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Chapter 1

Introduction

1.1 Prologue

The concept of independence in classical probability theory is indispensable. Suppose (Ω,F , P )

be a probability space where Ω is a nonempty set with a σ-algebra F and P is a probability

on Ω. Two (real-valued) random variables X and Y defined on Ω are said to be (classically)

independent if

P (X−1(A) ∩ Y −1(B)) = P (X−1(A))P (Y −1(B)) ,

for Borel subsets A and B of R. In this case, the random variables commute i.e. XY = Y X .

However, one can use the algebra of random variables and their expectations alone to define

the concept of independence. The algebra of random variables is commutative and hence the

natural question arises if there are different notions of independence when one considers non-

commutative algebras, such as the algebra of matrices. Voiculescu introduced the concept of

free independence in operator algebra (which is non-commutative) and it became an integral

part of random matrix theory and its later developments. This more general formalism of

independence at an algebraic level encompasses classical probability, spectral theory, random

matrix theory and quantum mechanics. A more detailed description can be found in [85]. In

unital algebras, it turns out that classical and free independence are the only “universal” notions

of algebraic independence. When unitality of the algebras is not assumed, another universal

notion is well-known, which is Boolean independence (see [20] for details).

1



2 Chapter 1. Introduction

The following thesis contributes to the study of three interconnected fields, namely Boolean

independence, free probability and random matrix theory. The motivation of the studied problems

came from both classical and free probability. A brief outline of the thesis is as follows.

Subexponentiality in classical probability relates to sums of independent and identically

distributed random variables with a heavy tailed distribution. It amounts to the tail of the sum

being asymptotically equivalent to that of the largest summand. It is also known as the principle

of one large jump and has wide applications in sums and maximum of heavy tailed distributions.

The extension of the classical notion of subexponentiality to the setting of free probability was

done in the work of Hazra and Maulik [59]. The extension of the notion of classical and free

subexponentiality to the Boolean probability theory is done in this thesis. It is shown that the

probability distribution functions with regularly varying tails play an important role in Boolean

probability theory alongside classical and free probability theory.

In classical probability, it is well-known that under subexponentiality, the Lévy measure

of a subordinator is tail equivalent to the infinitely divisible distribution. Under the additional

assumption of heavy tails, such results can be extended to the free probability setting and it is

proved that free regular infinitely divisible probability measures (analogue of a subordinator) and

their Lévy measures are tail equivalent. This result turns out to have an application in random

matrix theory and one can determine the tail behaviour of limiting spectral measures of a certain

random matrices. In the search for a general result on asymptotic freeness in random matrices,

shorter proof of asymptotic freeness in a complex Gaussian setting is provided.

The adjacency and Laplacian matrices of inhomogeneous Erdős–Rényi random graph turn out

to be examples of random matrices where non-trivial free multiplicative and additive measures

arise as limiting spectral distribution. The limiting behaviour of the eigenvalue spectrum was

derived in [37] and the fluctuations of the extreme eigenvalues and eigenvectors are investigated

in this thesis. Since the limiting spectral distribution of an adjacency matrix need not always

be semicircle law, the existing methods might not be directly applicable. Hence linear alge-

braic techniques are developed to study the extreme eigenvalues of the adjacency matrix of an

inhomogeneous Erdős–Rényi random graph.

In the following, we describe the backgrounds and frameworks for different problems studied

in this thesis along with the contributions. We start with introducing some notations, followed by

the operator theoretic and analytic set up of non-commutative probability theory.
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1.2 Notations

We attach some preliminary notations for this chapter which is consistent throughout the thesis.

The rest of the notations are introduced in consequent chapters accordingly. The natural numbers,

real numbers and the non-negative real numbers are denoted by N, R and R+ respectively. The

complex plane is marked by C and denote the upper half plane as C+ := {z ∈ C : =z > 0} and

C− := −C+. The set of all probability measures on R and R+ are represented byM andM+

respectively. We write an � bn for two sequence of numbers {an}∞n=1 and {bn}∞n=1 if
∣∣∣anbn ∣∣∣→ 0

as n→∞ and an ∼ bn if
∣∣∣anbn ∣∣∣→ 1 as n→∞.

Let µ ∈ M+ and α ∈ R+. The quantity µ(y,∞) is considered to be the tail of µ for large

values of y. We call µ to be regularly varying probability measure with tail index −α if

lim
y→∞

µ(ty,∞)

µ(y,∞)
= t−α ,

for any real number t > 0. In literature, heavy tailed distributions denotes the class of distributions

which do not have the moment generating function to be finite. Note that regularly varying

probability measures form a large subclass of heavy tailed distributions.

1.3 Non-commutative probability and convolutions

A complex normed algebra (A, ‖ · ‖) is a Banach algebra if the norm ‖ · ‖ induces a complete

metric. A Banach algebra is a C∗-algebra if it possesses an involution a 7→ a∗ that satisfies

‖aa∗‖ = ‖a‖2. A quadruple (A, ‖ · ‖, ∗, φ) is called a C∗-probability space if (A, ‖ · ‖, ∗) is a

C∗-algebra and φ is a linear functional such that φ(1) = 1. Let B(H) be the set of all bounded

linear maps on a Hilbert spaceH . A C∗-algebraA ⊆ B(H) is said to be a von-Neumann algebra

(or W ∗-algebra) if it is closed with respect to the weak operator topology. The pair (A, φ) is

called a W ∗-probability space if A is a W ∗-algebra and φ is a linear functional which can be

written as φ(a) = 〈aζ, ζ〉 for some unit vector ζ ∈ H . Let (A, φ) be a W ∗-probability space

and let T be a self-adjoint operator affiliated with A i.e. there exists a complex number z in the

spectrum of T such that (T − z)−1 ∈ A. Then the law of T is the unique probability measure

µT on R such that

φ(u(T )) =

∫
u(λ)dµT (λ) ,

for any bounded measurable function u on spectrum of T .
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A non-commutative probability space is a pair (A, φ) where A is a unital algebra (i.e. there

exists a unit 1 ∈ A) over C and φ is a linear functional on A such that φ(1) = 1. For example

consider A = MN (C), the set of all N × N matrices with complex entries and φ = 1
N Tr

where Tr denotes the trace of a matrix. The elements of A are called non-commutative random

variables and φ (the counterpart of expectation) is called a state. In non-commutative probability

there are several notions of independence. Tensor, Boolean, free, monotone, anti-monotone are

some of them. It was shown in [83] that the only three universal notions of independence are

tensor, Boolean and free.

Definition 1.3.1. Tensor independence: (Definition 5.1 of [71]) Unital sub-algebrasA1, · · · , AL

of a non-commutative probability space (A, φ) are called tensor independent (the analogous

notion of classical independence) if Ar’s commute and

φ(a1 · · · aL) = φ(a1) · · ·φ(aL)

whenever ai ∈ Ai for all i ∈ {1, 2, . . . , L}.

Definition 1.3.2. Boolean independence: (Definition 4.1 of [54]) Sub-algebras A1, · · · , AL of

(A, φ) (non-unital in general) are said to be Boolean independent (with respect to a unit vector ζ

where φ(a) = 〈ζ, aζ〉) whenever for any n > 1,

φ(a1 · · · an) = φ(a1) · · ·φ(an)

whenever ai ∈ Ak(i) and k(i) 6= k(i+ 1) for all i ∈ {1, 2, . . . , n− 1}.

Definition 1.3.3. Free independence: (Definition 5.3 of [71]) Unital sub-algebras A1, · · · , AL

of (A, φ) are called freely independent if for any n > 1,

φ(a1 · · · an) = 0

whenever φ(ar) = 0 for all 1 6 r 6 n and any two consecutive ai come from different

sub-algebras.

Two random variables a and b from A are said to be tensor
/

Boolean
/

free independent if the

algebras generated by them are tensor
/

Boolean
/

free independent respectively.

Let {(An, φn)}n≥1 be sequence of non-commutative probability spaces. Let I be an index

set and consider for each i ∈ I and for each n ∈ N random variables ai,n ∈ An. The sequence
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(ai,n)i∈I is said to be asymptotically free as n → ∞, whenever for some positive integer k,

i(1), i(2), . . . , i(k) ∈ I with i(1) 6= i(2) 6= · · · 6= i(k) and polynomials pj (j = 1, 2, . . . , k)

such that

lim
n→∞

φn
(
pj
(
ai(j),n

))
= 0

for all j = 1, 2, . . . , k, then the asymptotic alternating moments vanish, i.e.,

lim
n→∞

φn
(
p1

(
ai(1),n

)
p2

(
ai(2),n

)
· · · pk

(
ai(k),n

))
= 0 .

The seminal works of Voiculescu ([92]) connects tensor independence with free independence.

It was shown in the said work that two independent Gaussian Wigner matrices are asymptotically

free. Suppose we have, two self-adjoint elements X and Y in a non-commutative probability

space (A, φ) with laws µX and µY respectively. If X and Y are Boolean (or free independent)

then the law ofX+Y andXY is denoted by µX ]µY (or µX�µY ) and µX ×∪ µY (or µX�µY )

respectively. So for two independent operators, we have got two measures and we can get the

convoluted measures by just adding or multiplying the operators. We also need the reverse

direction, in the sense that for any two probability measures, do there exist a pair of Boolean

independent and a pair of free independent random variables in some W ∗-probability space such

that the convolutions are well defined? The answer is yes.

The notion of freeness was extended to this context by Bercovici and Voiculescu [28].

The self-adjoint operators {Xi : 1 ≤ i ≤ k} affiliated with a von Neumann algebra A are

called freely independent, or simply free, if and only if the algebras generated by the operators,

{f(Xi) : f bounded measurable}1≤i≤k are free. In the free case, let µ1, µ2, · · · , µn be probabil-

ity measures on R. Then by Proposition 5.3.34 of [3], there exists a W ∗-probability space (A, φ)

with φ a normal, faithful, tracial state and, self-adjoint and free operators {Xi}1≤i≤n which are

affiliated with A, having laws {µi}1≤i≤n respectively.

In the Boolean case the construction of the required space is provided in [54]. For a measure

space (Ω,F , P ), call L2(Ω, P )0 to be the orthogonal complement of the constant function, i.e.

L2(Ω, P )0 =

{
g ∈ L2(Ω, P ) :

∫
Ω
gdP = 0

}
.

Let µ1, µ2 ∈ M. Then there exists two self-adjoint operators X and Y , Boolean independent

(with respect to the column vector ζ = (1, 0, 0)′) on the space C ⊕ L2(Ω, µ1)0 ⊕ L2(Ω, µ2)0

having laws µ1 and µ2 respectively.
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This was the operator theoretic way of understanding the convolutions. It turns out that

definitions of convolutions can be given analytically through properties of various transforms.

Classically moment generating functions (whenever exists), characteristic functions determine

measures uniquely. In non-commutative probability, there are several transforms which do the job

of describing a probability measure. Suppose µ ∈M, then its Cauchy transformGµ : C+ → C−,

is defined as

Gµ (z) =

∫ ∞
−∞

1

z − t
dµ (t) , z ∈ C+.

The Cauchy transform characterizes a probability measure uniquely.

We now present the definition of free additive convolution analytically. We use the notations

Γα := {z = x+ iy ∈ C+ : x < αy} and Γα,β := {z ∈ Γα : |z| > β}

for positive real numbers α and β. The region Γα,β is known as a Stolz angle at∞. Define the

Voiculescu transform φµ of a probability measure µ ∈M by

φµ(z) = (1/Gµ)−1 (z)− z

for all z in an appropriate Stolz angle at∞ where the inverse of 1/Gµ exists. Then, for two

probability measures µ, ν both inM, their free additive convolution µ� ν is characterized by

the identity

φµ�ν(z) = φµ(z) + φν(z) ,

in the common domain of definition of φµ and φν (see Corollary 5.5 and Corollary 5.8 of [93]

for details).

The Boolean additive convolution is similarly determined by the transform Kµ (also called

the energy transform) which is defined for any z ∈ C+ by the formula:

Kµ (z) = z − 1

Gµ (z)
.

For two probability measures µ, ν both in M, the additive Boolean convolution µ ] ν is

determined by

Kµ]ν (z) = Kµ (z) +Kν (z) , for z ∈ C+

and µ]ν is again a probability measure. On the other hand the Boolean multiplicative convolution
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is defined for a smaller class of probability measures. Suppose µ and ν both are inM+ and also

assume that the first moment of either µ or ν is finite, then the Boolean multiplicative convolution

µ×∪ ν is governed by the identity

Kµ×∪ν(z) = Kµ(z)Kν(z) ,

for any z ∈ C\R. In this thesis, motivated from the previous works on classical and free convolu-

tions of probability measures, we have studied the behaviour of regularly varying measures under

the framework of these two important Boolean convolutions. Before coming to the contributions

in this topic, we introduce some more definitions that are needed to describe our results.

A probability measure µ ∈ M+, with µ (y,∞) > 0 for all y ≥ 0, is said to be Boolean-

subexponential if for all n ∈ N,

(µ ] · · · ] µ)︸ ︷︷ ︸
n times

(y,∞) ∼ nµ (y,∞) as y →∞ .

In the above equation, if we replace Boolean convolution by classical or free convolution then we

get the definition of classical or free subexponentiality respectively.

A probability measure µ ∈M is said to be free infinitely divisible (or �-infinitely divisible)

if for every n ≥ 1 there exists measures µn such that

(µn � · · ·� µn)︸ ︷︷ ︸
n times

d
= µ .

The above is equivalent to say that φµ(z) = nφµn(z). We can define the probability measures µt

(see Theorem 2.5 of [17]) indexed by real numbers t > 1 by the formula

φµ(z) = tφµt(z) .

The setM� of free infinitely divisible probability measures can be characterized by the property

that: µ ∈M� if and only if one can define the�-convolution powers µ�t, for any t ∈ (0,∞). In

the same spirit as above, one can consider the parallel concept of infinite divisibility with respect

to Boolean additive convolution. But here the situation turns out to be much simpler. Indeed, we

have that every µ ∈M is infinitely divisible with respect to ] (i.e., we can sayM =M]). The

bijections between Boolean infinitely divisible distribution, free infinitely divisible and classical

ones were first studied by Bercovici et al. [29]. This observation is later generalized in [18]. They
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introduced a class of functions Bt :M→M for all t ≥ 0, given by

Bt(µ) = (µ�(1+t))]
1

1+t µ ∈M .

It can be shown that if µ ∈ M+ then Bt(µ) ∈ M+ too. An important observation is that for

t = 1, the map B1 coincides with the Bercovici-Pata bijection betweenM andM�. Moreover,

it turns out that (Bt(µ))t>1 is �-infinitely divisible for every probability measure µ. For integer

indices the map essentially tells us that

Bn(µ)](1+n) := Bn(µ) ] Bn(µ) ] · · · ] Bn(µ)︸ ︷︷ ︸
(1+n times)

= µ� µ� · · ·� µ︸ ︷︷ ︸
(1+n times)

=: µ�(1+n).

The relationship with free Brownian motion and complex Burgers equation makes it an extremely

important object of study. The map is further studied in [6], [7] and [88]. It is briefly sketched in

the following, about the outcomes that we have been able to explore.

1.3.1 Contributions

Suppose µ and ν are two probability measures supported on [0,∞) with regularly varying tails

of indices −α and −β respectively (α and β non-negative). Then what can be said about the tail

behaviour of µ ] ν and µ×∪ ν, the additive and multiplicative Boolean convolutions of µ and ν

respectively? The chapter 2 of the thesis provides an answer to this question and is based on the

work [40].

In the case of classical additive convolution, it is well known that if µ is regularly varying of

index −α, then µ is (classical) subexponential that is µ∗n(x,∞) ∼ nµ(x,∞) as x→∞ for all

N > 1. The case of free additive convolution was studied by Hazra and Maulik [59] and it is

related to the free extreme value theory of [11]. We extend this result to the Boolean additive

convolution in Theorem 2.2.2.

In an influential work of Breiman ([32]), he showed the following: If µ and ν are pos-

itively supported measures, µ is regularly varying of index −α, α > 0 and ν is such that∫∞
0 yα+εdν(y) <∞ (for some ε > 0) then

µ~ ν(x,∞) ∼
∫ ∞

0
yαdν(y)µ(x,∞) as x→∞ , (1.3.1)



1.4. Free infinitely divisible distributions and random matrix limits 9

where µ~ ν denotes the classical multiplicative convolution. A similar result can be obtained

when ν is a regularly varying measure (see [64]). In case of Boolean convolution, the behaviour

turns out to be much similar for multiplicative convolution and in that case again the heavier

tail wins. We derive the explicit description in Theorem 2.2.7. The constants appearing though

change from the classical case.

As an application for the above results we determine the behaviour of the Belinschi-Nica map

which is a one parameter family of maps {Bt}t>0 on the set of probability measures. We study

the case when µ is a heavy tail distribution and show that µ is regularly varying of index −α if

and only if Bt(µ) is regularly varying −α for t > 0. In particular, it shows that the support of

Bt(µ) will be unbounded whenever µ has such regularly varying tails.

The Boolean extreme value theory has recently been explored in [91] in parallel to the study

of free extreme value theory ([19]). We show that in the subexponential case, the tail behaviour of

Boolean, free and classical extremes are asymptotically equivalent. It is known that the classical

subexponential random variables satisfy the principle of one large jump, that is, if {Xi} are i.i.d.

subexponential random variables, then for all N ≥ 1,

P (

n∑
i=1

Xi > x) ∼ nP (X1 > x) ∼ P ( max
1≤i≤n

Xi > x) as x→∞ .

The free max convolution, denoted by ∨ , was introduced in [19] and the analogous result for the

free one large jump principle was obtained in [59]. We have shown that Boolean subexponential

distributions also follow the principle of one large jump and combining all the results of the

classical, free and Boolean instances, it can be further concluded that all the tails of classical, free

and Boolean max convolutions are asymptotically equivalent for regularly varying distributions.

In proving these results we exploit the relationship of regular variation with different trans-

forms and their Laurent series expansions. Recently our results have been revisited and extended

in [87].

1.4 Free infinitely divisible distributions and random matrix limits

It is well known that the classical infinitely divisible distributions have a Lévy-Khintchine

representation given in terms of the cumulant generating function (logarithm of the characteristic

function). A similar criteria for probability measure µ on R to be �-infinitely divisible (i.e. free
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infinitely divisible) is the existence of a finite measure σ on R and a real constant γ, such that

φµ (z) = γ +

∫
R

1 + zt

z − t
dσ (t) , z ∈ C+.

One of the other important transforms in free probability theory, is the cumulant transform defined

by Cµ(z) = zφµ(1/z). With an exact analogy to the classical infinitely divisible distribution,

one has that µ on R is �-infinitely divisible if and only if the free cumulant transform has the

following Lévy-Khintchine representation:

C�µ (z) = ηz + az2 +

∫
R

( 1

1− zt
− 1− tz1[−1,1](t)

)
dν(t), z ∈ C−, (1.4.1)

where η ∈ R, a ≥ 0 and ν is called the Lévy measure on R. These two representations are linked

to each other by the relations ( [16, Proposition 4.6]):

dσ(t) = aδ0(dt) +
t2

1 + t2
dν(t),

γ = η −
∫
R
t

(
1[−1,1](t)−

1

1 + t2

)
dν(t).

The free characteristic triplet (η, a, ν) of a probability measure µ is unique.

For a free infinitely divisible probability measure µ on R where the Lévy measure ν satisfies∫
R min (1, |t|) dν (t) <∞ and a = 0, the Lévy-Khintchine representation (1.4.1) reduces to

C�µ (z) = η′z +

∫
R

(
1

1− zt
− 1

)
dν (t) , z ∈ C−, (1.4.2)

where η′ ∈ R. The measure µ is called a free regular infinitely divisible distribution (or regular

�-infinitely divisible measure) if

η′ ≥ 0 and ν((−∞, 0]) = 0 .

The most typical example is compound free Poisson distributions. If the drift term η′ is zero and

the Lévy measure ν is λρ for some constant λ > 0 and a probability measure ρ on R, then we

call µ a compound free Poisson distribution with rate λ and jump distribution ρ. To clarify these

parameters, one denotes µ = π (λ, ρ). Interestingly, compound free Poisson distributions can be

expressed in terms of free multiplicative convolutions. So, we first describe the later analytically

followed by an overview of random matrix theory in connection to our study and explain the

relation at the end of this section.
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We have already seen that free additive convolution can be defined analytically with the help

of Voiculescu transform. Similarly, the free multiplicative convolution can defined through the

S-transform. For µ ∈M+, define

Ψµ(z) =

∫ ∞
0

zt

1− zt
dµ(t),

for z ∈ C \ R+. The S-transform Sµ : Ψµ(iC+)→ iC+ of µ is formulated as

Sµ(z) =
1 + z

z
Ψ−1
µ (z),

where the function Ψµ is univalent in the left half plane iC+ and therefore invertible on its image.

Now suppose µ, ν both inM+. Then their free multiplicative convolution is derived via the

identity

Sµ�ν(z) = Sµ(z)Sν(z).

The free multiplicative convolution of two measures, one fromM and symmetric and, the other

fromM+, was later defined by Arizmendi and Pérez-Abreu. In Theorem 6 of [10], it was shown

that Ψµ univalent on the domains

D = {z ∈ C+ : |<z| < =z} and

D̃ = {z ∈ C− : |<z| < |=z|}.

Consequently, Ψµ becomes invertible on both Ψµ(D) and Ψµ(D̃). Define

S̃µ(z) =
1 + z

z
Ψ−1
µ (z)

for any z ∈ Ψµ(D̃). Now if ν ∈M+ and µ is symmetric, then the free multiplicative convolution

µ� ν is characterized by

Sµ�ν(z) = Sµ(z)Sν(z) and S̃µ�ν(z) = S̃µ(z)Sν(z)

for all z in the common domain containing the interval (0, ε) for sufficiently small ε > 0 (see

Theorem 7 in [10]).

The convoluted measures arise naturally as limiting spectral distributions of sums and products

of asymptotically free random matrices. There are examples where free additive convoluted
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measures and compound free Poisson distributions arise naturally as random matrix limits. Let

λ1, λ2, · · · , λN be the eigenvalues of an N × N random matrix AN . The empirical spectral

distribution (in short ESD) is the random measure which puts mass 1
N to all the N many

eigenvalues (counted with multiplicity), i.e. for any Borel set B ⊆ C,

ESD(AN )(B) =
1

N

N∑
i=1

δλi(B).

The randomness due to the random eigenvalues is still present in ESD. The expected empirical

spectral distribution (in short EESD) is the non random probability measure defined by taking

expectation of ESD, formulated as:

EESD(AN )(B) =
1

N

N∑
i=1

P (λi ∈ B) .

If ESD(AN ) or EESD(AN ) converge to some non random measure σ in distribution, then σ is

called the Limiting spectral distribution (in short LSD) of AN . The Wigner matrix is a random

matrix A = (Ai,j)i,j≤N where

(i) {Ai,j , i < j} are independent, identically distributed (real or complex valued),

(ii) {Ai,i, i ≤ N} are independent, identically distributed real random variables (possibly

from a different distribution),

(iii) Ai,j = Āj,i for all i and j,

(iv) E[A1,2] = 0, E[|A1,2|2] = 1, E[A1,1] = 0 and E[A2
1,1] <∞.

Let {AN}∞N=1 be a sequence of Wigner matrices, and for each N denote XN = 1√
N
AN . Then

ESD(XN ) converges weakly, in probability to the standard semicircle distribution (w),

w(x) =
1

2π

√
4− x2 1(|x|≤2) .

The convergence in probability to the semicircle distribution can be updated to almost sure

convergence. Suppose DN be a sequence of deterministic matrices such that ESD(DN ) → ν

weakly in probability. Then under some conditions on the distribution of XN and DN , the

sequence of matrices XN and DN can be shown to be asymptotically free and hence ESD(XN +

DN )→ w � ν weakly in probability.
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The Lévy distance between two distribution functions F1 and F2 is defined by

d(F1, F2) = inf{ε > 0 : F1(x− ε)− ε ≤ F2(x) ≤ F1(x+ ε) + ε, for all x ∈ R}.

Let A be a random matrix with empirical spectral distribution ESD(A). The Stieltjes transform

of A (or of ESD(A)) is given by

S(z) =

∫
1

x− z
d (ESD(A)) (x) =

1

N
Tr(A− zIN )−1

for z ∈ C+ and IN is the identity matrix of order N . It is well-known that for distributions

{Fn}n≥1, F with Stieltjes transforms {Sn}n≥1 and S respectively, limn→∞ d(Fn, F ) = 0 if and

only if for all z ∈ C+, Sn(z) → S(z). Let Sµ and Gµ denotes the Stieltjes transform and the

Cauchy transform of a probability measure µ respectively, then it follows from the definition that

Sµ(z) = −Gµ(z). Let N and p be two positive integers and consider the N × p matrix

AN,p = (Xi,j)1≤i≤N,1≤j≤p ,

where Xi,j’s are real valued random variables. Define the symmetric p× p matrix BN by

BN =
1

N
A′N,pAN,p.

The matrix BN usually recognized as the sample covariance matrix associated with the process

(Xi,j)i,j∈Z. It is also known as Gram matrix. Now consider N independent copies (Xi,j)j∈Z, i ∈

{1, 2, . . . , N} of a stationary sequence (Xi)i∈Z of real valued square integrable random variables

with mean zero and satisfying some regularity conditions (see [70]). Assume p/N → c ∈ (0,∞).

Then there exists a non random probability measure µ such that ESD(BN ) converges almost

surely to µ under the Lévy distance. Also the Stieltjes transform Sµ of µ is uniquely determined

by the equation

z = − 1

Ŝµ
+

c

2π

∫ π

−π

dλ

Ŝµ + (2πf(λ))−1
, z ∈ C+,

where Ŝµ := cSµ− (1− c)/z and f(·) is the spectral density of (Xk)k∈Z. If we assume Xi,j’s are

independent and identically distributed with spectral density f(λ) =
E(X 2

1,1)
2π , then the Stieltjes
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transform represents the well known Marchenko-Pastur law (mc) having density,

mc(x) =
1

2πcσ2x

√(
σ2(1−

√
c)2 − x

) (
x− σ2(1 +

√
c)2
)
1(σ2(1−

√
c)2≤x≤(1+

√
c)2σ2)

and a point mass (1 − 1
c ) at the origin if c > 1. In general, the limiting distribution µ can

be described as the free multiplicative convolution of m1 and 2πf(U), where U is uniformly

distributed on [−π, π]. An important observation is that µ is compactly supported if and only if

f has compact support.

We are now in a position to describe, how the compound free Poisson distributions can

be written in terms of free multiplicative convolution. The standard Marchenko-Pastur law

m(= m1) is a compound free Poisson distribution with rate 1 and jump distribution δ1 whereas

the distribution π (1, ρ) coincides with m � ρ, the free multiplicative convolution of m and ρ.

The study of these distributions is itself very interesting in free probability and random matrix

theory, because the compound free Poisson distribution m� ρ occurs not only as an LSD in the

above model but also as LSD of a certain product of random matrices. It is an important question

to ask whether the tail behaviour of the limit law can be understood by knowing the tail behaviour

of any of its components.

Measures of the form w � ρ are also of huge interests in random matrix theory alongside

the compound free Poisson distributions of the form m� ρ. These two types of measures are

connected by the following relation. Let ν2 ∈M be the probability measure induced by the map

t → t2 for a symmetric probability measure ν ∈ M. Then it can be shown that w2 = m (see

Remark 3.6.2 for proof of this fact). Therefore, using Lemma 8 of [10], it can be shown that for

any ρ ∈M

(w � ρ)2 = m� ρ� ρ.

From the above observation, it is not hard to see that the tail behaviour of w � ρ can be predicted

form the study of the tail of m� ρ� ρ.

1.4.1 Contributions

In classical probability theory, an infinitely divisible probability measure µ also enjoys a Lévy-

Khintchine representation in terms of its Lévy measure ν. In [47], it was shown that for a

positively supported classically infinitely divisible probability measure (a subordinator) µ, the

tails of µ and its Lévy measure ν are asymptotically equivalent if and only if any one of µ
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or ν is subexponential. In analogy to the classical case, it is natural to pose whether free

subexponentiality characterizes the tail equivalence of a free infinitely divisible probability

measure and its free Lévy measure. Unfortunately, the result cannot be extended to the bigger

class of free infinitely divisible probability measures. Since according to [9], the correct analogue

of the positively supported classically infinitely divisible probability measures are the free

regular probability measures, we provide a partial answer in Corollary 3.3.4 by showing the tail

equivalence of a free regular probability measure and its free Lévy measure in the presence of

regular variation. While in Section 3.5, the same is discussed when the measures are Boolean

infinitely divisible. Note that regularly varying measures are the most important subclass of

classical, free and Boolean subexponential distributions. This chapter is based on [38].

Besides, the connection of these results with the classical case is not a mere coincidence.

From the famous result of Bercovici and Pata ([29]), it is known that classical and free infinitely

divisible laws are in a one-to-one correspondence. It is shown in Corollary 3.4.7 that in the

regularly varying set-up, the classical infinitely divisible law and its image under the Bercovici-

Pata bijection are tail equivalent. The free multiplicative convolution of a measure with the

semicircle law also appears naturally as limits of many random matrix models. It is shown

in Corollary 3.4.4 that the tail behaviour turns out to be different from the one involving the

multiplicative convolution with Marchenko-Pastur law.

1.5 Random matrices originating from random graphs

A most natural model for real life phenomena like the internet, spreading of a disease, col-

laboration and citations in research, social relations, and other complex networks, is random

graphs. Random graphs can be understood by studying their adjacency or Laplacian matrices.

Some information about the graphs is contained in the spectrum of those random matrices. The

spectrum of the adjacency matrix is associated with the chromatic number and the independence

number of the graph. The spectrum of Laplacian matrices is connected with the mixing time of

random walks, the neighbourhood expansion, the Cheeger constant, the isoperimetric inequalities

etc. One of the interesting random graphs studied in recent days is the configuration model. The

motivation of this model can be understood from the following example. Suppose in Facebook

wall posts the vertices of the graph are Facebook users and each edge between the user i and the

user j represents one common post that is tagged to both of the users i and j. This gives rise to

an undirected random diagram. Since the users can have more than one common tagged posts on



16 Chapter 1. Introduction

their wall, the network allows multiple edges between pairs of vertices. Also, the graph may have

some self-loops because of the possibility of self tagging.

Let [N ] = {1, 2, . . . , N} be the set of vertices associated with a degree sequence {di,N}Ni=1.

Put di,N many half edges to each vertex i ∈ [N ] and draw an uniform matching of all the half

edges. In this way we can get a random multigraph GN = ([N ], EN ) (called the Configuration

model) where EN is the random edge set obtained by the uniform adding of the half edges. The

adjacency matrix AGN of the graph GN has the (i, j)-th entry as the number of edges between

the vertices i and j. If di,N = dN for all vertices i, that is, it is the random dN -regular graph,

with 1� dN � N , then the ESD of 1√
dN
AGN converges weakly in probability to the standard

semicircle law (w) defined above. Further, if we assume that the cardinality of the edge set, given

by |EN | = 1
2

N∑
i=1

di,N satisfies

N � |EN | � N2 as N →∞,

and the normalized degrees d̂i,N =
di,N
ωN

satisfy that

{d̂UN ,N} is uniformly integrable with E
[(
d̂UN ,N

)2
]
�
√

N

ωN
,

where ωN = (2 + o(1)) |EN |N and UN is uniformly chosen from [N ], then in [45], it was shown

that the ESD of 1√
ωN
AGN converges weakly in probability to w � µ, where ESD of the matrix

diag
(
d̂1,N , d̂2,N , . . . , d̂N,N

)
converges weakly to the measure µ. Due to the obstacle of non

negligible dependence structure between the edges in the configuration model, Dembo and

Lubetzky [45] studied the spectrum of GN via sequences of approximations by removing some

dependencies at each level of estimation, until finally arriving to a more tractable inhomogeneous

Erdős-Rényi random graph.

From the above discussion it is evident that Erdős-Rényi random graphs are one of the most

important random graph models and turns out to be very effective in the process of understanding

the configuration model. Recalling that [N ] = {1, 2, . . . , N} is the vertex set, put an edge

between vertices i and j independently with probability pNi,j for all i ≥ j. The resulting undirected

graph is called an inhomogeneous Erdős-Rényi random graph. The construction of the graph

indicates that there may be self-loops but there is no multiple edge. The term inhomogeneous is
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for the variation of the connection probabilities across pairs of edges. One can consider,

pNi,j = εNf

(
i

N
,
j

N

)
, (1.5.1)

where εN ≥ 0 and f is some function from [0, 1]× [0, 1] to R+. This is a generalization of the

model

pNi,j =
1

N
f

(
i

N
,
j

N

)
,

introduced in [31]. When f ≡ 1, is a constant function, the inhomogeneity is absent (i.e.

pNi,j = εN ) and the graph is called a (homogeneous) Erdős-Rényi random graph.

