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SOME RECENT ADVANCES IN SAMPLING THEORY
by
M. Murthy

1. INTRODUCTION

1,1. From times immemorial the concept of generalizing from a 'partt of
the population to the 'whole! has been used more or less subjectively in daily
life. But not until the later half of the nineteenth century, objective
methods of generalizing from a part to the whole seem to have received much
attention. In this case two questions arise = (i) how to select the 'part!
from the 'whole! and (ii) how to generalize from the selected part to the
whole. The problem is one of findirg that combination of selection and estima-
tion procedures whnich would minimize the risk involved in generalizing from
the part to the whole per unit of cost. Alternatively,the problem may be ,
viewed as that of finding that combination of selection and estimation procedu-
rés which Wwould minimize the cost,ensuring at the same time a specified precisio

for the inferense from & part to the whole.

1.2, The earlier developments in this field relate to the second question
posed above and the result has been a fairly well developed theory of estimation
and statistical inference based on the simplest of selection procedures, namely,
equal probability sampling with replacément. Improvements in selection proce~
dures may be considered to have been initiated by Bowley (1926) who used stra-
tified simple random sampling with proportional allocation. Neyman (1934) con-

sidered the question of optimum allocation in stratified sampling.

1.3. During the decade 1940-50, considerable develdpments in sampling theory -
have taken place and the works of Mghalanobis (1940, 1944 and 1946), Cochran
(1942), Hansen and Hurwitz (1943, 1946) and Madow and Madow (1944) need special
mention. Cochran considered the question of utilizing supplementary informa-
tion at the estimation stage by using ratio and regression estimators. Hansen

and Burwitz suggested the utilization of the supplementary information for



selecting the units with probability proportional to a suitable measure of size
and they also considered the problem of non-response in surveys. Mahalanobis
realized the importancs of aszesement . of .non-sampling errors as early as 1938
and developed the technique of interpenetrating sub-samples to assess the
resporise errors in surveys. Madow and Madow developed the technique of sampling
units systematically. - Cochran (1953), Deming (1950), Hansen, Hurwitz and Madow
( 195’3)-'-,» Sukhatme (1953) and vates (1953) have covered in detail the earlier

ievelomments in the theory of sampling in their respective books,
present:
144, 1In these notes an attémpt is made to/giwe some important advances in

sempling theory during the last decade 1950-60. The recent developments are
more in the nature of refinements of the earlier methods than in the nature of
fundamental developments. Perceptible progress has been made in the fields
of étratifiqation, varying probability sampling, ratio estimation and assess-
ment and control of non-sampling errors. It may be mentioned that only some
of those developments in the theory of sampling which have been .or are likely
to be found useful in survey practice have been considered here and hence the
coverage ig not exhaustive.
2. IMPROVING OF TSTIMATORS

2.1, Three techniques of improving upon of certain types of estimators have

been suggested. Goodman (1953) has shown that if + is an unbiassed estimator

of & and V(t) = X 92, wrere K is known, then & more efficient estimator from

the point of. the risk function

A(O)(t -'9)2, A(e) >0 (2.1)
where - A(6)" 1s a tunction of & , is miven by
1
! =
b K + 11.;’ (2,2)

An example of such a.situation.is provided by the estimator:

2 1 -2
S=n_1>§(yi-y) (2.3)




2 . .
of 0 ‘in case of a sample from a 'normal' population, Since

V,(sz) = n2-1 04,

a better estimator of - 02 -ig given by

Y
2 - —\2
ST S A2 -4
> Gy

2.2. 1In case of sampling without replacement, some estimators hawe been
given by Das (1951) and Des Raj (1956), which depend on the order in whidh
‘the units. are selected. Murthy (1957) has shown that corresponding. to any
estimator based on the order in which the units are selected, there exists a
more efficient estimator which does not take into account yggdggggr of selec-
tion of the units in the sample. The former may be termed Amestimator' and
the latter 'unordered estimator!', The technique involved in improving the
ordered estimator consists in taking the conditional expected value of the
ordered éstimator over all possible orders for a given unordered sample of
units as the unordered estimator. For instance in case of selecting 2 units
with varying probabi_lify without replacement, one of the ordered estimators
given by Des Raj is

Y - ..‘?_1.(1 ) 3_2..(1 ) (2
0o=32 L p, LR - pp)] 2.5)

where the order of selection of the units is (i3). The corresponding unordered

estimator which is more efficient than the above estimator is

o [ 2L () =21 - B (2.6)
u 2-p1-p2 pl 2 p2 1/.

2.3. In case of sampling With replacement Basu (1958) has.shown that corres-
ponding to any estimator which takes account of the number »f repetitions of
the units in the sample, there exists a more efficient estimator which is based
only on fhe distinct units in the -sample without teking into consideration the

number of repetitions. The procedure of improving the estimator is exactly
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the same as that explained earlier and consists in taking the conditional
expected value of the estimator over all possible repetitions of the given

set of distinct units. For instance,in the case of simple random sampling

with replacement the sample mean based only on the distincf units is more
efficient than the mean of the units in the sample including their repetitioms.
Similarly in case of sampling n units with varying probabilities wifh replace=-

ment, if n-1 units turn out to be distinct, then the improved estimator is

given by
e,
Ya=ilF (Zp‘ )] @D
1 B X
which is more efficient than the usual estimator = ( = -—pi); y' and p
) i=1 i

being the sample means based on distinct units.

2.4, The improved estimators obtained by using _the above techniques are in
general difficult to calculate except for certain particular cases and the

expressions .for their variance estimators are rather complicated.

2.5.  Attempts have been made to give generalised estimators in sampling
from finite populations [M:Ldzumo,(l%o),Godambe,(l955) sNanjamma, Murthy ana
Sethi,(1959), Godambe, (1955) and Roy and Chakravorthy, (1960)) have shown
that there does not exist 2 minimum variance unbiased estimator in the non-
parametric sense in sampling from a finif,e population. The above techniques
only help in improving upon certain class of estimators and not in obtaining

minimum variance estimators.

5« VARYING PROBABILITY SAMPLING

3.1+ Hansen and Hurwitz (1943) suggested selection of units with probabi-
lity proportional to a given measure of si'ze, as this provides efficient
estimators if the measure of ‘size is related to.the characteristic under congie
deration.  One procedure of selecting one umt with' probability proportlonal

to eize (pps) 'is to cumulate the sizes of units (C = C -t X3 1=1,2,...,N)
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and then to select the ith unit if C;; <RLC, vhere R is a rumber chosen

at random between 1 and CN' This method becomes time consuming if the popula-

tion size is large.
3.2. Lahiri (1951) suggested e simple msthod of selection of a unit with
pps Which avoids cumulation of the sizes. His method consists of
(i) selection of two numbers at random ,one from 1 to N (say i)

and the other from 1 to M (say R), M being the maximum of
the sizes of the units;

(ii) Selection of the ith unit if R £ X;» the measure of size
of that unit
(iii) rejection of the ith unit and repetition of the above

operations if R >Xi;' .
It may be easily showm that this procedure leads ‘to the required probabilities
of selection of the units. But there is possibility of rejection of certain
draws ‘and the probability of rejecting a draw is 1 = X/M, where % is the
population.mean of the'sizes.. The probability of rejection can however be re-
duced by considering the units with very large sizes as made up of two or more

split units.

1 is the cost per unit for cumulation, 02

unit for writing down the cumulative totals and 03 is cost of drawing a random

3.3. Suppose C is the cost per

number. Then the cost involved in selecting n . units with pps with replace-

ment will be

Ct = N(Cy + C)) + nCs (3.1)
for the cumulative total\method and
: M

oM = N.C‘l. +. 2n5(—_-:— 03 (3.2)

for Lahiri's method, since even in the case of the latter it is necessary to
get the total of the sizes for estimation purposes. Hence Iahiri's method is

t6 be preferred t6'cumilative total method from cost point of view if
] . C
1 N 2

< 2 (1 + n C3 )“

(3-3)

>ﬂ1§



If, however, the total of the sizes is already available, then Lahiri's method

is to be chosen if

O S
).

(3.4)

3.4, In sampling n units with pps With replacement, an unbiased estimator

of the population total is given by

A n Y. )
Y = -]; a = (305)
n P.
1 1

and its variance estimator is given by

A A 1 noy A2
.V(Y)=m%(;i"'f)- (3.6)

The above estimator which teakes into account the repetitions of -the units in
the"sample -.can be improved by'ﬁsing the technique mentioned in section 2,

3.5, Das (1951) considered the question of varying probability sampling
without I_'eplacement." In case of,sa}mpling n units with pps without replace-

ment, he suggested the ordered estimator

=

= I =

n
? d,i (3.7
where ‘

(1-p1) (1py-pp) o (1P Bp=eee = B3 y) 75

d, =" - —N
i (N=1)(Ne2) 200 {n =i+ 1) PyPyeeePy By

and an unbiased estimator of the variance of this estimator is diven by

Ay =2 1 g (-
v(d) = 4" - (= }jdjyj + l“l—]—'- PN djyjf,g. (3.8)
J=1 () 33n]

The ‘estimator given in (3.7) can be improved upon by using the technique
explained in section:2. For instance in case of n = 2, the improved unordered

estimator which corresponds: to this ordered estimator in case of s&mpling with
pps  without replacement is given by
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o _1- (1-py)+ == 5, = (1- =Py L I Y,
Sl Ty TR ) -9
P19, (2-p;=p,)
(1)@ =p,)

where P(12) =

3.6. In case of sampling with pps without replacement Horvitz and Thompson
(1952) suggested an estimator which does not. take into account the order of

selection of the units. The estimator suggested by them is

YHT = ? ‘T-t: (3.10)

where T is the probability of inclusion of the ith unit in the sample. An

urjbiased variance estimator in this case is

N8 2R Mgt ¥y s |
Tan (g = 5 (2=, )( ———) +23 3 =24 == b (3a1)
i=1 i=1 j>i ij -1 J

Since this variénce esStimator takes negative values often, Yates: and Grundy
(1953) have suggested the following variance estimétor which ‘takes negative
values less often than. (3.,11).

n T IR SRR
e p=Z 7 St o2 (5.12)
i=1 i ij i J

3.7. Des Raj (1956) considered a set of ordered estimators.in sampling

with pps without replacement and one such estimator is

== 34, (3.13)
where

y
ti = Yt pte et g (1-—pl “Py=s o= pi-l)'

The estimators (t., 1 = 1,2,..., n) are uncorrelated and hence an unbiased

variance estimator is given by

O - a2 (D) (3.14)



Thig estimator can also be improved usinz:the technique mentioned in section 2.
The unordered estimator corresponding to the ordered estimator in this case
for n =2 has been given in (2.6)., 1In the general-.case, the unordered esti-
mator corresponding to the ordered estimator given in (3.11) can be written

as I8 )
2 y;Plsii)
¥ i=1 :
u P(s)
where P(s) is the probability of getting the unordered sample of n units and

(3.15)

P(s1i) is the conditional probability of getting the unordered sample 's given

that the ith unit in the sample has occurred first.

3.8. Henumantha Rao (1960) has given selection procedures which give rise
to a given set of probabilities of inclusion of the units in the sample,
Murthy (1960) has pointed .out that a given set of probabilities of. inclusion
of units (m; *s) can easily be. achieved by selecting the units with probability
proportional to ni's systematically. The procedure consists in first obtain-

ing the cumulative totals of the m 's (C; =&, ; +. % 31 =1, 2, eeey N).and

then selecting the units systematically with a random stert from O to 1 and
with 1 as the sampling interval. Considerable #in in efficiency can be
achieved by arranging the units in some suitable order before selection.
Hartley and”Rao (1959) have consideréd this procedure of sampling when the

units are assumed to be in random ordér,

3.9. The efficiencies of the different e¢=timators considered in this
section have been studied for a samnle of 2 units seleeted from a small popu-

lation of 4 units given below.

