN
and
(2) my>0 for 1Ki#j KN, e (4.15)

to sco what wo can do in these designs.

5, SUFFICIENOY OF THE EFFECTIVE BAMPLE

Since we noted frora Theorom 4.1 that for designs satisfying (4.16) there is no
best even in tho restricted class LY(P) attention should now bo focussed on finding
the minimal completo class in L3(P) to sco if & ‘best’ exists in somo of theso subclassos.
Apart from tho Incss (from math 1 point of view) such attompta did not
yield fruitful rosults. In fact restricting oursclves to such a narrow class ns LYP)
itself is not a justifiablo course and is an unnatural mathematical restriction, but we
shall resorve our comments on this aspect for a latter section. Another alternativoe is
to lay down aomo new oriteria of optimality other than that of uniform (in ¥} mini-
misation of variance, which are both rensonablo and fruitful. This aspect we shall
discusa in Seotion 6.

Stops t ds charactorising inadmissiblo estimatots wore started by various
authors at more or Icsa the samo time. Murthy (1967) proved that whon tho
design is ono generated by the customary ‘probability proportional to sizo {pps)’

ling without repl. t, catimators that take into account tho ordor in which
tho units occur in tho snmplo aro inndmissible. Ho also furnished a mothod of gotting
uniformly botter estimators in such cascs. Somolimo about that timo Raja Rao

noticed, frst through ompirionl evidencos, that for designs gonorated by simple
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random sampling with replncomont, tho sample mean is inadmixsiblo as an estimator
of tho population mean and that it is inferior to tho mean ovor tho distinet units of tho
samplo. Later, in collaboration with Basu (1058}, ho proved the result and oxtonded
it to provo that for designs gencrated by the cust 'Y pps pling with repk
tho conventional estimator of the population total (which takes into account tho numbor
of repotitions of the units in the samplo) is inadmissiblo. For the caso of simplo random
sampling thia result i alw proved by Des Raj and Khamia (1968). Roy and Chakra-
vorty (1960) proved that fur any sampling design in which ¥ is cstimable, admissible
mombers in Ly(P) must satisfy (4.0). Basu (1968) gavo tho first clucs to tho gonctality
when he introduced the fryitful notion of a sufficiont statistlo, in this ficld and provod
that the ‘efleativa samiplo’ by which we mean the unordered sot of distinet units contained
in tho samplo, together with the corresponding %/-values, forms a sufficiont statistic.
(Basu torms this as tho ‘order—statistio’ but since this confuses with another popular
meaning that the term has in atatistics, wo shall avoid it. Moreover the ‘order’ in
DBasu's ‘order-statistio’ is not really rolovant). Tho main ideas behind this important
result can be briofty explnined thus. Tho variablo % operating on a sample

o= Uy Uy Uy}

givea rise to the samploy
(6 ¥)={Uq, X); (U Up)i i (U, 0 Ty ) . (B1)

Godambe (1905) uses tho term ‘observable’ to donote this, but we shall avoid that
terminology becauso of its much doopor meaning in theorotical physics. The above
torminology is simplo and being now does not confuse with any oxisting onca. lore-
over it scoms font when wo jder moro than ono variablo. For examplo

with tho variables & and & we can havo ‘samplox’ and ‘samplez’ respectivoly).
The basic samplo space givos riss to the basic samploy apnace
(8, %) = {{s, ¥) : 268, YeR"). . (52)

From tho given probability measuro I on § i.e. tho given design D{S, P) is now geno-
rated tho family %y of probability moasures on tho basio sampley epace (S, %) with
P Y bolonging to tho spaco RY, For apoint ¥ = (¥{,..., TY)
in R¥ this measuro assigna tho probabilitics thus giving tho likclikood (Takouohi, 1061):

P, if Y‘.= YS." for 1 § k < n(s)

Py (s, ¥) = 63
0 othorwise.
Dofining the offcctive samploy ponding to the sampley (6.1) by
(8, Y0 = Uy, ¥p)s Uy Ypdoeen (U, L Xy, 0) e (8.4)
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where ) is tho effective sizo of 4 (au dofined in Soction 1 and U‘l, A " aro tho
distinct units in s arranged in any order, it can now bo verified, by tho usual factoriza-
tion criterion of Neyman that tho statistic (s, ¥'); is a sufficient statistio for tho family
of probability distributions #y. Theso ileas are transparent in Basu's work though
ho limited his exposition to pps designs. Tho gencrality of his results was quickly
pointed out by Takeuchi (1961) and “is also ovident from tho work of Roy and
Chakravorti{1960). Iowever, there scoms to cxist somo confusion among somo regard-
ing theso concepts as when Pathak (1064) sct out to rigorise theso concepts but is no
cloarer (Hajek, 1005).