We may consider the adjacency matrix, AN of an inhomogeneous Erdős-Rényi random graph.

The study of the spectrum of AN can be divided into two parts depending on the asymptotic

behaviour of the average degree of the graph, namely the sparse regime and the non-sparse

regime. If the expected degree or the average degree goes to some c ∈ [0,∞) then that is called

the sparse regime, on the other hand, c =∞ is called the non-sparse regime.

This thesis focuses on the eigenvalues outside the bulk of the ESD of adjacency matrix in

the non sparse regime which is equivalent to say that NεN →∞ as N →∞. For the limiting

spectral distribution,
√
NεN turns out to be the correct scaling in the non sparse regime. It was

shown in Theorem 1.1 of [37] that the ESD of (NεN )−1/2AN converges weakly in probability

to a non random, compactly supported probability measure. When f ≡ 1, the limiting spectral

distribution is known to be the semicircle law. If f(x, y) = r(x)r(y), for some bounded Riemann

integrable function r, then the LSD is of the form

w � ρ ,

where ρ is the law of r(U) and U is an uniform random variable on [0, 1] and recall that w is

the semicircle law. For inhomogeneous Erdős–Rényi random graphs the convergence of the

empirical spectral distribution of both adjacency and Laplacian matrices were described in [37].

To have a better understanding, let us see some simulations.

First, we choose f(x, y) = 2
√
xy i.e. f is a product of two same unit norm functions

r(t) =
√

2t in L2[0, 1] and fix the values of N and εN to be 1000 and 0.45 respectively. Then, in

the Figure 1.1 the eigenvalues of the adjacency matrix are plotted under the scaling
√
NεN and

hence it is clear that the ESD converges to a compactly supported distribution, which is known to

be w � µr where µr denotes the law of r(U) with U being an uniform random variable on [0, 1].
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One interesting aspect in Figure 1.1 is the one isolated eigenvalue outside the bulk (at a point

close to
√
NεN = 21.21) of the eigenvalues of (NεN )−1/2AN .

FIGURE 1.1: LSD is w � µr with µr being the law of r(U)

We consider the largest eigenvalue in the above picture. When a properly scaled and centered

(determined by a result in Chapter 4) rightmost eigenvalue is iterated a large number of times

(40000 times, to be specific), a Gaussian curve is obtained, as shown in Figure 1.2.

FIGURE 1.2: Gaussian nature of largest eigenvalue

Consider now another example. Let

f(x, y) = 1

(
x <

1

2

)
1

(
y <

1

2

)
+ 21

(
x >

1

2

)
1

(
y >

1

2

)
.
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The inhomogeneous Erdős-Rényi graph corresponding to this function represents a stochastic

block model with two communities. We again plot the histogram of eigenvalues of the adjacency

matrix in Figure 1.3 In this scenario, the following picture shows that, there is exactly two

eigenvalues outside the bulk of the ESD of 1√
NεN

AN (to be more precise, close to the points
1
2

√
NεN = 7.91 and

√
NεN = 15.81). The simulation is performed when N is chosen to be

1000 and εN = 0.25.

FIGURE 1.3: Two eigenvalues outside of the bulk

In the Chapters 4 and 5 of this thesis we explore the behaviour of the largest eigenvalue. We

show that the eigenvalues outside the bulk of the spectrum have a Gaussian fluctuation.

The study of limiting behaviour of the largest eigenvalue, second largest eigenvalue, corre-

sponding eigenvectors, spectral distribution of symmetric random matrices have a broad literature.

The adjacency and Laplacian matrices of several random graphs are of interest to the physics and

mathematics communities. For details see [44], [43] and [42].

The investigation of the largest eigenvalue of symmetric random matrices started with the

pioneering works of Füredi and Komlós. In [55], they showed that after suitable scaling and

centering the largest eigenvalue of a symmetric random matrix with independent entries having

a strictly positive mean, converges in distribution to the Gaussian random variable under some

moment assumptions on the matrix entries. A similar type of result for random (non-symmetric)

matrices with independent identically distributed entries is obtained in [81]. The asymptotic

behaviour of the largest eigenvalue of the adjacency matrix of sparse random graphs is studied
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in [65] and [50]. In [1], the authors showed that the absolute values of all the eigenvalues of a

symmetric random matrix are concentrated around their respective medians with high probability.

In case of homogeneous Erdős-Rényi random graphs, one of eigenvalues of the adjacency

matrix in the scaling 1√
NεN

escapes to infinity as N → ∞ at a rate of
√
NεN (similar to the

case of f(x, y) = 2
√
xy). That particular eigenvalue is the largest eigenvalue (λ1(AN )) in the

homogeneous case. In [49], it was shown that

(εN (1− εN ))−1/2 (λ1(AN )− E[λ1(AN )])⇒ N(0, 2).

The above result was shown under the assumption that

(logN)ξ � NεN

for some ξ > 8. In more recent works, Benaych-Georges et al. [25] and a companion article

[24], have pointed out that for the Erdős–Rényi graph G(N, d/N), the smallest and second

largest eigenvalues of the adjacency matrix converge to the edges of the support of the asymptotic

eigenvalue distribution in the regime d� logN while in the complementary regime d� logN ,

those extreme eigenvalues are at a first order distance from the nonzero eigenvalues of the

expectation matrix. The Tracy-Widom limit for the rescaled extremal eigenvalues of sparse

random matrices (in particular, for adjacency matrices of Erdős–Rényi random graphs) was

exhibited in [61] and [62] while the same in the non sparse regime is dealt in [48].

1.5.1 Contributions

We are interested in the outlier eigenvalues of the adjacency matrix of an inhomogeneous Erdős–

Rényi random graph having edge probabilities as in (1.5.1). Motivated by the so-called stochastic

block model, the function f considered here has the following form:

f(x, y) =

k∑
i=1

θiri(x)ri(y) ,

where r1, . . . , rk are orthonormal in L2[0, 1], and θ1, . . . , θk > 0. The above set-up allows to

have k many eigenvalues outside the bulk of the spectrum. We investigate the behaviour of the

largest eigenvalue and corresponding eigenvector in Chapters 4 and 5 under the above set up.
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At first we consider the case when f(x, y) = r(x)r(y), i.e. f is a product of two bounded,

Riemann integrable functions. This particular case is called the rank one case and is discussed

in Chapter 4. The proof techniques used in the homogeneous case by Erdős et al. [49], can be

extended to this case. It is shown in Theorem 4.2.4, that the largest eigenvalue of the adjacency

matrix of an inhomogeneous Erdős–Rényi random graph after suitable scaling and centering

converges in distribution to the normal distribution with zero mean and some finite variance

under the assumption that (logN)ξ � NεN for some ξ > 8. In Theorem 4.2.5, it is shown that

the normalized eigenvector corresponding to the largest eigenvalue is asymptotically parallel

to a deterministic vector. One of the important examples of this model is the Chung-Lu graph

(introduced by Chung and Lu [41]) and the results, for the same, are discussed in Section 4.5.

In Chapter 5, we consider the case,

f(x, y) =

k∑
i=1

θiri(x)ri(y) , (x, y) ∈ [0, 1]× [0, 1],

where θ1 ≥ θ2 ≥ . . . ≥ θk > 0 are some constants, the set {r1, . . . , rk} is an orthonormal set

in L2[0, 1], and each ri is a bounded Riemann integrable function on [0, 1]. An important class

of examples in this frame is the stochastic block model. In this case the ideas behind the proofs

are more complicated and the methods developed in [49] do not extend directly. Theorem 5.2.3

describes the joint convergence of the isolated eigenvalues, which will be defined later, among

the top k eigenvalues of the adjacency matrix. We show under the assumption that eigenvalues

are distinct, the outliers follow asymptotically Gaussian vector. Let

ei =


N−1/2ri(1/N)

N−1/2ri(2/N)
...

N−1/2ri(1)

 , 1 ≤ i ≤ k . (1.5.2)

Then the behaviour of the eigenvectors corresponding to the outlier eigenvalues are also interest-

ing. It is shown that the asymptotic behaviour of the normalized eigenvector (vi) corresponding

to the i-th largest eigenvalue (1 ≤ i ≤ k) of AN is asymptotically aligned with ei and it is asymp-

totically orthogonal to ej for j 6= i. The fluctuations of e′jvi are studied under the additional

condition N−2/3 � εN � 1. It is shown in Theorem 5.2.8 that e′jvi converges to a normal

distribution after a proper scaling and centering. An article [39] is based on the results of this

chapter.
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Chapter 2

Boolean convolutions and regular

variation

2.1 Introduction

The main aim of this chapter is to study the Boolean convolution and its properties when the

measures belong to the class of heavy tailed random variables.

The additive Boolean convolution of two probability measures µ and ν on the real line

(denoted by µ ] ν) was introduced in [84] and the multiplicative Boolean convolution of two

probability measures µ and ν (denoted by µ×∪ ν) was introduced in [26] where µ and ν are both

defined on the non-negative part of the real line. Later Franz introduced the concept of Boolean

independence and defined Boolean convolutions using operator theory in [54], which is similar

to the approach of Bercovici and Voiculescu for the free convolutions in [28]. The definitions of

Boolean convolutions using Boolean independence also agree with the former definitions.

In this chapter we are interested in a certain class of measures having power law tail behaviour.

A measure is called regularly varying of index −α, for some α > 0, if µ(x,∞) ∼ x−αL(x)

for some slowly varying function L(x) (see explicit definition in next section). Such measures

form a large class containing important distributions like Pareto and Fréchet and classical stable

laws. The class of distribution functions with regularly varying tail index −α, α ≥ 0 delivers

significant applications in finance, insurance, weather, Internet traffic modelling and many other

fields. In this chapter, we want to realise what happens with the Boolean convolutions of the

23
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probability measures which have regularly varying tails. In particular we want to address the

following question:

Question 2.1.1. Suppose µ and ν are two probability measures supported on [0,∞) with regu-

larly varying tails of indices −α and −β respectively (α and β non-negative). Then what can be

said about the tail behaviour of µ ] ν and µ×∪ ν?

When one considers the case of classical additive convolution, the answer is well known and

the principle of one large jump gives that the heavier tail dominates. In fact it is well known,

if µ is regularly varying of index −α, then µ is (classical) subexponential in the sense that

µ∗n(x,∞) ∼ nµ(x,∞) as x→∞ for all n ≥ 1. For a contemporary review on subexponential

distributions and their applications we refer to [53, 56, 64]. The case of free additive convolution

was studied by Hazra and Maulik [59] and it is related to the free extreme value theory of Arous

and Voiculescu [11]. One of the main aim of this chapter is to extend this result to the Boolean

additive convolution.

The case of multiplicative convolution turns out to be more interesting and challenging. In

classical independence, the role of Breiman’s theorem is very crucial ([32]). A similar result

can be obtained when ν is a regularly varying measure (see [64]). The result in the case of

free multiplicative is still unknown to the best of our knowledge. We provide an example in

Subsection 2.2.3 to show that the behaviour is much different from the classical case. In the

Boolean convolution, the behaviour turns out to be much similar for multiplicative convolution

and in that case again the heavier tail wins. We derive the explicit description in Theorem 2.2.7.

The constants appearing though change from the classical case.

Boolean independence and convolutions are not studied as extensively as free independence.

The Boolean convolutions of probability measures are also used in studying quantum stochastic

calculus, see [21]. The Boolean Brownian motion and Poisson processes are investigated using

Boolean convolutions to study the Fock space in [78], [57]. We can also observe the connection

between Appell polynomials and Boolean theory in [4]. The Boolean stable laws and their

relationship with free and classical stable laws were studied in recent works (see [5–8]). In a more

recent study of classification of easy quantum groups, it was shown that the non-commutative

analogue of de Finetti’s theorem (quantum exchangeability) holds true and the notions of free

independence, classical independence and half independence arise in this context (see [14]). The

relation between Boolean independence and de Finetti’s theorem was recently studied by Liu
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[68]. Recently it has been established that in some random matrices, the asymptotic Boolean

independence can arise ([58, 67, 69]).

As an application for the above results we determine the behaviour of the Belinschi-Nica

map which is a one parameter family of maps {Bt}t≥0 on set of probability measures and was

introduced by Belinschi and Nica [18] (see precise definition in next section). It is well known

that classical infinitely divisible distributions are in bijection with the free infinitely divisible

distributions. Here the map B1 turns out to be a bijection from Boolean to free infinitely divisible

distributions. In fact it turns out that (Bt(µ))t≥1 is �-infinitely divisible for every probability

measure µ. The relationship with free Brownian motion and complex Burgers equation makes it

an extremely important object of study. The map was further studied in [6], [7]. In this chapter

we study the case when µ is a heavy tail distribution and show that µ is regularly varying of index

−α if and only if Bt(µ) is regularly varying −α for t ≥ 0. In particular, it shows that the support

of Bt(µ) will be unbounded whenever µ has such regularly varying tails. The Boolean extreme

value theory was recently explored in [91] in parallel to the study of free extreme value theory

([19]). We show that in the subexponential case, the tail behaviour of Boolean, free and classical

extremes are asymptotically equivalent. It is known that the classical subexponential random

variables satisfy the principle of one large jump, that is, if {Xi} are i.i.d. subexponential random

variables, then for all n ≥ 1,

P

(
n∑
i=1

Xi > x

)
∼ nP (X1 > x) ∼ P

(
max

1≤i≤n
Xi > x

)
as x→∞.

The free max convolution, denoted by ∨ , was introduced in [19] and the analogous result for

the free one large jump principle was obtained in [59]. In this chapter we show that Boolean

subexponential distributions follow the principle of one large jump also.

The main techniques involved in the proof of the above results is to study the transforms

and their Taylor series expansion. In particular we show the remainder terms of the respective

transforms carries information about the regular variation and also it is preserved under certain

operations such as taking a reciprocal. These results can be independent in their own interest

and can be used to study various properties of the transforms involved in free and Boolean

independence. Such ideas were first explored in the works of Bercovici et al. [29] to show

the bijection between free infinitely distributions with the classical counter parts. Other works

relating the remainder terms of Cauchy and R-transforms were studied in [22, 27, 59].
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Outline of the chapter: In the next section we develop the set-up and state our main results

precisely. To prove the results we use various transforms and their relationship with the tail of

the measures. In Section 2.2 we introduce some of the transforms used, an interesting property

of the Belinschi-Nica map {Bt}t≥0 in Theorem 2.2.6 and the principle of one large jump in

Proposition 2.2.4. In Section 2.3 we state the relationship between the tail of a regularly varying

probability measure the remainder of 1/B-transform followed by defining the remainder terms.

In Section 2.4 we use these relations to provide proof of the results for the additive Boolean

convolutions. Section 2.5 contains the proof of Theorem 2.2.7 about the multiplicative Boolean

convolution. Finally in section 2.6 we prove the technical results which are presented in Section

2.3.

2.2 Preliminaries and main results

A real valued measurable function f defined on non-negative real line is called regularly varying

(at infinity) with index α if for every t > 0, f(tx)
f(x) → tα as x → ∞. If α = 0, then f is said

to be a slowly varying function (at infinity). Regular variation with index α at zero is defined

analogously. In fact, f is regularly varying at zero of index α, if the function x 7→ f( 1
x) is

regularly varying at infinity of index −α. Unless otherwise mentioned, the regular variation of a

function will be considered at infinity. For regular variation at zero, we shall explicitly mention so.

A distribution function F on [0,∞) has regularly varying tail of index −α if F (x) = 1− F (x)

is regularly varying of index −α. Since F (x)→ 0 as x→∞ , we must necessarily have α ≥ 0.

A probability measure on [0,∞) with regularly varying tail is defined through its distribution

function. Equivalently, a measure µ is said to have a regularly varying tail of index −α, if

µ(x,∞) is regularly varying of index −α as a function of x.

We shall write f (z) ≈ g (z), f (z) = o (g (z)) and f (z) = O (g (z)) as z → 0 n.t. to mean

that f (z) /g (z) converges to a non-zero limit, f (z)/g (z)→ 0 and f (z) /g (z) stays bounded

as z → 0 n.t. respectively. If the non-zero limit is 1 in the first case, we write f (z) ∼ g (z) as

z → 0 n.t. For f (z) = o (g (z)) as z → 0 n.t., we shall also use the notations f (z)� g (z) and

g (z)� f (z) as z → 0 n.t.

RecallM andM+ are the set of probability measures supported on R and R+ respectively.

ByMp we mean the set of probability measures on [0,∞) whose p-th moment is finite and do

not have the (p+ 1)-th moment.
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2.2.1 Additive Boolean convolution

We recall that for a probability measure µ ∈M, its Cauchy transform is defined as

Gµ (z) =

∫ ∞
−∞

1

z − t
dµ (t) , z ∈ C+.

Note that Gµ maps C+ to C−. The Boolean additive convolution is determined by the transform

Kµ which is defined as

Kµ (z) = z − 1

Gµ (z)
, for z ∈ C+. (2.2.1)

For two probability measures µ and ν, the additive Boolean convolution µ ] ν is determined by

Kµ]ν (z) = Kµ (z) +Kν (z) , for z ∈ C+ (2.2.2)

and µ ] ν is again a probability measure.

Our first result describes the behaviour of additive Boolean convolution under the regularly

varying measures. Suppose {Xi}i≥1 be independent (classically) and identically distributed

non-negative regularly varying random variables of index −α, α ≥ 0 and denote Sn = X1 +

X2 + · · ·+Xn. Then it is known that

P (Sn > x) ∼ nP (X1 > x) as x→∞. (2.2.3)

The proof of the above fact can be found in [51]. If a sequence of random variables follows (2.2.3)

then they are called subexponential. In the case of free additive convolution, the parallel result

was shown in [59], which states:

µ�n (y,∞) = (µ� · · ·� µ)︸ ︷︷ ︸
n times

(y,∞) ∼ nµ (y,∞) as y →∞,

when µ has regularly varying tail of index −α, α ≥ 0. We show that result can be extended to

Boolean additive convolution also. To state the result we first introduce the definition of Boolean

subexponentiality:



28 Chapter 2. Boolean convolutions and regular variation

Definition 2.2.1. A probability measure µ on [0,∞), with µ (y,∞) > 0 for all y ≥ 0, is said to

be Boolean-subexponential if for all n ∈ N,

µ]n (y,∞) = (µ ] · · · ] µ)︸ ︷︷ ︸
n times

(y,∞) ∼ nµ (y,∞) as y →∞.

Our first result shows that analogue of the classical and free case is also valid in Boolean

set-up.

Theorem 2.2.2. If µ is regularly varying of index −α, α ≥ 0, then µ is Boolean-subexponential.

The proof uses the relation between µ and Gµ developed in [59] and also extensions to the

transforms Kµ.

Applications of Boolean subexponentiality

In this subsection we see two important applications of Boolean subexponentiality. The notions

of independence give rise to corresponding extreme value theory. We first show that subexponen-

tiality in all the three notions are asymptotically equivalent. In the second application we show

how the Belinschi-Nica map related to free infinitely divisible indicator behaves for a regularly

varying measure.

Applications to Boolean extremes

The very immediate upshot of the definition of Boolean subexponentiality is the principle of one

large jump which gives us the asymptotic relation between the sum and maximum of a finite

collection of i.i.d. probability distributions. The extreme value theory in Boolean independence

was recently explored in [91]. We briefly recall the definition of Boolean max convolution

from [91].

Definition 2.2.3. Let F1, F2 be two distributions on [0,∞). Their Boolean max convolution is

defined by,

(F1 ∨∪ F2)(t) = F1(t) ∧∪ F2(t)

where the operation ∧∪ is defined as

(x ∧∪ y)−1 − 1 = (x−1 − 1) + (y−1 − 1) for all x, y ∈ [0, 1].
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Let D+ be the set of all probability distributions on [0,∞). Then D+ forms semigroup with

respect to both the classical max convolution “ · ” and the boolean max convolution “ ∨∪ ”. Further

it is proved there that the map X : (D+, ·)→ (D+,∨∪), given by,

X(F )(t) = exp
(

1− 1

F (t)

)
for all t ∈ [0,∞), F ∈ D+ (2.2.4)

is an isomorphism while the inverse map is

X−1(F )(t) = (1− log(F ))−1 (t) =
1

1− log (F (t))
for all t ∈ [0,∞) F ∈ D+. (2.2.5)

The above isomorphism is obtained by observing an interesting isomorphism between the two

semigroups ([0, 1],∧∪) and ([0, 1], .) where “ . ” is the usual multiplication of real numbers. Here

we give an affirmative answer for the one large jump principle in the Boolean case and combining

all the results of the classical, free and Boolean instances we can further say that all the tails

of classical, free and Boolean max convolutions are asymptotically equivalent for the class of

regularly varying distributions. We shall use the notations F∨∪n and F]n for the distributions

F ∨∪ · · · ∨∪ F︸ ︷︷ ︸
n times

and F ] · · · ] F︸ ︷︷ ︸
n times

respectively.

Proposition 2.2.4. The principle of one large jump holds true for Boolean-subexponential

distributions, namely, if F is Boolean-subexponential then for every n ≥ 1,

F]n(y) ∼ F∨∪n(y) as y →∞.

Moreover if F is regularly varying with index −α, α ≥ 0, then for all n ≥ 1,

F∨∪n(y) ∼ F ∨n(y) ∼ Fn(y) as y →∞ (2.2.6)

where Fn arises out of the classical max convolution of classical independent random variables

Z1, · · · , Zn having identical distribution F .

Remark 2.2.5. The proof of the above result is done only for positive integers n ≥ 1. In fact the

result holds for any real number n > 0 by similar calculations. See [87] for complete details.

Application to the Belinschi-Nica map

Before going to the multiplicative Boolean convolution we want to show an application of the

above result to the Belinschi-Nica map. Let us recall that � denotes the free additive convolution
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of measures. Let us consider the map Bt :M→M for all t ≥ 0, given by

Bt(µ) = (µ�(1+t))]
1

1+t µ ∈M. (2.2.7)

This map was introduced in [18] noting that every probability measure on R is infinitely divisible

with respect to additive Boolean convolution. It was also shown there that if µ ∈ M+ then

Bt(µ) ∈M+. When t = 1, the map B1 coincides with the Bercovici-Pata bijection betweenM

and the class of all free infinitely divisible probability measures supported on R. Here for better

understanding we can consider the maps Bn :M+ →M+ for non-negative integers n and from

the definition (2.2.7), we have

Bn(µ)](1+n) := Bn(µ) ] Bn(µ) ] · · · ] Bn(µ)︸ ︷︷ ︸
(1+n times)

= µ� µ� · · ·� µ︸ ︷︷ ︸
(1+n times)

=: µ�(1+n). (2.2.8)

Theorem 2.2.6. The following are equivalent for a probability measure µ ∈M+.

(i) µ is regularly varying with tail index −α.

(ii) Bt(µ) is regularly varying with tail index −α, for t ≥ 0.

Furthermore, if any of the above holds, we also have as y →∞,

µ(y,∞) ∼ Bt(µ)(y,∞).

An interesting connection with complex Burgers equation was established in [18] using the

following function

h(t, z) = FBt(µ)(z)− z, ∀t > 0, ∀ z ∈ C+,

where Fν is the reciprocal of the Cauchy transform. Note that it can also be written as h(t, z) =

−KBt(z). It was shown that h(t, z) satisfies the following complex Burgers equation

∂h

∂t
(t, z) = h(t, z)

∂h

∂z
(t, z).

The complex Burgers equation (also known as the free analogue of heat equation) arises naturally

due to the connections with free Brownian motion (see [93]). In the following section while

proving Theorem 2.2.2 we shall study the remainder term in the K transform of a measure µ and

hence from the above result one can easily derive the asymptotic behaviour of the remainder term
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of h(t, z) (taking the Taylor series expansion in z) when µ has a regularly varying tail. Note that

in the power series expansion of K, the coefficients, which are also known as Boolean cumulants

can be directly computed using the moments recursively. We do not write the details of such

applications but it would be clear from the derivations later.

2.2.2 Multiplicative Boolean convolution

Now we define the multiplicative Boolean convolution of two probability measures defined

on R+. Instead of using the energy transform (as defined in Chapter 1) we follow [5] as the

calculations follow steadily. For µ ∈M+ the function

Ψµ (z) =

∫
R

zt

1− zt
dµ (t) , z ∈ C \ R+

is univalent in the left-plane iC+ and Ψµ (iC+) is a region contained in the circle with diameter

(µ (0)− 1, 0). It is well known that,

Ψµ

(
z−1
)

= zGµ (z)− 1. (2.2.9)

The η-transform of µ, denoted by ηµ : C \ R+ → C \ R+, is defined by the formula:

ηµ (z) =
Ψµ (z)

1 + Ψµ (z)
. (2.2.10)

It is clear that µ is determined uniquely from the function ηµ. For µ ∈ M+ it is known that

ηµ((−∞, 0)) ⊂ (−∞, 0), 0 = ηµ(0−) = limx→0,x<0 ηµ(x), ηµ(z) = ηµ(z) for z ∈ C \ R+.

Also π > arg(ηµ(z)) ≥ arg(z), for z ∈ C+.

The analytic function

Bµ (z) =
z

ηµ (z)
(2.2.11)

is well defined in the region z ∈ C \ R+. Now for µ, ν ∈ M+, their multiplicative Boolean

convolution µ×∪ ν is defined as the unique probability measure inM+ that satisfies

Bµ×∪ν(z) = Bµ(z)Bν(z) for z ∈ C \ R+. (2.2.12)

Note that for µ, ν ∈M+ which satisfies
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(a) arg(ηµ(z)) + arg(ην(z))− arg(z) < π for z ∈ C+ ∪ (−∞, 0), and

(b) at least one of the first moments of one of the measure µ or ν exists finitely,

then µ×∪ ν ∈M+ is well-defined.

In this chapter whenever we write the probability measure µ×∪ ν, it is assumed that the first

moment m(ν) of ν must exist due to the definition of multiplicative Boolean convolution. The

mean exists means it is strictly positive since the measures are supported on the positive half

of the real line. When two measures shall have the same regularly varying tail, we will assume

that there exists some c ∈ (0,∞) such that ν(x,∞) ∼ cµ(x,∞) as x → ∞. The case where

this asymptotics of tail sums fails is explained in Remark 2.5.3. Now here is the main result for

multiplicative Boolean convolution:

Theorem 2.2.7. Let µ, ν ∈ M+. If µ is regularly varying of tail index −α and ν is regularly

varying of tail index −β where α ≤ β and µ ×∪ ν ∈ M+ then µ ×∪ ν is also regularly varying

with tail index −α, furthermore,

µ×∪ ν (y,∞) ∼ m (ν)µ (y,∞) if α < β,

µ×∪ ν (y,∞) ∼ (1 + c)m (ν)µ (y,∞) , if α = β,

where m(ν) is the mean of ν.

Note that the result differs from the classical Breiman’s result (1.3.1) in terms of the constants

which appear in the tail equivalence relation. In classical case, the α-th moment of ν appears and

in multiplicative Boolean the first moment appears only.

2.2.3 Open questions

We list some of the open questions in this subsection before going to the technicalities of the

proof.

(i) Suppose µ and ν are inM+ and have regularly varying tails of index −α and −β respec-

tively. Then what is the tail behaviour of µ� ν? From a result from [29, Proposition A4.3]

it follows that if µ is � stable of index 1/(1 + s) and ν is of index 1/(1 + t) then µ� ν is

� stable of index 1/(1 + s+ t). This already shows that the classical Breiman’s theorem
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is not true in free set-up and hence it would be interesting to know what kind of behaviour

the µ� ν distribution inherits.

(ii) In a recent work [63], it was shown that if one takes the inverse problem of Breiman’s

theorem, that is, if one knows that µ ~ ν has a regularly varying tail of index −α then

under some necessary and sufficient conditions on ν, µ also has regularly varying tail of

same index. It would be interesting to explore if such inverse problems can be answered in

the free or Boolean set-up.

(iii) Following [18] we recall the definition of �-divisibility indicator φ(µ) of µ given by

φ(µ) = sup{t ∈ [0,∞) : µ ∈ Bt(M)} ∈ [0,∞].

The Cauchy distribution µca (which has regularly varying tail of index −1) is fixed by

the map B1 (which is in fact the Boolean to free Bercovici-Pata bijection). Therefore by

definition of B1 we have µ]2
ca = µ�2

ca (moreover µ]tca = µ�tca for all t ≥ 0) and this along

with the formula φ(Bt(µ)) = φ(µ) + t allows us to conclude that φ(µca) =∞ as observed

by Belinschi and Nica. It would be interesting to understand if one can take �-infinitely

divisible distributions with regularly varying tails and see if φ(µ) =∞ in such cases also.

The rest of this chapter is devoted to proofs of the above results. We first develop the Tauberian

type results for different transforms and then apply them to prove the results.

2.3 Regular variation of the remainder terms of Ψ, η and B trans-

form

In this section we define the remainder term of B-transforms and shall see how regular variation

is linked to it. These relations will be used to prove the main results. Note that although the B

transform is used to define the multiplicative Boolean convolution, it can be used in the analysis

of the additive transform by its relation to K transform in the following way. From the relations

(2.2.1), (2.2.9), (2.2.10) and (2.2.11) it follows that,

Kµ

(
z−1
)

=
1

Bµ (z)
. (2.3.1)
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For µ ∈Mp, following Theorem 1.5 of [22], we have the following Laurent series like expansion

Gµ(1/z) =

p+1∑
i=1

mi−1(µ)zi + o(z(p+1)), z → 0 n.t., p ≥ 0.

Therefore using (2.2.9), we get

Ψµ(z) =

p∑
i=1

mi(µ)zi + o(zp) as z → 0 n.t., p ≥ 1.

The remainder term rGµ(z) of the Cauchy transform was defined in [59], given by:

rGµ(z) := zp+1(Gµ(z)−
p+1∑
i=1

mi−1(µ)z−i). (2.3.2)

Using (2.2.9) and the above expressions we define the remainder term rΨµ(z) of the Ψ-transform.

rΨµ(z) :=


z−p(Ψµ(z)−

∑p
i=1mi(µ)zi), if p ≥ 1

Ψµ(z), if p = 0.

(2.3.3)

Using (2.2.9), (2.3.2) and (2.3.3), we get

rGµ(z) = rΨµ(z−1). (2.3.4)

Therefore we have from (2.3.4),

<rGµ(z) = <rΨµ(z−1) and =rGµ(z) = =rΨµ(z−1). (2.3.5)

Thus the remainder terms of η and B transforms can be defined analogously. Also from (2.2.11)

and the fact that z lies either in the upper half or the lower half of the complex plane, we have,

1

Bµ
(z) :=

1

Bµ(z)
=
ηµ (z)

z
.

Using Ψµ(z) has no constant term in its Taylor series expansion, we have for p ≥ 1, µ ∈Mp,

r 1
Bµ

(z) = rηµ (z) .
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Equating the real and imaginary part for the above identity we get

<r 1
Bµ

(
−iy−1

)
= <rηµ

(
−iy−1

)
and =r 1

Bµ

(
−iy−1

)
= =rηµ

(
−iy−1

)
. (2.3.6)

When p = 0, that is, µ ∈M0, we write

r 1
Bµ

(z) =
1

Bµ
(z) and

1

Bµ

(
−iy−1

)
= iyηµ

(
−iy−1

)
.

We will later see 1/Bµ(z) in this case goes to infinity as z → 0 non-tangentially but still we want

to say it is a remainder term as it helps in keeping analogy with the other cases notationally.

Let µ ∈ M+ and is regularly varying of tail index −α. Then there exists a non-negative

integer p such that µ ∈Mp. We split this into five cases as follows: (i) p is a positive integer and

α ∈ (p, p+ 1); (ii) p is a positive integer and α = p; (iii) p = 0 and α ∈ [0, 1); (iv) p = 0 and

α = 1; (v) p is a natural number and α = p+ 1, giving rise to the following five theorems.

In the following we compare the tails of µ and the behaviour of the remainder term of the

1/Bµ. The proof of these five theorems are deferred to the last section and depends crucially on

ideas developed in [59].

We first consider the case where p is a positive integer and α ∈ (p, p+ 1).