Unit U1 U J U

2 3 4
y 0.5 1.2 2.1 3.5
x 1 2 3 4

P 0.1 0.2 0.3 0.4
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Tahle 1l: Showing the efficiencies of the different pps selection
and estimation procedures in case of the above mentioned
population for a sample of size 2.

rsli' selection procedure estimator variance efficiency
: | ()
1  pps with replacement %[_(yl/p1)+(y2/p2)] 0.50 60
2 pp8 without replacement YHT 0.82 37
3 e a 0.3% 83
4 ' Y, 0.31 97
5 pps sSystematic %‘[(ylypl)q-(yz/pz)]f0;30 100

4. METHOD OF RATIO ESTIMATION
4.,1. As the relationship between two characteristics is of much interest,

the question of ‘estimation of ratios of certain population parameters has
become quite important in many surveys. The method of rativ estimation is
also being used to estimate populatica totals, since a ratio estimator is
more efficient than the conventional unbiased ‘estimator under certain circums-
tances not uncommon in. actual practice. The usual method of. estimating a
population ratio has been to take the ratio of unbiased estimators of the
numerator and denaminator. .If y and x .are unbiased estimators. of Y

and X respectively, then an estimator of R(= Y/ X) is given by

N
and of Y is given by A
A
Y, = % X (4.2)

where x is a suitable. supplementary variate and the value of X is known,

4.2. The above estimators are biased. The bias and mean square error of

. N : ’
the estimator R correct to the second degree of approximation are given by
2 ,
B(y/%) = R(C - va) (4.3)

M(y/:c) = RZ(CBZT 4290ny + Ci ) (4.4)
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where ¢ and C are the coefficients of variation of X and y respece

' X y . ‘
tively and § is the correlation coefficient between x and y, Expressions
for the bias and mean square error of Y, can be obtained by multiplying

(4.3) vy X and (4:4) by X2 respectively. The above expressions have been
x=-X
X | |
degree greater than 2 in x any y-can be neglected. Thesé ‘assumptions are

obtained under.the assumptiens (i) | 1 <1 and (ii) relative moments of

likely to be valid if the sample size is suffiéiently large.  In recent years
evolve )
attempts have been made toégjmx selection and estimation procedures which

provide unbiased ratio estimators.

4.3, It is of interest to note that the relative bias in 'R can be

written as

n

., B(R) ..

= = A / .5Y

b= 'Q(R,x) CR Oy (4.5
S A
where Cﬁ -and Cx‘ -are the coefficients of variation of the estimators R
N

and x respectively and 9(§\ x) is the correlation coefficient between R and x
9

This Shows_ that the relative bias of the ratio estimater _wou,ld be small if the
sample size is large since in that case the coefficients of variation of fi\
and x are - likely to be small. Purther g(ﬁx’x) is likely to be nearly__zero if
y and x are approximately proportional. For instance.if CQ = 0.01, Qx=0.05

and 9(§\ x) = 0.05, then the relative bias is 0.000025 which is negligible.
, _

4.4. 1In case of ratio method of estimation for estimating a population total
using the date on a suitable supplementary variate, Hartley and Ross (1954)
have obtained a ratiom-type of estimator which is unbiased in case of simple
random sampling. - Suppose (yi’ Xi) are the values of the variates y and x
for the ith unit in the sample selected with equal probability without

replacement (i =1, 2, .,..n). The bias of the estimator

- - y
/Y\= r X, _(I‘ = % Z ;{-];) (4.6)

S i=1 i
can be gXpressed as

J
'B’@ = =N cov_.*_(}—'c-‘-,x). (4.7)
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gince cov ( %,x) can be unbiasedly estimated; the estimator given in (4.6)

can be corrected for iis bias and.the corrected estimator is. given by
Yl ai\-';x +l\1:_]-'..n(§-_£ ;C) . (4.8)
n=-1l
If the sampling is with replacement the factor (N-1) is to be replaced by N.

4.5. Goodman and Hartley (1958) have shown that for large samples, this
unbiased ratio-type estimator is more efficient than the usuval combined
ratio estimator ( & I X) if the slope of the population regression line of y

l ¥ However
on x is closer to T2 Z 4 then to & . . [this condition is not in general

cause ,
gatisfied: bz one would ordinarily use a ratio estimator only whehn the
regressign coefficient is expected to be near .Y/X. Hence the above condi-
tion ia rather restrictive and the proposed unbiased ratio estimator may be

less efficient than the usual combined fatio estimator in large samples.

4.6. It mey be mentioned that this technique of getting an unbiased ratid
estimator is applicable only if the value of the denominator of the population
ratio is known, which is the case when one is using the ratio method of esti-
maticn for estimating the population mean or botal using a suitable supple-
mentary variate, But in case of estimating a population ratio where usually
the value of the denominator is not known, it is not possible to use rthis
technique.

4.7. The above method can easily be generalized to the case Where Vs and
x, (i = 1,2, ..., m) are unbiased estimators of the populatlon totals Y and
X based on m interpenetrating sub-samples of the same size selected accore
ding to any specified sampling design. In this case an unbiased ratio-type
estimator of Y is given by

Yt =TX+ ‘_’_‘1(37-172), (4.9)
- 1 07
where T = ~ > ;{—:5- and y and x .are means of the sub-sample estlmates of Y
- i=l i \

and X respec tively.

Py ToofMaTTraranne

15, KAR 1984

boooggatnareyccoes seaese .
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4.8. Murthy and Nanjemme (1959) have developed a technique of estiméting the
bvias of én ordinary ratio estimator to anhy specified degree of approximetion
based on the interpenetrating sub-sample estimates. This estimator of bias
can be used to correct thé biased ratio estimator for its bias thereby obtain-
ing an almost unbiased ratio estimator. Suppose. (yi- “y xi) are unbiased
estimates of Y and X based on the ith interpenetrating sub-sample (i=1,2,e..,m)
If B "is the bias of the estimator
é?

1 5 A,
Ro=g 2 - {4.10)
m m pian
1=l e 3
and B, is the bias of the’ estimator _
Ry = £, (4.11)
x .
then

correct to the second degree of approximation. Hence an estimator of -the bias
B, vhich is unbiased to the second degree approximation.is given by

% _ Bk
1" m-1

. (4:13)

This estimator of the bias can be used to correct R, for its bias

1
and we get an almost unbiased ratio estimator

a DRy =R

R =By =By = —%g - (4.14)
It has been shown that under conditions not uncommon in practice, the estima-
tor RC is more efficiant than Rl' It may be mentibhedzl%ﬁgs technique unlike
that of Hartley and Ross can be applied to both the 31tuat10n of estimating

a pOpulatlon ratio and of estimating the population total using the ratio
nrethod of .estimation.

4.9. Pasoual (1961) has suggested the correction of the bias of ‘the estima«

tor R, using result (4.12) and an unbiased estimator of B sugge-sted by Hartley

and Roas. This gives rise to the estimator



=13

re Lx- BErGaiR) (4415)

X
in case of simple random:sampling without replacement. This estimatop is only
almost unbiased and not completely unbiased as in the case of Hartley and Ross
-estimator, but . this estimator is likely to be more efficient than Y' in large
samples. 1In case of with replacement sampling,(N<1) in (4.14) is to be repla-
ced by N. This result can also be utilized when e stimates based on interpene-

trating sub-samples of the same size are available.

4.10. If y_  and x  are unbiased estimators of Y and X based on the sth

samplé selected according tvo any given sample design, the ratio estimator

R, = % (4.16)

will be unbiased for the ratio . R( = Y/X) if the sample design is changed such
that P; ,~"che probability of selecting the sth sample,is proportional to Xy Ps
where Psis the probability of selecting the sth sample according to the original
sample design, that is, if

X
Pro= = i (4.17)
s X *
for,
y Z yS'Ps
E(R) = Z -—-s— P! = -s—-.-.——-—-____.R..
s x, s X

4.11. Murthy, Nanjamma and Sethi (1959) have given simple modifications of
many of the selection procedures commonly adopted in practice, namely, equal
probability sampling, varying probability sampling, stratified sampling and
multi-stage sampling, which, while retaining the form of the usual ratio esti-
matbrs, meke them unbiased. For many of the situations commonly met With in
rractice, this modification of a given sampling scheme consists esséntially
in first selecting one ultimate "sampling unit with probability prdportional to
its value of the characteristic occurring in the de-nominator of the ratio

and then selecting the remaining sample according to the original scheme of
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‘sampling., The authors have also considered the variance and the variance

estimators of the unbiased retio estimator for the modified sampling schemes,
4.12. TFor instance in case of simple random sampling, Midzuno (1952) snd
Sen (1952) has suggested selecting one unit with pps and then the remaining
units in the sample with equal probability without replacement. This makes
the ratio estimtor (¥ /i'i‘)x unbiased for Y. Similarly in cese of stratified
simple Tandom sampling Without replacement, the modification in the selection
procedure for getting en unbiased ratio estimator consists of selecting one
unit (say the jth unit in the ith stratum) with pps from the whole popula-

tion, (ni'-l)' units from the remaining N;-1 units in the. ith stratum and n,
units from Nj units of the jth stratum (J 74 i) with equal probability

without replacement. For this modified selection procedure the estimator

=

N, V.
1 171
Z= X (4.18)

N,
i

<y

N
Y =

Ml i
Wi

i=1 .

is unbiased for the population total Y.

4,13, The efficiencies of different selection and estimation procedures
congidered here have been studied for sampling 2 units from‘ the sm2ll popula-
tion of 4 units given in section 3. The results of this study are presented
in Table 2. |

Table 2. Showing the efficiencies of different selection
and estimation procedures.

f{ii selection procedure estimator bias mean = effici-
J ! . _8Q.error Cacy
1 pps and sts of the rempining (3/2) X - 0.34 88
2 equal probability without replacement ¥ - 5.44 6
; 49 r (y/%) X -0.15 0.39 17
: .l ' ¥ - 0.60 50

e '
" 0.10 0.55 55

6 pps systemati 1 2 7y

c 52 = - 030 on
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5. OPTIMUM STRATIFICATION

5.1. The problems involved in the use of stratified sampling are (i) choice
of a stratification variable, (ii) choice of the number of strata, (iii) deter-
mination of the points of demercation of strata and (iv) allocation of total
sample: size to the strata., The earlier objective develop‘nients in this field
were mainly confined to the consideration of problem (iv) mentioned above,
through considerable attention have also been paid to the problems (i) and (ii)
Dalenius (1950, 1953, 1957) studied in detail problems (ii) and (iii) and

evolved techniques of determining optimum points of demercation of strata.

5.2. Suppose the population under consideration can be represented by the
frequency function f(x), & < x < band it is divided into L strata by the
points x, i=1,2) eoey L=1). Let Wi- and ui be the proportion of

units and the mean value for the ith stratum,

%
W = / f(x) ax (5.1)
*ia1
b= jX11 xf (x)dx. (5.2)
; X, -
1

It n:.L units are selected from the ith stratum with equal probability, then

an unbiased estimator of Y is

L
X = 2_. Wl Xis (5'3)
i=1
and its variance. is 02
- . 2 i. .
V(x) = 2w (5-4)
i=1. i

to
5.3. If the units are allocated 7 the strata in proportion to W-i tg, then
the variance becomes

2
W, g, (5.5)

- 1
Vp(x)=n. ii

1

I Ve

1
The optimum points of demercation of strata in case of proportional alloca-

tion can be obtained by minimizing (5.5) with respect Z?xi (i = 1,2,...1=1)
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and they are given: by

B+ W
i i+l . .
Xi = “’5—“,(1 = 1, 2,.0. L-l) - (5.6)
T+ may be noted that the abowe condition is necessary but not sufficient.
In case of multi-modal functions there may be more than one set of optimum
demarcation points and that set which gives rise to''minimum minimorum ¢
is to be selected.

5.4. Tn case of optimum allocation, the variance of the estimator (5.3) is

given by,
L
wH == (I o). (5.7)

The optimum points of stratification in case of optimum allocation can be
obtained by minimizing (5.7) with respect to x, (1 =1, 2, veuy I=1). The

optimum points of stratification are given hy

2 2 2 2

o + (5 = W) Gt (%341 = Py (5.8)
o, - g ’

i i+l

(i = 1, 2, e sy L"l)o

5.5. Since the solution of (5.8) is in general difficult, attempts have
been made to evolve practical: srocedures which would achiesve approximately
optimum stratification., Dalenius and Hodges (1957) have shown that equili-
zation of W.0, in forming strata leaas to optimum stratification which
result had previously been conjectured by Dalenius and Gurney (1951).

Mahalenohts(1952) and Hansen, Hurwitz and Medow (1953) suggested the equa~
lization of W, in forming strata.. It may be mentioned that the later
procedure will be approximately optimum if the coeffieients of variation in
the different strata are roughly equal.