An application of Rao-Blackwell thoorem now yields Basu’s theorom.

Theorem 6.1.: Given a design P and an estimable parametric function {(Y), if
T is any unbiased estimator (w.r.t. P) of f(X), which violales (4.9) then the estimator

I* =E(T|{e, X))
i also unbiased for f(Y) and
V(I*) € P(T) YYeRY

with airict inequality at least once. The results of Murthy, Raja Rao, Des Raj and Khamis
and Roy and Chakravorly are special cases of the above resull.

It may bo noted that Hajék (1959) scoms to have intuitivoly felt tho truth of
the abovo thoorom at about the same time but only makes a passing mention of it and
at any rato doea not indicato any lines of proof. Somo of the cssential features of tho
above theorom aro also traccablo, though in a disguised form, in a much earlier work
of Halmos (1946) for the apeoial case of pps dosigns.

It can bo scon that tho statistio (s, X), is not only sufficient for tho family #,
but is in fact the minimal euflicient statistic. It scenus safo to conjecture from this
that any function of the minimal suficient statistic (s, X'); is an admissible
estimator of ite own oxpeotation. The validity or otherwise of this result in a genoral
context seems to bo an intoresting question which does nob seem to have been answered.
If this conjecture is truo—at any rato in our sotup—thon wo not only have tho complete

haraotorisation of all admizsiblk imators but also gniso that tho class L3(P)
docs not enjoy any special privilego in the wider class M°(P), as it is casy to construet
mombora of 2 *(P)~Ly(P) that aro funotions of (s, ¥), only and henoo aro admissiblo
in T*(P), tho olass of all unbiased estimators of Y. Further, if this conjooturo is true,
evon for tho class Lg(P), Theorom 8.1 gives us a big minimal completo elass of estima-
tors (thoso satisfying (4.0)). \Wo note that thero are (2¥—1) possible oquivalonce
classos of eamplos and for n samplo with wW4) == r wo have r coelicients fu's to bo

x
dofined. Theso give N.2¥-1 cocuioicnta( P ( 1,\" ) 1) to bo dotormined subjeot to the
=1

N oconditions given by. (4.5). Thua defining optimality as tho uniform minimisation
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of the varianco doos not load us to a narrow complote class of estimators. Restrio-
tion to n avitablo subelass of Ly(P)is, as remarked oaclior, noither desirable nor
fruitful. Tho alternative theroforo is to explore some other criteria of optimality.

8. SOME ALTERNATIVE CRITERIA OF OPTIMALITY

(8) Bayesian approach. In a number of practical situations we aro not
totally in the dark about the valuo of ¥. The valuo of X = (X, X,,..., Xy)ofa
positive character 2 on ¢, which is woll correlated with ¥ is availablo beforchand
in theso cascs. In such situations ono can look for stochastio model and assume that
the naotual value of ¥ is tho realisation of & random variablo whoso distribution
deponds on X besides possibly on some unknown parametors. If this @ priori
distribution is denotod by 0, instead of trying to minimise V(Z(S, P, T)) uniformly in
¥, for variations of I over the class A{v,) dofined by (3.20), we can try to minimiso
tho ‘expocted loss’

[ V()0 . (an
over tho distribution 0.  If H(S, Py, T)) is the minimisi ber in Avy), uniforml,

for all values of XeR¥ and for all values of all the unknown parameters that enter into
tho apriori distribution 0, then M, is said to bo a optimun strategy in Mv,).

From Godambo (1955) and Hajok (1959) we have two important situations in
which such an optimum strategy oxists.

