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Lecture 1

A. Elementary Theory of Groups

Definition 1, A group G is a set of elements G(a, b, ¢,...) and a

binary operatior between any two elements a and b denoted by ab

such that the following conditions are satisfied.

I. If a and Vb are elements of G, whéther identical or distinct,
then 8b is also an element of @.
II. For any three elements a, b, ¢ of: G, (&b)c = a(be).
III. The set G contains an element 1, called the identity; such
that al = la = a for every element a cf. G.

IV. For any & in G there exists an element denoted by a™t

such that a a-l'a a-la. =1,

These laws are redundant, We may replace III and IV by
III* There exists an element 1, such that la = & for every a in G.

and fv* Por every a of G, there-exists an elemént =x such that xa=1.

We can show that these in turn imply III and IV. This is left as
an exercise,
A group G dis said to be finite or infinite according as the number
~ or infinite
of elements in it is finitge If G contains n elements, where n is

finite, then n is called the order of the finite group G.

It is easy to establish the uniqueness of 1 and a-l. An important
consequence of the associative law is the generalised associativelaw which
states that,

*All ways of bracketing an ordered sequence a9 a2’ RRTTLN to give it a

value by calculating a succession of binary products yield the same result!

Examples. - A11 nth. roots of unity under multiplication, residue
classes (mod, n) under addition.form groups.
Definition 2. A subset H of a group ¢ is called a subgroup if the

following conditions hold:
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Sl' If h1 e H, h2 € H; then hlh2 EH

-1
52. If hl € H, then hl £ H,

The set of all even integers form a subgroup of the set of all

integers.

Definition 3. A one=~to-one mapping ,GZ:Z. H of the elements of a group

G onto those of a group H is called an isomorphism, if whenever ng:Zhl
8,322 by, then g8, h. Bo

Example, Consider the following permutations,

'G]_.b (_:'-2
1 2 3) (L 2 3 4 5 6)
= (1 2 3) = (1 2 4 5 6)
Yz = (2 3 1) ‘g’z = (2 3 1 6 4 5)
X3 = 3 1 2) ¥y = (3 1 2 5 6 4)
X,= 0 3 2 = (4 5 6 1 2 3)

x5=(3 2 1) Yy = G 6 4 3 1 2)
= (2 1 3 Y= (6 4 5 2 3 1

It is.easy to wverify that G__1 and G’Z are groups wWhich are jsomor-
phig.
Defivnition 4. A mapping ¢ -> H of the elements of a group G onto
those of a group H is called & homomorphism if whenever
& -> .hZ" then €,8 - hlh2

gl -> h]_’

A homemorphism takes unit into unit and inverses into inverses.
In the above example Xy Xy Xp => 1, Xys XS; X¢ =>=1 is a homomorphism.

In what follows we shall consider abelian groups satisfying

V. ab = ba for all a and b in G.



Cosets,
Given a group G and a subgroup 3, the set of all elements hx,

heH, xe G, x fixed is called a coset denoted by Hx.

Theorem 1., Twocosets of H. in G are either identical or disjoint

coset of H contains the same cardinal number of elements as H.

Proof. If Hx and Hy have nothing in common, there is nothing to
prove. Hence suppose z € Hx and 2 € Hy. Then 2z = ‘hlx = hzy. Hence

-1

¥ and hx hhl h2 ¥ = hty- hence Hx ¢ Hy. Similarly

(]

-t
x..h1 h2

Hy ¢ Hx. Hence Hx

and Hx contain - -the same cardinal number of elements.We ocan thénowrite

]

Hy. Then correspondastor h Z:Z hx shows that H

G=H+HX2+ ..-+:HJCI"
The cardinal number r is called the index of H in G. The order of G is

the cardinal number of elements in G.

Theorem 2. The order of ¢ is the product of the order of a subgroup H and
the index of H in G.

Cor, For any a € G, aP =1 if p 1is the order of G
(Consider the cyclic subgroup generated by a.)

Direct products. A and B are two groups. Form the ordered pair

(2, b), a €A, b€ B; then the ordered pairs (a, b) form a group if we
define

(215 213 (%50 b)) = (ay35, Byb))
Moreover (a, b) '<'_':>(b, a) shows that A x B and B x A are isomorphic.
The correspondence a ~7>(a, 1) is an isomorphism of A With the set of
elements in A x B with second component identity. Similarly for B, We
can identify A and B with these subgroups of A x B and say that G = A x B
is the direct product of its subgroups A and B. Since (a, 1) (1, b)=(a, b)=
, v)(a, 1) it follows that in A x B every element of A conmutes with
every element of B i.e. ab =ba for a € A, b € B,
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sxanples. let 'Bn be the group of n=-place binary sequences under the
cteration of addition mod.2, It is the direct product A x A X ... X A
(n times) where A is the additive group with symbols O and 1 such
thet 04 0=14+1=0,04+ 1=14+0=1. The order of the group is 2"
It is isomorphic with the group C.n generated by n  commutating 2leror

n

i¢j = 1,24...yn and I is the identity of the :group. - For examvle C3 is

the group of elements I, al,az,as, a8, ’ a1a5, : 5"26.'3’ 'ala;'zajt The group

2.
of ‘order tWo, S&Y, 848,408 o Here aia,j = ajai and a; = I,

C, i's isomorphic with the n fold direct product of . 3C1 with itself, A
convenient way of writing down the above elements is I, 1, 2,.3, 12, 13,
23, 123, In this motation (12)(2 3 4) = (1 3.4). In general the product
of a number of facfors in this notation is the symbol containing only
those integers which océur odd number of times in the factors.

The isomorphism ketween B and Cﬁ -can -be established in many
ways, The most convenient way, perhaps, is to associate with the element
iil,iz,...,' i, ©of C,, the element of B  which has one, in place
il,i?_,...-, ik and zero elsewhere., For example the element 124 of ¢

. 4
can be associated with (1101) of 3

4.

An element. T of Cn- is said to be dependent upomthef set of
elements T-l,». T2,...., Tj" of, Cn if ‘T can be expressed as a product of
some elements of the set Tl,.’r sz, ooy Tj.‘ otherw.ibs'é'- T ie said to be
independent of the set, A set is said to be independent if no member is
dependent upon the rest. For example in 04 the set _1, 2y, 3, 4 form an
independent set. Any set of n independent elements of Cn can be taken

as generators of Cpo for the relation
ny, . mn ny. n
(1) + (2) + see +(n)=2 "1
. n
gives 27-1 elements of Cn' different from I and T is the product of any
element with itself.

Any k  indepenueny viements or U, Serve as generators -of a.sub-

k
group of order. 2", The subgroup generated is clearly iscmorrthic.with Ck
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The number of ways in which k independent elements can be chosen

from 2n elements of Cn is

Pln,k) = (2% = 2°Y(2% - 21y (2" = 2%y,..(2" - 2571y,

For the first element can be chosen in Zn-l ways (the identity can not
included in a non-trivial set of independent elements) and the second in
2"2 ways, They determine a subgroup of order 22. The third element
can be chosen in the remzining 2n--22 ways, The 3 chosen elements form a
subgroup of order 23 + Hence generalising we get the regquired resul‘c.
Each set of k indepe-ndent elements determine a subgroup of order
2k. F(n, k), however, is not the number of different subgroups of C _ of
order 2k. Since each subgroup of order 2K can obviously be determined
by choosing k independent elements of that group, which can be done in
F(k,’k) ways (the subgroup being isomorphic with ck), the total mumber of
distinet subgroups is F(n, k)/F(k, k) = N(n, k). A simple -calculatiocn
shows that N(n, k) = N(n, n-k).
In B , regarding each element as a vector over the field G B(2);
it is obvious  that a set of k elements of Bn are independent if and only
if the matrix of the corresponding vectors is nonsingular in GF(2). If

X1r Ko eeey xk are k independent elements of Bn’ the subgroup of Bn

generated by these elements is the set of elements A%y AMxg +
oo + }‘kﬁ: where .}\i-=o or 1.

B, -Elementary theory of Galois Fields

1. A set of elements a, b, ¢ ... is said to form a field F when
there exist two laws of composition, i.e. addition (denoted by +) and
multiplication (denoted by x or a dot), such that the following axioms
are satisfied.

Closurg laws :
%‘Or any a, b € F there exists a unique element c¢ € F such that

a"‘b-:Co



b=

For any a, b, € F, there exists a unique element d € F such that
ab = d.

Associative laws

(a+b) + ¢ = 2 + (b+c)

(ab)e = a(be)
Commutative laws

b+a = a+4b

ba = ab

Zero and Unit
0 exists such that a + 0=0+ 8 = a
1 exists such that a,1 = 1l.8a =2a
for all a € F,
Negatives and‘ Inverses

For every a, =a exists such that (-a) + (a) = a+(=a) = 0

For every a.3 0, . a™l exists such that a(a?l) -.-(a'l’)(a)"= 1:
Distributive law

a(b + c) = ab + ac
(b+c)a =12 +ca

It follows easily that 0 and 1 are unique and that a.0 = 0 for
any a in F and that 1# 0.

It can be easily satisfied that the above axioms are satisfied by
the system of all rational numbers, all real numbers, all complex numbers
which are examples of fields containing an infinite number of elements.We

containing a finite pumbe® of elements '
are interested here in fields / ~ .Such fields sre called Galois fields.

2. The simplest example of a Galois field is provided by the field of

residue classes modulo p, p being any prime positive integer. ILet all

integers congruent to a mod p be considered to form a class denoted by
(2). ‘Then there exist only p dif ferent classes (0), (1), «.., (p~1).
The addition and multiplication of these classeés is defined by

(a) + () (a + b)

(a)(v) (ab)

1]

1
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iy can be verified that all the axioms of & field are satisfied, >This
fi¢ld e vsurlly denoted by GF » obviously any integer of the class (=)
...... 1 glve rise to same class as- (a) There is only one non=negitive inte=-
se> less than p representative of (a2). This may be called the standard
rerresordativ. of (a).

3., The concept of a polynomial in -ordinary algebra can. be extended to

ery field. The expresedons of the type

f(x) = a +.ax+ax2 + eae +anxn

o1 T2
with cocfficients in a field F constitute the set of polynomialsbelonging
to a commutative ring F[x], addition and multiplication being defined in
the usuval marmer., For polynomialsbelonging to ;GFp[x],' the coefficients
arc residue classes mod p.

A polynomial f£(x) of pg[x]is called irreducible, when it is im-
possible to find polynomials g(x) and o(x) of F[x] of degree m and
n, m>»1, n» 1, such that

£(x) = §x) alx).
If however A(x) and «(x) can be found as above then f(x) is said to be
reducible and f(x) and x(x) are called factors of f(x).

Let f(x) bte 2n irreducible polynomial of F[x]. Two polynomjals
$4(x) and }éa,(x) are said to be congruent modulo f(x) if p,(x) - f,(x)

has a factor f(x) and we write ﬂl(x) = f,(x) (mod f(x)). The class of
polynomials congruent to P(x) may be written as [f(x)] and we define

BT+ [a(x)] = [B(x) + a(x)]
BT [w(x)] = [ftx)  w(x)]
It can be shown that these clagses form a field, The polynomial
P(x) is said to be a representative of the class v,[ﬁ(x)"]. If f(x) is of
degree n, there is only one polynomial of degree less than n, which
represents [f(x)]. This may be called the standard representative of

[A(x)]-



4, It is easy to prove the following facts about a finite field.
a
(i) The number of elemenis iy finite field is the power of a prime
. . T
For each prime power -pr there is-a finite field G,F,(pr) with p . elew

ments and it is unique to within isomorphism. r

(ii) Bach element of x sztisfies the relation x* = x. The multi-

plicative group F*(p') of the p =1 elements of GF(pr), excluding zero
is cyclic. A generator of this group is called a primitive element.,

(iii) ¢F(p") may be represented me the residue classes of polyno-
mials P(x) with coefficients in the field GEP, modulo a polynomial f(x)
irreducible of degree » over GF .

Because of isomorphism between any two Galois fields with the same
number of elements it'is sufficient to write-down the elements of any
Galois field with a given number of ‘elements together with the addition
and multiplication table.

Bxamples of finite fields.

(i) The polynomial 2 #.X 4+ 1-is irreducible over G «
Hence the elements of GF(ZZ) _are 0, 1, X, x4+ 1 With the following
addition and multiplication.tables

Addition Multiplication
0 1 X x+1 0 1 X x+1
0 0 1 x X+l 0 o L §] o
1 1 0 x+1 x 0 1 X X+l
X b4 X4l O 1 X 0 X X+1 1
x+1 xl  x 1 0 x+l 0

XY 1l X

From the multiplication table we haw x = X, x2 = X411, x3 = 1, thus x
is a primitive element of the field >GF(22) constructed above,

(ii) Show that X3_+ X + l,A_x3 + x2‘+‘l, }J‘c4 + x + 1, are
irreducible GE2 and that x3 -X + 1, x3 -X + 2 are‘i‘.rredcucible over
GF3' Form the corresponding Galois fields.
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In the construction of GF(pr) it is convenient to choose the
irreducible polynomial of degree r over GFp in such a way that x
is a primitive element of the corresponding finite field. This may te
done as follows,

Consider the equation xp = 1, of ordinary algebra and obtain in
the usual médnner the cyclotonlc equation i.e. the equation, which has for
its roots, all the primitive roots of this equation. It is well known that
the degree of this equation will be m = f(p*-1) where @(k) denotes the
number of positive integers less than k and relatively prime to it.
Suppose this equation is

4 oa xm-l+...+ao=0
where &,.19 ++es 8 are integers, Replacing a, by 1ts residue class

(2;) modulo p,¥¢ get the polynomial

" +-(am_l) S s (ao)
of GFP, which may be called the cyclotomic polynomial of order m of
GF [x]‘ * Let f(x) be an irreducible factor of this equation. Consider
the class of all polynomials of GF [x] congruent modulo f(x). Then
these classes form a Galois fleld W1th p elements, the addition and
multiplication being carried out in the usual menner modulo f(x). The
degree of f(x) is always 'r. The polynomial f(x) obtained above may
bé called the minimum function.

Instead of these classes, we may write down their standard repre-
gentation, replacing each class by the unique polynomial of degree less
than r with coefficients which are residues modulo p, provided we
remembei this fact &t the time of forming sums and products. Then each
element of the Galois field assumes the standard form

rel

a a,X - .o g X



where : ar 8y

1 e oy a

Pl are integers taking any value between O and
p=1.

Discussion of special cases,

(i) Galois field op(2%).

Evéry element other than .0 :satisfies x3 - 1= 0, The ordinary
cyclotom:Lc polynom1a1 1s x2 + X + 1 which may be regarded also as the
cyclotomlc polynom1al of GFz[x] Since: x2 + X + 1 is irreducible over
GF , the minimum function is. f(x) -+ x4+ 1.

(ii) ‘galois field GF(2 )

Consider the equation x15 -1=0. Since ¥ =1 =0 ¥%th . x in
GF(24)' implies that m is a factor of 15, we omit those roots correspon-
ding to m = 1,3 and 5, taking care that each such root is omitted only
once. Herce we remove the factors K x-1, xz + X+ 1 and x4 + x3 + x2+
+ X+ 1 frem o 1 and get the cyclotomic polynomial in GFZ[xl which
is

7 5 4.3

8
X +X' +X7 +x +x7 . +x+1

which is of degree f(15) = 8. It is easy to verify that this factors
into two polyncmials of degree 4. . They are
4 3

X'+ %X +1 and x4+x+1
each of which may be taken as the minimum function.

Write down the corresponding Galois fields and exhibit an isomorphism
betwesan ‘them.

In a finite field all the four fundsmental operations of ordinary
arithmetic can be carried out. Hence all the concepts and results which
deperd only on these operaticns in the field of real numbers can be
extended to a fini_te field. we can thus define vectors and matrices
with elements in a finite field and also the rank of such 2 matrix. We
can solve a set of linear equatiors with coefficients in a finite field

with solutions in the field in an apalogsous manner.
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Suggested reading

Marshall H21ll : The Theory of Groups (1959) MacMillan (New Ynrik),
Birkhoff and Mclane : Survey of modern Algebra,

Carmichael : PFinite Groups.

