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Chapter 1

The models and main results

1.1 Introduction

In this thesis, we study some probabilistic models of random interfaces. Interfaces be-

tween different phases have been topic of considerable interest in statistical physics.

These interfaces are described by a family of random variables, indexed by the d-

dimensional integer lattice, which are considered as a height configuration, namely they

indicate the height of the interface above a reference hyperplane. The models are defined

in terms of an energy function (Hamiltonian), which defines a Gibbs measure on the set

of height configurations. More formally, let

ϕ = {ϕx}x∈Zd

be a collection of real numbers indexed by the d-dimensional integer lattice Zd. Such a

collection can be interpreted as a d-dimensional interface in d+1-dimensional Euclidean

space Rd+1 in the following manner: we think of ϕx as height variable, indicating the

height of the interface above the point x in the d-dimensional reference hyperplane. We

obtain a d-dimensional surface in Rd+1 by interpolating the heights linearly between

the integer points. We will in general forget about the interpolation, and call any

configuration {ϕx}x∈Zd an interface. We identify the family {ϕx}x∈Zd ∈ RZd with the

(graph of the) mapping

ϕ : Zd → R

1



2 Chapter 1. The models and main results

such that ϕ(x) = ϕx. We now introduce a probability measure on the set of interface

configurations. Let Ω = RZd be endowed with the product topology. We consider the

product σ-field on Ω. Let Λ be a finite subset of Zd. We fix a configuration {ψx}x∈Zd \Λ
which plays the role of a boundary condition. The probability of a configuration ϕ

depends on its energy which is given by a Hamiltonian Hψ
Λ (ϕ). The probability measure

on Ω is given (formally) by

Pψ,β
Λ (dϕ) :=

1

Zψ,βΛ

exp
(
−βHψ

Λ (ϕ)
)∏
x∈Λ

dϕx
∏
x/∈Λ

δψx(dϕx). (1.1.1)

Here, β ≥ 0 is called the inverse temperature, dϕx is the one dimensional Lebesgue

measure, δψx is the Dirac mass at ψx and Zψ,βΛ is the constant which normalizes Pψ,β
Λ to

a probability measure (if it is finite). In other words, if Pψ,β
Λ exists, it is the probability

measure on the set of configurations restricted to be equal to ψ outside Λ and has density

(Zψ,βΛ )−1 exp(−βHψ
Λ (ϕ)) with respect to the product Lebesgue measure on RΛ.

Let us first see a concrete example of random interface models. The gradient model

(or ∇-model) is a random interface model, where the Hamiltonian is given by

Hψ
Λ (ϕ) =

1

2

∑
x,y∈Λ

px,yV (ϕx − ϕy) +
∑

x∈Λ,y /∈Λ

px,yV (ϕx − ϕy).

Here V : R → R is an even convex function with V (0) = 0 and px,y is the transition

matrix of a random walk on the lattice Zd. If we assume that the random walk has

finite range, that is, the step distributions have finite support (there are more general

conditions under which the measure is well defined), then (1.1.1) defines a probability

measure on RΛ. There is much literature available on this class of random interface

models, for an overview see for example the lecture notes by Funaki [38], Giacomin

et al. [40], Velenik [71]. All the models considered in this thesis are Gaussian. Due to

Gaussianness , the parameter β of (1.1.1) is of no importance. So we set it to be equal to

1. Also from now we consider ψ ≡ 0. We shall say the model has 0-boundary conditions.

The discrete Gaussian free field:

An important example of the gradient model is the Discrete Gaussian free field (DGFF),

also called harmonic crystal, where one considers V (x) = x2/2 and

px,y = (2d)−11{|x−y|=1}.
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In this case, the Hamiltonian can be written in the following form:

H(ϕ) =
1

4d

∑
x

‖∇ϕx‖2

where ∇ is the discrete gradient defined by

∇ϕx := (ϕx+e1 − ϕx, . . . , ϕx+ed − ϕx),

‖·‖ denotes the Euclidean norm and ei denotes the canonical basis of Rd. Let ΓΛ(x, y) :=

CovΛ(ϕx, ϕy). The field (ϕx)x∈Λ is Gaussian, and its covariance matrix is given by the

Green’s function of the random walk (Sn)n≥0 with the transition matrix px,y which is

killed at the exit of Λ, that is, for x, y in Λ

ΓΛ(x, y) = (I − P )−1
Λ (x, y) = Ex

(
τΛ−1∑
n=0

1{Sn=y}

)
,

where (I − P )Λ = (δ(x, y) − px,y)x,y∈Λ, Ex is the law of the random walk started at x

and τΛ = inf{n ≥ 0 : Sn /∈ Λ}. Note that in this case, (I − P ) = −∆, where ∆ is the

discrete Laplacian matrix given by

∆(x, y) =


−1 if x = y,

1
2d if |x− y| = 1,

0 otherwise.

One can also, alternatively define ∆ as a discrete differential operator acting on functions

f : Zd → R at a point x ∈ Zd

∆f(x) =
1

2d

d∑
i=1

(f(x+ ei) + f(x− ei)− 2f(x)) .

The Green’s function ΓΛ thus satisfies the following discrete Dirichlet problem: for

x ∈ Λ,  −∆ΓΛ(x, y) = δx(y) y ∈ Λ

ΓΛ(x, y) = 0 y ∈ ∂1Λ
,

where for k ≥ 1,

∂kΛ := {x ∈ Zd \Λ : dist(x,Λ) ≤ k} (1.1.2)
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with dist(·, ·) being the graph distance. In d = 1 the DGFF can be seen as the random

walk bridge. More precisely, if Λ = VN = {1, · · · , N} for N ∈ N, then (ϕ1, · · · , ϕN ) has

the same joint distribution as (S1, · · · , SN ) conditionally on SN+1 = 0, where (Sn)n≥0

is a random walk with N (0, 2) increments started at 0. In d = 2, DGFF belongs to the

family of log-correlated Gaussian fields (see [7]).

DGFF has been studied extensively for its connections to the SLE processes, branch-

ing random walk and branching Brownian motion. In a breakthrough result Schramm

and Sheffield [63] showed that the level lines of DGFF converges in distribution to

SLE(4). The entropic repulsion, namely the estimates for the probability that the field

is positive on a subset of VN was studied by Bolthausen et al. [10, 11]. The behaviour of

the maximum in two dimension was studied by Biskup and Louidor [8], Bolthausen et al.

[11, 12], Bramson and Zeitouni [16], Bramson et al. [17], Daviaud [31] and the limiting

distribution is given by a randomly shifted Gumbel. In higher dimensions d ≥ 3 the

behaviour of the maximum was studied by Chiarini et al. [22, 23]. They proved that the

rescaled maximum is in the maximal domain of attraction of the Gumbel distribution.

We now see what happens to the scaling limit of DGFF. In d = 1, we pointed

out that the DGFF is the random walk bridge. Hence after appropriate scaling the

interpolated field converges to the Brownian bridge in the space of continuous functions.

More explicitly, let (Bt : 0 ≤ t ≤ 1) be the standard Brownian motion on [0, 1]. The

Brownian bridge, which is the one dimensional Gaussian free field, is defined to be the

process (B◦t : 0 ≤ t ≤ 1) where

B◦t := Bt − tB1, t ∈ [0, 1].

Now let us consider the DGFF on Λ = {1, . . . , N − 1} and define a continuous interpo-

lation ψN for each N as follows:

ψN (t) = (2N)−
1
2
[
ϕbNtc + (Nt− bNtc)(ϕbNtc+1 − ϕbNtc)

]
, t ∈ [0, 1].

Then one can show that ψN converges in distribution to (B◦t : 0 ≤ t ≤ 1) in the

space of continuous functions C[0, 1]. From the above convergence one can obtain the

convergence of the maximum using continuous mapping theorem. In d = 2, if we try

to obtain convergence similar to the above with a scaling by
√

logN then the limit is
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nothing but a collection of independent normal random variables (see [7]). Hence it

fails to retain any useful information from the model. This suggests one to take limit

is some other suitable sense. Indeed, without any scaling one can obtain such limit in

d = 2 and also in d ≥ 3 with suitable scaling. Unlike d = 1, where the limiting field

is a random function, namely, Brownian bridge, in d ≥ 2, one does not have a random

function, instead it becomes a random distribution. This random distribution is called

the Gaussian free field (GFF). The importance of two dimensional Gaussian free field

comes from conformal invariance and connection with other stochastic processes like

SLE, CLE, Louville quantum gravity etc. We refer to [3, 5, 34, 65] for details and

references on Gaussian free field. For this model quadratic potential allows one to have

various tools at one’s disposal, like the random walk representation of covariances and

inequalities like FKG. These tools can be generalised to convex potentials in the form

of the Brascamp–Lieb inequality and the Helffer–Sjöstrand random walk representation

of the covariance. We refer to [38, 40, 55, 71] for an overview of the existing results.

Outside the convex regime, the non-convex regime was recently studied for example

in [9, 30].

The membrane model:

The membrane model(MM) is the Gaussian interface model where the Hamiltonian is

given by

H(ϕ) :=
1

2

∑
x∈Zd

|∆ϕx|2.

This model arises as model for (tensionless) semi-flexible membrane in statistical physics.

Its mathematical treatment was first taken up by Sakagawa [60, 61] and then by Cipriani

[25], Kurt [46, 47, 48]. Unlike the DGFF, the covariance function of this model does not

have any random walk representation. For Λ b Zd, define

GΛ(x, y) := CovΛ(ϕx, ϕy), x, y ∈ Λ.

Consider Λ = VN = [−N,N ]d ∩ Zd and define for x, y ∈ VN

GN (x, y) :=
∑
z∈VN

ΓVN (x, z)ΓVN (z, y),
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where ΓVN is the covariance function of the DGFF on VN . Then GN = (∆Λ)−2 where

∆Λ := (∆(x, y))x,y∈Λ. It is easy to see that (∆Λ)2 6= ∆2
Λ := (∆2(x, y))x,y∈Λ. This

difference is due to the restrictions of the operators to Λ. When we see their actions on

a function at a point which is far away from the boundary, then they are roughly the

same. In fact, one can show that in higher dimensions in the bulk the inverses of these

two operators are close. For that we extend GN (x, .) as a function on VN ∪ ∂2VN by

requiring

GN (x, y) = 0 y ∈ VN+1 \ VN

∆GN (x, y) = 0 y ∈ ∂1VN .

It was proved in [47, Corollary 2.5.5] that for d ≥ 4 and δ > 0, there exists a constant

cd = cd(δ) such that for any x ∈ V δ
N := {z ∈ VN : dist(z, V c

N ) ≥ δN},

sup
y∈V δN

|GVN (x, y)−GN (x, y)| ≤ cdN4−d as N →∞.

As the MM exhibits no random walk representation, and several correlation inequal-

ities are lacking, the study of this model becomes difficult compared to the DGFF.

Nonetheless it is possible, via analytic and numerical methods, to obtain sharp results

on its behaviour. But like the DGFF, the covariance function of this model satisfies the

following Dirichlet problem: for x ∈ Λ, ∆2GΛ(x, y) = δx(y) y ∈ Λ

GΛ(x, y) = 0 y ∈ ∂2Λ,

where ∂2Λ is defined as in (1.1.2). Also in d = 1, the MM can be seen as an integrated

random walk as follows: consider the model (ϕx)x∈VN on VN = {1, . . . , N − 1} with zero

boundary conditions outside VN . Let {Xi}i∈N be a sequence of i.i.d. standard Gaussian

random variables. We define {Yi}i∈Z+ to be the associated random walk starting at 0,

that is,

Y0 = 0, Yn =
n∑
i=1

Xi, n ∈ N,

and {Zi}i∈Z+ to be the integrated random walk starting at 0, that is, Z0 = 0 and for

n ∈ N

Zn =
n∑
i=1

Yi.
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Then one can show that PVN is the law of the vector (Z1, . . . , ZN−1) conditionally on

ZN = ZN+1 = 0 (see [20, Proposition 2.2]). Also, like the DGFF, the MM is log-

correlated in d = 4.

For this model there are some results on the entropic repulsion and pinning effects

[2, 13, 20, 46, 48], extreme value theory [24]. The entropic repulsion in higher dimensions

(d ≥ 4) was studied by Kurt [46, 48], Sakagawa [60]. We know that in d = 1 the model

corresponds to an integrated Gaussian random walk. In [32] it was proved that for such

processes with zero mean and finite variances the probability to be positive on an interval

of side length N is of order N−1/4, extending a result by Sinai [66] for the integrated

simple random walk. Recently in the remaining cases, that is, in dimensions 2 and 3 the

entropic repulsion was studied by Buchholz et al. [19]. The maximum of MM in d = 4

falls under the study of extreme value for log-correlated models. The extremes were first

studied by Cipriani [25], Kurt [48]. The tightness of the recentered maximum follows

from [33]. The full scaling limit was finally solved by Schweiger et al. [64] and it is a

randomly shifted Gumbel, similar to the DGFF case in d = 2. In the higher dimensions

the maximum was studied by Chiarini et al. [24]. Just like DGFF, for this model also

they proved the rescaled maximum to be in the maximal domain of attraction of the

Gumbel distribution.

The scaling limit of this model in d = 1 was studied by Caravenna and Deuschel

[21]. They studied scaling limit for more general potentials than the quadratic one and

also look at the situation in which a pinning force is added to the model. We briefly

discuss their result for the MM. Consider the model on VN = [1 , N − 1] ∩ Z and define

a continuous interpolation ψN by

ψN (t) :=
ϕbNtc

N
3
2

+
Nt− bNtc

N
3
2

(ϕbNtc+1 − ϕbNtc), t ∈ [0, 1].

Then ψN converges in distribution to the process {Ît}t∈[0 , 1] in C[0, 1], where the limiting

process is defined as the marginal of the process {(B̂t , Ît)}t∈[0 , 1] := {(Bt , It)}t∈[0 , 1]

conditionally on (B1 , I1) = (0 , 0), where {Bt}t∈[0 , 1] be the standard Brownian motion

on [0 , 1] and It :=
∫ t

0 Bsds. We also mention that Hryniv and Velenik [44] considered

general semiflexible membranes as well with a different scaling approach. Their results

are derived using an integrated random walk representation which is difficult to adapt

in higher dimensions. This thesis aims at complementing their work by determining the
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scaling limit in all d ≥ 2. We shall prove that the convergence in d = 2 and 3 occurs

in the space of continuous functions and hence one can derive the limiting maxima in

d ≤ 3.

The (∇+ ∆)-model:

The (∇+ ∆)-model is another Gaussian interface model where the Hamiltonian is given

by the sum of the Hamiltonians of DGFF and MM, that is

H(ϕ) :=
∑
x∈Zd

(
1

4d
‖∇ϕx‖2 +

1

2
|∆ϕx|2

)
.

This model was first considered by Borecki [14], Borecki and Caravenna [15] in a more

general set up with pinning. For this model also no random walk representation for

the covariance function is known. Like the DGFF and MM, the covariance function

GΛ(x, y) := CovΛ(ϕx, ϕy) of this model satisfies the following Dirichlet problem: for

x ∈ Λ,  (−∆ + ∆2)GΛ(x, y) = δx(y) y ∈ Λ

GΛ(x, y) = 0 y ∈ ∂2Λ,

where ∂2Λ is defined as in (1.1.2). The application of Gibbs measures, in particular the

(∇ + ∆)-model, to the theory of biological membranes can be found in [49, 50, 59]. In

the works of Borecki [14], Borecki and Caravenna [15] this model was studied in d = 1

under the influence of pinning in order to understand the localization behavior of the

polymer. In higher dimensions the localization behavior was studied by Sakagawa [62].

1.2 Definition and basic properties of the models

In this thesis we consider some special instances of random interface models, namely

where the Hamiltonian is given by

H(ϕ) =
∑
x∈Zd

(
κ1‖∇ϕx‖2 + κ2(∆ϕx)2

)
(1.2.1)

where κ1 and κ2 are two non-negative parameters. In the model of a membrane such as

a lipid bilayer, the energy of the surface separating the water phase and the lipid phase
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is given by this H(ϕ) where κ1 and κ2 are the lateral tension and the bending rigidity,

respectively (see [49, 50, 59] etc.).

Define

J := −4dκ1∆ + 2κ2∆2.

The following result shows that the Gibbs measure (1.1.1) with Hamiltonian (1.2.1)

exists. It follows by arguments similar to Lemma 1.2.2 in [47].

Lemma 1.2.1. The Gibbs measure on RΛ with boundary conditions ψ outside Λ and

Hamiltonian (1.2.1) exists. It is the Gaussian field on Λ with mean

mx = −
∑
y∈Λ

J−1
Λ (x, y)

∑
z∈Zd \Λ

J(y, z)ψz, x ∈ Λ

and covariance matrix

CovΛ(ϕx, ϕy) = J−1
Λ (x, y)

where JΛ is the matrix (J(x, y))x,y∈Λ.

Let GΛ(x, y) := J−1
Λ (x, y), x, y ∈ Λ. Then GΛ is the unique solution to the following

discrete boundary value problem: for x ∈ Λ JGΛ(x, y) = δx(y) y ∈ Λ

GΛ(x, y) = 0 y ∈ ∂2Λ
, (1.2.2)

where ∂2Λ is defined as in (1.1.2). In case Λ = [−N,N ]d ∩ Zd, we denote the measure

in (1.1.1) by PN . The following proposition answers a very basic question, namely the

existence of the infinite volume measure or the thermodynamic limit.

Proposition 1.2.2 ([47, Proposition 1.2.3] ). Suppose κ1, κ2 are constants. The infinite

volume measure

P := lim
N→∞

PN
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exists if and only if

d ≥

 3 when κ1 > 0

5 when κ1 = 0
.

In these cases it is the centered Gaussian field on Zd with covariance matrix J−1. Fur-

thermore, for x ∈ Zd,

J−1(0, x) =
1

(2π)d

∫
[−π,π]d

(
4dκ1µ(θ) + 2κ2µ(θ)2

)−1
e−ι〈x,θ〉 d θ (1.2.3)

where

µ(θ) =
1

d

d∑
i=1

(1− cos(θi)).

When κ1 > 0, we call d = 2 the critical dimension, d = 1 the subcritical dimension

and d ≥ 3 the super critical dimensions. Similarly, when κ1 = 0, we call d = 4 the critical

dimension, 1 ≤ d ≤ 3 the subcritical dimensions and d ≥ 5 the super critical dimensions.

We denote the infinite volume covariance by G, that is, G(x, y) := J−1(x, y). G has the

following random walk representation: Let Ex be the law of the simple random walk

(Sn)n≥0 on Zd started at x.

• When κ1 = 1/4d and κ2 = 0, that is when the model is the DGFF, then G has

the representation

G(x, y) := Γ(x, y) = Ex

( ∞∑
n=0

1{Sn=y}

)
.

• When κ1 = 0 and κ2 = 1/2, that is the model is the MM, then G can be represented

as (see [47, Proposition 1.2.4] )

G(x, y) = Ex,y

 ∞∑
n,m=0

1{Sn=S̃m}

 , x, y ∈ Zd,

where (Sn)n≥0 and (S̃n)n≥0 are two independent simple random walk on Zd starting

at x and y respectively.
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• When κ1 and κ2 are both non-zero constants, we assume for simplicity κ1 = κ/4d

and κ2 = 1/2. Then

G(x, y) = (−κ∆ + ∆2)−1(x, y).

Let Γκ(·, ·) be the massive Green’s function with mass
√
κ, that is,

Γκ(x, y) = Ex

( ∞∑
m=0

1

(1 + κ)m+1
1{Sm=y}

)
.

Then one can show easily

G(x, y) =
∑
z∈Zd

Γ(x, z)Γκ(z, y).

Also, the infinite volume covariance G satisfies the following property:

Lemma 1.2.3 ([60, Lemma 5.1]). Let d ≥ 2`+ 1, where

` = 1, q` = κ1 when κ1 > 0

` = 2, q` = κ2 when κ1 = 0.

Then

lim
‖x‖→+∞

G(x, 0)

‖x‖2`−d
=

1

q`
η` (1.2.4)

where

η` = (2π)−d
∫ +∞

0

∫
Rd

exp

(
ι〈ζ, θ〉 − 1

(2d)`
‖θ‖2`t

)
d θ d t

for any ζ ∈ Sd−1.

In case of the DGFF and MM, the maximum of the infinite volume model also was

studied by Chiarini et al. [23, 24] and the results are same as those of the finite volume

case.

Notation

In the following C > 0 always denotes a universal constant whose value however may

change in each occurence. We will use
d→ to denote convergence in distribution. We

denote, for any y = (y1, . . . , yd) ∈ Rd, d ≥ 1, the “integer part” of y as byc =
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(by1c, . . . , bydc) and similarly {y} = y−byc is the “fractional part” of y. For real-valued

functions f(·), g(·) we write f � g, f ∼ g, f ≈ g, f � g when limn→∞
f(n)
g(n) equals

∞, 1, c and 0, respectively, where c is a non zero constant which may be 1 also. Also we

write f � g if there exist two positive constants C`, Cr such that C`g(n) ≤ f(n) ≤ Crg(n)

for all n. We will use round brackets (·, ·) to denote the action of a dual space on the

original space, and 〈·, ·〉 for inner products.

1.3 Main results

As mentioned earlier, in this thesis we consider the model where the Hamiltonian is

given by (1.2.1) and the boundary configuration ψ ≡ 0. We investigate a very natural

probabilistic question:

“What happens to a random interface when one rescales it suitably?”.

We study this scaling limit problem for the model for different values of κ1 and κ2. We

study the following three models: The membrane model (κ1 = 0, κ2 = 1/2), the (∇+∆)-

model (κ1, κ2 constants, for simplicity we take κ1 = 1/4d, κ2 = 1/2) and the model with

scaling-dependent κ1 and κ2. For the first two models we obtain the scaling limit for the

finite volume case in all dimensions and for the infinite volume case in the supercritical

dimensions. And for the third model, that is, when κ1 and κ2 are scaling-dependent, we

consider the different convergence rates of the ratio κ2/κ1 and obtain the scaling limit in

such cases in all dimensions. In the subcritical dimensions we show convergence in the

space of continuous functions and the proofs are completed by showing finite dimensional

convergence and tightness. In the finite volume cases, in the critical and supercritical

dimensions we show convergence in the space of distributions. In this case we need to

look for appropriate spaces of distributions in which we can prove the convergence. As

we will see in the proofs that it is the tightness which put restrictions on the choice of

such spaces. We give precise description of such spaces where the limiting fields exist

and the convergences hold.

In the finite volume case we always assume that our discrete models live well inside

the discretization of a suitably chosen bounded domain (open, connected set) in Rd.

More precisely, we consider the models in the following set up. Let d ≥ 1. Let D be a
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bounded domain in Rd. For N ∈ N, let DN = ND ∩Zd. Let us denote by ΛN the set of

points x in DN such that, for every direction i, j, the points x± ei, x± (ei ± ej) are all

in DN . In other words, ΛN ⊂ ND ∩ Zd is the largest set satisfying ∂2ΛN ⊂ ND ∩ Zd.

We consider the model with Λ = ΛN and want to study what happens when we scale it

suitably and let N tends to infinity. In the study we crucially use the property (1.2.2)

which in our case takes the simple form: for x ∈ ΛN (−4dκ1∆ + 2κ2∆2)GΛN (x, y) = δx(y) y ∈ ΛN

GΛN (x, y) = 0 y ∈ ∂kΛN ,
(1.3.1)

where k = 1 if κ2 = 0 and k = 2 if κ2 > 0. One might expect form here that the lim-

iting fields should have connections with the corresponding continuum elliptic operator

(−4dκ1∆c + 2κ2∆2
c), where ∆c is the continuum Laplacian defined by

∆c :=

d∑
i=1

∂2

∂x2
i

.

This is indeed the case as we will see in the next subsections. To prove the results there

we use either the convergence of the Green’s function or the convergence of the solution

of the Dirichlet problems of the discrete approximation operator to the corresponding

continuum counter part. In the infinite volume cases also the limiting fields are defined

using the continuum elliptic operators. In these cases we show convergence using (1.2.3)

and Fourier analysis.

The membrane model (κ1 = 0, κ2 = 1/2)

In Chapter 2, which is based on the article [28], we consider the membrane model and

the main results are as follows. We study the scaling limit of this model for both the

finite volume and the infinite volume measures. Depending on the dimension we have

two different types of results.

(i) Convergence in subcritical dimension (d = 2, 3): in this case we obtain convergence

in the space of continuous functions. For simplicity we consider D = (−1, 1)d and

DN = ND∩Zd, where N ∈ N. Let (ϕx)x∈DN−1
be the membrane model on DN−1.

First we want to define a continuous interpolation ψN of the discrete field to have

convergence in the space of continuous functions. In d = 2, the interpolated field
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(ψN (t))t∈D is defined by

ψN (t) =
1

2dN

(
ϕbNtc + {Nti}(ϕbNtc+ei − ϕbNtc)

+{Ntj}(ϕbNtc+ei+ej − ϕbNtc+ei)
)
, if {Nti} ≥ {Ntj}

where t = (t1 , t2) ∈ D and i, j ∈ {1, 2}, i 6= j. And in d = 3, (ψN (t))t∈D is

defined by

ψN (t) =
1

2d
√
N

(
ϕbNtc + {Nti}

(
ϕbNtc+ei − ϕbNtc

)
+{Ntj}

(
ϕbNtc+ei+ej − ϕbNtc+ei

)
+{Ntk}

(
ϕbNtc+ei+ej+ek − ϕbNtc+ei+ej

))
, {Nti} ≥ {Ntj} ≥ {Ntk}

where t = (t1 , t2 , t3) ∈ D and i, j, k ∈ {1, 2, 3} are pairwise different. We show

that there exists a centered continuous Gaussian process ψ∆2

D on D with covariance

GD(·, ·), the Green’s function for the following continuum Dirichlet problem:


∆2
cu(x) = f(x), x ∈ D

Dαu(x) = 0, |α| ≤ 1, x ∈ ∂D,

where ∂D is the boundary of the domain D and for α = (α1, . . . , αd) a multi-index

with αi being non-negative integers

Dαu :=
∂α1

∂xα1
1

· · · ∂
αd

∂xαdd
u,

|α| :=
d∑
i=1

αi.

Then ψN converges in distribution to ψ∆2

D in the space of all continuous func-

tions on D. Furthermore the process ψ∆2

D is almost surely Hölder continuous with

exponent η, for every η ∈ (0, 1) resp. η ∈ (0, 1/2) in d = 2 resp. d = 3.

As a consequence we obtain the scaling limit of the discrete maximum. Let

MN := maxx∈DN ϕx. Then as N ↑ ∞

(2d)−1N
d−4

2 MN
d→ sup
x∈D

ψ∆2

D (x).
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(ii) Convergence in critical and supercritical dimension (d ≥ 4): in this case we obtain

convergence in the space of distributions. Let D be a bounded domain in Rd with

smooth boundary1. We briefly give the definition of the Sobolev spaceH−s
∆2(D) and

the continuum membrane model. For a more detailed discussion see Chapter 2. By

the spectral theorem for compact self-adjoint operators and elliptic regularity one

can show that there exist smooth eigenfunctions {uj}j∈N of ∆2
c corresponding to

the eigenvalues 0 < λ1 ≤ λ2 ≤ · · · → ∞ such that {uj}j∈N is an orthonormal basis

for L2(D). Now for any s > 0 we define the following inner product on C∞c (D):

〈f , g〉s,∆2 :=
∑
j∈N

λ
s/2
j 〈f , uj〉L2 〈uj , g〉L2 .

Then Hs∆2,0(D) is defined to be the Hilbert space completion of C∞c (D) with

respect to this inner product. We define H−s
∆2(D) to be its dual and the dual norm

is denoted by ‖ · ‖−s,∆2 . The following definition is from Chapter 2 and provides

a description of the continuum membrane model Ψ∆2

D .

Definition 1.3.1 (Continuum membrane model). Let (ξj)j∈N be a collection of

i.i.d. standard Gaussian random variables. Set

Ψ∆2

D :=
∑
j∈N

λ
−1/2
j ξjuj .

Then Ψ∆2

D ∈ H−s
∆2(D) a.s. for all s > (d− 4)/2 and is called the continuum

membrane model.

Consider ΛN as defined before. Let (ϕx)x∈ΛN be the membrane model on ΛN .

Define ΨN by

(ΨN , f) := (2d)−1
∑

x∈ 1
N

ΛN

N−
d+4

2 ϕNxf(x) , f ∈ Hs∆2,0(D).

1By a bounded domain D in Rd with smooth boundary we mean that at each point x on the boundary
there is an open ball B = B(x) centering the point x and a one-to-one smooth map ζ from B onto the
unit ball in Rd such that ζ(B ∩D) ⊂ Rd+, ζ(B ∩ ∂D) ⊂ ∂ Rd+ and ζ−1 is smooth. Here Rd+ is the half
space {y ∈ Rd : yd > 0}.
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We show that, as N → ∞, the field ΨN converges in distribution to Ψ∆2

D in the

topology of H−s
∆2(D) for s > sd, where

sd :=
d

2
+ 2

(⌈
1

4

(⌊
d

2

⌋
+ 1

)⌉
+

⌈
1

4

(⌊
d

2

⌋
+ 6

)⌉
− 1

)
. (1.3.2)

(iii) Infinite volume (d ≥ 5): we also obtain the scaling limit in the infinite volume

membrane model defined on the whole of Zd and show that the rescaled field

converges to the continuum bilaplacian field on Rd. Let us first define the limiting

field. For f ∈ S, the Schwarz space, we define f̂ by

f̂(θ) =
1

(2π)d/2

∫
Rd

e−ι〈x,θ〉f(x) dx.

Let us define an operator (−∆c)
−1 : S → L2(Rd) as follows [1, Section 1.2.2]:

(−∆c)
−1f(x) :=

1

(2π)d/2

∫
Rd

eι〈x,ξ〉‖ξ‖−2f̂(ξ) d ξ.

We use now the operator (−∆c)
−1 to define the limiting field Ψ∆2

. The limiting

field Ψ∆2
is a random variable taking values in S∗ whose characteristic functional

L
Ψ∆2 is given by

L
Ψ∆2 (f) = exp

(
−1

2
‖(−∆c)

−1f‖2
L2(Rd)

)
, f ∈ S.

To study scaling limit we consider (ϕx)x∈Zd to be the membrane model in d ≥ 5

and define

ψN (x) := (2d)−1N
d−4

2 ϕNx, x ∈ 1

N
Zd .

For f ∈ S we define

(ΨN , f) := N−d
∑

x∈ 1
N

Zd
ψN (x)f(x).

Then ΨN ∈ S∗ and the characteristic functional of ΨN is given by

LΨN (f) = exp(−Var (ΨN , f) /2).

We show that ΨN
d→ Ψ∆2

in the strong topology of S∗.
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The (∇+ ∆)-model (κ1 = 1/4d, κ2 = 1/2)

In Chapter 3, we consider the model with κ1 = 1/4d and κ2 = 1/2. We call this model

the (∇+ ∆)-model. The details of Chapter 3 are based on the article [27].

This model interpolates between two well-known random interfaces, namely the dis-

crete Gaussian free field and the membrane model. In [15, Remark 9] it was conjectured

that, in the case of pinning for the one-dimensional (∇+∆)-model, the behaviour of the

free energy should resemble the purely gradient case. In view of this remark it is natural

to ask if the scaling limit of the mixed model is dominated by the gradient interaction,

that is, the limit is the Gaussian free field (GFF). The main focus is to show that such a

guess is true and indeed in any dimension the mixed model approximates the Gaussian

free field.

From Proposition 1.2.2 it follows that the infinite volume limit exists if and only if

d ≥ 3. In this case also we study the scaling limit for both the finite volume and the

infinite volume model. We first discuss the results in the finite volume case. We have

two different types of results depending on the dimension as follows.

(i) Convergence in d = 1: in the subcritical case we obtain the convergence in the space

of continuous functions. In this case for simplicity we consider D = (0, 1) and the

corresponding DN and ΛN as defined before, in particular ΛN = {2, . . . , N − 2}.

To study the scaling limit we define a continuous interpolation ψN for each N as

follows:

ψN (t) = (2d)−
1
2N−

1
2
[
ϕbNtc + (Nt− bNtc)(ϕbNtc+1 − ϕbNtc)

]
, t ∈ D.

We then show that ψN converges in distribution to the Brownian bridge on [0, 1]

in the space C[0, 1]. As a by-product of this result we obtain the convergence of

the discrete maxima.

(ii) Convergence in d ≥ 2: in this case the convergence is obtained in the space of

distributions. We considerD to be a bounded domain in Rd with smooth boundary.

We briefly give the definition of the Sobolev space H−s−∆(D) and the Gaussian

free field. For a detail discussion see Chapter 3. By the spectral theorem for

compact self-adjoint operators and elliptic regularity we know that there exist
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smooth eigenfunctions (wj)j∈N of −∆c corresponding to the eigenvalues 0 < ν1 ≤

ν2 ≤ · · · → ∞ such that (wj)j≥1 is an orthonormal basis of L2(D). Now for any

s > 0 we define the following inner product on C∞c (D):

〈f , g〉s,−∆ :=
∑
j∈N

νsj 〈f , wj〉L2〈wj , g〉L2 .

Then Hs−∆,0(D) can be defined to be the completion of C∞c (D) with respect to this

inner product. We define H−s−∆(D) to be its dual and the dual norm is denoted by

‖ · ‖−s,−∆. We give the definition of the Gaussian free field whose well-definedness

is proved in Proposition 3.4.4.

Definition 1.3.2 (Gaussian free field). Let (ξj)j∈N be a collection of i.i.d. standard

Gaussian random variables. Set

Ψ−∆
D :=

∑
j∈N

ν
−1/2
j ξjwj .

Then Ψ−∆
D ∈ H−s−∆(D) a.s. for all s > d/2−1 and is called the Gaussian free field.

We define ΛN as before and consider the model (ϕx)x∈ΛN on ΛN . We then define

ΨN by

(ΨN , f) := (2d)−
1
2

∑
x∈ 1

N
ΛN

N−
d+2

2 ϕNxf(x) , f ∈ Hs−∆,0(D).

The result we show is that ΨN converges in distribution to the Gaussian free field

Ψ−∆
D as N →∞ in the topology of H−s−∆(D) for s > d.

(iii) Infinite volume (d ≥ 3): finally we study the scaling limit of the infinite volume

model. We consider the infinite volume model ϕ = (ϕx)x∈Zd with law P. We

define for N ∈ N

ψN (x) := (2d)−
1
2N

d−2
2 ϕNx, x ∈ 1

N
Zd .

For f ∈ S we define

(ΨN , f) := N−d
∑

x∈ 1
N

Zd
ψN (x)f(x).
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The limiting field in this case is defined to be the field Ψ−∆ on S∗ whose charac-

teristic functional LΨ−∆ is given by

LΨ−∆(f) = exp

(
−1

2
‖(−∆c)

−1/2f‖2
L2(Rd)

)
, f ∈ S,

where the operator (−∆c)
−1/2 : S → L2(Rd) is defined by

(−∆c)
−1/2f(x) :=

1

(2π)d/2

∫
Rd

eι〈x,ξ〉‖ξ‖−1f̂(ξ) d ξ.

We show in this case that ΨN
d→ Ψ−∆ in the strong topology of S∗.