Theorem 2.3.1. Let µ be inMp, p ≥ 1 and p < α < p+ 1. The following are equivalent:

(i) µ (y,∞) is regularly varying of index −α.

(ii) =r 1
Bµ

(
−iy−1

)
is regularly varying of index − (α− p) and

<r 1
Bµ

(
−iy−1

)
≈ =r 1

Bµ

(
−iy−1

)
as y →∞.

If any of the above statements holds, we also have, as z → 0 n.t.,

z � r 1
Bµ

(z);

and as y →∞,

=r 1
Bµ

(−iy−1) ∼ −
π (p+ 1− α) /2

cos (π (α− p) /2)
ypµ (y,∞)� y−1 (2.3.7)
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and

<r 1
Bµ

(−iy−1) ∼ −
π (p+ 2− α) /2

sin (π (α− p) /2)
ypµ (y,∞)� y−1. (2.3.8)

Next we consider the case where p is a positive integer and α = p. In this case although

(2.3.7) holds but the final asymptotic of (2.3.8) need not be true.

Theorem 2.3.2. Let µ be inMp, p ≥ 1 and α = p. The following are equivalent:

(i) µ (y,∞) is regularly varying of index −p.

(ii) =r 1
Bµ

(
−iy−1

)
is slowly varying and

<r 1
Bµ

(−iy−1) � y−1 as y →∞. (2.3.9)

If any of the above statements holds, we also have, as z → 0 n.t.,

z � r 1
Bµ

(z);

and as y →∞ we have,

=r 1
Bµ

(−iy−1) ∼ −
π

2
ypµ (y,∞)� y−1. (2.3.10)

In the third case we consider α ∈ [0, 1).

Theorem 2.3.3. Let µ be inM0 and 0 ≤ α < 1. The following are equivalent:

(i) µ (y,∞) is regularly varying of index −α.

(ii) = 1
Bµ

(
−iy−1

)
is regularly varying of index −(α− 1) and

< 1

Bµ

(
−iy−1

)
≈ = 1

Bµ

(
−iy−1

)
as y →∞

If any of the above statements holds, we also have, as z → 0 n.t.,

z � z
1

Bµ
(z);
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and as y →∞ we have,

−y−1< 1

Bµ
(−iy−1) ∼ −π (1− α) /2

cos (πα/2)
µ (y,∞)� y−1 (2.3.11)

and

y−1= 1

Bµ
(−iy−1) ∼ −dαµ (y,∞)� y−1 (2.3.12)

where

dα =


π(2−α)/2
sin(πα/2) , when α > 0,

1, when α = 0.

In the fourth case we consider α = 1 and p = 0.

Theorem 2.3.4. Let µ be inM0 and α = 1, r ∈ (0, 1/2). The following are equivalent:

(i) µ (y,∞) is regularly varying of index −1.

(ii) = 1
Bµ

(
−iy−1

)
is slowly regularly varying and

y−1 � −y−1< 1

Bµ

(
−iy−1

)
� y−(1−r/2). (2.3.13)

If any of the above statements holds, we also have, as z → 0 n.t.,

z � z
1

Bµ
(z) ;

and as y →∞ we have,

y−(1+r/2) � y−1= 1

Bµ

(
−iy−1

)
∼ −π

2
µ (y,∞)� y−1+r/2 (2.3.14)

Finally, we consider the case where p ≥ 1 and α = p+ 1.

Theorem 2.3.5. Let µ be in Mp, p ≥ 1 and α = p + 1, r ∈ (0, 1/2). The following are

equivalent:

(i) µ (y,∞) is regularly varying of index − (p+ 1).

(ii) <r 1
Bµ

(
−iy−1

)
is regularly varying of index −1 and

y−1 � =r 1
Bµ

(
−iy−1

)
� y−(1−r/2). (2.3.15)
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If any of the above statements holds, we also have, as z → 0 n.t.,

z � r 1
Bµ

(z) ; (2.3.16)

As y →∞ we have,

y−(1+r/2) � <r 1
Bµ

(
−iy−1

)
∼ −π

2
ypµ (y,∞)� y−(1−r/2). (2.3.17)

The proof of these theorems are deferred to Section 2.6.

2.4 Additive Boolean subexponentiality

To prove the Theorem 2.2.2 we need the following lemma.

Lemma 2.4.1. Suppose µ and ν are two probability measures in [0,∞) with regularly varying

tails of index −α and suppose ν(y,∞) ∼ cµ(y,∞) for some c > 0. Then

µ ] ν (y,∞) ∼ (1 + c)µ (y,∞) as y →∞.

Proof. Depending on where the index α ≥ 0 lies, the proof can be split into five cases as

described in Section 2.3. We shall present the proof for the case when p ≥ 1 with µ ∈Mp and

α ∈ (p, p+ 1). We shall use Theorem 2.3.1 to derive this case. The other cases can be dealt in

exactly similar fashion using the four other results stated Section 2.3. Using the relation (2.3.1)

we define the remainder term of the K-transform in the following obvious way:

rKµ

(
1

z

)
= r 1

Bµ

(z). (2.4.1)

For α ∈ (p, p+ 1) using Theorem (2.3.1) and taking imaginary and real parts of (2.4.1), we

have

=rKµ(iy) ∼ − π(p+ 1− α)/2

cos(π(α− p)/2)
ypµ(y,∞) and

<rKµ(iy) ∼ − π(p+ 2− α)/2

sin(π(α− p)/2)
ypµ(y,∞) (2.4.2)

respectively.
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An analogous equation for measure ν can be derived with µ being replaced by ν in (2.4.2).

Now the equation (2.2.2) and the definition of the remainder term gives, rKµ]ν (z) = rKµ (z) +

rKν (z). Therefore

=rKµ]ν (iy) ∼ − π (p+ 1− α) /2

cos (π (α− p) /2)
(1 + c) ypµ (y,∞) as y →∞ and (2.4.3)

<rKµ]ν (iy) ∼ − π (p+ 2− α) /2

sin (π (α− p) /2)
(1 + c) ypµ (y,∞) as y →∞,

which are regularly varying of index − (α− p) with =rKµ]ν (iy) ≈ <rKµ]ν (iy) and we con-

clude µ ] ν ∈Mp by looking at the remainder term of Kµ]ν . Now again using Theorem 2.3.1

for the measure µ ] ν, we have

=rKµ]ν (iy) ∼ − π (p+ 1− α) /2

cos (π (α− p) /2)
ypµ ] ν (y,∞) as y →∞. (2.4.4)

Combining (2.4.3) and (2.4.4) the result follows.

The proof of Theorem 2.2.2 is immediate using induction which we briefly indicate below.

Proof of theorem 2.2.2. Let µ be regularly varying of tail index −α and supported on [0,∞).

We prove

µ]n (y,∞) ∼ nµ (y,∞) as y →∞. (2.4.5)

by induction on n. For n = 2, (2.4.5) follows from the Lemma 2.4.1 with both the measures

taken to be µ and c = 1. To prove (2.4.5) for n = m+ 1 assuming n = m we take c = m and

ν = µ]n in Lemma 2.4.1.

2.4.1 Proof of Proposition 2.2.4 and Theorem 2.2.6

Proof of Proposition 2.2.4. Using (2.2.4) and (2.2.5) we have for any y ∈ [0,∞),

F∨∪n(y) = X−1
(
(X(F (y))n

)
= X−1

(
exp

(
n− n

F (y)

))
=

1

1− log

(
exp

(
n− n

F (y)

))
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=
F (y)

n− (n− 1)F (y)
.

Thus for any y ≥ 0,

F∨∪n(y) = 1− F∨∪n(y) = 1− F (y)

n− (n− 1)F (y)
=

nF (y)

1 + (n− 1)F (y)
.

Now noting the fact that F (y)→ 0 as y →∞, we have as y →∞

F∨∪n(y) ∼ nF (y) ∼ F]n(y). (2.4.6)

The last asymptotic follows from the definition of Boolean-subexponentiality.

The asymptic (2.2.6) follows by combining (2.4.6), Proposition 1.1 of [59]( in particular for

any n ∈ N, F ∨n(y) ∼ nF (y) as y →∞), Lemma 3.8 of [64] and the fact that regularly varying

distributions are classical, free and Boolean subexponential.

Proof of Theorem 2.2.6. The proof is obvious for t = 0. Initially we shall prove the result for

integer points t = n, n ∈ N. After that we shall extend the proof for any non-negative real

number t. We start with letting µ to be regularly varying of tail index −α. Again to keep the

exposition simple we derive the result when α ∈ (p, p+ 1) for some p ∈ N. In the other cases

the result follows by similar argument using corresponding asymptotic relations.

We have from (2.2.8),

KBn(µ)](1+n)(iy) = Kµ�(1+n)(iy).

Therefore using (2.2.2) we can write the above expression as

(1 + n)KBn(µ)(iy) = Kµ�(1+n)(iy). (2.4.7)

Since µ has regularly varying tail of index −α, from Theorem 1.1 of [59] we can conclude that µ

is free subexponential, i.e.

µ�(1+n)(y,∞) ∼ (1 + n)µ(y,∞) as y →∞, (2.4.8)

which shows that the probability measure µ�(1+n) ∈M+ is also regularly varying of index −α

at infinity. Therefore, using the relation between the remainder term of K and B transforms (see
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(2.4.1)) and Theorem 2.3.1 we get as y →∞,

=rK
µ�(1+n)

(iy) ∼ − π(p+ 1− α)/2

cos(π(α− p)/2)
ypµ�(1+n)(y,∞), (2.4.9)

which is regularly varying of index −(α − p). Now taking imaginary parts of the remainder

terms on both sides of (2.4.7) and using (2.4.9), we get

(1 + n)=rKBn(µ)
(iy) = =rK

µ�(1+n)
(iy)

∼ − π(p+ 1− α)/2

cos(π(α− p)/2)
ypµ�(1+n)(y,∞)

(2.4.8)∼ − π(p+ 1− α)/2

cos(π(α− p)/2)
(1 + n)ypµ(y,∞),

Therefore

=rKBn(µ)
(iy) ∼ − π(p+ 1− α)/2

cos(π(α− p)/2)
ypµ(y,∞), (2.4.10)

which is again regularly varying of index−(α− p). Similar calculations by taking the real part in

place of imaginary part gives <rKBn(µ)
(iy) is regularly varying of index −(α− p), in particular

we shall then have =rKBn(µ)
(iy) ≈ <rKBn(µ)

(iy). Now the definition of both additive Boolean

convolution and the map B allows us to deduce that Bn(µ) ∈Mp if and only if µ ∈Mp. Thus

applying (2.3.7) we get Bn(µ) is regularly varying of index −α and

=rKBn(µ)
(iy) ∼ − π(p+ 1− α)/2

cos(π(α− p)/2)
ypBn(µ)(y,∞). (2.4.11)

Hence from (2.4.10) and (2.4.11) we have as y →∞,

µ(y,∞) ∼ Bn(µ)(y,∞).

Conversely, suppose that Bn(µ) is regularly varying of index −α. Here also we further suppose

that α ∈ (p, p + 1) with p ≥ 0. When α = p or α = p + 1 the conclusion can be made

by using similar arguments and corresponding asymptotic relationships from [59]. Now using

Theorem 2.2.2 we have, Bn(µ) is Boolean-subexponential, i.e.;

Bn(µ)](1+n)(y,∞) ∼ (1 + n)Bn(µ)(y,∞), (2.4.12)

which also shows that Bn(µ)](1+n) is regularly varying of tail index −α. Let us recall the
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Voiculescu transform of a measure µ. It is known from [28] that Fµ = 1/Gµ has a left inverse

F−1
µ (defined on a suitable domain) and φµ(z) = F−1

µ (z)− z. For probability measures µ and ν

one has φµ�ν(z) = φµ(z) + φν(z) on an appropriate domain. The asymptotics of remainder of

φµ were derived in [59]. We can write from (2.2.8),

=rφ
µ�(1+n)

(iy) = =rφBn(µ)](1+n)
(iy), (2.4.13)

where rφµ(z) is the remainder term of the Voiculescu transform of µ. Now using the fact that

Bn(µ)](1+n) is regularly varying of tail index −α, we get by applying Theorem 2.1 of [59]

=rφBn(µ)](1+n)
(iy) is regularly varying of index −(α− p) and

=rφBn(µ)](1+n)
(iy) ∼ − π(p+ 1− α)/2

cos(π(α− p)/2)
ypBn(µ)](1+n)(y,∞),

(2.4.12)∼ − π(p+ 1− α)/2

cos(π(α− p)/2)
yp(1 + n)Bn(µ)(y,∞). (2.4.14)

Now combining (2.4.13), (2.4.14) and using the fact that rφµ�ν (z) = rφµ(z) + rφν (z), we have

=rφµ(iy) ∼ − π(p+ 1− α)/2

cos(π(α− p)/2)
ypBn(µ)(y,∞). (2.4.15)

This shows that =rφµ(iy) is regularly varying of index −(α− p) and again applying Theorem

2.1 of [59], we get

=rφµ(iy) ∼ − π(p+ 1− α)/2

cos(π(α− p)/2)
ypµ(y,∞). (2.4.16)

Combining (2.4.15) and (2.4.16) it follows µ is regularly varying of tail index−α and as y →∞,

µ(y,∞) ∼ Bn(µ)(y,∞).

Therefore we are done for the integer case. Further we recall the definitions of µ�t and µ]t form

[18] (See also [84] and [17] for more details):

For any t ≥ 1 and µ ∈M+ there exists µ�t ∈M+ satisfying φµ�t(z) = tφµ(z) and thus

rφ
µ�t

(z) = t · rφµ(z) (2.4.17)

on a truncated angular domain (e.g. z with 1/z ∈ ∆κ,δ for some positive κ, δ) where they are well

defined. Also for any t ≥ 0 and µ ∈M+ there exists µ]t ∈M+ such that Kµ]t(z) = tKµ(z)
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on the upper half plane. So

rKµ]t (z) = t · rKµ(z). (2.4.18)

Now successive use of (2.4.17) and Theorem 2.1− 2.4 of [59] according to suitable cases,

the fact µ ∈Mp implies µ�t ∈Mp which follows from Theorem 1.5 of [22] and the definition

of K transform, we can say that any probability measure µ with regularly varying tail of index

−α, α ≥ 0 is more than free subexponential, i.e.,

1) If µ is regularly varying of tail index −α then µ�t is also so for all t ≥ 1. In particular, as

y →∞, we have µ�t(y,∞) ∼ tµ(y,∞).

Also using (2.4.18), Theorem 2.3.1-2.3.5 for respective cases and the fact that µ]t ∈ Mp

whenever µ ∈Mp, we shall be able to conclude that

2) If µ is regularly varying of tail index −α then µ]t is also so for all t ≥ 0. In particular, as

y →∞, we have µ]t(y,∞) ∼ tµ(y,∞).

Now the above facts and similar calculations done in the above proof for the integer case

gives us the result for any non-negative real number t.

2.5 Some results on×∪ and the proof of Theorem 2.2.7

In this short section we will prove Theorem 2.2.7 using the relation of B-transform with the

multiplicative Boolean convolution. We begin by observing that when µ has p moments and ν

has q moments, then the Boolean multiplicative convolution of µ and ν has exactly p moments if

p ≤ q.

Lemma 2.5.1. Suppose p ≤ q, µ ∈Mp and ν ∈Mq, then µ×∪ ν ∈Mp.

Proof. Note that when µ has infinite mean the result is obvious. Now suppose µ and ν both have

finite mean then from the definition of the remainder terms we can write the B-transforms of µ

and ν in the following way

f1 (z) :=
1

m(µ)Bµ
(z) = 1 + c1z + · · ·+ cp−1z

p−1 + zp−1rf1 (z)
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where ci, i = 1, 2, . . . , p− 1 are real constants and

f2 (z) :=
1

m(ν)Bν
(z) = 1 + d1z + · · ·+ dp−1z

p−1 + · · ·+ dq−1z
q−1 + zq−1rf2 (z)

where dj , j = 1, 2, . . . q − 1 are also real constants. Taking the product of f1 (z) and f2 (z) we

see that 1
B -transform of µ×∪ ν has a Taylor series expansion of order p− 1 by (2.2.12). Now it is

easy to see that µ ∈Mp is equivalent to 1
Bµ

(z) having a Taylor series expansion of order p− 1

(see Theorem 1.5 of [22]). Therefore we see that µ×∪ ν ∈Mp.

Following equation (2.2.12) and using the results in Section 2.3 we shall derive the relation

between the real or imaginary parts of the remainder terms of the product of two B-transforms.

The theorem is split into several cases depending on the existence of integer moments of the two

measures involved.

Theorem 2.5.2. Suppose α ≤ β and let µ and ν be regularly varying with indices −α and −β

respectively. So there exists a non-negative integer p such that α ∈ [p, p+ 1] and µ ∈Mp. We

also suppose that ν has finite first moment.1 Then we have the following:

(i) Suppose α < β.

(a) If 1 ≤ p < α < p+ 1 or α ∈ (0, 1), then as y →∞

=r 1
BµBν

(
−iy−1

)
∼ m (ν)=r 1

Bµ

(
−iy−1

)
and

<r 1
BµBν

(
−iy−1

)
∼ m (ν)<r 1

Bµ

(
−iy−1

)
.

(b) If p ≥ 1, α = p, then as y →∞

=r 1
BµBν

(
−iy−1

)
∼ m (ν)=r 1

Bµ

(
−iy−1

)
and

<r 1
BµBν

(
−iy−1

)
� y−1.

(c) If p = 0, α = 1, r ∈ (0, 1/2), then as y →∞

=r 1
BµBν

(
−iy−1

)
∼ m (ν)=r 1

Bµ

(
−iy−1

)
and

y−1 � −y−1<r 1
BµBν

(
−iy−1

)
� y−(1−r/2).

1this is needed to define multiplicative Boolean convolution



2.5. Some results on×∪ and the proof of Theorem 2.2.7 45

(d) If p ≥ 1, α = p+ 1, r ∈ (0, 1/2), then as y →∞

<r 1
BµBν

(
−iy−1

)
∼ m (ν)<r 1

Bµ

(
−iy−1

)
and

y−1 � =r 1
BµBν

(
−iy−1

)
� y−(1−r/2).

(ii) Suppose α = β and there exists some c ∈ (0,∞) such that ν(x,∞) ∼ cµ(x,∞). Then

((i)a)(with only p ≥ 1), ((i)b) and ((i)d) holds with m(ν) is replaced by (1 + c)m(ν) at

each places.

We shall provide a detailed proof of this result in Section 2.6. In the following, Theorem 2.2.7

for multiplicative Boolean convolution is proved using the above result.

Proof of Theorem 2.2.7. Suppose µ ∈ Mp, 1 ≤ p < α < p + 1 and ν ∈ Mq, q ≥ p with

α < β then using (2.2.12) and ((i)a) of Theorem 2.5.2 we have as y →∞,

=r 1
Bµ×∪ν

(
−iy−1

)
∼ m (ν)=r 1

Bµ

(
−iy−1

)
and

<r 1
Bµ×∪ν

(
−iy−1

)
∼ m (ν)<r 1

Bµ

(
−iy−1

)
.

Therefore using (2.3.7), (2.3.8) and above asymptotics, we get

=r 1
Bµ×∪ν

(
−iy−1

)
∼ − π (p+ 1− α) /2

cos (π (α− p) /2)
ypm (ν)µ (y,∞) and (2.5.1)

<r 1
Bµ×∪ν

(
−iy−1

)
∼ − π (p+ 2− α) /2

sin (π (α− p) /2)
ypm (ν)µ (y,∞) as y →∞.

So =r 1
Bµ×∪ν

(
−iy−1

)
≈ <r 1

Bµ×∪ν

(
−iy−1

)
and both are regularly varying − (α− p). By Lemma

2.5.1, we have µ×∪ ν ∈Mp and therefore by applying the reverse implication of Theorem 2.3.1

we get µ×∪ ν is regularly varying of index−α and again using the asymptotic equivalence (2.3.7)

of Theorem 2.3.1 for the measure µ×∪ ν we have,

=r 1
Bµ×∪ν

(
−iy−1

)
∼ − π (p+ 1− α) /2

cos (π (α− p) /2)
ypµ×∪ ν (y,∞) . (2.5.2)

Hence from (2.5.1) and (2.5.2) we get µ×∪ ν (y,∞) ∼ m (ν)µ (y,∞). The other cases can be

dealt similarly after employing Theorem 2.5.2 and the remaining four theorems in Section 2.3.

We skip the details.
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Remark 2.5.3. As we have mentioned in the beginning of Theorem 2.2.7, we have not dealt

with the case when µ and ν both have the same regularly varying tail index but they are not tail

balanced which can happen only in the case when p ≥ 1, µ is inMp and ν is inMp+1 but they

are both regularly varying of tail index −(p+ 1). In this case similar calculations will show that

µ×∪ ν (y,∞) ∼ m (ν)µ (y,∞), i.e., the constant in the left of the asymptotic is 1 instead of the

form 1 + c.

2.6 Proofs of Theorem 2.3.1 to 2.3.5 and Theorem 2.5.2

To keep this chapter self contained we recall Theorem 2.1− 2.4 from [59]. The results there gave

the relation between µ and the remainder of Cauchy transform. We use the equation (2.3.5) to

rewrite them in terms of remainder of Ψµ:

Whenever p is a positive integer and α ∈ (p, p+ 1).

Theorem 2.6.1. Let µ be inMp, p ≥ 1 and p < α < p+ 1. The following are equivalent:

(i) µ (y,∞) is regularly varying of index −α.

(ii) =rΨµ

(
−iy−1

)
is regularly varying of index − (α− p) and

<rΨµ

(
−iy−1

)
≈ =rΨµ

(
−iy−1

)
.

If any of the above statements holds, we also have, as z → 0 n.t.,

z � rΨµ(z);

as y →∞

=rΨµ

(
−iy−1

)
∼ − π (p+ 1− α) /2

cos (π (α− p) /2)
ypµ (y,∞)� y−1

and

<rΨµ

(
−iy−1

)
∼ − π (p+ 2− α) /2

sin (π (α− p) /2)
ypµ (y,∞)� y−1.

When p is a positive integer and α = p.

Theorem 2.6.2. Let µ be inMp, p ≥ 1 and α = p. The following are equivalent:
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(i) µ (y,∞) is regularly varying of index −p.

(ii) =rΨµ

(
−iy−1

)
is slowly varying and

<rΨµ

(
−iy−1

)
� y−1.

If any of the above statements holds, we also have, as z → 0 n.t.,

z � rΨµ(z);

as y →∞

=rΨµ

(
−iy−1

)
∼ −π

2
ypµ (y,∞)� y−1 (2.6.1)

If we consider α ∈ [0, 1), then

Theorem 2.6.3. Let µ be inM0 and 0 ≤ α < 1. The following are equivalent:

(i) µ (y,∞) is regularly varying of index −α.

(ii) =Ψµ

(
−iy−1

)
is regularly varying of index −α and

<Ψµ

(
−iy−1

)
≈ =Ψµ

(
−iy−1

)
.

If any of the above statements holds, we also have, as z → 0 n.t.,

z � Ψµ(z);

as y →∞

=Ψµ

(
−iy−1

)
∼ −π (1− α) /2

cos (πα/2)
µ (y,∞)� y−1

and

<Ψµ

(
−iy−1

)
∼ −dαµ (y,∞)� y−1

where dα is as in (2.3.3).

Finally, when p ≥ 0 and α = p+ 1.
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Theorem 2.6.4. Let µ be in Mp, p ≥ 1 and α = p + 1, r ∈ (0, 1/2). The following are

equivalent:

(i) µ (y,∞) is regularly varying of index − (p+ 1).

(ii) <rΨµ

(
−iy−1

)
is regularly varying of index −1 and

y−1 � =rΨµ

(
−iy−1

)
� y−(1−r/2).

If any of the above statements holds, we also have, as z → 0 n.t.,

z � rΨµ (z) ;

as y →∞

y−(1+r/2) � <rΨµ

(
−iy−1

)
∼ −π

2
ypµ (y,∞)� y−(1−r/2).

To study the relation between the remainder terms of Ψ and η transforms we consider the

following classes of functions which contains Ψµ depending on regular variation of µ. We

shall show that the classes are closed under certain operations. LetH denote the set of analytic

functions A having a domain DA such that for all positive κ, there exists δ > 0 with ∆κ,δ ⊂ DA.

Definition 2.6.5. Let Z1,p denote the set of all A ∈ H which satisfies the following conditions:

(i) For p ≥ 0, A has Taylor series expansion with real coefficients of the form

A(z) =

p∑
j=1

ajz
j + zprA(z)

where a1, · · · , ap are real numbers and for p = 0 we interpret the term in the sum as

absent.

(ii) z � rA(z)� 1 as z → 0 n.t.

(iii) <rA(−iy−1) ≈ =rA(−iy−1) as y →∞.

Let Z2,p be the same as Z1,p with (R(i)) and (R(ii)) but (R(iii)) is replaced by

(i) y−(1+r/2) � <rA(−iy−1) � y−(1−r/2) and y−1 � =rA(−iy−1) � y−(1−r/2) for any

r ∈ (0, 1/2).
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Let Z3,p be the same as Z1,p with (R(i)) for p ≥ 1 and same (R(ii)) but (R(iii)) is replaced by

(i) <rA(−iy−1)� y−1 and =rA(−iy−1)� y−1.

Remark 2.6.6. Suppose that µ(y,∞) is regularly varying −α and µ ∈Mp with α ∈ [p, p+ 1].

Then note the following:

(i) If p ≥ 1, p < α < p+ 1 or p = 0, 0 ≤ α < 1, then Ψµ(z) ∈ Z1,p (follows from Theorem

2.6.1 and Theorem 2.6.3).

(ii) If p ≥ 0, α = p+ 1, then Ψµ(z) ∈ Z2,p (follows from Theorem 2.6.4).

(iii) If p ≥ 1, α = p, then Ψµ(z) ∈ Z3,p (follows from Theorem 2.6.2).

Hence the proposition 2.6.7, given below, allows us to conclude that Ψµ(z) ∈ Zi,p if and only if

ηµ(z) ∈ Zi,p for any fixed i ∈ {1, 2, 3} and p ∈ {0, 1, 2, · · · }.

Proposition 2.6.7. For any fixed i ∈ {1, 2, 3} and p ≥ 0 (excluding Z3,0 as this set is not

defined), if A(z) ∈ Zi,p then B(z) = A(z)(1±A(z))−1 ∈ Zi,p. Furthermore, we have

(i) rB(z) ∼ rA(z), as z → 0 n.t.;

(ii) <rB(−iy−1) ∼ <rA(−iy−1) as y →∞ and

(iii) =rB(−iy−1) ∼ =rA(−iy−1) as y →∞.

Proof. We shall divide this proof into some cases because depending on i and p the calculations

are different. We shall only show for B(z) = A(z)(1 +A(z))−1. Exactly same calculation will

prove the result for B(z) = A(z)(1−A(z))−1.

(i) Suppose A ∈ Z1,0. Then rA(z) = A(z). Therefore rB(z) = B(z). This shows that (R(i))

is satisfied.

Now,

B(z) = A(z)(1 +A(z))−1 (2.6.2)

= A(z) + o(|A(z)|) as z → 0 n.t. (2.6.3)

Therefore, we have B(z) ∼ A(z) as z → 0 n.t. Therefore (R(ii)) is satisfied.
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From (2.6.3) we have,

<B(−iy−1) = <A(−iy−1) + o(|A(−iy−1)|),

=B(−iy−1) = =A(−iy−1) + o(|A(−iy−1)|).

Now to show the equivalence of the real parts and imaginary parts, it is enough to show

that
|A(−iy−1)|
<A(−iy−1)

and
|A(−iy−1)|
=A(−iy−1)

remains bounded as y →∞. We shall show the first part only as the second one follows

by the same arguments:

(∣∣∣∣ A(−iy−1)

<A(−iy−1)

∣∣∣∣)2

=
(<A(−iy−1))2 + (=A(−iy−1))2

(<A(−iy−1))2

= 1 +

(
=A(−iy−1)

<A(−iy−1)

)2

,

which goes to a constant as y →∞ by the fact that A satisfies (R(iii)). Therefore (R(iii))

is satisfied for B(z) and the asymptotics in the statement also remain true.

(ii) Suppose A ∈ Z1,p, p ≥ 1. We note that |A(z)| → 0 as z → 0 n.t. Thus we have the

following series expansion using equation (2.2.10) for B(z) near zero:

B(z) =

p∑
i=1

(−1i+1)(A(z))i + O
(
(A(z))p+1

)
.

Using (R(i)) and (R(ii)) we get

(A(z))p+1

zprA(z)
=

(
A(z)

z

)p+1 z

rA(z)
→ 0

as z → 0. Hence

B(z) =

p∑
i=1

((−1i+1)(

p∑
j=1

mjz
j + zprA(z))j) + o (zprA(z)) . (2.6.4)

We expand the term in the right-hand side of (2.6.6). As z � rA(z), all powers of z with

indices greater than p can be absorbed in the last term on the right-hand side. Then collect

up to p-th power of z to form a polynomial P (z) of degree at most p with real coefficients

without the constant term. Finally we consider the terms containing some powers of rA(z)
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which will contain terms of the form zl1(zprA(z))l2 for integers l1 ≥ 0 and l2 ≥ 1 with

leading term zprA(z) and the remaining terms can be absorbed in the last term in the

right-hand side. Thus we get,

B(z) = P (z) + zprA(z) + o(zprA(z)).

Therefore (R(i)) is satisfied. Now by uniqueness of the Taylor series expansion, we have

rB(z) = rA(z) + o(rA(z)).

Therefore rB (z) ∼ rA (z). So (R(ii)) is satisfied. Thus

<rB (z) = <rA (z) + o (|rA (z) |) ,

=rB (z) = =rA (z) + o (|rA (z) |) .

Now from (R(iii)) and same calculations like in the first case we get that B(z) is satisfying

(R(iii)).

(iii) Suppose A ∈ Z2,0. Here we only need to show (R3′) as (R(i)) and (R(ii)) have been

already shown in case 1. From (2.6.2),

B (z) = A (z) + O
(
|A (z) |2

)
.

Consequently,

<B (z) = <A (z) + O
(
|A (z) |2

)
,

=B (z) = =A (z) + O
(
|A (z) |2

)
.

It is enough to show that
|A(−iy−1)|2

<A(−iy−1)
and

|A(−iy−1)|2

=A(−iy−1)
both goes to zero as y → ∞. For

that

|A
(
−iy−1

)
|2

<A (−iy−1)
= <A

(
−iy−1

)
+

(
=A

(
−iy−1

))2
<A (−iy−1)

= <A
(
−iy−1

)
+

(
=A

(
−iy−1

)
y−(1−r/2)

)2
y−(1+r/2)

<A (−iy−1)
y−1+3r/2,
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which goes to zero as y →∞ using (R3′) for A(z). For the other terms similarly note that

|A
(
−iy−1

)
|2

=A (−iy−1)
= =A

(
−iy−1

)
+

(
<A

(
−iy−1

))2
=A (−iy−1)

= =A
(
−iy−1

)
+

(
<A

(
−iy−1

)
y−(1−r/2)

)2
y−1

=A (−iy−1)
y−1+r

also goes to zero as y → ∞ using (R3′) for A(z). Thus (R3′) is obviously satisfied by

B(z).

(iv) Suppose A ∈ Z2,p, p ≥ 1. Here we need to show only (R3′). From (2.6.4) we can write

using a similar argument given in case (2),

B(z) = P (z) + zprA(z) + c1z
p+1 + O(zp+1rA(z)).

Therefore,

rB (z) = rA(z) + c1z + O(zrA(z)). (2.6.5)

So, rB (z) ∼ rA (z) and evaluating (2.6.5) at the point z = −iy−1,

rB
(
−iy−1

)
= rA(−iy−1) + c1(−iy−1) + O(zrA(−iy−1))

and after taking the real parts on both sides, we have

<rB
(
−iy−1

)
= <rA

(
−iy−1

)
+ O

(
y−1|rA

(
−iy−1

)
|
)
.

Now,

∣∣∣∣∣y−1|rA
(
−iy−1

)
|

<rA (−iy−1)

∣∣∣∣∣
2

=
1

y2
+

1

y2

(
=rA

(
−iy−1

)
<rA (−iy−1)

)2

and

y−1=rA
(
−iy−1

)
<rA (−iy−1)

=
=rA

(
−iy−1

)
y−(1−r/2)

y−(1+r/2)

<rA (−iy−1)
y−1+r

goes to zero as y → ∞ by (R3′). As a consequence we conclude that <rB
(
−iy−1

)
∼

<rA
(
−iy−1

)
.
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For the imaginary part asymptotic we write from (2.6.5),

rB (z) = rA(z) + O(|z|). (2.6.6)

Now putting z = −iy−1 and taking imaginary parts on both sides we get

=rB
(
−iy−1

)
= =rA(−iy−1) + O(|y−1|)

and note that y=rA
(
−iy−1

)
→∞ as z →∞ by (R3′).