He Be Mann : Design and analysis of experiments,



-2 -

Lecturc 2

Complete sets of mutually ~orthozonal Latin Squares

1. A Latin squarce of order v is An v X VvV array, the vzl cells
of which are occupied by v distinet symbols (which may be Tatin or
Greek letters or just plain inte,«;;ers) such that each symbol occurs onc:
in every row and once in every .column. For example, the square exhibited

in Pigure 1 ie 2 Latin square of order 3

2
2 3 1
1

Figure 1

Two Latin squares of the same order are said to be orthogonal if,
on superposition, each symbol of the first square occurs exacily once
with each symbol of the second square, Two orthogonal Latin squares of

order 4 are exhibited in Figure 2.

0 2 1 3 1 0 2 3

2 0 3 1 2 3 1 0

1 3 0 2 3 2 0 1

3 1 2 0 0 1 3 2
Figare 2

A set of Latin squares all of the same order is said to be a set
of mutually orthogon2l L2tin squares (m.o., L.S.) if any two Latin squares
of the set are orthogonal. |

A Latin square is said 10 be in the standard form if the initisl
row contains the symbols in the natural order, Thus if the symbols are
the integers 0, 1, 2, +..y v=1, the square is in the standard form if
the initial row is 0, 1, 2, ..., v=1l. A latin square can always e
brought in the standard form by renaming the symbols, If, two Latin
Squares are orthogonal, the renaming can be done independently for each

square without destroying the property of orthogonality. Thus in Figure 2,
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by making the transformation

0 ===> 0y 2 m==d 1, 1===>2, 3 ===>3
in the first square and the transformation
1e==>0, 0 ===>1, 2=-=>2, 3 =3

in the second square, we can oxhibit the Intin squares in the standnr?

form,
0 1 2 3 0 1 2 3
1 0 h) 2 2 3 0 1
2 3 0 1 3 2 1 0
3 2 1 0 1 0 3 2
. Figure 3

Given any latin square of order v, number the rows (columns) of
the square as 0,1,24+.,» V~ls The cell in i-th row and j=th column will
be called the cell (i, j).

2. Denote by N(v) the maximm number of latin squares of order v
sﬁch that any twWo of them are orthogonal, We have
Theorem 1 : For any positive integer v, N(v) < v-1 .

_ Proofs Suppose that the maximum number of m.0.L.S. is n. Without
loss of generality the set can e put in the standard form. Consider any
two Lat:’i.n squares of the set. The cell (0, j) accounts for the pair (j, j)
on superyposition. Hence in the cell (ig3), 1 7‘ 0, each Latin square con=~
tains a symbol % j. PFurther the same symbol cannot occur in this cell in
both the latin squares, for the identical pairs are provided on superposion
by the first row. Hence in the n Latin squares the symbols in cell
(i, j) are all different from one another and also different from j.

Since there are only vel symbols different from j we haw n ( v-l.
A set of 'v-l'-dm.o._L.S. of order v 1is 8aid to be a complete set of
me0.LeS. of order v.
Theorem 2: Any set of v-2 m,0.,L.S. of order v can be extended

to a complete set of vel m,0.L.S.



Y
Square

Proois Leb-the symuols of each Lutin/be the integers O, 1, 2,...
vel. ¥ithout loss of -generality take. the set . Ll’ L2,f: ey Lv-2 of
me0.Le3. in the standerd fora. Form 2:nsw square L containing the initicl
row in the standurd form and put in the cell (i, j) for i % o, that inte-
ger differentf a j which does nut occur in this cell in any- Ly k =
1, 2, eesy v=2. “Te show that L is a Latin square which is orthogonal to
every L . Since the cells (i, 3) of 1L, Li,...., L, o gontain all the inte-
gers different from Jj .exactly once, it is obvious that the ith row of
Ly Lyy ooy Ly
ith row of L

contains all the integers exactly v-=1 -times. But the

1500 LV_,) contains all these integers exactly v-2 times.

f

Hence 1 contains all the integers in the ith row exactly once. Similarly
it .can be shown that every column of I contains all the integers exactly
once, Thus L is a Latin square. Now consider Ll‘ .and.. take the cells in
which O occurs omitting the cell in the initial row., In these cells
of L, I‘Z""’ 'LV_2 all-the symbols excepting O occur exactly v~2..times,
whereas by orthogonality thesz,cells of" Loy ooy Ly o contain these symbols
exactly v-3 times.. Hence in L all the symbols excepting @ occur
exaetly once in.these cells, §ince the peir (0, O) is obtained from the
initial rows of - Ll and L, it is obvious that on superposition of L on
Ll’ 0 of Ll occurs with 211 other integers. Similar argument shows that
all other ordered pairs occur exactly once. Hence L is orthogonal to Ll'
Similarly it is orthogonel to 211 the other Intin squares,

e state without proof the following theorem (Shrinkhande) due to
appear in the couning issue of Sarkhya.

Theorem 3: If v 4, then any set of v-3 m.0,L.S. of order v
can. be uniquely cxiended to & complete set of vel m.o,L.S.

3. Qonsiruction of complete sets of m.a.L.S.

If v is a prine power, Wwe can obtain a complete. set of meO.LeS.
of'order ve Therec is no known example of a complete set of order v
When v is not 2 primc power, though the existence of such a set has

been dis 3 LN .
isproved for ceriain wzlues of v which are not prime

power o
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Theorem 43 If v is a prime power, H(v) = v=1,
Proof: ‘Let v = Pn where p is a prime., (onsider the galdid

field GF(p) with elements 6 =0y Gy = 1y 0y eres O Take v x v

v-1l*
square and put in the cell (i, j) i, j = 0, 1, +.., v=1 the symbol x
determined bWy

OCX—OC-OC1+(X

where o  is a fixed non-zero element of GF(p). For a fixed i it is
obvious that as j varies over the set 0, 1, ..., v-1, a varies over
all the elements of GF(pn) Similarly for a leEd Js %, aJ varies over
all the elements of GF(p ) and hence so does e Thus the square array
is a Latin square Nhlch[pay denote by L . ue thus get wv-l Iatin squares
Lys Iny ooy l’sr-l Now consider I ~and I, far i%t. Vhen I and L
-are superimposed, let the symbol x of Lu occur with the symbol y of

L, in the cell (i, ;j). Then

a& = 0 aj.f “j’ a = a% a + aJ
Hence

. _ax - ay . q& au - ax at

* %, = O J % = %

Thus there is a uniquely determined cell (i, j) in which x of 1, oceurs

with y of L

g o Thus Ih and L

y are orthogonal,

Example
2 .
(i) Iet v = 4. The elements of GF(2°) are a =0y 0y = 1,

% = X, a3 = X+1 where the gddition and multiplication table is given in

the previous lecture. We get the following 3 m.o.L.S. of order 4.

Ly Ly Ls
0 1 2 3 0 1 2 3 0 1 2 3
1 o 3 2 2 3 o0 1 3 2 1 0
2 3 0 1 3+ 2 1 0 1 0 3 2
3 2 1 0 1 o 3 2 2 3 0 1




(€

[ S]

(ii) For any given GF(v) we can choose a minimum function f(y)
’ . V=2
such that “y = 0, '“1 =39 = 1, Oy = Yseeny G 1 =¥ are all the
elements of GF(v). Consider the Iatin squars LysTyssees LA They
a1l contain the symbols, 0, 1, ..., v=1 1in the natural order in the
initial row., For i$ 0 the ith row of I, contains the symbol x in

column j where
(Xx = (Xi + CXJ.
i=1
=y + ¥
Since ylhl + yJ-l = Y. yl-z + yJ~l, the cell (i=1, j) of L, also con-~

J~1

tains the same symbol =x, It is similarly obvious that the row i of .
Lo v=1 2, 0.y v=2 s the same as the row (i+l) of L, if i=1,2
eeey V=2 and the row ~V;-l 'of I‘u+1_ is the same as row 1. .of ‘Lu'
Thus all the Iatin squares can be obtained from Ll whieh we may call the
key square by cyclic permutation of the last (v-l) rows.

Further Reading

1. H.B.Mann : Design and analysis of expériments (Dover)

2. R.C.Bose : On the application of properties of Galois fieslds to the
problem of construction of hyper-Graeco Iatin squares,
Sankhya 3(1938), 328-338,

3. R.C.Bose and K.R.Nair: On complete sets of Latin squares, Sarkhya
Sankhya 5 (1941) , 361-382.

4. 0.Veblen and F.H.Maclagen-Jedderburn : Non-Desarguesian and non-
Pascalian geometrics, Trans. fmer. Meth. Soc. 8 (1907),
379-388.

5. S.8.shrikhande : A note on mutually orthogonal Latin square (to
appear in coming issue of Sankhya, (1961).
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Tinite »lanec anl Valance incomplete bilock designs

se ¥in® 5o prcjective planes

l. Pfinite projective plancs. Ccusider a system containing a set of
distine: elouwnts called toolats?! ead cortain distinet subsets of them
called !lines! together with a1 incidence relation (a point incident
with a lin: i.e., Xrbr-ym 2 baxe x7 8 Five ooeident mith 2 i
lying on 2 line or a 1l ne incideﬁt 7ith a point i.c., passing tthrough
a point!). A number o. pcinus wWill be said to be collinear if they are
incident with thy seme lirs. Sirilarly & number of lines will be said
to be corcurrent 1f thizy eve ircidcat with the séme point. The system
of lines and points will Yz -aid to form 2 projective plane 3, if the

-

following axioms are setisfi .l.

P, Any two distinct prints cére incident with one and only one line.
Pé Any two distinct lines are incident with one and only one point.

PS There cxist four pecints 1.9 three of which are collinear,

The unique line incide:.t witl. two distinect points will be called
the line coniaining {thest¢ tw> points. Similarly the unique point incident
with two dietinet lines vwill te called the point of intersection of these
lines.

Let Xl’ X?, XB’.X4 te fcur points suvu~h that no three are collinear,

where ¢xistence is guaranteeld by ?3. Consider the six lines obtained by
joining ths different iz,

11 s X KQ Z,

s XK, b Z2

- T TS

1, = X X

4 2 3 I

15 s X? K4 22

16 : AS X* Z1

~1f-
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These lines are distianct Foo otherwise thrce of the Tfour points will
be collinear. Tet Z., 22
L

« . 4_ N ‘, S_
indicated, Then Zl’ ZZ’ Z3 T

gdach .other, wrxxx Rxmg akk zuhyr, For if Z1 is identical with X1

nre collinesr which is a contradiction.

rmd 7, oe the points of intersection as

3
e distinct from the X's and also from

say, then-from 16 Kl"‘ XB? .};4 :
Similarly if Zl is the saie as 7, then the lines l1 and 1‘2 are both
incident with the two distinct points X1 and . Z1 which is again a
contradiction,
Consider . the 1inesLl, {2, &5 and A6’ Obviously mo three of them
pass through a common point. Hence we have
Lemme 1: fhere exist four lines no three of which are concurrent.
‘Now consider nny line of the system. If it is one of the six ~
lines above, then it contains at least three points. If 1 is a line
distinct from the aboves six lines, then it does not pass through at
least one of the points say. X3 or X4_. If 1 does not pass through XB'

then it meets the three lines through X in three distinct points.

Similarly if it does not pass through XZit meets the three lines
through X4 given above in three distinct points. Hence we have
lemma 2: Every line is incident with at least three points.

If we interchange the roles of points and 1ines and also inter=-
change the phrases 'a point incident with a line' and ta line incident
with a point', then the st&tements Pl and PZ are interchanged so also
are P3 and lemma 1. This leads” to the concept of dvality as explained
below. Iet 3 be a projective plane as defined above. Let (Xi) be the
set of points of and (lj) be the set of lines of 3. Iet 2! be another
system of points and lines (LJ.) and (xi) respectively such that there
is a one~to-one mapping Xi (== X, 13. {==> Lj between points and lines
of 2, with lines and points of 3! such that if Xi is incident with 1;} in
2.y then the point Lj is incident with X, in 2'. Then we assert that 2
is also a projective plane.which is called the dual of J,, POr suppose

the points L, and L, of X' are incident with two lines x, and X, of 3,
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then by our correspondsnce, the points X. and X, of’Ti are incident

¢

with lines 11 and 1, of ., which is 2 contradiction. This varifies

2
Py for . . Similarly P, 2and P, ars verified. It is obvious that the

dual of ', denoted by (5t)! iz identical with 2.

Any theorem about X is a true statoment about points’ amd lines
together with some incidence relation. The statement dual to this
will be a statement obtained by interchanging rcints and lines and at

- the same time interchanging the phrases 'point incident with a line!
and 'line incident with a point'. Obviously the dual statement will
be true in ', For example consider lemma 2, which is true in ) and
also in 2! which also is a projective plane. Since Lemm2 2 holds in
21, its dual will be true in 2, since (5') = 2. Hence in 7, we get
lemma 3. EBvery point is incident with at least three lines.

This illustrates the important fact that if a theorem is true
in 3, then its dual is also true in 2.

We will be imterested mainly in finite projective.planes which
satisfy the following additional axiom.

P4 There is at least one line incident with a finite number of

points o

We state the following important theorem.
Theorem 1. Let n > 2 %te an integer. In a projective plane >, the

following properties are eguivalent, .

l) There exists 3 line . incident with exactly n+l points.
2) Every line is incident with exactly n+l points.

3) Egery point is incident with exactly n+l lines

4) There exists one point incident with exactly n+l lines
5) There-are in 211 n2+ » + 1 points in 2

6) There are in all 2%+ n 4+ 1 lines in 2

Proof. e first prove 1) ==> 2) ==> 3) ==> 4) =-> 1). Suppose 1

is a line of 2, containing n+l points where n > 2 by lemma 2.
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By‘P3 there exist two points XB’ X4 not in 11. Iet the line x3 X4 meet

1, in 2, and let X, X, be two points of 1, other than Z;. Let X, Xg
and X2 ,1(4 medt in Zz. Thén obviously Z_2 is-. neither on 1'1 nor on_the
line X3 X/Lf In particular the points X3,X4' and 22 are noncollinear,
If A is any point not on 11 then by joining A t0 each of the n+l
points of 11, we get exactly n+l ‘lines incident with A, In particu-
lar there are exactly n+l 1lines through eack of the poigts Xj,X4;Z2.
Similarly if there are exactly n+l lines through & point, then any
line not through that point contains exactly n+l poinvts. Since at’
least one of the points X3’X4 and ’22 in not incident with é,ny given
line, it follows that every line contains exactly n+l points.

Thus 1) == 25. Now take any point A - whatsoever. From. Lemma 1

there exists at least orne line not incident with A. Hence joining A
to the n+l points of this line we 'get exactly n+l lines incident with
A. Thus 2) -=> 3. Trivially 3) -=> 4. Thus 1) ==> 4) both in 3, and
$v. Taking the dual of 1) == 4) in 5 we get 4) ==> 1) in T. Thus
1), 2),3),4) are equivalent statements.

Now suppose 4) holds, then throuzh each point there are exactly
n+l lines, accounting for all the points. Since each line cintains
exactly n points besides 4, the total mumber of points is n(n+l)+l=
n®s n + 1. Thus 4) ==> 5), in S.. Since 1) =-> 4) we have.l) -- 5)
in ¥', 2nd hence by duality 4) -<> 6) in >. Thus any one of the first
four statements implies the last two statements. Now if 5) holdg,
then 1) holds for some m > 2. Hence the tot2l number of points is
n2+ n+ls= m2+ m + 1 whence m=n. ‘Hence the total number of lines
is also n'+ n + 1. Hence 5) implies all the rest. From duality
therefore, 6) implies all the rest,

This completes the proof of the theorem.
A finite projective .plane Wwith n+l points on o line is called

a projective plane of order n.