The model with scaling-dependent κ1 and κ2

Notice that in the (∇+∆)-model in the limit the contribution of the part corresponding

to the Laplacian gets dominated by the other term and we get Gaussian free field as

the limit. Hence it is a very natural question to study what happens if we increase the

strength of the Laplacian part. More specifically, let d ≥ 1 and D be a bounded domain

in Rd. We define ΛN as before and consider the model with Λ = ΛN , κ1 = 1/4d, κ2 =

κ(N)/2. We want to study what happens when we tune the parameter κ(N) suitably

as N tends to infinity. We study this question in Chapter 4, which is based on the

article [29]. We assume κ1 to be constant as it is easy to present the results in this

format. Also for simplicity we write κ for κ(N). The results for this model is split into

two parts. In lower dimensions we have convergence in the space of continuous functions

and in higher dimensions the convergence occurs in the space of distributions.

• Lower dimensional results

In this case we consider D = (0, 1)d. Also here, according to the behaviour of κ

as N →∞ we have three different limits. We define the continuous interpolation

{ψN}N∈N in the following fashion:

– For d = 1 and t ∈ D

ψN (t) = cN (1)
[
ϕbNtc + (Nt− bNtc)(ϕbNtc+1 − ϕbNtc)

]
. (1.3.3)
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– For d = 2 and t = (t1, t2) ∈ D

ψN (t) = cN (2)
[
ϕbNtc + {Nti}

(
ϕbNtc+ei − ϕbNtc

)
+ {Ntj}

(
ϕbNtc+ei+ej − ϕbNtc+ei

)]
, if {Nti} ≥ {Ntj} (1.3.4)

where i, j ∈ {1, 2}, i 6= j.

– For d = 3 and t = (t1, t2, t3) ∈ D

ψN (t) = cN (3)
[
ϕbNtc + {Nti}

(
ϕbNtc+ei − ϕbNtc

)
+ {Ntj}

(
ϕbNtc+ei+ej − ϕbNtc+ei

)
+ {Ntk}

(
ϕbNtc+ei+ej+ek − ϕbNtc+ei+ej

)]
, if {Nti} ≥ {Ntj} ≥ {Ntk}

(1.3.5)

where i, j, k ∈ {1, 2, 3} and pairwise different. Here cN (d), d = 1, 2, 3, are

scaling factors which are specified in the following result.

We have the following convergence results.

(i) κ � N2. Let 1 ≤ d ≤ 3. Define a continuously interpolated field ψN as in

(1.3.3), (1.3.4) and (1.3.5) with

cN (d) = (2d)−1√κN
d−4

2 .

Then we have, as N → ∞, that the field ψN converges in distribution to

ψ∆2

D in the space of continuous functions on D, where ψ∆2

D is defined to be

the centered continuous Gaussian process on D with covariance GD(·, ·), the

Green’s function for the biharmonic operator (as defined in Subsection 1.3).

(ii) κ ∼ 2dN2. Let 1 ≤ d ≤ 3. Define a continuously interpolated field ψN as in

(1.3.3), (1.3.4) and (1.3.5) with

cN (d) = (2d)−1√κN
d−4

2 .
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Define ψ−∆+∆2

D to be the continuous Gaussian process in D with covariance

GD(·, ·), where GD is the Green’s function for the problem


(−∆c + ∆2

c)u(x) = f(x), x ∈ D

Dαu(x) = 0, ∀ |α| ≤ 1, x ∈ ∂D.

Then ψN converges in distribution to the field ψ−∆+∆2

D in the space of con-

tinuous functions on D.

(iii) κ � N2. Let d = 1. Define the continuously interpolated field ψN as in

(1.3.3) with

cN (1) = (2)−
1
2N−

1
2 .

Then as N →∞, ψN converges in distribution to the Brownian bridge, ψ−∆
D ,

in the space of continuous functions on D.

We remark here that in all the above three cases one can obtain the convergence

of the discrete maximum.

• Higher dimensional results:

Assume that D has smooth boundary. We define the space H−s−∆+∆2(D) anal-

ogously to H−s
∆2(D). One can find smooth eigenfunctions {vj}j∈N of −∆c + ∆2

c

corresponding to eigenvalues 0 < µ1 ≤ µ2 ≤ · · · → ∞ such that {vj}j∈N is an or-

thonormal basis of L2(D). One can define, for s > 0, the following inner product

for functions from C∞c (D):

〈f, g〉s,−∆+∆2 :=
∑
j∈N

µ
s/2
j 〈f, vj〉L2 〈vj , g〉L2 .

Let Hs−∆+∆2,0(D) be the completion of C∞c (D) with the above inner product and

H−s−∆+∆2(D) be its dual. The dual norm is denoted by ‖ · ‖−s,−∆+∆2 . We describe

the details on this space in Section 4.6. The well posedness of the series in the

following definition is proved in Proposition 4.6.3 in Section 4.6.

Definition 1.3.3 (Continuum mixed model). Let (ξj)j∈N be a collection of i.i.d.

standard Gaussian random variables. Set

Ψ−∆+∆2

D :=
∑
j∈N

µ
−1/2
j ξjvj .
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Then Ψ−∆+∆2

D ∈ H−s−∆+∆2(D) a.s. for all s > (d− 4)/2 and we call it the contin-

uum mixed model.

Depending on the behaviour of κ as N → ∞ we have the following three conver-

gence results.

(i) κ� N2. Let d ≥ 4. Define ΨN by

(ΨN , f) := (2d)−1√κN−
d+4

2

∑
x∈ 1

N
ΛN

ϕNxf(x), f ∈ Hs∆2,0(D).

Then we have, as N → ∞, that the field ΨN converges in distribution to

the continuum membrane model Ψ∆2

D in the topology of H−s
∆2(D) for s > sd,

where sd is defined in (1.3.2).

(ii) κ ∼ 2dN2. Let d ≥ 4. Define ΨN by

(ΨN , f) := (2d)−1√κN−
d+4

2

∑
x∈ 1

N
ΛN

ϕNxf(x), f ∈ Hs−∆+∆2,0(D).

Then, as N → ∞, the field ΨN converges in distribution to Ψ−∆+∆2

D in the

topology of H−s−∆+∆2(D) for s > sd where sd is defined in (1.3.2).

(iii) κ� N2. Let d ≥ 2. Define ΨN by

(ΨN , f) := (2d)−
1
2N−

d+2
2

∑
x∈ 1

N
ΛN

ϕNxf(x), f ∈ Hs−∆,0(D).

Then, as N →∞, the field ΨN converges in distribution to the Gaussian free

field Ψ−∆
D in the topology of H−s−∆(D) for s > d/2 + bd/2c+ 2.

Remark 1.3.4. The choice κ ∼ 2dN2 is just for simplicity. Instead, one can work with

κ ∼ c0N
2 for a generic c0 > 0. In that case the operator −∆c + ∆2

c needs to be replaced

with −∆c + c0
2d∆2

c .

1.4 A main ingredient in the proofs

We prove all the above results by showing finite dimensional convergence and tightness.

While doing so we heavily use property (1.2.2) of the covariance functions of the models.
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More precisely, we estimate the error between the solutions of the Dirichlet problems

involving the discrete elliptic operator and its continuous counterpart. Then we use

those estimates to prove our results. In estimating the errors we use the idea of Thomée

[69]. In some cases our set up falls under the more general set up in [69]. Unfortunately,

the constants involved in those error bounds depends on the smoothness of solution. So

even in those cases we need to improve his result quantitatively for our use. In other

cases our set up becomes much more specific and hence requires more care in following

his technique for the error estimation. For the model with scaling-dependent κ1, κ2 the

idea of Thomée [69] falls short in the case κ� N2. In this case we use a suitable cut-off

function to estimate the error.

Let us see briefly how his idea works in case of the DGFF. Let d ≥ 2 and let D

be a bounded domain in Rd with smooth boundary. Let us consider the DGFF on the

corresponding ΛN and define ΨN by

(ΨN , f) := (2d)−
1
2N−

d+2
2

∑
x∈ 1

N
ΛN

ϕNxf(x), f ∈ Hs−∆,0(D).

We want to show that as N →∞, the field ΨN converges in distribution to the Gaussian

free field Ψ−∆
D in the topology of H−s−∆(D) for s > d/2 + bd/2c+ 3/2. We first show the

finite dimensonal convergence. For f ∈ C∞c (D) we have

Var[(ΨN , f)] = N−d
∑

x∈ 1
N

ΛN

HN (x)f(x),

where

HN (x) := N−2
∑

y∈ 1
N

ΛN

GΛN (Nx,Ny)f(y), x ∈ 1

N
Zd .

Now using (1.2.2) one can show thatHN satisfies the following discrete Dirichlet problem:


−∆ 1

N
HN (x) = f(x) x ∈ 1

NΛN

HN (x) = 0 x /∈ 1
NΛN .

Here, for any h > 0 the discrete approximation ∆h of the Laplace operator is defined by

∆hu(x) :=
1

h2

d∑
i=1

(u(x+ hei) + u(x− hei)− 2u(x)).
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We now use Thomée [69]’s idea (in this case [69, Theorem 5.2]) to show that HN in

some sense is close to the solution u of the continuum Dirichlet problem


−∆cu(x) = f(x) x ∈ D

u(x) = 0 x ∈ ∂D.

More precisely, if we define eN (x) := HN (x)− u(x) for x in the the set D ∩ 1
N Zd, then

N−d
∑

x∈ 1
N

ΛN

eN (x)2 ≤ C 1

N
.

Using this estimate one can show that

Var[(ΨN , f)]→N→∞

∫
D
u(x)f(x)dx = Var[(Ψ−∆

D , f)].

To complete the proof of finite dimensional convergence one just need to use the Gaus-

sianity and the fact C∞c (D) is dense in Hs−∆,0(D). In order to show tightness, one can

obtain the constant C in the above estimation explicitly in terms of u and its partial

derivatives and then show that

lim sup
N→∞

EΛN [‖ΨN‖2−s,−∆] <∞ ∀s > d/2 + bd/2c+ 3/2.

Note that here we are getting some restriction on s as far as the space of convergence is

concerned. Tightness now follows as an application of Rellich’s theorem. Thus Thomée

[69]’s idea of error estimation indeed helps one to show that the scaling limit of the

DGFF is the Gaussian free field. We prove our results in similar manner. The proofs

are more involved and need lot more care in showing the estimates and different other

things as we go beyond DGFF and the operator −∆c. The thesis is mostly concerned

with making the above ideas suitable for different interface models.



Chapter 2

The scaling limit of the

membrane model

2.1 Introduction

In this chapter we study the scaling limit of the membrane model (MM), also known

as discrete bilaplacian model. The membrane model is a special instance of interface

models. It is the Gaussian interface for which

H(ϕ) :=
1

2

∑
x∈Zd

|∆ϕx|2. (2.1.1)

That is, MM is the field ϕ = (ϕx)x∈Zd , whose distribution is determined by the proba-

bility measure on RZd , d ≥ 1, with density

PΛ(dϕ) :=
1

ZΛ
exp

−1

2

∑
x∈Zd

|∆ϕx|2
∏

x∈Λ

dϕx
∏

x∈Zd\Λ

δ0(dϕx),

where Λ b Zd is a finite subset, dϕx is the 1-dimensional Lebesgue measure on R, δ0

is the Dirac measure at 0, and ZΛ is a normalising constant. We are imposing zero

boundary conditions i.e. almost surely ϕx = 0 for all x ∈ Zd \Λ, but the definition holds

for more general boundary conditions. In case Λ = VN := [−N, N ]d∩Zd, we will denote

the measure PVN with Hamiltonian (2.1.1) by PN . Introduced by Sakagawa [60] in the

probabilistic literature, the MM looks for certain aspects very similar to the DGFF: it is

25
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log-correlated in d = 4, is supercritical in d ≥ 5 and is subcritical in d ≤ 3. In particular

in d ≤ 4 there is no thermodynamic limit of the measures PN as N ↑ ∞. The MM

displays however certain crucial difficulties, in that for example it exhibits no random

walk representation, and several correlation inequalities are lacking. In this framework

we present our work which aims at determining the scaling limit of the bilaplacian model.

The answer in d = 1 was given by Caravenna and Deuschel [21], who also look at the

situation in which a pinning force is added to the model. We complement their work by

determining the scaling limit in all d ≥ 2.

Figure 2.1: A sample of the MM in d = 2 on a box of side-length 500.

The main contributions are as follows:

♠ in d = 2, 3 we consider the discrete membrane model on a box of side-length 2N

and interpolate it in a continuous way. We show that the process converges to a

real-valued process with continuous trajectories and the convergence takes place in

the space of continuous functions (see Theorem 2.2.1). The utility of this type of

convergence is that it yields the scaling limit of the discrete maximum exploiting

the continuous mapping theorem (Corollary 2.2.2). While the limiting maximum

of the discrete membrane model was derived in d ≥ 5 by Chiarini et al. [24] and in

d = 4 by Schweiger et al. [64]. The limit field also turns to be Hölder continuous

with exponent less than 1 in d = 2 and less than 1/2 in d = 3.
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The proof of the above facts is based on two basic steps: tightness and finite

dimensional convergence. Tightness depends on the gradient estimates of the dis-

crete Green’s functions which were very recently derived in [54]; finite dimensional

convergence follows from the convergence of the Green’s function.

♠ In d ≥ 4 the limiting process on a sufficiently nice domain D will be a fractional

Gaussian field with Hurst parameter H := s− d/2 on D. The theory of fractional

Gaussian fields was surveyed recently in [51]. The authors there construct the

continuum membrane model using characteristic functionals. We take here a bit

different route and give a representation using the eigenvalues of the biharmonic

operator in the continuum. We remark however that these eigenvalues differ from

the square of the Laplacian eigenvalues due to boundary conditions. The GFF

theory which is based on H1
0 (D) (the first order Sobolev space) needs to be replaced

by H2
0 (D) (second order Sobolev space).

Our main result is given in Theorem 2.3.11. Its proof is again split into two steps:

finite dimensional convergence and tightness. Both steps crucially require an ap-

proximation result of PDEs given by Thomée [69]: there he gives quantitative

estimates on the approximation of solutions of PDEs involving “nice” elliptic op-

erators by their discrete counterparts. We believe that the techniques used in this

chapter might have implications in the development of the theory of the membrane

model, in particular the idea of tackling boundary values by rescaling the standard

discrete Sobolev norm around the boundary. Especially in d = 4 this allows one to

overcome the difficulty of extending estimates from the bulk up to the boundary,

which is generally one stumbling block in the study of the MM.

♠ In d ≥ 5 we also consider the infinite volume membrane model on Zd. We show

in Lemma 2.4.2 that the limit is the fractional Gaussian field of Hurst parameter

H := 2 − d/2 < 0 on Rd (see [51]) and we prove in Theorem 2.4.3 the conver-

gence with the help of characteristic functionals. We utilise the classical result of

Fernique [36] (recently extended in the tempered distribution setting by Biermé

et al. [6]) stating that convergence of tempered distributions is equivalent to that

of their characteristic functionals. Technical tools useful for this scope are the

explicit Fourier transform of the infinite volume Green’s function and the Poisson

summation formula.
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We stress that, regardless of the dimension, the field is always rescaled as N (d−4)/2ϕNx

for x ∈ N−1 Zd. Heuristically, the factor N4−d corresponds to the order of growth of the

variance of the model in a box, which we recall here for completeness.

i) In d = 2, 3 if d(·) denotes the distance to the boundary of VN one has for some

constant C > 0 [54, Theorem 1.1]

|CovN (ϕx, ϕy)| ≤ C min

(
d(x)2−d/2d(y)2−d/2,

d(x)2d(y)2

(‖x− y‖+ 1)2

)
.

ii) In d = 4 let us denote the bulk of VN by V δ
N := {x ∈ VN : d(x) > δN} for δ ∈ (0, 1).

Then from [25, Lemma 2.1] we have: there exists a constant C(δ) > 0 such that

sup
x,y∈V δN

∣∣∣CovN (ϕx, ϕy)−
8

π2
(logN − log(‖x− y‖+ 1))

∣∣∣ ≤ C(δ).

iii) In d ≥ 5 the infinite volume covariance satisfies (see Lemma 1.2.3)

|Cov(ϕx, ϕy)| ∼ Cd‖x− y‖4−d as ‖x− y‖ → ∞.

Interestingly this reflects the behavior of the characteristic singular solution (fundamen-

tal solution) of the biharmonic equation, which is


Cd‖x‖4−d d odd or d even and d ≥ 6

Cd‖x‖4−d log ‖x‖ d even and d ≤ 4.

The reader can consult [52], [53, Section 5] and references therein for sharp pointwise

estimates of the Green’s function of the bilaplacian in general domains and for regularity

properties of the biharmonic Green’s function. We fix a constant κ := (2d)−1 throughout

the whole chapter.
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2.2 Convergence in d = 2, 3

2.2.1 Description of the limiting field

Let D = (−1, 1)d and DN = ND ∩ Zd, where N ∈ N. Let (ϕx)x∈DN−1
be the MM on

DN−1 and let GN−1 be the covariance function for this model. From (1.2.2) it follows

that GN−1 satisfies the following discrete boundary value problem for all x ∈ DN−1:


∆2GN−1(x, y) = δx(y), y ∈ DN−1

GN−1(x, y) = 0, y /∈ DN−1

.

First we want to define a continuous interpolation ψN of the discrete field to have

convergence in the space of continuous functions. There are many ways to define the

field (ψN (t))t∈D. We take one of the simplest geometric ways which is akin to the

interpolation of simple random walk trajectories in Donsker’s invariance principle. Mind

that we take the domain as a square since the recent gradient estimates and convergence

of the Green’s function of Müller and Schweiger [54] can be applied easily.

Interpolation in d = 2. Let t = (t1 , t2) ∈ D. Then p := Nt lies in the square box

with vertices a = bNtc, b = bNtc + e1, c = bNtc + e1 + e2, d = bNtc + e2, where e1, e2

are the standard basis vectors of R2. Suppose p is a point in the triangle abc. Then we

can write p = αa+ βb+ γc with α = 1− {Nt1}, β = {Nt1} − {Nt2}, γ = {Nt2}. And

in this case we define

ψN (t) =
κ

N
[αϕbNtc + βϕbNtc+e1 + γϕbNtc+e1+e2 ].

Similarly, if p ∈ 4acd then we define

ψN (t) =
κ

N
[α′ϕbNtc + β′ϕbNtc+e2 + γ′ϕbNtc+e1+e2 ]

where

α′ = 1− {Nt2}, β′ = {Nt2} − {Nt1}, γ′ = {Nt1}.

Thus the interpolated field (ψN (t))t∈D is defined by
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ψN (t) =
κ

N
[ϕbNtc + {Nti}

(
ϕbNtc+ei − ϕbNtc

)
+ {Ntj}

(
ϕbNtc+ei+ej − ϕbNtc+ei

)
] , if {Nti} ≥ {Ntj}

where i, j ∈ {1, 2}, i 6= j.

Interpolation in d = 3. In d = 3 the interpolated field can be defined in the same

way as above. We use tetrahedrons to define the interpolated field as

ψN (t) =
κ√
N

[ϕbNtc + {Nti}
(
ϕbNtc+ei − ϕbNtc

)
+ {Ntj}

(
ϕbNtc+ei+ej − ϕbNtc+ei

)
+ {Ntk}

(
ϕbNtc+ei+ej+ek − ϕbNtc+ei+ej

)
] , {Nti} ≥ {Ntj} ≥ {Ntk}

where t = (t1 , t2 , t3) ∈ D and i, j, k ∈ {1, 2, 3} are pairwise different.

Note that in both d = 2, 3 we have

ψN (t) = κN
d−4

2 ϕNt, t ∈
1

N
Zd .

From the above construction it follows that, for each N , ψN is a continuous function

on D. This shows that ψN can be considered as a random variable taking values in

(C(D), C(D)) where C(D) is the space of continuous functions on D and C(D) is its

Borel σ-algebra. Also recall the definition of Green’s function: the Green’s function for

the biharmonic operator is GD : D ×D → R such that for every fixed x ∈ D, it solves

the equation

∆2
cGD(x, y) = δx(y), y ∈ D,

in the space H2
0 (D), the completion of C∞c (D) with respect to the norm

‖f‖H2
0 (D) := ‖∇2

cf‖L2(D).

In the above equations ∆2
c , the continuum bilaplacian, acts on the y component, and ∇2

c

is the Hessian. The detailed properties of such spaces are needed in d ≥ 4 so we defer
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the discussions on them to Section 2.3. We denote the continuum Green’s function by

GD to indicate the dependence on the domain D.

We are now ready to state our main result for the case d = 2, 3. It shows that the

convergence of the above described process occurs in the space of continuous functions.

Theorem 2.2.1 (Scaling limit in d = 2, 3). Consider the interpolated membrane model

(ψN (t))t∈D in d = 2 and 3 as above. Then there exists a centered continuous Gaussian

process ψ∆2

D with covariance GD(·, ·) on D such that ψN converges in distribution to ψ∆2

D

in the space of all continuous functions on D. Furthermore the process ψ∆2

D is almost

surely Hölder continuous with exponent η, for every η ∈ (0, 1) resp. η ∈ (0, 1/2) in

d = 2 resp. d = 3.

An immediate consequence of the continuous mapping theorem is that, as N →∞,

sup
x∈D

ψN (x)
d→ sup
x∈D

ψ∆2

D (x).

It is easy to see that for any square or a cube A in the 1
N Zd lattice,

sup
x∈A

ψN (x) = κN
d−4

2 max{ϕNx : x is a vertex of A}.

Hence supx∈D ψN (x) = κN
d−4

2 maxx∈DN ϕx. So combining these observations we obtain

the scaling limit of the maximum of the discrete membrane model in lower dimensions.

Corollary 2.2.2. Let d ∈ {2, 3} and let MN = maxx∈DN ϕx. Then as N ↑ ∞

κN
d−4

2 MN
d→ sup
x∈D

ψ∆2

D (x).

2.2.2 Proof of the scaling limit (Theorem 2.2.1)

The proof follows the general methodology of a functional CLT, namely, we first show

the tightness of the interpolated field and secondly we show that the finite dimensional

distributions converge. As a by-product of the proof, the limiting Gaussian process

will be well-defined, that is, its covariance function will be positive definite. The finite

dimensional convergence follows easily from the very recent work of Müller and Schweiger

[54] where the convergence of the discrete Green’s function to the continuum one is
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shown. Tightness also requires the crucial bounds on gradients which were derived in

the same article. Since we have interpolated the field continuously and not piece-wise in

boxes or cubes one of the main efforts is to deduce moment bounds from integer lattice

points.

Tightness and Hölder continuity

To derive the tightness we need the following ingredients. The first one consists in the

following bounds for the discrete Green’s function and its gradients which follow from

[54]. We define the directional derivative of a function u : Zd → R as

Diu(x) := u(x+ ei)− u(x),

and hence the discrete gradient becomes

∇u(x) = (Diu(x))di=1.

For functions of several variables we use a subscript to indicate the variable with respect

to which a derivative is taken, for example in Di, 1Dj, 2u(x, y) we take the discrete

derivative in the direction i in the variable x and in j in the variable y, and ∇xG(x, y)

means we are taking the gradient in the x variable. We now state some bounds on the

covariance function and its gradient from [54], where they appear in a more general

version.

Lemma 2.2.3 ([54, Theorem 1.1]). Let d ∈ {2, 3}.

(i) For any x, y ∈ Zd

|GN (x, y)| ≤ CN4−d.

(ii) For any x, y ∈ Zd

‖∇xGN (x, y)‖ ≤ CN3−d.

(iii) For any x, y ∈ Zd

‖∇x∇yGN (x, y)‖ ≤

 C log
(

1 + N2

(‖x−y‖+1)2

)
if d = 2

C if d = 3
. (2.2.1)
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Now from the estimate (2.2.1) and the fact that

E
[
(ϕz+ei − ϕz)

2
]

= Di, 2Di, 1G(z, z)

one can observe the following Fact.

Fact 2.2.4. For z ∈ Zd

E
[
(ϕz+ei − ϕz)

2
]
≤

 C logN if d = 2

C if d = 3
.

Next we want to show that the sequence {ψN}N∈N is tight in C(D). We use the

following theorem, whose proof follows from that of Theorem 14.9 in [45].

Theorem 2.2.5. Let X1, X2, . . . be continuous processes on D with values in a complete

separable metric space (S, ρ). Assume that (Xn
0 ) is tight in S and that for constants

α, β > 0

E[ρ(Xn
s , X

n
t )α] ≤ C‖s− t‖d+β, s, t ∈ D (2.2.2)

uniformly in n. Then (Xn) is tight in C(D,S) and for every c ∈ (0, β/α) the limiting

processes are almost surely Hölder continuous with exponent c.

Observe that the process (ψN (t))t∈D is Gaussian, and since from Lemma 2.2.3 it

follows that GN−1(0, 0) ≤ N4−d, it is easy to see that (ψN (0)) is tight. Again, using

the properties of Gaussian laws, to show (2.2.2) it is enough to show the following the

lemma.

Lemma 2.2.6. Let b ∈ (0, 1) in d = 2 and b = 0 in d = 3. Then there exists a constant

C > 0 (which depends on b in d = 2) such that

E
[
|ψN (t)− ψN (s)|2

]
≤ C‖t− s‖1+b (2.2.3)

for all t, s ∈ D, uniformly in N .

This lemma will immediately give (2.2.2) and hence the Hölder continuity of the

limiting field.

Corollary 2.2.7. The field ψ∆2

D is almost surely Hölder continuous with exponent η,

where η ∈ (0, 1) in d = 2 and η ∈ (0, 1/2) in d = 3.



34 Chapter 2. The scaling limit of the membrane model

Proof. We note that for t, s ∈ D, the random variable ψN (t) − ψN (s) is Gaussian.

Therefore using Lemma 2.2.6 we have, for any α such that (1 + b)α/2 > d, that there is

a constant C such that the following holds uniformly in N with β := (1 + b)α/2− d :

E[|ψN (t)− ψN (s)|α] ≤ C‖t− s‖d+β, s, t ∈ D.

The conclusion follows then from Theorem 2.2.5.

Now we show the proof of the lemma.

Proof of Lemma 2.2.6. First we consider d = 2. We fix a b ∈ (0, 1) and let t, s ∈ D.

We split the proof into a few cases.

Case 1: Suppose t, s belong to the same smallest square box in the lattice 1
N Z2.

First assume bNtc = bNsc, that is, the points are in the interior and not touching the

top and right boundaries. In this case if we have {Nt1} ≥ {Nt2} and {Ns1} ≥ {Ns2}.

Then by definition of the interpolation we have

ψN (t)− ψN (s) = κ[(t1 − s1)
(
ϕbNtc+e1 − ϕbNtc

)
+ (t2 − s2)

(
ϕbNtc+e1+e2 − ϕbNtc+e1

)
].

So from the above expression we have

E
[
(ψN (t)− ψN (s))2

]
≤ 2κ2[(t1 − s1)2E[

(
ϕbNtc+e1 − ϕbNtc

)2
]

+ (t2 − s2)2E[
(
ϕbNtc+e1+e2 − ϕbNtc+e1

)2
]].

Now from Fact 2.2.4 and |t1 − s1| , |t2 − s2| < N−1 we obtain (2.2.3). The argument is

similar if one has {Nt1} ≤ {Nt2} and {Ns1} ≤ {Ns2}.

Again if {Nt1} ≥ {Nt2} and {Ns1} < {Ns2}, or if {Nt1} < {Nt2} and {Ns1} ≥

{Ns2} then we consider the point u on the line segment joining t and s such that Nu

is the point of intersection of the line segment joining Nt,Ns and the diagonal joining

bNtc, bNtc+ e1 + e2. Then we have using the above computations

E
[
|ψN (t)− ψN (s)|2

]
≤ 2E

[
|ψN (t)− ψN (u)|2

]
+ 2E

[
|ψN (u)− ψN (s)|2

]
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≤ C
[
‖t− u‖1+b + ‖u− s‖1+b

]
≤ C‖t− s‖1+b.

Now the other case, that is, when bNtc 6= bNsc follows from above by continuity.

Case 2: Suppose t, s do not belong to the same smallest square box in the lattice

1
N Z2. In this case if ‖t − s‖ ≤ 1/N then one can obtain (2.2.3) by the above case and

a suitable point in between. So we assume ‖t − s‖ > 1/N . Depending on whether Nt

and Ns belong to the discrete lattice we split the proof in two broad cases. We will

use bounds on mixed discrete derivatives for a better control of finite differences of the

Green’s function.

Sub-case 2 (a) Suppose t, s ∈ 1
N Z2. Then

E
[
|ψN (t)− ψN (s)|2

]
=

κ2

N2
[GN−1(Nt,Nt)−GN−1(Ns,Nt)

−GN−1(Nt,Ns) +GN−1(Ns,Ns)] .

We assume without loss of generality Ns1 ≤ Nt1, Ns2 ≤ Nt2. Also denote M :=

N(t1 − s1 + t2 − s2) and let (ui)
M
i=0 be such that ui = s+ i/Ne1 for i ≤ N(t1 − s1) and

ui = s+ (t1 − s1)e1 + (i/N − (t1 − s1))e2 for i > N(t1 − s1). Then

E
[
|ψN (t)− ψN (s)|2

]
=

κ2

N2

M−1∑
i=0

[GN−1(Nui+1, Nt)−GN−1(Nui, Nt)]

− [GN−1(Nui+1, Ns)−GN−1(Nui, Ns)]

=
κ2

N2

M−1∑
i, j=0

[GN−1(Nui+1, Nuj+1)−GN−1(Nui+1, Nuj)

−GN−1(Nui, Nuj+1) +GN−1(Nui, Nuj)]≤
C

N2

M−1∑
i, j=0

log

(
1 +

N2

(‖Nui −Nuj‖+ 1)2

)

where we have used (2.2.1) in the last inequality and we have absorbed the constant κ2

in the generic constant C. Now using the definition of ui, uj the right-hand side above

is bounded above by

C

N2

M−1∑
i, j=0

log

1 +
N2(

|i−j|√
2

+ 1
)2

 ≤ C

N2

M−1∑
i, j=0

log

(
1 +

N

(|i− j|+ 1)

)
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≤ CM

N2

M−1∑
l=−M+1

log

(
1 +

N

(|l|+ 1)

)
≤ CM

N

∫ M
N

0
log

(
1 +

1

x

)
dx

≤ C
(M
N

)2
[
1 + log

(
1 +

N

M

)]
≤ C‖t− s‖1+b.

Sub-case 2 (b) Suppose at least one between t, s does not belong to 1
N Z2. Then

E [|ψN (t)− ψN (s)|2
]
≤ 3E

[∣∣∣∣ψN (t)− ψN
(
bNtc
N

)∣∣∣∣2
]

+ 3E

[∣∣∣∣ψN (bNtcN

)
− ψN

(
bNsc
N

)∣∣∣∣2
]

+ 3E

[∣∣∣∣ψN (bNscN

)
− ψN (s)

∣∣∣∣2
]

≤ C

[∥∥∥∥t− bNtcN

∥∥∥∥1+b

+

∥∥∥∥bNtcN
− bNsc

N

∥∥∥∥1+b

+

∥∥∥∥bNscN
− s
∥∥∥∥1+b

]
≤ C‖t− s‖1+b.

Note that for the last inequality we have used our assumption ‖t− s‖ > 1/N .

Now we consider d = 3. Let t, s ∈ D. We split the proof into cases similar to those of

d = 2. We give a brief description. For Case 1, suppose t, s belong to the same smallest

cube in the lattice 1
N Z3. First assume bNtc = bNsc. In this case if {Nt1} ≥ {Nt2} ≥

{Nt3} and {Ns1} ≥ {Ns2} ≥ {Ns3} then it follows from the definition of interpolation

E
[
(ψN (t)− ψN (s))2

]
≤ 3Nκ2[(t1 − s1)2E[

(
ϕbNtc+e1 − ϕbNtc

)2
]

+ (t2 − s2)2E[
(
ϕbNtc+e1+e2 − ϕbNtc+e1

)2
]

+ (t3 − s3)2E[
(
ϕbNtc+e1+e2+e3 − ϕbNtc+e1+e2

)2
]].

Now from Fact 2.2.4 and the fact that |t1 − s1| , |t2 − s2| , |t3 − s3| < 1/N we have

(2.2.3). Note that this is a particular case of t, s lying in the same tetrahedral por-

tion of the cube. Hence if t, s lie in the same tetrahedral portion of the cube then by

similar arguments (2.2.3) holds. If t, s do not lie in the same tetrahedral part then we

consider points (at most 3) on the line segment joining them such that two consecutive

between t, the selected points and s lie in the same tetrahedral part. Then applying

the previous argument we can obtain (2.2.3). Now the case when bNtc 6= bNsc follows

by continuity. For Case 2, we describe Sub-case 2(a) which turns out to be simpler in

d = 3. The rest of the argument is similar to that in d = 2. Suppose t, s ∈ 1
N Z3 with
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‖t− s‖ > 1/N . Then

E
[
|ψN (t)− ψN (s)|2

]
=
κ2

N
[GN−1(Nt,Nt)−GN−1(Ns,Nt)−GN−1(Nt,Ns)

+GN−1(Ns,Ns)]

Without loss of generality assume Ns1 ≤ Nt1, Ns2 ≤ Nt2, Ns3 ≤ Nt3. Then

GN−1(Nt,Nt)−GN−1(Ns,Nt) =

N(t1−s1)∑
i=1

D1, 1GN−1(Ns+ (i− 1)e1, Nt)

+

N(t2−s2)∑
j=1

D2, 1GN−1(Ns+N(t1 − s1)e1 + (j − 1)e2, Nt)

+

N(t3−s3)∑
l=1

D3, 1GN−1(Ns+N(t1 − s1)e1 +N(t2 − s2)e2 + (l − 1)e3, Nt)

≤ C (N(t1 − s1) +N(t2 − s2) +N(t3 − s3)) ≤ CN‖t− s‖.

Hence (2.2.3) follows.

Finite dimensional convergence

The content of this subsection is to show

Proposition 2.2.8. With the notation of Theorem 2.2.1, for all s, t ∈ D,

lim
N→∞

Cov(ψN (t), ψN (s)) = Cov(ψ∆2

D (t), ψ∆2

D (s)).

Proof. To show the finite dimensional convergence we use [54, Corollary 1.4] (there the

domain was (0, 1)d but the result works for D as well). We observe that for h := 1/N ,

one has GN−1(x, y) = 4d2hd−4Gh(hx, hy) where Gh satisfies for x ∈ int(Dh) with Dh =

[−1, 1]d ∩ hZd the following boundary value problem


∆2
hGh(x, y) = 1

hd
δx(y) y ∈ int(Dh)

Gh(x, y) = 0 y /∈ int(Dh)

,

where ∆h is defined by

∆hf(x) :=
1

h2

d∑
i=1

(f(x+ hei) + f(x− hei)− 2f(x)) (2.2.4)
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and f is any function on hZd. We call such a function a grid function. Let ψ∆2

D be the

Gaussian process on D such that E[ψ∆2

D (t)ψ∆2

D (s)] = GD(t, s) for all t, s ∈ D, where

GD is the Green’s function for the biharmonic equation with homogeneous Dirichlet

boundary conditions (it will be a by-product of this proof that such a process exists).