Hence =rB
(
−iy−1

)
∼ =rA(−iy−1). So we are done in this case.

(v) Suppose A ∈ Z3,p, p ≥ 1. Here (R(i)) and (R(ii)) is shown in case (2). Now we write the

following using (2.6.6),

<rB
(
−iy−1

)
= <rA

(
−iy−1

)
+ O

(
|y−1|

)
,

=rB
(
−iy−1

)
= =rA

(
−iy−1

)
+ O

(
|y−1|

)
.

Now y<rA
(
−iy−1

)
and y=rA

(
−iy−1

)
both go to infinity as y → ∞ by (R3′′). This

shows that (R3′′) is also satisfied by B(z) in this case.

We give the proofs of the main theorems stated in Theorem 2.3.1–Theorem 2.3.5. We shall

only prove Theorem 2.3.1 and the rest of the theorems will follow by similar arguments.

Proof of Theorem 2.3.1. Combining Theorem 2.6.1, Proposition 2.6.7 and the definition of B-

transform coming out of η-transform, we get Theorem2.3.1 because the asymptotic relationship

of Ψ-transform follows from Theorem 2.6.1, the relationship between Ψ and η transforms

follows from the Proposition 2.6.7 (see also Definition 2.6.5 and Remark 2.6.6) and finally the

correspondence between η and B transforms is ensured by equations stated in (2.3.6).

Proof of Theorem 2.5.2. Recall that we have assumed µ ∈ Mp is regularly varying tail index

−α, α ≥ 0 with α ∈ [p, p+ 1]. Since ν is regularly varying with tail index −β with β ≥ α and

ν has finite first moment, there exists a positive integer q ≥ 1 with q ≥ p and ν ∈Mq. The proof

of this theorem is split up into different cases depending on p, q and α, β. It contains a number
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of subcases because the asymptotic relations and the Taylor series like expansions differ with

respect to the position of α and β in the lattice of non-negative integers.

Case ((i)a) Recall that in this case we have assumed either 1 ≤ p < α < p+ 1 or 0 = p ≤

α < p+ 1 = 1.

Subcase (i) Let µ ∈M0, ν ∈Mq, 2 ≤ q and 0 ≤ α < 1 and q ≤ β ≤ q + 1. Define

f1 (z) :=
1

Bµ
(z) and

f2 (z) :=
1

m(ν)Bν
(z) = 1 + d1z + · · ·+ dq−1z

q−1 + zq−1rf2 (z) ,

where dj , j = 1, 2, . . . , q − 1 are real coefficients. Therefore

f1 (z) f2 (z) = f1 (z) + d1zf1 (z) + · · ·+ dq−1z
q−1f1 (z) + zq−1f1 (z) rf2 (z)

and using Lemma 2.5.1

rf1f2(z) = f1 (z) f2 (z) = f1 (z) + O (|zf1 (z) |) . (2.6.7)

Taking the imaginary parts of (2.6.7), we get

=rf1f2(−iy−1) = =f1

(
−iy−1

)
+ O

(
y−1|f1

(
−iy−1

)
|
)
.

Observe,

y−1 |f1

(
−iy−1

)
|

=f1 (−iy−1)
=

((
<f1

(
−iy−1

))2
+
(
=f1

(
−iy−1

))2
y2 (=f1 (−iy−1))2

)1/2

=

 1

y2
+

1

y2

(
<f1

(
−iy−1

)
=f1 (−iy−1)

)2
1/2

→ 0 as y →∞,

using (2.3.11) and (2.3.12). Hence =rf1f2(−iy−1) ∼ =f1

(
−iy−1

)
as y → ∞. Using same

arguments for real part we also have <rf1f2(−iy−1) ∼ <f1

(
−iy−1

)
.

Subcase (ii) Let µ ∈ M0, ν ∈ Mq, q = 1 and 0 ≤ α < 1 and q ≤ β ≤ q + 1. The case is

similar to q ≥ 2. Here the equation (2.6.7) gets replaced by

rf1f2(−iy−1) = f1

(
−iy−1

)
+ f1

(
−iy−1

)
rf2
(
−iy−1

)
.
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Comparing the real part and the imaginary part we have <rf1f2(−iy−1) ∼ <f1

(
−iy−1

)
and =rf1f2(−iy−1) ∼ =f1

(
−iy−1

)
respectively using

=f1(−iy−1)
=f1(−iy−1)

,
<f1(−iy−1)
<f1(−iy−1)

,
<f1(−iy−1)
=f1(−iy−1)

∼ a nonzero constant and |rf2
(
−iy−1

)
| → 0 both as y →∞. So the p = 0 case is done.

Subcase (iii) Here suppose µ, ν ∈ M1 and 1 < α < β < 2. Let f1 (z) = 1
m(µ)Bµ

(z) and

f2 (z) = 1
m(ν)Bν

(z). Then

fi (z) = 1 + rfi (z) for i = 1, 2

Therefore,

rf1f2(z) = rf1 (z) + rf2 (z) + rf1 (z) rf2 (z) .

So,

rf1f2(−iy−1) = rf1
(
−iy−1

)
+ rf2

(
−iy−1

)
+ rf1

(
−iy−1

)
rf2
(
−iy−1

)
(2.6.8)

= rf1
(
−iy−1

)
+ O

(
|rf2

(
−iy−1

)
|
)
.

Thus taking the real and imaginary parts

=rf1f2(−iy−1) = =rf1
(
−iy−1

)
+ O

(
|rf2

(
−iy−1

)
|
)

and

<rf1f2(−iy−1) = <rf1
(
−iy−1

)
+ O

(
|rf2

(
−iy−1

)
|
)
.

Using (2.3.7) and (2.3.8),

(
|rf2

(
−iy−1

)
|

=rf1 (−iy−1)

)2

=

(
<rf2

(
−iy−1

))2
+
(
=rf2

(
−iy−1

))2
(=rf1 (−iy−1))2 ∼ y1−βl1(y)

y1−αl2(y)
→
y→∞

0,

where lk(y), k = 1, 2 are slowly varying functions. Therefore we get =rf1f2(−iy−1) ∼

=rf1
(
−iy−1

)
. Similarly taking the real parts one can show <rf1f2(−iy−1) ∼ <rf1

(
−iy−1

)
.

Subcase (iv) Let µ, ν ∈M1 and 1 < α < 2, β = 2. The case is similar to the previous one.

Using (2.6.8), we get

=rf1f2(z) = =rf1 (z) + =rf2 (z) + = (rf1 (z) rf2 (z)) .
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So the expression for the imaginary part becomes

=rf1f2(z) = =rf1 (z) + =rf2 (z) + =rf1 (z)<rf2 (z) + <rf1 (z)=rf2 (z) .

Using similar type of arguments with the help of (2.3.17) and (2.3.15),

we get =rf1f2(−iy−1) ∼ =rf1
(
−iy−1

)
. The real part can be dealt similarly.

Subcase (v) Suppose µ, ν ∈Mp, p = q ≥ 2 and p < α < β ≤ p+ 1. Write

f1 (z) :=
1

m(µ)Bµ
(z) = 1 + c1z + · · ·+ cp−1z

p−1 + zp−1rf1 (z) .

f2 (z) :=
1

m(ν)Bν
(z) = 1 + d1z + · · ·+ dp−1z

p−1 + zp−1rf2 (z) ,

where ci and di, 1 ≤ i ≤ p− 1 are some real constants. So,

f1 (z) f2 (z) = 1 + e1z + · · ·+ ep−1z
p−1 + zp−1 (rf1 (z) + rf2 (z) + O (|z|)) ,

where ei, 1 ≤ i ≤ p− 1 are real constants. Therefore,

rf1f2(z) = rf1 (z) + rf2 (z) + O (|z|) .

Taking imaginary and real part on both sides we obtain

=rf1f2(−iy−1) = =rf1
(
−iy−1

)
+ =rf2

(
−iy−1

)
+ O

(
y−1
)

and (2.6.9)

<rf1f2(−iy−1) = <rf1
(
−iy−1

)
+ <rf2

(
−iy−1

)
+ O

(
y−1
)

respectively. When p < α < β < p+ 1, we can use (2.3.7) and (2.3.8) to get

=rf2
(
−iy−1

)
=rf1 (−iy−1)

and
<rf2

(
−iy−1

)
<rf1 (−iy−1)

→ 0 as y →∞.

Also, y=rf1
(
−iy−1

)
, y<rf1

(
−iy−1

)
→∞ as y →∞ by (2.3.7) and (2.3.8) in the respective

cases.

When p < α < p+ 1, β = p+ 1 we have

=rf2
(
−iy−1

)
=rf1 (−iy−1)

= −
=rf2

(
−iy−1

)
y−(1−r/2)

1

cy(p−α)l (y)

1

y1−r/2 ,



2.6. Proofs of Theorem 2.3.1 to 2.3.5 and Theorem 2.5.2 57

where c is a constant and l (y) is a slowly varying function and r as in Theorem 2.3.5. To make

this quantity tend to zero as y →∞ using (2.3.7) and (2.3.17) we need (p− α+ 1− r/2) > 0.

This can be done by a suitable choice of r ∈ (0, 1/2) since p+ 1− α > 0. Exactly same can be

done for the real parts also.

Subcase (vi) Now suppose µ ∈ Mp, ν ∈ Mq, 1 ≤ p < q and p < α < p + 1 and

q ≤ β ≤ q + 1. Here we have,

f1 (z) :=
1

m(µ)Bµ
(z) = 1 + c1z + · · ·+ cp−1z

p−1 + zp−1rf1 (z) (2.6.10)

and

f2 (z) :=
1

m(ν)Bν
(z) = 1 + d1z + · · ·+ dp−1z

p−1 + · · ·+ dq−1z
q−1 + zq−1rf2 (z) ,

(2.6.11)

where ci, 1 ≤ i ≤ p− 1 and dj , 1 ≤ j ≤ q − 1 are some real constants. It is easy to see using

p < q that

rf1f2(z) = rf1 (z) + O (|z|) . (2.6.12)

Observe that the asymptotics follow since y=rf1
(
−iy−1

)
, y<rf1

(
−iy−1

)
→ ∞ as y → ∞

(using (2.3.7) and (2.3.8) respectively).

Case ((i)b) The second part of the theorem deals with the case p ≥ 1 and α = p. We split

again the proof into several subcases.

Subcase (i) 1 ≤ p = α < β < p+1 or α = p, p < q ≤ β ≤ q+1. In this case we can define

f1 and f2 as in (2.6.10) and (2.6.11) respectively and one can get the imaginary part asymptotics

using the similar calculations as in the proof of ((i)a). We only need to show <rf1f2(−iy−1)�

y−1 in the above cases. But it is obvious since p, q ≥ 1 and =rf1(−iy−1),<rf1(−iy−1) � y−1.

Subcase (ii) Suppose p = q = 1, α = p and β = p+ 1. Then we have form (2.6.8), that

=rf1f2(−iy−1) = =rf1
(
−iy−1

)
+ =rf2

(
−iy−1

)
+ =rf1

(
−iy−1

)
<rf2

(
−iy−1

)
+ <rf1

(
−iy−1

)
=rf2

(
−iy−1

)
and

<rf1f2(−iy−1) = <rf1
(
−iy−1

)
+ O(|rf2

(
−iy−1

)
|). (2.6.13)
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Now using (2.3.15), (2.3.10), we get

=rf2
(
−iy−1

)
=rf1 (−iy−1)

=
=rf2

(
−iy−1

)
y−(1−r/2)

1

y1−r/2
1

l(y)
→ 0 as y →∞, (2.6.14)

while observing

=rf1
(
−iy−1

)
<rf2

(
−iy−1

)
=rf1 (−iy−1)

= <rf2
(
−iy−1

)
→ 0 as y →∞.

Therefore =rf1f2(−iy−1) ∼ =rf1
(
−iy−1

)
. We now consider the equation (2.6.13). From

(2.3.9) and (2.3.16), it follows that

<rf1
(
−iy−1

)
� y−1 and y

∣∣rf2 (−iy−1
)∣∣ =

∣∣∣∣∣rf2
(
−iy−1

)
−iy−1

∣∣∣∣∣� 1.

These show that <rf1f2(−iy−1)� y−1.

Subcase (iii) Now let p = q ≥ 2, α = p and β = p + 1. For imaginary part again

using the equations (2.6.9), (2.3.10) and calculations as in (2.6.14) we have =rf1f2(−iy−1) ∼

=rf1
(
−iy−1

)
. On the other hand, the real part asymptotic follows from (2.3.9), (2.3.17).

Case ((i)c) Let µ ∈ M0, ν ∈ Mq, 1 ≤ q and α = 1 and q ≤ β ≤ q + 1 with α 6=

β. In this case we have from (2.6.7) and consequently, =rf1f2(−iy−1) = =f1

(
−iy−1

)
+

O
(
y−1|f1

(
−iy−1

)
|
)
.

Now,

y−1 |f1

(
−iy−1

)
|

=f1 (−iy−1)
=

((
<f1

(
−iy−1

))2
+
(
=f1

(
−iy−1

))2
y2 (=f1 (−iy−1))2

)1/2

=

 1

y2
+

1

y2

(
<f1

(
−iy−1

)
=f1 (−iy−1)

)2
1/2

→ 0 as y →∞

because

y−1<f1

(
−iy−1

)
=f1 (−iy−1)

= y−1<f1

(
−iy−1

)
yr/2

yr/2

=f1 (−iy−1)

=
<f1

(
−iy−1

)
yr/2

1

y1−r/2=f1 (−iy−1)
→ 0 as y →∞

with the help of (2.3.14) and (2.3.13). Therefore =rf1f2(−iy−1) ∼ =f1

(
−iy−1

)
.
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Again from (2.6.7), <rf1f2(−iy−1) = <f1

(
−iy−1

)
+O

(
y−1|f1

(
−iy−1

)
|
)
. Now if we are

able to show that <rf1f2(−iy−1) ∼ <f1

(
−iy−1

)
, then we are done. For that we proceed exactly

as in the case of imaginary part of this case. It is enough to show that y−1=f1(−iy
−1)

<f1(−iy−1)
→ 0 as

y →∞ to get the required result. Note in this case <f1

(
−iy−1

)
→∞ and using (2.3.14) and

(2.3.13), we get

y−1=f1

(
−iy−1

)
<f1 (−iy−1)

= y−1+r/2=f1

(
−iy−1

)
yr/2

1

<f1 (−iy−1)
→ 0 as y →∞.

Case ((i)d) Suppose µ ∈ Mp, ν ∈ Mq, 1 ≤ p < q and α = p + 1 and q ≤ β ≤ q + 1

with α 6= β. In this case we have =rf1f2(−iy−1) = =rf1
(
−iy−1

)
+ O

(
y−1
)

from (2.6.12).

y=rf1
(
−iy−1

)
→∞ as y →∞ by (2.3.15). Therefore =rf1f2(−iy−1) ∼ =rf1

(
−iy−1

)
.

For the real part calculations we recall (2.6.10), (2.6.11) and write the remainder term of

f1f2(z) in the following way:

rf1f2(z) = rf1 (z) + dz + zrf1 (z) + zrf2 (z) + O
(
|z2|
)
,

where d is some real constant. We note that the term zrf2 (z) may or may not occur in the above

expression depending on the value of q − p = 1 or > 1. Therefore

<rf1f2(−iy−1) = <rf1
(
−iy−1

)
−
=rf1

(
−iy−1

)
+ =rf2

(
−iy−1

)
y

+ O
(
y−2
)
.

Using (2.3.16), y2<rf1
(
−iy−1

)
→∞ as y →∞. For the term in the middle after dividing

by <rf1(−iy−1) we observe the following:

When q ≤ β < q+ 1 the numerator is regularly varying with tail index between (−1, 0] while

the denominator is slowly varying and this allows us to conclude that the term

=rf1
(
−iy−1

)
+ =rf2

(
−iy−1

)
y<rf1 (−iy−1)

→ 0 as y →∞.

Also when β = q + 1 we can write

=rf1
(
−iy−1

)
+ =rf2

(
−iy−1

)
y<rf1 (−iy−1)

=
1

y1−r
=rf1

(
−iy−1

)
+ =rf2

(
−iy−1

)
y−(1−r/2)

y−(1+r/2)

<rf1 (−iy−1)

→ 0 as y →∞, using (2.3.17) and (2.3.15). Thus <rf1f2(−iy−1) ∼ <rf1
(
−iy−1

)
.
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Proof of Theorem 2.5.2 ((ii)). In this case we assume α = β, µ, ν ∈ Mp and ν(x,∞) ∼

cµ(x,∞) for some c ∈ (0,∞). The methods are similar to the previous one, so we shall briefly

sketch these proofs.

Case (i) Suppose p ≥ 1 and p < α = β < p+ 1.

Subcase (i) First suppose p = 1. Then from (2.6.8), we have

rf1f2(−iy−1) = rf1
(
−iy−1

)
+ rf2

(
−iy−1

)
+ o

(
|rf1

(
−iy−1

)
|
)
.

Taking imaginary parts on both sides we get

=rf1f2(−iy−1) = =rf1
(
−iy−1

)
+ =rf2

(
−iy−1

)
+ o

(
|rf1

(
−iy−1

)
|
)
.

Using (2.3.7), (2.3.8) and the tail equivalence condition we derive

=rf2
(
−iy−1

)
=rf1 (−iy−1)

→ c and

(
|rf1

(
−iy−1

)
|

=rf1 (−iy−1)

)
→ (1 + c2)1/2 as y →∞.

Therefore we have =rf1f2(−iy−1) ∼ (1 + c)=rf1
(
−iy−1

)
. Exactly same calculations taking

the real part into consideration gives <rf1f2(−iy−1) ∼ (1 + c)<rf1
(
−iy−1

)
.

Subcase (ii) Suppose p ≥ 2. Then we have the equation (2.6.9), given by

=rf1f2(−iy−1) = =rf1
(
−iy−1

)
+ =rf2

(
−iy−1

)
+ O

(
y−1
)
.

Subsequently using (2.3.7) we get as y →∞

=rf2
(
−iy−1

)
=rf1 (−iy−1)

→ c and y=rf1
(
−iy−1

)
→∞.

Thus =rf1f2(−iy−1) ∼ (1 + c)=rf1
(
−iy−1

)
and exactly same calculations with real parts give

<rf1f2(−iy−1) ∼ (1 + c)<rf1
(
−iy−1

)
.

Case (ii) When α = p, similar calculations like above provides =rf1f2(−iy−1) ∼ (1 +

c)=rf1
(
−iy−1

)
since we have the same imaginary part asymptotics in this case also. The

calculations done in the proof of ((i)b) assures us that <rf1f2(−iy−1)� y−1.

Case (iii). Here we suppose p ≥ 1, α = β = p+ 1.
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Subcase (i) First consider p = 1. From (2.6.8), we have,

<rf1f2(−iy−1) = <rf1
(
−iy−1

)
+ <rf2

(
−iy−1

)
+ <(rf1

(
−iy−1

)
rf2
(
−iy−1

)
).

From the identity (2.3.17), it appears that,

<rf2
(
−iy−1

)
<rf1 (−iy−1)

→ c as y →∞.

Also it follows that,

<rf1
(
−iy−1

)
<rf2

(
−iy−1

)
<rf1 (−iy−1)

= <rf2
(
−iy−1

)
→ 0 as y →∞.

By applications of (2.3.17) and (2.3.15) we observe that,

=rf1
(
−iy−1

)
=rf2

(
−iy−1

)
<rf1 (−iy−1)

=
=rf1

(
−iy−1

)
y−(1−r/2)

=rf2
(
−iy−1

)
y−(1−r/2)

y−(1+r/2)

<rf1 (−iy−1)

1

y1−3r/2

→ 0 as y →∞. Thus <rf1f2(−iy−1) ∼ (1 + c)<rf1
(
−iy−1

)
. Exactly same calculation taking

the imaginary part gives us =rf1f2(−iy−1) ∼ (1 + c)=rf1
(
−iy−1

)
. Therefore we are done

when p = 1.

Subcase (ii) Suppose p ≥ 2. The real part can be dealt as in the proof of case ((i)d). For the

imaginary part note that from (2.6.9) we have,

=rf1f2(−iy−1) = =rf1
(
−iy−1

)
+ =rf2

(
−iy−1

)
+ O

(
y−1
)
.

Now as y → ∞, y−(1−r/2) � =rf1
(
−iy−1

)
, =rf2

(
−iy−1

)
� y−1 by (2.3.15). Therefore

we have =rf1f2(−iy−1) � y−1. Noting the fact that y−1 � y−(1−r/2) as y → ∞, it can be

concluded that =rf1f2(−iy−1)� y−(1−r/2), r ∈ (0, 1/2).





Chapter 3

Regular variation and free regular

infinitely divisible laws

3.1 Introduction

In the previous chapter we understood the tail behaviour of measures under Boolean convolutions

while in this chapter we shall focus on the free multiplicative convolution. The motivation comes

from random matrix theory as well as classical probability theory.

The limiting spectral distribution (LSD) of product of two or more random matrices is

important in the field of random matrix theory. It arises naturally, for example, in study of

multivariate F-matrix (the product of mutually independent sample covariance matrix and the

inverse of another sample covariance matrix). The limiting spectral distributions of F-matrices

were studied in [95], [12]. In addition, products of random matrices arise in study of high

dimensional time-series, for example, see [74], [75]. For a history of the product of random

matrices the reader is referred to [13].

The existence of a non-random LSD of the product of a sample covariance matrix and a non-

negative definite Hermitian matrix, which are mutually independent, was given explicitly in terms

of the Stieltjes transform in [82]. A stronger result in this direction is obtained using the moment

method and truncation arguments in [13], by replacing the non-negative definite assumption by

a Lindeberg type one, on the entries of the Hermitian matrices. When one considers Wishart

matrices, a more explicit description of the LSD can be given in terms of free probability; see

[70], [36] etc.
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It is well known in random matrix theory that the Marchenko-Pastur law (also called the free

Poisson distribution) turns out to be the limiting spectral distribution of a sequence of Wishart

random matrices(WN )N≥1. Suppose for each N ≥ 1, YN is an N × N independent random

Hermitian matrix with LSD ρ. It is shown in [36] that the expected empirical distribution of

WNYN (equivalently, W 1/2
N YNW

1/2
N ) converges to m� ρ as N →∞ where � denotes the free

multiplicative convolution. It is not difficult to see that ρ is compactly supported if and only if so

is m� ρ. Therefore it is natural to ask whether there is any relation between the tail behaviour

of m � ρ and ρ? In this chapter, an affirmative answer is given to that question when ρ has a

power law tail decay. Thus, based on the LSD of YN , one can describe the tail behaviour of that

of WNYN . In general, it is very hard to write down an explicit formula for the limit distribution.

It is noteworthy that the probability measures of the form m� ρ are free regular probability

measures (see [9]) which form a special subclass of free infinitely divisible distributions (also

called the �-infinitely divisible distributions, see [28]). The free cumulant transform of a

free regular probability measure can be described through a Lévy-Khintchine representation.

Interestingly, it turns out that ρ is the Lévy measure of m� ρ. Therefore it is natural to wonder

whether there is any relation between the tail behaviour of a free regular probability measure and

its Lévy measure.

In classical probability theory, a classically infinitely divisible probability measure µ also

enjoys a Lévy-Khintchine representation in terms of its Lévy measure ν. In [47], it was shown

that for a positively supported classically infinitely divisible probability measure (a subordinator)

µ, the tails of µ and its Lévy measure ν are asymptotically equivalent if and only if any one of µ or

ν is subexponential. Later the result was extended in the works of Pakes [73] and Watanabe [96]

to classify the subexponentiality of classically infinitely divisible distributions on R. Recently, in

[97], the subexponential densities of absolutely continuous infinitely divisible distributions on the

half line is characterized under some additional assumptions. In analogy to the classical case, it is

natural to pose whether free subexponentiality characterizes the tail equivalence of a free infinitely

divisible probability measure and its free Lévy measure. But unfortunately the result can not be

extended to the bigger class of free infinitely divisible probability measures. Since according to

Arizmendi et al. [9], the correct analogue of the positively supported classically infinitely divisible

probability measures are the free regular probability measures, in this chapter, we provide a partial

answer in Theorem 3.3.1 by showing the tail equivalence of a free regular probability measure

and its free Lévy measure in presence of regular variation. Note that regularly varying measures

are the most important subclass of both free and classical subexponential distributions ([59]).
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As an application of this result, the exact tail behaviour of the free multiplicative convolution

of Marchenko-Pastur law with another regularly varying measure is derived in Corollary 3.4.1.

Besides, the connection of these results with the classical case is not a mere coincidence. From

the famous result of Bercovici and Pata ([29]), it is known that classical and free infinitely

divisible laws are in a one-to-one correspondence. It is shown in Corollary 3.4.7 that in the

regularly varying set-up, the classical infinitely divisible law and its image under the Bercovici-

Pata bijection are tail equivalent. The free multiplicative convolution of a measure with Wigner’s

semicircle law also appears naturally as limits of many random matrix models. It is shown

in Corollary 3.4.4 that the tail behaviour turns out to be different from the one involving the

Marchenko-Pastur law.

In Section 3.2 the basic notations and transforms used in free probability are introduced.

Subsequently, the main results and their proofs are in Section 3.3. Section 3.4 collects some

corollaries arising out of the main results. The relation between the tails of a probability measure

and its Boolean Lévy measure is briefly sketched in Section 3.5. An independent proof of our

result in case of free Poisson distributions (i.e. Corollary 3.4.1) is given in Section 3.6. The

proofs depend heavily on relations between the transforms and regular variation. To keep this

chapter self contained, the main result of [59] is quoted in the Appendix.

3.2 Preliminaries and Main results

3.2.1 Notations and basic definitions:

Recall the notions of regular variation and the tail of a probability measure from the begining of

Section 2.2. A distribution F on [0,∞) is called (classical) subexponential if F (n)(x) ∼ F (x)

as x→∞, for all n ≥ 0. Here F (n) denotes the n-th (classical) convolution of F . It is apparent

that both regular variation and subexponentiality of a probability measure µ is defined through its

distribution function F .

For a complex number z, <z and =z denote its real and imaginary parts, respectively. Given

positive numbers η, δ and M , let us define the following cone:

Γη = {z ∈ C+ : |<z| < η=z} and Γη,M = {z ∈ Γη : |z| > M}.
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Then we shall say that f (z)→ l as z goes to∞ non-tangentially, abbreviated by “n.t.”, if for any

ε > 0 and η > 0, there exists M ≡M (η, ε) > 0, such that |f (z)− l| < ε, whenever z ∈ Γη,M .

This is same as saying that the convergence in C+ is uniform in each cone Γη. The boundedness

can be defined analogously.

We use the notations “f (z) ≈ g (z)”, “f (z) = o (g (z))” and “f (z) = O (g (z)) as z →

∞ n.t.” in an analogous way as defined in the previous chapter, to mean, respectively, that

“f (z) /g (z) converges to a non-zero finite limit”, “f (z)/g (z) → 0” and “f (z) /g (z) stays

bounded as z → ∞ n.t.” If the limit is 1 in the first case, we write f (z) ∼ g (z) as z → ∞

n.t. For f (z) = o (g (z)) as z → ∞ n.t., we shall also use the notations f (z) � g (z) and

g (z)� f (z) as z →∞ n.t.

Recall the setsM,M+ andMp to be the same as defined before. The setMp,α will contain

all probability measures inMp with regularly varying tail index −α such that p ≤ α ≤ p+ 1.

Despite of repetitiveness, it is not unpleasant to recall the Cauchy transform. For a probability

measure µ ∈M, its Cauchy transform is defined as

Gµ (z) =

∫ ∞
−∞

1

z − t
dµ (t) , z ∈ C+.

Note that Gµ maps C+ to C−. Set Fµ = 1
Gµ

, which maps C+ to C+.

The free cumulant transform (Cµ) and the Voiculescu transform (φµ) of a probability measure

µ are defined as

Cµ (z) = zφµ

(
1

z

)
= zF−1

µ

(
1

z

)
− 1,

for z in a domain Dµ = {z ∈ C− : 1/z ∈ Γη,M} where F−1
µ is defined; The free additive

convolution of two probability measures µ1, µ2 on R is defined as the probability measure µ1�µ2

on R such that φµ1�µ2 (z) = φµ1 (z) + φµ2 (z) or equivalently Cµ1�µ2 (z) = Cµ1 (z) + Cµ2 (z)

for z ∈ Dµ1 ∩Dµ2 . It turns out that µ1 � µ2 is the distribution of the sum X1 +X2 of two free

random variables X1 and X2 having distributions µ1 and µ2 respectively. On the other hand, the

free multiplicative operation � onM is defined as follows (see [28]). Let µ1, µ2 be probability

measures on R, with µ1 ∈ M+ and let X1, X2 be free random variables such that µXi = µi

. Since µ1 is supported on R+ , X1 is a positive self-adjoint operator and µ
X

1/2
1

is uniquely

determined by µ1. Hence the distribution µ
X

1/2
1 X2X

1/2
1

of the self-adjoint operator X1/2
1 X2X

1/2
1

is determined by µ1 and µ2. This measure is called the free multiplicative convolution of µ1 and

µ2 and it is denoted by µ1 � µ2 . This operation onM+ is associative and commutative.
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We recall (Theorem 1.3 and Theorem 1.5 of [22]) the remainder terms in Laurent series

expansion of Cauchy and Voiculescu transforms for probability measures µ with finite p moments

and summarize the following expressions from [59]:

rGµ(z) = zp+1

Gµ(z)−
p+1∑
j=1

mj−1(µ)z−j

 (3.2.1)

and

rφµ(z) = zp−1

φµ(z)−
p−1∑
j=0

κj+1(µ)z−j

 , (3.2.2)

where {mj (µ) : j ≤ p} and {κj (µ) : j ≤ p} denotes the moment and free cumulant sequences

of the probability measure µ, respectively.

3.2.2 Classical infinite divisibility and known results

A probability measure µ is called classically infinitely divisible, if for every n ∈ N, there exists

a probability measure µn such that µ = µn ∗ µn ∗ · · · ∗ µn(n times), where ∗ is the classical

convolution of probability measures. A detailed description about classical infinite divisibility

can be found in [80]. It is well known that a probability measure µ on R is classically infinitely

divisible if and only if its classical cumulant transform C∗µ (w) := log
∫
R e

iwxdµ (x) has the

following Lévy-Khintchine representation (see [80] or [16])

C∗µ (w) = iηw − 1

2
aw2 +

∫
R

(
eiwt − 1− iwt1[−1,1] (t)

)
dν (t) , w ∈ R, (3.2.3)

where η ∈ R, a ≥ 0 and ν is a Lévy measure on R, that is,
∫
R min

(
1, t2

)
dν (t) < ∞ and

ν ({0}) = 0. If this representation exists, the triplet (η, a, ν) is called the classical characteristic

triplet of µ and the triplet is unique.

Another form of C∗µ (w) is given by

C∗µ (w) = iγw +

∫
R

(
eiwt − 1− iwt

1 + t2

)
1 + t2

t2
dσ (t) , w ∈ R,

where γ is a real constant and σ is a finite measure on R.
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One has the following relationships between the two representations (see equations (2.3)

below definition 2.1 in [16]):

a = σ({0}),

dν(t) =
1 + t2

t2
1R\{0}dσ(t), (3.2.4)

η = γ +

∫
R
t

(
1[−1,1](t)−

1

1 + t2

)
dν(t). (3.2.5)

In general, when one does not have the Brownian component, it is easier to consider the Laplace

transform (if exists) of the measure, for example, in the case of compound Poisson. In this

situation let us recall the classical result which studies the tail equivalence of Lévy measure and

the infinitely divisible distribution. In [47] it was shown subexponentiality is a property which

makes an infinitely divisible measure and its Lévy measure tail equivalent.

Theorem 3.2.1 ([47]). Let µ be a classical infinitely divisible probability measure on [0,∞).

Suppose µ has the Lévy-Khintchine representation of the form,

f(s) =

∫ ∞
0−

e−stdµ(t) = exp

{
−as−

∫ ∞
0

(1− e−st)dν(t)

}

where ν is a Lévy measure satisfying
∫∞

0 min{1, t}dν(t) <∞. Then the following statements

are equivalent:

(a) µ is subexponential,

(b) ν is subexponential,

(c) µ(x,∞) ∼ ν(x,∞) as x→∞.