5.6, Dalenius has shown that for the population £(x) = e™* the design
‘Where the stratum having larger units is complete ly enumerated is less effi-

cient than stratified optimum allocation design if n/N is small. In both
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is
the cases, it /assumed that the stratification is done in an optimum fashion.

It is ‘surhised  that this result is'likely to be of general applicability.

5.7« Dalenius (3953) has studied the probtlem of determining the optimum

number of strata and has conjectured the following relatidnship

vE, 1) = ED?VE ). (5.9)

Since TV(X) ‘and cost function depend-on the sample size n and the number of
strata L, the optimum values of n and 1 which minimize the variance for

a given cost can be obtained empirically.

6.  NON-SAMPLING ERRORS

6.1. The question of assessment and control of non-sampling errors has

been receiving coﬁsiderable attention and suitable techniques are being
developed -for fhi-s;puri).osre,. Mehalanobis (1940, 1944, 1946), Mahalanobis
and Iahiri, (1960) .and Tahiri (1957) have suggested many imporfant,_te_cmiques
for assessing and controlling -errors in censuses and surveys. . Hansen and
otkers (1946, 1951, -1960) and Sukhatme and Seth (1952) hawe considered the
question oif,ri_on-.sam_pling.. errors and have developed a suitable mathematical
model. Popt-enumeration .checks and re—intérview surveys are.being made part
of some .of the nation-wide censuses and surveys S0 as to enable assessment

of - the non-s;ampling errors.

6.2. The broad sources of non-sampling errors, which are presént in both in
- oomplete enumerations. and sample surveys, :thouéh possidbly to ~va:ry,ing_’_degrees,
are.incomplete cowerage. of the population or sample (including non-response)
faulty definitions, defective methods of data collection and tabulation
errors. - In case of sample surveys _t_he_error,s may also arise from defective
sémplin_g frame and se lection procedures. More specifica'lly, -the non-sampling
errors may arise due to omission or duplication of units, ineccurate and
inappropriate methods of measurement, inappropriate arrangement or wording of

~questions, inadequate and ambigubus instructions, non-response, deliberate
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_or unconscious mis-reporting of data by respondents, carelessness on the part
of investigators and computers, lack of proper supervision and defective methods
of sarutiny and tabulation of data, sampling
643+ The conceptual get~up involved in _develo.ping a theory of[_errors in
sample surveys can be explained as Tollows. Suppose a sample has been chosen
to be canvassed under reasonable conditions of survey and there are two popula=-
tions, one of investigators and the cther of computers qualified for doing the
field and the processing work of the survey. If we repeatedly carry out this
survey. or the selécted units with different samples of investigators end compu-
ters chosen with some suitable sampling designs, Wwe may get different results.
because of the various possible sources of error present igzsngggathe usual
operétional conditions. Here there are three stages of randomizationiselec=-
tioh of units, investigators and computers. The difference between the expec-
ted value of the estimator taken over all the three stages of randomization
and the true value may be termed as total bias'. This consists of both
tsampling bias' and 'non-sampling bias'. The variance of the estimator taken
over 411 the three stages is & measure of the divergence of the estimator from
its expected value and is composed of sampling veriance, variance between in-
veStigators and variance between comwuters and some interactions between the
three sources of error. For instance the data collected by one investigator
may be affected by his misunderstanding of the instructions, his pre-conceived
notions about the survey, the earlier units canvessed by him ¢tc. Thus we see
-that the total error ccénsists of samplinzzgon-smPhng ‘biases, sampling and
non=sampling variance and some interactions between the sample and the sources

of non-sampling errors.

6.4. To fix the ideas let us consider the case where & simple random sample
of n umits drawn with replacement from a population of N units is divided at
rendom into k equal sub- samples of m units each and these sub-ssmples are
surveyed by k investigators selected with equal probability from a large
population of K investigators qualified for this work. Let an. and ¥,
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be the value reported for the ith unit . by the jth:-investigator and its true
value respectively. Suppose Yi 3 is the value reported for the ith unit in
the sample by the jth selected investigator. Here it is assumed that the
response for a unit is not affected by the responses of the other units in the

sample. - An estimator of the population mean Y is given by

O

- k m .
Y= 2 2 yij’ (n = km). (6.1)

j=1 i=1"
6.5. The expected value of the estimator (6.1) taken over the two stages

of randomization is

G-y oo =15y )
E(y) =% 2 Y: (. =% 2 Y..) (6.2)
N 121 i i /4 j=1 ij
and the tothl bias, which in this case consists wholly of response bias, is
- 1 N
By) =% % (8 -¥;). (6.3)
i=1

The v&ria.hce of this estimator taken over the two stages of randomization can
be shown to be

2 2
- Os Od
V@) = 0 +—[1+ (m-1)9] (6.4)
whe re ) . N j ” . - |
- 4 N ot I : ‘
= i=1
is the sampling variance,
N K
2 1 ] 2
GG I I by -vy) (6.6)

d=1 j=1

is termed 'simple' or 'uncorrelated' response variance, and.

k N
2 1
90 == T T 3@ g, T t) (6.7)
d  kN(N-1) =1 1=1 1k ij¥it Mivg L
where Q is the intra-class corrglation- among the response deviations in a

sample cenvassed by one investigator.
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6.6. The result in (6:.4) shows the contribution to the total variance from
responge variation and it &8lso brings out the impact of the intra-class corre=
1at10n among the responsas in a sample surveyed by one investigator (intra-
1nvest1gator correlation) on the response variance. The intra class correlaw
‘¢tion will be positive. if thé responmse deviationa for the different units have
a congistent téndency to be in one direction for one investigator and iﬁ another
directign_f_c;r another investigator. Even when 'fchis,cbrrelation is small, the
relative contribution to the response variation may be consigdereble if m, the
number of units surveyed by each investigator, is large. For instance if
Q@ = 0.01 and m = 1000, then the response variation becomes about 10 times more
than that in case of Q = 0.

6.7. An unbiased estimator of the variance of ¥y given in (6.4) is given
w

Y& - A 3 G-PG G-t Ty, (6.8)
) = e j;a ¥ =97 Gy =3 A .
648, Suppose the cost function is
c=ko+ ne, (6.9)
vhare ¢ 1 is. the cost of recruiting and training one investigator, 02 is

the cost of surveying onme unit and n = mk. The total variance given in (6.4)

can be written as

V()

it
+

(6.10)

2 2 2 2 .
where O = 9 Oi and O = G +'o.g . Minimizing the variance in (6,10) with

respect to n and k_ subject to the ‘cost restriction ($.9), Wwe get the
optimum values of k¥ and m as,

k = c

(6.11)
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6.9, A number of -empirical studies have been conducted in recent years to

and

assess the magnitude of the intra-investigator correletion coefficient for
different types of chiracteristics (Kish and Slater, 1960). It is found that
for factual items, the intra-investigator correlation coefficient ¢ ranges
from O to 0,02 whereas for subjective items it is about 0.04 to 0.08 and for

morbidity items it is as high as 0.1l to 0.15.

6.10.. ' In case of estimating a population proportion from a sample of n units
seleoted with equal probability with replacement and surveyed by a sample of
k investigators at the rate of m units each (n = km), the toral variance of
the sample proportion P. beccmes

v(p) = £, &' = B(p) and @' = 1 - P1) (6.13)

if the intra-investigator correlation coefficient is assumed to be zero. This
result is interesting because it shows that the expression which is normafl'ly
used as the sampling Vvariance of a sample proportion includes not only the
sampling variance but also the uncorrelated response variance (Hansben, Hurwitz
and Bershad, 1960) .. An unbiased estimator of the variance (6.13) is given

v A
ve)= 2L (g=1-p) . (6.14)

TN

of interpenetrating sub-samples
6411.. Originally Mahalanobis made use of the . ;techn;ique[in crop surveys to

find out ‘the differential investigator %bias,. For:this purpose, linked pairs

of grids (square parcel of land) were located at random on the maps in:the form
of dumb-bell shdped figures, one end of each flgure representln.g the grid belong-
ing t0 sub=-sample 1-and ‘the other end representing the grid belonging to sub-
sample 2. One sub-sample was investigated by one set of investigators and the
‘other sub-sample by an entirely different set of investigators independently.
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Under certain assumptions the student's t-test may be applied to the diffe=-
rence between the estiﬁates bagsed on the two—sub‘-samples %0 test the hypothesis
that there is no differential investigator bias at any given level of signifi-
cance. If the difference turns out to be stetistically significant, it means
that the direction and magnitude of investigator bias are not of the same
order for all the imfestigators. It may be noted that if the difference turns
out t0 be statistically insignificant, it does not mean that the investigator
bias is zero. -For this result:may be due to the'fact that the biases are

a1l of the same order and in the same direction.

6.12 . The.above method can well be appliéd to bring out the differential
effect of different tabulation procedures,; methods of data collection etc., -and
to bring out the variation over time. Suppose one is interested in finding out
whether intensive training of the investigators for a given sirvey is essential
or not. For this purpose, one sub-sample may be assigned to intensively
trained investigators and the other ‘sub-sample to "ihvest‘igators who have got
only superficial training. If the difference in the results obtained from
these two sub-samples turns out t0 be significant, there is Strong_ case for
adopting the method of intensive training in future surveys of a similar nature.
On the other hand if the difference was not significant, it would mean that

for this type of survey intensivé training is perhaps not essential.

6.13, The techniqpge of interpenetrating sub-samples may be used as a check
on the different operations involved in large-scale sample survey. Suppose
one wishes to have a check on the calculations at thé time of estimation.
For this purpose, the sample may be divided into k suitably linked samples
assigned to. k different groups of computors at.random and the estimates may
be obtained from each of these. sub-samples independently. If there is good
agreement between these estimates, for all practical purposes it may be assumed
with certain amount of confidence that the calculations have been done-'cbz‘rectlly.
If one of these estimates differs from the others (assuming k- is more than :2)

and if there is good agreement -between the remaining k-l estimétes, one naturally
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suspects. the calculations done on that sub-sample and gets that estimate recal-
culated.  Thus. it is seen tha£ suitable action can be taken on the basis of the
sub~sample estimates,thereby increasing the accuracy and utility of the final

resglis.

6.14. The technique’ of ‘interpenetrating sub-samples is. of help in calculating
the total variation especially in large scale sample surveys where a number of
characteristics are under -consideration. If there are k independent interpene-
trating sub-samples subjected to k different overations each vproviding a valid
estimate of the population parameter under consideration, then an unbiased
estimator of the vafiance of the estimator (mean of the sub-sample estimates)
is given by

1 k o . 1k
Eo 205-9, (6= E%y.) (6.15)

T

where ¥; is the estimate based on the ith sub-sample. It may be noted that

this procedure gives a simple method of getting an estimator of the variance of

y
a ratio estimator. If rs (= --), (1 =1, 2y ae.y k) is an estimate of the-
Xy
population ratio R ( = —) based on the ith sub-sample,then an- unbiased esti-

mator of the variance of

1 k
| ISty 3
RU= = B, (6.16)
‘ 1
is given by
I
1l
1) = ———— -
VR =gy Zo(xg - RY) (6.17)
be
Since ¥t M[shown that the varianceé 6f R! ‘and that of the combined ratio
estimator K.
RY = —-—1-{-—-— (6 .18)
. Z Xi

are approximately the same, (6.17) can be taken as an estimator of the

variance of RY,
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6.15; Suppose there are two agencies and two parties of investigetors within
each agency to conduct the survey. Then 8k (k béing an integer) independent
interpenetrating sub-samples may be selected and each party of investigators
in each agency may be assigned 2k sub-samples at random for being surveyed.

With this arrangement the total variation of the estimator may bq analysed as

given: helow..
source of variation — "‘dé‘g‘rees‘ of
freedom
betweer agencies 1
between parties 2
within error 8k-4
total ‘ 8k=-1

This analysis will help'in locating the stages of operations where there is
much of discrepancy. For instance if the between agency difference turned out
to be statistically significant, this would mean that the survey. has not been
carried out according to the specifications by one or both of these agencies.
Similarly a eignificant result for the parties will help in locating that

party which is not functioning according tc the specifications.