Let vo bo & positive integer and lot A*(v,) denoto the class of strategics for
which

v(P) = v,. .o (8.2)

Whon C(Il) is a function of P, say C(P), and is a monotonio increasing function of
WP) this clnss A*(vy) coincides with Mv) defined by (3.21) with suitable units
chosen for the cost.

Let ©, be tho class of a priori distributions 8, for which
(1) By(Y,| X=X,
@ Vi ¥lX) = ot
and (3) covy (¥, Y| X, X =0 . (6.3)
whilo ©, Is tho widor cluss with (3) of (6.3) replaced by
(3) covy (Y, Y| Xy, X)) = w(]j—=i]) o (8.4)

whore w in any convex function of |j—i[. In tho sbove, a and 0% aro unknown
pa1ametors.
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Godnmbo thon proved (cf. Hanurav, 1966) tho following theorom.
Theorem 6.1: In M%(vo) defined by (.2), any etrategy I (S, Py, Ty) suliafying
(i) v{Pq) = v(Py) = v, for all 's’ with P, > 0

W@ Py = v - (55)
and {iii) Ty = Yu(Py)

18 O,-oplimum in A*(v,) for any 0,0,.
Hdjek proved tho following theorom,

Thoorem 6.2: There is just one slralegy Hy8, Py, To) twhich is Opoptimum
i1 A'(vo) for any 0,c0, and that it is given, in addition o (8.5), by

(iv) the sumpling is by means of the pps sysiematic sampling, .. (6.8)

Tho abovo sampling mothod was first given by Goodman and Kish (1950) s a genera-
lisation of systematio sampling to tho varying probability caso.

Designs satisfying (ii) of (6.5) we shall torm as ‘m ps’ designs, in analogy with
but distinct from ‘ppa’ dosigns. Tho problem of ing easy sampling methods to
achiovo (i) and (ii) of (6.5) and to satisfy some other desirablo propottics like
admitting o stable nonnegative unbiasod estimator of V(T,) is an interesting combi-
natorial problom in itself. A solution to this problem, that has soveral other desirablo
propertics, is givon for tho caso v = 2 (Hanurav, 1965). The caso of general integreal
values of v has also been solved recently (cf. footnote on pago 183).

Thero do not seem to be further examples of roatistio familics of distributions,
O, and O, for which ¢-optimum etrategy exists. It can be ensily proved that if
{2) of (0.3) is roplaced by the more general {and realistic) condition

VoY X)) =o'X4 1IN . (8.7)
for somo g > 0, thon &,-optimum strategios do not oxist for g # 2.

(b) Linear invariance. This concept, discussed by Roy and Chakravorty
(1960), requirca that an cstimator should remain invariant under linear transformations
on ¥, Howover, this docs not lead to an optimum estimator (i.0. minimum variance
estimator in the clasa of linearly invariant estimators), nor to a narrow cnough complote
olass of eatimators ovon, in Lg(P).

() Regular estimators. This clsa is also discusscd by Roy and Chakravorty,
and restricts to tho class of cstimators 7' of Y for which

VP) = kot =k ¥ g 1-7o). . (08)
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This scoms to us to bo a vory unnatural and costly demand. It is only for &
natrow class of very spocinlised designs which thoy termed as ‘balanced designs’
that thoy proved that a ‘bost’ ostimator exixts in tho class of regular estimators.

i

Other critorin like tho mini principlo or tho principle of regrot
oto., also fail to lead us to our goal.

(d) IHyper admissibility. Whilo (b) and (¢) abovo try to restrict us to subclasses
of LY Y) in an attempt to got at optimum estimators, in this eriterion (Hanurav, 1905)
wo weaken our criterion of uniform minbnun varinnco (which proved teo strong
forus). Looking upon an unbiasod estimator 7' of Y as an unbiascd estimntion proco-
duro that can bo used to ostimato all linoar paramotric functions EL Y {cf. Thoorem
{3.1)) by replacing Y,’t; occurring in 7' by ;Y 's, we domand from 7 that it should give
an admissible estimator not only of Y but of all kinoar parametrio functions. This
eriterion is thus weaker than uniform minimisation of variance, but is etronger than
admissibility. Wo noto that whon 7' is used to estimato LY, by doriving from T
tho estimator T* obtainod by rcplncmg Y/ sin T by L;Y,'s, tho paramoter spaco shrinks
to tho principal hyperplane containing the linate axes of thoso Ys for which
1/s are non- zora Thus hyperadmissibility roquires 7' to bo admissiblo not only in
tho whole of R¥ but also in each of its principal hyperplancs. The practical implica-
tion of this criterion is that sub-totals, means of subpopulations, contrasts involving
such submeans (which all form an important class of parametrio functions of interost
in practico) should all bo admissibly estimablo, by means of a singlo estimator T,