Here, the probability measure ν, supported on the interval (1,∞) is defined by

ν(1, x) = ν(1, x]/ν(1,∞) .

The remarkable feature of this result is that tail equivalence gives subexponentiality. In

Section 3.3 we will address the partial extension of this result in the free setting.
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3.2.3 Free infinite divisibility and free regular probability measures

Free infinitely divisible probability measures are defined in analogy with classical infinitely

divisible probability measures. Infinitely divisible measures can also be described in terms of

a representation through Voiculescu and free cumulant transforms. A probability measure µ is

called free infinitely divisible, if for every n ∈ N, there exists a probability measure µn such

that µ = µn � µn � · · ·� µn(n times) holds. Also a probability measure µ on R is �-infinitely

divisible i.e. free infinitely divisible if and only if there exists a finite measure σ on R and a real

constant γ, such that

φµ (z) = γ +

∫
R

1 + zt

z − t
dσ (t) , z ∈ C+ (3.2.6)

A probability measure µ on R is �-infinitely divisible if and only if the free cumulant

transform has the representation:

C�µ (z) = ηz + az2 +

∫
R

( 1

1− zt
− 1− tz1[−1,1](t)

)
dν(t), z ∈ C−, (3.2.7)

where η ∈ R, a ≥ 0 and ν is called the Lévy measure on R. In the expressions (3.2.6) and

(3.2.7), similar to the equations (3.2.4) and (3.2.5) holds true (see Proposition 4.16 of [16]). The

free characteristic triplet (η, a, ν) of a probability measure µ is unique.

For a free infinitely divisible probability measure µ on R where the Lévy measure (Definition

2.1 in [16]) ν satisfies
∫
R min (1, |t|) dν (t) <∞ and a = 0 the Lévy-Khintchine representation

(3.2.7) reduces to

C�µ (z) = η′z +

∫
R

(
1

1− zt
− 1

)
dν (t) , z ∈ C−, (3.2.8)

where η′ ∈ R. The measure µ is called a free regular infinitely divisible distribution (or

regular �-infinitely divisible measure) if η′ ≥ 0 and ν((−∞, 0]) = 0.

The most typical example is compound free Poisson distributions. If the drift term η′ is zero

and the Lévy measure ν is λρ for some constant λ > 0 and a probability measure ρ on R, then

we call µ a compound free Poisson distribution with rate λ and jump distribution ρ. To clarify

these parameters, we denote µ = π (λ, ρ).

Example 3.2.2 ([9], Remark 8).
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(i) The Marchenko-Pastur law m is a compound free Poisson with rate 1 and jump distribution

δ1 .

(ii) The compound free Poisson π (1, ρ) coincides with the free multiplication m� ρ.

We shall use both the Voiculescu transform and the cumulant transform to state our theorems.

The notations µγ,σ�,V or µη
′,0,ν
�,C shall occur whenever we write the Voiculescu transform or the

cumulant transform of a free regular probability measure µ respectively. The indices V and C are

used to distinguish between the occurrence in Voiculescu transform or in the cumulant transform.

The use of γ, σ, η′ and ν in the indices are clear from (3.2.9) and (3.2.10) while in µη
′,0,ν
�,C , the

index 0 is to indicate the non existence of the Gaussian part in the representation of the cumulant

transform. Let µγ,σ�,V = µη
′,0,ν
�,C be a free regular infinitely divisible probability measure. Then its

Voiculescu and cumulant transforms have the representations:

φµγ,σ�,V
(z) = γ +

∫
R+

1 + tz

z − t
dσ (t) , (3.2.9)

C
µη
′,0,ν

�,C
(z) = η′z +

∫
R+

(
1

1− zt
− 1

)
dν (t) (3.2.10)

respectively following (3.2.6) and (3.2.8). In the above representation the pair (γ, σ) is related to

(η′, ν) in the following way:

dσ(t) =
t2

1 + t2
dν(t),

γ = η′ +

∫
R+

t

1 + t2
dν(t), η′ ≥ 0.

(3.2.11)

The proof of Theorem 3.3.1 demands the finiteness of the measure σ appearing the Voiculescu

transform while the Lévy measure may not be a finite measure for a free regular infinitely divisible

measure.

3.3 Main results and their proofs

Now we are ready to state the main results of this chapter while keeping in mind all the notations

defined above. The following theorem gives us the tail equivalence between a free regular

probability measure and the finite measure σ occurring in the Voiculescu transform.

Theorem 3.3.1. Suppose that µγ,σ�,V is free regular infinitely divisible measure. Then the following

statements are equivalent:
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(i) µγ,σ�,V has regularly varying tail of index −α.

(ii) σ has regularly varying tail of index −α.

If either of the above holds, then µγ,σ�,V (x,∞) ∼ σ (x,∞) as x→∞.

Remark 3.3.2. It follows from Theorem 4.2 of [9] that for a free regular infinitely divisible

probability measure µγ,σ�,V , both µγ,σ�,V and σ are concentrated on [0,∞).

We fix the notations m−1(σ) = γ, m0(σ) = σ(R+) and σ for the probability measure

σ/m0 (σ). Recall the remainder terms of the Cauchy and Voiculescu transforms as defined in

(3.2.1) and (3.2.2) respectively. To prove Theorem 3.3.1, we first state and prove the following

Lemma.

Lemma 3.3.3. Let µγ,σ�,V be a regular �-infinitely divisible probability measure.

(i) Voiculescu transform of µγ,σ�,V and Cauchy transform of σ are related by

φµγ,σ�,V
(z) = m−1 (σ)−m0 (σ) z +

(
1 + z2

)
m0 (σ)Gσ (z) . (3.3.1)

(ii) In this case, µγ,σ�,V and σ have same number of moments.

(iii) If both µγ,σ�,V and σ have p moments, then the p cumulants of µγ,σ�,V and p moments of σ

satisfy the relation

κp

(
µγ,σ�,V

)
= mp−2 (σ) +mp (σ) (3.3.2)

and the remainder terms of φµγ,σ�,V
and Gσ satisfy

rφ
µ
γ,σ
�,V

(z) = mp−1 (σ) z−1 +mp (σ) z−2 +
(
1 + z−2

)
m0 (σ) rGσ (z) . (3.3.3)

Proof. (i) Using (3.2.9), we have

φµγ,σ�,V
(z) = γ +m0 (σ)

∫ ∞
0

1 + tz

z − t
dσ (t)

= γ +m0 (σ)Gσ (z) +m0 (σ) z

∫ ∞
0

t

z − t
dσ (t)

= m−1 (σ) +m0 (σ)Gσ (z)−m0 (σ) z +m0 (σ) z2Gσ (z) .
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(ii) Here it is easy to conclude that for a non trivial free regular probability measure µγ,σ�,V , one

must have γ > 0. Now we shall prove the existence of a p moment of σ is equivalent to

the existence of a p moment of µγ,σ�,V . We shall follow the proof of Proposition 2.3 of [22].

First suppose σ admits a moment of order p. For all positive integer n, let us define

the positive finite measure σn on [0,∞) by σn(A) = σ
(
A ∩ [0, n)

)
. By dominated

convergence theorem σn converges weakly to σ. Thus by Theorem 3.8 of [15] we have

µγ,σn�,V converges weakly to µγ,σ�,V . Therefore,

∫ ∞
0

tpdµγ,σ�,V (t) ≤ lim inf
n

∫ ∞
0

tpdµγ,σn�,V (t).

The range of the integral is R+ instead of R because µγ,σn�,V is again a free regular measure

(since µγ,σ�,V is so) and the Remark 3.3.2 gives µγ,σn�,V is concentrated on [0,∞). Thus,

∫ ∞
0

tpdµγ,σ�,V (t) ≤ lim inf
n

mp(µ
γ,σn
�,V ).

To show that µγ,σ�,V has pth moment finite, it is enough to show that {mp(µ
γ,σn
�,V )}n is

bounded. By the equation (2.1) of [22], we have the qth free cumulant κq(µ
γ,σn
�,V ) =

mq−2(σn)+mq(σn) since σn’s are compactly supported (with the convention thatm−1(σn) =

γ). So, for all n,

mp(µ
γ,σ
�,V ) =

∑
π∈NC(p)

∏
V ∈π

κ|V |(µ
γ,σn
�,V )

=
∑

π∈NC(p)

∏
V ∈π

(
mq−2(σn) +mq(σn)

)
≤

∑
π∈NC(p)

∏
V ∈π

(
mq−2(σ) +mq(σ)

)
<∞,

whereNC(p) is the set of all non crossing partitions of {1, 2, . . . , n} and |V | is the number

of elements in the block V of π.

Next suppose µγ,σ�,V admits a moment of order p. Then by Theorem 1.3 of [22], φ
µ
γ/n,σ/n
�,V

admits a Laurent series expansion of order p + 1. Thus for all positive integer n, we

have φ
µ
γ/n,σ/n
�,V

(z) = 1
nφµγ,σ�,V

(z). Now support of µγ/n,σ/n�,V (z) is contained in [0,∞) (as

µ
γ/n,σ/n
�,V (z) is a free regular measure with σn has support on [0,∞)) and the uniqueness

of the Laurent series expansion allows us to conclude that µγ/n,σ/n�,V (z) has a Laurent

series expansion of order p + 1. Moreover we have κi(µ
γ/n,σ/n
�,V ) = 1

nκi(µ
γ,σ
�,V ) for all
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i ∈ {1, 2, . . . , p}. From Theorem 5.10(iii) of [28], we conclude that

dσ(t) = lim
n→∞

nt2

1 + t2
dµ

γ/n,σ/n
�,V (t).

Therefore we have,

∫ ∞
0

tpdσ(t) ≤ lim inf
n

∫ ∞
0

tpnt2

1 + t2
dµ

γ/n,σ/n
�,V (t)

≤ lim inf
n

∫ ∞
0

ntpdµ
γ/n,σ/n
�,V (t)

= lim inf
n

nmp(µ
γ/n,σ/n
�,V )

= lim inf
n

∑
π∈NC(p)

n
∏
V ∈π

κ|V |(µ
γ/n,σ/n
�,V )

= lim inf
n

∑
π∈NC(p)

n1−#π
∏
V ∈π

κ|V |(µ
γ,σ
�,V ) <∞,

where in the third line we have used µγ/n,σ/n�,V ((−∞, 0)) = 0 since for all n, µγ/n,σ/n�,V is

free regular and σ/n has support on [0,∞) and in the last line #π indicated the number of

blocks in the partition π.

(iii) If both µγ,σ�,V and σ have p moments finite, considering Laurent series expansion of Gσ

in (3.3.1) and the fact that mj (σ) = m0 (σ)mj (σ) for 0 ≤ j ≤ p, we have

φµγ,σ�,V
(z) =m−1(σ)−m0(σ)z + (1 + z2)

p+1∑
j=1

mj−1(σ)z−j

+ (1 + z2)z−(p+1)m0(σ)rGσ(z)

=

p∑
j=1

(mj−2(σ) +mj(σ))z−(j−1) + z−(p−1)
(
mp−1(σ)z−1

+mp(σ)z−2 + (1 + z−2)m0(σ)rGσ(z)
)
.

Since rGσ (z) = o (1) as z →∞ n.t., we have

mp−1 (σ) z−1 +mp (σ) z−2 +
(
1 + z−2

)
m0 (σ) rGσ (z) = o (1)

as z →∞ n.t. Thus, by uniqueness of Laurent series expansion (which is equivalent to the

uniqueness of Taylor series expansion given in Lemma A.1 of [22]), we obtain (3.3.2) as

well as (3.3.3).
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It can be shown, using the expansions of Voiculescu and Cauchy transforms, that, if µγ,σ�,V

is a compactly supported probability measure, then σ is also compactly supported and their

cumulants and moments are related exactly by the formula stated in (3.3.2). Further note that

mp−2 (σ) +mp (σ) is also the classical cumulant of a classical infinitely divisible distribution.

Proof of Theorem 3.3.1. First assume that µγ,σ�,V is regularly varying with tail index −α for some

α ≥ 0. Then there exists a unique nonnegative integer p such that α ∈ [p, p + 1] and the

measure µγ,σ�,V ∈ Mp,α. Also, by Lemma 3.3.3((ii)), we have σ ∈ Mp as well. Furthermore

evaluating (3.3.3) at z = iy and equating the real and the imaginary parts respectively, we have,

(
1− y−2

)
m0 (σ)<rGσ (iy)−mp (σ) y−2 = <rφ

µ
γ,σ
�,V

(iy) (3.3.4)

and

(
1− y−2

)
m0 (σ)=rGσ (iy)−mp−1 (σ) y−1 = =rφ

µ
γ,σ
�,V

(iy) . (3.3.5)

Now if α ∈ [p, p+ 1), using Theorem 3.7.1, we have from (3.3.5), as y →∞,

(
1− y−2

)
m0 (σ)=rGσ (iy)−mp−1 (σ) y−1 = =rφ

µ
γ,σ
�,V

(iy)

∼ −
π(p+1−α)

2

cos π(α−p)
2

ypµγ,σ�,V (y,∞) ,

which is regularly varying of index − (α− p) with α− p < 1. Thus, as y →∞,

m0 (σ)=rGσ (iy) ∼
(
1− y−2

)
m0 (σ)=rGσ (iy)

∼ −
π(p+1−α)

2

cos π(α−p)
2

ypµγ,σ�,V (y,∞)

and is also regularly varying of index − (α− p). Now by Theorem 3.7.1, σ and hence σ has

regularly varying tail of index −α and

=rGσ (iy) ∼ −
π(p+1−α)

2

cos π(α−p)
2

ypσ (y,∞) as y →∞.
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Putting two asymptotic equivalences together, we get µγ,σ�,V (y,∞) ∼ m0 (σ)σ (y,∞) =

σ (y,∞) as same argument works for the case α = p + 1 with the help of Theorem 3.7.2

and equation (3.3.4).

To get the converse statement, we shall start with σ to be regularly varying with index −α.

Thus σ ∈Mp,α for some integer p ≥ 0. Lemma 3.3.3((ii)) gives µγ,σ�,V ∈Mp also, and we get

the equations (3.3.4) and (3.3.5). Arguing exactly the same way like above we shall be able to

conclude that µγ,σ�,V is regularly varying with tail index −α.

Noting the relations between the measures appearing in the Lévy-Khintchine representations

of the Voiculescu and cumulant transform of a free regular measure, the following corollary

is immediate and this will also be very important to link our result with the classical one in

Corollary 3.4.7.

Corollary 3.3.4. Suppose µη
′,0,ν
�,C is a free regular infinitely divisible measure. Then the following

are equivalent:

(i) µη
′,0,ν
�,C has regularly varying tail of index −α.

(ii) ν has regularly varying tail of index −α.

If either of the above holds, then µη
′,0,ν
�,C (x,∞) ∼ ν (x,∞) as x→∞.

Remark 3.3.5. Note that in Corollary 3.3.4, the measure ν may not be a finite measure. Since ν

being a Lévy measure of a free regular probability measure we have ν(1,∞) <∞ and therefore

there is no ambiguity in talking about its tail behaviour.

Proof of Corollary 3.3.4. First we observe the following with the notations σ, ν and a be as

in (3.2.11). Suppose a = 0. Then from (3.2.11), taking integral from x to infinity on both sides

we get,

ν(x,∞) = σ(x,∞) +

∫ ∞
x

1

t2
dσ(t)

≤ (1 +
1

x2
)σ(x,∞). since x < t.

Therefore,

σ(x,∞) ≤ ν(x,∞) ≤ (1 +
1

x2
)σ(x,∞).



76 Chapter 3. Regular variation and free regular infinitely divisible laws

Taking limit as x→∞ we get

σ (x,∞) ∼ ν (x,∞) as x→∞. (3.3.6)

Now Corollary 3.3.4 is immediate from Theorem 3.3.1 and the equation (3.3.6) as

µη
′,0,ν
�,C (x,∞) = µγ,σ�,V (x,∞)

Theorem 3.3.1∼ σ (x,∞)
(3.3.6)∼ ν (x,∞) .

3.4 Some corollaries

As an application of our main result we study the compound free Poisson distribution which turn

out to be the free analogue of the classical compound Poisson distribution. Recall, that if G is a

proper distribution on [0,∞) and λ > 0 then the (classical) compound Poission distribution is

defined as

F (x) = e−λ
∞∑
n=0

λn

n!
G(n)(x)

where G(0) is Dirac mass at 0 and G(n) is the n-th classical convolution of G. It was shown in

Theorem 3 of [47] that F is subexponential if and only if G is subexponential and this is also

equivalent to F (x) ∼ λG(x) as x→∞. We show that a partial analogue of this result is true in

the free setting when one restricts to regularly varying measures.

The representation of a compound free Poisson distribution µ = π (1, ρ) as µ = m�ρ makes

it an interesting object to study further as they arise as limits of empirical distribution of random

matrices.

As a corollary of Corollary 3.3.4, we get the following:

Corollary 3.4.1. Let ρ be a positively supported probability measure. Then for the compound

free Poisson distribution µ = π (1, ρ) which coincides with the free multiplication m � ρ, the

following are equivalent.

(i) The tail of µ is regularly varying with index −α.

(ii) The tail of ρ is regularly varying with index −α.
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If any of the above holds, then µ (y,∞) ∼ ρ (y,∞) as y →∞.

Proof of Corollary 3.4.1. This result follows directly from Corollary 3.3.4 while noticing from

the example 3.2.2 that ρ is the Lévy measure of the compound free Poisson distribution µ =

m� ρ.

An independent proof of Corollary 3.4.1 is given in Section 3.6. Now we describe two

situations where the above results can be applied. The first one is for random matrices while the

other one is for the free stable laws.

Example 3.4.2. As mentioned in the introduction of this chapter, m�ρ often occurs as a limiting

spectral distribution. For example consider for all N ≥ 1, WN = 1
MN

X∗NXN where XN is

a complex Gaussian random matrix with i.i.d. entries and the sequence {MN}N≥1 is such

that limN→∞N/MN = λ ∈ (0,∞). Also take YN , for all N ≥ 1 to be random complex

Hermitian matrices independent of the entries of XN . Suppose there exists a non random

probability measure ρ on R such that empirical spectral distribution of YN converges to ρ weakly

in probability. In this framework, when λ = 1, the expected empirical spectral distribution of

WNYN converges to m� ρ weakly as N →∞ (see Theorem 2.3 of [36]). Therefore if we take ρ

to be regularly varying with tail index −α, α ≥ 0, we are able to conclude that the tail of the

limiting spectral distribution of WNYN is same as that of ρ using Corollary 3.4.1.

Example 3.4.3. Following [29] we define two probability measures µ and ν to be equivalent

(denote as µ ∼ ν) if µ(S) = ν(aS + b) for every Borel set S ⊆ R, for some a ∈ R+ and b ∈ R.

A measure µ (excluding point mass measures) is said to be �-stable if for every ν1, ν2 ∈M such

that ν1 ∼ µ ∼ ν2, it follows that ν1 � ν2 ∼ µ. Associated with every �-stable measure µ there

is a number α ∈ (0, 2] such that the measure µ� µ is a translate of the measure D1/2αµ where

Daµ(S) = µ(aS). The number α is called the stability index of µ. The probability measure µ(2)

will be the image of µ under the map t→ t2 on R.

We give a proper example where Corollary 3.4.1 follows directly. From the appendix of

[29] we get that the Voiculescu transform of a �-stable probability measure with stability index

α ∈ (0, 1) is of the form

φ(z) = −eiαρπz−α+1

where ρ is called the asymmetry coefficient. Now using Theorem 3.7.1 of Appendix we can

conclude that the�-stable probability measures inM0 with stability index α ∈ (0, 1) are exactly

regularly varying probability measures with tail index −α.
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Let µα be a regularly varying symmetric free α-stable law with 0 < α < 2. Then µ(2)
α =

ρα
2
�m, where ρα

2
is a free positive α

2 stable law.

The above statement can be verified by the following arguments. First from Corollary 21 of

[76], observe that the positive α
2 -stable law µ

(2)
α enjoys the relation

µ(2)
α = (ρβ � ρβ)�m,

where ρβ is a free positive 2α/(2 + α) stable law. Applying Proposition 13 of [10], it follows

that ρβ � ρβ = ρα
2

. Hence µ(2)
α = ρα

2
�m. Observe µ(2)

α and ρα
2

are inM0 implies that both

have regularly varying tail of index −α
2 . The Corollary 3.4.1 can be seen as generalizing this

behaviour to a much more general class of probability measures.

It is a pertinent question that whether the conclusion involving Marchenko-Pastur law can be

replaced by the standard Wigner’s semicircle law, w. The measures of the form w � ρ for some

ρ ∈M+ has appeared as the limiting spectral distributions of random matrices (see [2, 35, 37]),

free type W distributions (see [76]) and in several other places.

The first observation in this regard is that in general one cannot say that w�ρ is free infinitely

divisible for some ρ ∈M+. In fact if one considers the measure w+ having density

fw+(x) =
1

2π

√
4− (x− 2)21[0,4](x),

then it was shown in Corollary 3.5 of [79] that w � w+ is not a free infinitely divisible measure.

The obstacle comes from the fact that w+ is not free regular. So a valid question in this regard is

whether w�ρ is regularly varying if ρ is free regular with regularly varying tail? We give a partial

answer when the measure ρ� ρ is regularly varying of index −α, α ≥ 0. Such a particular case

can arise in free stable laws and goes back to the works of Bercovici, Pata and Biane (in particular

see Proposition A4.3 of [29]), which states if ρα and ρβ are free stable laws of index α, β ∈ (0, 1)

respectively, then ρα � ρβ is free stable law of index αβ
α+β−αβ and hence regularly varying of

index − αβ
α+β−αβ (as discussed in the second paragraph of Example 3.4.3). So combining these

observations we have the following corollary where we use the definition of regularly varying

measures supported on R instead of R+. Since we restrict ourselves to symmetric probability

measures we don’t go into the details of the definition of regular variation of such tail balanced

measures.
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Corollary 3.4.4. Let ρ ∈M+ and w be the standard Wigner measure. Then the following are

equivalent.

(i) ρ0 = ρ� ρ is free regular infinitely divisible, regularly varying probability measure with

tail index −α, α ≥ 0.

(ii) µ = w � ρ is free infinitely divisible, regularly varying with tail index −α
2 .

Proof. Assume ((i)). Theorem 22 of [76] says that for ρ ∈M+ and w be the standard Wigner

measure, then ρ0 = ρ� ρ is a free regular infinitely divisible probability measure if and only if

µ = w � ρ is a symmetric free infinitely divisible probability measure. Now from Lemma 8 of

[10] we get

µ2 = w2 � ρ� ρ = m� ρ� ρ = m� ρ0.

(See Remark 3.6.2 for a proof of the fact that w2 = m.) Since ρ0 is regularly varying with tail

index−α we have from Corollary 3.4.1 that µ2 is also regularly varying with tail index−α. Thus

by using the transform x 7→
√
x we get that the symmetric measure µ is regularly varying with

tail index −α
2 . Thus we have shown ((ii)).

The arguments given above can be reversed to show that ((ii)) implies ((i)).

The following is also an immediate consequence of the above discussion and Corollary 3.4.4.

Corollary 3.4.5. Let α ∈ (0, 1) and the measure ρ 2α
α+1

is free stable of index 2α
α+1 . Thenw�ρ 2α

α+1

is regularly varying with tail index −α
2 .

Now we relate our result for the free regular probability measures (Corollary 3.3.4) and the

famous classical result (stated in Theorem 3.2.1) via the notion of Bercovici-Pata bijection.

Definition 3.4.6 ([29]). The Bercovici-Pata bijection between the set of classical infinitely

divisible probability measures I (∗) and the set of free infinitely divisible probability measures

I (�) is the mapping Λ : I (∗) → I (�) that sends the measure µ in I (∗) with classical

characteristic triplet (η, a, ν) (see equation (3.2.3)) to the measure Λ (µ) in I (�) with free

characteristic triplet (η, a, ν) (see equation (3.2.7)).

Corollary 3.4.7. Suppose α ≥ 0, η
′
> 0 and ν ∈ M+ satisfies

∫
R+ min (1, t) dν (t) < ∞.

Then the classical infinitely divisible probability measure µη
′,0,ν
∗ has regularly varying tail of
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index −α if and only if the free regular infinitely divisible probability measure µη
′,0,ν
�,C , the image

of µη
′,0,ν
∗ under Bercovici-Pata bijection, has regularly varying tail of index −α. In either case,

µη
′,0,ν
∗ (x,∞) ∼ µη

′,0,ν
�,C (x,∞) as x→∞.

Proof of Corollary 3.4.7. Suppose the classical infinitely divisible probability measure µη
′,0,ν
∗

has regularly varying tail, then by Theorem 3.2.1 we have the measure ν in the Laplace transform

has the same regularly varying tail. Now both measures in the Laplace transform and the Fourier

transform is same ν by Remark 21.6 of [80], since the measure ν satisfies the conditions a = 0 in

(3.2.3),
∫ 0
−∞ dν(t) = 0,

∫ 1
0 tdν(t) <∞ and η > 0. Then the relation (3.3.6) assures that σ has

also the same regular variation and finally applying corollary 3.3.4 we can conclude that µη
′,0,ν
�,C

has the same regular variation like µη
′,0,ν
∗ . The arguments can also be reversed.

3.5 Regular variation and Boolean infinitely divisible laws

Recall that the Boolean to free Bercovici-Pata bijection (B1) was introduced in [29] (the definition

of Bt for any t ≥ 0 is given in (2.2.7)). The map B1 establishes an one to one correspondence

between the set of Boolean infinitely divisible probability measures on R to the set of all free

infinitely divisible probability measures on R such that B1(µ ] ν) = B1(µ)�B1(ν). Also B1

is a homeomorphism with respect to weak convergence.

According to Speicher and Woroudi [84], any probability measure on R is infinitely divisible

with respect to Boolean convolution and therefore enjoys a Lévy-Khintchine representation of

the form:

z − Fµ(z) = γµ +

∫
R

1 + tz

z − t
dρµ(t)

where γµ ∈ R and the Boolean Lévy measure ρµ of µ is a finite non-negative measure.

Theorem 3.5.1. For any positively supported probability measure µ and α ≥ 0, the following

are equivalent:

(i) µ is regularly varying with tail index −α,

(ii) ρµ is regularly varying with tail index −α.

If any of the above holds then µ(y,∞) ∼ ρµ(y,∞) as y →∞.
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Proof. First suppose µ be a positively supported probability measure with regularly varying with

tail index −α. By definition of Boolean to free Bercovici-Pata bijection we have z − Fµ(z) =

φB1µ
(z). Hence using Theorem 2.2.6 we get B1(µ) is also regularly varying with tail index −α.

Now we know that a probability measure ν is free regular if and only if B−1
1 (ν) is supported

on the non-negative part of the real line. This shows that B1(µ) is free regular. Thus applying

Corollary 3.3.4, we get that B1(µ) and ρµ both have the same regularly varying tail index since

ρµ is the free Lévy measure of B1(µ). We finish the proof by observing that the arguments can

be reversed to get the converse implication.

It is very natural to note that a similar result like Corollary 3.4.7 can be obtained in an obvious

way to connect the classical, free and Boolean cases which is not further described.

3.6 Another proof of Corollary 3.4.1

In this section, we provide the proof of Corollary 3.4.1 without using the Theorem 3.3.1. We

have, µ = m� ρ where m is the Marchenko-Pastur law. Interestingly the cumulant transform of

µ becomes equal to the Ψ-transform of ρ, the Lévy measure of µ, i.e.,

Cµ (z) =

∫ ∞
0

zt

1− zt
dρ (t) = Ψρ (z) , z ∈ C−. (3.6.1)

In addition, it follows that for any z ∈ C+,

Cµ

(
1

z

)
=

∫ ∞
0

t

z − t
dρ (t) =

φσ (z)

z
.

Hence,

φµ (z) =

∫ ∞
0

zt

z − t
dρ (t)

= −z
∫ ∞

0

z − t− z
z − t

dρ (t)

= −z + z2Gρ (z) , z ∈ C−. (3.6.2)
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Now recall that for a probability measure σ on R which has all moments finite up to order p we

have the following Taylor expansions from Theorem 1.3 and Theorem 1.5 of [22]:

Rσ (z) =

p−1∑
i=0

ki+1 (σ) zi + o
(
zp−1

)
. (3.6.3)

Using (3.6.3) and the relation Cσ (z) = zRσ (z), we have,

Cσ (z) =

p∑
i=1

ki (σ) zi + o (zp) . (3.6.4)

Also it is easy to see that,

Ψσ (z) =

p∑
i=1

mi (σ) zi + o (zp) . (3.6.5)

Wheremi (σ) , ki (σ) are the ith moment and ith cumulant of σ respectively. ThereforeCσ1 (z) =

Ψσ2 (z) for two probability measures σ1 and σ2 where σ2 has moments finite up to order p if and

only if σ1 has finite cumulants up to order p and

ki (σ1) = mi (σ1) , ∀ 1 ≤ i ≤ p, (3.6.6)

by comparing the first p terms of the Taylor expansions of (3.6.4) and (3.6.5). Hence the

equation (3.6.1) allows us to conclude the relation (3.6.6) is true for σ1 = µ and σ2 = ρ.

Lemma 3.6.1. Suppose µ = m�ρ and ρ is a probability measure such that the map y 7→ ρ (y,∞)

is regularly varying with tail index −α. Then,

rφµ (z) = rGρ (z) . (3.6.7)

Proof. There exists p ∈ N such that p ≤ α ≤ p+ 1 and µ ∈Mp since the map y 7→ ρ (y,∞) is

regularly varying with tail index −α. Therefore the remainder term of the Voiculescu transform

of µ can be written in the following way using (3.2.2):

rφµ(z) = zp−1

φµ(z)−
p−1∑
j=0

kj+1(σ)z−j


= zp−1

z2Gρ(z)− z −
p−1∑
j=0

mj+1(σ)z−j

 ,
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where in the second line we have used (3.6.2) and the moment cumulant relationship (3.6.6).

Relabelling the index in the sum, we get,

rφµ(z) = zp+1

Gρ (z)− 1

z
−

p+1∑
j=2

mj−1 (σ) z−j


= zp+1

Gρ (z)−
p+1∑
j=1

mj−1 (σ) z−j

 .

Now the lemma follows from (3.2.1).

Proof of Corollary 3.4.1. First we suppose p ≤ α < p + 1 and ρ is regularly varying of index

−α. Then we have from [59],

as y →∞,

=rGρ (iy) ∼ −
π(p+1−α)

2

cos π(α−p)
2

ypρ (y,∞) (3.6.8)

using (3.6.7) and the above asymptotic equivalence (3.6.8) we get,

=rφµ (iy) ∼ −
π(p+1−α)

2

cos π(α−p)
2

ypρ (y,∞) (3.6.9)

Therefore =rφµ (iy) is regularly varying of index − (α− p) and consequently µ is regularly

varying of index −α by Theorem 2.1 of [59]. Thus as y →∞,

=rφµ (iy) ∼ −
π(p+1−α)

2

cos π(α−p)
2

ypµ (y,∞) (3.6.10)

Putting the last two asymptotic equivalences (3.6.9) and (3.6.10) together, we get

µ (y,∞) ∼ ρ (y,∞)

as n→∞.

The arguments can also be reversed to give the converse statement in this case.

Now suppose α = p + 1 and ρ is regularly varying of index −α with ρ has has moments

finite up to order p only. Then as y →∞, <rφµ (iy) = <rφρ (iy) ∼ −π
2 y

pρ (y,∞).

Again by similar arguments like the previous case we shall have µ (y,∞) ∼ ρ (y,∞) in this

case also and the arguments can be reversed too.
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Remark 3.6.2. The standard Marchenko-Pastur law m which has the density fm (x) = 1
2πx√

x (4− x)1[0,4] (x) on [0,∞) is the image under the mapping x 7→ x2 of the standard Wigner

semi-circle law w having the density fw (x) =
1

2π

√
4− x21[−2,2] (x) on R.

Proof. The semi-circle distribution and the Marchenko-Pastur distribution have the S-transforms

Sw (z) and Sm (z) given by:

Sw (z) =
1√
z
, (3.6.11)

and

Sm (z) =
1

z + 1
. (3.6.12)

Now from Theorem 6 of [10] we have,

Sw2 (z) =
z

z + 1
S2
w (z)

(3.6.11)
=

z

z + 1
× 1

z

=
1

z + 1
(3.6.12)

= Sm (z) .