6.16. An illuminating exemple of a situation, where the sample survey
estimate turned out to be nearer the true value than the complete emmeration
figure, is provided by the Jute Survey in Bengal (India and Pakistan) during
the years 1944-45 and 1945-46. (Mahalanobis and Iahiri, 1960).  Jute being a
cash craop of international importance, accurate figures for productioﬁ become
available subsequently. The official forecast in these years were based on
complete enumeration of all plots. Sample surveys were. .alsov,dondudted by the
method of actual physical otservation of randomly selected plots. The results

of the enquiry are given below.
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Table (1): Comperison-of official.(complete enumeration) and
sample survey estimates with very reliable trade
figures, Bengal 1944-45, 1945+46.

sr. 4 " quantity (thousand bales)
no. % 1944-45 1945-46
(0) Q). (2) (3)

‘1, ‘trade figure 6728 1562

2. -complete enumeration 4895 6304

3. sample survev: 6480 7540

4, discrepancy between (2) and (1) - 27.2 ¢ - 16.6 ¢
5. discrepancy between (3) and (1) - 364 - 0.3

(Source: Mahalanobis, P.C. and Iahiri, D.B. (190); "ma’lysis of errors
in censuses and surveys with special reference to experience
in Indi&, 32nd Session of the Tnternatienal Statistical
Institute, Tokyo).

This interesting example shows that the sample survey.provided & more accurate
figure than the census because of the reduction in non'-sampling errors made

possible by confining the survey to a sample.

6.17. Another interesting case of response bias is provided by a study con-
ducted in central Towa, U.S.A. by the Iowa State College (Hendricks, 1956),
In this survey the figures for volume of corn in a sample of 50 cribs arrived
at on the .basis of farmers! judgement estimates were comparéd with the objective
meagurements got after the harvest, The result of this sfudy showed that the'
judgement estimate was about 15 ¢ below the objective figure.
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Table (2): Objective corn yield estimates compared with estimates
from reported data.
‘bushe 1s/acre

objective estimate

reported estimate

area sampled-

corn in adjusted  unad- adjusted to
fieid-  Lor loss .  justed net acreage
in harvest and 15  un=-
. : . derstatement
() _ L@ (3) (4) _(5)
Alabama (1948) 25 23.4 21.0" 24,8
North Carolina (1949) a 36.9 31.5% 37.2
Virgiria (1949) 55 49.5 £2.,0% 49.6.
10 Southern States (1954)  21.8 19,6 16.4" 19.4
Central Towa (1953 19.3 1.4 58,37 68.8°
Central Towa..(1954). 0 666 55,7 65.7

x: official estimatess y ¢ reported data.
(Source: Hendricks; W, A. (1956): Non-sampling errors in agricultural
surveys, Improving the Quality of Statistical Surveys, 31-39).

6.18B, The post-enumeration survey in the 19»0 Census of the U.S.A. showed

an under-enumeration of 1.4 $, which may be taken as the non-sampling bias

in that census. Similarly the post-enumeration survey in the 1951 census of

India showed &n under~ehumeration of 1.1 ¢b . and the non-sampling bias in

1956 Livestock Gensus of India was assessed to be about 15 ¢ (including

processing errors) for large heads by a post-census check survey.

belD The technique of statistical zuality control (SQC) may be applied
to census and survey work to assess ‘the quality of work and to improve the
out-going quality with suitable corrective action. For this purpose it is
desirable to use those SQC technigquer which have builtein devices for
initieting corrective action. More aitention is to be paid to control of
errors through SQC techniques than to acceptance plansg for finished work,
For a particular situation, the best plan is defined as that which ensures

ﬂ.le.highest out-going quality for a given cost or the lowest cost for a spe-
cified outegoing quality, There is considerable scope to apply S¢C techniques
for control of errors in case of large scale surveys because of the large amount
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Notes on Operations Research (CSR).

1, Introduction

In the last decade, we-have seen 2 rapid use of mathematics and
statist'ics‘in industry, economic planning, military strategy, a movement
called by various names. such as 'Operations Research', 'Management
Science!, 'Scientific Programming'. There has been & steady interplay
between a more careful formulation of business and logistics problems
and development of riew mathematical disciplines and tools such as linear
and non-linear programming, Queucing and Inventory Controi theory etc.
All these are concerned with the same fundamental task of scientifically

analysing various courses of.action and determining the tbest!',

A decision problem has four parts (1) a model (expressing a set of
assumed empirical relations among.a set of ‘variables) which is a suitable
abstraction of reality. (2) a subset of decision variables, whose values
are-to be chosen by the firm or decision making entity (3) an objective
function of the variables, which is to be maximized and (4) procedures
for analysing the effect on the objective function of alternative values

of the decision variables,

Decision problems cdn he classified according to mainly three
different criteria (1) static ond dynamic (2) deterministic and stochastic
and (3) the space ‘of available strategics finite or infinite dimensional
Though pure 'ma:the_mé,ticians are themselves usually pessimistic of the use
of infinity in this finité world, the:modern operations researcher looks
forward to the golden age of electronic computer and function séa(:es.
Common SenSe has. limitations which can be overcome only by deep and

complex mathematics.

P.T.0.
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The leading journal in the field is 'Operations Research!
(UeS.A.). Other journals are nperations Research Quarterly (U.K.),
Management Sciences (U.S.A.). The Naval Logistiecs Quarterly,-Econometx_vica,
and Applied Statistics (U.K.). The subject seems to be- of equel interest
to Mathematicians, Statisticians snd Econometricians, and may help in bridg-

-j:ng-:the'-’gap’betWee'h the three allied fields.

The first half of.the course will deal with methods of. O.R. which
can be illustrated with numerical examples, and is based on the following
books,

l. M. Sasieni, A. Yaspan, L. Fridman - Operations-Reséarch (methods
and problems)

2. S. Vazsonyil ~ . Scientiric programming in business and industry
3. S. Gass. ‘= Tinear programming - (methods and applications)

4. Churchman,: sckoff and Arnoff - Introduction to O.R.

The second half will deal with mathematical theory ot linear and
non-linear programming and relation to economic analysis énd will be
‘generally based on the following books.

1. S. Karlin - Mathematical methods and theory in Games, programming
and Economics (Vol, 1).

2. Gale - Theory. of Linear Economic models.

The following books are used for réference.

l. Samuelson, Dorfman and Solow - Linear programming and Rconomic
» analysis,
2% Koopmans (Editor) - Activity Analysis.

3. R.G.D. Allen - Mathematical Economics..

Time and personal limitations does not permit the author to talk
on advanced methods of Inventory Control, Dynamic programming and Queueing
theory. The following references on these may be consulted.

1. Arrow, Karlin and Scarf - Studies in theory of Inventory and
Production.

2. R. Bellman - Dynamic programming

3. P.M.Morse - Queued, Inventories etc.

4.gharucha Reid ~ Elements of Markov brocesses and applications.
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The book of Bartlett on stochastic processes and the series of
me thwen monographs on applied probability and statistics edited by him
are valuable for any O.R. mathematician, as are Blackwell and Girshick's

Games and statistical Decisions and Feller's book on probability.

An O.R. Mathematician will be naturally attracted to the allied
field of computational mathematics., The leading journals here are
Journal of Association for computing machinery (U.S.A.) and Journal of
Society for Industrial and Applied mathematics (U.S.4).

The following books are selected references.

1. Grabbe (Edited). Handbook of putomation, computation and
control (3 volumes)

2. Bodewig - Matrix Calculug

3, Householder - Principles of Numerical Analysis.

Two other topics interesting to 0.R. mathematicians are (1) the minimisa-
tion of switching functions with the help of Boolean Algebra and (2) the
problem of codirig in information theory. For topic (1), the readers may
consult the books of Phister and Caldwell and for (2) the papers of .
R.C.Bose and Bell System Technical Journal, especially yearé, 1955-56

contains valuable articies on these topics by Slepian and Mc Closkey.

Good Case Histories of 0.R. are very Scarce, probably because the
firms are reluctant to give out the information. The leading O.R.
practitioner in industry seems to be A.W.Swan (U.K.) and he has wfi_tten
two survey articles including 2 l~rge number of case histories, one in
the latest 'Productivity - measurement Review!, and another in the section
on 0.R. in the book 'Handbook of Industrial Menagement' edited by Grant
and Ireson. The O.R. practitioner has very little t,ime:for mathematical
theory and research. . He has to rely on common sense and simple statis-
tical techniques, XKnowledge of Industrial Engineering, Time and Motion
Study and Costing seems to be of more use to him that mathematical

methods of decision processes. It may take & long time before the gap

P.M.OL
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between academic and professional interests can be filled out. Irwin
and Co. (U.S.A) are bringing out & useful series of books on scientiric
management, two of which are

1. Bowman and Fetier - Production analysis for management

2. " e ~ Analysis of Industrial operation

For history of O.R. as well as case histories, reference may be
made to

1 and 2. Mc @loskey and Trefethon =~ 0.R. for management (2 vols.)

3. Flagle (Edited) - O.R. and System Engineering.

The first book on 0.R. is by Momeand Kimball (1951). It only use
caleulus and elementary probability in the problem of himhing for a
submariné. vThere 0.R. is defined as 'a scientific method of providing
executive departments with a quantitative basis for taking decisions
regarding operations under their control!'. P.M.Morse is a physicst,
nead of 0.R. department at M.I.T., first president of O.R. Society of

TeSeAs and we close with a quotation from him,

'‘What characterizes Research, or distinguishes it from other acti-
vities like engineering, or administration, is ‘that Research is aimed

at understanding rather than immediate practical use. Centuries of

human experience have shown that such understanding is necessary before

results of a practical nature are realised',

Some more useful references:

1. Bibliography of 0.R. (ORSA)
2. Saaty - Math. methods of 0.R.

3. Morgenstern (Ed) - Economic Activity analysis
4. Goode and Machol - System Engineering.
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2, Linear programming - introduction

From the economic (or indusjgri&.l) point of view, programming deals with the
problem of allocation of existing resources among different activities to be per-
formed, so as to maximize the over all effectiveness subject to limitations on
either the amounts of resources or the way in which they can be spent. For compu-
tational tractability, we first take up linear programming which is concerned
mathématically with the problem of maximisation or minimisation of a linear function
of several variables, subject to geveral linear equations and/ or inequalities
(iné luding restrictions of non-negatiyity on some ‘of the variables). Any inequality '
can be changed into an equation by the introduction of a slack (new)’vériable, and
an unrestrained variable can be expressed (replaced) as the Aifference of two new
variables which are restrained to be non-negative. Thus the general L,P,problem
can be transformed into the standard canonical (or simplex) form viz. Maximize

c'x éubject tox >0, AX=b n non-negative variables subject tom (<n) eq’uati"ons.

The earliest example of IL.P. is the Hitchcock <~ Koopmans transportation ‘prob-
lem, formulated in 1941 and solved in 1947. Given m origins or factories with
stocks or supplies of & commodity 885 oue % respectively and n destinations
or retail stores with demands byb, ... b with total demand not exceeding total
supply, and also given the cost matrix cij’ cost of shipping a unit amognt rrom,
ith origin to jth destination. To determine the quanti’cies xi. to be shipped

from ith origin tor jth destination, so as to minimise the total cost 3 ¢y %5

*

Restraints are xij >0 z xij =a.,3 »X..=b.

i? £ %3 3
J 1
The next example was the diet problem of Stigler (1948). Given n foods and

m nubrients (vitamins, proteins etc.), aij the amount of ith nutrient in a unit
amoq.nt Of‘jth"fbod,‘ bl = the minimum amount of ith nutrient; oy = the cost per unit
amount -of jt}a qud. Io determine .the qgantities Xy +»s X Of tie n foods to be
purchased s0 to minimise the total cost ol the diet .3 © X, and so as to satisfv

the minimum requirements 'xj 20 2 a,, xj 2 by
j ‘
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The problem of Assigmment (origin not clear probably Brogden 1946) of n
individuals to n jobs so as to maximize total effectiveness, given the matrix Cij
of . effectiveness of ith individual in jth job , was later on discovered to be a
particular case of transportation problem, with additional constraints xij=o or 1
However, the problem is highly degenerate (in a techmical sense to be made precise
later on) and the standard transport&tion technique is not efficient for soliri'n"g
this problem. A highly ingerious method using entirely new ideas was ‘found out
by Kuhn (1955) using results of graph:' theory. This is called Reduced Metrix
method.  This and allied work on net work flow problems by Ford, Fulkerson and
Gale, form. the.main part of what.is known as Integrel programming for which no
general theory is yet available.