2. Zxample ¢f » projective plane of crder z. Consider four points
}(1,)(2,}(3;}(4 such tha%t no trree ar: coil:near, Then as in Scoogen 1,
we get 6 Iines 1, ...; 1 ond three additicnal points Zl,Z2$ZS.
Postulate a new line m. Coirtzining the three points Zl’ZZ’ZB' Then
is. is easy to verify that t.ese seven points und seven lines form a
finite projective plane,

3. Finite projective plases based on Galois fields, Let s = p“
where p is 2 prime ard n is any positive integer. Then there exists
a Galois field GF(p"). An ordered triplet (x, ¥, z) % (o, 0, 0) with
Xy ¥y 2z in GP(p") will be said to define & point. Two triplets
(xl,yl,zl) and (xz,yz,zz) define the same point if and only if there
exists a non-zero element o of the field such that X, = o X,

o = a'yl, By = U 2y A linear homogeneous equation ax + by + cz =0
where (a, b, ¢) 3 (0, o, 0) with a, b, ¢ in the field defines &:lime.

Further,-alx ¥ bly +Cq2 = C and a.X + b2y + CoZ = 0 are said to

2
define the same lines if and only if, there exists a non-zero element
oo of the field such that
3,2 = aal, b2 = O(bl, 02. = acl

The point (Xogyo,zo) vill be said to be incident with the line

ax + by + cz = 0 if and only if
a:o + bvo + czO =0

is true.

Consider two distinct points (xl,yl,zl) and (xz,yz,zz). Since

the rank of.the matrixz

) T2 %
is neither O nor 1, it is 2. Yence the homogeneous equations
0
0

1}

8%y + byy + 02y

aX, + by2 + CZ,
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Bn%e exactly one nontrivial soluticn for (a, by c) all other solutions
being non-zero multiples of this solutiQn. Hence there is exactly one
line of the system which contains these twe points, thus verifying Pl.
Similarly it ie easy %o verify PZ'

Consider the four points (1, 0, 0), (0, 1, 0), (O, O, 1) and
(1, 1, 1). The rank of the matrix

! 0 o‘\
g 0 1 0|
\ 0 0 1
Vol 1 1

N

is obviously three. Hence there exists no line of the system which

contains any three of these points. This verifies P,.

3

Now consider the line x = O which is satisfied by (o, y, 2)
with (y, z)# (o, o)«Since (o, y, z) and (o, oy, az) represent the

same point for a3 0, it is easy to see that there are exactly

52-1

s =1
the system defined is the projective plane of order s. Such a plane

based on GF(pn) is called PG(2,p ).

= s+1 points on this line. It now follows from Theorem 1, that

Exercises
1) Construct FPa(2, 3) and PG(2,2°).
2) vVerify that the lines 11,...,17 Ziven below define a projective

plane of order 2.

L 1, 13 14 15 1 17
1 2 5 6 T
6 1

4 5 6 7 1 2

For finite projective planes PG(Z,pn) it is easy to prove the

following theorem which holds in ordinary plane geometry.

sargues the . - i
DEsargues theorem. If Al Ay A3 and Bl B2 }33 are two triangles



in perspective ..e., f Y€ lines V_“L“._ABi, i= 1,2,3 pass through a common
point then the »oiais o’ ipersczion (_J";"lAZ’ BIBZ)’ (Alfk3, BlBB) and
(A?LA3’ B?‘Bs} ar» collinsrzr,

It is knovr thes o0 I-s:mei g thzorem holds for a finite projec-
tive plane, +le 35 nw: o2 ov,nl.o with the help of finite field as
we have ¢one. (loveve nor=lecerguosian planes of order er where p
is an odd prime arc kanow. t° e':-:_?.::-;:. Also such planes of order 2r,
r'z 4 exist. Taere iy.",'. “w y ¥ om0 wnown example of finite projective
plane whether Tiescguesiza cr otherwise which is not of primepower
order.. A ‘finit> projaciive rwna of ion~prime-power order if it
exists, must necesstrily Ne nan-bﬁsaz‘gvtsia-n.

2. Nonexistcace zf fivite projceti-mc planes, e give here the
proof by Chowlc a:t Ryscr o ile (nly iecsult on the nonexistence of
finite projective ~l3es du~ to Druck =nd Ryser.

Theorem 2, Tf n-1i o+ 2 mod 4 and the square free part of n
contains a prime co 1g.c-u?t;'; “0 3 m0d 4, then there does not exist a
finite projec’di--,e plane f orl:» n.

Proof': Sappose a rroj2efive plane >, of order n exists. Put
N = n2 +1n 3 1 “’m iau‘t:bér'f' tiy poivis and lineg of 2, in any arbitrary
mannex_)'» Define the ineil.n-: matvix A of the system 2, by A = (aij)
where
=1 7 {the itbh poiny i< . on jth 1l.e
=0 .rtaer“vf.s‘e,

Then if A7 ig +l2 .« wwsoece 70 Ay WG have

! = ! ‘-5"C= P
A'A = AN (Cln)

where c.. = n+. T
13 n+. X4 i
S
= 1 « L - ’:'-" J
Define the non-tvecto. Li= (L...., L.) by
= 1 0
L=z A
where X = (X5, «.-- ¥ Y is a rov o irdcterminates.



Then
L L' = xAAX =xCX
S (mel) xS 42 % xx,
1 10
l<J
=n X +(}—'x)

1,2 2
=n(x, + =)+ oo +m(X; 4 =)+ (%, + ...+xN)

(1)

2 -

=¥y + n(y2 + eee +yi)

Where y1= xz + ees + XN, a‘nd .'Yi = xi + Xl /n, i = 2,3’000,N: If

n=1 or 2 mod 4, then N = 3 mod 4. Ve now use the following résults
in number theory due to lagrange.

Bvery positive integer can be written as a sum of four squares.

Hence
n--a2 a2 a2+a2
Tt TR
Product of two sums of four squares is a sum of four squares.
2 2 2 24/, 2 2 2 2
(al+a2+a3+ a4)(b +b2+b3+b4)
..ab +a.b +ab+ab +a -ab a,b, - a,b
( 44) ( + 3% 3)
b, =~ a,b b, - a b - -
+(a13 azby +8,b, = 2, 4)+(alb4 a4b +a,23 a3b2)
—<:2+02-c2 02
=c, 2 ¥ %3+ Cy

It is obvious that C's are rational functions of b's and a's,

Applying these two results to (1) we get

22 2 2 >

ZLi = Zl+ Z2 + ces + ZN_2 +n(zN—l + ZN)
Since each Li was a rational function of x's, it is also a rational
function of the y's and finally of 2z's which are iﬁdependent inde~
terminates. Since (I) is an identity it remains valid if some of the

z's are specialised as linear combinations of the rest,

(1) that

Suppose in

Ll = d.lzl + eee + dNZN



[
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g if G4 L oand - = - 2z if 1 = OS¢=2
Put Ll = Zy if dy £ 1 and 19 2y if 11 1. This give Ll 71.
Hence with thic gnecialisation
.2 .2 “ 2 (22 22\
;J2 + e - N = Z;:,. O “}_\I—_Z 4+ N"l + N.j
continuing, we il L}.‘A = 4 v ) TN-—Z * %00 and we ge*
.2 .2 2 2
Bpy + Ty = ooy + 7y
whe re rational inea in % a Z_ . i
here L, #nd L, are rational Iinear forms in o1 2nd y+  Since

By.1? BN are at ourdisposal, taking them as positive integers which are
multiples of the. denominators in LN-—I and LN’ the above relation becomes
one in which 21l quantities are integers. Hence n is the quotient of

two integers each of which is a cum of tWo squares i.e. n~(x +y )/(n w?).

We make use of the following result in the theory of numbers.

A positive number £ is the sum of two squares if and only if

the sgquare free part of f contains no prime of the form 4m + 3.

Hence the square free parts of & + y?" and u2 + v both contain
only prlmes of thc fom 2 and 4m + 1, Therefore square—free part of
= (x +y )/( ) cor.5ains 10 prime of the form 4m + 3., Hence

. J .
n can be represeaied as th: sum of two squares, If ny is the square=-

free part of i, thes from the above result nl is also representable

as the sum of “wo squares., But Ly our hypothesis n, contains a prime
of the form 4u+3 wl.ich implies that n, cannot be 80 represented,

This completes fhe proof of the theorem.

B. Balanced Incomplete Block Designs

A balanced incomplete block design ' is an arrangement of v
symbols (treatments) in b subsets (blocks) of k distinct symbols

(k < v) satisfying the conditions that any two distinct treatments



occur togother in exacily A blocks. It *hen follows that each treat-
ment occurs in exactly r %lacks and that
vr = bk
A(v=1)= r(k-1).

4

Iet . A bc the irnciderce matrix of the design with v rows ~ui
b columns, where A = (aij) and
aij =1 if treatment i occurs in block
=0 otherwise.
Then if A'. is the transpose of A
At = (= A) I, + AT,

where Jv is a square matrix of order v with all elements one,

Further

(r - ?\)V_l I+ NMv-1)]
(r - }\)v-l rk # 0

.V U

since r = A implies v = k. Hence rank (&) { min (v, b). This
implies the well known dnequality v b due to PFisher.

A b.ieb.d. is called resolvable if the blocks ean be separated
into sets such that each set is a complete replication, i.e. contains
all the treatments exactly once. Neoessaril’fy 'k must be a faktor of
v and it can be easily shown that Fisher's inequality can be streng-
thened to P> v+ - 1.

A b.i.bed, is c2lled symmetric if. b = v and hence r = k.

Then
A A L=l A 12 = (2 - AL 2,

Hence {r - }\)v-l must be a perfect square. Thus if v is even we get
the following important result..

Theorem 3. . A necessary condition for the existence of a symmetric
be.i.bed. when v is even is that r - A\ must be a perfect square.

For a symmetric design r = k and hence



JA=KI =rl < Ad
Hence
AnTA = (T = M)A + N AT,
and since A is n square nom-singular matrix we get
AL = (T~ ?\)Iv + AT,
which implies that any two blocks of the design have exactly A treat-
mentg in common. Hénce we have
Theorem 4. In 2 symmetric be.i.b.d. if any two treatments
occur together A times, then any two blocks have exactly A treatments
in common.
Iet D be any design with parameters v, b, r and k. Ve can form
the dual configuration with parameters v' = a, b' = v, r' =k, k' = 1
in the following mamner. Let the treatments and blocks of D correspond
in one=-to-one manner %o the Llocks and treatments of D' such that if a
treatment of D lies in a block of D, then in D' the corresponding block
contains the corresponding treatment. Thus if D is configuration given
by the following arrangement of 4 treatments in 6 blocks
1 ] 1 2 2 3
2 3 4 3 4 4
then' D' is the arrangement given by
1 1 2 3
2 4 4 5
3 5 6 6
In general if D is a b.i.b.d., then D! is not necessarily a
b.isb.d. It is obvious that if A is the incident matrix of D, then A'
is the incidence matrix of D. In particular if v=b, we get from the
previous theorem, the following result.
Theorem 5. The dual of a symmetric b.i.b.d. is also a symme-
tric b.i.b.d. with the same parameters.
From 2 symmetric design (v, k, A) by omitting & block and all
treatments contained therein and making use of Theorem 4, we get another

b.i.b.d. with parameters.



v! = v=k, b' = vel, 2=k, k? = k=A, A' = A which may be called
the derived design oi" the criginai (v, k, A) design., Similarly by
omitting a block and retaining only the treatments of this block in
the retained blocks we gut f.xnothe7r' b.i.0.d. with parameters.

vM =k, b" = v.l, PM = k-1, k" = A, A"=A =1
which may be called the residual :design of the original symmetric
design.

Thus from & symmetric Db.i.b.d. we can always construct its
derived design. In general it is not possible to reverse this process.
. It has however been shown that for the case A =1, 2, it is possible
to construct in & unique manner the synmetric design given a design
corresponding to the parameters of its derived design and hence we
have

Theorem 6. For ‘A =1, 2, b.i.b.d. (v, ky A) and its derived
design are either both existent ¢r both nonexistent.

Corollary. Designs v =1 = 32 +s+1, r=k=85+1,A=1
and v =52, b = 32 +S,r=858+1, k=9, A=1 are either bvoth
existent or b.<'>th nonexistent,

Analogous to Theorem 2, we have the following result on: the
impossibility of (v, k, A) design.

Theorem 7. Let p be any prime factor of the square-free part
of k - A. Then a necessary condition for existence of (v, k, A) design
is that

(Mp) = 1 if v=1 mod. 4
and (-\p) = 1 if  v=3 mod. ¢4

where (a/p) denotes the quadratic character of a Wwith respect to p.

We omit the proof of this theorem, given by Chowla and Ryser
(1950), Shrikhande (1950).

Systematic methods of construction of b.i.b.
by Bose (1939).

designs were given



‘C. Connection between finite projective planes and cdomplete sets of

MeOs LaJe
We have seen that if s = pn, we can construct a complete set of

me0.L.5, of order s as algso a finite projective plane PG(2, s). The
relation between a complete s:t of m.0.L.3. of order s and a [inite
projective plane of order s is however more fundamental than the
constructions based on GF(s). Specifically we have

Theorem 8, Existence of a finite projective plane of any order
v is equivalent to'the existence of a complete set of m,0,L.S. of
order v.

Proof, ILet 1 be any line of the projective plene and Xpr Xy
Xqs weey X4 -be the points on 1. The v2+ v lines other than 1
can be separated into (v+1) groups of v “each, such that any two
lines of the same .set intersect in some point X, on-1 whereas two
lines from different sets intérsect,in a point not on 1. If we omit
the line 1 and the points lying on it and call the remaining points
and lines as finite points and finite lines, then the finite lines
can be separated into pencils of parallel lines [XR], [XC], [XlT,...
[Xv_ 1. Number the lines of each pencil in any arbitrary manner by
the integers 1, 2, ..., v. " can use the points of intersections
of the pencils [X ] and [X;] to coordinatise. the éells of a v x v
square. Corresponding to the pencil [Xd] 6 =1y 2y eoey V=1, We
fcrm 2 square by putting in the cell (i, j), the number corresponding
to that line of [Xa] which passes through the point corresponding to
the cell (i,3). It is easy to verify that square L, is a Latin Square.
Since through each finite point thepe passes a unique line of the
different pencils, and two lines of different pencils uniquely deter-

mine a finite point, it is ecasy to verify that the latin squares thas

obtained are mutually orthogonal.

Conversely suppose We are given a set Ll,IQ,.;., qul of v=1
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m.0.L.8. ¢f order v,(v ) 2,in intogers 1, 2, ..., V. frite down tWo
squares L.i(Lo)’ of orc 'r s containing the symbol iin
row (column} numbered-,‘ i aml write dow. a square L of order w contain-
ing distinct symbols s 171, 2, eauy -;2. For each js J = R, C, .1,
2, ., v=1l, form v blocks corrisgonding to the same symbol of L,j ‘when
Lj is superposed on L. It is easy to verify that we get a beilb

design with parameters
2 2 -
Vi =v , bl =v + vy, r'=vtl, k' = v, A=1,

in which the blocks corresponding to each j form a complete replica=-
tion. Adding the symbol Gj to all the blocks corresponding to Lj
and adding a new block coniaining (GR? 81 B9 e eey ev-l) one easily

verifies that we get 2 b.i.>.d. with pirameters
v! = bt =,.v2 +vl, ' = k! = v3l, A =1

which is easily verified to bé a finite 'pr'ojective plane of order v.
This result combined with Theoi"em 5 of the previous lecture and

Theorem 2 of the present lecture gives the following

Corollary: If n=1 or 2 mod. 4 and the squate—free part of n

contains a prime = 3 mod. 4.%hen N(n) < n=4.

D. Finite Buclidean Planes

1. Consider a class of elements called p.ints and a class of subsets
of these called lines and an incidence relation such that 2 point and
& line ma8y or may not be incident. Two lines will be called parallel
if there is no point incident with both of them. The sets’ Of';",points
and vlines form a finite Buclidean plane™dif the following axioms are
satisfied.

™

5) There is exactly one line incident with any two distinct points.

E2 Given a point P not incident with a line 1, there exists just
one line incident with P and parallel to 1.
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Tls There exist at least three piints nov incident with the same
line.

E4. There exists at least one line incident with finite number of
points.