Wo now havo the following theorem.

Theorem 6.3 (Hanurav, 1065) : For an_/ durgn P which is not a uniclusler
dwgn the class J*(P) of all pol; i of Y admils just one
which 18 h dmissible. This ‘optimum’ esti ia Horvitz-Thompson

Y

estimator 17,“(}’). For any unicluster design the class of all hyper-admissible estimaltors
1 given by (4.12).

As we have remiatked eatlier, tho restriction to the class Ly(P) of gh.lue’s,
for the estimation of Y, is an | mathematical restriction espocially sinco
Ly(P) is not completo in the wider class J*(P). Whilo the critcrion of unbiascdess
can bo retained owing to tho simplo and meaningful interprotations that can bo given
to it, no such reagon can bo put forward for the criterion of homogencoua linearity.
One reason (and perhaps tho only ono cartying somo weight) that is often advanced in
favour of this eriterion ia based on tho units of t. If for plo ¥ ix
variablo like incomo monsurod in rupoes say, it is cloarly difficult to interpret a quadratio
estimator to’ cstimate ¥ for the former is a sum of a constant, rupees and (rupecs)t
whilo ¥ is in rupoos. Howovor, onco the units are ohosen for tho measuroment of

4/ the problom whould bo idorod as a purely matl ieal problem. Morcover,
the uso of tho woll-known ‘difforonco estimator’
Far= N(g+Hz—X) e (69)
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in simplo random sampling, whoro z and § are tho sample means of &7 and %, X is the
population mean of 2 and kis a constant, showa that this adhoreneo to units of mensure-
ment i not as pious a3 ono makes it to bo when restricting to Z3(P): For, in (6.9),
& and ¥ can be variableg which aro not moasurablo in the samo units as for oxamploe
% is incomo and &2 is population size.

Theorem 6.3 not only eliminates through a purely mathomatical criterion
theso non-linear estimatots, Lut in fact pins down the optimum estimator uniquely
for all designs which are of interest. Thus it completely accomplishea tho first step
in tho choice of an optimum strategy.

It is intereating to noto that the estimator };m-(P) plays a crucial rolo through-
out our theory aa is ovidont from Theoroms 4.1, 4.2, 6.1, 6.2 and 6.3,

7. CHOICE OF OPTIMUM DESION

Tho sccond (and in fact last) step in tho problem of the choico of optinum stra-
tegy, is that of tho choico of optimum designa,  With the criterin of unbiasedness and
minimum varianco only, the only logical way of asserting that a design D(S, P,} is
better than another, Dy(S, P,) is to establish that

V(Ty) € V(TYY YeR” v ()

for any estimators Ty and T, that are unbiased (w.r.t. Py and Py rospectively) for
¥, or by establishing a weaker but perhaps moro meaningful result like

V(T)) € P(Tyy YeR* . (12)

whero 7, and T, aro any admissible cstimators. This is tho correct formulation
88 wo can always pick up bad estimators in any design. Ono oan perhaps restrict
T, ond T, to some classes like, say, L3(P,) and Ly(P,). We are not aware of any
result that js anywhere noar such a logical method even for simple types of designs
P, and Py, but a numbor of authors frecly make statements like .., it is ovident that
sampling without replacement is botter than sampling with replacement ...”. What
such authors notmally do is to establish (7.1) for gome cstimators T, and T,y that are
pothaps commonly used (of which 7Y is invariably an inadmissible estimator in Ly(Py))
and then jump to statomonts like theso mado above.