Another interesting and early L.P. problem is the Activity-analysis problem
(Koopman 1951) or Linear progremming analysis of the firm. A mamufacturer or
firm has fixed amounts bl, bm of m resources (raw materia_l, labvor, equipmenty
capital)., These can be used to indulge in several different activities or to
manufecture several different products (n in number), Given the input matrix aij
the amount of resource j required to produce one unit qf commodity Jj . and cj the
profit per wnit of comodity j produced. The problem is determine Xy ees Xy
the levels of the activities or the amounts of the products so as to maximize the
profit Z ijj‘ Restraints x5 >0 Z 3 5 x5 £ b i.e. the total amount of ith
resou.rceaused must not exceed the gigeh bi' The importance of this problem is due
to the eeonomic -interpretatiohavbf‘its so called dual,

We shall later on study the more generil activity problem where there is no
dist::fcnc;t'i.on between inputs and outputs . and also the non-linear prOgraming x}erSioﬂ

Other famous problems of L.P. are (1). Caterer's problem: Jacobs (1954);(2)
Production Scheduling problem (Megee); (3) The ware house problem (Cshn);(4) The
travelling salesman problem;(5) Transhipment problein' (orden)s (6) Generalised
transportation problem (Dantzig) .«

Special computing techniques are availeble for these special programming

problems. Hosts of examples of L.P. in industry (Chemical, petroleum, Coal paper)

contd.
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and farm management are available in literature. These are problems of general .
type and the most satisfactory method (general) is the simplex method of Dentzig,
inspired by conversation with Von-Neumann, All the leading mathematicians in 0.R.
are students, friends and /or admirers of the two famous men A. Wald and J.V.

Neumann.

3. Nature of solution of L.P.problem and 8implex method

¢onsider the canonical L.P. problem max p,__'x subject to Ax = b and x > 0,
The set af-2l1l x > 0 s3fisfying amr~=2eh is called the
set. of Feasible solutions (K) and is a convex set d.e. X, y €K => \x '+ (-A)y € K
0£AK1l. An extreme point (br cofner) of K is a point which cannot be expressed
as a proper convex combination of two other points € K. Now there are 2 possibi-
litiesy (1) K is void i.e. the problem is not feasibles (2) K is not empty, i.e.
the problem is feasible. Now there is a theorem saying thet if X is feasible,
then ¥ has at least one extreme point. The simplex methoci hastwo phases. Phase 1
is aimed at finding out an extreme point of XK. It is a .constructi'vve method which
in finite number of steps enables us to find out whether X is empty and if it is
not, to arrive at an extreme point of X, thus going a constructive proof of the
above theorem. On many occasions one may be able to get an extreme point of X
without going through phase 1. Having got an extreme point‘of.K, we startv .
phase II. This first tests .whethér this extreme point is an optimal solution
and if it is not,either (1) gces to an adjacent extreme point having a higher
volva: for the preference function, or (2) discovers whether the preference function
is unbounded over K. 4s K has only ¢ fiulie nunber of extreme points, phase II
will converge in finite number of steps. But the number of éte‘ps (or iterations)
required eemnot be known before hand and thus it is a finite iterative method, and
not & direct or analytic method which will either give an explicit formula for the
solution in terms of orginal data (or coefficients) or enable us to compute the
solution by perfomming a predetermined nvmber of operations on the coefficients.

Iet us assume at first that the m equations in Ax = b or x,P, = b indepen-

dent, Selecting any set of m independent columns (variables) and putting the

P.T.OC
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remaining nem variables equal zero we get a basic solution which will be feasible
if the solution is non-negative. = A non-degenerate basic feasibksolution is a
feasible basic solution with exactly m positive X For simplifying proof and
procedures, we shall first make the assumption that all basic feasible solutions
are non~degenerate. Every basic feasible solution corresponds to an extreme
poirit of XK.

Theorem 1. (xl ... X ) is 2n extreme point of K if and only if the positive
xj are-coefficients of linearly independent PJ in Z x P = b,

Thus -there are at most (m) bases or extreme pomtsz for K and if K be bounded
them it will be the convex polyhedron.of these extreme points,

‘Theorem 2. A linear function over a convex polyhedron attains its maximum
at an extreme point. If it attains its maximum at more than one extreme p01nt,
then it takes the sdme maximum value over the sub-convex polyhedrOn generated by
these extreme points.

pPhase IT of simplex method.  Let the first m'col. vectors of A (without

loss of generality) be' independent and give a non+degénerate basic feasible solu=-

tion (Xq%; wets X 5 0 oo 0) XyP) +'X5P, + oo+ X{P =D x, >0 and let
Z = X0q + eee 4+ xmcm the corresponding value of the objective function.,
Ex ress the J v = P
. P P;'s in terms of‘ this basis. Py = X3Py + ngPz oo v X Py
J=1,2,..n and define the quantities 2z, = X, + oo + X _.¢ . Then we do the
_ J ij ‘1 mj m
following simplex optimality test.
The orem If 252 ¢y for all j, then the given solution is optimal.

Proof:  Ilet ylPl # ...+ ¥ P =b be any other solution and let

c LI d 2 = * )
Y989 + wee + ¥, C = Z*. Then z_ > z* as we shall show. Slnce 5 £ 2y

Z xi .P, . Hence,

n
Z* Sylzl Toeee Y 7. We have 2 y.P. =Db and P,
Z 3=1 J J J i=1
y X..P. = b or X, L) ‘ . = Sh P Y -
J 52 Fah 'IZ ( ?‘YJ IJ) P, = b and since b > x;P; and the expres

sion in- ) i i i
n-tems of the basis P, is unique, 2 y.X. . = X

Jis i

contd.



Now Z* z.and z. =2 X..c., ., Hence
N AQIpLE j % i

i

If this optimality test does not hold, we must have at least one Cj >Z
Theorem If e > Z for some j, then we have two cases.
Case 1. If for any of +hose J for wh:Lch C > 7 5! we have. x < 0 then
we can have a set of solutions tending to 1nf1n1te value of the ,obgectlve func-
tion.
Case 2. If for all j for which C > Z s . we have at least one i £or which

> 0, then 4y 1nclua1ng any such P ’ and dr0pp1ng that P for whlch = is

1J
minimum and > O, we can get a new (adjacent) basic feasible solution having a

higher value for z,

Proof. X.P. , - P.=b and P = x,.P. . Hence
211>l+e;1?J CR 2133

% (xi - 8 xij)Pi + GPJ. = b and the corresponding z = 2, (xi—e xij)ci + 6 °5 =
Z +06(C, -2.).
o+ 8(Cy = Z,)

If all xij £ 0, then 6 can have any positive value and hence z =) oo, If at

least one xij > 0, then the maximum value of © which will 8%ill give a feasible
X,

golution is 8 = minimum _L_ over those i for which x. . > 0. and for this o ,

oy Cox, . 1d 0

ij :

upon the non~degeneracy assumpbtion, eo > 0 a2nd the minimum will be attained at a

unique i. It can be shown that the new set of Py «es B s PJ. after dropping P,

will be a basis.. In géneral, we can include any Py ‘having C; > 2y, but it is

found empirically the most convenient and effective rule is to chose that, j

for which (Cj - Zj) is maximum., Let max, (CJ. - Zj) = Zk -C. >0. P isto
x, ' X
be introduced. Compute 6 = min =~ for x,, > 0= —— . P_ has to be
o] . X, - ik X T
i ik kK
droppei. The new solution is P_ = ¥;Py + eev + WP + oon 4 ¥y, P, Where
Yy = —}-c:‘—k and Yy =X =¥y X for i 4 r. Similarly to express Pj's in terms

P.T.0.



of the new basis,

Pj=yljpl+.-e+yijk+on-+y P

nj m
X_.
= —?-l = - Y - .' = .- - . - \
where Ties %, and Vi3 = %45 " Yiej X The new ¢ 525 (cj Zj) yk;j(ck‘ z, )

and the'new -z = -2 _ =~ yk(,ck -'zk).

The whole computation can ke arrangd in a tabular form and succeeding
simplex tableaus can be got by sweep out process which can be carried out even
by a computer with just SSIC education. Having chosen k and r, divide rth row
by x, to make the element in the (r, k) cell ynity, and with the help of this

new row sweep out the other elements of kth column to zero.

If the problem were in activity form Ax b (b > 0), we can immediately
write down the initial simplex tableau withcut going thro' phase 1, In the
general case AX = 'b, if omscpax by general knowlédg‘e of the variables of the
problem, and/or by trial and error. one can get a basis B(m -x m) of columns-of A
such that x' = B-l b > 0, we can write down the initial tabﬂ.é.au:.:;wivth“ the help of
B'l. In general, one may guess a few of the important ‘variables which will be
in the 0ptimal solution but no fool=proof method for getting & basis with these
variables is available, In general, we do not know even whether the m equations
are independent, let alone a basie fesmsible solution., Two ways out of this have
been suggested. A phase I, which is to apply simplex method to the maximize

-2, y; Subject to Ax + Iy = b and non-negativiﬁy (without loss or generality
b > 0)s If this results in y‘-_- Q, we hé.ve a b.f.s. for original problem,
Otherwise it is' not feasible. Anothér way is the M-Method, max ¢'x - My sub.

Ax + Iy = b and non-negativity, where i is a large no, (not necessary to
specify it).

A small example:

Max, % = 3;:1 + 5x2 + 4;:3 "subject to0 non-negativity and
2%y + 3%, 8, 2%, + 5%z < 10, 3%, + 2x, + 4xs < .,

contd,
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Introducing slacks x'4, xs, X, e have the first Simplex

tablean
‘ P, P, Py Py Py P } b _Jl
P 4'1 3 0 1 0 0 8 |
|
Pe I o 5 , o
Pl 3 2 4 0 0 1 5 |
- |
¢.~2., 3 5 4 o 0 0 0=~>(=-2) |
RSN |
P2 enters and P 4 drops out. The second tableau is
| P B, Ps B Pg B | b
P Y. S 0 1/3 0 o 8/3 }
P | —4/3 5  -2/3 1 o0 14/3 |
Pl 5/3 4 -2/3 o0 1 2y |
C -, : -3 o 4 -5/3 0 0 -do/3->(-2)
|

The second solution is thus x, = 8/3, Xg = 14/3,‘x6 = 29/3, x, = X3 =%, =0
and the new increased value of Z = 40/3. Twd more rownds will give the answer
X, = 50/41, x5 = 62/41, x) = 89/41, X, = %5 = ¥ = 0, 7 = T65/41. See

P.233 (Friedman).

The following economic (common-sense) significance of simplex optimality
test is from Samuelson, Solow and Dorfman vp.164..

A basic feasible program is optimal if and 'only-if the included activi~
ties are such that no excluded activity is more profitable than its equivalent
combination in terms of the included activities.

Here are ‘two very good practical examples of L.P. in Agriculture one of
(maximising) Activity analysis variety and the other of (minimising)diet’

variety due to Waugh (Econometrica 1955 and. Journal of Fam Economics 1951).

P.T.O.
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1. Allocation of Iand, Capital and Iabor for a Farming Enterprise

(Table showing the quantity of resources required for each product,

resources available . and the net profit on each product).

Products available

Resources Potato Corn Beans Beef C(abbage. Lettice resources
Spring land 1.0 1.0 1.0 1.0 - - 60
Fall land - 1.0 1.0 1.0 1.0 1.0 60
Production capital 99.4 37.8 19.8 27.2 T4.8 53.0 2000
Jan .~Feb. labour 2.4 1.5 - - - - 351
Mar.-April Iabour 2.0 2.0 - - - - 448
May~June Iabour 1.8 3.3 . - - - 479
July=-Aug. labour - - 2. - - - 388
Sept.=0ct. Iabour - - . - 19.1 12.4 424
Nov.-Dec. labour - 3.0 4 - 9.1 26.7 359
Net profit 83.4  T2.4 27.3 20.7 455

36.0

2. Minimum-cost dainy-feed diet

(Table showing unit costs and nutrient contents of 10 different feeds

and minimum requirements).