Let 1, my n be dis’pinct lirnes sucn that 1, and m arc parallel
and also 1 and n are parallel. Then if m.and n are not parallel,
there is a point P.not on 1, such that m and n pass through P,

but this contradicts & Hence we have

Lemma 1. If two 1ine32are each parallel to a third line, they are
parallel with each other,

This theorem can be used to divide all the lines of the plane
into sets called parallel pencils, such that any two distinct lines of
a parallel p_encil are parallel; whereas any two lines belonging to
different pencils are non~parallel, i.e., they have at least one point
in common. It is eagy to prove the following.

Iemma 2. There is exactly one line in any par2llel pencil which passes
through a given point P,

To study the properties of an Buclidean plane, it is convenient
to first embed it in a corresponding projective plane which can be .
done in the’ following manner. Corresponding to each pencil of parallel
line we postulate the existence of a pcint called the vertex of the
pencil, such that the vertex is incident with every line of the pencil.
We may call these vertices as .points at infinity and postu.lat.e the exis~
tence of a new line called the line at infinity which is incident with
all the points at infinity and with nov other points. We may call the
original points and lines of the Fuclidean plane as finite points and
finite lines. It is easy to prove that this extended system of points
and lines is a finite projective plane as.fpllows.

Any two finite points or any tWoigﬁ;prints obviously determine
a unique line. Suppose X is a point at infinity, then X is the wvertex

of a pencil and through any finite point P, there is one 1line of the
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pgﬁoii corresponding to X. “his is obvicusly the only line through P

ard X, Hence axiom P1 is satisfied

My two finite parallel lines are incident with only the vertex
of the corresponding pencil 2nd any two finite non-parallel lines

intersect.in at least one puint and hence exactly one point by El.
Further any finite line 1 and the line at infinity have the vertex of
the pencil corresponding to 1 as the only p sint of intersection.

This verifies P2.

By ©, there exist three finite points XO, X, and Xé which are

3
not collinear. Iet V1 be the vertex of the llne XCKl and V the

vertex of the line X X  Then obv1ous1y v 10 V2 and X1 are not col-
linear. . Slmllarly Vl’ V2 and £, are not colllnear. Further 1f X

2 1 %
and Vl are collinear, then X must lle on the line X 1 1mp1y-
ing that Xo

Xl’ X2 and V2 are not collinear. Thus the points Xl’ XZ’ Vl_

satisfy axiom PS' Since the number of points on any line of the

’Xl’XZ are colllnear, which is a contradlctlon. Similarly
and V2

extended system is finite, P, is also satisfied. This verifies that

the extended system is a'finite projective plane.

ConverseLy.given a finite grojective plane, we can obtain the
finite Buclidean plane by 6mitfing a line and all the points(lying on it.
Ty embedding the finitc Buclidean plane into the corresponding
projective plane, it is easy %o prove the following.
Theorem'9. In 2 finite Buclidean plane.

i) There is exactly one point incident with two non-parallel
lines.

ii) Each line is incident with exactly s points and each point
is incident with exactly s+1 lines where ¢ 1s an integer greater than
or equal to 2.

1ii) The total number of points is. sz, and the total number of
lines is sz+s, which dan be divided into s+l parallel pencils, each

containing a set of s mutually parallel lines.
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Tt is obvious that regarding pcints and lines as treatments ond
blocks, a finite Wuelidean »lane gives rise %o a b.i.b.d, with

V=v82, b=82+ S, I‘=S+1,'k=s,- A= 1.

Conversely given a2 b.i.b.d., with above parameters and regarding
treatments and blocks as peints and lines respectively we have a
system of points and lines for which El is obvidusly true. Now con-
sider any line say 1, containing the points Xl’ XZ’ voey Xs say and
let P be a point not on 1, then since A = 1, there exist s distinct
lines through P each containing exactly one point Xi, i=1, 2, seey 9.
Hence the remaining line through P dees not contain any point of 1 and
hence is parallel to 1. This verifies EZ' The point P together with
any two points of 1 obviously form a set of three non-collinear points
verifying E3.~ E4 is obviously true. Thus the b.i.b.d. above is
nothing but a finite Auclidean plane of order s(i.e., containing s
points on each line).

2. Construction of a finite Buclidean plane based on Galois fields.
Let s = o and GF(s) be the Galois field with s elements. Define
a point as any ordered pair (x, y) of elements of the field. Define a
line as any ordered triplet (a, b, ¢) with (a, b) # (0, 0). Twe such
triplets will be said to determine the same line if the ratio of corres-

ponding components is the same non~zero element of the field. A point

(x, y) is said to Ye incident with the line (a, b, ¢) if and only if

ax + by + ¢ =0
in the field.
Two lines(al, b 01) and (a2, b, 02) are said to be parallel
if there exists o # O in the field such that

a, = 0a,, by=ab,, o F axc,
We verify that the points and lines so defined form a Euclidean

plane.
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Denote the Iine (a, b, ¢) by the more familiar notation
ax + by + ¢ = 0. let (le yl) and (ng yz) be two distinct points.
Then if x, = X, and hence ylf* Y,» the only line containing both

points is the line X = X = 0. Similarly 4f ¥y = y2,,the onlv 1lina
through both is- y - yq = O. If xlff x, and y]f% y, then the line

containing both the points is

y--"yl=

This verifies El.

let P = (xo, yo) be a point not on the line 1 given by
ax + by + ¢ = O, then it is easy to verify that the line m given by
ax + by - (ax, +'byo)~ = 0 is the only line through P which is

parallel to 1, This verifies EZ'

The points (1, 0), (0, 1), (0, 0) are obviously three points
which are not incident with the same line, thus verifying 35'
Pindlly the number of points on the line x = O is exactly s
since all points on this line are givéen by (0, y) for any arbitrery
y in GF(s): This verifies E4.
The properties of the Euclidean plane mentioned in Theorem 9

can be directly verified. This is left as an exercise.

We denote the finite Fuclidean geometry constructed with the
help of the Galois field GF(s) by EG(2, s).

The correspondence between finite Tuclidean and projective

geometries EG(2, s) and PG(2, s) based on GF(s) can be carried out
analytically as shown below s
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Ee(2, s) (2, 8)
Point: (x, y) point (x, y, 1) = (ex, ey, €), e 0
Point (x, y, 0) = (ex, ey, 0), e+ 0
Line: ax + by + ¢ = Iine. ax + by + ¢z = 0
(a, b)#£ (0 O)
- Iine z =0
Incidence : Point (%, yo) Point (x_, Yoo 1) lies on
lies on ax + by + ¢ =0 ax + by + cz = 0,

It is easy to vérify that the correspondence gives the embedding

of Be(2, s) in Pa(2, s).

Exercise. Write down the points and lines of EG (2, 3) and
EG(2, 4).
Further reading
R.D. Carmichael : Introduction to the theory of groups of finite
order (Ginn and Co.), 1937.
Marshall Hall : The theory of groups, Macmillan (1959).

R.C.Bose : On the construction of balanced incomplete block
desisns, Ann. of Engen. I (1939), 353-399.

S. Chowla and H.J.Ryser : Qombinatorial problems, Can. J. Math,
2 (1950), 93-99.

R.H.Bruck and H.J.Ryser: The nonexistence of certsin finite
projective planes, Can. J. Math. 1 (1949),

88- 930

S. S. Shrikhande : The impossibility of certain symmetrical

balanced incomplete block designs, Ann. Math.
Stat. 21 (1950), 106-11l.



Tecture 4

Some generalisation of Balanced Incomplete Block Desigus

Group divisible design. An arrangement 'of v treatments in b

Sets each containing % distinet ftreatments is said to be a ermup
divisible (GD) design if the treatments can be divided into e groups
of m treatments cach such that any two treatments belonging to the
same group occur together in )‘l blocks, and B.ny two treatments from
different. groups occur together in }\2 blocks. We will denote such
a design by the notation GD(v; k, m; Ay» A)e It is then obvious
that

v = em, bk = vr, Al(m—l) + A m(e=1) = r(k-1)

where r 1is the number of replications i.e., the number of times each
treatment occurs in the design.
Number the treatments of the ith group by (i-l)m+1 eeeyim, where

i=12, ..., ¢ and define the incidence matrix of +the design

b=
|

= (aij) in the usual manner i.e.,

aij = 1 if ith treatment occurs in ith block

= 0 otherwise,

Then AA'-GIV= B

2 eee 2

Q2 seeltd 2
.
.
.

w ."o O

where B has r - @ along the main diagonal and }\1 e¢lsewhere

and mem has all the elements }\2.
Then

) o
A A -9 I, =1B=~-cC| 1 I B + (a=1)C |

= (2= 0)° (g - 0)* ™) (e L g

where P=rk—}\2v and Q=r-}\l.

-36-
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Hence since the characteristic roots of the matrix AA'  are
non-negatives We have
P>0C, Q0.

The G.D. design cén be divided into three classes
i} Regular (R) : charac*erised by P >0, 9> O
ii) Semiregular (SR): P=0,Q>0

iii) sisgular (8) : Q=0

[t}

We will be interested only in designs where }\l = 0, }\2 = 1
which can be denoted by GD-(v; k, m; 0, 1). '

We will not discuss here the questionsof non-existence, construce-
tion and properties of such designs. A few rei‘erenc_es dealing with
these questions are given at the end, e will however mention only
a few properties that will be immediately useful to us.

We call a GD resolvable if it is possible to separate the blocks

into gets such that each set is a complete replication.

Orthogonal array of strength 2: An arrangement of v distinct

symbols in an array .withk rows and v2 columns is called an orthogonal
array of strength 2 -and -index unity, if in any two rows of the array
all possible v>  ordered pairs (1, j) of the v symbols occur exactly
once. We ®ill denote Such an array by the notation [vz, k, v, 2].
Theorem 1., Bxistence of k-2 m.0.L.S. of order v is equiva-
lent to the existenoce of [vz, ky, v, 271
Proof. et Lyy eeer L o

in integers 1, 2, ..., v. Ilet LR(LO) be a square array containing i in

be a set of m.o.L.S._ of order v

the ith row (column) i = 1, 2, ..., v. Writc each square as a row with

v2 entries such that the symbol in cell (i, j) occurs in the position

' 3 . 2
numbered (i - 1) v + j. We then get a matrix with k rows and v

columns in integers 1, 2, ..., v. e assert that this forms
[vz,_k, vy, 21. It is obvious that in rows corresponding to LR and LC’
every ordered pair .o_ccurs exactly once. From the properties of a
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L2tin Square the same is true for row corresponding to IE{(LC) and any
other row. For rows corresponding %o L. and L., i §=1;2, «vuy k=2
“he result foilows trom the orthugOnahxy of L and LJ. Hence "ck
matrix is an orthogonal array [vg, k, v, 21.0onversely given [v Wk, 721,
we can use any two rows (which can be taken as the first two rows)
without loss of generality to coordinatise 'the cells of a square array
of order v. Corresgonding to any cne of the remaining <k-2 "rows, we
form a square by putting in the cell (i, j) the symbols which occurs
in that rows in the corresp.nding position. We thus get k-2‘ squares
Ll’LZ"” Lk o correspondmg to rows numbered 3, Lyouay vk. Since all
the ordered pairs of v symbols occur exactly once 1n any two TOWS,
considerin‘gvthe Ist rdw‘mth any other row from the last k-2 rows, it
is obvious that in each L y every symbol occurs exactly once in every
row,. Similarly consa.derln& the 2nd row with any of the lagt k=2 rows,
each symbol occurs exactly énce in every column. of vLoc' Thus each L
is a Latin Square. Similarly by considering any two distinct rows out
of the last k=2 rows, it is obviocus that any two of the Latin Squares
are orthogonal. Thus we get a set of k-2 m,of.L.S. of order v, |
'Theore‘n'l 2. Existence of an orthogonal array [mz, e,. m, 2]
implies the existence of a semiregiul&r desigﬁ GD(em; e, mj 0, 1) with
parameters

d
v=em, b=m, r=m, k =¢e, A =O,?\2—1

and conversely.

Proof. Identify the symbol 6 in row i with the treatment
numbered (i-1) m + 65 1 =1, 2, ..., e; & =1, 2, ..., m and teke ‘the
columrs of the array as blocks of a design. The parameters v, by T,
k are easily verified. The m symbols in any row form a group of

It is obvious that two treatmentsbelonging to the same
greup do not occur together in any block giving 7\1 = Q.

m treatments.

Since any two
rows contain all the ordered pairs exactly once, it is obvious that
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two treatments coming from different groups occur together in exactly
one block: giving A, ='l. Hence the design is a GD design with indica-
ted parameters and is obvicusly 2 semi=recgular design.

Conversely given the semi-regular 2D with the indicated paramc-
ters, it follows from & result of Comnor that each block comtains
exactly one treatment from each group. . We number the treatments of
the design so that the ith group contains treatments numbered (i-1)m+ €
8=1,2, vu.ymji=1, 2, o.., €. If a block (written as column)
containg the treatment (i=l)m + 6, replace it by the number & which
is put in row numbered.i. It is now easy to verify that we get an
orthogonal array [mz',l e, my 21.

'Since an orthogonal array remains an orthogenal array if we dis-
card a number of rows, fme_ the above we have the

Corollary. Existence of an orthogonal array [mz, e, m, 27 implies
the existence 'of a semi-regular GD{(am; 'q, m; O, 1) with vparameters.

v = 0 m, b=m2,r=m,_k='q, >\1=o, 7\2=1
for any q  e.

Theorem 3.  The.existence of e-2 m,0.L.S. of order m or equiva-
2
lently the existence of [m , e, my 2] implies the existence of a resol-

vable semi-regular 0D((e-1)m, e-1, m, O, 1) and conversely.

Proof. Consider any row, say the last row of [mz, e, my 21,
Then we can divide the m2 columns; into m sets of m columns each,
such that the ith set contains the symbol i in the last row; i=1,2,
e.., m. Omitting the last row, we have a resolvable array
.[mz, e~1l, m, 2'1 in which-the columns can be divided into m sets of
m each such that in each set every row contains all the symbols
1, 2, «.., m exactly once. Applying the method used In Theorem 2
we get the required resolvable GD design.

Conversely given the resolvable GD, We can construct the resol-

vable array [m2, e~1l, m, 2] as in Theorem 2. We can now add one more
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row to the array by putting the symbol i in the new row in pesition
. 2 1
corresponding to the ith set. e obviously get {[m™, e, m, 21.

pairwise balanced design of index unity. An arrangement of v

objects (treatments) in b sets (blocks) will be called a pairwise
balanced design of index unity and type (v; Koy Koy aees km) if each
block contains either ki, Ky «.ey k) distinct treatments (ki £ vy
ki 74 k'j) and every pair of distinct treatments occurs in exactly one
block of the design.: If the number .of blacks containing . k. treat-
ments is f~bi', then obviously

m

m .
b = % b,y v(v-l) = % bk, (ki - 1).

Consider a pairwise balanced desigh (D) of index unity and type

(vi kys kyy vees k ) 'The sub-design (D ) formed by blocks of size

k, will be called the ith equiblock component of (D), { =1y, 2,400, m.
A subset of blocks of (Di) will be said t0 be of type I if every

treatment occurs in the subset exactly ki' ‘times. Obviously - the

number of blocks in such a subset is v. As pointed out by Levi we

can arrange the treatments within the blocks of the subset in such a

way that every treatment occurs exactly once in every position.
If the v blocks of the subset ard writt.m as columns, each troat-

ment occurs exactly once in every row. When so written the blocks

will be said.to ‘e in the standard formn.

A subset of blocks of (Di) will be said to be of type IT if
every treatment oceurs exactly once in the subset. The mumber of

blocks in the subset is obviously v/k

The compement (D ) will be deflned to be separable if the blocks

can be divided into subsets of type I or type II (toth types may occur
in (Di) at the same time). If r, '

be ‘the number of subsets of type I
and’ 85

the number of subsets of type II, then clearly
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v(riki + Si) = k. b,

The design (D) is said to be separablc if each (Di) is separabvlc,
It then follows that

m .
Vel = % (riki + si)(ki_l)

‘ The set of equiblock components (Dl) ’(DZ).’ '(De)’ is said to form
a clear set,»ifrnOr two blocks contain a common treatment. Clearly a

necessary condition is

We give below a number of examples of pairwise balanced designs
which we will use later on.