First we consider d = 2. For t ∈ D we have

ψN (t) = ψN,1(t) + ψN,2(t),

where ψN,1(t) = κ
NϕbNtc and

ψN,2(t) =
κ

N

∑
i,j∈{1,2},i 6=j

1({Nti}≥{Ntj})(t)[{Nti}
(
ϕbNtc+ei − ϕbNtc

)
+ {Ntj}

(
ϕbNtc+ei+ej − ϕbNtc+ei

)
].

Then using Fact 2.2.4 we have Var(ψN,2(t)) ≤ C(logN)N−2 and hence ψN,2(t) con-

verges to zero in probability as N tends to infinity.

Again if t ∈ D then

Var(ψN,1(t)) =
κ2

N2
GN−1(bNtc, bNtc) = Gh(hbNtc, hbNtc)

and Gh(hbNtc, hbNtc) converges to GD(t, t) by [54, Corollary 1.4]. Also if t ∈ ∂D then

Var(ψN,1(t)) = 0 = GD(t, t). Hence ψN (t)
d→ ψ∆2

D (t).

Similarly one can show using Lemma 2.2.3, Fact 2.2.4 and [54, Corollary 1.4] that

for any t, s ∈ D,

Cov(ψN (t), ψN (s))→ Cov(ψ∆2

D (t), ψ∆2

D (s)).

Since these variables under consideration are Gaussian, the finite dimensional follows

from the convergence of the covariance.

In d = 3, for t ∈ D we have

ψN (t) =
κ√
N
ϕbNtc +

κ√
N

∑
i, j, k∈{1, 2, 3}, pairwise different

1({Nti}≥{Ntj}≥{Ntk})(t)

[{Nti}
(
ϕbNtc+ei − ϕbNtc

)
+ {Ntj}

(
ϕbNtc+ei+ej − ϕbNtc+ei

)
+ {Ntk}

(
ϕbNtc+ei+ej+ek − ϕbNtc+ei+ej

)
]
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=: ψN,1(t) + ψN,2(t).

By means of Fact 2.2.4 we have Var(ψN,2(t)) ≤ C/N and hence ψN,2(t) converges to

zero in probability as N → ∞. The rest of the proof is the same as d = 2 and follows

from [54, Corollary 1.4].

2.3 Convergence of finite volume measure in d ≥ 4

In this section D denotes a bounded domain in Rd, d ≥ 4, with smooth boundary.

Remark 2.3.1 (Regularity of the boundary of the domain). The assumption of smooth-

ness of the boundary is required to obtain asymptotics of the eigenvalues of the bihar-

monic operator (cf. Proposition 2.3.9).

2.3.1 Description of the limiting field

Spectral theory for the biharmonic operator

Let C∞c (D) denote the space of infinitely differentiable functions u : D → R with

compact support contained in the interior of D. Recall that for α = (α1, . . . , αd) a

multi-index

Dαu =
∂α1

∂xα1
1

· · · ∂
αd

∂xαdd
u.

Suppose f, g ∈ L1
loc(D). One says that g is the α-th weak partial derivative of f (written

Dαf = g) if ∫
D
fDαu dx = (−1)|α|

∫
D
gudx ∀u ∈ C∞c (D).

The Sobolev space W k,p is defined in the usual way as

W k,p = {f ∈ L1
loc(D) : Dαf ∈ Lp(D), |α| ≤ k}.

Denote by Hk(D) := W k,2(D), k = 0, 1, . . ., which is a Hilbert space with norm

‖f‖Hk(D) =

∑
|α|≤k

∫
D
|Dαf |2 dx

1/2

.
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It is true that if a > b then Ha(D) ⊂ Hb(D). Let us define another Hilbert space,

Hk
0 (D) := C∞c (D)

‖·‖
Hk(D)

and let H−k(D) = [Hk
0 (D)]∗ be its dual. In this section we will use round brackets (·, ·)

to denote the action of a dual Hilbert space on the original space, and 〈·, ·〉 for inner

products. We consider the inner product

〈u, v〉H2
0

=

∫
D

∆cu∆cv dx

which induces a norm on H2
0 (D) equivalent to the standard Sobolev norm [39, Corol-

lary 2.29]. We always consider H2
0 (D) with this norm.

We review briefly the spectral theory for the biharmonic operator as it helps us to

give an explicit construction of the continuum bilaplacian field. We have the following

theorem, which basically says that we can construct an operator B being the inverse of

the bilaplacian (see also Remark 2.3.8).

Theorem 2.3.2. There exists a bounded linear isometry

B0 : H−2(D)→ H2
0 (D)

such that, for all f ∈ H−2(D) and for all v ∈ H2
0 (D),

(f, v) = 〈v, B0f〉H2
0
.

Moreover, the restriction B on L2(D) of the operator i ◦ B0 : H−2(D) → L2(D) is a

compact and self-adjoint operator, where i : H2
0 (D) ↪→ L2(D) is the inclusion map.

Proof. Fix f ∈ H−2(D). By the Riesz representation theorem there exists a unique

uf ∈ H2
0 (D) such that for all v ∈ H2

0 (D)

(f, v) = 〈v, uf 〉H2
0
.

We define B0f := uf . Then by definition B0 is a bounded linear isometry and for all

v ∈ H2
0 (D)

(f, v) = 〈v,B0f〉H2
0
.
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We have H2
0 (D) ↪→ H1

0 (D) ↪→ L2(D) and the second embedding is compact. So i :

H2
0 (D) ↪→ L2(D) is compact and hence the operator i ◦ B0 : H−2(D) → L2(D) is

compact. This implies that the restriction B is compact. B is self-adjoint as for any

f, g ∈ L2(D),

〈Bf, g〉L2 = (g, Bf) = 〈Bf,Bg〉H2
0

= (f, Bg) = 〈f,Bg〉L2 .

Consequently we can find now an orthonormal basis of elements of H2
0 (D), as the

next theorem shows.

Theorem 2.3.3. There exist u1, u2, . . . in H2
0 (D) and numbers

0 < λ1 ≤ λ2 ≤ · · · → ∞

such that

• {uj}j∈N is an orthonormal basis for L2(D),

• Buj = λ−1
j uj, where B is as in Theorem 2.3.2,

• (uj , v)H2
0

= λj 〈uj , v〉L2 for all v ∈ H2
0 (D),

• {λ−1/2
j uj} is an orthonormal basis for H2

0 (D).

Proof. By the spectral theorem for compact self-adjoint operators we get an orthonormal

basis of L2(D) consisting of eigenvectors of B with Buj = λ̃juj and eigenvalues λ̃j → 0.

Note that for any f ∈ L2(D), Bf = 0 implies that

〈v, f〉L2 = 〈v, Bf〉H2
0

= 0 ∀v ∈ H2
0 (D)

and hence 〈g, f〉L2 = 0 for all g ∈ L2(D) (since H2
0 (D) is dense in L2(D)) and so f ≡ 0.

Thus 0 is not an eigenvalue of B and we have for any j ∈ N

uj =
1

λ̃j
Buj = B

uj

λ̃j
∈ Range(B) ⊂ H2

0 (D).
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Hence uj ∈ H2
0 (D). Now observe that, for any j ∈ N, λ̃j 〈uj , v〉H2

0
= 〈Buj , v〉H2

0
=

〈uj , v〉L2 for all v ∈ H2
0 (D). So this gives

λ̃j 〈uj , uj〉H2
0

= ‖uj‖L2 = 1.

But 〈uj , uj〉H2
0
> 0 and hence λ̃j > 0 for all j ∈ N. We define λj := 1/λ̃j . So we can

conclude

0 < λ1 ≤ λ2 ≤ . . .→∞.

Moreover Buj = λ−1
j uj and

〈uj , v〉H2
0

= λj 〈uj , v〉L2 ∀ v ∈ H2
0 (D). (2.3.1)

We now show that {λ−1/2
j uj}j∈N is an orthonormal basis for H2

0 (D). Indeed we have

〈
λ
− 1

2
j uj , λ

− 1
2

k uk

〉
H2

0

= λ
− 1

2
j λ

− 1
2

k 〈uj , uk〉H2
0

= λ
1
2
j λ
− 1

2
k 〈uj , uk〉L2 = δjk.

So {λ−1/2
j uj} is an orthonormal system. But for any v ∈ H2

0 (D), 〈uj , v〉H2
0

= 0 for all

j implies that 〈uj , v〉L2
= 0 for all j which in turn implies v = 0. This completes the

proof.

Corollary 2.3.4. For each j ∈ N one has uj ∈ C∞(D). Moreover uj is an eigenfunction

of ∆2
c with eigenvalue λj.

Proof. We have for all v ∈ H2
0 (D):

〈
∆2
cuj , v

〉
L2

GI
= 〈uj , v〉H2

0

Theorem 2.3.3
= λj 〈uj , v〉L2

where “GI” stands for Green’s first identity

∫
D
u∆cv dV = −

∫
D
∇cu · ∇cv dV +

∫
∂D

u∇cv · n dS.

Thus uj is an eigenfunction of ∆2
c with eigenvalue λj in the weak sense. The smoothness

of uj follows from the fact that ∆2
c is an elliptic operator with smooth coefficients and
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the elliptic regularity theorem [37, Theorem 9.26]. Hence uj is an eigenfunction of ∆2
c

with eigenvalue λj .

Remark 2.3.5. As a consequence of the above, one easily has that

‖f‖2H2
0

=
∑
j≥1

λj 〈f, uj〉2L2

for any f ∈ H2
0 (D).

We conclude this subsection with some bounds for the derivatives of the eigenfunc-

tions uj of Theorem 2.3.3.

Lemma 2.3.6. The following bounds hold:

sup
x∈D
|uj(x)| ≤ Cλl0j , (2.3.2)∑

|α|≤2

sup
x∈D
|Dαuj(x)| ≤ Cλl2j , (2.3.3)

∑
|α|≤5

sup
x∈D
|Dαuj(x)| ≤ Cλl5j (2.3.4)

where

lm :=

⌈
1

4

(⌊
d

2

⌋
+m+ 1

)⌉
, m = 0, 2, 5.

Proof. Taking l0 = d1/4(bd/2c+1)e we obtain from [35, Chapter 5, Theorem 6 (ii)] that

supx∈D|uj(x)| ≤ C‖uj‖H4l0 (D). Now a repeated application of [39, Corollary 2.21] gives

sup
x∈D
|uj(x)| ≤ C‖uj‖H4l0 (D) ≤ Cλj‖uj‖H4l0−4(D) ≤ · · · ≤ Cλ

l0
j .

The other two bounds are obtained similarly. We make a passing remark that the

smoothness of the boundary is needed in the results quoted above.

Definition of the limiting field via Wiener series

For any v ∈ C∞c (D) and for any s > 0 we define

‖v‖2s,∆2 :=
∑
j∈N

λ
s/2
j 〈v, uj〉

2
L2 .
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We define Hs∆2,0(D) to be the Hilbert space completion of C∞c (D) with respect to the

norm ‖ · ‖s,∆2 . Then
(
Hs∆2,0(D) , ‖ · ‖s,∆2

)
is a Hilbert space for all s > 0.

Remark 2.3.7.

• Note that for s = 2 we have H2
∆2,0(D) = H2

0 (D) by Remark 2.3.5.

• i : Hs∆2,0(D) ↪→ L2(D) is a continuous embedding.

Dual spaces. For s > 0 we defineH−s
∆2(D) = (Hs∆2,0(D))∗, the dual space ofHs∆2,0(D).

Then we have

Hs∆2,0(D) ⊆ L2(D) ⊆ H−s
∆2(D).

We denote the dual norm by ‖ · ‖−s,∆2 . For any v ∈ L2(D) we have

‖v‖2−s,∆2 =
∑
j∈N

λ
−s/2
j 〈v, uj〉2L2 .

Remark 2.3.8. By means of integration by parts we obtain, for every f ∈ C∞c (D), that

the solution uf of the boundary value problem


∆2
cu(x) = f(x), x ∈ D

Dαu(x) = 0, |α| ≤ 1, x ∈ ∂D.
(2.3.5)

where α = (α1, . . . , αd) is a multi-index with αi’s being non-negative integers, is such

that for all v ∈ C∞c (D)

∫
D
v(x)f(x) dx =

∫
D
v(x)∆2

cuf (x) dx = 〈v, uf 〉H2
0
.

Using the denseness of C∞c (D) in H2
0 (D) we conclude from Theorem 2.3.2 that B0f =

uf . Thus we have

‖f‖2−2,∆2 =

∫
D
uf (x)f(x) dx = ‖uf‖2H2

0
.

Before we show the definition of the continuum membrane model, we need an analog

of Weyl’s law for the eigenvalues of the biharmonic operator.

Proposition 2.3.9 ([4, Theorem 5.1], [57]). There exists an explicit constant c such

that, as j ↑ +∞,

λj ∼ c−d/4j4/d.



2.3. Convergence of finite volume measure in d ≥ 4 45

The result we will prove now shows the well-posedness of the series expansion for

Ψ∆2

D .

Proposition 2.3.10. Let (ξj)j∈N be a collection of i.i.d. standard Gaussian random

variables. Set

Ψ∆2

D :=
∑
j∈N

λ
−1/2
j ξjuj .

Then Ψ∆2

D ∈ H
−s
∆2(D) a.s. for all s > (d− 4)/2.

Proof. Fix s > (d− 4)/2. Clearly uj ∈ L2(D) ⊆ H−s
∆2(D). We need to show that

‖Ψ∆2

D ‖−s,∆2 < +∞ almost surely. Now this boils down to showing the finiteness of the

random series

‖Ψ∆2

D ‖2−s,∆2 =
∑
j≥1

λ
−s/2
j

∑
k≥1

λ
−1/2
k ukξk , uj

2

=
∑
j≥1

λ
− s

2
−1

j ξ2
j

where the last equality is true since (uj)j≥1 form an orthonormal basis of L2(D). Observe

that the assumptions of Kolmogorov’s two-series theorem are satisfied: indeed using

Proposition 2.3.9 one has

∑
j≥1

E
(
λ
− s

2
−1

j ξ2
j

)
�
∑
j≥1

j−
4
d( s2 +1) < +∞

for s > (d− 4)/2 and

∑
j≥1

Var
(
λ
− s

2
−1

j ξ2
j

)
�
∑
j≥1

j−
4
d

(s+2) < +∞

for s > (d− 8)/4. The result then follows.

Definition of the limiting field via abstract Wiener spaces

We want now to connect the series representation given in Proposition 2.3.10 with an

equivalent characterisation of Ψ∆2

D . This alternative definition can be given through the

theory of abstract Wiener space (AWS). For a comprehensive overview of the theory we

refer the readers to [68] for example. For our purposes it will suffice to recall that an

abstract Wiener space is a triple (Θ, H, W), where
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• Θ is a separable Banach space,

• H is a Hilbert space which is continuously embedded as a dense subspace of Θ,

equipped with the scalar product 〈·, ·〉H ,

• W is a Gaussian probability measure on Θ defined as follows.

Let Θ∗ be the dual space of Θ. Given any x∗ ∈ Θ∗ there exists a unique hx∗ ∈ H such

that for all h ∈ H, (h, x∗) = 〈h, hx∗〉H where (·, x∗) denotes the action of x∗ on Θ. The

σ-algebra B(Θ) on Θ is such that all the maps θ 7→ (θ, x∗) are measurable. W is a

probability measure such that, for all x∗ ∈ Θ∗,

EW [exp (ι(·, x∗))] = exp

(
−
‖hx∗‖2H

2

)
. (2.3.6)

In other words, the variable (·, x∗) underW is a centered Gaussian with variance ‖hx∗‖2H .

Next, we introduce the Paley–Wiener map I. I is viewed as a mapping

I : hx∗ ∈ H 7→ I(hx∗) ∈ L2(W)

θ ∈ Θ 7→ [I(hx∗)](θ) := (θ, x∗).

Since {hx∗ : x∗ ∈ Θ∗} is dense in H (see [68, Lemma 8.2.3]), the map hx∗ 7→ I(hx∗) can

be uniquely extended as a linear isometry from H to L2(W). [68, Theorem 8.2.6] yields

that the family of Paley–Wiener integrals {I (h) : h ∈ H} is Gaussian, where each I(h)

has mean zero and variance ‖h‖2H . Given (2.3.6) the family {I(uj) : {uj}j∈N orthonormal basis of H}

is formed by i.i.d. standard Gaussians.

In our setting, by combining [68, §8.3.2] and the Wiener series given in Proposi-

tion 2.3.10, we can take H := H2
0 (D) and W to be the law of Ψ∆2

D on Θ := H−s
∆2(D), for

an arbitrary s > (d − 4)/2. (the choice of Θ is not unique as explained in [68, Corol-

lary 8.3.2]). Also by theorem 2.3.2 we can index the Paley–Wiener integrals I(u) over

u ∈ H2
∆2,0(D) or take the maps I(B0(f)) over f ∈ H−2

∆2(D).

2.3.2 Discretisation set-up

We will use the parameter h := 1/N for N ∈ N. Let Dh := D ∩ hZd. Let us denote

by Rh the set of points ξ in Dh such that for every i, j ∈ {1, . . . d}, the points ξ ±
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h(ei ± ej), ξ ± hei are all in Dh. Let ΛN = 1
hRh ⊂ Zd be the “blow-up” of Rh. In

other words, ΛN ⊂ ND ∩ Zd is the largest set satisfying ∂2ΛN ⊂ ND ∩ Zd where

∂2ΛN := {y ∈ Zd \ΛN : dist(y, ΛN ) ≤ 2} is the double (outer) boundary of ΛN of points

at `1 distance at most 2 from it. Let (ϕz)z∈ΛN be the membrane model on ΛN whose

covariance is denoted by GΛN . It satisfies the following boundary value problem: for all

x ∈ ΛN ,  ∆2GΛN (x, y) = δx(y), y ∈ ΛN

GΛN (x, y) = 0, y /∈ ΛN
. (2.3.7)

Define Ψh by

(Ψh, f) := κ
∑
x∈Rh

h
d+4

2 ϕx/hf(x) , f ∈ Hs∆2,0(D). (2.3.8)

We first show that Ψh ∈ H−s∆2(D) for all s > d/2 + bd/2c + 1. Clearly Ψh is a linear

functional on Hs∆2,0(D). Also we have for any f ∈ Hs∆2,0(D)

|(Ψh, f)| =
∣∣∣κ ∑

x∈Rh

h
d+4

2 ϕx/h
∑
j≥1

〈f , uj〉L2uj(x)
∣∣∣

=
∣∣∣κh d+4

2

∑
j≥1

λ
− s

2
j

∑
x∈Rh

ϕx/huj(x)λ
s
2
j 〈f , uj〉L2

∣∣∣
where in the first equality we have used the fact that f ∈ L2(D) and therefore f =∑

j≥1〈f , uj〉L2uj . Thus

|(Ψh, f)| ≤

∑
j≥1

λ
− s

2
j (Ψh, uj)

2

 1
2

‖f‖s,∆2 ,

where (Ψh, uj) can be defined analogous to (2.3.8) as

(Ψh, uj) = κ
∑
x∈Rh

h
d+4

2 ϕx/huj(x).

To show Ψh is bounded, with the aid of Lemma 2.3.6 we observe that

∑
j≥1

λ
− s

2
j (Ψh, uj)

2 = κ2hd+4
∑
j≥1

λ
− s

2
j

( ∑
x∈Rh

ϕx/huj(x)

)2

(2.3.2)

≤ κ2hd+4

( ∑
x∈Rh

|ϕx/h|

)2∑
j≥1

λ
− s

2
+2l0

j
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Now using Proposition 2.3.9 we conclude that the sum in the right hand side in finite

whenever s > d/2 + bd/2c + 1. Thus we have shown that Ψh ∈ H−s∆2(D) for all s >

d/2 + bd/2c+ 1 and we have

‖Ψh‖2−s,∆2 ≤
∑
j≥1

λ
− s

2
j (Ψh, uj)

2. (2.3.9)

The result we want to show is

Theorem 2.3.11 (Scaling limit in d ≥ 4). One has that, as h→ 0, the field Ψh converges

in distribution to Ψ∆2

D of Proposition 2.3.10 in the topology of H−s
∆2(D) for s > sd, where

sd :=
d

2
+ 2

(⌈
1

4

(⌊
d

2

⌋
+ 1

)⌉
+

⌈
1

4

(⌊
d

2

⌋
+ 6

)⌉
− 1

)
.

Remark 2.3.12. An analogous result holds in d = 2, 3, but we will not discuss it here

as it is superseded by Theorem 2.2.1.

2.3.3 Proof of the scaling limit (Theorem 2.3.11)

Once again we need to prove tightness and “convergence of marginal laws”. In d ≥ 4

however we are concerned with a field which is not defined pointwise, so that “marginal”

from now takes on the meaning of the law of (Ψh, f), namely the action of Ψh, seen

as a distribution, on the test function f . The results are built on the approximation

of the continuum Dirichlet problem for the bilaplacian by Thomée [69], combined with

classical embeddings for Sobolev spaces.

Convergence of the marginals

To prove that the scaling limit is indeed Ψ∆2

D we first have to find the marginal limiting

laws. The set C∞c (D) is dense in Hs∆2,0(D), so we can use only smooth and compactly

supported functions to test the convergence.

Proposition 2.3.13. (Ψh, f) converges in law to (Ψ∆2

D , f) as h→ 0 for any f smooth

and compactly supported in D.

Proof. Since the Gaussian field ϕ is centered, we shall focus on the convergence of the

variance only. Note that Var
(

Ψ∆2

D , f
)

= ‖f‖2−2,∆2 . Remark 2.3.8 tells us that we can
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limit ourselves to showing that

lim
h→0

Var(Ψh, f) =

∫
D
u(x)f(x) dx

where u is the solution of (2.3.5). We define

GRh(x, y) := E[ϕx/hϕy/h] , x, y ∈ Dh.

By (2.3.7) we have, for all x ∈ Rh,

 ∆2
hGRh(x, y) = 4d2

h4 δx(y), y ∈ Rh
GRh(x, y) = 0, y /∈ Rh

.

We have

Var[(Ψh, f)] = κ2
∑

x,y∈Rh

hd+4GRh(x, y)f(x)f(y)

=
∑
x∈Rh

hdHh(x)f(x)

where Hh(x) = κ2
∑

y∈Rh h
4GRh(x, y)f(y), x ∈ Dh. It is immediate that Hh is the

solution of the following Dirichlet problem,


∆2
hHh(x) = f(x), x ∈ Rh

Hh(x) = 0, x /∈ Rh.

It is known that the above discrete solution is close to the continuum solution. The

details of the result are described in Section 2.5; here we only recall that if we define

eh(x) := u(x) −Hh(x) for x ∈ Dh and Rhf is the restriction of a function f to the set

Rh as in (2.5.2), then from Theorem 2.5.5 we have

‖Rheh‖h, grid ≤ Ch1/2. (2.3.10)

We have defined ‖f‖2h, grid := hd
∑

ξ∈hZd f(ξ)2, where f is any grid function with finite

support. Hence we get that

Var [(Ψh, f)] = −
∑
x∈Rh

eh(x)f(x)hd +
∑
x∈Rh

u(x)f(x)hd.
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By Cauchy–Schwarz the first term in absolute value is bounded by ‖Rheh‖h, grid‖f‖h, grid
and it goes to zero by (2.3.10) as h→ 0. For the second term we have

lim
h→0

∑
x∈Rh

u(x)f(x)hd =

∫
D
u(x)f(x) dx. (2.3.11)

Tightness

We next prove the following lemma.

Lemma 2.3.14.

lim sup
h→0

E[‖Ψh‖2−s,∆2 ] <∞ ∀ s > sd.

Proof. From (2.3.9) we have

E
[
‖Ψh‖2−s,∆2

]
≤
∑
j∈N

λ
−s/2
j E[(Ψh , uj)

2].

Note that u = λ−1
j uj is the unique solution of (2.3.5) for f = uj . We therefore obtain

as in the proof of proposition 2.3.13 by defining eh,j to be the error corresponding to

f = uj

E[(Ψh , uj)
2] = −

∑
x∈Rh

eh,j(x)uj(x)hd +
∑
x∈Rh

λ−1
j uj(x)uj(x)hd

≤ C sup
x∈D
|uj(x)|

hd ∑
x∈Rh

eh,j(x)2

1/2

+ Cλ−1
j

(
sup
x∈D
|uj(x)|

)2

.

Using Theorem 2.5.5 along with the bounds (2.3.2)-(2.3.3)-(2.3.4) we obtain

E[(Ψh , uj)
2] ≤ Cλl0j [λ2l5−2

j h2 + h
(
λ2l5−2
j h6 + λ2l2−2

j

)
]

1
2 + Cλ2l0−1

j

≤ Cλl0+l5−1
j .

Therefore we have

E
[
‖Ψh‖2−s,∆2

]
≤ C

∑
j∈N

λ
− s

2
j λl0+l5−1

j .
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Thus

lim sup
h→0

E[‖Ψh‖2−s,∆2 ] <∞ if
∑
j∈N

λ
− s

2
+l0+l5−1

j <∞.

And from proposition 2.3.9 we obtain that
∑

j∈N λ
− s

2
+l0+l5−1

j <∞ whenever s > sd.

To show tightness of Ψh we need the following theorem:

Theorem 2.3.15. For 0 ≤ s1 < s2, H−s1
∆2 (D) is compactly embedded in H−s2

∆2 (D).

Proof. It is enough to prove that Hs2
∆2,0

(D) is compactly embedded in Hs1
∆2,0

(D). The

inclusion Hs2
∆2,0

(D) ↪→ Hs1
∆2,0

(D) is linear and continuous. To prove the inclusion to

be compact let B be the unit ball of Hs2
∆2,0

(D). Given ε > 0 we choose N ∈ N large

enough so that N s1−s2 < ε4. Now we consider the subspace Z of Hs2
∆2,0

(D) defined by

Z :=
{
f ∈ Hs2

∆2,0
(D) : 〈f, uj〉L2 = 0 ∀ j < N

}
. Then for any f ∈ B ∩ Z we have

‖f‖2s1,∆2 =
∑
j∈N

λ
s1/2
j 〈f, uj〉2L2 =

∑
j≥N

λ
s1/2
j 〈f, uj〉2L2 =

∑
j≥N

λ
s1/2−s2/2
j λ

s2/2
j 〈f, uj〉2L2

≤ N (s1−s2)/2
∑
j≥N

λ
s2/2
j 〈f, uj〉2L2 = N (s1−s2)/2‖f‖2s2,∆2 < ε2.

Also note that the dimension of Hs2
∆2,0

(D)/Z is finite, so the unit ball of Hs2
∆2,0

(D)/Z is

compact and hence can be covered by finitely many balls of radius ε. Hence B can be

covered by finitely many balls of radius 2ε in the ‖·‖s1,∆2-norm. Since ε is arbitrary, B

is precompact in Hs1
∆2,0

(D). Therefore the inclusion map is compact.

Corollary 2.3.16. The sequence (Ψh)h= 1
N
,N∈N is tight in H−s

∆2(D) for all s > sd.

Proof. Fix s0 > sd and let sd < s1 < s0. By Theorem 2.3.15, for any R > 0,

BH−s1
∆2 (D)

(0, R) is compact in H−s0
∆2 (D). By Lemma 2.3.14 we have for some M > 0

E[‖Ψh‖2−s1,∆2 ] ≤M ∀h.

Given ε > 0, we take R =
√

2Mε−1 so that MR−2 < ε. Now for all h

P

(
Ψh /∈ BH−s1

∆2 (D)
(0 , R)

)
= P

(
‖Ψh‖2−s1,∆2 > R

)
≤

E[‖Ψh‖2−s1,∆2 ]

R2
< ε.

Thus (Ψh)h is tight in H−s0
∆2 (D).
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Having obtained tightness and convergence of the marginals, all is left to do is to

combine these ideas together to show the scaling limit.

Proof of Theorem 2.3.11. As (Ψh) is tight in H−s
∆2(D), it is enough to prove that every

converging subsequence (Ψhi) converges in distribution to Ψ∆2

D . Let (Ψhi) be a subse-

quence of (Ψh) converging in distribution to Ψ in H−s
∆2(D). Then (Ψhi , f) converges in

distribution to (Ψ, f) for any f ∈ Hs∆2,0(D). But since (Ψh, f) converges in distribution

to (Ψ∆2

D , f) for all f ∈ C∞c (D), we must have (Ψ∆2

D , f)
d
= (Ψ, f) for all f ∈ C∞c (D).

Now let g ∈ Hs∆2,0(D). Since C∞c (D) is dense in Hs∆2,0(D) we have a sequence (fk)

in C∞c (D) such that fk → g in Hs∆2,0(D). Therefore (Ψ∆2

D , fk) and (Ψ, fk) converge to

(Ψ∆2

D , g) and (Ψ, g) respectively. And hence (Ψ∆2

D , fk) and (Ψ, fk) converge in distri-

bution to (Ψ∆2

D , g) and (Ψ, g) respectively. But since (Ψ∆2

D , fk)
d
= (Ψ, fk) for all k, we

have (Ψ∆2

D , g)
d
= (Ψ, g). Thus we have (Ψ∆2

D , f)
d
= (Ψ, f) for all f ∈ Hs∆2,0(D). Hence

Ψ∆2

D
d
= Ψ, since the fields under considerations are linear.

2.4 Convergence in infinite volume in d ≥ 5

In this section we deal with the infinite volume membrane model defined on the whole

of Zd and show that the rescaled field converges to the continuum bilaplacian field on

Rd. Let PN be the finite volume MM measure defined on VN as mentioned in the

Introduction. From Proposition 1.2.2 it follows that in d ≥ 5 there exists P on RZd such

that PN → P in the weak topology of probability measures. Under P, the canonical

coordinates (ϕx)x∈Zd form a centered Gaussian process with covariance given by

G(x, y) = ∆−2(x, y) =
∑
z∈Zd

∆−1(x, z)∆−1(z, y) =
∑
z∈Zd

Γ(x, z)Γ(z, y),

where Γ denotes the covariance of the DGFF. Γ has an easy representation in terms of

the simple random walk (Sn)n≥0 on Zd given by

Γ(x, y) =
∑
m≥0

Px[Sm = y]
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(Px is the law of S starting at x). This entails that

G(x, y) =
∑
m≥0

(m+ 1)Px[Sm = y] = Ex,y

 +∞∑
`,m=0

1{Sm=S̃`}

 (2.4.1)

where S and S̃ are two independent simple random walks started at x and y respectively.

First one can note from this representation that G(·, ·) is translation invariant. The

existence of the infinite volume measure in d ≥ 5 gives that G(0, 0) < +∞. It is

convenient to consider the convergence in the space of tempered distribution (dual of

the Schwartz space on Rd). For this we are giving some preliminary theoretical results.

2.4.1 Description of the limiting field

We consider S = S(Rd) to be the Schwartz space that consists of infinitely differentiable

functions f : Rd → R such that, for all m ∈ N ∪ {0} and α = (α1, . . . , αd) ∈ (N ∪ {0})d,

‖f‖m,α = sup
x∈Rd

(1 + ‖x‖m)|Dαf(x)| <∞.

S is a linear vector space and it is equipped with the topology generated by the family

of semi-norms ‖·‖m,α, m ∈ N ∪ {0} and α ∈ (N ∪ {0})d. The topological dual S∗ of S

is called the space of tempered distributions. For F ∈ S∗ and f ∈ S we denote F (f)

by (F, f). We shall work with two topologies on S∗, the strong topology τs and the

weak topology τw. The strong topology τs is generated by the family of semi-norms

{eB : B is a bounded subset of S} where eB(F ) = supf∈B(F, f), F ∈ S∗. τw is induced

by the family of semi-norms {|(· , f)| : f ∈ S}. In particular Fn converges to F in S∗

with respect to the weak topology when limn(Fn, f) = (F, f) for all f ∈ S. It can be

shown that the Borel σ-fields corresponding to both topologies coincide. Therefore we

shall talk about the Borel σ-field B(S∗) of S∗ without specifying the topology.

Let (Ω ,A, P) be a probability space. By a generalized random field defined on

(Ω,A, P), we refer to a random variable X with values in (S∗,B(S∗)). For (Xn)n≥1 and

X generalized random fields with laws (PXn)n≥1 and PX respectively, we say that Xn

converges in distribution to X (and write Xn
d→ X) with respect to the strong topology

if

lim
n→∞

∫
S∗
ϕ(F )dPXn(F ) =

∫
S∗
ϕ(F )dPX(F ) ∀ϕ ∈ Cb(S∗, τs)
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where Cb(S∗, τs) is the space of bounded continuous functions on S∗ given the strong

topology. The convergence in distribution with respect to the weak topology is defined

similarly with test functions in Cb(S∗, τw). For a generalized random field X with law

PX , we define its characteristic functional by

LX(f) = E(eι(X,f)) =

∫
S∗

eι(F,f)dPX(F )

for f ∈ S. Note that LX is positive definite, continuous, and LX(0) = 1. The Bochner–

Minlos theorem says that the converse is also true: if a functional L : S → C is positive

definite, continuous at 0 and satisfies L(0) = 1 then there exists a generalized random

field X defined on a probability space (Ω ,A, P) such that LX = L. For a proof of this

theorem see for instance [42, Appendix 1]. Another important feature of characteristic

functions is that their convergence determines convergence of generalised random fields.

This is classical result of Lévy which was generalized and proved in the nuclear space

setting first by Fernique [36]. We use the version for tempered distributions which was

recently proved in [6].

Fact 2.4.1 ([6, Corollary 2.4]). Let (Xn)n≥1, X be generalized random fields. The fol-

lowing conditions are equivalent:

(i) Xn
d→ X in the strong topology.

(ii) Xn
d→ X in the weak topology.

(iii) LXn(f)→ LX(f) for all f ∈ S.

(iv) (Xn, f)
d→ (X, f) in R for all f ∈ S.

For f ∈ S we define f̂ by

f̂(θ) =
1

(2π)d/2

∫
Rd

e−ι〈x,θ〉f(x) dx.

Let us define an operator (−∆c)
−1 : S → L2(Rd) as follows [1, Section 1.2.2]:

(−∆c)
−1f(x) :=

1

(2π)d/2

∫
Rd

eι〈x,ξ〉‖ξ‖−2f̂(ξ) d ξ.
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We use now the operator (−∆c)
−1 to define the limiting field Ψ∆2

. It is the fractional

Gaussian field of parameter s := 2 described in [51, Section 3.1], to which we refer for a

proof of the following fact, relying on the Bochner–Minlos theorem.

Lemma 2.4.2. There exists a generalized random field Ψ∆2
on S∗ whose characteristic

functional L
Ψ∆2 is given by

L
Ψ∆2 (f) = exp

(
−1

2
‖(−∆c)

−1f‖2
L2(Rd)

)
, f ∈ S.

Consider (ϕx)x∈Zd to be the membrane model in d ≥ 5. We define

ψN (x) := κN
d−4

2 ϕNx, x ∈ 1

N
Zd .

For f ∈ S we define

(ΨN , f) := N−d
∑

x∈ 1
N

Zd
ψN (x)f(x). (2.4.2)

The above definition makes sense since, using Mill’s ratio and the uniform boundedness

of G(·, ·), one can show that, as ‖x‖ → ∞,

|ψN (x)| = O
(
N

d−4
2

√
log(1 + ‖x‖)

)
a.s.

via a Borell-Cantelli argument. This justifies (2.4.2) using the fast decay of f at infinity.