" Gontents feeds
Corn oOats Hilo Bran Flour Ljinseed Cotton
Nutrient 78.6 70.1 80.1 67.2 8.9 77.0 70.6
Protein 6.5 9.4 8.8 13.7 16.1 30.4 52.8
Calcium .02 .09 .03 .14 09 .41 +20
Phosphorous 27 34 2300 1.29 W71 .86 1.22
Urit cost 2.4 2.52 2,18 2.14 2.44 3.82 3.55
Bean . Gluten Homing Requirements
78.5 76.3 84.5 14.2
37.1  .21,3 8.0 14.7
.26 .48 .22 .14
+39 .82 .71 .55
3,70 2.60 2.54
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3. An application of L.P., in planning (T.P.Chowdhri)

A]l employable persons are classified into six categories and the number
of employments (in 1000's) created in 5 indiictries for an investment of Rs.100
crores is given below (included in the first Table). Prepare an investment

plan which will minimise total investment and will create at least 10, 12, 15,

8, 20 and 10 thousands respectively in the above categories.

Let xl oo x5 be the amount to be invested in the five industries and

Xg oo x4 be slack variables (excess employment in each category). The problem
5

> x; and to. satisfy the
7

is ‘to determine Xq e x5 > 0, s0 as to minimize

restrictions given in the following table,

gnaniggooym;nt xl x2 x5 x4 x5 .x6 x7 xa -x9 Xio .xl1 g:g:ixe-
1 49 .64' .39 .18 62 -1 10
2 59 LT6 .12 30 .13 -1 12
3 35 54 45 B3 54 -1 15
4 16 100 150 W32 L3R -1 8
5 3,08 2,18 1.22 2,32 .20 -1 20
6 Jdo .10 .10 10.52 .10 -1 10

The problem is of the diet type.
unit matrix, so as to enable us to write down a first feasible solution,
include six artificial vectors and go thro' first phase is too long.

suggests & method by which only one artificial variable is included.

Because restrictions arc all >, we do not get

To

Gauss

ing method is offered by the author to get a first feasible basic solution

easily,

The idea is to chose one of the industries and try to find the minimal

P.T.0,
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investment in that industry necess:ary to provide all the minimum requirements,
b

We have 1n.equa11tlesbof the type a,; %y 2 b, % 2 FT and the smallest
value of Xy is max. -5-'1 . In this case, this happens fdrl i =6, and x1=10/.10=l(1
i

An investment of 100 crores in the first industry will meet the requirements and
give a basic feasible solution with Xyq = the sixth sleck variable = 0, also
Xp = Xz =X = Ag = 0, and Xgy eovs Xpp other slacks positive. To translate
this idea into a first simplex tableau having a unit matrix, we have to divide thl
lagt row by its first element .10 to make it unity, and then make other elements

in that column zero by subtracting every other equation from a suitable multiple

of the new last equation. Here is the simplex tableau.

B, B Py Py B Pg Py Pg Fg Pip P Py

Pg © -.15 .15 51,31 -~ ,13 1 - 4.9 39

P7 0 ~.17 -,13 61.77 .46 1 - 5.9 47

P O "019 -.lO 36.29 - 019 1 - 3-5 20

0 006 ool 16 051 - 016 1 - 106 8
Py 1 1 1 105'.2. 1 o ~10 100 B
ﬁ‘cj X 0 0 104.2 0 x x x x x =10 1oo->(i)_

P, is the next vector to go into the basis, After 3 or 4 roinds we get
answer X, = 0, X, = 9.79, x5 = 0, x, = 13,54, X5 = 6.80 . Total investment =30]

crores. We might have guessed that x, is most likely to be in the optimal solutil

4

and might have got a quicker answer by introducing x5 at first instead of X
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Nutmix problem

A manufacturer wishes to determine an optimal program for mixing three
grades of nuts consisting of cashew-nuts, hazels, and peanuts according to

the specifications and selling price given in Table 1 and capacity limit on

the inputs and buying prices given in Table 2.

Table 1 Table 2
Mixture Specifications Selling price Inptits Capacity Price
As / 1b. ' _ ib / day 48/1b
1 at least 50 ¢ 50 Cashew 100 65
cashew-nut ,at .
most 25 ¢ peanut 100 25
peanuts Hazel 60 35
2 at least 25 % 35

cashews ,at most

; {Charnes Cooper Henderson ~
50 ¢ peanuts

Introduction to L,P.)
3 nil 25

Production Scheduling

Find the minimum cost production schedule for a single product for the fivst

six months of the year where it is planned to meet the following sales forecast
Jan. Feb, Mar. Apr. May June

Si 500 100 1050 1230 1140 900

R = unit inventory cost = Rs 5 per month per unit (includes storage and intere:
charges on goods tried up). "

P - unit overtime cost = Rs 9 per unit (includes cost due to drop inefficiendy
m - Regular time capacity = 9OC units per months

n = Overtime capacity = 200 units'per month

X, - Amouné'of regulare production in itk month = ?

yi- pmount of overtime production in ith month = ?

Any normal costs such as regular labor, overhead, and raw material costs, whic
must be borne at some time if the schedule is to be met, can be disregarded as
they are unaffected by the schedule. The costs affected by the schedule are

essentially only added production costs such as overfime, and inventory costs
resulting from the time of production.
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Solve the following transportation problem

store ~ supplies
1 9 12 9 6 9 10 5
warehouse 2 7 3 T T 5 5 6
3 6 5 9 11 3 11 2
4 6 8 11 2 2 10 ]
Requirements 4 4 6 2 4 2

A steel mill produces three types of coils, each made of & different alloy.
The process flow chart looks like Fig. 1. The problem is to determine the
amounts of each alloy to produce, within the limitations of sales and machin

capacities, so as to maximize profits.

/dr‘{Lt‘ | | {X -. [ ,J

\/
|
|
|
v

L5 and T daon

Moy 3 T >, \‘ >

Data on capacities and profits are given in Tables 1 and 2,
Table 1
Machine No.of 8~hour Shifts Down time,
___machines per week s
Box anneal 4 21 5
Strand anneal 1 20" 10
Tandem roll 1 12 0

contd,
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Tahle 2
Alloy Operation Machine rate Sales Profit
potential per ton

1l Box anneal 28 hr per-10 tons 1250 tomns $ 25
Tandem roll (1) 50 ft per min per month
Strand ameal 20 ft per min
Tandem roll (2) 25 ft per min

2 Box anneal 35 hr per 10 tons 250 tons $ 35
Strand anneal 20 £t per min per month
fPandem roll 25 ft per min

3 Strand anneal 16 f+ per min 1500 tons $ 40
Tandem roll 20 £t per min per month

Coils for each alloy are 400 féet long and weigh 4 tons. Set up the
objective function and the restrictions, from which a simplex golution

to the manufacturer's problem might be obtained.

The strategic bomber command receives instructions to interrupt the
enemy's tank production. The enemy has four key plants located in separate
cities, and destruction of any one plant will effectively halt the produc-
tion of tanks, There is an acute shortage of fuel, which limits the supply
to 48,000 gallons for this particular mission. Any bomber sent to any
rarticular city must have at least enough fuel for the round trip plus a
reserve of 100 gallons,

The number of bombers available to the commander and their descriptions are
listed in the following table,

Bomber Miles
type  Description per Number
gallon gvailable
1 Heavy 2 48
2 Medium 3 32

Information about the location of the plants and their vulnerability to

attack by a medium bomber &nd a heavy bomber is given below.

P‘T.Ol
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Distance Probability of destruction by
Plant from base, a heavy bomber a medium bhomber
miles
1 450 0.10 0.08
2 480 0.20 0.16
3 540 0.15 0.12
4 600 0.25 0.20

How many of each type of bomber should be dispatched, and how should they

be allocated among the four targets, in order to maximize the probability

of success 7

that fails to destroy

ite)

(Assume that no damage is inflicted on a plant by a& bomber

The sales forecasts for a certain product, by months, are given below.

January 3,000 July 10,000
February 3,000 August 6,000
March 4,000 September 4,000
April 6,000 October 3,000
Mey 8,000 November 2,000
June 10,000 December 2,000

It costs § 1.00 per umit to increase production from one month to the next,
and $ 0,50 per unit to decrease production. Production scheduled for the
month of December in the current year is 2000 units, and it is estimated
that the inventory level on January 1 will be 1000 units. Storage capaciyy

is limited to 5000 units at any one time,

Show how to obtain a production schedule for the coming year that will
minimize the cost of changing production rates, while at the same time
insuring that sufficient stock will be available to meet the sales forecast
at all times. (Assume that production scheduled during 2 month becomes

available for shipment just in time to meet the current month's sales demar

4 ship has three cargo hbolds, forward, aft, and center. The capacity limif

are:
Forward 2000 tons 1000,000 cubic. feet
€enter 3000 tonms 135.000 cubic feet
Aft 1500 tons 30,000 cubic feet
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The following cargoes are offered; the shipowners may accept all or any

vart of each commodity:

Volume per ton

Commodity Amount, tons cu Tt Profit per ton, 3
A 6,000 60 6
B 4,000 50 8
2,000 25 5

In order to preserve the trim of the ship, the weight in each hold must
be proportional to the capacity in tons. How should the cargo be distri-
buted so as to maximize profit ? {Note: Since the restrictions will
contain an equality, the approach suggested in the previous problem may be

needed in order to obtain 2 numerical answer,)

A trucking company with $ 400,000 to spend on new equipment is contenm-
plating three types of vehicle, Vehicle A has a 10-ton payload and is
expected to average 35 miles per hour. It costs $ 8000, Vehicle B has a
20-ton payload and is expected to average 30 miles per hour. Tt costs

3 13,000. Vehicle C is a modified form of By it carries sleeping quarters
for one driver, and this reduces its capacity to 18 tons and raises the

cost to 3 15,000.

Vehicle A requires & crew of one man, and , if driven on three shifts per
day, could be run for an average of 18 hcurs per day. Vehicles B and C
require a crew of two men each, but, whereas B would be driven 18 hours
per day with three shifts, C could average 21 hours par day. The company
has 150 drivers available each day and would find it very difficult to
obtain further crews. Maintenance facilities are such that the total
number of vehicles must not exceed 30. How many vehicles of each type
should be purchased if the company wishes 10 maximize its capacity in

ton-miles per day ?
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9. A plant makes two products, A and B, Which are routed through four

processing centres, 1, 2, 3, 4, as shown by the solid lines in Fig,

T

TSV R

If there is spare capacity in center 3, it is possible +t0 route product A

through 3 instead of going through 2 twice, but this is more expensive.

Given the information below, how should production be scheduled so as to
maximize profits ? [By a 'production schedule! is meant the specification
of the following three amounts: (1) the daily amount of rew meterial used
for A, regular route, (2) the daily amount of raw material-used for A,
optional route, (3) the daily amount of raw material used for B. Assume

that sufficient storage capacity is available at no additional cost.].

contd. .



2]

Table
- .
g;?:t ’ g Rurnming cost
Product Center per hr. recovery costsper hr
1 500 90 150
2 (1st pass) 450 95 200
A 4 250 85 180
2 (2nd pass) 400 80 220
3 350 ™ 250
1 500 90 300
B 3 480 85 250
400 80 240
Sales Maximum daily
Raw material price per sales, gal of
Product cost per gal finished gal finished product
A 5 20 1700
B 6 18 1500

Centers 1 and 4 run up to 16 hours & d2y; centers 2 and 3 run up to
12 hours a day. A final restfiction is furnished by shipping facilities,

which limit the daily output of A and B to 2 total of 2500 gallons.,
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Example of phase 1. maxX X, + 2X5, Sub X,y X, > 0, = x4+ 3x, 10,

1+x2_§_6, xl-x2<2, x1+3x22_6, 2x1+x2'_>_4.

Rasgis Xy X, x3 x4 XS Xg x7 X x9 Solutions
x5 -1 3 1 10
X A 1 1 1 6
xg 1 -1 1 2
s 1 3 -1 1 6
%y 2 ' -1 1 4
Wj -dj 3 4 -1 -1 10
X -2 1 1 1 4
X, 2/3 1 1/3 ~1/3 4
x5 43 1 -1/3 /3 4
Xg 5/3 /3 -1 -1/3 1 2
wi-d, 5/3 /3 -1 -4/3 2
X 1 /5 -6/5
Xy 1 /5 2/5
5 1 -3/5  4/5
X, 1 1 =2/5 1/5
X, 1 /5 =3/5
wj -dJ. -1 -1 0

-2 440 ~3/5 -1/5 22/5
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Duality in Linear Programming

1, Canonical Simplex form (Unsymmetric)

Primal (P) max, ctx subject to Ax = b, x> O.