Example 1. All b.i.b.d.’ are obviously pairwise balanced
designs. Any symmetric bei.b.d. has a set of'blocks of typre I and
hence is separable. Similarly any resolvable b.i.b.d. has sets of
blocks of type II only and is again separable. Further from a resol-
vable (v; k) with r replications we can get pairwise balanced designs
of the type (v+l; k, k+1) and (v+x; k, kel, x) for 1 < x < T and
(v+r; k+1, r) in which the single block of size x or r forms a
clear set. All we need do is to add a new treatment say © to all the
blocks of one replication or add new treatments 91,92, oo ey Gx;

1 {x {r one each to all the blocks of x chosen replications and
further add a new block containing el, O.9 eeoy ek. Thus from the
resolvable bui.b.d. with parameters v =15, b =35,r =17, k = 3,
A =1 we get (16; 3, 4) as also (223 4, 7).

It is known that the resolvable design (6t + 3; 3) always exists
where the number of replicationsis necessarily 3t + 1. All such

designs can e used in @ similsr manner to give rise to other pairwise
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valanced desighs. If & is a prime pover then Wwe know that resolvable

(si, s) exists., Thess designs can aleo be used in 2 similar manner.

mxemple 2, Consider designs (v, k). Let Gy Oy % be three
treatments which 10 not occur in the same block. Then these are three
distinct blocks containing' exactly any two of these three treatments.
By omitting these 3 treatments we get a pairwise - balanced design
(v-3; k, k-1, k~2) in which the blocks of size k-2 form a clear set.
Thus from the design (25; 5) we get the desigzn (223 5, 4, 3) in which
the blocks of size 3 form a clear set.

Bxample 3. From the GD(v; k, m; o, 1) where v = em by adding
a additional blocks of size m COrrééponding to the groups we get a
reirwise balanced design (vj k, m) in which the e blocks of size m
obviously fdrm a clear set, If further the original GD design is

separable, so is the design (v; k, m) obtained from it.
Purther reading

See references at the end of next lecturc.
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Further results on mutually orthogunal Latin Squares.

We will indicate in,this lecture further results on mutually
orthogonal latin Squares and in particular give disproofs of the
congectures of Euler and MacNeish.

lemme 1. \If.orthq gonal arrays [vl, Kivys 27 and [vz, Kyy Vy s 21

exist and if k = min (kl,kz) then orthogonal array [vl AR A 21
exists,.
Proof. Let the symbols of the two orthogonal arrays be denoted

BY Oq9eeey O 5 804 Pseeey P » Retain only the first k rows of
1l vy 1 vy
both the arrays. Let each column of the first array containing the
Symbols,say, 0. s& 3 ee.y &  be combined with each column of the
1 12 Tk
second array containing the symbols, say, Bj ,B. yooos BJ. to form a
J2 k
column containing the symbols oy B » B.iyy eeey o B . We thus
17391 19 k
. . 2 2
get a matrix with v:L v

0B 1= 1yeee, V5 3= Loees vy It ds easy to see that this

matrlx is an orthogonal array in the ViV symbols ociBj.

columns and k rows containing the symbols

Iet any positive integer v be decomposed into its primepower
n n2 ‘ n’ n, n,
i . i
aecomposition v = pll Dy eeece puu. For each s there exist Py =1

0.L.8. Hence if we define

n(v) =min (pl 14 p2 3y o+ pu) -1

using the equivalence of [vz, k, u, 21 with’ k=2 m.0.L.S. of order v,
we have
Corellary 1. " For any integer v, N(‘v) > n'(v).
Corollary 2. For any integer not of the form 4t + 2, N(v) >2
Corollary 3. N(vyv,) > min (N(v;), (v,)).

~43a
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Corollary 1 was first proved by MacNeish in 1922, who conjecture”
that W(v) = n(v) for al)  v. This"is known as Mecleishls conjecture.
Since n(4t + 2) = 1, lMacNeish's conjecture implies that there do not
exist 2 m.,0.L.S. of any order 4t+2, which is known as Buler's conjec-
ture made in 1782. At Czar's court Eulef was asked to arrange 36
officers belonging to 6 different ranks and 6 different regiments in
a square array of order 6 so that each rank and each regiment is
rcprésented exactly once in every row and every colugn. This problem
is equivalent to constructing two m.0.L.S. of order 6. Buler d4id not
succeed in givin’g a solution to this probiem and made the conjecture
that the problem is incapable of solution for the number 6, as also
for all the numbers of the form 4+2, t > 2. Several attempts have
been made in the past to rove Buler's conjecture -(PeterSOn, ﬁlefniCke,
MacNe»ish). They were however all erfoneous, as we;vill show that
Euler's conjecture is totally false for all numbers > 6, For v = 2,
Euler's result is trivial, and for the number 6 it was verified by
Tarry and later on by Fisher and Yates by the process of complete
enumeration. MacNeish's conjecture was first disproved by Parker
(1958). Bose and Shrinkhande generalised his methods %o provide further
counter examples and also to disprove Buler's conjecture. Subsequently
the three authors completely disproved Euler's conjecture for all num-
bers excepting 2 and 6. Utilising the results of these three authors,
Chowla, Erdos and Straus (1960) have proved that N(v) => oo as v =) oo,
which in essence implies that N(v) cannot be expressed in terms of the
minimum factor in_the primepoyver decomposition of v.

Let G bve 2 permutation group on letters X 9Xyreany X o Then
G 1is said to be & doubly transitive group om the n letters if (i)
for any x; and Xx. there exists & ¢ in G, such that (x Yo = x|
and (ii) any ordered peir (x X, ) i j is taken into any other.orde- .
red pair (x , xB) oc:,éB by some element of G. We will consider such
dcubly transitive groups in which only the identity. permutation fixes
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two letters. It is then obvious that there is exactly one permutation
in ¢ which carries & giyen ordered pair into argf other given ordered
pair. It is known that such a doubly transitive group exists if ani
only if n is 4 primepower pT. Since a finite field GF(n) exists,
an énalytis:al construction c¢f such a grouy is proirided by the group of
linear transformations Y, =« xiv+_ B, i = '1’ ‘2’ ey n and adt 0,8,
X, y; in GF(n). Let P be the matrix of order n x n(n~-1) when the
permutations are written as columns. Then obviouslyv P = (Pl,Pz,; ,
Pn_i) where each Pi contains all the symbols exactly once in every
row and in any two rows of P every ordered pair (xi.’; xj), igh j
occurs exactly once. Let P be the square matrix 'of order n with
element - xii in the ith column. Then obviously A = [P ’ P] is an
orthogonsal array [n y ny Ny 2], in vhich the n° colums can be divi-
ded J_:nto n sets of n each such that each of the n symbols ocecurs
exacv’fi;‘_r.onc'e in every. row of each set. It is now obvious that we can
add o_ne'more”row in a trivial inﬁnner to get [n2" n+l, n, 2| w};i_ch implies
the existence of n-1 m.o.L._S.' of order n.

If in the above we do not insist on the columns of P forming a
group of. permutations, we have ‘the concept of a doubiy transitive set
in which the columns aré permutationé of  n symbols such that each
ordered unlike pair (x y X, ), i# j is cafried into every other ordered
unllke pair exactly once . Such a doubly transitive set also gives rise
to a set of nel m.d.L.S. of order n. Conversely given a complete
set of m.o0.L.S. of order n Which can be taken in the standard form,
we can take a square of order n containing X, in the ith column and
form the array [nz, n, n, 21 in which there exist n columns each con=
taining the same symbol X in every position. By omitting these
columns we are left with a doubly transitive set P, Thus the problem
of constructing a complete set of m.o..L.S‘. of order n is exactly
e"qukivalent to constructing the corresponding doubly transitive set P

in n symbols. As yet there 'is no case known where such & P can be

constructed for n different from a prlmepower.
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We prove the follewing imjr-ved version Jf a result due to Parker.
Theorem 1. Suppése a design (vj k) exists where k 1is a2 prime-
power, then 11(v) > k=2. If the design is separable, then N(v) > k-1l.
M Suppose (v; k) exists where k is a primepower, Consider
the matrix P of order k by k(k=1) constructed in k -symbols,
1,2, .., k. Let O be any block of the design written as a column

which contains the treatments t. st ,.. ., t. in positions 1,2,...,k
1 t2 *k
regpectively. Denote by P(d) the matrix obtained from P by replacing

the integer J by the symbol t, Which ocowrs in D in the jth posi-
tion. Then since the ordered palﬂ (¢, B), x¢ P =1, 2, ..., k occurs
exactly once as g column in any two rows of P, the ordered pair

(ti ’ti') also occurs exactly once in any two rows of P(S). Hence

denoting by D the design (v, k) and by A = P(D) the ‘corres-ponding
matrix with k rows and bk(k-1) - vr(k-1) = v(v-1) columns, where

b 1is the number of blocks. in D, Ait is eaéy to see that in any two .
rows of A every ordered pair <toc’ tg), 0(743 =1, 2, seey Vv occurs‘
exactly once. Iet. A be the k x k ma’&fix'contﬁ.ining toc in ath.
column, x = 1, 2, ..., Ve Then cbviously

» '(?0’ A)

is an orthcgonal array [v , k, v, 21 which implies the existence of
k~2, m.0.L.S. of order v. Thus N(v) > k-2,

To corisider the second rart, suppose D = (D ,..., 5 "v..) Where
L .

each D is & set of blocks of type I, which can be taken in the stan-
dard form, and each DB is a set of blocks of type II. Since each row
of Doc contains all the v symbols exactly once, it is obvious ‘that the
v columns obtained by opeérating any column of P on D s contain all
the v symbols exactly once. Now consider any D Wthh contains
v/k columns such that in tlese columns all the IX‘B symbols occur
exactly once. Let P = (Pl, Pysveey Pk-l)’ where each P, contains
all the k symbols exactly once in every Tow, Theh it is obvioﬁs that
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Pl(Dﬁ) coniain® v columns such that ia sach row each of tr: v
symbols occurs exactly once. It then follows that A - P(D) can b
broken up into.(w-1) sets of v columns each such that every row of
each set contains all the symhols exactly once. It then follows that
(8,5 &) is a resolvable orthosmnl array with k constréinte to which
one more row can be added in an obv’ious manner. giving N (v) > k=l.

Since symmetric b.i.b.d. and regolvable b.i.b.d. are obviously
separable we have,
Corollary 1. Existence of a symmetric or resolvable (v; k) and k a
primepower implies

N(v) > k-1.

Example 1. From symmetric (21; 5) it follows that N(21) > 4,
whercas n(2) = min (3, 7) - 1 = 2. This provides the first counter
example to MacNeish's conjecture. Similarly from symmetric (sz+s+1;
s+1) with s = 31, we get N(993) > 31 whereas n(993) = 2.

We now prove,
Lemma 2, Suppose there exists a set 2 of g-1 m.o.L.S. of order k,
then We can construct a q x k (k-1) matrix P, whose elements are the
symbols 1,2;..., k' and such that (i) any ordered pair (i, j), i#
occurs as a column exactly once in any two rcwed sub-matrix of P, (ii)
19 Pyyeees B g Of
order q x k such that in each'row of P, 1 < ¢ £ k-1, each of the

P can be sub=divided into kel sub-matrices P

symbols 1, 2, .,., k occurs exactly once.

Proof : Without loss of generality take 2 in the standard form in
which the first row of each Latin‘Square contains the symbols 1,2,
eeey k 1in that order and prefix to the set 2 a square containing the
symbol i in each position in the ith column. If we write down the
elements of each square in a single row such that the symbol in the
ith row and jth column occupies thé_ nth position in the row, where

n = k(i-1) + j, and from the resulting matrix, delete the first k
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cclumns, then the resulting matrix P has the required rropertiss
(1) and (ii).

et 5 be a column of k distinct symbols tyrdysene, b Ve
denste by P(d) the q x k(k-1) matrix obtained by replacing the
symbol i by'the treatment :-cé-v.1riﬂing; in the ith position in 3. A

similar meaning is assigned to Pl (d) ana m, () where m, denotes
the jth column of P e Clearly every treatment of O occurs once in

every row of Pc(b), ¢ = 1,2,..., k=1, and if % _and t, are any two
elementsof O then the ordered pair (ta’ tb) occurs as & column exactly
ohce in any two-rowed sub-matrix of P(d).
Theorem 2. Let there exist a'péirWise'balanced design (D) of indek
unity and type (v; 3% ....,“km)‘ and suppose that there exist q,-1
m.0.L.S, of order ki' If

a=min (Qg5 Gys ooy Q)
then N(v) > q=2. If the design (D) is separable then N(v) > g-1.
Proof: Let the treatments of the desi.n be tl,tz,..., tv and let
the blocks of the design (Written outas columns) belonging to the

equiblock component (Di) be D si.es D (i=1,2,04.y m). Define
1 b

the ki X bi matrix Di by

Let P, be the matrix c ordér q .x k, (ki-l) defined in
Lemma 2, the elements of Pi being the symbols 1, 2,..., ki‘ Let

Pi s C = 1,2,044, ki-l be the sub-matrices of Pi, such that each row

c
each row of Pic contains the symbols 1,2,..., ki exactly once,
Iet 7, b j ;

; be the jth column of Pi. and let Pi(bi Yo u=1,2,4.., by

e c :
be the mgt‘rix obtained from Pi and 9, Put
i

P (D,) = [Pi(bi ),..?, P, (3, ).
1 v

.i
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Then Pi(Di) is of order q, X biki(ki-l). ' If ta and %, are any

tWwo treatments occurring in the same block of (Di) then the ordered pair

_(ta, t ) occurs exactly once as a colummn in any two-rowed submatrix of

P, (D, ) let £, be the matrix obteined from P, (D;) by retaining

only the first g rows and let

A= (Al,AZ, sersy Am).

Then A ig of order q x v(v-l) and it follows from the properties of
the design that any two-rowed submatrix of A contains as a column
each ordered pair of two dlstmct treatments chosen from tl,tz,.. ,t
exactly once. This property of A will be referred to as propertyT
let A e agq X v matrix whose ith column contains ti in

every pOS1t10n, i=1, 2, ee.y V. Then the matrix [AO, A) is an
orthogonal array [v sdy vy 2. Hence N(v) > q-2.

'~ To prove the second part comsider each (Di). Then since (D) is
separable, each (Di)"can be broken up into sets (Dil)"“’(Di ) of

Tr.
1

type I (which we can take without loss of generality in the standard

form) and sets (DF Yo o(DF ) of type II. Then obviously P, (D,) can
1 8,

be separated into k. (k -1) sets with v columns each, such that each

set has the zcoperty L ’ that each row of every set contains the

symbols 1, 2444, Vv exactly once. Also P, = (eaay P vee) Cc = 1,2,

esoy k=1, Where each - Pi contains all the- ki symbois' exactly once.
TC -
Hence I_’i (D'l" ) which contains v columns has also the property T’z
c g

C = 143250009 kel g8 = 1425444y si.v._ It is now . obvious that
Pi(Di) = [Pi(Dif)’ LY ] Pi(D;g)oob]
T = 1925400, r.s g = 1,250y 8,5 possesses the property T, . If Ai has

the same meaning as before, it is obvious that
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D= Bl = [AU).,.,.., A1)

where ecach A(i) the property "1:’ . Defining AO‘ as before the matrix

Oy A

(0 D)

al so has the property ‘\,,. if . demntes a 1 x v row vector each
i

element of which is "ci, the matrix

av (Xl, CRCRC ] va—l

| .
o oD, A1)

is an orthogonal array [vz, g+l, v, 2], which implies that N(v) > q-1.

Corollary: If bei.b.d. (v§ k) exists, then N(v) > N(k)-1, and if
the design is separable N(v) ) N(k).

It is known that resolvable solution-to the b.i.b.d. v = 834—1,
b = sz(sg-su) , -r.= »s?, k = 8+1, A = 1 always exists for § a prime-
power. Hence we hawe for S = 31.