Since w has positive densities on both positive and negative parts of R, one also needs to check

the S̃-transform (see page 11 for definition of S̃-transform). But a similar calculation will provide

us that S̃w2 (z) = Sm (z) both in suitable domains for z.

3.7 Appendix

In the above proofs we have used some important results from [59]. We recall these results here

to help the reader. The following two theorems are written in a more compact form which are in

particular Theorems 2.1− 2.4 in [59].

Theorem 3.7.1. Let p be a nonnegative integer and µ be a probability measure in the classMp

and α ∈ [p, p+ 1). The following statements are equivalent:

(i) y 7→ µ (y,∞) is regularly varying of index −α.

(ii) y 7→ =rG (iy) is regularly varying of index − (α− p).
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(iii) y 7→ =rφ (iy) is regularly varying of index − (α− p), <rφ (iy) � y−1 as y → ∞ and

rφ (z)� z−1 as z →∞ n.t.

If any of the above statements holds, we also have, as z →∞ n.t., rG (z) ∼ rφ (z)� z−1; as

y →∞,

=rφ (iy) ∼ =rG (iy) ∼ −
π(p+1−α)

2

cos π(α−p)
2

ypµ (y,∞)� 1

y
and <rφ (iy) ∼ <rG (iy)� 1

y
.

If α > p and any of the statements (i)-(iii) holds, we further have, as y →∞,

<rφ (iy) ∼ <rG (iy) ∼ −
π(p+2−α)

2

sin π(α−p)
2

ypµ (y,∞) .

If α = p = 0 and any of the statements (i)-(iii) holds, we further have, as y →∞,

<rφ (iy) ∼ <rG (iy) ∼ −µ (y,∞) .

Theorem 3.7.2. Let p be a nonnegative integer and µ be a probability measure in the classMp.

Let β ∈ (0, 1/2) and α = p+ 1. The following statements are equivalent:

(i) y 7→ µ (y,∞) is regularly varying of index − (p+ 1).

(ii) y 7→ <rG (iy) is regularly varying of index −1.

(iii) y 7→ <rφ (iy) is regularly varying of index −1, y−1 � =rφ (iy)� y−(1−β/2) as y →∞

and z−1 � rφ (z)� z−β as z →∞ n.t.

If any of the above statements holds, we also have, as z → ∞ n.t., z−1 � rG (z) ∼ rφ (z) �

z−β; as y →∞,

y−(1+β/2) � <rφ (iy) ∼ <rG (iy) ∼ −π
2
ypµ (y,∞)� y−(1−β/2)

and

y−1 � =rφ (iy) ∼ =rG (iy)� y−(1−β/2).





Chapter 4

Largest eigenvalue in the rank one case

4.1 Introduction

The final two chapters of this thesis consider the generalization of one of the most studied random

graph, namely the Erdős–Rényi random graph (ERRG). It is a graph on N vertices where an

edge is present independently with probability εN . Given a graph on N vertices, say, {1, . . . , N},

let AN denote the adjacency matrix of the graph, whose (i, j)-th entry is 1 if there is an edge

between vertices i and j, and 0 otherwise. Important statistics of the graph are the eigenvalues

and eigenvectors of AN which encode crucial information about the graph. The adjacency

matrix of the ERRG is a symmetric matrix with diagonal entries zero, and the entries above the

diagonal are independent and identically distributed Bernoulli random variables with parameter

εN . We consider an inhomogeneous extension of the ERRG where the presence of an edge

between vertices i and j is given by a Bernoulli random variable with parameter pi,j and these

{pi,j : 1 ≤ i < j ≤ N} need not be same. When pi,j are same for all vertices i and j it shall be

referred as (homogeneous) ERRG.

The mathematical foundations of inhomogeneous ERRG where the connection probabilities

pi,j come from a discretization of a symmetric, non-negative function f on [0, 1]2 was initiated

in [31]. The said article considered edge probabilities given by

pi,j =
1

N
f

(
i

N
,
j

N

)
. (4.1.1)

In that case the average degree is bounded and the phase transition picture on the largest cluster

size was studied in the same article. See [30, 89] for further results on inhomogeneous ERRG.

87
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We consider a similar set-up but the average degree is unbounded and study the properties of

eigenvalues of the adjacency matrix. The connection probabilities are given by

pi,j = εNf

(
i

N
,
j

N

)

with the assumption that

NεN →∞. (4.1.2)

Let λ1(AN ) ≥ . . . ≥ λN (AN ) be the eigenvalues of AN . It was shown in [37] (see also

[98] for a graphon approach) that the empirical distribution of the centered adjacency matrix

converges, after scaling with
√
NεN , to a compactly supported measure µf . When f ≡ 1, the

limiting law µf turns out to be the semicircle law (w). Note that f ≡ 1 corresponds to the

(homogeneous) ERRG (see [46, 86] also for the homogeneous case). It was shown in [37] that

when f is of the form f(x, y) = r(x)r(y) the limit distribution of the bulk becomes w � µ,

where µ is the law of r(U) where U is Uniform random variable on [0, 1].

Quantitative estimates on the largest eigenvalue of the homogeneous case (when NεN �

(logN)4) were studied in [55, 94] and it follows from their work that the smallest and second

largest eigenvalue converges to the edge of the support of semicircular law. The results were

improved recently in [24] and the condition on sparsity can be extended to the caseNεN � logN

(which is also the connectivity threshold for the graph). It was shown that inhomogeneous ERRG

also has similar behaviour. The largest eigenvalue of inhomogeneous ERRG whenNεN � logN

was treated in [25].

It is well known that in the classical case of a (standard) Wigner matrix, the largest eigenvalue

converges to the Tracy-Widom law. We note that there is a different scaling between the edge

and bulk of the spectrum in ERRG. As pointed out before that the bulk scales at (NεN )−1/2 and

the largest eigenvalue has the scaling (NεN )−1. Letting

WN = AN − E(AN ) , (4.1.3)

where E(AN ) is the entrywise expectation of AN , it is easy to see that

AN = εN 11
′+WN ,
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where 1 is the N × 1 vector with each entry 1. Since the empirical spectral distribution of

(NεN )−1/2WN converges to semi-circle law, the largest eigenvalue of the same converges to

2 almost surely. As E[AN ] is a rank-one matrix, it turns out that the largest eigenvalue of AN

scales like NεN , which is different from the bulk scaling.

To derive the fluctuations one needs to study in details what happens to the rank-one pertur-

bations of a Wigner matrix. When WN is a symmetric random matrix with independent and

identically distributed entries and the perturbation comes from a rank-one matrix then the fluctua-

tion of the largest eigenvalue depends on the form of the deformation matrix (see [33, 34, 52]).

For example, when

MN =
WN√
N

+ PN

where PN = θ 11′ then λ1(MN ) has a Gaussian fluctuation. If PN is a diagonal matrix with

single non-zero entry, the fluctuations depend on the distribution of the entries of WN . The rank-

one case was extended to the finite rank case in the works of Benaych-Georges et al. [23], Pizzo

et al. [77]. We do not go into further discussion of the results there as they crucially use the fact

that bulk behaviour (after scaling) in the limit is semicircular law, which is not generally the case

here.

The scaling limit of the maximum eigenvalues of an ERRG turns out to be interesting. Recall

that the fluctuations of the maximum eigenvalue (λ1(AN )) in the homogeneous case were studied

in [49]. It was proved that

(εN (1− εN ))−1/2 (λ1(AN )− E[λ1(AN )])⇒ N(0, 2).

The above result was shown under the assumption that

(logN)ξ � NεN (4.1.4)

for some ξ > 8, which is a stronger assumption than (4.1.2). Further, Under the assumption

that N ξ � NεN for some ξ ∈ (2/3, 1], it was proved in Theorem 2.7 of [48] that the second

largest eigenvalue (λ2(AN )) of the (homogeneous) ERRG after an appropriate centering scaling

converge in distribution to the Tracy-Widom law. The conditions were recently improved in [66].

The properties of the largest eigenvector in the homogeneous case was studied in [48, 66, 86].

The adjacency matrix of the inhomogeneous ERRG does not fall directly into the purview

of the above results, since WN , as in (4.1.3), is a symmetric matrix, with independent entries



90 Chapter 4. Largest eigenvalue in the rank one case

above the diagonal, but the entries have a variance profile, which also depends on the size of

the graph. The inhomogeneity does not allow the use of local laws suitable for semicircle law

in an obvious way. The last two chapters of this thesis aims at extending the results obtained in

[49] for the case that f is a constant to the case that f is a non-negative, symmetric, bounded,

Riemann integrable function on [0, 1]2 which induces an integral operator of finite rank k, under

the assumption that (4.1.4) holds.

In this chapter we consider the rank one case i.e., in the definition of edge probabilities in

(4.1.1) take f(x, y) to be a product of two bounded and Riemann integrable functions (details

are in (4.2.5)). The introduction to the integral operator arising out of f is not needed in this

chapter while in the finite rank case, considered in the next chapter, we use the integral operator.

A crucial observation in the rank one case is that there is exactly one eigenvalue of the adjacency

matrix AN , outside the bulk which escapes to infinity. Inspired by the calculations done in [49],

here we shall show in Theorem 4.2.4 that the largest eigenvalue of the adjacency matrix of an

inhomogeneous Erdős–Rényi random graph after suitable scaling and centering converges in

distribution to the normal distribution with zero mean and some finite variance.

In the next section, we describe the model followed by the main theorems of this chapter.

Section 4.3 states some necessary estimates, describes the master equation (4.3.12) for the largest

eigenvalue of the adjacency matrix and the proof of first order asymptotics of the same. The

proofs of the main theorems are in Section 4.4. The results for the well known Chung-Lu graph

is illustrated in Section 4.5. Finally, Section 4.6 provides the proofs of the technical lemmas

stated in Section 4.3.

4.2 Set up and main results

Let f : [0, 1]× [0, 1]→ [0,∞) be a bounded Riemann integrable function, satisfying

f(x, y) = f(y, x) ∀x, y ∈ [0, 1] . (4.2.1)

Since f is bounded on a compact domain, there exists a positive real constant M such that

M := sup
x,y∈[0,1]

f(x, y) . (4.2.2)
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A sequence of positive real numbers (εN : N ≥ 1) is fixed that satisfies

lim
N→∞

εN = ε∞ , and (4.2.3)

(logN)ξ

N
� εN � 1 as N →∞ for some ξ > 8. (4.2.4)

In the next chapter, we shall assume only the existence of ε∞, which is enough to conclude

the results. For the sake of simplicity in the expressions we assume ε∞ = 0 in this chapter

although that need not be the case. Consider the random graph GN on vertices {1, . . . , N}

where, for each (i, j) with 1 ≤ i ≤ j ≤ N , an edge is present between vertices i and j

with probability εNf( i
N ,

j
N ), independently of other pairs of vertices. In particular, GN is an

undirected graph with possible self loops but without multiple edges. Boundedness of f ensures

that εNf( i
N ,

j
N ) ≤ 1 for all 1 ≤ i ≤ j ≤ N when N is large enough.

The adjacency matrix of GN is denoted by AN . Clearly, AN is a symmetric random matrix

whose upper triangular entries including the diagonal are independent Bernoulli random variables,

i.e.,

AN (i, j) , BER
(
εNf

(
i
N ,

j
N

))
, 1 ≤ i ≤ j ≤ N .

As mentioned in the introduction of this chapter, we consider the case when f has a multiplicative

structure. Let r be bounded and Riemann integrable on [0, 1] and

f(x, y) = r(x)r(y) for all x, y ∈ [0, 1]. (4.2.5)

The following definition will be used both in this and the next chapter.

Definition 4.2.1. A sequence of events EN occurs with high probability, abbreviated as w.h.p., if

P (EcN ) = O
(
e−(logN)η

)
,

for some η > 1. For random variables YN , ZN ,

YN = Ohp(ZN ) ,

means there exists a deterministic finite constant C such that

|YN | ≤ C|ZN | w.h.p. ,
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and

YN = ohp(ZN ) ,

means that for all δ > 0,

|YN | ≤ δ|ZN | w.h.p.

We shall say

YN = Op(ZN ) ,

to mean that

lim
x→∞

sup
N≥1

P (|YN | > x|ZN |) = 0 ,

and

YN = op(ZN ) ,

to mean that for all δ > 0,

lim
N→∞

P (|YN | > δ|ZN |) = 0 .

The reader may note that if ZN 6= 0 a.s., then “YN = Op(ZN )” and “YN = op(ZN )” are

equivalent to “(Z−1
N YN : N ≥ 1) is stochastically tight” and “Z−1

N YN
P−→ 0”, respectively.

Besides, “YN = Ohp(ZN )” is a much stronger statement than YN = Op(ZN ), and so is

“YN = ohp(ZN )” than “YN = op(ZN )”.

In the rest of this chapter and the next chapter, the subscript ‘N ’ is dropped from notations

like AN , WN , εN , eN etc. and the ones that will be introduced. We state the main theorems of

this chapter under under the above set up i.e. A is the adjacency matrix of the Inhomogeneous

ERRG GN such that (4.2.3), (4.2.4) and (4.2.5) are satisfied along with ε∞ = 0. Let µmax be

the largest eigenvalue of A and define

e =


N−1/2r(1/N)

N−1/2r(2/N)
...

N−1/2r(1)

 .

The following theorem gives us the first order asymptotics of µmax .

Theorem 4.2.2. We have,

µmax −Nεe′e = Ohp

(√
Nε
)
. (4.2.6)
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The proof of the above theorem is provided in the next section. The following theorem tells

us the behaviour of Eµmax.

Theorem 4.2.3. We have,

Eµmax =
β2

(e′e)2 +Nεe′e+ O
(
ε+ (Nε)−1/2

)
(4.2.7)

where

β2 =

∫ 1

0
r3(x)dx

∫ 1

0
r(x)dx.

Our next result tries to address the limiting behaviour of the largest eigenvalue of the adjacency

matrix under the product structure of f .

Theorem 4.2.4. We have,

ε−1/2 (µmax − E[µmax])⇒ N(0, σ2) (4.2.8)

where N(0, σ2) is a normal random variable with mean zero and variance

σ2 := 2

(∫ 1
0 r

3(x)dx∫ 1
0 r

2(x)dx

)2

. (4.2.9)

The following theorem essentially states that the eigenvector corresponding to the largest

eigenvalue µmax is asymptotically aligned with the vector e.

Theorem 4.2.5. Let v be the normalized eigenvector corresponding to the largest eigenvalue

µmax of A. Then,

e′v − 1 = Ohp

(
(Nε)−1/2

)
. (4.2.10)

The proofs of the above theorems are in the next two sections.

4.3 Some estimates and the first order asymptotics for µmax

Consider E[A] to be the matrix having entry wise expected values of A. Then we shall be able to

write,

E[A] := Nεee′.
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Observe that e′e := 1
N

∑N
i=0 r

2(i/N) converges to
∫ 1

0 r
2(x)dx as N → ∞. Here without

loss of generality we assume that integral is non-zero. We will always choose N large enough

such that εr( i
N )r( jN ) < 1. We generally refer W (as defined in (4.1.3)) to be the Wigner-type

matrix because it is a symmetric matrix with centered, independent upper triangular entries.

The boundedness of f allows us to conclude that the entries of W are pointwise bounded. The

following bound on the moments of W turns out to be useful later. We have,

E[|W (i, j)|n] ≤ Cnε, (4.3.1)

for some constant C > 0 independent of n and N . The following lemma gives a bound on the

largest eigenvalue of W . The result is similar to [49, Lemma 4.3]. We provide a proof of it in

the later section as the entries of W are no longer identically distributed. The result immediately

follows from the work of Vu [94]. The result also does not depend on the specific form of f .

Lemma 4.3.1. Let ‖ · ‖ denotes the spectral norm of a matrix and suppose the conditions (4.2.1)

and (4.2.4) are satisfied. Then the event

‖W‖ ≤ 2
√
MNε+ C1(Nε)1/4(logN)ξ/4

occurs w.h.p. for some constant C1 > 0 and M is as in (4.2.2).

We record a few estimates that will subsequently be used in the proofs of both this and the next

chapter. Since their proofs are routine, they are being postponed to Section 4.6. The notations e1

and e2, introduced in the next lemma and used in the subsequent lemmas, should not be confused

with ej defined in (5.2.2) (in the next chapter). Continuing to suppress ‘N ’ in the subscript, let

L =blogNc , (4.3.2)

where bxc is the largest integer less than or equal to x. It is noteworthy to mention that the

following lemmas also do no depend on the rank of f . The following lemma gives an estimate on

E[e′Wne].

Lemma 4.3.2. There exists 0 < C1 < ∞ such that if e1 and e2 are N × 1 vectors with each

entry in [−1/
√
N, 1/

√
N ], then

∣∣E (e′1Wne2

)∣∣ ≤ (C1Nε)
n/2 , 2 ≤ n ≤ L .



4.3. Some estimates and the first order asymptotics for µmax 95

If we consider the equation (4.3.12), then we notice that bounds on terms like e′Wne are

needed. The next lemma shows that for n not large enough, the value concentrates around the

mean. The lemmas are stated in a slightly more general setting because they will be used in

Chapter 5.

Lemma 4.3.3. There exists η1 > 1 such that for e1, e2 as in Lemma 4.3.2, it holds that

max
2≤n≤L

P
(∣∣e′1Wne2 − E

(
e′1W

ne2

)∣∣ > N (n−1)/2εn/2(logN)nξ/4
)

=O
(
e−(logN)η1

)
, (4.3.3)

where ξ is as in (4.1.4). In addition,

e′1We2 = ohp (Nε) . (4.3.4)

Lemma 4.3.4. If e1, e2 are as in Lemma 4.3.2, then

Var
(
e′1We2

)
= O(ε) ,

and

E
(
e′1W

3e2

)
= O(Nε) . (4.3.5)

Now we proceed towards the proof of Theorem 4.2.2. Note that the Assumption (4.2.4) and

the Lemma 4.3.1 allows us to conclude that

‖W‖ ≤ (2
√
M + C1)

√
Nε . (4.3.6)

w.h.p. for all large N . From (4.1.3) we have |µmax −Nεe′e| ≤ ‖W‖ since E[A] is a rank one

matrix with largest eigenvalue Nεe′e. Therefore using (4.3.6), we have,

|µmax −Nεe′e| ≤ (2
√
M + C1)

√
Nε (4.3.7)

w.h.p. An appeal to the equation (4.2.4) yields from (4.3.7), that

µmax ≥
Nεe′e

2
(4.3.8)
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happens w.h.p. for all large N . Using (4.3.6) and (4.3.8) we get that there exists an ε0 > 0 such

that
‖W‖
µmax

≤ 2(2
√
M + C1)√
Nεe′e

≤ 1− ε0, (4.3.9)

w.h.p. for all large N . For further calculations in this subsection, we work on the high probability

event where the above holds. Let v be the eigenvector corresponding to the largest eigenvalue

µmax of A, that is,

Av = µmaxv.

Then using (4.1.3) we have (µmaxI −W )v = Nεee′v = Nε(e′v)e, where I is the N × N

identity matrix. Now it follows from (4.3.9), that µmax is not an eigenvalue of W , then the matrix

(µmaxI −W ) is invertible and so,

v = Nεe′v(µmaxI −W )−1e. (4.3.10)

Premultiplying the above equation by e′, we get,

1 = Nεe′(µmaxI −W )−1e, (4.3.11)

where we have used e′v 6= 0 (since µmax is not an eigenvalue of W w.h.p.). Notice that the

equation (4.3.11) can be expressed as

µmax = Nεe′
(
I − W

µmax

)−1

e

= Nε
∞∑
n=0

e′
(

W

µmax

)n
e (4.3.12)

where the series is valid due to (4.3.9). The equation (4.3.7) suggests that

µmax√
Nεe′e

P−→ 1.

The above probability convergence is not enough to conclude Theorem 4.2.2 about the first order

asymptotics of µmax. We are going to prove the theorem with the help of (4.3.12).

Proof of Theorem 4.2.2. Let us consider the Laurent series expansion of µmax from (4.3.12), in

the following way,

µmax = Nεe′e+Nε
e′We

µmax
+Nε

∞∑
n=2

e′Wne

µnmax

, (4.3.13)
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which holds w.h.p. due to Lemma 4.3.1. The term e′We in the numerator in the second term on

the right hand side is Ohp(
√
Nε) by an application of Lemma 4.3.1. Hence using (4.3.8) we have

the second term of Ohp(
√
Nε). The final term in (4.3.13) can be bounded in the following way:

Nε

∞∑
n=2

e′Wne

µnmax

≤ Nε
∞∑
n=2

(
‖W‖
µmax

)n/2
.

Now using (4.3.9) we get that the right hand side of the above equation is Ohp (1) w.h.p. This

gives us the equation (4.2.6).

4.4 Proof of main Theorems

The section will be devoted to the proofs of our main results. In the Proposition 4.4.1 we provide

the main representation of µmax (with the help of (4.3.12)) which will later be used to derive the

distributional convergence stated in Theorem 4.2.4. The following Proposition describes a more

detailed description of µmax and E[µmax].

Proposition 4.4.1. Let the assumptions of Theorem 4.2.4 hold. Then w.h.p.,

µmax = µ0 +
e′We

e′e
+ Ξ (4.4.1)

where µ0 = µ0(N) is a deterministic real number, Ξ satisfies

E[|Ξ|] = O

(
(logN)

ξ
2

√
N

)
(4.4.2)

and

Ξ = Ohp

(
(logN)

ξ
2

√
N

)
. (4.4.3)

Using the above Proposition we derive Theorem 4.2.4. Later in the present section, we deduce

the proof of the proposition 4.4.1.

Proof of Theorem 4.2.4. First observe that Proposition 4.4.1 allows us to write

µmax − Eµmax√
ε

=
e′We√
εe′e

+ Ohp

(
(logN)

ξ
2

√
Nε

)
. (4.4.4)
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Note that using the assumption Nε � (logN)ξ we can see that the last factor goes to zero in

probability. Hence to show the distributional convergence stated in (4.2.8), it is enough to show

that
e′We√
εe′e

⇒ N
(
0, σ2

)
, (4.4.5)

where σ2 is as defined in (4.2.9). Observe that

e′We =
1

N

N∑
i,j=1

W (i, j)r

(
i

N

)
r

(
j

N

)

=
2

N

∑
i≤j

W (i, j)r

(
i

N

)
r

(
j

N

)
− 1

N

∑
1≤i≤N

W (i, i)r2

(
i

N

)
. (4.4.6)

Let us consider the first term in the right hand side of (4.4.6) and set k = 1 + 2 + · · ·+N . Define

σ2
k :=

∑
i≤j

Var

(
2

N
W (i, j)r

(
i

N

)
r

(
j

N

))

= ε
∑
i≤j

4

N2
r3

(
i

N

)
r3

(
j

N

)(
1− εr

(
i

N

)
r

(
j

N

))
.

Therefore σk = O(
√
ε). It is easy to see that the conditions of the Lyapunov’s Central limit

theorem are satisfied and hence

2

Nσk

∑
i≤j

W (i, j)r

(
i

N

)
r

(
j

N

)
⇒ N(0, 1).

In particular

e′We

σk
⇒ N(0, 1),

since the second term in the right hand side of the equation (4.4.6) after dividing by σk converges

to zero in probability. The distributional convergence in (4.4.5) follows from the following

observation

lim
N→∞

σk√
εe′e

=
√

2

∫ 1
0 r

3(x)dx∫ 1
0 r

2(x)dx
.

Now we write down the proof of Proposition 4.4.1.
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Proof of Proposition 4.4.1. We consider the high probability event A0 where Theorem 4.2.2,

Lemma 4.3.1 and Lemma 4.3.3 hold. Therefore on A0 we have

‖W‖
µmax

≤ C3

(logN)ξ/2
(4.4.7)

for some constant C3 > 0, using condition (4.2.4) and the equation (4.3.9) on A0. Note that the

expansion of µmax up to second order (or up to any finite order) i.e. of the form (4.3.13) is not

enough to conclude this proposition. So, we write the equation (4.3.12) as

µmax = Nε
L∑
n=0

e′Wne

µnmax

+Nε
∑
n>L

e′Wne

µnmax

, (4.4.8)

where L is as in (4.3.2). Using (4.4.7), the second term in the right hand side of the above

expression can be bounded above by a constant multiple of

∑
n>L

‖W‖n−1

µn−1
max

≤
(

1

(logN)ξ/2

)L
, (4.4.9)

and the final expression is O
(
(logN)− logN

)
. We rewrite the first term in (4.4.8) as follows

Nε

L∑
n=0

e′Wne

µnmax

= Nε

L∑
n=0

E[e′Wne]

µnmax

+Nε

L∑
n=2

e′Wne− E[e′Wne]

µnmax

+
Nε

µmax
e′We. (4.4.10)

Let us consider the second term in the above equation. Using Lemma 4.3.3 and the equation

(4.3.8) we have

∣∣∣∣∣Nε
L∑
n=2

e′Wne− E[e′Wne]

µnmax

∣∣∣∣∣ ≤ Nε
L∑
n=2

2nN (n−1)/2εn/2(logN)nξ/4

(Nεe′e)n

≤ C4
Nε√
N

∞∑
n=2

2n(logN)nξ/4

(Nε)n/2

= O

(
(logN)ξ/2√

N

)
,
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where C4 is a constant, that has been used to bound e′e. Absorbing the bound of (4.4.9) in

O
(

(logN)ξ/2/
√
N
)

we can reduce (4.4.10) to the following:

µmax =
Nε

µmax
e′We+

√
Nε

L∑
n=0

E[e′Wne]

µnmax

+ Ohp

(
(logN)ξ/2√

N

)
. (4.4.11)

Let us consider the following polynomial equation in µ0, given by

µ0 = Nε

L∑
n=0

E[e′Wne]

µn0
. (4.4.12)

Since the factors E[e′Wne] are non-negative for largeN (see Lemma 4.6.1), the equation (4.4.12)

has a unique positive solution for µ0. Now any positive real solution which satisfies the above

equation must be of the form µ0 = Nε+ O (1). Let ζ = µmax − µ0. Then the expression of µ0

and Theorem 4.2.2 allows us to conclude that

ζ = Ohp

(√
Nε
)

on A0. Hence using (4.4.11) and (4.4.12) we have

ζ =
Nεe′We

µmax
+Nε

L∑
n=2

(
E[e′Wne]

µnmax

− E[e′Wne]

µn0

)
+ Ohp

(
(logN)ξ/2√

N

)
. (4.4.13)

Now for the first term, using the first order asymptotics of µmax from Theorem 4.2.2, Lemma 4.3.3

with n = 1 and the fact that E[e′We] = 0, we have,

Nεe′We

µmax
=
e′We

e′e

(
1 + O(Nε)−1/2

)
=
e′We

e′e
+ ohp

(
(logN)ξ/2√

N

)
.

Using µmax = ζ + µ0, the second term in (4.4.13) can be expressed as

Nε

L∑
n=2

E[e′Wne]

(
1

µnmax

− 1

µn0

)
=Nε

L∑
n=2

E[e′Wne]

µn0

[(
1 +

ζ

µ0

)−n
− 1

]

=
∞∑
r=1

drζ
r,

where

dr = (−1)rNε
L∑
n=2

2n+rn(n+ 1) · · · (n+ r − 1)E[e′Wne]

r!µn+r
0

.
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Using Lemma 4.3.2 it follows that

dr = O
(
(Nε)−r

)
Thus we get,

ζ −
∞∑
r=1

drζ
r = ζ(1−

∞∑
r=1

drζ
r−1)

=
e′We

e′e
+ Ohp

(
(logN)ξ/2√

N

)
.

Taking the factor (1−
∑∞

r=1 drζ
r−1) on the right hand side followed by applications of Lemma

4.3.3 and the expression drζr−1 = O
(
(Nε)−(r+1)/2)

)
for any r ≥ 1, we have,

ζ = µmax − µ0

=
e′We

e′e
+ Ohp

(
(logN)ξ/2√

N

)
.

Thus we have shown equation (4.4.1) with

Ξ = µmax − µ0 −
e′We

e′e
.

where Ξ satisfies (4.4.3) w.h.p. Further using

E[|Ξ|] ≤
(
E[|Ξ|2]E[1Ac0 ]

) 1
2 + O

(
(logN)ξ/2√

N

)
,

where 1A0 is the indicator function of the event A0 and we have used Cauchy-Schwartz inequality

in the first part on the second line. Note that

E[µ2
max] ≤ E[TrA2]

=
N∑

i,j=1

E
[
(A(i, j))2

]
,

which is bounded by N2 because A(i, j) is either 1 or 0 for any i, j ∈ {1, 2, . . . , N}. Now

E[|Ξ|2] = E[|µmax − µ0 − e′We|2]

≤ E[|µmax|2] + E[|µ0|2] + E[|e′We|2]



102 Chapter 4. Largest eigenvalue in the rank one case

+ 2
(
E[|µmax|2]

) 1
2
(
|e′We|2

) 1
2 + 2

(
E[|µmax|2]

) 1
2 µ0 + 2

(
E[|e′We|2]

) 1
2 µ0

≤ NC5

for some C5 > 0 since µ0 ≤ N for all large N and, for some constant C6 > 0, E[|e′We|2] ≤

C6N
4, since W (i, j) ≤ 2 for any i, j ∈ {1, 2, . . . , N}. Therefore,

E[|Ξ|] ≤ N
C5
2 e−

ν
2

(logN)ξ/4−1
+ O

(
(logN)ξ/2√

N

)
.

Finally, the required bound for E[|Ξ|] follows from the fact that

N
C5
2 e−

ν
2

(logN)
ξ
4−1

� (logN)
ξ/
2

√
N

.

Proof of Theorem 4.2.5. Let v be the normalized eigenvector described in (4.3.10). Denoting

K = Nεe′v, we get,

v =
K

µmax

(
I − W

µmax

)−1

e

=
K

µmax

∞∑
n=0

(
W

µmax

)n
e .

(4.4.14)

Now v being normalized, the expression (4.4.14) allows us to write,

1 = v′v

=
K2

µ2
max

∞∑
m,n=0

µ−m−nmax (Wne)′Wme.

Therefore, we have,

K−2 =
1

µ2
max

(
e′e+ Ohp(Nε)

−1/2
)
,

by using Lemma 4.3.1 and (4.3.9). Now putting K = Nεe′v in the above equation, we get,

(
e′v
)2

=
(µmax

Nε

)2 (
e′e+ Ohp(Nε)

−1/2
)−1

=
( µmax

Nεe′e

)2 (
1 + Ohp(Nε)

−1/2
)
.
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An appeal to Theorem 4.2.2 establishes the equation (4.2.10) and that completes the proof.

Proof of Theorem 4.2.3. A formal moment calculation will give us the fact that e′W 3e =

Ohp(Nε). Now using (4.3.12) and the just said fact, we have the expression for µmax as

µmax = Nε

∞∑
n=0

e′
(

W

µmax

)n
e

= Nεe′e+
Nε

µmax
e′We+

Nε

µ2
max

e′W 2e+ Ohp

(
(Nε)−1

)
.

Let us again denote this high probability event byA0 (with an abuse of notation) and the following

computations are are on this event. Iterating the expression for µmax in the right hand side of the

above equation we get,

µ = Nεe′e

+Nεe′We

(
Nεe′e+

Nε

µmax
e′We+

Nε

µ2
max

e′W 2e+ O
(
(Nε)−1

))−1

+Nεe′W 2e

(
Nεe′e+

Nε

µmax
e′We+

Nε

µ2
max

e′W 2e+ O
(
(Nε)−1

))−2

+ O
(
(Nε)−1

)
,

= Nεe′e+
e′We

e′e

(
1− e′We

µmaxe′e
−O

(
(Nε)−1

))
+

e′W 2e

Nε(e′e)2

(
1− 2e′We

µmaxe′e
−O

(
(Nε)−1

))
+ O

(
(Nε)−1

)
,

= Nεe′e+
e′We

e′e
− (e′We)2

µmax(e′e)2
+

e′W 2e

Nε(e′e)2
+ O

(
(Nε)−1/2

)
.