Also it follows that ΨN ∈ S∗ and the characteristic functional of ΨN is given by

LΨN (f) := exp(−Var (ΨN , f) /2).

The following theorem shows that the field ΨN constructed above converges to Ψ∆2

defined in Lemma 2.4.2.

Theorem 2.4.3 (Scaling limit in d ≥ 5). Let d ≥ 5 and ΨN be the field on S∗ defined

by (2.4.2). Then ΨN
d→ Ψ∆2

in the strong topology where Ψ∆2
is defined in Lemma 2.4.2.

2.4.2 Proof of the scaling limit (Theorem 2.4.3)

The proof of our last theorem of this chapter relies on the result recalled in Fact 2.4.1,

therefore unlike the two previous theorems it is not divided into tightness and finite
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dimensional convergence. The argument is based on Fourier analysis, and will be a

consequence of two claims which we will show after the main proof.

Proof of Theorem 2.4.3. We first show that for any f ∈ S(Rd),

E
[
(ΨN , f)2

]
→ ‖(−∆c)

−1f‖2
L2(Rd)

.

By our definition we have for f, g ∈ S

Cov((ΨN , f) , (ΨN , g)) = κ2N−(d+4)
∑

x,y∈ 1
N

Zd
G(0, N(y − x))f(x)g(y).

Hence

E
[
(ΨN , f)2

]
= κ2N−(d+4)

∑
x,y∈ 1

N
Zd
G(0, N(y − x))f(x)f(y).

From (1.2.3) we have

G(0, x) =
1

(2π)d

∫
[−π,π]d

(µ(θ))−2 e−ι〈x,θ〉 d θ

where µ(θ) = 1
d

∑d
i=1(1− cos(θi)) = 2

d

∑d
i=1 sin2( θi2 ). Hence we have

E
[
(ΨN , f)2

]
=
κ2N−(d+4)

(2π)d

∑
x,y∈ 1

N
Zd

∫
[−π,π]d

(µ(θ))−2 e−ι〈N(y−x),θ〉f(x)f(y) d θ

=
κ2N−(d+4)

(2π)d

∑
x,y∈ 1

N
Zd

∫
[−π,π]d

(µ(θ))−2 e−ι〈(y−x),Nθ〉f(x)f(y) d θ

=
κ2N−4

(2π)d

∫
[−Nπ,Nπ]d

(
µ

(
θ

N

))−2

∣∣∣∣∣∣∣N−d
∑

x∈ 1
N

Zd
e−ι〈x,θ〉f(x)

∣∣∣∣∣∣∣
2

d θ. (2.4.3)

We have used in the above Fubini’s theorem, justified by the following bound [26,

Lemma 7]: there exists C > 0 such that for all N ∈ N and w ∈ [−Nπ/2, Nπ/2]d \ {0}

we have

1

‖w‖4
≤ N−4

(
d∑
i=1

sin2
(wi
N

))−2

≤
(

1

‖w‖2
+

C

N2

)2

. (2.4.4)

We make two claims which will prove the convergence of variance.
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Claim 2.4.4.

lim
N→+∞

∣∣∣∣∣∣∣
κ2N−4

(2π)d

∫
[−Nπ,Nπ]d

(
µ

(
θ

N

))−2
∣∣∣∣∣N−d ∑

x∈ 1
N

Zd
e−ι〈x,θ〉f(x)

∣∣∣∣∣
2

d θ

− 1

(2π)d

∫
[−Nπ,Nπ]d

‖θ‖−4

∣∣∣∣∣N−d ∑
x∈ 1

N
Zd

e−ι〈x,θ〉f(x)

∣∣∣∣∣∣∣
2

d θ

∣∣∣∣∣ = 0.

Next we claim the convergence of the following term:

Claim 2.4.5.

lim
N→+∞

1

(2π)d

∫
[−Nπ,Nπ]d

‖θ‖−4

∣∣∣∣∣N−d ∑
x∈ 1

N
Zd

e−ι〈x,θ〉f(x)

∣∣∣∣∣
2

d θ = ‖(−∆c)
−1f‖2

L2(Rd)
.

Claims 2.4.4-2.4.5 entail that

lim
N→∞

LΨN (f) = exp

(
−1

2
‖(−∆c)

−1f‖2
L2(Rd)

)
.

Thus we have for all f ∈ S

LΨN (f)→ L
Ψ∆2 (f).

Hence the conclusion follows from Fact 2.4.1.

To prove the above two claims we use crucially the following estimate for approxi-

mating Riemann sums for Schwartz functions. Since we could not find a reference we

provide a short proof of the following fact:

Lemma 2.4.6. For any N ≥ 1 and s > 0 we have∣∣∣∣∣∣(2π)−d/2N−d
∑
x∈Zd

e−ι〈
x
N
,θ〉f

( x
N

)
− f̂(θ)

∣∣∣∣∣∣ ≤ CN−s (2.4.5)

where C may depend on f .

Proof. To show the above result we use the Poisson summation formula [67, Chapter 7].

Let us define g(x) := (2π)−d/2e−ι〈x,θ〉f (x). Using the Poisson summation formula we
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get

N−d
∑
x∈Zd

g
( x
N

)
=
∑
x∈Zd

f̂(θ + 2πxN).

Hence we have∣∣∣∣∣∣(2π)−d/2N−d
∑
x∈Zd

e−ι〈
x
N
,θ〉f

( x
N

)
− f̂(θ)

∣∣∣∣∣∣ ≤
∑

x 6=0,x∈Zd
|f̂(θ + 2πxN)|

≤
∑

x 6=0,x∈Zd

C

‖θ + 2πxN‖s∞

where the last inequality holds for any s ≥ 0 because f ∈ S. But

‖2πxN‖∞ ≤ ‖θ + 2πxN‖∞ + ‖θ‖∞ ≤ ‖θ + 2πxN‖∞ +Nπ

and hence, for s > 1, ‖2πxN‖s∞ ≤ 2s−1 (‖θ + 2πxN‖s∞ + (Nπ)s) . Thus for any s ≥ d0 >

d, we have∣∣∣∣∣∣(2π)−d/2N−d
∑
x∈Zd

e−ι〈
x
N
,θ〉f

( x
N

)
− f̂(θ)

∣∣∣∣∣∣ ≤
∑

x 6=0,x∈Zd

C

(Nπ)s(2‖x‖s∞ − 1)
≤ CN−s.

where the constant C depends on d0 but not on s. Hence the result follows.

We can now begin with the proof of the two claims.

Proof of Claim 2.4.4. Recall that κ = 1/(2d). Using the bound (2.4.4) for wi = θi/2 we

have ∣∣∣∣∣∣∣
κ2N−4

(2π)d

∫
[−Nπ,Nπ]d

(
µ

(
θ

N

))−2

|N−d
∑

x∈ 1
N

Zd
e−ι〈x,θ〉f(x)|2 d θ

− 1

(2π)d

∫
[−Nπ,Nπ]d

‖θ‖−4

∣∣∣∣∣∣∣N−d
∑

x∈ 1
N

Zd
e−ι〈x,θ〉f(x)

∣∣∣∣∣∣∣
2

d θ

∣∣∣∣∣∣∣
≤
∫

[−Nπ,Nπ]d

(
2‖θ‖−2 C

N2
+

C

N4

) ∣∣∣∣∣∣∣(2π)−d/2N−d
∑

x∈ 1
N

Zd
e−ι〈x,θ〉f(x)

∣∣∣∣∣∣∣
2

d θ.
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Using (a+ b)2 ≤ 2(a2 + b2) after adding and subtracting f̂(θ) in the modulus above we

have the bound

∫
[−Nπ,Nπ]d

(
2‖θ‖−2 C

N2
+

C

N4

)
(CN−s + |f̂(θ)|)2 d θ

≤
∫

[−Nπ,Nπ]d
2

(
2‖θ‖−2 C

N2
+

C

N4

)
(CN−2s + |f̂(θ)|2) d θ.

Again the last term amounts to estimating

CN−2s−2O(Nd−2) + CN−2s−4O(Nd)

+ CN−2

∫
[−Nπ,Nπ]d

‖θ‖−2|f̂(θ)|2 d θ + CN−4

∫
[−Nπ,Nπ]d

|f̂(θ)|2 d θ

which goes to 0 due to the fact that f ∈ S.

Proof of Claim 2.4.5. We have

‖(−∆c)
−1f‖2

L2(Rd)
=

∫
Rd
‖θ‖−4|f̂(θ)|2 d θ

and∣∣∣∣∣∣∣
∫

[−Nπ,Nπ]d
‖θ‖−4|(2π)−d/2N−d

∑
x∈ 1

N
Zd

e−ι〈x,θ〉f(x)|2 −
∫
Rd
‖θ‖−4|f̂(θ)|2 d θ

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫

[−Nπ,Nπ]d
‖θ‖−4|(2π)−d/2N−d

∑
x∈ 1

N
Zd

e−ι〈x,θ〉f(x)|2 −
∫

[−Nπ,Nπ]d
‖θ‖−4|f̂(θ)|2 d θ

∣∣∣∣∣∣∣
+

∣∣∣∣∣
∫

[−Nπ,Nπ]d
‖θ‖−4|f̂(θ)|2 d θ −

∫
Rd
‖θ‖−4|f̂(θ)|2 d θ

∣∣∣∣∣ .
Clearly the second term goes to zero as N tends to infinity. As for the first term we

have the following bound∣∣∣∣∣∣∣
∫

[−Nπ,Nπ]d
‖θ‖−4|(2π)−d/2N−d

∑
x∈ 1

N
Zd

e−ι〈x,θ〉f(x)|2 −
∫

[−Nπ,Nπ]d
‖θ‖−4|f̂(θ)|2 d θ

∣∣∣∣∣∣∣
≤
∫

[−Nπ,Nπ]d
‖θ‖−4

∣∣∣∣∣∣∣|(2π)−d/2N−d
∑

x∈ 1
N

Zd
e−ι〈x,θ〉f(x)|2 − |f̂(θ)|2

∣∣∣∣∣∣∣d θ
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≤ (2‖f‖L1 + C)

∫
[−Nπ,Nπ]d

‖θ‖−4

∣∣∣∣∣∣(2π)−d/2N−d
∑
x∈Zd

e−ι〈
x
N
,θ〉f

( x
N

)
− f̂(θ)

∣∣∣∣∣∣d θ
= O(Nd−4−s).

where the bound in the second inequality is obtained using the formula (a2 − b2) =

(a+b)(a−b) and (2.4.5). Thus the first term also goes to zero as N tends to infinity.

2.5 Quantitative estimate on the discrete approximation

in [69]

This section is devoted to obtaining quantitative estimates on approximation of solutions

of PDEs. The building block of our analysis is the paper [69]. Let D be any bounded do-

main in Rd with C2 boundary. We denote L := ∆2
c and consider the following continuum

Dirichlet problem: 
Lu(x) = f(x), x ∈ D

Dαu(x) = 0, |α| ≤ 1, x ∈ ∂D.
(2.5.1)

Let h > 0. We will call the points in hZd the grid points in Rd. We consider Lhu := ∆2
hu

to be the discrete approximation of Lu. Thus we have, for x ∈ hZd,

Lhu(x) =
1

h2

d∑
i=1

(∆hu(x+ hei) + ∆hu(x− hei)− 2∆hu(x))

=
1

h4

 d∑
i=1

d∑
j=1

{u(x+ h(ei + ej)) + u(x− h(ei + ej)) + u(x+ h(ei − ej))

+u(x− h(ei − ej))} − 4d

d∑
i=1

{u(x+ hei) + u(x− hei)}+ 4d2u(x)

]
.

Let Dh be the set of grid points in D i.e. Dh = D∩hZd. We say that ξ is an interior

grid point in Dh or ξ ∈ Rh if for every i, j, the points ξ±h(ei±ej), ξ±hei are all in Dh.

We denote Bh to be Dh \Rh. We will denote by Dh the set of grid functions vanishing

outside Rh. For a grid function f we define Rhf ∈ Dh by

Rhf(ξ) =


f(ξ) ξ ∈ Rh

0 ξ /∈ Rh.
(2.5.2)
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In [69] it is crucially used that the discrete approximation of the elliptic operator is

consistent. In our case it is easy to see this using Taylor’s expansion.

Lemma 2.5.1. The operator Lh is consistent with the operator L, that is, if W is a

neighborhood of the origin in Rd and u ∈ C4(W ) then

Lhu(0) = Lu(0) + o(1) as h→ 0.

We will divide Rh further into R∗h and B∗h where R∗h is the set of ξ in Rh such that for

every i, j, the points ξ ± h(ei ± ej), ξ ± hei are all in Rh and B∗h is the set of remaining

points in Rh. Thus we have

Dh = Bh ∪Rh = Bh ∪B∗h ∪R∗h.

We say that the domain D has property B∗2 if there is a natural number K such that

for all sufficiently small h, the following is valid: consider for any ξ ∈ B∗h all half-rays

through ξ. At least one of them contains within the distance Kh from ξ two consecutive

grid-points in Bh.

The following proposition shows that if the boundary of the domain is regular enough

then the property B∗2 is true. Namely, recall the uniform exterior ball condition (UEBC)

for a domain D, which states that there exists δ > 0 such that for any z ∈ ∂D there is a

ball Bδ(c) of radius δ with center at some point c satisfying Bδ(c) ∩D = {z} [41, page

27]. We show that the UEBC is a sufficient condition for B∗2 to hold. In particular, any

domain with C2 boundary satisfy the UEBC and hence possesses B∗2.

Proposition 2.5.2. If a bounded domain D satisfies the UEBC then the property B∗2
holds.

Since the proof of this result is purely geometric and combinatorial in nature we

discuss it in Section 2.6. We would like to remark that property B∗2 is a crucial re-

quirement in the proof of Theorem 2.5.4. In fact, it allows us to use Thomée’s result

[69, Lemma 3.4] which compares the standard discrete Sobolev norm with a modified

Sobolev norm weighted on boundary points.
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We now define the finite difference analogue of the Dirichlet’s problem (2.5.1). For

given h, we look for a function u(ξ) defined on Dh such that

Lhuh(ξ) = f(ξ), ξ ∈ Rh (2.5.3)

and

uh(ξ) = 0, ξ ∈ Bh. (2.5.4)

It follows from Lemma 2.5.1 and [69, Theorem 5.1] that the finite difference Dirichlet

problem (2.5.3) and (2.5.4) has exactly one solution for arbitrary f . Recall also the

norm ‖f‖2h, grid := hd
∑

ξ∈hZd f(ξ)2. Before we prove the approximation theorem, let us

cite two results from [69] (stated, in the original article, in a slightly more general way).

The first lemma is the discrete analogue of the Poincaré inequality.

Lemma 2.5.3 ([69, Lemma 3.1]). There are constants C > 0 independent of f and h

such that

‖f‖h, grid ≤ C‖∂jf‖h, grid, j = 1, . . . , d

and

‖f‖h, grid ≤ C‖f‖h, 2 :=

∑
|β|≤2

‖∂βf‖2h, grid

1/2

for any grid function f vanishing outside Rh, where

∂jf(x) :=
1

h
(f(x+ hej)− f(x)), j = 1, . . . , d

and

∂βf := ∂β1
1 · · · ∂

βd
d f, β = (β1, . . . , βd), βi ≥ 0.

Our aim is to estimate the error while approximating the solution of the boundary

value problem involving the continuum operator L by its discrete counter part. More

precisely, we want a bound of the ‖·‖h, grid-norm of the error restricted toRh. If we denote

this restriction of the error by g, then by the above lemma we have ‖g‖h, grid ≤ C‖g‖h, 2.

Also one can show that ‖g‖h, 2 ≤ C‖Lhg‖h, grid. To estimate ‖Lhg‖h, grid one can use

Taylor expansion for a point which is well inside the domain. But near the boundary

this is no longer possible and for those points the estimate obtained using the boundary
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condition is not useful. To overcome this obstacle we define a new operator Lh,2, where

we suitably truncate and modify the operator Lh near the boundary. Also we use the

result ‖g‖h, 2 ≤ C‖Lh,2g‖h, grid to estimate the error. We give the definition of the

operator Lh,2 from [69] as follows:

Lh,2f(x) =


Lhf(x) x ∈ R∗h

h2Lhf(x) x ∈ B∗h

0 x /∈ Rh.

Theorem 2.5.4 ([69, Theorem 4.2]). There exists a constant C > 0 such that for all

grid functions f vanishing outside Rh

‖f‖h, 2 ≤ C‖Lh, 2f‖h, grid,

where C is independent of h as well.

We have now all the ingredients to show the following.

Theorem 2.5.5. Let u ∈ C5(D) be the solution of the Dirichlet’s problem 2.5.1 and uh

be the solution of the discrete problem (2.5.3)-(2.5.4). If eh := u− uh then we have for

all sufficiently small h

‖Rheh‖2h, grid ≤ C
[
M2

5h
2 + h(M2

5h
6 +M2

2 )
]

where Mk =
∑
|α|≤k supx∈D|Dαu(x)|.

Proof. We denote all constants by C and they do not depend on u, f . First we use

Lemma 2.5.3 and Theorem 2.5.4 to obtain

‖Rheh‖2h, grid ≤ C‖Lh, 2Rheh‖2h, grid.

The proof now boils down to bounding ‖Lh, 2Rheh‖2h, grid. Using Taylor’s expansion we

have for all x ∈ Rh and for small h

Lhu(x) = Lu(x) + h−4R5(x)
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where |R5(x)| ≤ CM5h
5. We obtain for ξ ∈ Rh,

Lheh(ξ) = Lhu(ξ)− Lhuh(ξ)

= Lu(ξ) + h−4R5(ξ)− Lhuh(ξ) = h−4R5(ξ).

For ξ ∈ R∗h we have

Lh,2Rheh(ξ) = LhRheh(ξ) = Lheh(ξ) = h−4R5(ξ).

For ξ ∈ B∗h at least one among ξ ± h(ei ± ej), ξ ± hei is in Bh. For any η ∈ Bh \ ∂D

we consider a point b(η) on ∂D of minimal distance to η. Note that this distance is at

most 2h. Also note that uh(η) = 0 by definition. Now using Taylor expansion and the

fact that the value of u and all its first order derivatives are zero at b(η) one sees that

u(η) = uh(η) +R2(η)

where |R2(η)| ≤ CM2h
2. For ξ ∈ B∗h denote by

Si,j(ξ) = {η : η ∈ Bh \ (Bh ∩ ∂D) ∩ {ξ ± hei, ξ ± h(ei ± ej)}}.

Therefore, for ξ ∈ B∗h,

Lh,2Rheh(ξ) = h2LhRheh(ξ)

= h2

Lheh(ξ)− h−4
d∑

i,j=1

∑
η∈Si,j(ξ)

C(η)eh(η)


= h−2R5(ξ) + h−2CR′2(ξ)

where C(η) is a constant depending on η and |R′2(ξ)| ≤ CM2h
2. Hence

‖Lh,2Rheh‖2h,grid = hd
∑
x∈Rh

(Lh,2Rheh(x))2

= hd

∑
x∈R∗h

(Lh,2Rheh(x))2 +
∑
x∈B∗h

(Lh,2Rheh(x))2


= hd

∑
x∈R∗h

(h−4R5(x))2 +
∑
x∈B∗h

(h−2R5(x) + h−2CR′2(x))2


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≤ hd
∑
x∈R∗h

CM2
5h

2 +
∑
x∈B∗h

(CM2
5h

6 + CM2
2 )


≤ C

[
M2

5h
2 + h(M2

5h
6 +M2

2 )
]

where in the last inequality we have used that the number of points in B∗h is O(h−(d−1))

following from [56, Lemma 5.4] and the assumption of a C2 boundary. This concludes

the proof.

2.6 Proof of Proposition 2.5.2

We start with some heuristic explanation on the proof. The assumption of C2 boundary

ensures that there is no cone like structure in the domain, that is, locally the boundary

surface is like sphere. So if we consider a grid point in the domain which is close to the

boundary and consider all the 2d half-rays through the point, then at least one of them

meets the boundary within a short distance depending on the closeness of the point to

the boundary. In the following proof we make this idea rigorous.

Proof of Proposition 2.5.2. If d = 1 then it is easy to see from the definition that B∗2
holds. So we assume d ≥ 2. For any y ∈ Dh we denote by N(y) the neighbourhood of

y, that is,

N(y) := {y ± hei, y ± hei ± hej : 1 ≤ i, j ≤ d}.

We consider in fact a second-nearest neighbourhood in the graph distance, due to the

interaction of the discrete bilaplacian and Thomée’s definition of neighbour. Let us now

recall the definitions:

Dh = D ∩ hZd,

Rh = {x ∈ Dh : N(x) ⊆ Dh},

Bh = Dh \Rh,

R∗h = {x ∈ Rh : N(x) ⊆ Rh},

B∗h = Rh \R∗h.
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Thus Dh = Bh ∪ B∗h ∪ R∗h. We want to show that for sufficiently small h the following

holds: for any x ∈ B∗h there exists i ∈ {1, . . . , d} such that any two consecutive points of

either {x+ hei, x+ 2hei, x+ 3hei, x+ 4hei} or {x− hei, x− 2hei, x− 3hei, x− 4hei}

belong to Bh. The proof is done on a case-by-case basis. We prove the existence of two

consecutive points by broadly considering the following two possibilities:

• suppose x ∈ B∗h is such that dist(x,Bh) = 1, then we get an i0 ∈ {1, . . . , d} so that

either x+ hei0 , x+ 2hei0 ∈ Bh or x− hei0 , x− 2hei0 ∈ Bh.

• Now suppose x ∈ B∗h is such that dist(x,Bh) = 2. In this case if {x±2hei : 1 ≤ i ≤ d}∩

Bh is non-empty then we get an i0 ∈ {1, . . . , d} so that either x+2hei0 , x+3hei0 ∈ Bh
or x − 2hei0 , x − 3hei0 ∈ Bh. Otherwise, {x ± 2hei : 1 ≤ i ≤ d} ∩ Bh is empty and

{x± hei ± hej : 1 ≤ i, j ≤ d, i 6= j} ∩Bh is non-empty. And then we extract an i0 so

that either x+ 3hei0 , x+ 4hei0 ∈ Bh or x− 3hei0 , x− 4hei0 ∈ Bh.

In the process of obtaining these suitable points, we rule out some of the cases which do

not arise due to the regularity of the boundary.

Fix x ∈ B∗h. Then N(x) ⊂ Dh and N(x) ∩Bh 6= ∅.

1. Suppose {x± hei : 1 ≤ i ≤ d} ∩Bh 6= ∅. We assume for simplicity that x+ he1 ∈ Bh
as the argument will be similar for other directions. If x + 2he1 ∈ Bh, then there is

nothing to prove. More elaborate is the case when x+ 2he1 ∈ Rh. Then we have

N(x) ⊆ D,

N(x+ he1) * D,

N(x+ 2he1) ⊆ D.

Observe that from the preceding inclusions we must have

{x+ he1 ± hei ± hej : 2 ≤ i, j ≤ d} * D. (2.6.1)

We now partition this set into 2 subsets and argue separately.

1.1. Suppose {x+he1±2hei : 2 ≤ i ≤ d} * D. Let us assume that x+he1+2he2 /∈ D.

Then by definition of Bh we have x+he2, x+2he2 ∈ Bh and we are done. Similar

is the case for other points.
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1.2. We are left with the situation where {x + he1 ± 2hei : 2 ≤ i ≤ d} ⊂ D and

{x + he1 ± hei ± hej : 2 ≤ i, j ≤ d, i 6= j} * D. Note that this situation is not

possible in d = 2 and hence from now we consider d ≥ 3 for this subcase.

Again we continue with a particular choice x + he1 + he2 + he3 /∈ D. The

other occurrences can be handled similarly. Note that with this choice we have

x+he2, x+he3 ∈ Bh. So if at least one between x+ 2he2 and x+ 2he3 belongs

to Bh then we are done. Otherwise we have the following situation:

{x, x+ 2he1, x+ 2he2, x+ 2he3} ⊂ Rh,

{x+ he1, x+ he2, x+ he3} ⊂ Bh,

{x+ he1 ± 2hei : 2 ≤ i ≤ d} ⊆ D

and x + he1 + he2 + he3 /∈ D. Note here that the point x + he1 + he2 + he3,

which is at graph distance 3 from x, is not in D. However its nearby points

{x+2he1 +he2 +he3, x+he2 +he3, x+he1 +2he2 +he3, x+he1 +he3, x+he1 +

he2 + 2he3, x+he1 +he2} stay inside D. We show that such a situation cannot

happen due to the UEBC. Indeed, since the domain satisfies UEBC, we can find

for small h a ball Bδ(c) for some c ∈ Rd such that x+ he1 + he2 + he3 ∈ Bδ(c)

and Bδ(c) ∩ D = {y} for some y ∈ ∂D. Clearly, if x = (x1, . . . , xd) and

c = (c1, . . . , cd) then
d∑
i=1

(ci − xi)2 > δ2 (2.6.2)

and
3∑
i=1

(ci − xi − h)2 +

d∑
i=4

(ci − xi)2 < δ2. (2.6.3)

Since x+ 2he1 + he2 + he3, x+ he2 + he3 ∈ D we have

(c1 − x1 − 2h)2 + (c2 − x2 − h)2 + (c3 − x3 − h)2 +

d∑
i=4

(ci − xi)2 ≥ δ2, (2.6.4)

(c1 − x1)2 + (c2 − x2 − h)2 + (c3 − x3 − h)2 +

d∑
i=4

(ci − xi)2 ≥ δ2. (2.6.5)

Now subtracting (2.6.4), respectively (2.6.5), from (2.6.3) we get, respectively,

(2c1 − 2x1 − 3h)h ≤ 0,
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(2c1 − 2x1 − h)(−h) ≤ 0.

Hence

(c1 − x1)2 ≤ 9h2

4
. (2.6.6)

Similarly using the points x + he1 + 2he2 + he3, x + h1 + h3, x + he1 + he2 +

2he3, x+ he1 + he2 in D we obtain

(c2 − x2)2 ≤ 9h2

4
, (2.6.7)

(c3 − x3)2 ≤ 9h2

4
. (2.6.8)

We now observe that

x+ he1 ± he4 ∈ N(x) ⊆ D. (2.6.9)

Consequently

(c1 − x1 − h)2 + (c2 − x2)2 + (c3 − x3)2 + (c4 − x4 − h)2

+
d∑
i=5

(ci − xi)2 ≥ δ2 (2.6.10)

and

(c1 − x1 − h)2 + (c2 − x2)2 + (c3 − x3)2 + (c4 − x4 + h)2

+
d∑
i=5

(ci − xi)2 ≥ δ2. (2.6.11)

Subtracting (2.6.10) from (2.6.3) we derive, after a few simple manipulations,

(c4 − x4) ≤ 11h

4
.

Similarly subtracting (2.6.11) from (2.6.3) we obtain

(c4 − x4) ≥ −11h

4
.

Thus

(c4 − x4)2 ≤ 121h2

16
.
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Re-running the above argument considering x+he1±hei ∈ D, 5 ≤ i ≤ d, in place

of x+ he1 ± he4 in (2.6.9), and using equations similar to (2.6.10) and (2.6.11)

we obtain all in all that

(ci − xi)2 ≤ 121h2

16
, i = 4, . . . , d. (2.6.12)

Finally we observe that, for small enough h, (2.6.7), (2.6.8) and (2.6.12) together

contradict (2.6.2). This completes Case 1.

2. For this case we have {x± hei : 1 ≤ i ≤ d} ∩ Bh = ∅ but {x± hei ± hej : 1 ≤ i, j ≤

d} ∩Bh 6= ∅. Here also we consider two subcases.

2.1. First we consider the subcase when {x ± 2hei : 1 ≤ i ≤ d} ∩ Bh 6= ∅. For

simplicity we continue with a particular choice x + 2he1 ∈ Bh. In this case if

x+ 3he1 ∈ Bh then we are done. So we assume x+ 3he1 ∈ Rh. Observe that

N(x+ 2he1) * D

N(x± hei), N(x+ 3he1) ⊆ D

which imply that we must have

{x+ 2he1 ± hei ± hej : 1 < i, j ≤ d} * D. (2.6.13)

We consider two different situations.

2.1.1. Let us first consider the situation when {x+2he1±2hei : 1 < i ≤ d} * D.

In particular we consider without loss of generality x+ 2he1 + 2he2 /∈ D.

Note that this implies x + 2he2 ∈ Bh. So if x + 3he2 ∈ Bh then we are

done. Otherwise we have x + 3he2 ∈ Rh. But in this case we see that

x + 2he1 + 2he2 /∈ D and its nearby points {x + 3he1 + 2he2, x + he1 +

2he2, x + 2he1 + 3he2, x + 2he1 + he2, x + 2he1 + he2 ± hei : 3 ≤ i ≤ d}

stay inside D. It can be shown that this case is impossible by UEBC with

a similar argument as in Case 1.2.

2.1.2. We now consider the other situation (note the such a situation does not

appear in d = 2) when {x+2he1±2hei : 1 < i ≤ d} ⊆ D. So using (2.6.13)

without loss of generality we choose a particular element, say x+ 2he1 +

he2 + he3 /∈ D. One can show that this situation is not possible for
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small enough h by arguments similar to Case 1.2. with the observation

{x + 3he1 + he2 + he3, x + he1 + he2 + he3, x + 2he2 + he3, x + he3, x +

he2 + 2he3, x+ he2, x+ h2 + h3 ± hei : 4 ≤ i ≤ d} ⊆ D.

2.2. We are left with the subcase when

{x± 2hei : 1 ≤ i ≤ d} ∩Bh = ∅,

{x± hei ± hej : 1 ≤ i, j ≤ d, i 6= j} ∩Bh 6= ∅. (2.6.14)

Now consider points which are of the form {x± 3hei : 1 ≤ i ≤ d} and depending

on whether they have non-empty intersection with Bh one can split the argument

into two further cases. We use points of the above form as their neighbourhoods

contain points which are at graph distance 5 from x in certain directions.

2.2.1. First we consider the case when {x ± 3hei : 1 ≤ i ≤ d} ∩ Bh 6= ∅. If say,

x+ 3he1 ∈ Bh then it must be that x+ 4he1 ∈ Bh too. Indeed, were this

not true one would have

N(x+ 3he1) * D,

N(x+ 4he1) ⊆ D,

N(x+ 2he1) ⊆ D.

From these equations we observe that one would have {x+3he1±hei±hej :

1 < i, j ≤ d} * D. Now this would give rise to a contradiction by similar

argument used in Case 1.2.

2.2.2. We now focus on the case when

{x± 3hei : 1 ≤ i ≤ d} ∩Bh = ∅. (2.6.15)

We show that this situation can not arise. To keep the argument simple,

using (2.6.14), we assume without loss of generality x + he1 + he2 ∈ Bh.

Then

{x+ he1 + he2 ± hei, x+ he1 + he2 ± hei ± hej : 1 ≤ i, j ≤ d} * D.
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Since we are in Case 2 and (2.6.14)-(2.6.15) hold we have

N(x± hei), N(x± 2hei), N(x± 3hei) ⊆ D for all i,

so it must be that

{x+ he1 + he2 ± hei ± hej : 3 ≤ i, j ≤ d, i 6= j} * D. (2.6.16)

Notice that such a situation cannot arise in d = 3 and hence we concentrate

on d ≥ 4. To analyse the situation arising out of (2.6.16), we suppose

x+ he1 + he2 + he3 + he4 /∈ D.

Note that here we cannot follow the steps of Case 1.2. because we do not

know if any of the points x + 2he1 + he2 + he3 + he4, x + he1 + 2he2 +

he3 + he4, x+ he1 + he2 + 2he3 + he4, x+ he1 + he2 + he3 + 2he4 are in

D. So we argue in a slightly different way.

By UEBC for h small enough we can find a ball Bδ(c) for some c ∈ Rd

such that x+he1 +he2 +he3 +he4 ∈ Bδ(c) and Bδ(c)∩D = {y} for some

y ∈ ∂D. Clearly, if x = (x1, . . . , xd) and c = (c1, . . . , cd) then

d∑
i=1

(ci − xi)2 > δ2 (2.6.17)

and
4∑
i=1

(ci − xi − h)2 +
d∑
i=5

(ci − xi)2 < δ2. (2.6.18)

Also x+ he2 + he3 + he4 ∈ D gives

(c1 − x1)2 +

4∑
i=2

(ci − xi − h)2 +

d∑
i=5

(ci − xi)2 ≥ δ2. (2.6.19)

Subtracting (2.6.19) from (2.6.18) we get

c1 − x1 ≥
h

2
.
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Similarly we obtain

ci − xi ≥
h

2
, i = 2, 3, 4.

Now we impose a condition on the maximum value of {ci − xi : i =

1, 2, 3, 4} and see that when it is bounded by a factor of h one gets a

contradiction. Let ck − xk = max{ci − xi : i = 1, 2, 3, 4}. First suppose

ck − xk ≤ 7h/2. Then we have

(ci − xi)2 ≤ 49h2

4
, i = 1, 2, 3, 4.

Now using {x+ he1 + he2 ± hej : 5 ≤ j ≤ d} ⊆ D we deduce

(cj − xj)2 ≤ Ch2, 5 ≤ j ≤ d.

where C is a constant depending on d. Thus we obtain

d∑
i=1

(ci − xi)2 ≤ Ch2

for some constant C. This contradicts (2.6.17) for small enough h. Now

suppose we are not in the above situation, that is, ck − xk > 7h/2. For

simplicity let k = 4. Then we find a contradiction by observing that the

point x+ he2 + he3 + 3he4 can not lie in D. Indeed, we have

(c1 − x1)2 + (c2 − x2 − h)2 + (c3 − x3 − h)2 + (c4 − x4 − 3h)2

+
d∑
i=5

(ci − xi)2 −
4∑
i=1

(ci − xi − h)2 −
d∑
i=5

(ci − xi)2

= (c1 − x1)2 − (c1 − x1 − h)2 + (c4 − x4 − 3h)2 − (c4 − x4 − h)2

= −h[2(c4 − x4)− 7h+ 2((c4 − x4)− (c1 − x1))] < 0.

Thus

(c1 − x1)2 + (c2 − x2 − h)2 + (c3 − x3 − h)2 + (c4 − x4 − 3h)2

+
d∑
i=5

(ci − xi)2 < δ2.
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This implies that x + he2 + he3 + 3he4 ∈ Bδ(c) which is impossible as

x+ he2 + he3 + 3he4 ∈ N(x+ 3he4) ⊆ D. This completes the proof.