Example 2, W(31°%1) = N(29792) 3 31, where as n(29792) = 18.

Similarly it is known that a resolvable solution®to the b.i.b.d.
with

v = 8(8-1)/2, b = €1, r = Si1, k = 5/2 = om=l 1

’
always exists. Hence taking k = 8, we have
Example 3. N(120) » 7, whereas n(120) = 2.
Theorem 3. Ilet thereb exist a design (D) of index unity and type
(v, ki, K. yeoey km)" such that the set of equiblock components (Dl),
(Dz), ceey (De), e < m, is a clear set. .If there exist "qi-l Me0.LeS,
of order ki’ and if

g* = min (q1+l, ceey g+, Qg p?ee o qm)
then |

N(v) > g% - 2.



Prcofs Define

Q= omin 3.4l ..., qe+1)
and

K2
]

m__j.n_ \:_;_e+:., Ceay qm)
Then ,
. 1) 2)
q* = rin. (g :)-, q( )y

Let bil""’ bibi be the blocks of the compqnent (Di) written
out as columns, i { e. There exist qiul m.o.L.5. of order ki'
Hence we can -construct a crtﬁogoaal array Aij with qi+l rows and

ki columns whose symbols are the ireatments occurring in bij' Let
= r :
A, = (A5 -ve Aibi} .

Let Ai be the g* x biki ratriz obtained from Ai by retaining only

the first gq* rows, and let
(1%
A\ 4 = [Aj_, %"not’ Ae]o

Then - A(i) has g* rows and 5 . kf columns. Clearly A( 1) "has the

property that if tc and t, arc tay two treatments identical or dis-

a
tinct occurring in eny block of (D.), ..., (D), then the ordered pair
(tc, td) occurs as a column exzetly once in .oy two-rowed sub-matrix
of A( l_).

Consider the matrix P, cof order q, X ki(ki-l) defined in
Theorem 2, for i=e + 1, ..., m and let Ai be the matrix obtained

fronALP‘i (Di) by retaining only *he first q* ToWS, Then

2 s e A ]

has the property that if ta and tb are any two distinct treatments
contained in any block of (De+1)”"’ (Dm), then the ordered pair
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. 2
'(ta, tb) ceeurs exactly once in anv two-rowed subematrix cf A( ) .
-«

(3)

2 n ,
The number of cslwrns in A() is oy biki(ki-l). Again let A
i= +1
e the qg* x A2 matrix whose nth colum ~ontains tn in every posi-~

tion, where t  is any one of the v, = v - 2 biki treatments not con-

tained in (Dl), ceoy (De)'.' Then [A<l), A(Z),. A(B)] is an orthogonal
array [vz, q*, v, 2]. Hence N(v) 2 q*=2. |

It is known that for a b.i.b.d. of the type (vi; 5), v must be
of the form 20t+l or 20t+5. A large number of designs of this type
are ¥ndwn to exist. By omitting 3 treatments not occurring in the
same block of such a design we have a larpge number of desigms (v-3; 5,
4, 3) from Example 2 of the last lecture, where the 3 blocks of size 3
form a clear set. Now .v=3 is of the form 20t~2 or 20t+2; each of
which is congruent to 2 mod. 4. Hence by applying the previous theorem

we at once get many counter examples to Euler's conjecture.

Corollary 1. If (20t+5; 5) exists then N(20t+2) > 2 and if (20t+1; 5)
exists then N(20t-2) > 2,
Example 4. Taking t = 1, in the above corollary, we have N(22) > 2,
N(18) > 2. |
Taking t = 4 in Exemple 1 of the previous lecture we know that
a resolvable solution té the design (24m+15; 3) with r = 12m+7 always
exists, 'Adding a riew treatment Qi to all the blocks of the 1th repli=-
cation and adding a new block containing 91,..., Qr’ we get a design
of the type (36m+22; 12m+7, 4) in which the single block of size 12m+7
forms a clear set. lence in the notation of the previous theorem q1-=5
since N(12m+7) > n(12m+7) > 4 and 9, = 4. Therefore q*=2 =2, .k
therefore haw

Corollary 2.  N(36m+22) » 2 for every positive integer m.

Let. v, Ye any number of the form 4t+2 for which n(vl) >2
and let v, be any odd number. Thén since N(vz) > 2 fwom corollary
3 of Lemma 1 of the present lecture we have
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Theorem 4. If there exist 2 m.o.L.S. of any order -4t+2, then i
exist at least 2 xri.b;'.L.S. of any order which is an odd multiple of jt+2.

‘e can makc use of this theorem in combination with Example 4 and
Corollary 2 above o get an infinity of counter examlﬁles to Buler's cone
jecture,

Consider the finite rrojective plane PG(2, 8). It can be shown
that there exists on this plane a set 2, of 10 points such that no three
points of 3 lie on a common line. Let J* be a subset of 2.« Then the
number of points in ¥* is x < 10. Consider the set of retained points
obtained by omitting the points of 2*. If we take the retained points
as treatments and lines as blocks, thén obviously we get a design of
the type (73-x3 T, 8, 9)« Applying Theorem 2, we get

Example 5. If ~x < 10, N(73=x) > 5. In perticular N(70) > 5,
N(66) > 5 whereas n(70) = n(66) = 1.

Existence of a resolvable b.i.b.d. can be used to provide a
number of pairwise balanced designs of index unity. If a resolvable
(vs k) exists with . v as the number of replications, then we can cons-
truct

i) (v+x; k, k+l, x) if 1< x {r-2
ii) (v4r-1; k, fc+1‘,’ r-1)
iii) (v+r; k, k+l, T)

iv) (v+l; k, k+1)

where in (i) and (iii) the single blocks of size x and r restric-
tively form a clear set, and in (ii) the single block of size ‘v and
a replication of the original design form a cléar éet. Hence using
Theorem 2 and Theorem 3 we have
Theorem 5. The existence of a resolvable (v, k) implies
i) W(v+x) > min (N(k), N(k+1), L+N(x))-1 if 1 ¢ x (r-2

11) N(v+r=1) > min (N(k+l), 1+’N(.k),‘ 14N(r-1)) = 1

iii) N(wr) > min (N(k+l), 14N(r)) - 1

iv) N(v+1l) > min (N(k), N(k+1)) -1
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Example 6, From resolvable (49; 7), taking x =5 we get N(54) > 4.
Similarly from resolvable (21; 3) with r = 10, using (iwiw)”above we gut
w(30) > 2.
Again consider a resolvable (v; k) in which the blecks can be

divided into n setg of type T. Then thoe number of replication; _iS
T = kn. Iet the blocks be written as columns, and:let (SJ.) be the jtfx
set of type I, the blocks being written in the standard form, j = 1,2,
ceey N, Let'us take T new treatments 6., 1= 1,240..; k3 § =1,2,
weey Neo Define the 1 x v row wvector ei"j with all elements eij.
Denote by

Sj A

%)
the result of adding 8,5 in the (k+l)th position to each block of (sj).

1)-1. Then we can construct a q(l) x (k+1)k

Tet N(k+l) = q(
matrix P(l) = (PZ(LI)’ coey Plgl))'of Lemma 2. If b,ju is the uth block

of (Sj)’ u=1, 2, ...y v§ then the corresponding block of

s,
J ]

eij

&

N

Consistent with our notation we denote by

is

(1)
Ps bju

& .

the result of replacing the symbols 1, 2,...y k41 in P(l)‘by treat-

. ‘ A i
ments in 1st, 2nd,..., (k+-l’)th' position in



and define

, \

‘(1) S5 (1) 9.49) AR

i o) T @3/ ot | )
(£ @/

A pair of distinct treatments belonging to (v; k) mey be called
a pure pair. Again a pair of tréatments, one of which belonge to the
original (vj k), and the other to the new added treatment, may be
called @ mixed pair. Then
8,
1 ‘ » .
Al = [..., P§ ) J ’ -~-]y i = 1,2,0.0y k3 §J = 1,2,...n3

6. .
Dy

has the property that any two-rowed sub-matrix contains as a column
each pure and each mixed ordered pair of treatments exactly once.

Again if q(2)__ 1 = N(r), we can form an orthogonal array
| A, = [r2’ q(Z)'+ 1, v, 27 whose symbols are the r new treatments,

Iet
(1) , q(2)+ 1)

q = min (g
and let A(l) -and A(Z) be obtained from Al and 4, by retaining only
the first q rows, Also let A(B) be the q x v msetrix whose uth
column contains the uth treatment of (v; k) in each position. Then

1)

= a1, a2, A3

2

is an orthogonal array [(v+r)°, q, (v+r), 2]. Hence we have

Theorem 6. If there exists a resolvable (vj k) with r repli-

cationg,in which the blocks can be ‘sub-divided into sets of type I,

then
N(v+r) > min (N(kt1l), L4+N(r)) -1
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Excmple 7. Erom symmetric (7; 3) and (57; 8) we get N(10) > 2 nnd
N(65) > 7.
e give below a simple proof by Dr. P.Keshava IMenon of & theorem
due to Bose, Shrinkhande and Parker.
" Theorem 7. Tf N(w) ) 2, then N(3ml) > 2.

Proof : let A be a circulant of order ‘2m+1 in the integers 0,1,2,

eeey M.
0 1 2 ee. 2m
2m 0 1l ees 2m=11
JA: O’ L ]
1 2 3 ees O

let B be a square motrix of order 2m+l whose first. m+l dia-
gonals (counted from the principal diagonal onwards from: left to right)
are respectively the lst m+l rows of A and whose remaining m diago-

nals have the constant elements 2m+l, 2m+2,..., 3m respectively.

0 2m 2m~1 2m=2 ;,  m~l 3m
3 1 0 2m . 3m~2 3m-1
m-1  Zm 2 1
B = o0 0 LN LI Y a0 0
2m=3 2mel 2m-2
2m=1 3m 2m

lIet C be the matrix of order (2m+l) x m whose columns are the

first m columns of A written from the bottom upwards

2 L ml

3 cse m+1

¢ = ) X eae o
2m o seo m=2

\O l L m"'i
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Ilet D be the matrix of order m x (2m+l) formed by the rows of

4 beginning with 2, 4},..., 2m respectively.

2 3 cos 0 L

D = + 5 ces 2 3
/
LI o .. L) o !
2n 0 oo 2m=2 2m-1/

Finally let 1, and I, be two m.o.L.S. of order m in the
symbols 2m+l,..., 5m. Then

| B
¥, g

are two m.o0.L.S. of order 3m+l, where B', C', and D' are the transposes

of the corresponding matrices, AThé verification‘is left to the reader.
Taking m = 4t+3, we have N(4t+3) > 2 and hence

Corollary: N(12t + 10) > 2.

Example 8. Two éuperposed. 10 x 10 orthogonal squeres obtained by

this method are given below, where the first (second) entries in each

cell give the first (second) Iatin Square:

00 69 S8 47 71 8% 95 12 24 36
96 11 09 68 57 T2 84 23 3 40
85 90 22 19 08 67 T3 34 46 51
74 8 91 33 29 18 0T 45 50 62
17T 75 80 92 44 39 28 56 61 03
38 27 16 81 93 © 49 60. 02 14
59° 48 - 37 T0 & 94 66 ol ;13 25
21 3R 43 54 65°-06 ‘10 77 -8 99
2 5% 64 05 1 20 31 8 9T 18
63 04 15 26 30 .41 52 98 19 8]



Analogous to Theorem 5, we haove the fbllowing theorem, the

proof cf which is omitted.

Theorzm 8, Suppose there exists & resolvatle GD (vy k, m; O, 1) with

it s ¢

replications, then

1) N(v+1) > min (i(k), N(k+1), Lam(m)) - 1
11) N(v+x) » min (N(k), N(k+l), LeN(m), L4N(x)) =1 i
Cif 1¢xCr
111)  (2) N(v+r) > min (N(k+1), 1#N(m), 14+N(r)) -1
(b) W(vir) ) min (N(k+l), 14N(k), 1+N(r), N(m+l)) = 1
iv) N(v+r+l) > min (N(k+1), N(m+1), 1+N(r+1)) -1

where in part (iii) we choose whichever lower bound is better.
Combining this theorem with the Theorem 3 of the previous lecture,

we have

Theorem 9., If k £ N(m)+l, then

1) W(mel) 3 min (N(k), N(kel), LN(m)) - 1
1i) N(kmsx) > min (N(k), N(k+1), L4N(m), L4N(x)) =1
if 1<<x<m.

Making use of the above theorems in conjunction with the existence
of b.i,b.d. end group divisible designs, it is possible to prove that
N(v) >2 for 6 ¢ v T26. excéptiﬁg for v =14 and 26. It is pos-
sible to prove by the method of differemces that N(14) and u(26) are

both » 2, Thus N(v) > 2 for all v, &< v < 726,
this fact, we prove

Meking use of

Theorem 1. There exist at least two m,0,L.S. of any order v % 6.

_Proof, It is sufficient to prove the theorem for v = 2 mod 4.
v > 730. If v satisfies these conditions, then

Vel = 144t + fu, t3>5, © £uxg35

Hence

v = 4(36t) + du + 10
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Since the least factor in the primepower decompositionof 36t is
greater than or equal to 4, 'N('56tl)'2 3. Hence putting k = 4,
mw= 3%, x = 4u + 10, we have k ¢ 1 + N(m). Also 10 < x ¢ 150,
m 2 180. Hence 1 < x <m and N(x) > 2. Using the above theorem ws
get W(v) > 2.

Further reading

The following papers contain a large mumber of references.

1. R.C. Bose and S.S.Shrikhande: On the falsity of Buler's conjec-
ture about the non-existence of two mutually orthogonal
Latin Squares of order 4t+2, Proc. Wat. Acad, Sci.,
JeSehe 45 (1959), T34-737..

R On thHe "construction of sets of mutually orthogonal Latin
Squares and the falsity of Buler's conjecture, Tran.
Amer. Math, Soc. (1960), 191-209.

3. R. C. Bose, S.5.3hrinkhande and E.T.Parker : Further results on
the construction of mutually orthogonal Latin Squares
and the falsity of Euler's conjecture. Can, J. Math.
12 (1960), 189-203.



Lecture 6

Minimum distonce godes

1. Let S be any finite set. Denote by Ug its power set, .i =N
the class of all subsets of S. Givem A and B in 0., we define

their distance by

d(4, B) = N[(44B)s (A NB)] /2

where N(E) denotes the number of elements in E. It is easily veri-
fied that the distance satisfies all the postulates of & metric i.e.
(i) (4, B) > 0 and = 0 if and only if ‘A = B, (ii) 0(4, B) = 0(B," A),
(111) 9(a, B) < 9(4, C) + B(C, B) for all "A, B, C. in Uy

Given the sets Sl,...,: Sk,- denote bty

WS, =5 X 3, X ... x5 = [(Sl’-SZ""‘,’Sk)’ s; €81

their cartesian prociuct of ordered k~tuples. By identifying the
elemgnt (Sl""’ sk) with the set [(1, sl), .(2-, sz), ey (ky Sk)]‘v
n _Si may be regarded as a sub-class of an appropriate power set, the
above definition yields a metric for cartesi;a.n’ products which states

that for X, y in WS, X = (Xj5e.0y X)) ¥ = (yreees yk), d(x, ¥)
is the number of subscripts i for which Xﬁ"’ Yi0i=1,2, ouuy ke

2. let Cn be the class of all n~-place binary sequences in symbols
Oend 1. If x = (xl,..., xn) and y=(y1,..., yn) are two sequences
in Cn, define X +y = (... X+ ¥i» ...) where the sum. is reduced
mod. 2. Then C_ forms 2 Abclian Group of order 2%. The null
sequence is the identity of the group and every sequence is its own
inverse. Define the weight (norm) of x, written as W(}i), as the
number of unities in its representation. The number of places in which
x and y differ is a distance between them and is called the Hamming

distance. e can easily pfove the following properties.