Dual (D) min. bty subject to y'A > c' y unrestricted.
If x be feasible (P) and y be feasible (D), y'b = y'Ax > c'x.
Hence, P is bounded above and D is bounded below and Min. D > Max. P. Now it
can be easily shown that if x, y be feasible for P and D and ¢'x = bty, then
x &and y are optimal, Also, it follows Max. P can be infinite only if D is
not feasible and min. D is mimus infinity only if P is infeasible, It may
happen that both P and D are infeasible. The duality theorem states that
necessary and sufficient condition for P(D) to have a finite solution is that
both are feasible in which case the value of the dual programs are equal .
The dusl (D) can be placed in the primal form and then its .dusl will be the
original primal (P) itself. With this observa-
tion, all that remains to be proved is:- Let P be feasible and has finite
solutione Then D is feasible and has the same value. The proof that follows
is a constructive one based on Simplex method and is by Dantzig and Qrden.
Other existence proof (very elegant ones) based on theory of Linear Inequali-
ties have been given by Kuhn, Tucher and Gale.

Iet 3B be the optimal basis and x be the solution given by the final
simplex tablean obtained by solving P. Let C}'3 be the condeniation of ¢!
to the variables in the basis. 7k shall show that y' = C]'3 B ~ is feasible
(D) and b'y = ¢'x. Let A = (BIP). p1a = (1 1X). 7 = XB.(nonzero part
of x). The vector z of indirect profits = (C]'B’ C}'3 X) is ¢! because B is
optimal, Hence y'A = Cl! B-lA = cé(I | X) = =zt > ¢t and hence y is feasible

(D). Also y'b=CL B b=Clxy=c'x.

2, Standard form (Symmetric).

Primal P max c'x subj. to Ax b, x>0
Dual D min b'y subj. to ytA>ct y' >0

P.T.O.
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Prof. for the dualty theorem in this form can be deduced from the previous
one, by placing the above standard primel in the canonical form (Al)x =%
y'I > 0 is same as y! » 0. When (AII) is transformed by simplex method
into (I | X) except for a permutation of columns, I is sutomatically trans-
formed into 3'1, as B becomes I. y'(Al I) =z' as before, and hence y' is
nothing but the elements of z in the last m columns. Thus, the final simpled
tablean in the case symmetric problem, automatically yields the solution of
the dual also and another check on optimality can be got by checking y'b =¢
In the case of the unsymmetric primal, however we don't get 371 and y'= Cé}a’l
as by products but have to compute them separately after getting the final
basis B. However, instead of ordinary simplex method, we hawe the Revised
Simplex or Inverse Matrix method, which gets B-l at each stage.

3, General Linear progrem and its dwal. Iet (1, 2, ...n) SUS' and (1,2,
eo.n) = TOP!
Primal. max c'x sub, (Ax)1 £b, for ies and (ax) = b, for i€ s
'xj >0 for jeTand Xy mnrestricted for j € T',
Dual, min b'y subj. (y'A)j__}_ c, for jeT and (y'-A)j =c, for je
¥ 20 for i€ S5 and yi unrestricted for i € S!'.
The duality theorem for the g eneral case, can be deduced from the canonical

case, by placing the general in the standard form.

4. Equilibrium theorem

Standard form x, y feasible for P and D are optimal if and only if,

for these i having (Ax)i <by, y; =0 and for those j having (¥ A)j- 3¢
x. = 0,
J ‘ and only if
Canonical form x, y feasible are optimal if[_ "y for those j for which
'A). > c.y, X, =0,
(¥'4)5 > e5s Xy =0
General form (lLeft as an exercise).

5. While discussing phase I of simplex method, we saw that the problem of
solving Linear Inequalities (i.e. obtaining feasible solutions) ¢an be convel

into & linear programming problem. From the duality theorem, solving any

contd.
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linear program, can be converted into & problem of solving simultaneous
linear inequalities. 1In fact any x+y satisfying the feasibility conditions,
and the additional one b'y  c'x outomatically solwes both the programs.

6. (Num. Example of page 11) A =% ,%,% ¥ = (8 x45 + 10 x 24

+ 11 x 15)/41 = 765/41 = c'x.

Inventory control

Lemma on (differentiation of an integral containing a parameter in the limit).

b(a)
¢le) = J @ g(q,x) dx

a(q
e b(Q) o) 0b da
=/, o 0% e 5y el gy

Demand for accommodity in a given period is a random variable with
cumulative distribution F(x). The problem for the business firm is to deter=-
mine the optimum quantity gq to be stocked so as to minimise expected profit.
Given that p = profit per item sold and L = Loss per item not sold but stocked.

(2) If F(x) be absolutely continuous, show that the optimum quantity is
given by the equation F(q) = P/(P + L).

(b) If P(x) is a step function, (i.e. discrete distribution of demand),
show that the optimum @ is given by F(q-1) < B/(P + L) < F(a).
Exaizxgles

1. The Metal Products Company has vacant space in their plant which they
are considering leasing. The shortest term lease that they can get a renter
to accept is one year. The amount of space the company will need next year

is uncertain but can probably be approximated by the following:
-X

Probability of needing x or more square feet =el50’00O . The space

P.T.0.
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will rent for § 0.30 a square foot. If Metal Products needs more space than
is available, the loss in contribution to profit and overhead per year is

£ 0.80 a square foot. If the vacant space in question is 200,000 square
feet, how much should be rented 7

2. Let demand 'x' be stochastic, continuous, with d.f. F(x) and p.d.f

£(x). The problem is to determine the optimum stock q, when the profit

function is piecewise linear, i.e. G(q,X)

8,q + bjX + ¢; ® < q)
G(Qr x)

azq_ + b2x +.,02 (I 2 q)

Derive the resulting equation for optimum gq and show that it can be easily
solved with the help of tables of F(q) and £(q).

(b) Consider the problem of a bread shopkeeper = How much to stock ? Iet
A be the cost of purchasing bread, B sale price, C the refund on stalée . iread,
and finally D the penalty for loss of goodwill when there is a dissatisfied
customer (all costs are unit costs). Observe that the profit function is of
the form described in (&), and deduce as a particular case from the results
you have obtained in () thet the optimum quantity q is given ty F(q) =
(B+D-n)/ (B+D=~C).

(¢) If A=8,B=20,C=2, D=5, and the demand rectangular between
1000 and 2000, show that the best order quantity q is 1740 loaves of
bread,
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Economic lot size formirlae in the case of deterministic demand
Model., 1. Classic and Simplest case. Harris (1915).

Dy = Total demand in & fixed period (usually year) at a uniform rate.
05 = Cost of set up per production run or cost of ordéring,

Cly= inventory carrying cost, per unit, per year.

Shortages not permitted, To determine n, the number of runs (or the inter~

val between orders), and x the quantity to be ordered every time nx = D_. Total

cost per year = ordering cost + inventory carrying cost (the first one a decreasing

function of n, and the 2nd an increasing function of n) = Cyen + C Z=

_ ly 2
C%DI + ?%f- . This is ninimum, by differentiation, when ?—2—31 = -C'-]%-f or x 3—2—3-]-)1
Alternative way of fommulating the same model. by
R = demand/unit time (uniform) .C3 = cost per run or order
€, = inwentory carrying cost/unit time/unit of the article.

c €. R
. N | otz 1 3
Tota] cost/unit time = 5 Cq Rt + 75 =75 Cja + ) min, when

q =\/ -Ei q=Rt = size of order, %t = interval hetween order.
1

Model. 2. In the previoug case delivesy was immediate, Now we assume a finite
production rate k/unit time (k > R).

. , 1 .
Cost/ynit times C5R/q + 5 Ci_q:(‘-l - R/k), min. when

q =‘/ W) when Kk = oo, We get model 1.

Model. 3. Shortages are allowed.Immediate delivery. Interval between orders
fixed by other considering = T (month, week etc.) . 02 = pRoAlty cost (per unit
time) of failing to deliver one unit of article on schedule. Problem is to

determint the inwentory level 2z at the beginning of -a period.

Total cost per period F(z) = ¢y o Cy o inimum when Z=TR 02/.{_.21+C-2 .

Model,4. Generalisation of 3,2int,ervu:1 betheen runs t, not fixed., Now F(t,z);'
3.7 €, (tR-2)* c
Total cost/unit time -=-% [‘%E"'+ 2 T 1+ -% minimum, when




-2 B
/2 (05, 205(0340,) mz

z = tR C,/Cy+0, and t of =g 5 R G, ;q=3t=‘/.ci

5: A Model with stochastic demand, with withdrawal from stock continuous

interval between runs given. (Say week) and c, = unit inventory éarrying cost/

week and ¢, = unit shortage cost/week. But the demand x is random With p(x)

=
=0, 1,2, ..., to find the quantity q +to be stocked to minimise expected

cost.
2 2
Clq Cz(.x"'Q) .
éx t+ 2x if x>4q

X .
cl(q'é') if x.<q

It

Cost = c(q, x)

Expected cost ;E(q) i® min., for the smallest g satisfying
o0 [oe)
Zp(x) + (a+4) 2 p"%)* > eyfcqe,
o) 441 '

(For Numerical Examples: See Ackoff et at or Sasieni et al).

pynamic programming (Simple Examples)

D.P. is a new techniqué by R Bellman to solve multistage allocation problems, by
reducing a problem in n stages into n problems in single stages using the prin-
ciple of optimalitys:'whetevwer be the state: of first decision, the remdining deci-

sions must be optimml wrt the state resulting from the first decision.

1, The problem of optimum distribution of effect: To allocate a given amount

A of resource °F capital amidst n sectors or regions so .as to maximize the
total return 3 f,(x,) f.(x,) - return by allocating x, » O to the ith sector
1 i iVt i

Xa + X, + ... :
1 2 +xn.='A‘

Numericel Exampls of distribution of 12 sales men among 3 areas
X 6 1 2 3 4 5 6 7 8 9 10 11 I
T(x;) 38 41 48 60 66 72 63 96 102 100 95 89 62
To(%;) 40 42 50 58 66 75 82 88 95 99 100 100 100
f5(x;) 60 64 68 78 90 102 109 119 124 125 125 125 125

Answer ¥3 =T %, =0, %;=5. Return = 236
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Compute succesgsively
F2(X) = Max E;fl(xl) + fz(x-xl)] X=0,1,2, A

0« X, LA
F}(x) = 0 ;(m;x_s- A [fB(x‘i) + FZ(X-Xs)a’ e
) = ‘ x!f‘az | L) ¢ Ry ()]

2.7are house problem.

A man is engaged in buying and selling identical items, each of which
requires considerable storage space. He operates & ware house of capacity 500
items., He can order on the 15th day of each month, at prices shown below for
delivery on the firgt of following month. During a month, he can sell any amount
up to total stock on hand in the beginming of the month at market prices given.
velow, If he starts the year with 200 items in stock, how much should be plan
to purchase and sell each month to maximize his profit.

Month i J M A M J J A S 0 N D
150 185 165 160 160 160 155 150 155 155 150 150
165 165 185 175 170 155 155 155 160 170 175 170

Cost price °i

Selling price p

i

Let X, = amount to be sold during the ith month

y; = t tt  ordered on 15th of ith month
s, = stock at the beginning of ith month
H = ware house capacity.

Total profit = 2 (pixi - Ci‘Y.i) max. subject to
0<x, <8, and S; (H where §; =354 4 +¥y 3 =% ;o
This is & problem.in L.P. involving 34 original variable and 24 stocks which can

be solved more easily by Dynamic programumy’.