Chapter 3

The scaling limit of the

(∇ + ∆)-model

3.1 Introduction

The (∇ + ∆)-model is another special instance of the more general class of random

interfaces. For this model the Hamiltonian is given by

H(ϕ) =
∑
x∈Zd

(
κ1‖∇ϕx‖2 + κ2(∆ϕx)2

)
(3.1.1)

where κ1, κ2 are two positive constants. Thus (∇+ ∆)-model is the field ϕ = (ϕx)x∈Zd ,

whose distribution is determined by a probability measure on RZd , d ≥ 1. The proba-

bility measure is given by

PΛ(dϕ) :=
1

ZΛ
exp

−∑
x∈Zd

(
κ1‖∇ϕx‖2 + κ2(∆ϕx)2

)∏
x∈Λ

dϕx
∏

x∈Zd\Λ

δ0(dϕx), (3.1.2)

where Λ b Zd is a finite subset, dϕx is the Lebesgue measure on R, δ0 is the Dirac

measure at 0, and ZΛ is a normalizing constant. We are imposing zero boundary condi-

tions: almost surely ϕx = 0 for all x ∈ Zd \ Λ, but the definition holds for more general

boundary conditions. In the physics literature, the above Hamiltonian is considered to

be the energy of a semiflexible membrane (or semiflexible polymer if d = 1) where the

parameters κ1 and κ2 are the lateral tension and the bending rigidity, respectively. In

75
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the works of Borecki [14], Borecki and Caravenna [15] this model was studied in d = 1

under the influence of pinning in order to understand the localization behavior of the

polymer.

This model interpolates between two well-known random interfaces namely the dis-

crete Gaussian free field and the membrane model. In [15, Remark 9] it was conjectured

that, in the case of pinning for the one-dimensional (∇+∆)-model, the behaviour of the

free energy should resemble the purely gradient case. In view of this remark it is natural

to ask if the scaling limit of the model is dominated by the gradient interaction, that is,

the limit is Gaussian free field (GFF). The main focus of this chapter is to show that

such a guess is true and indeed in any dimension the model approximates the Gaussian

free field.

We will consider the lattice approximation of both domains and Rd and investigate

the behavior of the rescaled interface when the lattice size decreases to zero. We will

use techniques coming from discrete PDEs which were already employed in Chapter 2

to derive the scaling limit of the membrane model. We show that in d = 1 convergence

occurs in the space of continuous functions whilst in higher dimensions the limit is no

longer a function, but a random distribution, and convergence takes place in a Sobolev

space of negative index. In this sense one can also think of this model as a perturbation

of the discrete Gaussian free field.

3.2 Main results

3.2.1 The model

Let Λ be a finite subset of Zd and PΛ andH(ϕ) be as in (3.1.2) and (3.1.1) respectively. It

follows from Lemma 1.2.1 that the Gibbs measure (3.1.2) on RΛ with Hamiltonian (3.1.1)

exists. Note that (3.1.1) can be written as

H(ϕ) =
1

2
〈ϕ, (−4dκ1∆ + 2κ2∆2)ϕ〉`2(Zd). (3.2.1)

We are interested in the “truly” mixed case, that is when κ1 and κ2 are strictly

positive. Therefore using the fact that the measure induced by (3.2.1) is Gaussian
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without any loss of generality we will work with the following Hamiltonian:

H(ϕ) =
1

2
〈ϕ, (−κ∆ + ∆2)ϕ〉`2(Zd) (3.2.2)

where κ > 0 is a constant. Thus if we write GΛ(x, y) := EΛ(ϕxϕy), it follows from

Lemma 1.2.1 that GΛ solves the following discrete boundary value problem: for x ∈ Λ (−κ∆ + ∆2)GΛ(x, y) = δx(y) y ∈ Λ

GΛ(x, y) = 0 y /∈ Λ
. (3.2.3)

In the case Λ = [−N, N ]d∩Zd we will denote the measure (3.1.2) by PN . It follows from

Proposition 1.2.2 that in d ≥ 3 there exists a thermodynamic limit P of the measures PN

as N ↑ ∞. Under P, the field (ϕx)x∈Zd is a centered Gaussian process with covariance

given by

G(x, y) = (−κ∆ + ∆2)−1(x, y).

Since κ is a fixed constant, in order to simplify the exposition we will fix it to be 1

throughout. This would not change the nature of the limit except for a scaling constant.

3.2.2 Main results

Since the infinite volume measure of the mixed model exists in d ≥ 3, we split the

scaling limit convergence into two parts: the infinite volume case, in which we study the

(∇+∆)-model under P, and the finite volume case in which our object of interest is the

scaling limit of measures PΛN , for some chosen ΛN b Zd. We fix for the whole chapter

the constant k := 1/
√

2d. The main results are as follows.

In d ≥ 3 (Section 3.3) we consider the infinite volume model ϕ = (ϕx)x∈Zd with law

P. We define for N ∈ N

ψN (x) := kN
d−2

2 ϕNx, x ∈ 1

N
Zd .

For f ∈ S = S(Rd) (the Schwartz space) we define

(ΨN , f) := N−d
∑

x∈ 1
N

Zd
ψN (x)f(x). (3.2.4)
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This definition makes sense since, using Mill’s ratio and the uniform bound on G one

can show that as ‖x‖ → ∞

|ψN (x)| = O(N
d−2

2

√
log(1 + ‖x‖)) a.s.

via a Borel-Cantelli argument. Also it follows that with this definition ΨN ∈ S∗ and the

characteristic functional of ΨN is given by

LΨN (f) := exp(−Var (ΨN , f) /2).

As for the limiting field, we have by an application of the Bochner–Minlos theorem

that there exists a generalized random field Ψ−∆ on S∗ whose characteristic functional

LΨ−∆ is given by

LΨ−∆(f) = exp

(
−1

2
‖(−∆c)

−1/2f‖2
L2(Rd)

)
, f ∈ S, (3.2.5)

where the operator (−∆c)
−1/2 : S → L2(Rd) is defined by

(−∆c)
−1/2f(x) :=

1

(2π)d/2

∫
Rd

eι〈x,ξ〉‖ξ‖−1f̂(ξ) d ξ.

Here f̂ is the Fourier transform of f . For properties of the field Ψ−∆ see also [51, Section

3]. We are now ready to state our main result for the infinite volume case.

Theorem 3.2.1 (Scaling limit in d ≥ 3). One has that ΨN
d→ Ψ−∆ in the strong

topology of S∗.

In the finite volume case in d ≥ 2 (Section 3.4) we take D to be a bounded domain

in Rd with smooth boundary. We discretise D appropriately and “blow it up”: this

discretisation will be called Λ = ΛN (it will be defined properly in Section 3.4). On Λ

we define the mixed model ϕ with law (3.1.2) and Hamiltonian (3.2.2) and define ΨN

by

ΨN := k
∑

x∈ 1
N

ΛN

N−
d+2

2 ϕNxδx.

One can show ΨN is a distribution living in the negative Sobolev space H−s−∆(D) for

all s > d. To describe the limiting field, there are many equivalent ways to define the
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Gaussian free field Ψ−∆
D on a domain. One of them is to think of it as a collection

of centered Gaussian variables (Ψ−∆
D , f) indexed by C∞c (D) with covariance structure

given by

E[(Ψ−∆
D , f)(Ψ−∆

D , g)] =

∫∫
D×D

f(x)g(y)GD(x, y) dx d y, f, g ∈ C∞c (D)

where GD is the Green’s function of the continuum Dirichlet problem with zero boundary

conditions. We now state the main result for the finite volume (∇+ ∆)-interaction.

Theorem 3.2.2 (Scaling limit in d ≥ 2 under finite volume). ΨN converges in distribu-

tion to the zero boundary Gaussian free field Ψ−∆
D as N →∞ in the topology of H−s−∆(D)

for s > d.

A special case for finite volume measures is d = 1 (Subsection 3.4.4). In this example,

the GFF becomes a Brownian bridge, and the type of convergence we obtain is different

from all other dimensions (convergence occurs in the space of continuous functions). In

this case we consider the mixed model on the “blow up” Λ = ΛN of an appropriate

discretisation of [0, 1]. We define a continuous interpolation ψN of the rescaled interface

and obtain the following theorem:

Theorem 3.2.3 (Scaling limit in d = 1). ψN converges in distribution to the Brownian

bridge on [0, 1] in the space C[0, 1].

As a by-product of this theorem we obtain the convergence of the discrete maximum

in d = 1.

3.2.3 Idea of the proofs

We begin by explaining the ideas behind the proofs of the infinite volume case (Sec-

tion 3.3). For the whole space GFF the variance of (Ψ−∆
D , f) can be expressed as

‖(−∆c)
−1/2f‖2

L2(Rd)
=

∫
Rd
‖θ‖−2|f̂(θ)|2 d θ. (3.2.6)

Given the appearance of the Fourier transforms in the limit, we write the discrete Green’s

function in terms of the inverse Fourier transform. We see that a scaling factor appears
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in such a way the contribution from the ∆2 factor in the Hamiltonian vanishes, ensuring

convergence to a purely gradient model.

In the finite volume case we show first finite dimensional convergence and secondly

tightness. Since the measures are Gaussian the finite dimensional convergence follows

from the convergence of the covariance function. However, the behaviour of the covari-

ance of the mixed model is not known explicitly in finite volume (for example, it lacks

the classical random walk representation of Ginzburg-Landau models). So we use the

expedient of finite difference scheme in proving the convergence. The key fact which is

used is that the Green’s function satisfies the Dirichlet problem (3.2.3). We show that

the discrete solution is equal to that of the continuum Dirichlet problem with a negligi-

ble error. This approximation is obtained from the interesting approach of Thomée [69].

His idea, adapted to our setting, is the following: if we write the operator (−∆ + ∆2)

in the rescaled lattice hZd for h small, then due to the scaling we end up dealing with

(−∆h + h2/(2d)∆2
h). To quantify how negligible the presence of ∆2

h is, we use some

discrete Sobolev inequalities. In Section 3.5 we derive precise estimate of the error. This

section is of independent interest, as it concerns the approximation of PDEs. We remark

that our methodology seems to be robust enough to deal with different interface models

whenever the interaction is given in terms of a discrete elliptic operator.

3.3 Infinite volume case

In this section we prove Theorem 3.2.1.

3.3.1 Proof of Theorem 3.2.1

By Corollary 2.4.1 to prove the convergence in distribution it is enough to show that

LΨN (f) → LΨ−∆(f) for all f ∈ S. Given the Gaussian nature of the variables we

consider, and the fact that they are centered, it suffices to show that for any f ∈ S

E
[
(ΨN , f)2

]
→ ‖(−∆c)

−1/2f‖2
L2(Rd)

.



3.3. Infinite volume case 81

By definition of the field and translation invariance we have that

E
[
(ΨN , f)2

]
= k2N−(d+2)

∑
x,y∈ 1

N
Zd

E[ϕNxϕNy]f(x)f(y)

= k2N−(d+2)
∑

x,y∈ 1
N

Zd
G(0, N(y − x))f(x)f(y). (3.3.1)

Now our goal is to shift these expression to Fourier coordinates. We have from (1.2.3)

G(0, x) =
1

(2π)d

∫
[−π,π]d

(
µ(θ) + µ(θ)2

)−1
e−ι〈x,θ〉 d θ (3.3.2)

where µ(θ) = 1
d

∑d
i=1(1− cos(θi)). We estimate the integrand in (3.3.2) by the following

lemma, whose proof is deferred to page 82:

Lemma 3.3.1. There exists a constant C > 0 such that for all θ ∈ [−Nπ,Nπ]d \ {0}

N−2

(
‖θ‖2

2dN2
+
‖θ‖4

4d2N4

)−1

≤ N−2

(
µ
( θ
N

)
+ µ

( θ
N

)2
)−1

≤ 2d

‖θ‖2
+

Cd

2N2
.

Returning to the expression (3.3.1) and plugging in (3.3.2) we have

E
[
(ΨN , f)2

]
=
k2N−(d+2)

(2π)d

∑
x,y∈ 1

N
Zd

∫
[−π,π]d

(
µ(θ) + µ(θ)2

)−1
e−ι〈N(y−x),θ〉f(x)f(y) d θ

=
k2N−2

(2π)d

∫
[−Nπ,Nπ]d

(
µ

(
θ

N

)
+ µ

(
θ

N

)2
)−1

∣∣∣∣∣∣∣N−d
∑

x∈ 1
N

Zd
e−ι〈x,θ〉f(x)

∣∣∣∣∣∣∣
2

d θ.

(3.3.3)

Here we exchange sum and integral due to Lemma 3.3.1. We make two claims which

will immediately prove the convergence of variance.

Claim 3.3.2.

lim
N→+∞

∫
[−Nπ,Nπ]d

[
N−2

(
µ

(
θ

N

)
+ µ

(
θ

N

)2
)−1

− 2d‖θ‖−2

]
×

×

∣∣∣∣∣(2π)−d/2N−d
∑

x∈ 1
N

Zd
e−ι〈x,θ〉f(x)

∣∣∣∣∣
2

d θ = 0.
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Next we claim the following convergence which is immediate from the estimates

(3.3.7) and (3.2.6).

Claim 3.3.3.

lim
N→+∞

1

(2π)d

∫
[−Nπ,Nπ]d

‖θ‖−2

∣∣∣∣∣N−d ∑
x∈ 1

N
Zd

e−ι〈x,θ〉f(x)

∣∣∣∣∣
2

d θ = ‖(−∆c)
−1/2f‖2

L2(Rd)
.

Claims 3.3.2-3.3.3 entail that

lim
N→∞

LΨN (f) = exp

(
−1

2
‖(−∆c)

−1/2f‖2
L2(Rd)

)
.

Thus we have for all f ∈ S, LΨN (f)→ LΨ−∆(f) and hence convergence in distribution

follows.

This completes the proof of convergence in d ≥ 3 modulo Lemma 3.3.1 and Claim 3.3.2

which we still owe the reader. We proceed to fill this gap.

Proof of Lemma 3.3.1. We know from [26, Lemma 7] that there exists C > 0 such that

for all N ∈ N and w ∈ [−Nπ/2, Nπ/2]d \ {0}

1

‖w‖4
≤ N−4

(
d∑
i=1

sin2
(wi
N

))−2

≤
(

1

‖w‖2
+

C

N2

)2

. (3.3.4)

Therefore (
2dN2

‖θ‖2
+
Cd

2

)−1

≤ µ
( θ
N

)
≤ ‖θ‖

2

2dN2

and hence

N−2

(
‖θ‖2

2dN2
+
‖θ‖4

4d2N4

)−1

≤ N−2

(
µ
( θ
N

)
+ µ

( θ
N

)2
)−1

≤ N−2

((
2dN2

‖θ‖2
+
Cd

2

)−1

+

(
2dN2

‖θ‖2
+
Cd

2

)−2
)−1

≤ 2d

‖θ‖2
+

Cd

2N2
.
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Proof of Claim 3.3.2. By Lemma 3.3.1 we can sandwich the expression in the statement

of the Claim between two infinitesimal quantities. The lower bound is given by

∫
[−Nπ,Nπ]d

[
N−2

(
‖θ‖2

2dN2
+
‖θ‖4

4d2N4

)−1

− 2d‖θ‖−2

] ∣∣∣∣∣∣∣(2π)−d/2N−d
∑

x∈ 1
N

Zd
e−ι〈x,θ〉f(x)

∣∣∣∣∣∣∣
2

d θ

(3.3.5)

and the upper bound is given by

∫
[−Nπ,Nπ]d

Cd

2N2

∣∣∣∣∣∣∣(2π)−d/2N−d
∑

x∈ 1
N

Zd
e−ι〈x,θ〉f(x)

∣∣∣∣∣∣∣
2

d θ. (3.3.6)

We show that both the limit of (3.3.5) and (3.3.6) are zero as N → ∞. Recall that

from (2.4.5) we have that for any N and s > 0 large enough∣∣∣∣∣∣(2π)−d/2N−d
∑
x∈Zd

e−ι〈
x
N
,θ〉f

( x
N

)
− f̂(θ)

∣∣∣∣∣∣ ≤ CN−s. (3.3.7)

Using (3.3.7) it follows that (3.3.6) converges to zero. For (3.3.5) observe that the

integrand goes to zero and we can apply the dominated convergence theorem due to the

following integrable bound:

∣∣∣∣∣
[
N−2

(
‖θ‖2

2dN2
+
‖θ‖4

4d2N4

)−1

− 2d‖θ‖−2

] ∣∣∣∣∣
∣∣∣∣∣(2π)−d/2N−d

∑
x∈ 1

N
Zd

e−ι〈x,θ〉f(x)

∣∣∣∣∣
2

≤

∣∣∣∣∣
[
N−2

(
‖θ‖2

2dN2
+
‖θ‖4

4d2N4

)−1

− 2d‖θ‖−2

]
2
(
CN−2s + |f̂(θ)|2

) ∣∣∣∣∣
≤ 8d

‖θ‖2
(
CN−2s + |f̂(θ)|2

)
.

3.4 Finite volume case

3.4.1 Set-up

We begin by deriving a useful upper bound on the variance of the mixed model. Let

d ≥ 1 and for any Λ b Zd let PGFF
Λ denote the probability measure on RZd of the discrete
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Gaussian free field with zero boundary conditions outside Λ. Then the following bound

holds:

Lemma 3.4.1. For all x ∈ Zd

GΛ(x, x) ≤ EGFF
Λ (ϕ2

x). (3.4.1)

Proof. Note that we actually have

H(ϕ)|ϕ≡0 on Λc =
1

2
〈ϕ, (−∆Λ + ∆2

Λ)ϕ〉`2(Λ)

where ∆Λ and ∆2
Λ denote the restriction of the operators ∆ and ∆2 to functions which are

zero outside Λ, respectively. The bound is thus obtained for any x ∈ Λ by applying [18,

Theorem 5.1] with F ((ϕx)x∈Λ) := exp[−1
2〈ϕ,∆

2
Λϕ〉`2(Λ)] on RΛ, A := −1/2 ∆Λ and

α := 2. Here we note that F is log-concave. The case for x ∈ Zd \Λ follows easily by

the boundary conditions imposed on the interface.

We must set up now the right discretisation of domains to be able to obtain an

interface converging to GFF. LetD be any bounded domain in Rd with smooth boundary.

For N ∈ N, let DN = ND ∩ Zd. Let us denote by ΛN the set of points x in DN such

that x ± (ei ± ej), x ± ei are all in DN for all i, j = 1, . . . , d. Let us now consider the

mixed model with Λ = ΛN and zero boundary conditions outside ΛN . The key result of

this Subsection is to show that the variance of (ΨN , f) converges to that of (Ψ−∆
D , f),

that is, to the norm of the solution of a suitable Dirichlet problem.

Remark 3.4.2. The reduction from smooth boundary to piece-wise smooth boundaries

can perhaps be achieved but we will not aim for such a generalization.

Proposition 3.4.3. Let f be a smooth and compactly supported function on D and

consider

(ΨN , f) = k
∑

x∈ 1
N

ΛN

N−
d+2

2 ϕNxf(x).

Then

lim
N→∞

Var[(ΨN , f)] =

∫
D
u(x)f(x) dx,
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where u is the solution of the Dirichlet problem


−∆cu(x) = f(x) x ∈ D

u(x) = 0 x ∈ ∂D.
(3.4.2)

Proof. We denote G 1
N

(x, y) := EΛN [ϕNxϕNy] for x, y ∈ N−1DN . Note that if ∆ 1
N

(defined in (2.2.4)) is the discrete Laplacian on N−1 Zd then by (3.2.3) we have, for all

x ∈ N−1ΛN ,


(
− 1

2dN2 ∆ 1
N

+ 1
4d2N4 ∆2

1
N

)
G 1
N

(x, y) = δx(y) y ∈ 1
NΛN

G 1
N

(x, y) = 0 y /∈ 1
NΛN .

(3.4.3)

We have

Var[(ΨN , f)] = k2
∑

x,y∈ 1
N

ΛN

N−d−2G 1
N

(x, y)f(x)f(y)

=
∑

x∈ 1
N

ΛN

N−dHN (x)f(x)

where HN (x) = k2
∑

y∈ 1
N

ΛN
N−2G 1

N
(x, y)f(y) for x ∈ N−1DN . It is immediate from

(3.4.3) that HN is the solution of the following Dirichlet problem:


(
−∆ 1

N
+ 1

2dN2 ∆2
1
N

)
HN (x) = f(x) x ∈ 1

NΛN

HN (x) = 0 x /∈ 1
NΛN .

(3.4.4)

Define the error between the solutions of (3.4.4) and (3.4.2) by eN (x) := HN (x)− u(x)

for x ∈ N−1DN . Then using Theorem 3.5.1 we have

N−d
∑

x∈ 1
N

ΛN

eN (x)2 ≤ CN−1. (3.4.5)

Rewriting the variance we deduce

Var[(ΨN , f)] =
∑

x∈ 1
N

ΛN

eN (x)f(x)N−d +
∑

x∈ 1
N

ΛN

u(x)f(x)N−d.

Note that by Cauchy-Schwarz inequality and (3.4.5) the first summand goes to zero as

N →∞. The second term is a Riemann sum and converges to
∫
D u(x)f(x) dx.
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3.4.2 The Gaussian free field

In this case we consider d ≥ 2 and D and ΛN as in the previous Subsection. First we

discuss briefly some definitions about the GFF. In d = 2 the results can be found already

in the literature, see for example [5, Section 1.3].

By the spectral theorem for compact self-adjoint operators we know that there exist

eigenfunctions (wj)j∈N of −∆c corresponding to the eigenvalues 0 < ν1 ≤ ν2 ≤ . . .→∞

such that (wj)j≥1 is an orthonormal basis of L2(D). By elliptic regularity, we have that

wj is smooth for all j. Let s > 0 and we define the following inner product on C∞c (D):

〈f, g〉s,−∆ :=
∑
j∈N

νsj 〈f , wj〉L2〈wj , g〉L2 .

Then Hs−∆,0(D) can be defined to be the completion of C∞c (D) with respect to this inner

product and H−s−∆(D) is defined to be its dual. We denote the dual norm by ‖ · ‖−s,−∆.

Here we note that Hs−∆,0(D) ⊂ L2(D) ⊂ H−s−∆(D) for any s > 0.

In case f ∈ L2(D) then we have

‖f‖2−s,−∆ =
∑
j∈N

ν−sj 〈f , wj〉
2
L2 .

Also observe that (ν
−1/2
j wj)j∈N is an orthonormal basis ofH1

−∆,0(D). In the following

proposition we give the definition of the Gaussian free field Ψ−∆
D via its Wiener series,

generalising the two-dimensional result in [34, Subsection 4.2].

Proposition 3.4.4. Let (ξj)j∈N be a collection of i.i.d. standard Gaussian random

variables. Set the Gaussian free field to be

Ψ−∆
D :=

∑
j∈N

ν
−1/2
j ξjwj .

Then Ψ−∆
D ∈ H−s−∆(D) a.s. for all s > d/2− 1.
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Proof. Fix s > d/2 − 1. Clearly wj ∈ L2(D) ⊆ H−s−∆(D). We want to show that

‖Ψ−∆
D ‖−s,−∆ <∞ with probability one. We have

‖Ψ−∆
D ‖

2
−s =

∑
j∈N

ν−1−s
j ξ2

j .

The last sum is finite a.s. by Kolmogorov’s two series theorem as we have

∑
j∈N

E[ν−1−s
j ξ2

j ] �
∑
j∈N

j−
2
d

(1+s) <∞

and

∑
j∈N

Var[ν−1−s
j ξ2

j ] �
∑
j∈N

j−
4
d

(1+s) <∞.

Here we have used the Weyl’s asymptotic νj ∼ Cj
2
d for some explicit constant C. Thus

we have Ψ−∆
D ∈ H−s−∆(D) a.s.

3.4.3 Proof of Theorem 3.2.2

We are now ready to show the main result on the scaling limit in the finite volume case.

All notations are borrowed from Subsections 3.4.1-3.4.2.

Proof of Theorem 3.2.2. We first show that for f ∈ C∞c (D)

(ΨN , f)
d→ (Ψ−∆

D , f). (3.4.6)

This follows from the following two observations: on the one hand by Proposition 3.4.3

and integration by parts we obtain

Var[(ΨN , f)]→
∫
D
u(x)f(x) dx = ‖f‖2−1,−∆.

On the other hand from the definition of GFF it follows that

Var[(Ψ−∆
D , f)] =

∑
j∈N

ν−1
j 〈wj , f〉

2
L2 = ‖f‖2−1,−∆.

Consequently we obtain (3.4.6) since both (ΨN , f) and (Ψ−∆
D , f) are centered Gaussians.
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Next we want to show that the sequence (ΨN )N∈N is tight in H−s−∆(D) for all s > d.

It is enough to show that

lim sup
N→∞

EΛN [‖ΨN‖2−s,−∆] <∞ ∀ s > d. (3.4.7)

The tightness of (ΨN )N∈N would then follow immediately from (3.4.7) and the fact that,

for 0 ≤ s1 < s2, H−s1−∆ (D) is compactly embedded in H−s2−∆ (D). In order to show (3.4.7)

we first observe that for any f ∈ Hs−∆,0(D)

|(ΨN , f)| =
∣∣∣k ∑

x∈ 1
N

ΛN

N−
d+2

2 ϕNx
∑
j≥1

〈f , wj〉L2wj(x)
∣∣∣

= kN−
d+2

2

∣∣∣∑
j≥1

ν
− s

2
j

∑
x∈ 1

N
ΛN

ϕNxwj(x)ν
s
2
j 〈f , wj〉L2

∣∣∣

≤ kN−
d+2

2

∑
j≥1

ν−sj

( ∑
x∈ 1

N
ΛN

ϕNxwj(x)

)2


1
2

‖f‖s,−∆

where in the first equality we have used the fact that f ∈ L2(D) and therefore f =∑
j≥1〈f , wj〉L2wj . Thus we have, using the definition of dual norm,

‖ΨN‖2−s,−∆ ≤
∑
j≥1

ν−sj k2N−(d+2)

( ∑
x∈ 1

N
ΛN

ϕNxwj(x)

)2

.

Therefore

EΛN ‖ΨN‖2−s,−∆ ≤
∑
j≥1

ν−sj k2N−(d+2)
∑

x,y∈ 1
N

ΛN

G 1
N

(x, y)wj(x)wj(y)

≤
∑
j≥1

ν−sj k2N−2‖G 1
N
wj‖`2( 1

N
ΛN )‖wj‖`2( 1

N
ΛN ) (3.4.8)

where for any grid function f we define

‖f‖2
`2( 1

N
ΛN )

:= N−d
∑

x∈ 1
N

ΛN

f(x)2.

From (3.4.3) it follows that G 1
N

is the Green’s function for − 1
2dN2 ∆ 1

N
+ 1

4d2N4 ∆2
1
N

. Let

ν
(N)
1 , ν

(N)
2 , . . . be the eigenvalues of G 1

N
. Define Pi to be the projection on the i-th
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eigenspace. Then using orthogonality we have

‖G 1
N
wj‖2`2( 1

N
ΛN )

=
∑
i

(
ν

(N)
i

)2
‖Piwj‖2`2( 1

N
ΛN )
≤
(
ν(N)
max

)2
‖wj‖2`2( 1

N
ΛN )

(3.4.9)

where ν
(N)
max is the largest eigenvalue of G 1

N
. Using (3.4.9) in (3.4.8) we obtain

EΛN ‖ΨN‖2−s,−∆ ≤
∑
j≥1

ν−sj k2N−2ν(N)
max‖wj‖2`2( 1

N
ΛN )

≤ C
∑
j≥1

ν−sj k2N−2ν(N)
max

(
sup
x∈D

wj(x)

)2

.

From [70, Theorem 1.4] we know that for any x ∈ D, |wj(x)| ≤ ν
d/4
j . Theorem 3.5.3

on the other hand gives that N−2ν
(N)
max is bounded above (as ν1 is bounded away from

zero). Using these observations we have

lim sup
N→∞

EΛN ‖ψN‖
2
−s,−∆ ≤ C

∑
j≥1

ν
−s+ d

2
j .

The last sum is finite whenever s > d.

Thus we have proved (3.4.7). A standard uniqueness argument using the facts that

H−s−∆(D) is the topological dual of Hs−∆,0(D) and C∞c (D) is dense in Hs−∆,0(D) (see

proof of Theorem 2.3.11) completes the proof of Theorem 3.2.2.

3.4.4 One-dimensional case

Set-up

In this case for simplicity we consider D = (0, 1) and the corresponding DN and ΛN as

defined in Subsection 3.4.1, in particular ΛN = {2, . . . , N − 2}. To study the scaling

limit we define a continuous interpolation ψN for each N as follows:

ψN (t) = kN−
1
2
[
ϕbNtc + (Nt− bNtc)(ϕbNtc+1 − ϕbNtc)

]
, t ∈ D.

In the proof of Theorem 3.2.3 we use Theorem 2.2.5. Another bound we will need is

the following:
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Lemma 3.4.5. There exists C > 0 such that for all x, y ∈ Z

EΛN [(ϕx − ϕy)2] ≤ C|y − x|. (3.4.10)

Proof. Note that it is enough to show the inequality for x, y ∈ {1, . . . , N − 1}. The

Brascamp-Lieb inequality as in the proof of Lemma 3.4.1 yields

EΛN [(ϕx − ϕy)2] ≤ EDGFF
ΛN

[(ϕx − ϕy)2].

Let (Xm)N−1
m=2 be a collection of i.i.d. N (0, 2) random variables and let S = (Si)

N−1
i=1

be the simple random walk on Z with Xm’s as increments. We have that the field

(ϕ1, . . . , ϕN−2, ϕN−1) under PDGFF
ΛN

has the same law of S conditionally on S1 = SN−1 =

0. Now we define the process (S
′
1, . . . , S

′
N−1) by

S
′
i := Si −

i− 1

N − 2
SN−1.

As a consequence

(S1, . . . , SN−1|S1 = SN−1 = 0)
d
= (S

′
1, . . . , S

′
N−1).

Then for 1 ≤ i < j ≤ N − 1 we have

E[(S
′
j − S

′
i)

2] = E

[(
j∑

m=i+1

Xm −
j − i
N − 2

SN−1

)2 ]

= 2(j − i) + 2
(j − i)2

N − 2
− 2

(j − i)2

N − 2
2

= 2(j − i)
[
1− j − i

N − 2

]
.

This shows the statement.

Proof of Theorem 3.2.3

To prove weak convergence we show tightness and finite dimensional convergence. It is

easy to see that (ψN (0))N≥1 is tight. Therefore tightness will follow from Theorem 2.2.5

if we show that (2.2.2) is satisfied. Using the properties of Gaussian laws, to show (2.2.2)
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it is enough to prove the following: there exists C > 0 such that

EΛN

[
|ψN (t)− ψN (s)|2

]
≤ C|t− s| (3.4.11)

for all t, s ∈ D uniformly in N . To show (3.4.11) we consider the following two cases.

• Suppose t, s ∈ [x, x+ 1/N ] for some x ∈ N−1DN . Then we have

ψN (t)− ψN (s) = kN−
1
2 [(Nt−Ns)(ϕNx+1 − ϕNx)] .

Now using (3.4.10) and the fact that |t− s| ≤ 1/N we get (3.4.11).

• Next suppose s ∈ [x, x + 1/N) and t ∈ [y, y + 1/N) for some x, y ∈ N−1DN and

t > x + 1/N . In this case if |t − s| ≤ 1/N then one can obtain (3.4.11) using the

above case and a suitable point in between. So we assume |t − s| > 1/N . We first

note that

EΛN

[
|ψN (y)− ψN (x)|2

]
= k2N−1EΛN [(ϕNy − ϕNx)2]

≤ CN−1EDGFF
ΛN

[(ϕNy − ϕNx)2]

(3.4.10)

≤ C(y − x).

Now

EΛN

[
|ψN (t)− ψN (s)|2

]
≤ C

(
EΛN

[
|ψN (t)− ψN (y)|2

]
+ EΛN

[
|ψN (y)− ψN (x)|2

]
+EΛN

[
|ψN (x)− ψN (s)|2

])
≤ C|t− s|.

Thus the sequence (ψN )N is tight in C[0, 1].

To conclude the finite dimensional convergence we first show the convergence of the

covariance matrix. Let GD be the Green’s function for the problem


− d2

dx2u(x) = f(x) x ∈ D

u(x) = 0 x ∈ ∂D.

We note here that

GD(x, y) = min{x, y} − xy, x, y ∈ D
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which also turns out to be the covariance function of the Brownian bridge, denoted by

(B◦t : 0 ≤ t ≤ 1). For x, y ∈ D ∩N−1 Z we define

G 1
N

(x, y) :=
k2

N
GΛN (Nx,Ny).

We now interpolate G 1
N

in a piece-wise constant fashion on small squares of D×D to

get a new function GI1
N

: we define the value of GI1
N

in the square [x, x+1/N)×[y, y+1/N)

to be equal to G 1
N

(x, y) for all x, y in D∩N−1 Z. We show that GI1
N

converges uniformly

to GD on D ×D. Indeed, let FN := GI1
N

−GD. From the proof of Proposition 3.4.3 it

follows that, for any f, g ∈ C∞c (D),

lim
N→∞

∑
x,y∈ 1

N
DN

N−2GI1
N

(x, y)f(x)g(y) =

∫∫
D×D

GD(x, y)f(x)g(y) dx d y.

Again from Riemann sum convergence we have

lim
N→∞

∑
x,y∈ 1

N
DN

N−2GD(x, y)f(x)g(y) =

∫∫
D×D

GD(x, y)f(x)g(y) dx d y.

Thus we get

lim
N→∞

∑
x,y∈ 1

N
DN

N−2FN (x, y)f(x)g(y) = 0. (3.4.12)

Note that GD is bounded and

sup
x,y∈ 1

N
DN

|GΛN (Nx,Ny)|
(3.4.1)

≤ C sup
z∈DN

EGFF
ΛN

[ϕ2
z] ≤ CN.

These imply that

sup
x,y∈D

|FN (x, y)| ≤ C.

Now using (3.4.10) one can prove similarly as the diagonalization argument for the

Arzelá-Ascoli theorem that FN has a subsequence converging uniformly to some function

F which is bounded by C. With abuse of notation we denote this subsequence by FN .

We then have

lim
N→∞

∑
x,y∈ 1

N
DN

N−2FN (x, y)f(x)g(y) =

∫∫
D×D

F (x, y)f(x)g(y) dx d y.
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Uniqueness of the limit gives

∫∫
D×D

F (x, y)f(x)g(y) dx d y = 0

by (3.4.12). From this we obtain that F (x, y) = 0 for almost every x and almost every

y. The definition by interpolation of GI1
N

ensures that F is pointwise equal to zero.

Finally, the fact that the original sequence FN converges uniformly to zero follows using

the subsequence argument.

We now show the finite dimensional convergence. First let t ∈ D. We write

ψN (t) = ψN,1(t) + ψN,2(t)

where ψN,1(t) := kN−
1
2ϕbNtc and ψN,2(t) := kN−

1
2 (Nt−bNtc)(ϕbNtc+1−ϕbNtc). From

(3.4.10) it follows that EΛN [ψN,2(t)2] goes to zero as N tends to infinity. Therefore to

show that ψN (t)
d→ B◦t it is enough to show that Var[ψN,1(t)]→ GD(t, t). But we have

Var[ψN,1(t)] = k2N−1GΛN (bNtc, bNtc) = GI1
N

(t, t)→ GD(t, t)

since the sequence FN converges to zero uniformly. Since the variables under considera-

tion are Gaussian, one can show the finite dimensional convergence using the convergence

of the Green’s functions.

Remark 3.4.6. From (3.4.11) we have, for any α > 2, that there exists a constant C

such that the following holds uniformly in N with β := α/2− d:

EΛN [|ψN (s)− ψN (t)|α] ≤ C|s− t|d+β, s, t ∈ D.