By far the only eriterion that gives optimum designs also is the ono discussed
in Section 6{a), through a Bayesian approach. But even this gives the optimum d esigns
in rather spocialised situations which aro given in Theorems 6.1 and 6.2

If instoad of unbiased and mini vari wo tako unbiasod
and hyporadmiasibility, the problom ia idorably simplificd. For, in this caso we
nood not prove such atrong rosults liko (7.2) but neod only prove that

V(FarP) < V(Fux(Py), V YeRY e (13)
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to catablish the superiotity of Py over Py, For the varianco of TP} wo have

V(Y.,.,)=L n 4+ 54 ny
m

ny— T2 e (1.4)
vy My Y

{7.3) thon gives the required condition as

4 IR | nfdPY  _ _ mfPy)
EN o~ aqr ) EE T (S haims — wapmer) <OVY

. {1.5)
A ot of neccesary conditions for (7.5) to hold good aro given by
n{P) > ndPy), 1IN, e {7.8)
Thus it is not sufficient, as perhaps is intuitively folt, that v, should be larger
than v,.
Howover, for a fair comparison botweon P, and Py regarding tho variances of

Tny's in these designs, it is necossaty to ensuro that Py and P, are oqually preforrable
in other respects and in pacticular thnt !.hoy are equally costly. If the cost C(P)
of a desiga is taken to bo a toni function of (m,, 7y, ..., my), such as
the expected offoctivo sizo v, then tho con(htion

C(Py) = C(Py)

together with (7.6) yiclds
m(Py) = m{Py) = m; say, for 1IN o (1.7)

as a set of necessary conditions for eithor Py to be superior to P, or P, to bo superior
to P;. From (7.5) and (7.7) we then have

Xy,

(Py)—nm (P, ovy . (1.8
I#I i, (my(P)=ny(P)) € OV (7.8)
a3 a sot of nocessary and suflicient conditions for Py to bo superior to P;.  If wo restrict
to ¥ 2 0—ofton roalistically—a sot of sufficient conditions for (7.8) to hold good is
given by

mdP) K mylPy), for 1<i#jKN. e (1.9)

Given tho doaign Dy(8, Py) if wo can construct a Dy(S, Py) with the same 7's but with
uniformly emaller (or equal) 7'’s then such a P, is superior to Py. Referring to (2.6a)
and (2.6b) we sco that this is not possiblo if

I T my(P,
0T (P

attains ita lower bound given in (2.6b) viz., viv—1)+0(1—0). \\’hetlwr this is possnblu
if 2;% m,(Py) exceods its lowor bound is an open problem, but a plausibl
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i8 that it is possible. 1f #0 this provides a valid justification for restrioting to ‘without

pl b’ designs in pref to tho ‘with repl * designs, in a very gonoral
sonso. (Of courso tho ‘without roplncement’ designs possess tho practical advantnge
of a rolatively stablo cost of samypling, in comparison to the with roplacomont dosigns).

The above discussion as also Theorom 6.1 should now provide ample preof of
tho importance of the problems of oxistence and construction of designa that are consi-
dered at tho end of Section 2.

From (7.6) we sco that a given class & of strategics I for which

C(ll)=C,y for leH v (7.10)

whero €, is a given number and C{H) is a given cost function which is & monotonic
increasing function of (my, 7y, ..., mg), then we can only break up 4 into equivalonco
classes with members in the same class having the samo values of #;'a which satisfy
(7.10). No membor of a class is bottor than a member of another class so that no opti-
mum strategy exists. If tho conjecturo given in tho lust para proves true then wo have
optimum strategics within each subel The exi of an opti atratogy in
N 03 & wholo implies tho existence of an optimum set of 7’a. In absence of any auxi-
liary information thore doos not soem to oxist such a sot under the presont dofinitions
of optimality. In such casos the only possible optimum sot, with any reasonable dofi-
nition of optimality, scoms to bo the equal valuos of 7/'s. Coupled with the eartior
conjocture this gives rise to the simplo solution of ‘simplo random sampling without
replacemont’ design with tho estimator Ng, # being the samplo mean, as tho optimum
strategy. A third stop that now emorgos in our investigation is to discover various
realistic a priori distributions in torme of auxiliary informations which give rise to
optimum values of #,'s.
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