We plug in the asymptotics of µmax again in above equation to get,

µmax = Nεe′e+
e′We

e′e
+

e′W 2e

Nε(e′e)2

− (e′We)2

(e′e)2

(
Nεe′e+

Nε

µmax
e′We+

Nε

µ2
max

e′W 2e+ O
(
(Nε)−1

))−1

+ O
(

(Nε)−1/2
)

= Nεe′e+
e′We

e′e
+

e′W 2e

Nε(e′e)2
− (e′We)2

Nε(e′e)3
+ O

(
(Nε)−1/2

)
.
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Now we write µmax = µmax1A0 + µmax1Ac0 . We take expectation on both sides and get the

following from the above expression of µmax,

Eµmax = Nεe′e+
E
(
e′W 2e

)
Nε(e′e)2

− E (e′We)2

Nε(e′e)3
+ O

(
(Nε)−1/2

)
.

Finally we get the equation (4.2.7) from the above equation by observing that e′e = O(1),

E[e′W 2e] = Nε(β2 + O(ε)) and |E[e′We]2| = ε(β2 + O(ε)).

4.5 An example

The following random graph was introduced in [41]. For N ≥ 1, let (dNi : 1 ≤ i ≤ N) be a

sequence of positive real numbers. Abbreviate

m = max
1≤i≤N

dNi , σ =
N∑
i=1

dNi .

Assume for some ξ > 8,

(logN)ξ � m� N (4.5.1)

and

lim
N→∞

1

N

N∑
i=1

δdNi/m
= η weakly (4.5.2)

for some measure η on R. Suppose η has finite, non-zero second moment. Consider an inhomo-

geneous Erdős–Rényi graph on N vertices where an edge exists between i and j with probability

dNidNj/σ, for 1 ≤ i ≤ j ≤ N , which is called a Chung-Lu graph. Let A and µmax denote the

adjacency matrix and the largest eigenvalue of A respectively. It was shown in [37] that the ESD

of (
√
Nε)−1A converges to w � η weakly in probability. The following theorem describes the

behavior of µmax.

Theorem 4.5.1. Under the hypotheses mentioned above,

√
σ

m
(µmax − E[µmax])⇒ N(0, σ2)

where N(0, σ2) is a normal random variable with mean zero and variance

σ2 := 2

(∫ 1
0 x

3dη(x)∫ 1
0 x

2dη(x)

)2

.
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Proof. Observe that the edge probabilities can be written as

dNidNj
σ

=
m2

σ

dNi
m

dNj
m

and the assumption (4.5.2) ensures that for any n ≥ 0,

1

N

N∑
i=1

(
dNi
m

)n
→
∫ 1

0
xnd(η)x. (4.5.3)

The above expression with n = 1 gives, σ
Nm =

∫ 1
0 xdη(x) + o(1). Let ε = m2

σ , then

ε =
m2

Nm
(∫ 1

0 xdη(x) + o(1)
) � 1,

by the assumption (4.5.1). Also,

Nε =
Nm2

σ
= O(m)� (logN)ξ.

It is noteworthy to mention that while in the proof of Theorem 4.2.4, we have only used the values

of the function r at the rational points in [0, 1]. Here dNi/m can be thought as the values of the

function r at the point i/N , although it may not be true that such a function r can be defined in

the whole of [0, 1]. Define e in the following way:

e =


N−1/2dN1/m

N−1/2dN2/m
...

N−1/2dN/m

 .

The theorem follows from the observation that the arguments given in the proof of Theorem 4.2.4

can be imitated using (4.5.3).

4.6 Proof of the technical lemmas

Proof of Lemma 4.3.1. Note that for any even integer n

E(‖W‖n) ≤ E(Tr(Wn)). (4.6.1)
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Using E(W (i, j)2) ≤ εM (from (4.3.1)) and condition (4.2.4) it is immediate that conditions

of Theorem 1.4 of [94] are satisfied. We shall use the following estimate from the proof of that

result. It follows from [94, Section 4]

E(Tr(Wn)) ≤ C7N(2
√
MNε)n (4.6.2)

where C7 is some positive constant and there exists a constant a > 0 such that k can be chosen as

n =
√

2a(εM)1/4N1/4.

Using (4.6.1), (4.6.2) and (1− x)n ≤ e−nx for n, x > 0,

P
(
‖W‖ ≥ 2

√
MNε+ C1(Nε)1/4(logN)ξ/4

)
= C7N

(
1− C1(Nε)1/4(logN)ξ/4

2
√
MNε+ C1(Nε)1/4(logN)ξ/4

)n

≤ C7N exp

(
− nC1(Nε)1/4(logN)ξ/4

2
√
MNε+ C1(Nε)1/4(logN)ξ/4

)
. (4.6.3)

Now plugging in the value of n in the bound (4.6.3) and using

2
√
M + C1(Nε)−1/4(logN)ξ/4 ≤ 2

√
M + C1

we have

(4.6.3) ≤ C7N exp

(
−C1aM

1/4
√

2(logN)ξ/4

2
√
M + C1

)
≤ e−C8(logN)ξ/4

for some constant C8 > 0 and N large enough. This proves the lemma.

Proof of Lemma 4.3.2. Let A0 be the event where Lemma 4.3.1 holds, that is, ‖W‖ ≤ C9

√
Nε

for some constant C9. Since the entries of e1 and e2 are in [−1/
√
N, 1/

√
N ] so ‖ei‖ ≤ 1 for

i = 1, 2. Hence on the high probability event it holds that

∣∣E (e′1Wne21A0

)∣∣ ≤ (C9Nε)
n/2.

We show that the above expectation on the low probability event Ac0 is negligible. For that first

observe

|E[(e′1W
ne2)2]| ≤ NnC10
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for some constant 0 < C10 <∞. Thus using Lemma 4.3.1 one has

∣∣E (e′1Wne21Ac0
)∣∣ ≤ ∣∣∣E [(e′1Wne2)2

]1/2∣∣∣P (Ac0)1/2

≤ exp
(
nC10 logN − 2−1C2(logN)ξ/4

)
Since n ≤ logN and ξ > 8 the result follows.

Proof of Lemma 4.3.3. The proof is similar to the proof of Lemma 6.5 of [49]. The exponent in

the exponential decay is crucial, so the proof is briefly sketched. Observe that

e′1W
ne2 − E

(
e′1W

ne2

)
=

∑
i∈{1,...,N}n+1

e1(i1)e2(in+1)

(
n∏
l=1

W (il, il+1)− E

[
n∏
l=1

W (il, il+1)

])
(4.6.4)

To use the independence, one can split the matrix W as W ′ +W ′′ where the upper triangular

matrix W ′ has entries W ′(i, j) = W (i, j)1(i 6 j) and the lower triangular matrix W ′′ with

entries W ′′(i, j) = W (i, j)1(i > j). Therefore the above quantity under the sum breaks into 2n

terms each having similar properties. Denote one such term as

Ln =
∑

i∈{1,...,N}n+1

e1(i1)e2(in+1)

(
n∏
l=1

W ′(il, il+1)− E

[
n∏
l=1

W ′(il, il+1)

])
.

Using the fact that each entry of e1 and e2 are bounded by 1/
√
N , it follows by imitating the

proof of Lemma 6.5 of [49] that

E[|Ln|p] ≤
(C11np)

np (Nε)np/2

Np/2
,

where p is an even integer and C11 is a positive constant, independent of n and p. Rest of the

2n − 1 terms arising in (4.6.4) have the same bound and hence

P
(∣∣e′1Wne2 − E

(
e′1W

ne2

)∣∣ > N (n−1)/2εn/2(logN)nξ/4
)

≤ (2C11np)
np (Nε)np/2

Np/2Np(n−1)/2εpn/2(logN)pnξ/4
=

(2C11np)
np

(logN)pnξ/4
.

Choose η ∈ (1, ξ/4) and consider

p =
(logN)η

2C11n
,
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(with N large enough to make p an even integer) to get

P
(∣∣e′1Wne2 − E

(
e′1W

ne2

)∣∣ > N (n−1)/2εn/2(logN)nξ/4
)

≤ exp

(
− 1

2C11
(logN)η(

ξ

4
− η) log logN

)
.

Note that n ≤ L, ensures that p > 1. Since the bound is uniform over all 2 ≤ n ≤ L, the first

bound (4.3.3) follows.

For (4.3.4) one can use Hoeffding’s inequality [60, Theorem 2] as follows.

Define

Ã(k, l) = A(k, l)e1(k)e2(l), 1 ≤ k ≤ l ≤ N.

Since A(k, l) are Bernoulli random variables, so one has {Ã(k, l) : 1 ≤ k ≤ l ≤ N} are

independent random variables taking values in [−1/N, 1/N ] and hence by Hoeffding’s inequality

we have, for any δ > 0,

P

∣∣∣∣∣∣
∑

1≤k≤l≤N
Ã(k, l)− E

 ∑
1≤k≤l≤N

Ã(k, l)

∣∣∣∣∣∣ > δNε


≤ 2 exp

(
−δ2(Nε)2

)
≤ 2 exp

(
−δ2(logN)2ξ

)
.

Dealing with the case k > l similarly, the desired bound on e′1We2 follows.

Proof of Lemma 4.3.4. Follows by a simple moment calculation.

Lemma 4.6.1. For any n ≥ 0, E[e′Wne] ≥ 0 for any N ≥ N0, where N0 ∈ N does not depend

on n.

Proof. We have

E[e′Wne] =
1

N

N∑
i1,...,in+1=1

E

(
n∏
t=1

W (it, it+1)

)
r

(
i1
N

)
r

(
in+1

N

)
.

On the right hand side of the above identity, any term under the expectation in the sum is of the

form
n′∏
t=1

E
(

(W (it, it+1))lt
)
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for some n′ ≤ n, lt ≥ 1 with the independent random variables {W (it, it+1)}n′t=1 and
∑n′

t=1 lt =

n. Thus if we can show that for any lt ≥ 1, E
(
(W (it, it+1))lt

)
≥ 0 the lemma follows because

range of the function r is [0,M ]. Now from (4.1.3) using the notation q := εr
(
it
N

)
r
(
it+1

N

)
, we

get

E
(

(W (it, it+1))lt
)

= (A(it, it+1)− q)lt

= (1− q)ltq + (−q)lt(1− q)

= (1− q)q[(1− q)lt−1 + (−q)lt−1] ≥ 0

wherever q ≤ 1
2 .





Chapter 5

Largest eigenvalue in the finite rank

case

5.1 Introduction

Consider an inhomogeneous Erdős-Rényi random graph on vertices {1, 2, . . . , N} with connec-

tion probability between the vertices i and j, given by

pi,j = εf

(
i

N
,
j

N

)
.

Here f is of the form

f(x, y) =

k∑
i=1

θiri(x)ri(y) , for all (x, y) ∈ [0, 1]× [0, 1], (5.1.1)

for some k ≥ 1. In Chapter 4, we have studied the behaviour of the largest eigenvalue of the

adjacency matrix when k = 1. The case k ≥ 2 turns out to be substantially difficult than the case

k = 1 for the following reason. If k = 1, that is,

E(A) = uu′ ,

for some N × 1 deterministic column vector u, then with high probability it holds that

u′ (λI −W )−1 u = 1 ,

111
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where λ is the largest eigenvalue ofA (see (4.3.10)). The above equation facilitates the asymptotic

study of λ. However, when k ≥ 2, the above equation takes a complicated form. The observation

which provides a way out of this is that λ is also an eigenvalue of a k × k matrix with high

probability; the same is recorded in Lemma 5.4.2 of Section 5.4. Besides, working with the

eigenvalues of a k × k matrix needs more linear algebraic work when k ≥ 2. For example, the

proof of Lemma 5.4.9, which is one of the major steps in the proof of a main result, becomes a

tautology when k = 1.

The following results are obtained in the current chapter. The function f , defined in (5.1.1),

induces an integral operator of finite rank k, under the assumption that (4.1.4) holds. If the

largest eigenvalue of the integral operator has multiplicity 1, then the largest eigenvalue of the

adjacency matrix has a Gaussian fluctuation. More generally, it is shown that the eigenvalues

which correspond to isolated eigenvalues, which will be defined later, of the induced integral

operator jointly converge to a multivariate Gaussian law. Under the assumption that the function

f is Lipschitz continuous, the leading order term in the expansion of the expected value of the

isolated eigenvalues is obtained. Furthermore, under an additional assumption, the inner product

of the eigenvector with the discretized eigenfunction of the integral operator corresponding to

the other eigenvalues is shown to have a Gaussian fluctuation. Some important examples of

such f include the rank-one case, and the stochastic block models. Whether the fluctuation of

the (k + 1)-th eigenvalue after appropriate centring and scaling is asymptotically Tracy-Widom,

remains an open question.

The mathematical set-up and the main results of the chapter are stated in Section 5.2. Theorem

5.2.3 shows that of the k largest eigenvalues, the isolated ones, centred by their mean and

appropriately scaled, converge to a multivariate normal distribution. Theorem 5.2.6 studies the

first and second order of the expectation of the top k isolated eigenvalues. Theorems 5.2.7 and

5.2.8 study the behaviour of the eigenvectors corresponding to the top k isolated eigenvalues.

Section 5.3 illustrates the example of stochastic block models. The proofs of the main results are

in Section 5.4 and some essential lemmas are proved in Section 5.5.
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5.2 The set-up and the results

Recall that f is a bounded Riemann integrable function from [0, 1] × [0, 1] to [0,∞) which is

symmetric, that is,

f(x, y) = f(y, x) , 0 ≤ x, y ≤ 1 .

The integral operator If with kernel f is defined from L2[0, 1] to itself by

(
If (g)

)
(x) =

∫ 1

0
f(x, y)g(y) dy , 0 ≤ x ≤ 1 .

Besides the above, we assume that If is a non-negative definite operator and the range of If has

a finite dimension.

Under the above assumptions If turns out to be a compact self-adjoint operator. Let θ1 ≥

· · · ≥ θk, where k is the dimension of the range of If , denote the non-zero eigenvalues of If , with

corresponding eigenfunctions r1, . . . , rk. Spectral theory implies that r1, . . . , rk are orthonormal.

These functions are Riemann integrable by assumption; see Lemma 5.5.1 in Section 5.5. Thus,

for g ∈ L2[0, 1] it holds that

If (g) =
k∑
i=1

θi〈 ri, g〉L2[0,1]ri.

Note that this gives

∫ 1

0

(
k∑
i=1

θiri(x)ri(y)g(y)

)
dy =

∫ 1

0
f(x, y)g(y) dy for almost all x ∈ [0, 1].

Since g is an arbitrary function in L2[0, 1] this immediately gives

f(x, y) =
k∑
i=1

θiri(x)ri(y) , for almost all (x, y) ∈ [0, 1]× [0, 1]. (5.2.1)

Since the functions on both sides of the above equation are Riemann integrable, the corresponding

Riemann sums are approximately equal, and hence there is no loss of generality in assuming that

the above equality holds for every x and y.
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Let (ε ≡ εN : N ≥ 1) be a real sequence satisfying

0 < ε ≤

[
sup

0≤x,y≤1
f(x, y)

]−1

, N ≥ 1 .

Here and elsewhere, the subscript ‘N ’ is suppressed in the notation. We assume that (4.1.4) holds

for some ξ > 8 and ε∞ is same as in (4.2.3). It’s worth emphasizing that we do not assume that

ε necessarily goes to zero, although that may be the case.

We recall that GN is an inhomogeneous Erdős-Rényi graph where an edge is placed between

vertices i and j with probability εf(i/N, j/N), for i ≤ j, the choice being made independently

for each pair in {(i, j) : 1 ≤ i ≤ j ≤ N}. Note that we allow self-loops. Let A be the adjacency

matrix of GN . In other words, A is an N ×N symmetric matrix, where {A(i, j) : 1 ≤ i ≤ j ≤

N} is a collection of independent random variable, and

A(i, j) ∼ Bernoulli
(
εf

(
i

N
,
j

N

))
, 1 ≤ i ≤ j ≤ N .

A few more notations are needed for stating the main results. For a moment, set θ0 =∞ and

θk+1 = −∞, and define the set of indices i for which θi is isolated as follows:

I = {1 ≤ i ≤ k : θi−1 > θi > θi+1} .

For anN×N real symmetric matrixM , λ1(M) ≥ . . . ≥ λN (M) denote its eigenvalues. Finally,

after recalling the Definition 4.2.1 about the high probability events, the notations ohp, Ohp and,

Op, we state the main results of this chapter. The first result complements Theorem 4.2.2 of the

rank one case to rank k (<∞) case and is about the first order behaviour of λi(A).

Theorem 5.2.1. For every 1 ≤ i ≤ k,

λi(A) = Nεθi (1 + ohp(1)) .
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An immediate consequence of the above is that for all 1 ≤ i ≤ k, λi(A) is non-zero w.h.p.

and hence dividing by the same is allowed, as done in the next result. Define

ei =


N−1/2ri(1/N)

N−1/2ri(2/N)
...

N−1/2ri(1)

 , 1 ≤ i ≤ k . (5.2.2)

The second main result studies the asymptotic behaviour of λi(A), for i ∈ I , after appropriate

centering and scaling.

Theorem 5.2.2. For every i ∈ I, as N →∞,

λi(A) = E (λi(A)) +
Nθiε

λi(A)
e′iWei + op(

√
ε) ,

where W is as defined in (4.1.3).

The next result generalizes Theorem 4.2.4, and is a corollary of the previous two theorems.

Theorem 5.2.3. Assuming (4.1.4), (4.2.3) and (5.2.1), if I is a non-empty set, then as N →∞,

(
ε−1/2 (λi(A)− E[λi(A)]) : i ∈ I

)
⇒ (Gi : i ∈ I) , (5.2.3)

where the right hand side is a multivariate normal random vector in R|I|, with mean zero and

Cov(Gi, Gj) = 2

∫ 1

0

∫ 1

0
ri(x)ri(y)rj(x)rj(y)f(x, y) [1− ε∞f(x, y)] dx dy ,

for all i, j ∈ I.

It may be checked that the Lindeberg-Lévy central limit theorem implies that as N →∞,

(
ε−1/2e′iWei : i ∈ I

)
⇒ (Gi : i ∈ I) , (5.2.4)

where the right hand side is as in Theorem 5.2.3. Therefore, the latter would follow from

Theorems 5.2.1 and 5.2.2.
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Remark 5.2.4. If f > 0 a.e. on [0, 1]× [0, 1], then the Krein-Rutman theorem (see Lemma 5.5.2)

implies that 1 ∈ I, and that r1 > 0 a.e. Thus, in this case, if ε∞ = 0, then

Var(G1) = 2

∫ 1

0

∫ 1

0
r1(x)2r1(y)2f(x, y) dx dy > 0 .

Remark 5.2.5. That the claim of Theorem 5.2.3 may not hold if i /∈ I is evident from the

following example. Suppose that ε∞ = 0 and

f(x, y) = 1

(
x ∨ y < 1

2

)
+ 1

(
x ∧ y > 1

2

)
, 0 ≤ x, y ≤ 1 .

Then, Theorem 5.2.3 itself implies that there exists βN ∈ R such that

ε−1/2 (λ1(A)− β)⇒ G1 ∨G2 ,

where G1 and G2 are i.i.d. from normal with mean 0 and variance 2, and hence there doesn’t

exist a centering and a scaling by which λ1(A) converges weakly to a non-degenerate normal

distribution.

For the remaining results in this section, f will be assumed to be a Lipschitz function. The

next main result of the chapter studies asymptotics of E(λi(A)) for i ∈ I.

Theorem 5.2.6. Assume that f is Lipschitz continuous, that is, there exists K <∞ such that

|f(x, y)− f(x′, y′)| ≤ K
(
|x− x′|+ |y − y′|

)
. (5.2.5)

Then, for all i ∈ I,

E [λi(A)] = λi(B) +O
(√
ε+ (Nε)−1

)
,

where B is a k × k symmetric deterministic matrix, depending on N , defined by

B(j, l) =
√
θjθlNεe

′
jel + θ−2

i

√
θjθl(Nε)

−1E
(
e′jW

2el
)
, 1 ≤ j, l ≤ k ,

and ej and W are as defined in (5.2.2) and (4.1.3), respectively.

The next result studies the asymptotic behaviour of the normalized eigenvector corresponding

to λi(A), again for isolated vertices i. It is shown that the same is asymptotically aligned with

ei, and hence it is asymptotically orthogonal to ej . Upper bounds on rates of convergence are

obtained.
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Theorem 5.2.7. As in Theorem 5.2.6, let f be a Lipschitz continuous function. Then, for a fixed

i ∈ I,

lim
N→∞

P (λi(A) is an eigenvalue of multiplicity 1) = 1 . (5.2.6)

If v is the eigenvector, with L2-norm 1, of A corresponding to λi(A), then

e′iv = 1 +Op
(
(Nε)−1

)
, (5.2.7)

that is, Nε(1− e′iv) is stochastically tight. When k ≥ 2, it holds that

e′jv = Op
(
(Nε)−1

)
, j ∈ {1, . . . , k} \ {i} . (5.2.8)

The last main result of this chapter studies finer fluctuations of (5.2.8) under an additional

condition.

Theorem 5.2.8. Continue assuming f to be Lipschitz continuous, and let k ≥ 2 and i ∈ I.

Furthermore, assume that

N−2/3 � ε� 1 . (5.2.9)

If v is as in Theorem 5.2.7, then, for all j ∈ {1, . . . , k} \ {i},

e′jv =
1

θi − θj

[
θi

1

λi(A)
e′iWej + (Nε)−2 1

θi
E
(
e′iW

2ej
)]

+ op

(
1

N
√
ε

)
.

Remark 5.2.9. An immediate consequence of Theorem 5.2.8 is that under (5.2.9), there exists a

deterministic sequence (zN : N ≥ 1) given by

z =
1

(Nε)2θi(θi − θj)
E
(
e′iW

2ej
)
,

such that as N →∞,

N
√
ε
(
e′jv − z

)
converges weakly to a normal distribution with mean zero, for all i ∈ I and j ∈ {1, . . . , k} \ {i}.

Furthermore, the convergence holds jointly for all i and j (satisfying the above), and with (5.2.3),

to a multivariate normal distribution in Rk|I| with mean zero, whose covariance matrix is not

hard to calculate.
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5.3 An example

The stochastic block model

An important example is the stochastic block model, defined as follows. Suppose that

f(x, y) =

k∑
i,j=1

p(i, j)1Bi(x)1Bj (y) , 0 ≤ x, y ≤ 1 ,

where p is a k×k symmetric positive definite matrix, andB1, . . . , Bk are disjoint Borel subsets of

[0, 1] whose boundaries are sets of measure zero, that is, their indicators are Riemann integrable.

We show below how to compute the eigenvalues and eigenfunctions of If , the integral operator

associated with f .

Let βi denote the Lebesgue measure of Bi, which we assume without loss of generality to be

strictly positive. Rewrite

f(x, y) =

k∑
i,j=1

p̃(i, j)si(x)sj(y) ,

where

p̃(i, j) = p(i, j)
√
βiβj , 1 ≤ i, j ≤ k ,

and

si = β
−1/2
i 1Bi , 1 ≤ i ≤ k .

Thus, {s1, . . . , sk} is an orthonormal set in L2[0, 1]. Let

p̃ = U ′DU ,

be a spectral decomposition of p̃, where U is a k × k orthogonal matrix, and

D = Diag(θ1, . . . , θk) ,

for some θ1 ≥ . . . ≥ θk > 0.
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Define functions r1, . . . , rk by


r1(x)

...

rk(x)

 = U


s1(x)

...

sk(x)

 , x ∈ [0, 1] .

It is easy to see that r1, . . . , rk are orthonormal in L2[0, 1], and for 0 ≤ x, y ≤ 1,

f(x, y) = [s1(x) . . . sk(x)] p̃ [s1(x) . . . sk(x)]′

= [r1(x) . . . rk(x)]Up̃U ′ [r1(x) . . . rk(x)]′

=
k∑
i=1

θiri(x)ri(y) .

Thus, θ1, . . . , θk are the eigenvalues of If , and r1, . . . , rk are the corresponding eigenfunctions.

5.4 Proof of the main results

This section is devoted to the proof of the main results. We shall be using the estimates stated in

Section 4.3 of the previous chapter. At this point, it should be clarified that in this section, ej

will always be as defined in (5.2.2). We start with showing that Theorem 5.2.1 is a corollary of

Lemma 4.3.1.

Proof of Theorem 5.2.1. For a fixed i ∈ {1, . . . , k}, it follows that

|λi(A)− λi (E(A))| ≤ ‖W‖ = Ohp

(
(Nε)1/2

)
,

by Lemma 4.3.1. In order to complete the proof, it suffices to show that

lim
N→∞

(Nε)−1λi (E(A)) = θi ,

which however follows from the observation that (5.2.1) implies that

E(A) = Nε
k∑
j=1

θjeje
′
j . (5.4.1)

This completes the proof.
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Proceeding towards the proof of Theorem 5.2.2, let us fix i ∈ I, once and for all, denote

µ = λi(A) ,

and let V be a k × k matrix, depending on N which is suppressed in the notation, defined by

V (j, l) =


Nε
√
θjθl e

′
j

(
I − 1

µW
)−1

el, if ‖W‖ < µ ,

0, else ,

for all 1 ≤ j, l ≤ k. It should be noted that if ‖W‖ < µ, then I −W/µ is invertible. The first

step towards Theorem 5.2.2 is to show that V/Nε converges to Diag(θ1, . . . , θk), that is, the

k × k diagonal matrix with diagonal entries θ1, . . . , θk, w.h.p.

Lemma 5.4.1. As N →∞,

V (j, l) = Nεθj (1(j = l) + ohp(1)) , 1 ≤ j, l ≤ k .

Proof. For fixed 1 ≤ j, l ≤ k, writing

(
I − 1

µ
W

)−1

= I +Ohp
(
µ−1‖W‖

)
,

we get that

V (j, l) = Nε
√
θjθl

(
e′jel +

1

µ
Ohp(‖W‖)

)
.

Since

lim
N→∞

e′jel = 1(j = l) , (5.4.2)

and

‖W‖ = ohp(µ)

by Lemma 4.3.1 and Theorem 5.2.1, the proof follows.

The next step, which is one of the main steps in the proof of Theorem 5.2.2, shows that the

i-th eigenvalues of A and V are equal w.h.p.

Lemma 5.4.2. With high probability,

µ = λi(V ) .
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The proof of the above lemma is based on the following fact which is a direct consequence of

the Gershgorin circle theorem; see Theorem 1.6, pg 8 of [90].

Fact 1. Suppose that U is an n× n real symmetric matrix. Define

Rl =
∑

1≤j≤n, j 6=l
|U(j, l)| , 1 ≤ l ≤ n .

If for some 1 ≤ m ≤ n it holds that

U(m,m) +Rm < U(l, l)−Rl , for all 1 ≤ l ≤ m− 1 , (5.4.3)

and

U(m,m)−Rm > U(l, l) +Rl , for all m+ 1 ≤ l ≤ n , (5.4.4)

then

{
λ1(U), . . . , λn(U)

}
\

 ⋃
1≤l≤k, l 6=m

[U(l, l)−Rl, U(l, l) +Rl]

 =
{
λm(U)

}
.

Remark 5.4.3. The assumptions (5.4.3) and (5.4.4) of Fact 1 mean that the Gershgorin disk

containing the m-th largest eigenvalue is disjoint from any other Gershgorin disk.

Proof of Lemma 5.4.2. The first step is to show that

µ ∈
{
λ1(V ), . . . , λk(V )

}
w.h.p. (5.4.5)

To that end, fix N ≥ 1 and a sample point for which ‖W‖ < µ. The following calculations are

done for that fixed sample point.

Let v be an eigenvector of A, with norm 1, corresponding to λi(A). That is,

µv = Av = Wv +Nε

k∑
l=1

θl(e
′
lv)el , (5.4.6)

by (5.4.1). Since µ > ‖W‖, µI −W is invertible, and hence

v = Nε
k∑
l=1

θl(e
′
lv) (µI −W )−1 el . (5.4.7)
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Fixing j ∈ {1, . . . , k} and premultiplying the above by
√
θjµe

′
j yields

µ
√
θj(e

′
jv) = Nε

k∑
l=1

√
θjθl(e

′
lv)e′j

(
I − 1

µ
W

)−1

el =
k∑
l=1

V (j, l)
√
θl(e

′
lv) .

As the above holds for all 1 ≤ j ≤ k, this means that if

u =
[√

θ1(e′1v) . . .
√
θk(e

′
kv)
]′
, (5.4.8)

then

V u = µu . (5.4.9)

Recalling that in the above calculations a sample point is fixed such that ‖W‖ < µ, what we

have shown, in other words, is that a vector u satisfying the above exists w.h.p.

In order to complete the proof of (5.4.5), it suffices to show that u is a non-null vector w.h.p.

To that end, premultiply (5.4.6) by v′ to obtain that

µ = v′Wv +Nε‖u‖2 .

Dividing both sides by Nε and using Lemma 4.3.1 implies that

‖u‖2 = θi + ohp(1) .

Thus, (5.4.5) follows.

Lemma 5.4.1 shows that for all l ∈ {1, . . . , i− 1},

V (i, i) +
∑

1≤j≤k, j 6=i
|V (i, j)|

−
V (l, l)−

∑
1≤j≤k, j 6=l

|V (l, j)|


=Nε (θi − θl) (1 + ohp(1)) ,

as N →∞. Since i ∈ I, θi − θl < 0, and hence

V (i, i) +
∑

1≤j≤k, j 6=i
|V (i, j)| < V (l, l)−

∑
1≤j≤k, j 6=l

|V (l, j)| w.h.p.
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A similar calculation shows that for l ∈ {i+ 1, . . . , k},

V (i, i)−
∑

1≤j≤k, j 6=i
|V (i, j)| > V (l, l) +

∑
1≤j≤k, j 6=l

|V (l, j)| w.h.p.

In view of (5.4.5) and Fact 1, the proof would follow once it can be shown that for all l ∈

{1, . . . , k} \ {i},

|µ− V (l, l)| >
∑

1≤j≤k, j 6=l
|V (l, j)| w.h.p.

This follows, once again, by dividing both sides by Nε and using Theorem 5.2.1 and Lemma

5.4.1. This completes the proof.

The next step is to write

(
I − 1

µ
W

)−1

=

∞∑
n=0

µ−nWn , (5.4.10)

which is possible because ‖W‖ < µ. Denote

Zj,l,n = e′jW
nel , 1 ≤ j, l ≤ k , n ≥ 0 ,

and for n ≥ 0, let Yn be a k × k matrix with

Yn(j, l) =
√
θjθlNεZj,l,n , 1 ≤ j, l ≤ k .

The following bounds will be used several times.

Lemma 5.4.4. It holds that

E (‖Y1‖) = O
(
Nε3/2

)
,

and

‖Y1‖ = ohp
(
(Nε)2

)
.

Proof. Lemma 4.3.4 implies that

Var (Zj,l,1) = O(ε) , 1 ≤ j, l ≤ k .
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Hence,

E‖Y1‖ =O

Nε k∑
j,l=1

E|Zj,l,1|


=O

Nε k∑
j,l=1

√
Var(Zj,l,1)


=O

(
Nε3/2

)
,

the equality in the second line using the fact that Zj,l,1 has mean 0. This proves the first claim.

The second claim follows from (4.3.4) of Lemma 4.3.3.

The next step is to truncate the infinite sum in (5.4.10) to level L, where L = [logN ] as

defined before.

Lemma 5.4.5. It holds that

µ = λi

(
L∑
n=0

µ−nYn

)
+ ohp

(√
ε
)
.

Proof. From the definition of V , it is immediate that for 1 ≤ j, l ≤ k,

V (j, l) = Nε
√
θjθl

∞∑
n=0

µ−ne′jW
nel 1(‖W‖ < µ) ,

and hence

V = 1(‖W‖ < µ)

∞∑
n=0

µ−nYn .

For the sake of notational simplicity, let us suppress 1(‖W‖ < µ). Therefore, with the implicit

understanding that the sum is set as zero if ‖W‖ ≥ µ, for the proof it suffices to check that∥∥∥∥∥
∞∑

n=L+1

µ−nYn

∥∥∥∥∥ = ohp(
√
ε) . (5.4.11)

To that end, Theorem 5.2.1 and Lemma 4.3.1 imply that∥∥∥∥∥
∞∑

n=L+1

µ−nYn

∥∥∥∥∥ ≤
∞∑

n=L+1

|µ|−n‖Yn‖

=Ohp

(
(Nε)−(L−1)/2

)
.
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In order to prove (5.4.11), it suffices to show that as N →∞,

− log ε = o ((L− 1) log(Nε)) . (5.4.12)

To that end, recall (4.1.4) to argue that

N−1 = o(ε) (5.4.13)

and

log logN = O(log(Nε)) . (5.4.14)

By (5.4.13), it follows that

− log ε =O (logN)

=o (logN log logN)

=o ((L− 1) log(Nε)) ,

the last line using (5.4.14). Therefore, (5.4.12) follows, which ensures (5.4.11), which in turn

completes the proof.