Thus from Theorem 2.2.5 we recover the well-known Hölder continuity of the Brownian

bridge with exponent η for any η ∈ (0, 1/2).

Remark 3.4.7. In d = 1, by the continuous mapping theorem together with Theo-

rem 3.2.3 we have

sup
t∈D

ψN (t)
d→ sup
t∈D

B◦t

which gives the scaling limit for MN := maxx∈DN ϕx :
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lim
N→∞

PΛN

(
kN−

1
2MN ≤ z

)
=

 1− e−2z2
if z > 0

0 otherwise.

3.5 Error estimate in the discrete approximation of the

Dirichlet problem

This section is devoted to showing that the solution of the continuum Dirichlet problem

can be approximated well by the Green’s function of the mixed model, and we will give

a quantitative meaning to this statement. We shall use the ideas from [69], namely,

to employ a truncated operator with which the problems of approximation around the

boundary of the discretised domain can be ignored in a nice manner. We recall that

the quantitative version of the results derived in [69] was essential to the proof of The-

orem 3.2.2. We begin by introducing some definitions.

In this section we consider D to be any bounded domain in Rd with boundary ∂D

which is C2. We consider the following continuum Dirichlet problem


Lu(x) = f(x) x ∈ D

u(x) = 0 x ∈ ∂D.
(3.5.1)

where L is the elliptic differential operator L := −∆c.

Let h > 0. We will call the points in hZd as the grid-points in Rd. We consider

Lh = −∆h +
h2

2d
∆2
h

to be an approximation of L. We have, for x ∈ hZd, that

Lhf(x) = − 1

h2

d∑
i=1

(f(x+ hei) + f(x− hei)− 2f(x))

+
1

2dh2

d∑
i, j=1

[f(x+ h(ei + ej)) + f(x− h(ei + ej)) + f(x+ h(ei − ej))

+f(x− h(ei − ej))− 2f(x+ hei)

−2f(x− hei)− 2f(x+ hej)− 2f(x− hej) + 4f(x)] .
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A concept crucially used in [69] is that the discrete approximation of an elliptic operator

must be consistent with its continuum counterpart. In our case it is possible to see,

using Taylor’s expansion, that the operator Lh is consistent with the operator L, that is,

if W is a neighborhood of the origin in Rd and u ∈ C2(W ) then Lhu(0) = Lu(0) + o(1)

as h → 0. Also from the definition of ellipticity of a difference operator given in [69,

page 302] it follows that Lh is elliptic.

Now let Dh be the set of grid points in D i.e. Dh = D ∩ hZd. We say that ξ is an

interior grid point in Dh or ξ ∈ Rh if ξ, ξ ± h(ei ± ej), ξ ± hei are all in Dh for every

i, j ∈ {1, . . . , d}. We denote Bh to be Dh \Rh. For a grid function f we define by Rhf

a new grid function vanishing outside Rh as

Rhf(ξ) =


f(ξ) if ξ ∈ Rh

0 if ξ /∈ Rh.

We will divide Rh further into R∗h and B∗h where R∗h is the set of ξ in Rh such that

ξ ± h(ei ± ej), ξ ± hei are all in Rh ∪ (Bh ∩ ∂D) for every i, j ∈ {1, . . . , d} and B∗h is

the set of remaining points in Rh. Thus we have

Dh = Bh ∪Rh = Bh ∪B∗h ∪R∗h.

We now define the finite difference analogue of the Dirichlet’s problem (3.5.1). For

given h, we look for a function uh(ξ) defined on Dh such that

Lhuh(ξ) = f(ξ), ξ ∈ Rh. (3.5.2)

We consider furthermore the boundary conditions

uh(ξ) = 0, ξ ∈ Bh. (3.5.3)

One can argue that the finite difference Dirichlet problem (3.5.2) and (3.5.3) has exactly

one solution for arbitrary f [69, Theorem 5.1].
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For grid functions vanishing outside Dh we define the norm ‖ · ‖h, grid by

‖f‖2h, grid := hd
∑
ξ∈Dh

f(ξ)2.

Mind that we are using this norm only in the current section and thus there is no risk

of confusion with the norm defined in Subsection 3.4.2. We now prove the main result

of this section.

Theorem 3.5.1. Let u ∈ C3(D) be a solution of the Dirichlet’s problem (3.5.1) and uh

be the solution of the discrete problem (3.5.2) and (3.5.3). If eh := u − uh then for

sufficiently small h we have

‖Rheh‖2h, grid ≤ C
[
M2

3h
2 + h(M2

3h
4 +M2

1 )
]

where Mk =
∑
|α|≤k supx∈D|Dαu(x)|.

Proof. We denote by C all constants which do not depend on u, f . A standard Taylor’s

expansion gives for all x ∈ D and for small h

Lhu(x) = Lu(x) + h−2R3(x)

where

|R3(x)| ≤ CM3h
3. (3.5.4)

So we obtain for ξ ∈ Rh

Lheh(ξ) = Lhu(ξ)− Lhuh(ξ)

= Lu(ξ) + h−2R3(ξ)− Lhuh(ξ)

= h−2R3(ξ).

The truncated operator Lh,1 is defined as follows:

Lh,1f(x) :=


Lhf(x) x ∈ R∗h

hLhf(x) x ∈ B∗h

0 x /∈ Rh.



3.5. Error estimate in the discrete approximation of the Dirichlet problem 97

For ξ ∈ R∗h we have

Lh,1Rheh(ξ) = LhRheh(ξ) = Lheh(ξ) = h−2R3(ξ). (3.5.5)

For ξ ∈ B∗h at least one of ξ ± h(ei ± ej), ξ ± hei is in Bh \ (Bh ∩ ∂D). As the value of

the solution of (3.5.1) is known to be zero on the boundary ∂D, we have for η ∈ Bh

u(η) = uh(η) +R1(η)

where |R1(η)| ≤ CM1h. For ξ ∈ B∗h denote by

Si,j(ξ) = {η : η ∈ Bh \ (Bh ∩ ∂D) ∩ {ξ ± hei, ξ ± h(ei ± ej)}}.

Therefore, for ξ ∈ B∗h,

Lh,1Rheh(ξ) = hLhRheh(ξ)

= h{Lheh(ξ)− h−2
d∑

i,j=1

∑
η∈Si,j(ξ)

C(η)eh(η)}

= h−1R3(ξ) + h−1R′1(ξ) (3.5.6)

where C(η) is a constant depending on η and

|R′1(ξ)| ≤ CM1h. (3.5.7)

Hence

‖Lh,1Rheh‖2h, grid = hd
∑
x∈Rh

(Lh,1Rheh(x))2

= hd

∑
x∈R∗h

(Lh,1Rheh(x))2 +
∑
x∈B∗h

(Lh,1Rheh(x))2


(3.5.5), (3.5.6)

= hd

∑
x∈R∗h

(h−2R3(x))2 +
∑
x∈B∗h

(h−1R3(x) + h−1R′1(x))2


(3.5.4), (3.5.7)

≤ Chd

∑
x∈R∗h

M2
3h

2 +
∑
x∈B∗h

(M2
3h

4 +M2
1 )


≤ C

[
M2

3h
2 + h(M2

3h
4 +M2

1 )
]
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where the last inequality holds as the number of points in B∗h is O(h−(d−1)) which follows

from [56, Lemma 5.4] due to assumption of a C2 boundary. Finally using Theorem 4.2

and Lemma 3.1 of [69] we obtain

‖Rheh‖2h, grid ≤ C
[
M2

3h
2 + h(M2

3h
4 +M2

1 )
]

(3.5.8)

which completes the proof.

Remark 3.5.2. Note that in the above proof we used Theorem 4.2 in [69] which requires

the domain to satisfy a property called B∗1. In the same article it is pointed out that for

any domain B∗1 holds by definition.

Theorem 3.5.3. Let Ah be the matrix h2Lh and let µ
(h)
1 be the smallest eigenvalue of

Ah. Then

ν1 = lim
h→0

h−2µ
(h)
1 ,

where ν1 is the smallest eigenvalue of −∆c.

The proof of the above result follows by imitating the proof of Theorem 8.1 of Thomée

[69] which we skip here.



Chapter 4

Scaling limit of semiflexible

polymers: a phase transition

4.1 Introduction

In this chapter we study the model for which the Hamiltonian is given by

H(ϕ) =
∑
x∈Zd

(
κ1‖∇ϕx‖2 + κ2(∆ϕx)2

)
(4.1.1)

κ1, κ2 are two non-negative parameters. More specifically, we consider the model ϕ =

(ϕx)x∈Zd , whose distribution is determined by a probability measure on RZd , d ≥ 1. The

probability measure is given by

PΛ(dϕ) :=
1

ZΛ
exp

−∑
x∈Zd

(
κ1‖∇ϕx‖2 + κ2(∆ϕx)2

)∏
x∈Λ

dϕx
∏

x∈Zd\Λ

δ0(dϕx), (4.1.2)

where Λ b Zd is a finite subset, dϕx is the Lebesgue measure on R, δ0 is the Dirac

measure at 0, and ZΛ is a normalizing constant and the parameters κ1, κ2 depend on

Λ. We are imposing zero boundary conditions: almost surely ϕx = 0 for all x ∈ Zd \ Λ,

but the definition holds for more general boundary conditions. The main aim of this

chapter is to show how the dependency on the size of the set Λ of κ1 and κ2 affects the

scaling limit of PΛ.

99
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In Chapter 3 the scaling limit of the (∇ + ∆)-model is studied. There it is shown

that if one takes the lattice size to go to zero, under a suitable scaling the Laplacian

term is dominated by the gradient and the limit becomes the Gaussian free field. A

very natural question, which we aim at investigating in this chapter, is whether one

can interpolate between the continuum Gaussian free field and the membrane model by

tuning κ2/κ1 suitably. To the best of our knowledge, the influence of the length on the

shape of the polymer through κ1 and κ2 has not been systematically addressed in the

literature. In [59] a phase transition on the surface tension for mixed polymers has been

investigated according to a suitable rescaling of
√
κ2/κ1 depending on the lattice size.

However the model studied in [59] is integer-valued, so it differs from the one studied in

the present chapter.

We now briefly describe the phase transition picture which appears in the scaling

limit. We restrict our focus to d = 1 for heuristic explanations. Let us consider the

Hamiltonian described in (4.1.1). We take Λ = {1, . . . , N − 1} for N ∈ N, κ1 = 1/4

and κ2 = κ(N)/2. In d = 1 in the DGFF case (κ2 = 0) it is well-known that the

finite volume measure can be given by a random walk bridge and in the membrane case

(κ1 = 0) by an integrated random walk bridge ([20]). Therefore the scaling limit for the

DGFF and membrane turns out to be Brownian bridge and the integrated Brownian

bridge, respectively. In d = 1, a representation for the (∇ + ∆)−model using random

walks was obtained in [14]. The details of the representation are recalled in Section 4.6.

Let γ and σ be as in (4.6.3) and (4.6.4), respectively. Let (ε̃i)i∈Z+ be i.i.d. normal

random variables with mean zero and variance σ2/(1−γ)2. For n ≥ 1, let Wn = Sn−Un,

where Sn =
∑n

k=1 ε̃k and Un = γnε̃1 +γn−1ε̃2 + · · ·+γε̃n. From [14, Proposition 1.10] it

is known that the finite volume measure of the model is given by the joint distribution of

(Wn)1≤n≤N−1 conditioned on WN = WN+1 = 0. We look at the unconditional process

and see how the parameter κ(N) changes the variance. It follows from (4.6.3) and (4.6.4)

that

σ2 ≈ 1

κ(N)
and (1− γ) ≈ 1√

κ(N)
.

So for the case when κ(N)� N2 we have

Var(SN−1) ≈ N, Var(UN−1) ≈
√
κ(N) and Cov(SN−1, UN−1) ≈

√
κ(N)
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which together imply that Var(WN−1) ≈ N , thus the random walk dominates with its

scaling
√
N .

When κ(N)� N2 the situation is a bit more complicated and one can compute that

(see Section 4.6)

Var(WN−1) ≈ N3

κ(N)
.

It turns out that the Laplacian part dominates under this scaling. When κ(N) ∼ N2

then the contribution from SN−1 and UN−1 is similar and hence both the gradient and

Laplacian interaction come into picture. The reader can see a simulation of the free

boundary case that is, the trajectories of (Wn)1≤n≤N , in Figure 4.1 and Figure 4.2. We

plotted the two cases κ � N2 and κ � N2 in different pictures as the height scalings

are different.

Figure 4.1: This is a simulation of some trajectories of (Wn)1≤n≤N with N = 104

and κ = 0, κ = 2× 102, κ = 2× 104, κ = 2× 106.

We stress that in the above description we did not consider boundary effects which can

cause considerable difficulty in understanding these processes explicitly. In Section 4.6 we

have pointed out the conditional representation of WN−1. One can see that it is not easy

to determine whether the above transition can be pushed to the conditional processes

and hence the finite volume measure. The aim of this chapter is to go beyond such

representations and show the above transition holds true in general dimensions and get

the explicit limits in each of the cases. In this respect, we also record that the integrated

random walk representations of d = 1 cannot be extended to d > 1. In previous
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Figure 4.2: This is a simulation of some trajectories of (Wn)1≤n≤N with N = 103

and κ = 2× 106.5, κ = 2× 107, κ = 2× 108.

chapters we introduced a finite difference method to approximate solutions of PDEs to

successfully obtain the scaling limit of the membrane model and the (∇+∆)-model with

fixed coefficients. The idea was inspired by the work of Thomée [69]. Finite difference

methods was also employed in the works of Müller and Schweiger [54], Schweiger et al.

[64] to obtain important estimates on the discrete Green’s function of the membrane

model.

The main results of the chapter are as follows. We consider the model on ΛN b Zd for

a suitable ΛN defined later in Section 4.2. Also, we assume κ1 = 1/(4d), κ2 = κ(N)/2

and distinguish three regimes for κ = κ(N).

(a) Let κ � N2. In d ≥ 1, we show that the appropriately rescaled field converges

to the continuum membrane model. The continuum membrane model is roughly

a centered Gaussian process whose covariance is given by the Green’s function

of the Bilaplacian Dirichlet problem. For d ≥ 4, in Theorem 4.2.7 we show the

convergence takes place in a distributional space (more precisely a negatively-

indexed Sobolev space). In d = 1, 2 and 3 we show in Theorem 4.2.1 that the

limiting Gaussian process has continuous paths.

(b) Let κ ∼ 2dN2. In d ≥ 4 we show (Theorem 4.2.7) that the rescaled field converges

to a random distribution in an appropriate Sobolev space and the covariance of
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the limiting Gaussian field is given by the Dirichlet problem involving the elliptic

operator −∆c + ∆2
c . In d = 1, 2 and 3, again we show (in Theorem 4.2.1) the

convergence takes place in the space of continuous functions.

(c) Let κ� N2. In d ≥ 2 we show (in Theorem 4.2.7) that the rescaled field converges

in distribution to the Gaussian free field. Again, since the Gaussian free field is a

random distribution the convergence takes place in a negatively-indexed Sobolev

space. In d = 1, we show (in Theorem 4.2.1) that the limiting process is the

Brownian bridge, confirming the heuristics presented above.

To derive the above results, the main technique we use is the approximation of

the solution of a continuum Dirichlet problem with its discrete counterpart. Using

Sobolev estimates it can be shown that the closeness of the solutions is related to the

approximation of the discrete elliptic operator to the continuum one. This idea has been

already employed in the previous two chapters.

But in the present scenario, the discrete elliptic operators have coefficients which

depend on N and hence the estimates in [69] are not applicable directly. In addition,

the rough behaviour around the boundary in the case of constant coefficients was dealt

with by considering a truncation of the discrete elliptic operator. The operators were

rescaled around the boundary and this helped in controlling their behaviour. The same

technique becomes a bit more involved in the present case. This helps us to tackle

with the cases κ � N2 and κ ∼ 2dN2 but the method falls short when κ � N2. In

this case we take care the boundary effects and discretization separately, adjusting the

boundary values with an appropriate cut-off function. We deal with these technical

issues in Section 4.2.3. Let us mention in passing that we believe that the result in

Section 4.2.3 is of independent interest and can be applied to discrete elliptic operators

where coefficients depend on the scaling of the lattice.

4.2 Set-up and main results

Let Λ be a finite subset of Zd, d ≥ 1, and PΛ and H(ϕ) be as in (4.1.2) and (4.1.1)

respectively. It follows from Lemma 1.2.1 that the Gibbs measure (4.1.2) on RΛ with



104 Chapter 4. Scaling limit of semiflexible polymers: a phase transition

Hamiltonian (4.1.1) exists. Note that (4.1.1) can be written as

H(ϕ) =
1

2
〈ϕ, (−4dκ1∆ + 2κ2∆2)ϕ〉`2(Zd). (4.2.1)

Let d ≥ 1. Let D be a bounded domain in Rd. For N ∈ N, let DN = ND ∩ Zd. Let

us denote by ΛN the set of points x in DN such that, for every direction i, j, also the

points x± ei, x± (ei ± ej) are all in DN . In other words, ΛN ⊂ ND ∩ Zd is the largest

set satisfying ∂2ΛN ⊂ ND ∩ Zd where ∂2ΛN := {y ∈ Zd \ΛN : dist(y, ΛN ) ≤ 2} is the

double (outer) boundary of ΛN of points at `1 distance at most 2 from it. We consider

the model with Λ = ΛN , κ1 = 1/4d, κ2 = κ(N)/2 and want to study what happens

when we tune suitably the parameter κ(N) as N tends to infinity. We assume κ1 to be

constant as it is easy to state the results in this format. Also for simplicity we write

κ for κ(N). We just note here that if we write GΛN (x, y) := EΛN (ϕxϕy), it follows

from Lemma 1.2.1 that GΛN solves the following discrete boundary value problem: for

x ∈ ΛN  (−∆ + κ∆2)GΛN (x, y) = δx(y) y ∈ ΛN

GΛN (x, y) = 0 y /∈ ΛN
. (4.2.2)

To describe the main results we need some elliptic operators. We first introduce them

and the corresponding Dirichlet problem. Let L denote one of the following three elliptic

operators:

L =


−∆c,

∆2
c ,

−∆c + ∆2
c ,

We consider the following continuum Dirichlet problem:


Lu(x) = f(x) x ∈ D

Dαu(x) = 0 |α| ≤ m− 1, x ∈ ∂D.
(4.2.3)

where m = 1 if L = −∆c and m = 2 in the other cases.
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4.2.1 Lower dimensional results

We first present the results in lower dimensions where we show that convergence takes

place in the space of continuous functions. In this case we consider D = (0, 1)d. Also

here, according to the behaviour of κ as N → ∞ we have three different limits. To

verify the convergence in the space of continuous functions we shall need to continuously

interpolate the discrete model. In d = 1 the linear interpolation gives a continuous

process but for higher dimensions there might be many ways. We stick to the following

natural way. We will need this interpolation in d = 2 and 3 when κ� N2 or κ ∼ 2dN2.

We define the continuous interpolation {ψN}N∈N in the following fashion:

• For d = 1 and t ∈ D

ψN (t) = cN (1)
[
ϕbNtc + (Nt− bNtc)(ϕbNtc+1 − ϕbNtc)

]
. (4.2.4)

• For d = 2 and t = (t1, t2) ∈ D

ψN (t) = cN (2)
[
ϕbNtc + {Nti}

(
ϕbNtc+ei − ϕbNtc

)
+ {Ntj}

(
ϕbNtc+ei+ej − ϕbNtc+ei

)]
, if {Nti} ≥ {Ntj} (4.2.5)

where i, j ∈ {1, 2}, i 6= j.

• For d = 3 and t = (t1, t2, t3) ∈ D

ψN (t) = cN (3)
[
ϕbNtc + {Nti}

(
ϕbNtc+ei − ϕbNtc

)
+ {Ntj}

(
ϕbNtc+ei+ej − ϕbNtc+ei

)
+ {Ntk}

(
ϕbNtc+ei+ej+ek − ϕbNtc+ei+ej

)]
, if {Nti} ≥ {Ntj} ≥ {Ntk}

(4.2.6)

where i, j, k ∈ {1, 2, 3} and pairwise different. Here cN (d), d = 1, 2, 3, are scaling

factors which are specified in the following result.

Theorem 4.2.1. We have the following convergence results.

(i) κ� N2. Let 1 ≤ d ≤ 3. Define a continuously interpolated field ψN as in (4.2.4),

(4.2.5) and (4.2.6) with

cN (d) = (2d)−1√κN
d−4

2 .
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Then we have, as N → ∞, that the field ψN converges in distribution to ψ∆2

D in

the space of continuous functions on D, where ψ∆2

D is defined to be the centered

continuous Gaussian process on D with covariance GD(·, ·), the Green’s function

for the following biharmonic Dirichlet problem:


∆2
cu(x) = f(x), x ∈ D

Dαu(x) = 0, ∀ |α| ≤ 1, x ∈ ∂D.
(4.2.7)

(ii) κ ∼ 2dN2. Let 1 ≤ d ≤ 3. Define a continuously interpolated field ψN as in

(4.2.4), (4.2.5) and (4.2.6) with

cN (d) = (2d)−1√κN
d−4

2 .

Define ψ−∆+∆2

D to be the continuous Gaussian process in D with covariance GD(·, ·),

where GD is the Green’s function for the problem


(−∆c + ∆2

c)u(x) = f(x), x ∈ D

Dαu(x) = 0, ∀ |α| ≤ 1, x ∈ ∂D.

Then ψN converges in distribution to the field ψ−∆+∆2

D in the space of continuous

functions on D.

(iii) κ � N2. Let d = 1. Define the continuously interpolated field ψN as in (4.2.4)

with

cN (1) = (2)−
1
2N−

1
2 .

Then as N → ∞, ψN converges in distribution to the Brownian bridge, ψ−∆
D , in

the space of continuous functions on D.

Remark 4.2.2. When κ1 = 0 and κ2 = 1 in (4.1.1) the d = 1 case was first studied

in [21], where they showed that the limiting distribution is given by an integrated Brown-

ian bridge (for a more precise definition see [21, Theorem 1.2]). The higher dimensional

case has been studied in Chapter 2. It is shown that for d = 2, 3 the discrete membrane

model converges to a Gaussian process with continuous paths and the methods in Chap-

ter 2 can be seen to be valid in d = 1 also. By uniqueness of the limit in C[0, 1] it follows

that the limiting Gaussian process in d = 1 for the case κ� N2 (Theorem 4.2.1 (1)) can



4.2. Set-up and main results 107

be described using the integrated Brownian bridge, the limit matching that of Caravenna

and Deuschel [21].

4.2.2 Higher dimensional results

We present now the results in higher dimensions where we show convergence in the space

of distributions. We assume D to be any bounded domain with smooth boundary. In

order to make our statements precise, we need to introduce three (negative ordered)

Sobolev spaces denoted respectively as H−s
∆2(D), H−s−∆+∆2(D) and H−s−∆(D). We are

going to recall some basic notations on Sobolev spaces and also some facts about the

eigenvalues of the elliptic operators involved in our problem.

Continuum membrane model. We recall the definition of the Sobolev spaceH−s
∆2(D)

and the continuum membrane model from Chapter 2. By the spectral theorem for com-

pact self-adjoint operators and elliptic regularity one can show that there exist smooth

eigenfunctions {uj}j∈N of ∆2
c corresponding to the eigenvalues 0 < λ1 ≤ λ2 ≤ · · · → ∞

such that {uj}j∈N is an orthonormal basis for L2(D). Now for any s > 0 we define the

following inner product on C∞c (D):

〈f , g〉s,∆2 :=
∑
j∈N

λ
s/2
j 〈f , uj〉L2 〈uj , g〉L2 .

Then Hs∆2,0(D) is defined to be the Hilbert space completion of C∞c (D) with respect

to this inner product. We define H−s
∆2(D) to be its dual and the dual norm is denoted

by ‖ · ‖−s,∆2 . Recall Proposition 2.3.10 which provides a description of the continuum

membrane model Ψ∆2

D .

Definition 4.2.3. Let (ξj)j∈N be a collection of i.i.d. standard Gaussian random vari-

ables. Set

Ψ∆2

D :=
∑
j∈N

λ
−1/2
j ξjuj .

Then Ψ∆2

D ∈ H−s
∆2(D) a.s. for all s > (d− 4)/2 and is called the continuum membrane

model.



108 Chapter 4. Scaling limit of semiflexible polymers: a phase transition

Continuum mixed model. We define the spaceH−s−∆+∆2(D) analogously toH−s
∆2(D).

One can find smooth eigenfunctions {vj}j∈N of −∆c + ∆2
c corresponding to eigenvalues

0 < µ1 ≤ µ2 ≤ · · · → ∞ such that {vj}j∈N is an orthonormal basis of L2(D). One can

define, for s > 0, the following inner product for functions from C∞c (D):

〈f, g〉s,−∆+∆2 :=
∑
j∈N

µ
s/2
j 〈f, vj〉L2 〈vj , g〉L2 .

Let Hs−∆+∆2,0(D) be the completion of C∞c (D) with the above inner product and

H−s−∆+∆2(D) be its dual. The dual norm is denoted by ‖ · ‖−s,−∆+∆2 . We describe

the details on this space in Section 4.6. The following definition is proved as Proposi-

tion 4.6.3 in Section 4.6.

Definition 4.2.4. Let (ξj)j∈N be a collection of i.i.d. standard Gaussian random vari-

ables. Set

Ψ−∆+∆2

D :=
∑
j∈N

µ
−1/2
j ξjvj .

Then Ψ−∆+∆2

D ∈ H−s−∆+∆2(D) a.s. for all s > (d− 4)/2 and is called the continuum

mixed model.

Gaussian free field. Here also we recall the definition of the Sobolev space H−s−∆(D)

and the Gaussian free field from Chapter 3. By the spectral theorem for compact self-

adjoint operators and elliptic regularity we know that there exist smooth eigenfunctions

(wj)j∈N of −∆c corresponding to the eigenvalues 0 < ν1 ≤ ν2 ≤ · · · → ∞ such that

(wj)j≥1 is an orthonormal basis of L2(D). Now for any s > 0 we define the following

inner product on C∞c (D):

〈f , g〉s,−∆ :=
∑
j∈N

νsj 〈f , wj〉L2〈wj , g〉L2 .

Then Hs−∆,0(D) can be defined to be the completion of C∞c (D) with respect to this inner

product. We define H−s−∆(D) to be its dual and the dual norm is denoted by ‖ · ‖−s,−∆.

We recall the definition of the Gaussian free field from Proposition 3.4.4.

Definition 4.2.5. Let (ξj)j∈N be a collection of i.i.d. standard Gaussian random vari-

ables. Set

Ψ−∆
D :=

∑
j∈N

ν
−1/2
j ξjwj .
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Then Ψ−∆
D ∈ H−s−∆(D) a.s. for all s > d/2− 1 and is called the Gaussian free field.

Remark 4.2.6. We define different spaces with respect to different eigenfunctions of

the operators. It is not clear to us if these spaces coincide for a general domain. We

are not aware of a result which gives the norm equivalence between the spaces Hs∆2,0(D),

Hs−∆+∆2,0(D) and Hs−∆,0(D). In this thesis we are not pursuing this line of research;

what is important for us are the specific norms that determine the limiting variance of

the discrete fields.

We are now ready to state our main results in the higher dimensional case.

Theorem 4.2.7. Assume that D has smooth boundary. Depending on the behaviour of

κ as N →∞ we have the following three convergence results.

(i) κ� N2. Let d ≥ 4. Define ΨN by

(ΨN , f) := (2d)−1√κN−
d+4

2

∑
x∈ 1

N
ΛN

ϕNxf(x), f ∈ Hs∆2,0(D).

Then we have, as N → ∞, that the field ΨN converges in distribution to the

continuum membrane model Ψ∆2

D in the topology of H−s
∆2(D) for s > sd, where

sd :=
d

2
+ 2

(⌈
1

4

(⌊
d

2

⌋
+ 1

)⌉
+

⌈
1

4

(⌊
d

2

⌋
+ 6

)⌉
− 1

)
. (4.2.8)

(ii) κ ∼ 2dN2. Let d ≥ 4. Define ΨN by

(ΨN , f) := (2d)−1√κN−
d+4

2

∑
x∈ 1

N
ΛN

ϕNxf(x), f ∈ Hs−∆+∆2,0(D).

Then, as N →∞, the field ΨN converges in distribution to Ψ−∆+∆2

D in the topology

of H−s−∆+∆2(D) for s > sd where sd is as in (4.2.8).

(iii) κ� N2. Let d ≥ 2. Define ΨN by

(ΨN , f) := (2d)−
1
2N−

d+2
2

∑
x∈ 1

N
ΛN

ϕNxf(x), f ∈ Hs−∆,0(D).

Then, as N →∞, the field ΨN converges in distribution to the Gaussian free field

Ψ−∆
D in the topology of H−s−∆(D) for s > d/2 + bd/2c+ 2.
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4.2.3 Main ingredients in the proofs

We prove both Theorem 4.2.1 and Theorem 4.2.7 by first showing finite dimensional

convergence and secondly tightness. As the measures are Gaussian with mean zero, the

finite dimensional convergence follows from the convergence of the covariance. However

the behaviour of the covariance of the model is not known explicitly. Therefore we

use the expedient of boundary value problems to achieve both goals. The key fact

which allows us to employ PDE techniques is that the covariance satisfies the discrete

boundary value problem (4.2.2). For the proof of our main theorems we will compute

in Theorem 4.2.8 the magnitude of the error one commits in approximating the solution

of the Dirichlet problem (4.2.3) by its discrete counterpart. In the present section we

only state the error estimate leaving the proof for Section 4.5. Let D be any bounded

domain in Rd satisfying the uniform exterior ball condition (UEBC), which states that

there exists r > 0 such that for any z ∈ ∂D there is a ball Br(c) of radius r with center

at some point c satisfying Br(c)∩D = {z}. We mention here that any domain with C2

boundary satisfies the UEBC.

Let h > 0. We will call the points in hZd the grid points in Rd. We consider Lh to

be a discrete approximation of L given by

Lhu =


(−∆h + ρ1(h)∆2

h)u if L = −∆c

(−ρ2(h)∆h + ∆2
h)u if L = ∆2

c

(−∆h + ρ3(h)∆2
h)u if L = −∆c + ∆2

c

(4.2.9)

where ρi(h) are functions of h taking values in the positive real line such that

lim
h→0

ρi(h) =


0 i = 1, 2;

1 i = 3.

Let Dh be the set of grid points in D i.e. Dh = D ∩ hZd. For any grid point x we

define the points x± hei, x± h(ei ± ej) with 1 ≤ i, j ≤ d to be its neighbours. We say

that x is an interior grid point in Dh if all its neighbors are in Dh. Let Rh be the set of

interior grid points in Dh and Bh := Dh \Rh be the set of grid points near the boundary.

We divide Rh further into R∗h and B∗h, where R∗h is the set of x in Rh such that all its
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neighbors are in Rh and B∗h is the set of remaining points in Rh. Thus we have

Dh = Bh ∪Rh = Bh ∪B∗h ∪R∗h.

Denote by Dh the set of grid functions vanishing outside Rh. For a grid function f we

define Rhf ∈ Dh by

Rhf(x) =


f(x) x ∈ Rh

0 x /∈ Rh.
(4.2.10)

Define for grid-functions vanishing outside a finite set

〈u , v〉h, grid := hd
∑
x∈hZd

u(x)v(x),

‖u‖h, grid := 〈u , u〉1/2h, grid .

We now define the finite difference analogue of the Dirichlet problem (4.2.3). For given

h, we look for a function uh(·) defined on Dh such that

Lhuh(x) = f(x), x ∈ Rh (4.2.11)

and

uh(x) = 0, x ∈ Bh. (4.2.12)

The uniqueness of the solution of (4.2.11) and (4.2.12) is shown in Lemma 4.5.5. We are

now ready to state the error estimate result which forms the core result of this chapter.

Theorem 4.2.8. Depending on L we have the following error bounds.

(i) L = ∆2
c . Let u ∈ C5(D) be the solution of the Dirichlet problem (4.2.3). If

eh := u− uh then we have for all sufficiently small h

‖Rheh‖2h, grid ≤ C
[
M2

5h
2 +M2

2 (ρ2(h))2 +M2
2h
]
.
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(ii) L = −∆c + ∆2
c . Let u ∈ C5(D) be the solution of the Dirichlet problem (4.2.3). If

eh := u− uh then we have for all sufficiently small h

‖Rheh‖2h, grid ≤ C
[
M2

5h
2 +M2

4 (ρ3(h)− 1)2 +M2
4h

4 +M2
2h
]
.

(iii) L = −∆c. Let u ∈ C4(D) be a solution of the Dirichlet problem (4.2.3). If

eh := u− uh then for sufficiently small h we have

‖Rheh‖2h, grid ≤ C
[
M2

4 δ
4 +M2

2ρ1(h)δ +M2
1 δ
]
,

where δ := max{h,
√
ρ1(h)}.

In all the cases Mk :=
∑
|α|≤k supx∈D|Dαu(x)|.

4.3 Proof of Theorem 4.2.7

We now give the proof of each of the three parts of Theorem 4.2.7.

4.3.1 Proof of finite dimensional convergence

We first show that for f ∈ C∞c (D)

(ΨN , f)
d−→


(Ψ∆2

D , f) κ� N2

(Ψ−∆+∆2

D , f) κ ∼ 2dN2

(Ψ−∆
D , f) κ� N2.

(4.3.1)

We begin by noting that (ΨN , f) is a centered Gaussian random variable. Hence to show

the above convergence it is enough to show that Var(ΨN , f) converges to the variance of

the Gaussian on the right hand side of (4.3.1). We denote G 1
N

(x, y) := EΛN [ϕNxϕNy].

Note that by (4.2.2), we have for all x ∈ 1
NΛN ,

κ� N2 :


(
−2dN2

κ ∆ 1
N

+ ∆2
1
N

)
G 1
N

(x, y) = 4d2N4

κ δx(y), y ∈ 1
NΛN

G 1
N

(x, y) = 0 y /∈ 1
NΛN .

(4.3.2)
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κ ∼ 2dN2 :


(
−∆ 1

N
+ κ

2dN2 ∆2
1
N

)
G 1
N

(x, y) = 2dN2δx(y), y ∈ 1
NΛN

G 1
N

(x, y) = 0 y /∈ 1
NΛN .

(4.3.3)

κ� N2 :


(
−∆ 1

N
+ κ

2dN2 ∆2
1
N

)
G 1
N

(x, y) = 2dN2δx(y), y ∈ 1
NΛN

G 1
N

(x, y) = 0 y /∈ 1
NΛN .

(4.3.4)

Now considering all the three cases we can rewrite the variance as

Var[(ΨN , f)] = N−d
∑

x∈ 1
N

ΛN

HN (x)f(x)

where for x ∈ 1
NDN ,

HN (x) =


(2d)−2κN−4

∑
y∈ 1

N
ΛN

G 1
N

(x, y)f(y) κ� N2

(2d)−2κN−4
∑

y∈ 1
N

ΛN
G 1
N

(x, y)f(y) κ ∼ 2dN2

(2d)−1N−2
∑

y∈ 1
N

ΛN
G 1
N

(x, y)f(y) κ� N2.