60~
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1) o(x, y) = ulx + ¥)
) e ) =T ) - 2(x)

where (X.y) denotes the scalar product of the two vectors x and y
and is the nvmber of places simultaneously 'occupied by unity in boti.

iii) o(x, y) = 0(x + o ¥ + &) for my « in C,
W) 1) - W) 1<) <) ¢ )
v) W(x+y) < min [W(x) + T(y), 2n - W(x) - W(y))
where n is the number of plaess in both.

3. A subset of Cn such thet for anyw ’cyvo elements o and B in
(% B) of the subset O(a, P) > & Will be called a code with minimum
digtance 4. If the subset is a Subgroup of Cn, it will be called a
group code. We shall @note minimum distance code by M(n, d) and group
code by G(n, 4).

We shall denote by Cpr (r < n) the sub-group of C_ obtained
bty adding n-r zeroes to each element of C_. The number of elements
in any sutset will be denoted by [8]. Thus [C_]= 27

Given a fixed .element « and a-subset B of Cn the set of
elements « + B, B € E shall be denoted by E + «. It is obvious
that if E is a code_with'minimum .distance d, .then so is E + .

If B is vrr:itten as & matrix with r columns, then any permutation

of rows and columns of E is also a minimua distance code.

-d+1
Theoren 1. [i(n, )] <27 *
Proof, ‘Consider the sub-grOup C it x, Bs oc74 B, belong to

,d=1°
G, gy then W(o + B) ¢ d=1.° For any m, m, in M =1(n,d),

W(m +06+m.2+[3) >d-(d 1) = 1. Hence o(my +x,m2+f3)7401.e.
| m,+ « and m, + B are different. Thus M + @ and M+ B are
disjoint.

d-1 n ,
Hence [M] 2~ ¢ 2  vhence the result.
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Theorem 2. For n»d y 2
N
[G(na d)-l L2

Proof, Conmsider any two clements «, B (v B) of Cy,a Then
W + B) <d, If «+pP<a, then Grx and G + P are disjoint. If
w(x + B)

G, g + X = 8 + B implies o + B = g + 8 which is in G. Hence
+

d and x+ B does not belong to G then for any 8108, in

again G + o, G + B are disjoint. Hence if the element

- 1, 1y o.esy 040y +2.» O
x = 4 n-d )
does not belong to Gj all the sets G + a , & in-. C,.qg are disjoint

?
and hence

o] 2™

If x belongs to G, this by interchanging the first and last columns
of G, we get a code G'-with the same nminimum distance and having the
same number of elementé. If x does not belong to @', the theorem
is true. If x Dbelongs to G' then G must contain
(0, 1, 1, ..y 1 Oy Oy ee0y O, .L)

d-1 ned-1
But then x+y of weight 2 belongs to G. Since G contains the null

y:

sequence (0, ..., O), the distance of x+y from this is 2 which is a

contradiction.

Theorem 3. If n » d+r, 4 > 2r+2, (r an integer), then

[6(n,)] < gn=(d+r)
Lr_ggi_‘_; For any two elements «, B(oc¥ B) of Cn, d4p TOTr which B
does not belong to G, G+y and G4+ are disjoint. Suppose‘ P is
in G, Then W(xB) > d. ILet E be the set of elements of Cpger OF
weight > d. Suppose G contains an element x of B, which can be

taken without loss of generality in the form

X

==,1. at least d-1 one!'s 0 0 ... O
\ d4+1r =1 ’ nede-r )
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Iet G' be the code obtained from G by interchanging the first and
lest colwms. If  v4d  doec not helong to Gty then G'+¢ and G4
Are disjoint and hence >G+C< for vﬁry‘ing a are also disjoint. Now
suppose that G' contains an element of E, then ¢ must have either an
clement

at least d one's Oy O3 wees

1
y=(O, d4+r -1 ’ n..d_-r)

or an element =z . of the form

7 = ,C’ at 168.St d."l One'S gz OJ [IRN ] O, 1)
SRR W d+r-1 ] n\-d-r

In any case from (iv) in Section 1, we have

(¥, y) £ 1 +2(ds+r-1) - (d+d=1) = 2r

Mx, 2% ¢ 14 2(d4r-1) - (d-14d-1) = 2r + 2

But this is & contradiction since X, ¥, 2 belopg to. G. The theorem

now follows immediately.

Theorem 4. If 4 is an odd number and if 24 + 1 > n then

2d + 2
(0, 0] ¢ F T o

Proof. Let the elemeniy of I &gyee. oy m = [M(n,d)] be written

as mxn matrix and les kj be the number of unities in the jth
column. We then have [Soliiutiwrger ]
2
(Zk,)
nvar (k) =n Sk, -—I—o T o(x, ')
- J J n i ¢ it 1 1

when j =1, 2,...

y 3 i ¢i' =1, 2, .. , m. Putting A=ij we
have Zb(o‘l' C(i';‘

<mi -__Az/n.

But since A 1liz2g lteitween o and mn, we have
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2
o m n
e Q (Ocil Cxil ) S. 4

ence
Henc 2

m{m=1 m n
A

or
2d
L %3 -n

if
24 > n.

If 4 is an odd number, let r and s be the number of w«!'s

with odd and e.vle,n weights, The distance betwsen any two numbers is
are

aven if both/of odd or even weight and is an odd number otherwise,

Hence
; m2 n
[(e(x=1) + s(s~1)] (a+1) + 2red ¢ —5—
2
or m(m=1)d + =~ + . < n 2n .
5% n 2 2
or mm-l)aeng B5% - (= 4 80)
2 2

Hence ) 24 4 2

L W{ii-n
if 2d+15>n
Corollary. For d + 1 ¢n <24

[(n, Y] < o

and the equality is attained if and only if there exists a b.i.h.d.
with parameters

- — - . fw n ~d 2n = 34
v 23=-n » D n, r nd’ k = 2d-n ? A = ‘—'—"""‘—‘2

Proof. The first part is already proved ahove. By putting
2k,
Fatmme —L ang§-2 < d(;» «, )/m(m=1)

n 3 (]
O
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in (1) we have

jicial 2n = m N2
8 = 2ml) T mimel [ =3) + <kjﬂ :
Hence

D -._,__—n
L3 (i)

and the equality is atteined if and only if k =k, ... = - =% .

Again if M(n, d4) is a code with [M(n, 4)] = %%—_-ﬁ', ‘then variance (kj)=d

and 4 = Zj=— ., Heuce D (ds ¢t y32 & 2nd § = a dimplies d(w, yor! )=
2(@-1) SRR L0 ! 1%

d = —2—(%?:—{\- . Without 1033 of generality We can take the first row of

M to consist entirely off mities. fThen in the matrix M, of order

. m oy :
m-1 x n every column contains exactly 5. 1 wunities and since the

distence between any row of tal and the first row off M is 2??%1')’

every row of Ml contains exactly d = E&nﬁ) zeroes and hence

n=-d- unities, Further the distance between any two rows of M, is

d which implies that the number of places simﬁltaneously occupiéd by
unity in any two rows'is 2n - 4 « Thus My is the incidence matrix

/
<

of a b,i.b.d. with prramcters.

n . n-d "2ne-34
v==2d___n,‘b»-=u.L=n—d,k=2dmr A= 5 .

Conversely given the  b.,i.b, design by retraining the steps we-can
form M, and hence "M which provides M(n, d) With the maximm
nimber of rows,

Ezample 1. Take 2 = 4i~1, d = 2t, We get the result that the exis=-
tence of a symmetric - bei.b.d. with @ v:=14t=1, k = 2t=1, A = t=l, is
equivalent to the meximal cet M(4t~1l, 2t) with 4t rows,

Theorem 5. - If [¥(n, 2x-2}] ana [M(.n+1, 2k)] represent the maximum
number in the corresponding séts then

il 2%e1)7 = [TMMm#l, 2%)]
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Proof. Bvery set M(n+l, 2k) gives hy omitting & column & set

M(n, 2k-1) with the same pumber of elements. Again’in M(n, 2k~1) if
x and B arc two elements h.éth with odd or even weight, the distance
between them (which is*nacessarily »evun) must e > 2k. Hance by
adding 2 new component O to all elefnents of even weight and uwnity

to all elements of odd weight, we get a set  M(n+l, 2k) with the same
number of eléments. The proof now follcws immediately.

Exercise 1. Provc th&t |

[M(n,a)] < 2[M(n-1, 4)]
[M(2n, 24)] > [M(n, 2d)][M(n, 4)]

Exercise 2. Prove that 'for any integer %

1) M(4t = 2, 2t) . 2%
11)  M(4t~1, 2t) < 4%
1i1) M(4t, 2%) < 8t

Purther if the equality holds in (iii), then it also holds in (i) and
(i1)
Theorem 6. The following statements are equivalent

(a) M(4t, 2t) = 8%

(b)Y M(4t - 1, 2t) = 4t

(¢) belib.d. v=b = 4tel, T = k=25 -1, A= t-l exists

(d) A Hadamard matrix \H4t of order 4t exists. .
Proof, In example 1. we huve shown that (b) -=> (¢). Todd has
shown that (¢) ~=> (d). Hence (b), (c) and (d) are equivalent state~
ments. We now show that (a) --> (b). Consider the set M(4t, 2%)
with 8t rows. ~Then in every column of this set both zero and wnity
occur exactly 4t times. For otherwis_e therce is a column with 4t+4%-
rows with unity or zero,.i > O, . Retaining only these rows and omitting
this column we get [M(4t~1, 2¢)] > 4t+i which contradicts the result .

in Bxercise 2, Hence every column contains exactly 4t zero and 4t
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unities. Tence omitting s column and ret2ining rows with zeroes (or
unities) alone, we get 2 set M(4t-1, 2t) with 4t rows, Thus (a) ~->(2).
Since (b) ¢--> (@) it is sufficient to prove that (d) --> (a). Iet
H At be & Hadamard matriz with the initial row consisting éﬁtirely of

unities and EAt be obuainnd T I 4t by interchanging 1 and -1. Then

i o i : e oa 1% * i
replacing «~1 by O in HLH: and E’/HZ we get hll,t and I—{-A,t It is now easy
to verify that the matrix

%
"t
e
\, S

is a matrix in O and 1 with 8t rows and 4t columns such that the
distance between any two rows is either 2t or 4t. We thus have
M(4t, 2%) with 8% rows.

Lemma 1, PFor any real numbers 819 Boy eesy B

a B‘i‘
n(5) <2 ()

2 a. o :
and () = a(a = 1)/2

where a =

Proof of this lemma is omitted.
Definition. Let E be a class of subsets of any given set S .Then
the t ~extent of E, e(E,t) is the greatest integer m such that E
contains m distinct members having mutual distance greater than t.

given this set S(b) of b elements, let E, denote the class of
all subsets of S(b) containing r elements. We prove the following
Theorem 7. If 2 -ADy 0 (A integral and 0K A L), then

(a) é(Er, T - A ~-1) (v vhere v = b(r-}\)/(r2. - 2b)

(b) Bquality holds if an! only if there exist v elcments in

B, such thak b_(xi, Xj) = r-A, for ‘all ighj=1,2,...,v.

Proof. -let ’_e'(Er-,"r"-;- X~ 1) = m. Then since. A is integral there

exist Xy Xyy 0oy Xy in E_ such that b(mi,xi) 2 r-A for all.

2’
imh j. Denote by -k, Uhe number of sets x; containing the ith
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slement of S(b), i =1, 2,..., b. Comparing total occurrences we

have

b
(j_) ,-i ki = T

. . m,
and considering constributions to all set intersectioms (,) in mumber

we have
b kf m
(1) Z ()= T Nx Ox)Z [r-0(x;, x)]

But then B(x,, xj) >r - A dimplies

. s —\kf . m
(111) 2y ) XA

Using Lemms 1, we hawve
k
b m
(i) L =b (rgl/b)_gma}j (:2 Y (R = 7\(2) .

Simple calculation shows that L ( R implies m v if ;rz -Ab>» 0O
and the equality is attained if and only if m = v.( Thus c.oncllusion
(a) follows, Finally if m = v, then from L =M = R and (i1) it
follows the

- m
1%3 Lr - b(xi’ XJ)1 - }‘(2)9

and thus b(xi, x.) 2r ~ A implies T - 6(xi, xj) - A

Hence d(x,, x ) =t ~ A This completes the proof of (b).

Corollary 1. . . For 0 < AT b, the conflguratlon Xyreeey, xv is
the dual of a b.i.b.d. with parameters b, v, K, Ty Ay Where k = v/t
Conversely, given the b.i.b.d. and considéring its dual configuration
as a subspace of E.y one obtains e (Er’ r -A=1) - v" r2 - A b0
md v = b(r-—)x)/(r --7\b)

Proof, In the proof of the above theorem from m = v, we obtain

L = M, Thua together with Iemma 1 gives k = k = ( v/v). Thus
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every element of s(b) occurs in exactly k of the subsetes X ,...,%
Further o(x;, x ) for all i# j implies that every pair of distinct
sets intersect in @Xactly N elements. Thus the first conclusion
follows. (Conversely given the b.i.b.d. and considering its dual con-
figuration as a subspace of L., one obtains e(Er, T - A=-1))>v.
Further from O ¢ A< T ¢ b and the well known inequalities rv = Yk,
A(v-1) = r(k-1) it follows that r2 ~ADb>0 and, v = b(r-A)/(r -Ab),
© But then from conclusion (&) of the theorem e(E s T = A=1) = v,

In the previous theorem, considering a'set S of n symbols
and identifying the e}emént bal, By eeey al; with the set (1, a.)...
(r, a ), we have b = rn symbols and the set E, ‘becomes the space
S (n),the r—fold cartesian product of S with 1tself Putting
A+ 1=k, the condition- 2 > Ab of the theorem becomes rz;(k-;l)rn>0
or r > (k<1)n. 'Hence we have
Theorem 8. If r > (k-l)n, (k integral, 2 ¢k, n > 1) then

(a) esT@), r - k) < v, where v = -fi = ((i:gl

(b) If equality holds in (a) there exist v elements
Xyyeeey X in $"(n) such that b(xi, xj) =1 = (k-1), for all i=j.
In this event, each element of S(n) occurs as a jth component of
exactly t = " _J(ﬁ% of the x's, j=1, 24...y r. Further from
Xqyseeos xv we can construct a b.,i,b.d. with parameters v' = v, b'=rn,

k' = .ty r' = I‘, A' = k"'l.

It is obvious that the nr symbols occurring in Xyseeey X 8T
such that they can be divided into r groups of n each (for each
i= 1, 2, ... r the corresponding group is (i, al),...,(i, an))such
that no two members of the same group occur together in any x. Hence
the b.i.b.d, which is its dual is such that the nr blocks are divi-
ded into r sets of n each such that no two blocks of the same set

have an element in common. Thus the b.i.b.d, obtained is a resolvable
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design. Conversely given such a b.i.b.d, we can construct v elocu™:

~

of sr(n') with mutual distance exceeding r-k and the slémentary con-

ditions on its parameters will imply that r > (k=1)n.
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Lecture T

Brror Correcting Group Codes

1. The *heory of communications and the more general infermation
théory are concérned with the transmission of pleces of 1ni‘oz*ma,t10n
from one plade to another, Indll'pr‘actioal situatiors the nons of
transmission - ‘thé channel is subject to random disturbances so that
there is a positive probability that the reporting mechanism at the
output end will announce information which is different from the one
whlch is transmitted. A central problem is to devise encoding -
decoding' schemes which will keep small the probability of such erro~-
neous"reporfing and which will utilise as far as possible the full
capacity of the channel.

We shall be concerned with one specific fype of communication
system, Each piece of information is encoded as 2 sequence‘oi“ n
binary digits O and 1. The digits are presented, one at a time,
for transmission S6ver a Symmetric binary channel, in which the error
of transmission 18 p < %, i.e. the provability of receiving 1(0) when
0(1) is transmitted is P. It is further assumed that the noise on
the channel operates indeypendently on each symbol that is presented
for transmission. The capacity of the channecl based on concepts of
information theory for quantifyiﬁg the transfer of information is
defined by

C=1+0p lcg, P+ q log, q bits/symbol
where: q = l-p.

2. Suppose we have & set of K messages for transmission. Fach
message is called a letter and the set of K messages will be called
Each letter is defined uniguely by a sequence of n

and is transmitted over the chanmel by presenting,in

an alphabet,
binary digits
order,to the channel input,the defining sequence of ones 2nd zeroes.