Iet f 11(&"5) = max. profit when stock level is e and n months to go

f (s) = Max [Pyy_ sX = C J o+ £ o (S+y-x)]
n 0¢x S F12en 12-n n-1
0Ly £ Htx=.~ %
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The corners of the admissible region one (0,0), (S,0)s (S,H); (0,H~S).
We get fl(slz),= 170 8, £,(817) = 175 5,5 + 20 H, 3(sm) = 170 8, + 40 H.
vos flz(sl) = 165 5, + 130 H = 98,000. The solution is

X 300 500 500 500 500 O 0 y 500 500 500
y 500 500 500 500 0 O y<500 500 500 500 0

The optimal policy is of the form: Do nothing for k periods (k 0 here).
Then oscillate hetween a full and empty warehouse,

Waiting Lines or Queues

(1) inputemechanism (2) service mechanism (3) queue discipline, These are
the three structural. features which specify a queue,
MZM[ 1. Poisson input with mean arrival rate A, Exponential service mean

service rate. 4. One counter. Probability that are n people in system at
t$t = P (
5 68)

Pp(t+dt) = B, (t)udt + P 1 (8IAaE + P (t)(1=Adt-ndt) + o(at)

az ()
e = MR ,(8) + AP, (%) = (MBIE (%),
Steady state probebilities. P, = Lt P (t) exist iff A < p and are given
b => oo
by
= (1R)p, =~ 9 -9 9=2 -9 2.p, = 1= P (1)
n Ppa1? P17 5P, SR P T Y Py &Py < ot TTEe

& =T . is is e expected number of units in system
() 139 uA-x This is th ted number of units in the syst

(either in serviee or waiting). The queue length m is zero if n = 0,1 and
o0

=n=1if n>1 Em =3 (ul)p, 2 np, = Py~ Z B, = E(n)=(1-p, )=F(n)-9-
2
Distribution of waiting time 'w!, of a newly arrlvad unit.

P(W = 0) = P(n=0) = 1-9. _For w > o. p(waiting time > w) = 11 (p,-}\)w.

Total time spent in the system 'v' = waiting time and service time = wau.
This is ean exponentlal distribution (P(total time > v) = e"(v"')\)v *
B(v) = E(w) + 1 - B = A

n=A () p(u -2y °
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Problems in Queues

Arrivals at a telephone booth one considered to be Poisson,with . an
average time of 10 minutes between one. arrival. and.the next. The
length of a phone call is assumed to be distributed exponentially,
with mean 3 minutes. (a) What is.the average length of .the queues
that form from time to time 7 (b) What is the.probability that s
person arriving at the booth will have to wait ? (¢) What is the
probability that an arrival will have to wait more than-10 minutes
before.the phone is. free ? (d) The telephone company will instal a
second booth when convinced that an arrival would expect to have
to.wait at least 3.minutes-for the phone. By howimuch should the flow
of arrivals incpease in order to justify a second booth ? (e) Esti-
mate the fraction. of .a day that the -phone will be in use.

At what average rate must a clerk at a supermarket work- in order to
insure.a probability of 0,90 that the customer will not . have to-
wait longer than .12 minutes ? It is assumed that there is only one
counter,. to which customers srrive in a Poisson fashion:-at an:aversge
rate.of 15 ver hour. The length of service by the clerk has an
exponential distribution.

A repairmen is.to be hired to repair machines which bresk down at

an average rate of 3 per hour. Breakdowns are distributed -in time

in a manner that may be regarded s Poisson. None-productive time

on any one machine is considered to cast.the company ,é‘j;-per- h‘oﬁr.
The company has narrowed the choice down to 2 repairmen, one. slow
but cheap, the other fast but expensive. The slow cheap repairman-
asks 5 3 per hour: in return, he will service ‘broken-down-machines
exponantially at an average rate of 4 per hour. The fast expensive
repairman demands, S 5 .per hour, and will repair machies exponentially

at an average rate of 6 per hour. Which repairmen should be hired ?

- 31 -



4e

De

6e

Te

- 32 -

A supermarket has two girls ringing up sales at the counters. If the
service time for each customer is exvonential with mean 4 minutes,
and if people arrive in a Poisson fashion at the counter at the rate

of 10 an hour. (a) What is the probability of having to wait for

service ? (b) What is the expected percentage of idle time for each girl?

An insurance company has 3 claims adjusters in its branch office.
People with claims against the compsny are found to arrive in a
Poisson fashion at an average rate of 20 per 8 hour day. The amount of
time than.an adjuster sSpends with a claimant is found to have an
exponential distribution with mean service time 40 minutes. Claimants
are processed in the order of their appearance. (a) How many hours

a week can an adjuster expect to spend with claimants. (b) How much
time, on the average, does a claimant spend in the branch office ?

At a certain airport it takes exactly 5 minutes to land an aeroplans,
once it is given the signal to land. Although incoming planes have
scheduled arrival times, the wide variability in arrival times
produces an effect which makes the incoming planes -appear to arrive
in a Poisson fashion at-an average ratve of 6 per hour. This produces
occasional stack-ups at the airport which can be dangerous and costly.
Under these circumstances, how much time will a pilot expect to
spend- circling the field waiting to land ?

A hospital clinic has & doctor examining every patient brought in for
a general checkup. The doctor averages .4 minutes on each phase of the
checkup although the distribution of time spent on each phase is
approximately exponential., If each patient goes through four phages
in the checkup and if the arrivals of the vatiente to the doctor's
office are approximately Poisson at an averag: rate of 3 per hour,

what is the average time spent by a patient waiting in the doctor's
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office ? What is the average time spent in the examination ? What is
the most probable time spent in the examination ?

A warehouse in a small state receives orders for a certain item and
sends them by truck as soon as nossible to the customer. The orders
arrive in a Poisson tashion at a mean rate of 0.9 per day. Only one
item at g time can be shipped by truck from the warehouse, which is
located in the central part of the state. Because the customers are
located in various places in the state, the distribution of service
time -in days has a distribution with probability distribution 4te™2t.
What is the expected delay between the arrival of an order and.the
arrival of the item to the customer ? Service time is defined. here
as the time the truck takes to load, get to the customer, unload,
and return bo the warshouse. Loading and unloading times are small
compared with-travel time,

The arrival distribution of ships in a harbour is Poisson with mean
rate N ships per week, and service-time distribution is exponential
with mean rate of L unloadings per week. The queue discipline is 1
First come. First served. The.ships have to wait till the dock is
free, If the harbour is to accomodate the ships routed to it, it must
be able to handle them at ledst as fast as they arrive, i.e., the
utilization factor Q = A/4 must be less than unity. The problem
is to decide how much less than unity Q should be made in order to
balarice the cost occasioned by the delay of shipping with the cost of
running the dock. We assume that there is only one unloading dock in
the harbour, and the cost per unloading operation is proportional to
the speed of service i.ece =D Lwhere D is the cost per operation

per service rate of operating the dock. AlsSo suppose that the average

cost of having one ship idle tn the port, (the cost of crew, overhead etcs)
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is proportional to the mean waiting time inport, i.e., = CW where C
ig the cost of ship delay per week, ¥ is the mean waiting time including
service, expressed in weeks.

Given X\ C, D, the problem is t0 determine the value of u ,(or Q
as A . is given) so that the total average cost per ship unloaded
(which is the sum of the above two costs) is minimum,

You will get.a.simple expression for f in terms of X C, D. From
this formula, show that we may ¢onclude as followse

(1) If.the crew cost C is small compared to the dock cost D. the
optimum service rate need not be much larger than arrival rate i.e.,
we should keep dock utilization high ( ¢ near unity) at the expense
of ship delay.

(2) But if the crew-cost C is large compared to the dock cost D, the
optimum value of # -would be considerably larger than A i.ei, we
could afford to have our efficient dock idle most of the time in

order to reduce costly ship delays.
Replacement

Items that deteriorate

A is the initial cost of machine, Ciy Coy wes Cn costs ‘incurred during
the 18ty 2nd, <., ntP periods.Interest rate 100 i% per period
w=1/1+i. Find the value of n, which minimlses total costs.

The discounted value K of all future costs associated with a policy of

o : ‘- 2 »
replacing after each n periods = [ A + 2 ¢, v 1, 11+ v o+ v vee ]

‘ + n-2
(A+C1) +sz+..-. C:n_1 v

Ko < Kpq 3 0 < K 4 (1=v) =

1 +v+ v2 + .o ve "‘-vn"2

This gives the following rule of determining n. Do not replace if
the next period 'is less than the weighted average of previous costs.

Replace if the next period is greater than the weighted average of
previous costs.
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Items that fail

Given the life table of an item, we start with items & ‘replace the
items as they fail, &t the end of t periods we adopt a group replace~
ment policy. To determine the optimum value of t. C, cost of individual
replacement of C, - unit cost of group renlacement f(x) = no. of
failures in the xth pariod, £=1

Total cost per period = K(t)/t where X(t) = NC, + C, Z;: £(x),

We have to prepare a table of X9t)/t for t = 1,2, ... and find its

minimum
) 1 1 2 3 K
probability ,.
of failure Py ) p3 «ee Py
nunber of

replacements f£(1) f£(2) .o F(X+1)

£(0) = N £(1) = Np,  £(2) = Np,+ f(1)p1
£(3) = Np34+ £(1)p, + f(2)'p,| & SO One
f£(x) usually increase, then decrease & .again increase & decrease

and it will oscillate until it scitles down to a stable value N/E(C,,)
where B( L) = Expected life = 3 ipy

Replacement Problems

A truck owner finds from his past records that the costs per year of
rumning a truck whose purchase price is S 6000 are as given belows
Year 1 2 3 4 5 6 7 8
Running costs 1000 1200 1400 1800 2300 2800 3400 4000
Resale price 3000 1500 750 375 200 200 200 200

At what age is a replacement due ?
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The same truck owner has 3 trucks, 2 of which are two year old and
the third one year old. He is' considering a new type of truck with
50% more-. capacity then one of the old ones at a unit price of ¥ 8000.
He estimates that the. running costs and resale price for the new
truck will be as follows :
Year 1 2 3 4 5 6 7 8
Ruming costs 1200 1500 1800 2400 3100 4000 5000 6100
Resale price 4000 2000 1000 500 300 300 300 300
Assuming that the loss of flexibility due to fewer trucks is of no
importance, and that he will continue to have .sufficient work for
three of the old trucks, .what should he do ?
A mamufacturer is-offered two machines A and 'B. A is priced
at 5 5070, and running costs are estimated at ,é 800 for each of
the first 5 years, increasing by g 200 per year in the sixth
and subsequent years. Machine B, which has ‘the same capacity &s
A, costs S 2500 but will have running costs of-ﬁ 1200 per year for
6 years, increasing by £ 200 per year thereafter. If money is
worth 10% every year, which machine should be purchased ? (Assume_
that the madhines will eventually be sold for scrap at a negligible
price).
The following failure rates have “eern observed for a certain type
of light bulb.

end of week prob. of failture to date

0.05
0.13
0.25
0043
0.68
0.88
0.96
1.00

(oo 20 B« NN, IV G GVEN | TR
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The cost of replacing an individual failed bulb is S 1¢25. The
decision is made to replace all bulbs simultaneously at fixed
intervals. and also to replace individual bulbs as they fail in
gervice. If the cost of group replacement is 30 cents per bulb,
what is the best interval between group replacements ? At what
group replacement price per buib would a policy of strictly

individual replacement become preferable to the adopted policy ?
Monte Carlo Methods

A bakery delivers fresh bread to one of its retail stores every
day. The number of loaves delivered each day is not constant, but
has the following distribution @

Ioaves per day : 10 1 12 13 14 15 16
Probability i 0.05 0.10 0.20 0.30 0.20 0.10 0,05
The number of customers desiring bread each day has the distribution: :
No. of customers: 5 6 7 8 9 10
Probability : 0.10  0.15 0.20  0.40 0.10 0.05

Finally, the probability thet a customer in need of bread wants 1, 2
or loaves is described by

Loaves to a customer : 1 2 )

Probability : 0.40 0.40 020

Estimate by Monte Carlo methods the average number of loaves of
breed left over per day, and 'the average number of sales lost per
day owing to lack of bread. Assume that left-over bread is given
away at the end of each day.

Buses are scheduled to pass a certain corner every 15 minutes
but actually the arrival of a bus varies nomally sbout its

scheduled arrival time, with a standard deviation of 3 minutes.
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Passengers. arrive in a Poisson fashion with mean arrival rate of
4 persons per hour, and the number of empty seats on the bus has
a Poisson distribution with mean 3/2. No standing‘is permitted.
Use Monte Carlo methods to find .the average waiting time of an
arrival.
In a queueing system customers arrive in a Poisson fashion every
20 minutes on the average. Each customer proceeds in' turn through
3 servicing stations, in a prescribed order. Service times in 3
stages are distributed in the following way:

Stage I : Normal, mean 10 minutes, S.D. 5 minutes.

Stage IT ¢ Exponential, with = 1/15 service per minute.

Stage III : Service time constant, at 15 minutes,
Using Monte Carlo methods, find the expected time in the system
and the expected time spent waiting, for & typical arrival.

000SA.5 sCs 61.5
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