It is immediate from (4.3.2), (4.3.3), (4.3.4) that HN is the solution of the following

Dirichlet problem:

κ� N2 :


(
−2dN2

κ ∆ 1
N

+ ∆2
1
N

)
HN (x) = f(x), x ∈ 1

NΛN

HN (x) = 0, x /∈ 1
NΛN

(4.3.5)

κ ∼ 2dN2 :


(
−∆ 1

N
+ κ

2dN2 ∆2
1
N

)
HN (x) = f(x) x ∈ 1

NΛN

HN (x) = 0 x /∈ 1
NΛN

(4.3.6)

κ� N2 :


(
−∆ 1

N
+ κ

2dN2 ∆2
1
N

)
HN (x) = f(x), x ∈ 1

NΛN

HN (x) = 0, x /∈ 1
NΛN .

(4.3.7)
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Observe that we get the discrete Dirichlet problem involving the operator Lh defined in

(4.2.9) with h = 1/N and

ρ1(h) := κh2/2d, ρ2(h) := 2d/κh2, ρ3(h) := κh2/2d.

We now recall the continuum Dirichlet problem (4.2.3) with the elliptic operator L as

in (4.2): 
Lu(x) = f(x) x ∈ D

Dαu(x) = 0 |α| ≤ m− 1, x ∈ ∂D.

where m = 1 if L = −∆c and m = 2 in the other two cases. We set L := ∆2
c when

κ � N2, L := −∆c when κ � N2 and L := −∆c + ∆2
c when κ ∼ 2dN2. Define

eN (x) = HN (x)− u(x) for x ∈ 1
NDN . Then from Theorem 4.2.8 we have

N−d
∑

x∈ 1
N

ΛN

eN (x)2 ≤


C
(

1
N2 + 4d2N4

κ2 + 1
N

)
κ� N2

C
(

1
N +

(
κ

2dN2 − 1
)2)

κ ∼ 2dN2

C max{ 1
N ,

√
κ√

2dN
} κ� N2.

(4.3.8)

Hence we get that

Var[(ΨN , f)] =
∑

x∈ 1
N

ΛN

eN (x)f(x)N−d +
∑

x∈ 1
N

ΛN

u(x)f(x)N−d. (4.3.9)

Note that by Cauchy-Schwarz inequality and (4.3.8) the first term goes to zero as

N →∞. The second term converges to

∑
x∈ 1

N
ΛN

u(x)f(x)N−d →N→∞

∫
D
u(x)f(x) dx. (4.3.10)

Notice that by integration by parts we have

∫
D
u(x)f(x) dx =


‖u‖22,∆2 = ‖f‖2−2,∆2 L = ∆2

c

‖u‖22,−∆+∆2 = ‖f‖2−2,−∆+∆2 L = −∆c + ∆2
c

‖u‖21,−∆ = ‖f‖2−1,−∆ L = −∆c.
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On the other hand from the definition it follows that

Var[(Ψ∆2

D , f)] =
∑
j∈N

λ−1
j 〈uj , f〉

2
L2 = ‖f‖2−2,∆2

Var[(Ψ−∆+∆2

D , f)] =
∑
j∈N

µ−1
j 〈vj , f〉

2
L2 = ‖f‖2−2,−∆+∆2

Var[(Ψ∆ , f)] =
∑
j∈N

ν−1
j 〈wj , f〉

2
L2 = ‖f‖2−1,−∆.

Consequently we obtain (4.3.1).

4.3.2 Tightness

To show tightness we shall need the following bounds on the eigenfunctions (uj)j∈N,

(vj)j∈N and (wj)j∈N of ∆2
c , −∆c + ∆2

c and −∆c respectively. They can be obtained

from the general Sobolev inequality ([35, Chapter 5, Theorem 6 (ii)]) and a repeated

application of [39, Corollary 2.21].

Lemma 4.3.1. Let

lk :=

⌈
1

4

(⌊
d

2

⌋
+ k + 1

)⌉
, k ≥ 0.

(i) For the eigenfunctions (uj)j∈N of ∆2
c corresponding to eigenvalues (λj)j∈N in Prob-

lem (4.2.3) there exists a constant C > 0 such that for k ≥ 0

∑
|α|≤k

sup
x∈D
|Dαuj(x)| ≤ Cλlkj . (4.3.11)

(ii) For the eigenfunctions (vj)j∈N of −∆c + ∆2
c corresponding to eigenvalues (µj)j∈N

in Problem (4.2.3) there exists a constant C > 0 such that for k ≥ 0

∑
|α|≤k

sup
x∈D
|Dαvj(x)| ≤ Cµlkj . (4.3.12)

(iii) For the eigenfunctions (wj)j∈N of −∆c corresponding to eigenvalues (νj)j∈N in

Problem (4.2.3) there exists a constant C > 0 such that for k ≥ 0

∑
|α|≤k

sup
x∈D
|Dαwj(x)| ≤ Cν

b d2 c+k+1

2
j . (4.3.13)
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In each instance, the constant C may depend on k.

We can now begin to show tightness.

Case 1: κ� N2. Our target is to show that the sequence (ΨN )N∈N is tight in H−s
∆2(D)

for all s > sd, where sd is as in (4.2.8). It is enough to show that

lim sup
N→∞

EΛN [‖ΨN‖2−s,∆2 ] <∞ ∀ s > sd. (4.3.14)

The tightness of (ΨN )N∈N would then follow immediately from (4.3.14) and the fact

that, for 0 ≤ s1 < s2, H−s1
∆2 (D) is compactly embedded in H−s2

∆2 (D).

From the definition of dual norm it is immediate that we have

EΛN

[
‖ΨN‖2−s,∆2

]
≤
∑
j∈N

λ
−s/2
j EΛN [(ΨN , uj)

2].

Note that u = λ−1
j uj is the unique solution of (4.2.3) with L = ∆2

c for f := uj . Define

eN,j to be the error between the solution of the discrete Dirichlet problem (4.3.5) and

the continuum one (4.2.3) with input datum f := uj . Now as in (4.3.9) we have

EΛN [(ΨN , uj)
2] =

∑
x∈ 1

N
ΛN

eN,j(x)uj(x)N−d +
∑

x∈ 1
N

ΛN

λ−1
j uj(x)uj(x)N−d

≤ C sup
x∈D
|uj(x)|

N−d ∑
x∈ 1

N
ΛN

eN,j(x)2


1/2

+ Cλ−1
j

(
sup
x∈D
|uj(x)|

)2

.

(4.3.15)

Using Theorem 4.2.8 (1) along with the bounds (4.3.11) we obtain

EΛN [(ΨN , uj)
2] ≤ Cλl0j

[
λ2l5−2
j N−2 + λ2l2−2

j 4d2N4κ−2 + λ2l2−2
j N−1

] 1
2

+ Cλ2l0−1
j

≤ Cλl0+l5−1
j .

Therefore we have

EΛN

[
‖ΨN‖2−s,∆2

]
≤ C

∑
j∈N

λ
− s

2
j λl0+l5−1

j .
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Thus

lim sup
N→∞

EΛN [‖ΨN‖2−s,∆2 ] <∞ if
∑
j∈N

λ
− s

2
+l0+l5−1

j <∞.

Now using λj ∼ c(d)j4/d we obtain that
∑

j∈N λ
− s

2
+l0+l5−1

j is finite whenever s > sd.

Thus we have proved (4.3.14).

Case 2: κ ∼ 2dN2. Due to the compact embedding of the spaces H−s−∆+∆2(D), to

show that the sequence (ΨN )N∈N is tight in H−s−∆+∆2(D) for all s > sd, it is enough to

show that

lim sup
N→∞

EΛN [‖ΨN‖2−s,−∆+∆2 ] <∞ ∀ s > sd. (4.3.16)

As in the previous case, by definition of dual norm we have

EΛN

[
‖ΨN‖2−s,−∆+∆2

]
≤
∑
j∈N

µ
−s/2
j EΛN [(ΨN , vj)

2].

Note that u = µ−1
j vj is the unique solution of (4.2.3) with L = −∆c + ∆2

c for f := uj .

Define eN,j to be the error between the solution of the discrete Dirichlet problem (4.3.6)

and the continuum one (4.2.3) with f := vj . Now as in (4.3.15) we have

EΛN [(ΨN , vj)
2] ≤ C sup

x∈D
|vj(x)|

N−d ∑
x∈ 1

N
ΛN

eN,j(x)2


1/2

+ Cµ−1
j

(
sup
x∈D
|vj(x)|

)2

.

Using Theorem 4.2.8 (2) along with the bounds (4.3.12) we obtain

EΛN [(ΨN , vj)
2] ≤ Cµl0j

[
µ2l5−2
j N−2 + µ2l5−2

j

( κ

2dN2
− 1
)2

+ µ2l2−2
j N−1

] 1
2

+ Cµ2l0−1
j

≤ Cµl0+l5−1
j .

Therefore we have

EΛN

[
‖ΨN‖2−s,−∆+∆2

]
≤ C

∑
j∈N

µ
− s

2
j µl0+l5−1

j .

Thus

lim sup
N→∞

EΛN [‖ΨN‖2−s,−∆+∆2 ] <∞ if
∑
j∈N

µ
− s

2
+l0+l5−1

j <∞.
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From Proposition 4.6.2 we obtain that
∑

j∈N µ
− s

2
+l0+l5−1

j < ∞ whenever s > sd. Thus

we have proved (4.3.16).

Case 3: κ� N2. The arguments are similar to the previous two cases and hence we

just indicate the required bounds. To show tightness in H−s−∆(D) it is enough to show

lim sup
N→∞

EΛN [‖ΨN‖2−s,−∆] ≤
∑
j∈N

ν−sj EΛN [(ΨN , wj)
2] <∞ ∀ s > d/2 + bd/2c+ 2.

(4.3.17)

Setting eN,j to be the error between the solution of the discrete Dirichlet problem (4.3.7)

and the continuum one (4.2.3) with f := wj we obtain

EΛN [(ΨN , wj)
2] ≤ C sup

x∈D
|wj(x)|

N−d ∑
x∈ 1

N
ΛN

eN,j(x)2


1/2

+ Cν−1
j

(
sup
x∈D
|wj(x)|

)2

.

Using Theorem 4.2.8 (3) along with the bounds (4.3.13) we can conclude the following

upper bound for EΛN [(ΨN , wj)
2]:

C sup
x∈D
|wj(x)|

(ν−1
j ν

b d2 c+5

2
j

)2

+

(
ν−1
j ν

b d2 c+3

2
j

)2

+

(
ν−1
j ν

b d2 c+2

2
j

)2
 1

2

+ Cν−1
j

(
sup
x∈D
|wj(x)|

)2

.

Now a consequence of the above and (4.3.13) is that

EΛN [(ΨN , wj)
2] ≤ Cνb

d
2
c+2

j . (4.3.18)

Therefore we have

EΛN

[
‖ΨN‖2−s,−∆

]
≤ C

∑
j∈N

ν−sj ν
b d

2
c+2

j .

Thus

lim sup
N→∞

EΛN [‖ΨN‖2−s,−∆] <∞ if
∑
j∈N

ν
−s+b d

2
c+2

j <∞.

We now use the Weyl [72]’s asymptotic νj ∼ Cj
2
d (see [73, Lemma 4.2]) and the fact

that
∑

j∈N j
2
d

(−s+b d
2
c+2) <∞ whenever s > d/2 + bd/2c+ 2 to conclude (4.3.17).
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For all the cases we now have the tightness and the convergence of (ΨN , f) for all f ∈

C∞c (D). A standard uniqueness argument completes the proof of Theorem 4.2.7, using

the fact that C∞c (D) is dense in Hs∆2,0(D), Hs−∆+∆2,0(D) and Hs−∆,0(D) respectively.

4.4 Proof of Theorem 4.2.1

In this section we prove Theorem 4.2.1 by showing finite dimensional convergence and

tightness. The proof is similar to the proofs of the lower dimensional results in the

previous two chapters. First we will show tightness and then we will prove the finite di-

mensional convergence which is similar to the proof of Theorem 4.2.7. To show tightness

we use Theorem 2.2.5.

We shall elaborate on the case when κ� N2. The argument for other case κ ∼ 2dN2

is exactly the same. For the case κ� N2, the proof is similar and hence we shall indicate

only the crucial bounds which are required in the proof.

Case 1: κ� N2

First we want to show that the sequence {ψN}N∈N is tight in C(D). We need the

following bounds.

Lemma 4.4.1.

(1) For any x, y ∈ Zd

|GΛN (x, y)| ≤ Cκ−1N4−d.

(2) For x ∈ Zd

EΛN

[
(ϕx+ei − ϕx)2

]
≤


Cκ−1N d = 1

Cκ−1 logN d = 2

Cκ−1 d = 3

.

Proof. To show the first inequality we bound GΛN (x, x). One can show using Theorem

5.1 in [18] that

GΛN (x, x) ≤ κ−1EMM
ΛN

(ϕ2
x)
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where PMM
ΛN

denotes the law of the membrane model on ΛN with zero boundary condi-

tions outside ΛN . The bound for the d = 1 case can now be obtained using the random

walk representation of the model used in Lemma 4.6.1. For d = 2, 3 we obtain the

bound from [54, Theorem 1.1].

For the second part the Brascamp-Lieb inequality yields

EΛN [(ϕx+ei − ϕx)2] ≤ κ−1EMM
ΛN

[(ϕx+ei − ϕx)2].

The bound now follows from Lemma 4.6.1 (for d = 1) and [54, Theorem 1.1] (for

d = 2, 3).

Observe that the process (ψN (t))t∈D is Gaussian. Using Lemma 4.4.1 (1) it is easy to

see that (ψN (0)) is tight. Again, using the properties of Gaussian laws, to show (2.2.2)

it is enough to prove the following lemma.

Lemma 4.4.2. There exists C > 0 such that

EΛN

[
|ψN (t)− ψN (s)|2

]
≤ C‖t− s‖1+b (4.4.1)

for all t, s ∈ D, uniformly in N , where b = 1 in d = 1, b ∈ (0, 1) in d = 2 and b = 0 in

d = 3.

Proof of Lemma 4.4.2. First we consider d = 1. To show (4.4.1) we consider the follow-

ing two cases.

(I) Suppose t, s ∈ [x, x+ 1/N ] for some x ∈ N−1DN . Then we have

ψN (t)− ψN (s) = (2d)−1√κN−
3
2 [(Nt−Ns)(ϕNx+1 − ϕNx)] .

Now using Lemma 4.4.1 (2) we get (4.4.1).

(II) Next suppose s ∈ [x, x+ 1/N) and t ∈ [y, y + 1/N) for some x, y ∈ N−1DN and

t > x + 1/N . In this case if |t − s| ≤ 1/N then one can obtain (4.4.1) using (I)

and a suitable point in between. So we assume |t− s| > 1/N . We first note that

EΛN

[
|ψN (y)− ψN (x)|2

]
= (2d)−2κN−3EΛN [(ϕNy − ϕNx)2]
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≤ CκN−3κ−1EMM
ΛN

[(ϕNy − ϕNx)2]

≤ C(y − x)2,

where we have used Lemma 4.6.1 to get the last inequality. Now using (I) we

obtain

EΛN

[
|ψN (t)− ψN (s)|2

]
≤ C

(
EΛN

[
|ψN (t)− ψN (y)|2

]
+ EΛN

[
|ψN (y)− ψN (x)|2

]
+EΛN

[
|ψN (x)− ψN (s)|2

])
≤ C|t− s|2.

Next we consider d = 2. We fix b ∈ (0, 1) and let t, s ∈ D. We split the proof into a

few cases.

Case 1: Suppose t, s belong to the same smallest square box in the lattice 1
N Z2. First

assume bNtc = bNsc, that is, the points are in the interior and not touching the top and

right boundaries. In this case if we have {Nt1} ≥ {Nt2} and {Ns1} ≥ {Ns2}. Then by

definition of the interpolation we have

ψN (t)− ψN (s) = (2d)−1√κ[(t1 − s1)
(
ϕbNtc+e1 − ϕbNtc

)
+ (t2 − s2)

(
ϕbNtc+e1+e2 − ϕbNtc+e1

)
].

So from the above expression we have

EΛN

[
(ψN (t)− ψN (s))2

]
≤ 2(2d)−2κ[(t1 − s1)2EΛN [

(
ϕbNtc+e1 − ϕbNtc

)2
]

+ (t2 − s2)2EΛN [
(
ϕbNtc+e1+e2 − ϕbNtc+e1

)2
]].

Now from Lemma 4.4.1 (2) and |t1 − s1| , |t2 − s2| < N−1 we obtain (4.4.1). The argu-

ment is similar if one has {Nt1} ≤ {Nt2} and {Ns1} ≤ {Ns2}.

Again if {Nt1} ≥ {Nt2} and {Ns1} < {Ns2}, or if {Nt1} < {Nt2} and {Ns1} ≥

{Ns2} then we consider the point u on the line segment joining t and s such that Nu

is the point of intersection of the line segment joining Nt,Ns and the diagonal joining

bNtc, bNtc+ e1 + e2. Then we have using the above computations

EΛN

[
|ψN (t)− ψN (s)|2

]
≤ 2EΛN

[
|ψN (t)− ψN (u)|2

]
+ 2EΛN

[
|ψN (u)− ψN (s)|2

]
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≤ C
[
‖t− u‖1+b + ‖u− s‖1+b

]
≤ C‖t− s‖1+b.

Now the other case, that is, when bNtc 6= bNsc, follows from above by continuity.

Case 2: Suppose t, s do not belong to the same smallest square box in the lattice

1
N Z2. In this case if ‖t− s‖ ≤ 1/N then one can obtain (4.4.1) by Case 1 and a suitable

point in between. So we assume ‖t − s‖ > 1/N . Depending on whether Nt and Ns

belong to the discrete lattice we split the proof in two broad cases.

Sub-case 2 (a) Suppose t, s ∈ 1
N Z2. Then using Brascamp-Lieb inequality we obtain

EΛN

[
|ψN (t)− ψN (s)|2

]
≤ κ−1EMM

ΛN

[
|ψN (t)− ψN (s)|2

]
.

Now from Sub-case 2(a) of the proof of Lemma 2.2.6 we obtain

EΛN

[
|ψN (t)− ψN (s)|2

]
≤ C‖t− s‖1+b.

Sub-case 2 (b) Suppose at least one between t, s does not belong to 1
N Z2. Then

EΛN [| ψN (t)− ψN (s)|2
]
≤ 3EΛN

[∣∣∣∣ψN (t)− ψN
(
bNtc
N

)∣∣∣∣2
]

+ 3EΛN

[∣∣∣∣ψN (bNtcN

)
− ψN

(
bNsc
N

)∣∣∣∣2
]

+ 3EΛN

[∣∣∣∣ψN (bNscN

)
− ψN (s)

∣∣∣∣2
]

≤ C

[∥∥∥∥t− bNtcN

∥∥∥∥1+b

+

∥∥∥∥bNtcN
− bNsc

N

∥∥∥∥1+b

+

∥∥∥∥bNscN
− s
∥∥∥∥1+b

]
≤ C‖t− s‖1+b.

Note that for the last inequality we have used our assumption ‖t− s‖ > 1/N .

Finally we consider d = 3. Let t, s ∈ D. We split the proof into cases similar to

those of d = 2. We give a brief description. For Case 1, suppose t, s belong to the

same smallest cube in the lattice 1
N Z3. First assume bNtc = bNsc. In this case if

{Nt1} ≥ {Nt2} ≥ {Nt3} and {Ns1} ≥ {Ns2} ≥ {Ns3} then it follows from the

definition of interpolation

EΛN

[
(ψN (t)− ψN (s))2

]
≤ 3(2d)−2κN [(t1 − s1)2EΛN [

(
ϕbNtc+e1 − ϕbNtc

)2
]

+ (t2 − s2)2EΛN [
(
ϕbNtc+e1+e2 − ϕbNtc+e1

)2
]

+ (t3 − s3)2EΛN [
(
ϕbNtc+e1+e2+e3 − ϕbNtc+e1+e2

)2
]].
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Now from Lemma 4.4.1 (2) and the fact that |t1 − s1| , |t2 − s2| , |t3 − s3| < 1/N we have

(4.4.1). Note that this is a particular case of t, s lying in the same tetrahedral portion

of the cube. Hence if t, s lie in the same tetrahedral portion of the cube then by similar

arguments (4.4.1) holds. If t, s do not lie in the same tetrahedral part then we consider

points (at most 3) on the line segment joining them such that two consecutive between

t, the selected points and s lie in the same tetrahedral part. Then applying the previous

argument we can obtain (4.4.1). The case when bNtc 6= bNsc follows by continuity. For

Case 2, we describe Sub-case 2(a) which turns out to be simpler in d = 3. The rest of

the argument is similar to that in d = 2. Suppose t, s ∈ 1
N Z3 with ‖t− s‖ > 1/N . Then

using Brascamp-Lieb inequality we obtain

EΛN

[
|ψN (t)− ψN (s)|2

]
≤ κ−1EMM

ΛN

[
|ψN (t)− ψN (s)|2

]
.

Now similarly as in the proof of Lemma 2.2.6 we obtain

EΛN

[
|ψN (t)− ψN (s)|2

]
≤ C‖t− s‖.

To conclude the finite dimensional convergence we first show the convergence of the

covariance matrix. For x, y ∈ D ∩N−1 Zd we define

G 1
N

(x, y) := (2d)−2κNd−4GΛN (Nx,Ny).

We now interpolate G 1
N

in a piece-wise constant fashion on small squares of D×D to

get a new function GI1
N

. We show that GI1
N

converges uniformly to GD on D×D. Indeed,

let FN := GI1
N

−GD. Similarly as in the proof of the finite dimensional convergence in

Theorem 4.2.7 (1) it follows that, for any f, g ∈ C∞c (D),

lim
N→∞

∑
x,y∈ 1

N
DN

N−2dGI1
N

(x, y)f(x)g(y) =

∫∫
D×D

GD(x, y)f(x)g(y) dx d y.

Again from Riemann sum convergence we have

lim
N→∞

∑
x,y∈ 1

N
DN

N−2dGD(x, y)f(x)g(y) =

∫∫
D×D

GD(x, y)f(x)g(y) dx d y.
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Thus we get

lim
N→∞

∑
x,y∈ 1

N
DN

N−2dFN (x, y)f(x)g(y) = 0. (4.4.2)

Note that GD is bounded and

sup
x,y∈ 1

N
DN

|GΛN (Nx,Ny)| ≤ Cκ−1N4−d.

These imply that

sup
x,y∈D

|FN (x, y)| ≤ C.

Now one can show that FN has a subsequence converging uniformly to some function

F which is bounded by C. With abuse of notation we denote this subsequence by FN .

We then have

lim
N→∞

∑
x,y∈ 1

N
DN

N−2dFN (x, y)f(x)g(y) =

∫∫
D×D

F (x, y)f(x)g(y) dx d y.

Uniqueness of the limit gives

∫∫
D×D

F (x, y)f(x)g(y) dx d y = 0

by (4.4.2). From this we obtain that F (x, y) = 0 for almost every x and almost every y.

The definition by interpolation of GI1
N

ensures that F is pointwise equal to zero. Finally,

the fact that the original sequence FN converges uniformly to zero follows using the

subsequence argument.

We now show the finite dimensional convergence. First let t ∈ D. We write

ψN (t) = ψN,1(t) + ψN,2(t)

where ψN,1(t) := (2d)−1√κN
d−4

2 ϕbNtc and ψN,2(t) := ψN (t)−ψN,1(t). From Lemma 4.4.1 (2)

it follows that EΛN [ψN,2(t)2] goes to zero as N tends to infinity. Therefore to show that

ψN (t)
d→ ψ∆2

D (t) it is enough to show that Var[ΨN,1(t)]→ GD(t, t). But we have

Var[ψN,1(t)] = (2d)−2κNd−4GΛN (bNtc, bNtc) = GI1
N

(t, t)→ GD(t, t)



4.4. Proof of Theorem 4.2.1 125

since the sequence FN converges to zero uniformly. Since the variables under considera-

tion are Gaussian, one can show the finite dimensional convergence using the convergence

of the Green’s functions.

Case 3: κ� N2

In this case also we use Theorem 2.2.5 to show tightness. Using the Brascamp-Lieb

inequality and an argument similar to the proof of Lemma 3.4.5 we obtain the following

bounds in both cases.

Lemma 4.4.3. We have

GΛN (x, x) ≤ EGFF
ΛN

(ϕ2
x) ≤ CN for all x ∈ Z . (4.4.3)

Also there exists C > 0 such that for all x, y ∈ Z

EΛN [(ϕx − ϕy)2] ≤ EGFF
ΛN

[(ϕx − ϕy)2] ≤ C|y − x|. (4.4.4)

where PGFF
ΛN

denote the law of the discrete Gaussian free field on ΛN with zero boundary

conditions outside ΛN .

Once we have these bounds, the rest of the proof is similar to that of the one-

dimensional result in the κ � N2 case. In the case of κ � N2 we need the following

additional information for the identification of the limit. The Green’s function GD for

the problem


−d2 u

dx2 (x) = f(x) x ∈ D

u(x) = 0 x ∈ ∂D

is given by

GD(x, y) = min{x, y} − xy, x, y ∈ D

which also turns out to be the covariance function of the Brownian bridge. To avoid

repetitions of the arguments, we skip the details of these cases.
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4.5 Proof of Theorem 4.2.8

This section is devoted to proof of the error estimation result in Theorem 4.2.8. To

estimate the error we need to develop some Sobolev inequalities in the general setting

which involves consistency between discrete and continuous operator. The content of this

section can be of independent interest and can possibly be applied to general interface

models. We would like to stress that although we follow the ideas involved in [69], we

cannot quote the results from there verbatim as the coefficients of the discrete operators

do not depend on the scaling of the lattice. Also another important remark is that

the discrete Dirichlet problem involving the operators Lh introduced in (4.2.9) requires

boundary conditions on points outside Rh which are within distance 2 from Rh but the

definition of the limiting operator −∆c involves only one boundary condition. The ideas

from [69] work well when L = ∆2
c or L = −∆c + ∆2

c . In the case when L = −∆c, we

assign a cut-off which helps in controlling the error around the boundary. The proof of

Theorem 4.2.8 (3) should be applicable to many other models.

4.5.1 Sobolev-type norm inequalities

The main aim of this subsection is to have an estimate on the `2 norm of a function on

the grid in terms of the operator Lh (and its truncated version). Later this turns out

to be useful as we use the convergence of Lh to L. We continue with all the definitions

and notations from Section 4.2.3.

The notion of discrete forward and backward derivatives will be essential in the

following arguments.

∂ju(x) :=
1

h
(u(x+ hej)− u(x)),

∂̄ju(x) :=
1

h
(u(x)− u(x− hej)),

∂α := ∂α1
1 · · · ∂

αd
d ,

∂̄α := ∂̄α1
1 · · · ∂̄

αd
d ,

where α = (α1, . . . , αd) is a multi-index. It is easy to see that

〈∂ju , v〉h, grid =
〈
u , ∂̄jv

〉
h, grid
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for grid-functions vanishing outside a finite set. We now define

‖u‖h,m :=

 ∑
|α|≤m

‖∂αu‖2h, grid

 1
2

and obtain the following lemma.

Lemma 4.5.1. There are constants C independent of u and h such that

‖u‖h, grid ≤ C‖∂ju‖h, grid, u ∈ Dh, j = 1, . . . , d, (4.5.1)

and for fixed m ≥ 1,

‖u‖h, grid ≤ C‖u‖h,m, u ∈ Dh. (4.5.2)

Proof. Since u ≡ 0 outside Rh, we have for x ∈ Rh

u(x) = −h
∞∑
l=0

∂ju(x+ lhej).

As D is bounded, the number of non-zero terms is O(h−1). Hence by Cauchy-Schwarz

inequality we have

u(x)2 ≤ Ch
∑

z∈{x+lhej :−∞<l<∞}

(∂ju(z))2 .

Summing over {x+ lhej : −∞ < l <∞} and using the fact that the number of non-zero

terms is O(h−1) we obtain

∑
z∈{x+lhej :−∞<l<∞}

u(z)2 ≤ C
∑

z∈{x+lhej :−∞<l<∞}

(∂ju(z))2 .

Now we obtain (4.5.1) by summing over the remaining components of x and multiplying

by hd. Then (4.5.2) follows from (4.5.1).

Our aim is to estimate the error while approximating the solution of the boundary

value problem involving the continuum operator L by its discrete counter part. In this

error estimation we face some obstacle near the boundary due to boundary condition

issues. To overcome this obstacle we define a new operator Lh,m, where we suitably

truncate and modify the operator Lh near the boundary. To use this operator we need

to prove that ‖u‖h,m ≤ C‖Lh,mu‖h, grid for any function u vanishing outside Rh. In
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order to prove this inequality we need the following norm which rescales the function

near the boundary:

|||u|||h,m :=

hd
∑
x∈R∗h

u(x)2 +
∑
x∈B∗h

(h−mu(x))2

 1
2

, u ∈ Dh.

We can relate the weighted Sobolev norm ||| · |||h,m to || · ||h,m with this bound:

Lemma 4.5.2. Let m = 1 or 2. There is a constant C independent of u and h such

that

|||u|||h,m ≤ C‖u‖h,m, u ∈ Dh.

Proof. For this lemma we use the following fact. There is a natural number K such that

for all sufficiently small h, the following is valid: consider for any x ∈ B∗h all half-rays

through x. At least one of them contains m consecutive grid-points outside Rh within

distance Kh from x. This fact is easy to observe when m = 1. For m = 2 it is proved

in Section 2.6. Let x ∈ B∗h. We first consider the case when the half-ray in the x1-

direction contains, within distance Kh from x, m consecutive grid-points outside Rh.

Let x− (K0 + 1)he1, where K0 +m ≤ K, be the first of the m consecutive points. It is

then easy to see that

h−mu(x) =

K0∑
j=0

m+ j − 1

j

 ∂̄m1 u(x− jhe1).

So

(
h−mu(x)

)2 ≤ C(K0 + 1)

K0∑
j=0

(
∂̄m1 u(x− jhe1)

)2
= C

K0∑
j=0

(∂m1 u(x− (j + 2)he1))2 .

Similar inequalities hold in the cases of the other half-rays where in the above ∂̄1 has to

be replaced by the derivative in the direction of the corresponding half-ray. With this

observation we obtain

hd
∑
x∈B∗h

(
h−mu(x)

)2 ≤ C‖u‖2h,m.
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And by definition

hd
∑
x∈R∗h

u(x)2 ≤ ‖u‖2h,m.

This completes the proof.

We rewrite Lh in (4.2.9) as

Lhu(x) = h−2m
∑
η

cηu(x+ ηh), x ∈ hZd, (4.5.3)

where η = (η1, . . . , ηd) with the ηj ’s being integers, cη’s are real numbers which may

depend on h. In (4.5.3) m = 1 when L = −∆c and m = 2 when L = ∆2
c or −∆c + ∆2

c .

We now define the characteristic polynomial of Lh by

p(θ) :=
∑
η

cηe
ι〈η , θ〉, (4.5.4)

where θ = (θ1, . . . , θd) and 〈η , θ〉 =
∑d

j=1 ηjθj . We have the following lemma:

Lemma 4.5.3.

〈Lhu , u〉h, grid = hd−2m(2π)−d
∫
S
p(θ)|û(θ)|2dθ, u ∈ Dh.

where

û(θ) =
∑
ξ∈Zd

u(ξh)e−ι〈ξ , θ〉

and S = {θ : |θj | ≤ π, j = 1, . . . , d}.

Proof. We expand

〈Lhu , u〉h, grid = hd
∑
x∈hZd

Lhu(x)u(x)

(4.5.3)
= hd−2m

∑
x∈hZd

∑
η∈Zd

cηu(x+ ηh)u(x)

= hd−2m
∑

x, ξ∈hZd
c ξ−x

h
u(ξ)u(x).
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By inverting (4.5.4) we have

cη = (2π)−d
∫
S
p(θ)e−ι〈η, θ〉dθ.

Thus

〈Lhu , u〉h, grid = hd−2m
∑

x, ξ∈hZd
(2π)−d

∫
S
p(θ)e−ι〈

ξ−x
h
, θ〉dθu(ξ)u(x)

= hd−2m(2π)−d
∫
S
p(θ)|û(θ)|2dθ.

We will also need

Lemma 4.5.4. There is a constant C independent of u and h such that

‖u‖2h,m ≤ C
d∑
j=1

‖∂mj u‖2h, grid, u ∈ Dh.

Proof. We first prove that if α is a multi-index with |α| = m then

〈
∂̄α∂αu, u

〉
h, grid

≤ 〈Qhu, u〉h, grid , u ∈ Dh, (4.5.5)

where Qh is the difference operator

Qhu :=

d∑
j=1

∂̄mj ∂
m
j u. (4.5.6)

Similar to (4.5.4) we can show the characteristic polynomial of ∂̄α∂α and Qh are respec-

tively

q1(θ) = 2m
d∏
j=1

(1− cos θj)
αj

and

q2(θ) = 2m
d∑
j=1

(1− cos θj)
m.

Now by the inequality between arithmetic and geometric mean we have

q1(θ) ≤ 2m
d∑
j=1

m−1αj(1− cos θj)
m ≤ q2(θ).
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Using Lemma 4.5.3 we obtain (4.5.5), which implies

‖∂αu‖2h, grid ≤
d∑
j=1

‖∂mj u‖2h, grid, u ∈ Dh.

For |α| < m, one can show using Lemma 4.5.1

‖∂αu‖2h, grid ≤ C
d∑
j=1

‖∂mj u‖2h, grid, u ∈ Dh.

Hence the proof is complete.

4.5.2 Errors in the Dirichlet problem

We have shown some discrete Sobolev inequalities till now. We now relate these directly

to our discrete operators. We start dealing with each of the operators separately. Before

we do so let us show here the existence and uniqueness of the solution of the discrete

boundary value problem (4.2.11)-(4.2.12).

Lemma 4.5.5. The finite difference Dirichlet problem (4.2.11)-(4.2.12) has exactly one

solution for arbitrary f .

Proof. We first show the following. There exists a constant C > 0 independent of u and

h such that

‖u‖h, grid ≤ C‖Lhu‖h, grid, u ∈ Dh. (4.5.7)

In case L = ∆2
c or −∆c + ∆2

c , (4.5.7) follows Lemma 4.5.1 and from the proof of Lem-

mas 4.5.6, 4.5.7 respectively. For L = −∆c the argument is similar once we observe

that

p(θ) = −
d∑
i=1

(2 cos θi − 2)

+
ρ1(h)

h2

d∑
i, j=1

[2 cos (θi + θj) + 2 cos (θi − θj)− 4(cos θi + cos θj) + 4]

=
d∑
i=1

(2− 2 cos θi) +
ρ1(h)

h2

d∑
i, j=1

[4(1− cos θi)(1− cos θj)]

≥ 2
d∑
i=1

(1− cos θi).
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Now since u ≡ 0 in Bh, Equation (4.2.11) can be considered as a linear system of

equations with the same number of equations as of unknowns (the number of points in

Rh). Therefore it is sufficient to prove that the corresponding homogeneous system has

only the trivial solution i.e. u ≡ 0 in Rh. This follows from (4.5.7).