Such an alphabet is called K-letter, n-place binary signalling alphabet.

..7:1-
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At the output end is a detector to translate the received sequence,
The minimum value of n to s2tisfy the requirements of defining
the letter is the smallest integer k such that 2# 2 K. With this
n = k, the probability of correct transmission is qk. In practical
gsituatiorsthis is not large enough to be acceptable, The alternative
is to introduce redundancy into the definition of the letter i.e, each
letter now contains n > k binary digits and it is hoped to utilise
the additional digit positions to tcorrectt errors in transmission,
Iet B e the sct of 2" neplace binary sequences. It is
known that Bn is a group with respect to wrmetor addition modulo 2
of the sequsnces.,

Binary encoder, | A v letter n~place binary encoder E is a

subset of Bn congisting of v n~place sequences ocl_, oaz, ey o,

Binary decoder. A v letter n~place binary decoder D is

a correspondence between the v sequences, 1""’ o, and v mutual-
1y disjoint sets Sl”"’ Sv' of ‘B - such that t{ S, = B -

Binary code. A v letter n-place binary c;ode € is the com=
bination (E, D) of a veletter n-place binary encoder E and u-place
bir;afy decoder D, o L |

Suppose the source alphabet consists of v letters. (meésages),
Al,..., Av when the code C is used to transmit, the sequence oti
will be transmitted if A is meant to be sent, i = 1, 2,..., v and
at the output enad the letter transmitted is taken to be A., if the
received binary seéuence is a member of set Sj’ J= 1, 2,3..., Ve

A binary degoder D is said t0 be a minimum distence decoder

if for any sequence B of the set S

b(ai, g) Sb(fx ’ B), for i, j=1,2, ..., v

where (x, y) stands for the Hemming distance.

A _t-error correcting code, A v letter n-piace binary code

C 1is said to.be t—error correcting if the decoder D is 2 minimum dis=
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distance decoder and for any n-place sequence P

b(ai’ B)$t=>ﬁssi’ i"l, 2, 20y V.

Suppose oci is transmitted through the channel and there is
disturbance in t or less of the positions of o . Then oy is
transmitted as o +y =3 where y -is an n-plfes Sequence of weight
not greater than t. Hence b(gci‘,B) < t and consequently f is an
element of Si and hence will be decoded as % . Thus the t:ansmis-—
sion will be correct.

For an n-place, v=letter binary code C, the rate of information
transmittal is defined as
].og2 v

n

R = bits per symbol.

R is 8lso called the rate of transmission. If the alphabet contains
2k letters, then this reduces to

k
R = Cl =37

The basic existence theorem for general codes was given by

Shannon and was proved in considerable generality by Wolfowitz. Apply-
ing it to the case of binary symmetric channel, we have 'Given any
fixed Cl - C-d(d > 0) and any fixed € 3 O, there exists a number N
such that for n > N there exists & code with rate of information
transmission ¢, and which will decode it with an error probability
per block of n symbols (per letter) Ql(n, k, p) < €. If c, > ¢
no such N exists'.

The proofs of the above theorem are not construactive,

3. (roup alphabet. Slepian has organised search for desirable

alphabets and corresponding detection schemes by considering ne-place
group alphabets, or, briefly (m, k1-alphabets. 4n (p, k) alphabet is
a sub-group of order 2k of the group Bn of all birary sequences

under vector addition modulo 2.
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L' the letters ¢f this alvhabet be

k
OCO'= I = (O’ O, oo oy O ')’O‘l’o(Z’.“’ OCv, v T 2 "1.

The group Bn can Ye developed according to the alphabet and

its cosets BO ~ g, =1 o @, G o1
By o4y by .- o+By

where Y = Zn"'k-l, and {8 is an n-place sequence Which has not
appeared in cosets led by _QO,Bl, veuy Be-l‘ The elements B, sare
called coset lraders.

Because ci' the group property, any coset is repeated with ele~
ments in a different order, if the coset lcader. is replaced by "7y
cther clercnt of th2 coset. We agre? to t2ke Be as that element
(or any orne of thosc elemenits) of the' coset whose weight is the least.
The -detection scheme is then Vthe following: if: the element of Bn which
is received at the outrul end lies in columr i of the-coset array,
the detector prints the letter . If the elements of Bn ‘are
written in ths zbtove form, then it is said to: be 'represented in a
standerd arrey.

Example: B4
0000, 1100, 0011,

-can be developed according to the (4, 2) alphabet

2121 as follows:

0000 1100 0011 1111
1810 0110 1001 0101
1710 0010 1101 0001
i0c0 0100 1011 0111
Thig can ba written in a standa:d form as follows:
0000 118G 0011 1111
2010 01i0 1001 0101
Q010 1il0) 0002 1101
1200 0lco 1011 0111
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For the original array, in the second row any mmber could be taken
as'a coset leader as 21l of them are of weight 2. Similarly in the
third and fourth row each there are two possible ways of selecting

the coset leader.
For such .a cods
Q = P(oci is correctly produced by the detector)

w
= .Z P(‘-f.i + Bj /oci)
J=0

w(B,)  new(B,)

. 4 W INe=W . . . . .

since p<%y v q is a monotonic decreasing function of w, one
sees the motivation for teking Bj
Slepian has shown that for the given alphabet no other detection

as the element of minimum weight,

scheme has a greater average probability that a transmitted letter is

correctly produced bty thé decoder. Thus the proposed decoder is a

maximum likelihood decoder.,
An egsential feature of the proposed (m, k) code is the follow-

ing., When the letter @ is transmitted, the decoder will correctly
report o 1f and on],f 11 the channel produces the sequence a+B .y

J =050, 1y 1i.e. if angd only if the errors in transmission occur in

in-ecisely those posltlons occupied by unity in a coset leader, Hence

if all n-place sequences of weight 8 can serve as coset leaders,

then the code will correc. a.. s-lLuple errors. If the number of coset

leaders of weight » is less than (:), say o, then the code will cor-

rect o s-tuple errors. The advantage of maximising the number of

lowest weight sequences serving as coset leaders now appears again

with respect to maximising the number W such that all errors of weiglit

W or less are corrected'by the eode.
We now give some results due to Bose and Ray Chaudhuri,
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Theorem 1.  The necessary and sufficient condition for an (n, k)
binary group code 4o he teerror correcting is that each letter of the
alphabet except the nil’ lotter has weight 2¢+1 or more.

Procf. Iet x s :;1,..., X, be the letters of the alphabet.

Iet B te any n-placc - yuence for which W(B) ¢ t. Then .
pay; B) = W(agsB) = W) + W) = 2(qy .B)

But W(B) ¢t dimpliies (ci.B).g t. Hence
w%ﬂnuw@)zwugezm

The necessary and «officiin® ccndition for B to be the leader of the
coset in wai-h it occurg is that the left hand side of the above rela=-
tion is & positivs inbeges for i = l,..., ve Hence the theorem.

Since the v+1 = Zk .mespages can be transmitted by a ke-place
binary code if {nhere is no error, the number r = n~k 1is called the
redundancy of tie (n,k) b*_narygraup code, In coﬁstructing a te-error
correcting {n, k) bvir = code for given n and t one woﬁld like to
maximise k 1i.,e. maximise the number of different messagés that it is
possible to transmi.t.

Thecrem 2. T.+ uccessary and sufficient cbndition for the exis~-
tence cf a t-error cor_-.-jc_t‘iv\g_ (n, k) binary group code is the existence
of almatrix A of vrdee A xy and rank T = n-k ‘With“ eiemefxts from
GF(Z), such that any <>~ of 2t row rectors of A are independent.

Proof. We fires (rov. the sufficiency. Suppose the matrix: A
has the property (P,_,,;'T that Tny set of 2t rows are independent .
Clearly n > r » 2t, The property (P2 t) remains invariant under.the
following operations: (i) irderchange of any two rows or columns,

(ii) replacement i the ith solumn by the sum of ith and jth column,

i# j. Dy these operations A can be transformed %o

/g
p =\\CA

~

J
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where A* has the property (P? L)s 7. I .is the unit matrix of order
v 4

Y and C is a wma“srix of order k X r. Congider the matrix

CF = (C Ik) B |
Then C* is of order ' x m. We show that the k rows of C* are
the generators (under vicuew &uiiiun moluio 2) of a group ¢ of

order Zk guch that if « is any arbltrary (non-null) vector of G,

then W) 2 2t+l. Suppose « is depe: fovi oon some d rows of 6%,
4 ¢ ky then & 7~ “lhe cun of these d rows. We can write o =(y €)
where y is Ifh"e act coming from € and & the rart coming from
L. Then W(a) = W(y) - W(e) = W(y)+d. Herce wW(a) > 2t+1 if

d > 2t+1. Hence suppcze 4 {2t. IF W(x) < 2t+1, then W(y) ( 2t-d.
Let W(y) =c.
pied by unity.

There are errctly ¢ positiona in y  which are occu-
Correswonding to each such position we can find a row
of I, which has unity 2 thig position and zeTo elsewhér_e. Then these
¢ vectors of Ir- togeiher with the % xovs of C whose sum is y,
constitute a set oi'. 244" vectors which are dependent,for their sum

is the null vector. Dus csd £ 2t, this conbradicts the fact that

A* has pr'olierty*(‘_“l,‘; 1;). Thus the weisht of any acn-null sequence of

G 1is greater than or ecnal to 2t+1. From theorem 1, it follows that
¢ forms a t-error correciing (n, k) sroup cole,

Tlo prove necessity, suppose t‘qe're exists & t-error gorrecting

(n, k) group code. Thox t7 thnorem 1, we can find a set of k n-place
sequences with elerents in GF(2), which under vector addition gene-
rate the group of seque*ccs constituting the letters of the alphatet.
If « 1is a se~iazoe of ili's group then  W(o) > 2t+l. " Let C* of
crder K xn be i motriXx which generabtes this group. If we inter-
change any two rovs or columns of C¥, or replace the ith row of C*
by the sum of the ish 2nd jth ~.~ (i s j), the transformed matrix
still has the promexrty *hat its rows genz:iclle a group with each sequ--

ence of weight greaver 'on or equal to 2i+1. Hence without loss of
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generality we can take
% o
C (c Ik)
as above. By retracing the arguments used in proving sufficiency we

see that the matrix
oo

4
* = r)
c

has the property (PZt)’ This completes the proof of necessity.
Corollary 1. The existence of a t-error correcting (n,k) group code
implies the existence of & t-error correcting (n-c, k-c) group code
when 0 <c¢ < k.

If in the matrix A with property (P,,) we omit o rows,
0 < ¢ ¢k, then the resulting matrix of order n-c x r has the same

property (® Hence the result.

24) |
et Vr denote the vector space of all r~vectors whose elements

belong to GF(2). Consider the maximum number of vectors in a set 3
chosen from V’v,i such that any 2t distinct vectors of 3 are ihdependent.
This number m;y be denoted by n, t(r), and the problem of finding the
set 2 may be called the packing problem of order 2% for Vr' For a
given t, it is ocbvious that nZt(r) is monotonic increasing function

of r.

Let k = k, (n) denote the maximum value of k such that a t-error
correcting (n, k) group code for given t and n exists. We then
have

Theorem 3. If nZt(r) >n> n2t(r-l), then kt(n) = n-r.

Proof. By the provious theorem there exists a t-error correc-
ting (n2t(r)’ n,z_,u(r)-r) binary group code. Hence from the lemma there
exists a teerror correcting (n, n-r) group code., DBut a t-error correc-
ting (n)s ner+l) does not exist for this would imply that n, L(-1) 27
Hence k. (n) = n-r is the maximum value of k for which a t-error

correcting (n, k) group code exists.
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Thus the problem of finding a t-error correcting {n,k) group
code is equivalent to finding the smallest r for which thére exists
aset of n or more tdis’ci»nct vectors of v such that any 2t dis-
tinct vectors from the set are independent.

lemma 1, If Xl, X,z,..., Xe
of GF(2™), then the equations

o L4t

2, X = 0, i ='1’2, 200y t (301)
j=1

are different non-zero elements

cannot hold simultancously if e ¢ 2t.

Proof. Suppose the equations (3.1) hold simultaneously. Let

X + Py Xeml+p2 Xe-'1+ cee + P, =0 (3.2)

be the algebraic equation with 'rooté' Xl""’ X, Then Py is in

GP(2™) and is the sum of the products Of the i‘oots taken j at a

time. Define Sj as the sum of the jth powers of the roots. For a

field of characterlstlc 2 “the well known relatlons between S.
" p. become
PJ

and

Sy + 90y = 0

S+ P15y + 050y = 0 (3.3)

Sg + PySgq + ere + 0,0, =0
where bi = 0 or 1 according as i is even or odd. ) 3
when j is odd (J < 2t). Then from. (3.3) it follows that Sj -0 if
j dis even (j < e) and pJ.:O if - J is odd (3 < e).
Case (i).- If e is odd, then p, = X;X,s...y X ¥ O, since
Xl,Xz,..., X, are non=-zero., Hence a contradiction..

Case (ii). If e is even, say e = 2m, then from (3.2)

x2m + p2 xzm-z + eee + p2m =0 (3‘4)
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c . e i
Now each coefficient p’Zj is some power « , Where « 1is a primitive

2m-1 o _ (em-1)+c

element of (GF(Zm) and hence o . "= 1l. Using « y it is

obvious that each pZj has a unigque square root qj. Hence we get

x™ & qlxm-l + oeee ¥ q,m)2 =0 (3.5)

Thus (3+2) cannot have more than m distinct roots, which is agein a
contradiction, since Xl,X.Z,..., Xe are all distinct.

The proof of the lemma is complete.

4. TLet Vm be the vector space of m-~vectors with elements from
GF(2). Since each eclement of GF(2™) is of the form a_+a X + een 4
aﬁxm'l, where X is a given primitive element of the field, we can
set up a one~to-one correspondence between the vector o« =(a:0,(al.,_‘..am)
and the element a_ + aX + oee am__lxm-l of GF(Zm),. In this. corres-
pondence the null vector of Vm -corresponds to the zero of QF(Zm)
and the sum of any two vectors corresponds to the sum of the corres-
ponding elements of GF(zm). This essentially defines the multipiica-
tion of two vectors and converts it into a field.

let th be the vector space’of all mt-vectors with elements

from GF(2). To any element %, ~of V = there corresponds a unique

ect * i
vector o of th defined ty
: 2¢-1,
ot = (cci A eeny O ) (4.1)

though the converse is not true.

There are n = 20=1 distinct non-null vectors in V. lat

3 2t=1Y\
‘xl al s (Xl
3 2¢-1
M* .- ’{2 az oo (X~ (4.2)
N4 \i ve e a2t-l

n n n
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be the matrix, which has for row vectors the corresponding vectors

1

e € 2t is non-nnll.

“*,05., (XK.

By the previous lemma, the sum of any e row vectors of

ponding me-place binary vector, we see that M* has the property

(p

21:) *
Now rank (M*) ¢ mt.

8ince there is esgentially one Galois field

¥

LTy

Hence replacing each element of M* by the corres-

GF(2"), this rank is a definite function of m and + which we denote

by R(m, t).

columns of M*

obtained has still the property (P

If R(m, t) < mt, we can choose R(m, t) independent

and delete the remaining ones. The matrix A so

Theorem 4.

2t) )

If n= Zm-l, we can

Hence from Theorem 2, we have

obtain t-error correcting

(n, k) binary group code where k = 2m-1-R(m, t) > 2% 1omt.

BExercise.

Construct a 3-errar correcting (15, 5) group code

by considering the minimal function X4 + X + 1 to generate @F(2 )

A.

D.

Further reading

Feinstein : Foundations of information theory (1958).

Khinchin

Slepian

'3
.

McGraw Hill,

Mathematical foundations of information theory,
(1958). Dover Publications.

A class of binary signalling alphabets, 3ell System.
Technical Journal, 35 (1956), 203-234.

R. Cs Bose and D. K. Roychoudhari:

binary group codes.
(1960).
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