Bilaplacian case: proof of Theorem 4.2.8 (1)

In this subsection we consider L := ∆2
c . Recall ρ2(h)→ 0 and we have for x ∈ hZd,

Lhu(x) =
1

h4

[
−h2ρ2(h)

d∑
i=1

(u(x+ hei) + u(x− hei)− 2u(x))

+
d∑

i, j=1

{u(x+ h(ei + ej)) + u(x− h(ei + ej)) + u(x+ h(ei − ej)) + u(x− h(ei − ej))

−2(u(x+ hei)− 2u(x− hei)− 2(u(x+ hej)− 2u(x− hej) + 4u(x))}] .

We define the operator Lh,2 as follows:

Lh, 2f(x) =


Lhf(x) x ∈ R∗h

h2Lhf(x) x ∈ B∗h

0 x /∈ Rh.

(4.5.8)

Then we have the following lemma involving Lh, 2.

Lemma 4.5.6. There exists a constant C > 0 independent of u and h such that

‖u‖h, 2 ≤ C‖Lh, 2u‖h, grid, u ∈ Dh.

Proof. We consider the characteristic polynomial of Lh and observe that

p(θ) = −h2ρ2(h)
d∑
i=1

(2 cos θi − 2)

+

d∑
i, j=1

[2 cos (θi + θj) + 2 cos (θi − θj)− 4 cos θi − 4 cos θj + 4]

= h2ρ2(h)

d∑
i=1

(2− 2 cos θi) +

d∑
i, j=1

[4(1− cos θi)(1− cos θj)]
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≥ 4

d∑
i=1

(1− cos θi)
2.

Hence by Lemmas 4.5.4 and 4.5.3 we obtain for u ∈ Dh

‖u‖2h,2 ≤ C
d∑
j=1

‖∂2
j u‖2h, grid = C 〈Qhu, u〉h, grid ≤ C 〈Lhu, u〉h, grid ,

where Qh is the difference operator defined in (4.5.6) with m = 2. Again we have

〈Lhu, u〉h, grid = hd

∑
x∈B∗h

Lh, 2u(x)
(
h−2u(x)

)
+
∑
x∈R∗h

Lh, 2u(x)u(x)


Therefore by Cauchy-Schwarz inequality we have

| 〈Lhu, u〉h, grid | ≤ C‖Lh, 2u‖h, grid|||u|||h, 2.

Thus from Lemma 4.5.2 we have

‖u‖2h, 2 ≤ C‖Lh, 2u‖h, grid |||u|||h, 2 ≤ C‖Lh, 2u‖h, grid ‖u‖h, 2

This completes the proof.

We have now all the ingredients to show Theorem 4.2.8 (1).

Proof of Theorem 4.2.8 (1). We denote all constants by C and they do not depend on

u, f . Using Taylor expansion we have for all x ∈ Rh and for small h

Lhu(x) = h−2ρ2(h)R2(x) + Lu(x) + h−4R5(x)

where |R2(x)| ≤ CM2h
2 and |R5(x)| ≤ CM5h

5. We thus obtain, for x ∈ Rh,

Lheh(x) = Lhu(x)− Lhuh(x)

= h−2ρ2(h)R2(x) + h−4R5(x). (4.5.9)

For x ∈ R∗h we have

Lh,2Rheh(x) = LhRheh(x) = Lheh(x) = h−2ρ2(h)R2(x) + h−4R5(x).
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For x ∈ B∗h at least one among x±h(ei±ej), x±hei is in Bh \∂D. For any y ∈ Bh \∂D

we consider a point b(y) on ∂D of minimal distance to y. Note that this distance is at

most 2h. Now using Taylor expansion and the fact that the value of u and all its first

order derivatives are zero at b(y) one sees that

u(y) = uh(y) +R′2(y)

where |R′2(y)| ≤ CM2h
2. For x ∈ B∗h denote by S(x) the neighbors of x which are in

Bh \ ∂D i.e.

S(x) = {y : y ∈ Bh \ ∂D ∩ {x± hei, x± h(ei ± ej) : 1 ≤ i, j ≤ d}}.

Therefore, for x ∈ B∗h,

Lh,2Rheh(x) = h2LhRheh(x)

= h2

Lheh(x)− h−4
∑

y∈S(x)

(
h2ρ2(h)C(y)eh(y) + C

′
(y)eh(y)

)
(4.5.9)

= h2{h−2ρ2(h)R2(x) + h−4R5(x)}+ (Cρ2(h) + C
′
h−2)R′′2(x)

where |R′′2(x)| ≤ CM2h
2. Hence

‖Lh,2Rheh‖2h, grid = hd
∑
x∈Rh

(Lh,2Rheh(x))2

= hd

∑
x∈R∗h

(Lh,2Rheh(x))2 +
∑
x∈B∗h

(Lh,2Rheh(x))2


= hd

∑
x∈R∗h

(
h−2ρ2(h)R2(x) + h−4R5(x)

)2
+
∑
x∈B∗h

(
ρ2(h)R2(x) + h−2R5(x) + (Cρ2(h) + C

′
h−2)R′′2(x)

)2


≤ Chd

∑
x∈R∗h

(
M2

2 (ρ2(h))2 +M2
5h

2
)

+
∑
x∈B∗h

(
M2

2h
4(ρ2(h))2 +M2

5h
6 +M2

2

)
≤ C

[(
M2

2 (ρ2(h))2 +M2
5h

2
)

+ h
(
M2

2h
4(ρ2(h))2 +M2

5h
6 +M2

2

)]
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where the last inequality holds as the number of points in B∗h is O(h−(d−1)). Finally to

complete our proof we obtain

‖Rheh‖2h, grid ≤ C
[
M2

2 (ρ2(h))2 +M2
5h

2 +M2
2h

5(ρ2(h))2 +M2
5h

7 +M2
2h
]

≤ C
[
M2

5h
2 +M2

2 (ρ2(h))2 +M2
2h
]
.

using Lemmas 4.5.1 and 4.5.6.

Laplacian + Bilaplacian case: proof of Theorem 4.2.8 (2)

In this subsection we consider L = −∆c+∆2
c . Recall ρ3(h)→ 1 and we have for x ∈ hZd,

Lhu(x) =
1

h4

[
−h2

d∑
i=1

(u(x+ hei) + u(x− hei)− 2u(x))

+ρ3(h)
d∑

i, j=1

{u(x+ h(ei + ej)) + u(x− h(ei + ej)) + u(x+ h(ei − ej))

+u(x− h(ei − ej))− 2(u(x+ hei)− 2u(x− hei)− 2(u(x+ hej)

−2u(x− hej) + 4u(x))}] .

We define the operator Lh,2 as in (4.5.8) and obtain

Lemma 4.5.7. There exists a constant C > 0 independent of u and h such that

‖u‖h, 2 ≤ C‖Lh, 2u‖h, grid, u ∈ Dh.

Proof. We observe that

p(θ) = −h2
d∑
i=1

(2 cos θi − 2)

+ ρ3(h)
d∑

i, j=1

[2 cos (θi + θj) + 2 cos (θi − θj)− 4 cos θi − 4 cos θj + 4]

= h2
d∑
i=1

(2− 2 cos θi) + ρ3(h)
d∑

i, j=1

[4(1− cos θi)(1− cos θj)]

≥ 4ρ3(h)
d∑
i=1

(1− cos θi)
2.
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Hence by Lemma 4.5.4 and 4.5.3 we obtain for u ∈ Dh

‖u‖2h,2 ≤ C
d∑
j=1

‖∂2
j u‖2h, grid = C 〈Qhu, u〉h, grid ≤ C(ρ3(h))−1 〈Lhu , u〉h, grid

≤ C 〈Lhu , u〉h, grid ,

where Qh is the difference operator defined in (4.5.6) with m = 2. The rest of the proof

is similar to Lemma 4.5.6 and hence omitted.

We now prove the approximation result in this case.

Proof of Theorem 4.2.8 (2). As before the constant C does not depend on u and f .

Using Taylor expansion we have for all x ∈ Rh and for small h

Lhu(x) = Lu(x) + (ρ3(h)− 1)∆2
cu(x) + h−2R4(x) + ρ3(h)h−4R5(x)

where |R4(x)| ≤ CM4h
4, |R5(x)| ≤ CM5h

5. We obtain for x ∈ Rh

Lheh(x) = Lhu(x)− Lhuh(x)

= Lu(x) + (ρ3(h)− 1)∆2
cu(x) + h−2R4(x) + ρ3(h)h−4R5(x)− Lhuh(x)

= (ρ3(h)− 1)∆2
cu(x) + h−2R4(x) + ρ3(h)h−4R5(x).

For x ∈ R∗h we have

Lh,2Rheh(x) = LhRheh(x) = Lheh(x) = (ρ3(h)− 1)∆2
cu(x) + h−2R4(x) + ρ3(h)h−4R5(x).

(4.5.10)

As in the case of ∆2
c we have for any y ∈ Bh \ ∂D

u(y) = uh(y) +R2(y)

where |R2(y)| ≤ CM2h
2. Therefore, for x ∈ B∗h,

Lh,2Rheh(x) = h2LhRheh(x)

= h2

Lheh(x)− h−4
∑

y∈S(x)

(
h2C(y)eh(y) + ρ3(h)C

′
(y)eh(y)

)
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(4.5.10)
= h2(ρ3(h)− 1)∆2

cu(x) +R4(x) + ρ3(h)h−2R5(x)

+ CR′2(x) + Ch−2ρ3(h)R′′2(x) (4.5.11)

where S(x) is defined similarly as in ∆2
c case, C(y), C

′
(y) are constants depending on y

and |R′2(x)| ≤ CM2h
2, |R′′2(x)| ≤ CM2h

2. We have

‖Lh,2Rheh‖2h,grid = hd
∑
x∈Rh

(Lh,2Rheh(x))2

= hd

∑
x∈R∗h

(Lh,2Rheh(x))2 +
∑
x∈B∗h

(Lh,2Rheh(x))2


which, using the bounds (4.5.10)-(4.5.11), turns into

‖Lh,2Rheh‖2h,grid ≤ Chd
∑
x∈R∗h

(
(ρ3(h)− 1)2M2

4 +M2
4h

4 + (ρ3(h))2M2
5h

2
)

+ Chd
∑
x∈B∗h

(
h4(ρ3(h)− 1)2M2

4 +M2
4h

8 + (ρ3(h))2M2
5h

6 +M2
2 +M2

2 (ρ3(h))2h4
)

≤ C[(ρ3(h)− 1)2M2
4 +M2

4h
4 + (ρ3(h))2M2

5h
2 + h5(ρ3(h)− 1)2M2

4

+M2
4h

9 + (ρ3(h))2M2
5h

7 +M2
2h+M2

2 (ρ3(h))2h5]

where in the last inequality we have used that the number of points in B∗h is O(h−(d−1)).

Finally to complete our proof we obtain using Lemma 4.5.1 and Lemma 4.5.7

‖Rheh‖2h, grid ≤ C[(ρ3(h)− 1)2M2
4 +M2

4h
4 + (ρ3(h))2M2

5h
2 + h5(ρ3(h)− 1)2M2

4

+M2
4h

9 + (ρ3(h))2M2
5h

7 +M2
2h+M2

2 (ρ3(h))2h5]

≤ C
[
M2

5h
2 +M2

4 (ρ3(h)− 1)2 +M2
4h

4 +M2
2h
]
.

Laplacian case: proof of Theorem 4.2.8 (3)

In this subsection we consider L = −∆c. The continuum problem (4.2.3) is defined

with one boundary condition, whereas in the discrete Dirichlet problem involving Lh

two boundary conditions are needed. The contribution of ∆2
h is negligible in the limit

but for finite h it is not. It is the effect of ρ1(h) which makes Lh vanish in the limit.

However, if we simply apply the same proof of Theorem 4.2.8 (1)-(2) in this case the

boundary condition effect and the discretisation effect are treated simultaneously. To
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take care of the different scales at which these effects are seen, we use a suitable cutoff

function instead of truncating the discrete operator Lh near the boundary. Let us first

define the cutoff function. Recall that δ := max{h,
√
ρ1(h)}. We define

Dlδ := {x ∈ Rd : dist(x, ∂D) < lδ}, l = 1, 2, . . .

where dist(x, ∂D) = inf{‖x − y‖ : y ∈ ∂D}. Then we have the following proposition

which follows from Theorem 1.4.1 and equation (1.4.2) of Hörmander [43].

Lemma 4.5.8. One can find φ ∈ C∞c
(
D7δ

)
with 0 ≤ φ ≤ 1 so that φ = 1 on D5δ and

sup
x∈Rd

|Dαφ(x)| ≤ Cαδ−|α|, (4.5.12)

where Cα depends on α and d.

We now define a function g : D → R so that g = φ̃u where φ̃ is the restriction of φ

to D. We will use the following bounds of g and its derivatives.

Lemma 4.5.9. We have

(i)

sup
x∈D
|g(x)| ≤ CM1δ,

(ii)

∑
|α|≤1

sup
x∈D
|Dαg(x)| ≤ CM1,

(iii)

∑
|α|≤2

sup
x∈D
|Dαg(x)| ≤ C(M1δ

−1 +M2).

Here we recall that Mk =
∑
|α|≤k supx∈D |Dαu(x)|.

Proof. We first observe that g = 0 on D \D7δ. For any x in D ∩D7δ we use Taylor’s

theorem and the fact that u = 0 on ∂D to obtain |u(x)| ≤ CM1δ. The bounds now

follows from the definition of g and (4.5.12).
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We are now ready to prove Theorem 4.2.8 (3).

Proof of Theorem 4.2.8 (3). For our convenience we denote by ‖ · ‖`2(A) the ‖ · ‖h, grid
norm of the projection of any grid-function onto the finite subset A of hZd. More

precisely, for any finite subset A of hZd and function v : hZd → R we define

‖v‖2`2(A) := hd
∑
x∈A

v(x)2. (4.5.13)

We extend u and g on Rd by defining their values to be zero outside D. Also let us

extend uh by defining it to be zero on hZd \Dh. Note that Bh ⊂ D ∩ D5δ. Thus by

definition we have eh = u = g on Bh. Therefore from Lemma 4.5.1 we have

‖Rheh‖2h, grid ≤ 2‖eh − g‖2`2(Rh) + 2‖g‖2`2(Rh)

≤ C‖∇h(eh − g)‖2`2(Rh∪∂Rh) + 2‖g‖2`2(Rh) (4.5.14)

where

∇hv(x) := (∂jv(x))dj=1,

‖∇hv‖2`2(A) :=
d∑
j=1

‖∂jv‖2`2(A),

and ∂Rh := {x ∈ hZd \Rh : disthZd(x, Rh) = 1} with disthZd being the graph distance

in the lattice hZd. We have for x ∈ Rh

Lh(eh − g)(x) = Lhu(x)− f(x)− Lhg(x).

Thus

〈Lh(eh − g), eh − g〉h, grid = 〈Lhu− f, eh − g〉h, grid + 〈−Lhg, eh − g〉h, grid . (4.5.15)

Using summation by parts we obtain

〈Lh(eh − g), eh − g〉h, grid = ‖∇h(eh − g)‖2`2(Rh∪∂Rh) + ρ1(h)‖∆h(eh − g)‖2`2(Rh∪∂Rh).

(4.5.16)

For the first term in equation (4.5.15) we have, using Lemma 4.5.1,

| 〈Lhu− f, eh − g〉h, grid | ≤ ‖Lhu− f‖`2(Rh)‖eh − g‖`2(Rh)
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≤ C‖Lhu− f‖`2(Rh)‖∇h(eh − g)‖`2(Rh∪∂Rh)

≤ C‖Lhu− f‖2`2(Rh) +
1

4
‖∇h(eh − g)‖2`2(Rh∪∂Rh). (4.5.17)

For the second term of equation (4.5.15) we obtain using integration by parts

| 〈−Lhg, eh − g〉h, grid | ≤ | 〈−∆hg, eh − g〉h, grid |+ ρ1(h)|
〈
∆2
hg, eh − g

〉
h, grid

|

≤ | 〈∇hg,∇h(eh − g)〉h, grid |+ ρ1(h)| 〈∆hg,∆h(eh − g)〉h, grid |

≤ ‖∇hg‖2`2(Rh∪∂Rh) +
1

4
‖∇h(eh − g)‖2`2(Rh∪∂Rh)

+ ρ1(h)‖∆hg‖2`2(Rh∪∂Rh) + ρ1(h)‖∆h(eh − g)‖2`2(Rh∪∂Rh).

(4.5.18)

Combining (4.5.15), (4.5.16), (4.5.17) and (4.5.18) we get

‖∇h(eh − g)‖2`2(Rh∪∂Rh) ≤ C‖Lhu− f‖
2
`2(Rh) + C‖∇hg‖2`2(Rh∪∂Rh)

+ Cρ1(h)‖∆hg‖2`2(Rh∪∂Rh).

Substituting this in (4.5.14) we obtain

‖Rheh‖2h, grid ≤ C‖Lhu− f‖2`2(Rh) + C‖∇hg‖2`2(Rh∪∂Rh)

+ Cρ1(h)‖∆hg‖2`2(Rh∪∂Rh) + 2‖g‖2`2(Rh). (4.5.19)

We now bound each of the term in the right hand side of the inequality (4.5.19). Using

Taylor expansion we have for all x ∈ Rh

Lhu(x) = Lu(x) + h−2R4(x) + h−4ρ1(h)R′4(x)

where |R4(x)| ≤ CM4h
4 and |R′4(x)| ≤ CM4h

4. Now

‖Lhu− f‖2`2(Rh) ≤ h
d
∑
x∈Rh

(M2
4h

4 +M2
4ρ1(h)2)

≤ CM2
4 δ

4.
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For the second term of (4.5.19) we have the bound

‖∇hg‖2`2(Rh∪∂Rh) = hd
∑

x∈(Rh∪∂Rh)∩D8δ

h−2
d∑
i=1

(g(x+ hei)− g(x))2

≤ Chd
∑

x∈(Rh∪∂Rh)∩D8δ

M2
1

≤ CM2
1 δ

where in the first inequality we used Taylor expansion and Lemma 4.5.9 and in the

last inequality we used the fact that number of points in (Rh ∪ ∂Rh) ∩D8δ is O(δh−d).

Similarly, for the third term using Taylor expansion, Lemma 4.5.9 and the fact that

number of points in (Rh ∪ ∂Rh) ∩D8δ is O(δh−d) we have

ρ1(h)‖∆hg‖2`2(Rh∪∂Rh) = ρ1(h)hd
∑

x∈(Rh∪∂Rh)∩D8δ

(∆hg(x))2

≤ Cρ1(h)hdδh−d(M1δ
−1 +M2)2

≤ C
(
M2

1

√
ρ1(h) +M2

2ρ1(h)δ
)
.

Finally we obtain

‖g‖2`2(Rh) = hd
∑

x∈Rh∩D7δ

g(x)2

≤ Chd
∑

x∈Rh∩D7δ

M2
1 δ

2

≤ CM2
1 δ

3.

Here in the first inequality we used Lemma 4.5.9 and in the last inequality we used the

fact that number of points in Rh ∩ D7δ is O(δh−d). Combining all these bounds we

obtain from (4.5.19)

‖Rheh‖2h, grid ≤ C
(
M2

4 δ
4 +M2

1 δ +M2
1

√
ρ1(h) +M2

2ρ1(h)δ +M2
1 δ

3
)

≤ C
(
M2

4 δ
4 +M2

2ρ1(h)δ +M2
1 δ
)
.
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4.6 Some supplementary details

In this section we give some details which are supplementary to this Chapter.

4.6.1 Covariance bound for MM in d = 1

In this section we consider d = 1 and the membrane model (ϕx)x∈VN on VN = {1, . . . , N−

1} with zero boundary conditions outside VN . We want to show the following bound:

Lemma 4.6.1. There exists a constant C > 0 such that

EVN [(ϕx − ϕx+1)2] ≤ CN, x ∈ Z .

Proof. Let {Xi}i∈N be a sequence of i.i.d. standard Gaussian random variables. We

define {Yi}i∈Z+ to be the associated random walk starting at 0, that is,

Y0 = 0, Yn =
n∑
i=1

Xi, n ∈ N,

and {Zi}i∈Z+ to be the integrated random walk starting at 0, that is, Z0 = 0 and for

n ∈ N

Zn =

n∑
i=1

Yi.

Then one can show that PVN is the law of the vector (Z1, . . . , ZN−1) conditionally on

ZN = ZN+1 = 0 [20, Proposition 2.2]. So we have that

EVN

[
(ϕi+1 − ϕi)2

]
= E

[
(Zi+1 − Zi)2|ZN = ZN+1 = 0

]
= E

[
Y 2
i+1|ZN = ZN+1 = 0

]
.

Hence it is enough to find a bound for E[Y 2
i |ZN = ZN+1 = 0] for i = 1, . . . , N − 1. The

covariance matrix Σ for (Y1, . . . , YN−1, ZN , ZN+1) can be partitioned as

Σ =

A B

B D


where A is a (N − 1)× (N − 1) matrix with entries

A(i, j) = Cov(Yi, Yj) = min{i, j}.
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B(i, j) and C(i, j) are (N − 1)× 2 and 2× (N − 1) matrices respectively, with C = BT

and

B(i, j) = Cov(Yi, Zj+N−1) =

j+N−1∑
l=1

min{i, l}.

Finally, D is a 2× 2 matrix with

D(i, j) = Cov(Zi+N−1, Zj+N−1).

It easily follows that

D =
1

6

N(N + 1)(2N + 1) N(N + 1)(2N + 4)

N(N + 1)(2N + 4) (N + 1)(N + 2)(2N + 3)

 . (4.6.1)

It is well known that (Y1, . . . , YN−1|ZN = ZN+1 = 0) is a Gaussian vector with mean

zero and covariance matrix given by A−BD−1C. The inverse of D is as follows. Observe

γN := det(D) =
1

36
N(N + 1)2(8N2 + 3N + 6)

and

D−1 =
1

γN

D(2, 2) −D(1, 2)

−D(2, 1) D(1, 1)


Now the diagonal element of BD−1C can be determined:

(BD−1C)(i, i) =
1

γN

( N∑
l=1

min{i, l}

)2

D(2, 2)−

(
N∑
l=1

min{i, l}

)(
N+1∑
l=1

min{i, l}

)
D(1, 2)

−

(
N∑
l=1

min{i, l}

)(
N+1∑
l=1

min{i, l}

)
D(1, 2) +

(
N+1∑
l=1

min{i, l}

)2

D(1, 1)

 .
Plugging in the entries D(i, j) from (4.6.1) and simplifying we get

(BD−1C)(i, i) =
i2(N + 1)

24γN

[
6N2 − 12Ni+ 6i2 + 4N

]
> 0

This shows that for i = 1, 2, . . . , N − 1,

E[Y 2
i |ZN = ZN+1 = 0] = A(i, i)− (BD−1C)(i, i) < i.
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Similar bound can be obtained for E[Y 2
N |ZN = ZN+1 = 0] and this completes the

proof.

4.6.2 Details on the space H−s−∆+∆2(D)

In this section we briefly describe few of the details regarding the space H−s−∆+∆2(D)

and also about the spectral theory of −∆c + ∆2
c . This is an elliptic operator, and the

spectral theory is similar to that of either −∆c or ∆2
c . First recall the standard Sobolev

inner products on H1
0 (D) and H2

0 (D). They are

〈u, v〉1 =

∫
D
∇cu · ∇cv dx, u, v ∈ H1

0 (D)

and

〈u, v〉2 =

∫
D

∆cu∆cv dx, u, v ∈ H2
0 (D)

and they induce norms on H1
0 (D) and H2

0 (D) respectively which are equivalent to the

standard Sobolev norms [39, Corollary 2.29]. We now consider the following inner prod-

uct on H2
0 (D):

〈u, v〉mixed :=

∫
D
∇cu · ∇cv dx+

∫
D

∆cu∆cv dx, u, v ∈ H2
0 (D).

Clearly the norm induced by this inner product is equivalent to the norm ‖ · ‖H2
0

(by

integration by parts). We consider H−2(D) to be the dual of (H2
0 (D), ‖ · ‖mixed).

We now give some results whose proofs are similar to Theorem 2.3.2 and 2.3.3.

(i) There exists a bounded linear isometry

T0 : H−2(D)→ (H2
0 (D), ‖ · ‖mixed)

such that, for all f ∈ H−2(D) and for all v ∈ H2
0 (D),

(f , v) = 〈v, T0f〉mixed .

Moreover, the restriction T on L2(D) of the operator i ◦ T0 : H−2(D)→ L2(D) is

a compact and self-adjoint operator, where i : (H2
0 (D), ‖ · ‖mixed) ↪→ L2(D) is the

inclusion map.
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(ii) There exist v1, v2, . . . in (H2
0 (D), ‖ · ‖mixed) and numbers 0 < µ1 ≤ µ2 ≤ · · · → ∞

such that

• {vj}j∈N is an orthonormal basis for L2(D),

• Tvj = µ−1
j vj ,

• 〈vj , v〉mixed = µj 〈vj , v〉L2 for all v ∈ H2
0 (D),

• {µ−1/2
j vj} is an orthonormal basis for (H2

0 (D), ‖ · ‖mixed).

For each j ∈ N one has vj ∈ C∞(D). Moreover vj is an eigenfunction of −∆c + ∆2
c

with eigenvalue µj . Indeed, we have for all v ∈ H2
0 (D)

〈
(−∆c + ∆2

c)vj , v
〉
L2 = 〈(−∆c)vj , v〉L2 +

〈
(∆2

c)vj , v
〉
L2

GI
= 〈vj , v〉mixed = µj 〈vj , v〉L2

where “GI” stands for Green’s first identity

∫
D
u∆cv dV = −

∫
D
∇cu · ∇cv dV +

∫
∂D

u∇cv · n dS.

Thus vj is an eigenfunction of −∆c + ∆2
c with eigenvalue µj in the weak sense. The

smoothness of vj follows from the fact that −∆c+∆2
c is an elliptic operator with smooth

coefficients and the elliptic regularity theorem [37, Theorem 9.26]. Hence vj is an eigen-

function of −∆c + ∆2
c with eigenvalue µj .

As a consequence of the above, one easily has that

‖f‖2mixed =
∑
j≥1

µj 〈f, vj〉2L2 (4.6.2)

for any f ∈ H2
0 (D).

For any v ∈ C∞c (D) and for any s > 0 we define

‖v‖2s,−∆+∆2 :=
∑
j∈N

µ
s/2
j 〈v, vj〉

2
L2 .

We define Hs−∆+∆2,0(D) to be the Hilbert space completion of C∞c (D) with respect to

the norm ‖ · ‖s,−∆+∆2 . Then
(
Hs−∆+∆2,0(D) , ‖ · ‖s,−∆+∆2

)
is a Hilbert space for all

s > 0. Moreover, we also notice the following.

• Note that for s = 2 we have H2
−∆+∆2,0(D) = (H2

0 (D), ‖ · ‖mixed) by 4.6.2.
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• i : Hs−∆+∆2,0(D) ↪→ L2(D) is a continuous embedding.

For s > 0 we define H−s−∆+∆2(D) = (Hs−∆+∆2,0(D))∗, the dual space of Hs−∆+∆2,0(D).

Then we have

Hs−∆+∆2,0(D) ⊆ L2(D) ⊆ H−s−∆+∆2(D).

One can show using the Riesz representation theorem that for s > 0, and v ∈ L2(D) the

norm of H−s−∆+∆2(D) is given by

‖v‖2−s,−∆+∆2 :=
∑
j∈N

µ
−s/2
j 〈v, vj〉2L2 .

Before we show the definition of the continuum mixed model, we need an analog of

Weyl’s law for the eigenvalues of the operator −∆c + ∆2
c .

Proposition 4.6.2 ([4, Theorem 5.1], [57]). There exists an explicit constant c such

that, as j ↑ +∞,

µj ∼ c−d/4j4/d.

Proof. We want to apply [4, Theorem 5.1] for A := −∆c + ∆2
c . First note that A is

an elliptic operator of order m = 4 defined on D having smooth coefficients. Let us

consider A1 := (−∆c + ∆2
c)|H4(D)∩H2

0 (D). Clearly, A1 : H4(D) ∩ H2
0 (D) → L2(D) and

also C∞c (D) ⊂ D(A1) ⊂ H4(D), where D(A1) is the domain of A1. By elliptic regularity

we have D(Ap1) ⊂ H4p, p = 1, 2, . . . We first show that A1 is self-adjoint. Note that

as C∞c (D) ⊂ D(A1) and C∞c (D) is dense in L2(D), A1 is densely defined. Again, by

Green’s identity we have for all u, v ∈ H4(D) ∩H2
0 (D)

〈
(−∆c + ∆2

c)u, v
〉
L2 = 〈∇cu, ∇cv〉L2 + 〈∆cu, ∆cv〉L2 =

〈
u, (−∆c + ∆2

c)v
〉
L2 .

Thus A1 is symmetric. Also by [39, Corollary 2.21] we observe that image of A1 is

L2(D). The self-adjointness of A1 now follows from [58, Theorem 13.11]. Also we

conclude from [58, Theorem 13.9] that A1 is closed. Now applying [4, Theorem 5.1] we

get the asymptotic.

The result we will prove now shows the well-posedness of the series expansion for

Ψ−∆+∆2

D .
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Proposition 4.6.3. Let (ξj)j∈N be a collection of i.i.d. standard Gaussian random

variables. Set

Ψ−∆+∆2

D :=
∑
j∈N

µ
−1/2
j ξjvj .

Then Ψ−∆+∆2

D ∈ H−s−∆+∆2(D) a.s. for all s > (d− 4)/2.

Proof. Fix s > (d− 4)/2. Clearly vj ∈ L2(D) ⊆ H−s−∆+∆2(D). We need to show that

‖Ψ−∆+∆2

D ‖−s,−∆+∆2 < +∞ almost surely. Now this boils down to showing the finiteness

of the random series

‖Ψ−∆+∆2

D ‖2−s,−∆+∆2 =
∑
j≥1

µ
−s/2
j

∑
k≥1

µ
−1/2
k ukξk , vj

2

=
∑
j≥1

µ
− s

2
−1

j ξ2
j

where the last equality is true since (vj)j≥1 form an orthonormal basis of L2(D). Observe

that the assumptions of Kolmogorov’s two-series theorem are satisfied: indeed using

Proposition 4.6.2 one has

∑
j≥1

E
(
µ
− s

2
−1

j ξ2
j

)
�
∑
j≥1

j−
4
d( s2 +1) < +∞

for s > (d− 4)/2 and

∑
j≥1

Var
(
µ
− s

2
−1

j ξ2
j

)
�
∑
j≥1

j−
4
d

(s+2) < +∞

for s > (d− 8)/4. The result then follows.

4.6.3 Random walk representation of the (∇ + ∆)-model in d = 1 and

estimates

In this section we recall some of the notations about the d = 1 case which were used in

the heuristic explanations in the introduction of this chapter. We take advantage of the

representation of the mixed model given in [14, Subsection 3.3.1] in our setting. To do

that we set βN := 16κN .

Let

γ =

(
1 + βN −

√
1 + 2βN

1 + βN +
√

1 + 2βN

)1/2

(4.6.3)
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and let (εi)i∈Z+ be i.i.d. N (0, σ2) with

σ2 = 4/(1 + βN +
√

1 + 2βN ). (4.6.4)

Define

Yn = γn−1ε1 + . . .+ γ0εn =

n∑
i=1

γn−iεi.

Let the integrated walk be denoted by

Wn =
n∑
i=1

Yi = rn−1ε1 + . . .+ r0εn =
n∑
i=1

rn−iεi

where rn−i =
∑n−i

i=0 γ
i.

We consider the case when κN →∞ and note that then γ = γN → 1 and σ2
N = σ2 →

0. The following representation will give an idea on how the phase transition occurs in

the mixed model:

Wn =
1

1− γ
(ε1 + · · ·+ εn)− 1

1− γ
(γnε1 + γn−1ε2 + · · ·+ γεn).

We recall the following proposition from [14, Proposition 1.10].

Proposition 4.6.4. Let PN (·) be the mixed model with 0 boundary conditions. Then

PN (·) = P ((W1, . . . ,WN−1) ∈ ·|WN = WN+1 = 0)

Let (ε̃i)i∈Z+ be i.i.d. N
(

0, σ2

(1−γ)2

)
. Then Wn can be written as

Wn = Sn − Un

where Sn =
∑n

k=1 ε̃k and Un = γnε̃1 + γn−1ε̃2 + · · · + γε̃n. The conditional integrated

random walk process has a representation, stated in [14, Proposition 3.7]. Let

P
(

(Ŵ1, . . . , ŴN−1) ∈ ·
)

= P ((W1, . . . ,WN−1) ∈ ·|WN = WN+1 = 0)

Then

Ŵk = Wk −WNr1(k)−WN+1r2(k)
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where r1(k) = s1(k)/r(k) and r2(k) = s2(k)/r(k). The definitions of r(k) and si(k) for

i = 1, 2 are as follows:

r(k) = (−1 + γ)(−1 + γN+1)
(
−N + γ(2 +N + γN (−2 + (−1 + γ)N))

)
,

s1(k) = (−k + γ(1− γk + k)) + γ3+2N+k(1 + γk(−1 + (−1 + γ)k))

+ γN−k(γk(−γ + γ3)(1− k +N) + γ2+2k(2 +N − γ(1 +N)) + γ(1 +N − γ(2 +N))),

and

s2(k) = γ(γ1+k + k − γ(1 + k)) + γ2+2N−k(−1 + γk(1 + k − γk))

+ γ1+N−k(γ + γk(−1 + γ2)(k −N)−N + γN + γ1+2k(−1 + (−1 + γ)N)).

Let us consider the unconditional process Wn. Note that

Var(Sn) =
nσ2

(1− γ)2
, Var(Un) =

σ2γ2(1− γ2n)

(1− γ)2(1− γ2)

and

Cov(Sn, Un) =
γσ2(1− γn)

(1− γ)2(1− γ)
.

So from here we have

Var(Wn) =
nσ2

(1− γ)2
− σ2γ2(1− γn)2

(1− γ)3(1 + γ)
− 2σ2γ(1− γN )

(1− γ)3(1 + γ)
. (4.6.5)

From the above expressions one can show that Var(WN−1) ∼ N when κ = κN � N2.

We now derive the variance estimate when κ� N2. For ease of writing, denote

ζ =
1

βN
+

√
1

βN

√
1

βN
+ 2→ 0.

Furthermore γ = 1/(1 + ζ) and σ2 = 2/βN (1 + ζ). Rewriting (4.6.5) in terms of ζ we

have

Var(WN−1) =
2(N − 1)(1 + ζ)2

ζ2βN (1 + ζ)
− 2(1 + ζ)(1− (1 + ζ)−(N−1))2

βNζ3(2 + ζ)

− 4
(1 + ζ)2(1− (1 + ζ)−(N−1))

βNζ3(2 + ζ)

=
2(1 + ζ)

βN (2 + ζ)ζ3

[
(N − 1)(2 + ζ)ζ − (1− (1 + ζ)−(N−1))2
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−2(1 + ζ)(1− (1 + ζ)−(N−1))
]
. (4.6.6)

Using a Taylor series expansion of the fourth order for the second and third summands

in (4.6.6) (since coefficients up to ζ2 get cancelled) we obtain that

Var(WN−1) ≈ (1 + ζ)N(N − 1)2

βN (2 + ζ)
≈ N3

βN
≈ N3

κN
.
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