In the next step, Yn is replaced by its expectation for n ≥ 2.

Lemma 5.4.6. It holds that

µ = λi

(
Y0 + µ−1Y1 +

L∑
n=2

µ−nE(Yn)

)
+ ohp

(√
ε
)
.

Proof. In view of Theorem 5.2.1 and Lemma 5.4.5, all that has to be checked is

L∑
n=2

(Nε)−n‖Yn − E(Yn)‖ = ohp(
√
ε) . (5.4.15)

For that, invoke Lemma 4.3.3 to claim that

max
2≤n≤L, 1≤j,l≤k

P
(
|Zj,l,n − E(Zj,l,n)| > N (n−1)/2εn/2(logN)nξ/4

)

= O
(
e−(logN)η1

)
, (5.4.16)

where ξ is as in (4.1.4).
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Our next claim is that there exists C2 > 0 such that for N large,

⋂
2≤n≤L,1≤j,l≤k

[
|Zj,l,n − E(Zj,l,n)| ≤ N (n−1)/2εn/2(logN)nξ/4

]
(5.4.17)

⊂

[
L∑
n=2

(Nε)−n‖Yn − E(Yn)‖ ≤ C2

√
ε
(

(Nε)−1(logN)ξ
)1/2

]
.

To see this, suppose that the event on the left hand side holds. Then, for fixed 1 ≤ j, l ≤ k, and

large N ,

L∑
n=2

(Nε)−n ‖Yn(j, l)− E [Yn(j, l)]‖

≤θ1Nε
L∑
n=2

(Nε)−n |Zj,l,n − E (Zj,l,n)|

≤θ1

∞∑
n=2

(Nε)−(n−1)N (n−1)/2εn/2(logN)nξ/4

=
[
1− (Nε)−1/2(logN)ξ/4

]−1
θ1

√
ε(Nε)−1/2(logN)ξ/2 .

Thus, (5.4.17) holds for some C2 > 0.

Combining (5.4.16) and (5.4.17), it follows that

P

(
L∑
n=2

(Nε)−n‖Yn − E(Yn)‖ > C2

√
ε
(

(Nε)−1(logN)ξ
)1/2

)

=O
(

logNe−(logN)η1
)

=o
(
e−(logN)(1+η1)/2

)
.

This, with the help of (4.1.4), establishes (5.4.15) from which the proof follows.

The goal of the next two lemmas is replacing µ by a deterministic quantity in

L∑
n=2

µ−nE(Yn) .

Lemma 5.4.7. For N large, the deterministic equation

x = λi

(
L∑
n=0

x−nE(Yn)

)
, x > 0 , (5.4.18)
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has a solution µ̃ such that

0 < lim inf
N→∞

(Nε)−1µ̃ ≤ lim sup
N→∞

(Nε)−1µ̃ <∞ . (5.4.19)

Proof. Define a function

h : (0,∞)→ R ,

by

h(x) = λi

(
L∑
n=0

x−nE(Yn)

)
.

Our first claim is that for any fixed x > 0,

lim
N→∞

(Nε)−1h (xNε) = θi . (5.4.20)

To that end, observe that since E(Y1) = 0,

h (xNε) = λi

(
E(Y0) +

L∑
n=2

(xNε)−nE(Yn)

)
.

Recalling that

Y0(j, l) = Nε
√
θjθl e

′
jel , 1 ≤ j, l ≤ k ,

it follows by (5.4.2) that

lim
N→∞

(Nε)−1E(Y0) = Diag(θ1, . . . , θk) . (5.4.21)

Lemma 4.3.2 implies that

E(Zj,l,n) ≤ (O(Nε))n/2 ,

uniformly for 2 ≤ n ≤ L, and hence there exists 0 < C3 <∞ with

‖E(Yn)‖ ≤ (C3Nε)
n/2+1 , 2 ≤ n ≤ L . (5.4.22)

Therefore, ∥∥∥∥∥
L∑
n=2

(xNε)−nE(Yn)

∥∥∥∥∥ ≤
∞∑
n=2

(xNε)−n(C3Nε)
n/2+1 → C2

3x
−2 ,
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as N →∞. With the help of (5.4.21), this implies that

lim
N→∞

(Nε)−1

(
L∑
n=0

(xNε)−nE(Yn)

)
= Diag(θ1, . . . , θk) ,

and hence (5.4.20) follows. It follows that for a fixed 0 < δ < θi.

lim
N→∞

(Nε)−1 [Nε(θi + δ)− h ((θi + δ)Nε)] = δ ,

and thus, for large N ,

Nε(θi + δ) > h ((θi + δ)Nε) .

Similarly, again for large N ,

Nε(θi − δ) < h ((θi − δ)Nε) .

Hence, for N large, (5.4.18) has a solution µ̃ in [(Nε)(θi − δ), (Nε)(θi + δ)], which trivially

satisfies (5.4.19). Hence the proof.

Lemma 5.4.8. If µ̃ is as in Lemma 5.4.7, then

µ− µ̃ = Ohp
(
(Nε)−1‖Y1‖+

√
ε
)
.

Proof. Lemmas 5.4.6 and 5.4.7 imply that

|µ− µ̃|

=

∣∣∣∣∣λi
(
Y0 + µ−1Y1 +

L∑
n=2

µ−nE(Yn)

)
− λi

(
L∑
n=0

µ̃−nE(Yn)

)∣∣∣∣∣+ ohp(
√
ε)

≤‖µ−1Y1‖+ |µ− µ̃|
L∑
n=2

µ−nµ̃−n‖E(Yn)‖
n−1∑
j=0

µjµ̃n−1−j + ohp(
√
ε)

=|µ− µ̃|
L∑
n=2

µ−nµ̃−n‖E(Yn)‖
n−1∑
j=0

µjµ̃n−1−j +Ohp
(
(Nε)−1‖Y1‖+

√
ε
)
.

Thus,

|µ− µ̃|

1−
L∑
n=2

µ−nµ̃−n‖E(Yn)‖
n−1∑
j=0

µjµ̃n−1−j

 ≤ Ohp ((Nε)−1‖Y1‖+
√
ε
)
. (5.4.23)
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Equations (5.4.19) and (5.4.22) imply that∣∣∣∣∣∣
L∑
n=2

µ−nµ̃−n‖E(Yn)‖
n−1∑
j=0

µjµ̃n−1−j

∣∣∣∣∣∣ =Ohp

( ∞∑
n=2

n(Nε)−(n+1)(C3Nε)
n/2+1

)

=Ohp
(
(Nε)−1

)
=ohp(1), N →∞ . (5.4.24)

This completes the proof with the help of (5.4.23).

The next lemma is arguably the most important step in the proof of Theorem 5.2.2, the other

major step being Lemma 5.4.2.

Lemma 5.4.9. There exists a deterministic µ̄, which depends on N , such that

µ = µ̄+ µ−1Y1(i, i) + ohp
(
(Nε)−1‖Y1‖+

√
ε
)
.

Proof. Define a k × k deterministic matrix

X =

L∑
n=0

µ̃−nE(Yn) ,

which, as usual, depends on N . Lemma 5.4.8 and (5.4.24) imply that

∥∥∥∥∥X −
L∑
n=0

µ−nE(Yn)

∥∥∥∥∥ ≤|µ− µ̃|
L∑
n=2

µ−nµ̃−n‖E(Yn)‖
n−1∑
j=0

µjµ̃n−1−j

=ohp (|µ− µ̃|)

=ohp
(
(Nε)−1‖Y1‖+

√
ε
)
.

By Lemma 5.4.6 it follows that

µ = λi
(
µ−1Y1 +X

)
+ ohp

(
(Nε)−1‖Y1‖+

√
ε
)
. (5.4.25)

Let

H = X + µ−1Y1 −
(
X(i, i) + µ−1Y1(i, i)

)
I ,

M = X −X(i, i)I ,
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and

µ̄ = λi(X) .

Clearly,

λi
(
µ−1Y1 +X

)
=X(i, i) + µ−1Y1(i, i) + λi(H)

=µ̄− λi(M) + µ−1Y1(i, i) + λi(H) .

Thus, the proof would follow with the aid of (5.4.25) if it can be shown that

λi(H)− λi(M) = ohp
(
(Nε)−1‖Y1‖

)
. (5.4.26)

If k = 1, then i = 1 and hence H = M = 0. Thus, the above is a tautology in that case.

Therefore, assume without loss of generality that k ≥ 2.

Proceeding towards proving (5.4.26) when k ≥ 2, set

U1 = (Nε)−1M , (5.4.27)

and

U2 = (Nε)−1H . (5.4.28)

The main idea in the proof of (5.4.26) is to observe that the eigenvector of U1 corresponding

to λi(U1) is same as that of M corresponding to λi(M), and likewise for U2 and X . Hence, the

first step is to use this to get a bound on the differences between the eigenvectors in terms of

‖U1 − U2‖.

An important observation that will be used later is that

‖U1 − U2‖ = Ohp
(
(Nε)−2‖Y1‖

)
. (5.4.29)

The second claim of Lemma 5.4.4 implies that the right hand side above is ohp(1). The same

implies that for m = 1, 2 and 1 ≤ j, l ≤ k,

Um(j, l) = (θj − θi)1(j = l) + ohp(1) , N →∞ . (5.4.30)
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In other words, as N →∞, U1 and U2 converge to Diag(θ1 − θi, . . . , θk − θi) w.h.p. Therefore,

λi(Um) = ohp(1) ,m = 1, 2 . (5.4.31)

Let Ũm, for m = 1, 2, be the (k−1)× (k−1) matrix (recall that k ≥ 2) obtained by deleting

the i-th row and the i-th column of Um, and let ũm be the (k − 1)× 1 vector obtained from the

i-th column of Um by deleting its i-th entry. It is worth recording, for possible future use, that

‖ũm‖ = ohp(1) ,m = 1, 2 , (5.4.32)

which follows from (5.4.30), and that

‖ũ1 − ũ2‖ = Ohp
(
(Nε)−2‖Y1‖

)
, (5.4.33)

follows from (5.4.29).

Equations (5.4.30) and (5.4.31) imply that Ũm − λi(Um)Ik−1 converges w.h.p. to

Diag(θ1 − θi, . . . , θi−1 − θi, θi+1 − θi, θk − θi) .

Since i ∈ I, the above matrix is invertible. Fix δ > 0 such that every matrix in the closed

δ-neighborhood Bδ, in the sense of operator norm, of the above matrix is invertible. Let

C4 = sup
E∈Bδ

‖E−1‖ . (5.4.34)

Then, C4 <∞. Besides, there exists C5 <∞ satisfying

∥∥E−1
1 − E−1

2

∥∥ ≤ C5‖E1 − E2‖ , E1, E2 ∈ Bδ . (5.4.35)

Fix N ≥ 1 and a sample point such that Ũm − λi(Um)Ik−1 belongs to Bδ. Then, it is

invertible. Define a (k − 1)× 1 vector

ṽm = −
[
Ũm − λi(Um)Ik−1

]−1
ũm ,m = 1, 2 ,
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and a k × 1 vector

vm = [ṽm(1), . . . , ṽm(i− 1), 1, ṽm(i), . . . , ṽm(k − 1)]′ ,m = 1, 2 .

It is immediate that

‖ṽm‖ ≤ C4‖ũm‖ ,m = 1, 2 . (5.4.36)

Our next claim is that

Umvm = λi(Um)vm ,m = 1, 2 . (5.4.37)

This claim is equivalent to

[Um − λi(Um)Ik] vm = 0 . (5.4.38)

Let Ūm be the (k − 1)× k matrix obtained by deleting the i-th row of Um − λi(Um)Ik. Since

the latter matrix is singular, and Ũm − λi(Um)Ik−1 is invertible, it follows that the i-th row of

Um − λi(Um)Ik lies in the row space of Ūm. In other words, the row spaces of Um − λi(Um)Ik

and Ūm are the same, and so do their null spaces. Thus, (5.4.38) is equivalent to

Ūmvm = 0 .

To see the above, observe that the i-th column of Ūm is ũm, and hence we can partition

Ūm =
[
Ūm1 ũm Ūm2

]
,

where Ūm1 and Ūm2 are of order (k−1)×(i−1) and (k−1)×(k−i), respectively. Furthermore,

[
Ūm1 Ūm2

]
= Ũm − λi(Um)Ik−1 .

Therefore,

Ūmvm = ũm +
[
Ūm1 Ūm2

]
ṽm = ũm +

(
Ũm − λi(Um)Ik−1

)
ṽm = 0 .

Hence, (5.4.38) follows, which proves (5.4.37).

Next, we note

‖v1 − v2‖
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=‖ṽ1 − ṽ2‖

≤
∥∥∥∥(Ũ1 − λi(U1)Ik−1

)−1
∥∥∥∥ ‖ũ1 − ũ2‖

+

∥∥∥∥(Ũ1 − λi(U1)Ik−1

)−1
−
(
Ũ2 − λi(U2)Ik−1

)−1
∥∥∥∥ ‖ũ2‖

≤C4‖ũ1 − ũ2‖+ C5

∥∥∥(Ũ1 − λi(U1)Ik−1

)
−
(
Ũ2 − λi(U2)Ik−1

)∥∥∥ ‖ũ2‖ ,

C4 and C5 being as in (5.4.34) and (5.4.35), respectively. Recalling that the above calculation

was done on an event of high probability, what we have proven, with the help of (5.4.29) and

(5.4.33), is that

‖v1 − v2‖ = Ohp
(
(Nε)−2‖Y1‖

)
.

Furthermore, (5.4.32) and (5.4.36) imply that

‖ṽm‖ = ohp(1) .

Finally, noting that

Um(i, i) = 0 ,m = 1, 2 ,

and that

vm(i) = 1 ,m = 1, 2 ,

it follows that

|λi(U1)− λi(U2)|

=

∣∣∣∣∣∣
∑

1≤j≤k, j 6=i
U1(i, j)v1(j)−

∑
1≤j≤k, j 6=i

U2(i, j)v2(j)

∣∣∣∣∣∣
≤

∑
1≤j≤k, j 6=i

|U1(i, j)||v1(j)− v2(j)|+
∑

1≤j≤k, j 6=i
|U1(i, j)− U2(i, j)|v2(j)|

=Ohp (‖ũ1‖‖v1 − v2‖+ ‖U1 − U2‖‖ṽ2‖)

=ohp
(
(Nε)−2‖Y1‖

)
.

Recalling (5.4.27) and (5.4.28), (5.4.26) follows, which completes the proof in conjunction with

(5.4.25).
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Now, we are in a position to prove Theorem 5.2.2.

Proof of Theorem 5.2.2. Recalling that

Y1(i, i) = θiNε e
′
iWei ,

it suffices to show that

µ− E(µ) = µ−1Y1(i, i) + op(
√
ε) . (5.4.39)

Lemma 5.4.9 implies that

µ− µ̄ =µ−1Y1(i, i) + ohp
(
(Nε)−1‖Y1‖+

√
ε
)

=Ohp
(
(Nε)−1‖Y1‖+

√
ε
)
, (5.4.40)

a consequence of which, combined with Lemma 5.4.4, is that

lim
N→∞

(Nε)−1µ̄ = θi . (5.4.41)

Thus,

∣∣∣∣ 1µ̄Y1(i, i)− 1

µ
Y1(i, i)

∣∣∣∣ =Ohp
(
(Nε)−2|µ− µ̄|‖Y1‖

)
=ohp (|µ− µ̄|)

=ohp
(
(Nε)−1‖Y1‖+

√
ε
)

=op(
√
ε) , (5.4.42)

Lemma 5.4.4 implying the second line, the third line following from (5.4.40) and the fact that

‖Y1‖ = Op

(
Nε3/2

)
, (5.4.43)

which is also a consequence of the former lemma, being used for the last line. Using Lemma

5.4.9 once again, we get that

µ = µ̄+
1

µ̄
Y1(i, i) + ohp

(
(Nε)−1‖Y1‖+

√
ε
)
. (5.4.44)
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Let

R = µ− µ̄− 1

µ̄
Y1(i, i) .

Clearly,

E(R) = E(µ)− µ̄ ,

and (5.4.44) implies that for δ > 0 there exists η > 1 with

E|R| ≤ δ
(√
ε+ (Nε)−1E‖Y1‖

)
+ E1/2

(
µ− µ̄− 1

µ̄
Y1(i, i)

)2

O
(
e−(logN)η

)
.

Lemma 5.4.4 implies that

E|R| ≤ o(
√
ε) + E1/2

(
µ− µ̄− 1

µ̄
Y1(i, i)

)2

O
(
e−(logN)η

)
.

Next, (5.4.41) and that |µ| ≤ N2 a.s. imply that

E1/2

(
µ− µ̄− 1

µ̄
Y1(i, i)

)2

=O
(
N2
)

=o
(
ε1/2N3

)
=o
(
ε1/2e(logN)η

)
.

Thus,

E|R| = o(
√
ε) ,

and hence

E(µ) = µ̄+ o(
√
ε) .

This, in view of (5.4.44), implies that

µ =E(µ) +
1

µ̄
Y1(i, i) + op

(
(Nε)−1‖Y1‖+

√
ε
)

=E(µ) +
1

µ̄
Y1(i, i) + op

(√
ε
)
,

the second line following from (5.4.43). This establishes (5.4.39) with the help of (5.4.42), and

hence the proof.

Theorems 5.2.1 and 5.2.2 establish Theorem 5.2.3 with the help of (5.2.4). Now we shall

proceed toward proving Theorem 5.2.6. For the rest of this section, (5.2.5) will be assumed, that is,



136 Chapter 5. Largest eigenvalue in the finite rank case

f is Lipschitz continuous. As a consequence, the functions r1, . . . , rk, which are eigenfunctions

of the integral operator If , are also Lipschitz.

The following lemma essentially proves Theorem 5.2.6.

Lemma 5.4.10. If f is a Lipschitz function, then

µ = λi
(
Y0 + (Nεθi)

−2E(Y2)
)

+Op
(√
ε+ (Nε)−1

)
.

Proof. Lemma 5.4.6 implies that

µ = λi

(
3∑

n=0

µ−nE(Yn)

)
+Op

(
µ−1‖Y1‖+

L∑
n=4

µ−n‖E(Yn)‖

)
+ op(

√
ε) .

Equation (5.4.43) implies that

µ = λi

(
3∑

n=0

µ−nE(Yn)

)
+Op

(
√
ε+

L∑
n=4

µ−n‖E(Yn)‖

)
.

From (5.4.22), it follows that

L∑
n=4

µ−n‖E(Yn)‖ = Op
(
(Nε)−1

)
,

and hence

µ = λi

(
3∑

n=0

µ−nE(Yn)

)
+Op

(√
ε+ (Nε)−1

)
. (5.4.45)

Lemma 4.3.4, in particular (4.3.5) therein, implies that

‖E(Y3)‖ = O
(
(Nε)2

)
,

and hence

µ−3‖E(Y3)‖ = Op
(
(Nε)−1

)
.

This, in conjunction with (5.4.45), implies that

µ = λi
(
Y0 + µ−2E(Y2)

)
+Op

(√
ε+ (Nε)−1

)
. (5.4.46)
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An immediate consequence of the above and (5.4.22) is that

µ = λi(Y0) +Op(1) . (5.4.47)

Applying Fact 1 as in the proof of Lemma 5.4.2, it can be shown that

|λi(Y0)− Y0(i, i)| ≤
∑

1≤j≤k, j 6=i
|Y0(i, j)| . (5.4.48)

Since ri and rj are Lipschitz functions, it holds that

e′iej = 1(i = j) +O
(
N−1

)
.

Hence, it follows that

Y0(i, i) = Nε
(
θi +O(N−1)

)
= Nεθi +O(ε) ,

and similarly,

Y0(i, j) = O(ε) , j 6= i .

Combining these findings with (5.4.48) yields that

λi(Y0) = Nεθi +O(ε) . (5.4.49)

Equations (5.4.47) and (5.4.49) together imply that

µ = Nεθi +Op(1) . (5.4.50)

Therefore,

∥∥µ−2E(Y2)− (Nεθi)
−2E(Y2)

∥∥
=Op

(
(Nε)−3‖E(Y2)‖

)
=Op

(
(Nε)−1

)
.

This in conjunction with (5.4.46) completes the proof.

Theorem 5.2.6 is a simple corollary of the above lemma, as shown below.
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Proof of Theorem 5.2.6. A consequence of Theorem 5.2.2 is that

µ− E(µ) = Op(
√
ε) .

The claim of Lemma 5.4.10 is equivalent to

λi(B)− µ = Op
(√
ε+ (Nε)−1

)
.

The proof follows by adding the two equations, and noting that B is a deterministic matrix.

Next we proceed towards the proof of Theorem 5.2.7, for which the following lemma will be

useful.

Lemma 5.4.11. If f is Lipschitz continuous, then as N →∞,

e′j
(
I − µ−1W

)−n
el = 1(j = l) +Op

(
(Nε)−1

)
, 1 ≤ j, l ≤ k , n = 1, 2 .

Proof. For a fixed n = 1, 2, expand

(
I − µ−1W

)−n
= I + nµ−1W +Op

(
µ−2‖W‖2

)
.

The proof can be completed by proceeding along similar lines as in the proof of Lemma 5.4.10.

Now we are in a position to prove Theorem 5.2.7.

Proof of Theorem 5.2.7. Theorem 5.2.1 implies that (5.2.6) holds for any i ∈ I. Fix such an i,

denote

µ = λi(A) ,

and let v be the eigenvector of A, having norm 1, corresponding to µ, which is uniquely defined

with probability close to 1.

Fix k ≥ 2, and j ∈ {1, . . . , k} \ {i}. Premultiplying (5.4.7) by e′j yields that

e′jv = Nε
k∑
l=1

θl(e
′
lv)e′j (µI −W )−1 el , w.h.p.
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Therefore,

e′jv

(
1− θj

Nε

µ
e′j
(
I − µ−1W

)−1
ej

)
=
Nε

µ

∑
1≤l≤k, l 6=j

θl(e
′
lv)e′j

(
I − µ−1W

)−1
el , w.h.p.

Lemma 5.4.11 implies that as N →∞,

1− θj
Nε

µ
e′j
(
I − µ−1W

)−1
ej

P−→ 1− θj
θi
6= 0 .

Therefore,

e′jv =Op

Nε
µ

∑
1≤l≤k, l 6=j

θl(e
′
lv)e′j

(
I − µ−1W

)−1
el


=Op

 ∑
1≤l≤k, l 6=j

∣∣∣e′j (I − µ−1W
)−1

el

∣∣∣


=Op
(
(Nε)−1

)
,

the last line being another consequence of Lemma 5.4.11. Thus, (5.2.8) holds.

Using (5.4.7) once again, we get that

1 = (Nε)2
k∑

l,m=1

θlθm(e′lv)(e′mv)e′l (µI −W )−2 em ,

that is,

θ2
i (e
′
iv)2e′i

(
I − µ−1W

)−2
ei

=(Nε)−2µ2 −
∑

(l,m)∈{1,...,k}2\{(i,i)}

θlθm(e′lv)(e′mv)e′l
(
I − µ−1W

)−2
em .

Using Lemma 5.4.11 once again, it follows that

e′i
(
I − µ−1W

)−2
ei = 1 +Op

(
(Nε)−1

)
.

Thus, (5.2.7) would follow once it’s shown that

(Nε)−2µ2 = θ2
i +Op

(
(Nε)−1

)
, (5.4.51)



140 Chapter 5. Largest eigenvalue in the finite rank case

and that for all (l,m) ∈ {1, . . . , k}2 \ {(i, i)},

(e′lv)(e′mv)e′l
(
I − µ−1W

)−2
em = Op

(
(Nε)−1

)
. (5.4.52)

Equation (5.4.51) is a trivial consequence of (5.4.50). For (5.4.52), assuming without loss of

generality that l 6= i, (5.2.8) implies that

∣∣∣(e′lv)(e′mv)e′l
(
I − µ−1W

)−2
em

∣∣∣ =
∣∣∣(e′mv)e′l

(
I − µ−1W

)−2
em

∣∣∣Op ((Nε)−1
)

≤
∣∣∣e′l (I − µ−1W

)−2
em

∣∣∣Op ((Nε)−1
)

=Op
(
(Nε)−1

)
,

the last line following from Lemma 5.4.11. Thus, (5.4.52) follows, which in conjunction with

(5.4.51) establishes (5.2.7). This completes the proof.

Finally, Theorem 5.2.8 is proved.

Proof of Theorem 5.2.8. Fix i ∈ I. Recall (5.4.8) and (5.4.9), and let u be as defined in the

former. Let ũ be the column vector obtained by deleting the i-th entry of u, Ṽi be the column

vector obtained by deleting the i-th entry of the i-th column of V , and Ṽ be the (k− 1)× (k− 1)

matrix obtained by deleting the i-th row and i-th column of V . Then, (5.4.9) implies that

µũ = Ṽ ũ+ u(i)Ṽi , w.h.p. (5.4.53)

Lemma 5.4.1 implies that

∥∥∥∥Ik − µ−1V −Diag

(
1− θ1

θi
, . . . , 1− θk

θi

)∥∥∥∥ = ohp(1) ,

and hence Ik−1 − µ−1Ṽ is non-singular w.h.p. Thus, (5.4.53) implies that

ũ = u(i)µ−1
(
Ik−1 − µ−1Ṽ

)−1
Ṽi , w.h.p. (5.4.54)

The next step is to show that

∥∥∥∥µ−1V −Diag

(
θ1

θi
, . . . ,

θk
θi

)∥∥∥∥ = op
(√
ε
)
. (5.4.55)
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To see this, use the fact that f is Lipschitz to write for a fixed 1 ≤ j, l ≤ k,

V (j, l) =Nε
√
θjθl

(
e′jel + µ−1e′jWel +Op

(
µ−2‖W‖2

))
=Nε

√
θjθl

(
e′jel +Op

(
(Nε)−1

))
=Nεθj

(
1(j = l) +Op

(
(Nε)−1

))
=Nεθj

(
1(j = l) + op

(√
ε
))
, (5.4.56)

the last line following from the fact that

(Nε)−1 = o
(√
ε
)
, (5.4.57)

which is a consequence of (5.2.9). This along with (5.4.50) implies that

(Nεθi)
−1µ = 1 + op

(√
ε
)
. (5.4.58)

Combining this with (5.4.56) yields that

µ−1V (j, l) = θ−1
i θj 1(j = l) + op

(√
ε
)
.

Thus, (5.4.55) follows, an immediate consequence of which is that

∥∥∥∥(Ik−1 − µ−1Ṽ
)−1
− D̃

∥∥∥∥ = op
(√
ε
)
, (5.4.59)

where

D̃ =

[
Diag

(
1− θ1

θi
, . . . , 1− θi−1

θi
, 1− θi+1

θi
, . . . , 1− θk

θi

)]−1

.

Next, fix j ∈ {1, . . . , k} \ {i}. By similar arguments as above, it follows that

V (i, j) =Nε
√
θiθj

(
3∑

n=0

µ−ne′iW
nej +Op

(
µ−4‖W‖4

))

=Nε
√
θiθj

3∑
n=0

µ−ne′iW
nej +Op

(
(Nε)−1

)
=Nε

√
θiθj

2∑
n=1

µ−ne′iW
nej + op

(√
ε
)
,



142 Chapter 5. Largest eigenvalue in the finite rank case

using (5.4.57) once again, because

Nεe′iej = O(ε) = o
(√
ε
)
,

and

Nεµ−3e′iW
3ej = Op

(
(Nε)−2E(e′iW

3ej)
)

= op
(√
ε
)
,

by (4.3.5). Thus,

V (i, j)−Nε
√
θiθjµ

−1e′iWej =Nε
√
θiθjµ

−2e′iW
2ej + op

(√
ε
)

=Nε
√
θiθjµ

−2E
(
e′iW

2ej
)

+ op
(√
ε
)

=(Nε)−1θ
1/2
j θ

−3/2
i E

(
e′iW

2ej
)

+ op
(√
ε
)
,

the second line following from Lemma 4.3.3, and the last line from (5.4.57), (5.4.58) and Lemma

4.3.2. In particular,

V (i, j) = Op(1) .

The above in conjunction with (5.4.59) implies that

[(
Ik−1 − µ−1Ṽ

)−1
Ṽi

]
(j)

=

(
1− θj

θi

)−1√
θiθj

[
(Nε)−1θ−2

i E
(
e′iW

2ej
)

+Nεµ−1e′iWej
]

+ op(
√
ε) .

In light of (5.4.54), the above means that

e′jv

=(e′iv)µ−1

(
1− θj

θi

)−1 [
(Nε)−1θ−1

i E
(
e′iW

2ej
)

+Nεθiµ
−1e′iWej + op(

√
ε)
]

=µ−1

(
1− θj

θi

)−1 [
(Nε)−1θ−1

i E
(
e′iW

2ej
)

+Nεθiµ
−1e′iWej + op(

√
ε)
]
,

the last line following from (5.2.7) and (5.4.57). Using (5.4.58) once again yields that

Nε(e′jv) =
1

θi − θj
[
(Nε)−1θ−1

i E
(
e′iW

2ej
)

+Nεθiµ
−1e′iWej

]
+ op(

√
ε) .

This completes the proof.
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5.5 Appendix

Lemma 5.5.1. The eigenfunctions {ri : 1 ≤ i ≤ k} of the operator If are Riemann integrable.

Proof. LetDf ⊂ [0, 1]× [0, 1] be the set of discontinuity points f . Since f is Riemann integrable,

the Lebesgue measure of Df is 0. Let

Dx
f = {y ∈ [0, 1] : (x, y) ∈ Df}, x ∈ [0, 1] .

If λ is the one dimensional Lebesgue measure, then Fubini’s theorem implies that

E = {x ∈ [0, 1] : λ(Dx
f ) = 0}

has full measure. Fix an x ∈ E and consider xn → x and observe that

f(xn, y)→ f(x, y) for all y /∈ Dx
f .

Fix 1 ≤ i ≤ k and let θi be the eigenvalue with corresponding eigenfunction ri, that is,

ri(x) =
1

θi

∫ 1

0
f(x, y)ri(y) dy. (5.5.1)

Using f is bounded and r ∈ L2[0, 1], dominated convergence theorem implies

ri(xn) =
1

θi

∫
(Dxf )c

f(xn, y)ri(y) dy → 1

θi

∫ 1

0
f(x, y)ri(y) dy = ri(x)

and hence r is continuous at x. So the discontinuity points of ri form a subset of Ec which has

Lebesgue measure 0. Further, (5.5.1) shows that ri is bounded and hence Riemann integrability

follows.

The following result is a version of the Perron-Frobenius theorem in the infinite dimensional

setting (also known as the Krein-Rutman theorem). Since our integral operator is positive,

self-adjoint and finite dimensional so the proof in this setting is much simpler and can be derived

following the work of Ninio [72]. In what follows, we use for f, g ∈ L2[0, 1], the inner product

〈f, g〉 =

∫ 1

0
f(x)g(x)dx.
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Lemma 5.5.2. Suppose f > 0 a.e. on [0, 1]× [0, 1]. Then largest eigenvalue θ1 of Tf is positive

and the corresponding eigenfunction r1 can be chosen such that r1(x) > 0 for almost every

x ∈ [0, 1]. Further, θ1 > θ2.

Proof. First observe that

0 < θ1 = 〈r1, θ1r1〉 = 〈r1, If (r1)〉 = |〈r1, If (r1)〉|

≤ 〈u1, If (u1)〉 ≤ θ1

where u1(x) = |r1|(x) and the last inequality follows from the Rayleigh-Ritz formulation of the

largest eigenvalue. Hence note that the string of inequalities is actually an equality, that is,

〈r1, If (r1)〉 = 〈u1, If (u1)〉.

Breaking r1 = r+
1 − r

−
1 implies either r+

1 = 0 or r−1 = 0 almost everywhere. Without loss of

generality assume that r1 ≥ 0 almost everywhere. Using

θ1r1(x) =

∫ 1

0
f(x, y)r1(y) dy

Note that if r1(x) is zero for some x then due to the positivity assumption on f , r1(y) = 0 for

almost every y ∈ [0, 1] which is a contradiction. Hence we have that r1(x) > 0 almost every

x ∈ [0, 1].

For the final claim, without loss of generality assume that
∫ 1

0 r1(x) dx ≥ 0. If θ1 = θ2, then

the previous argument would give us r2(x) > 0 and this will contradict the orthogonality of r1

and r2.
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II: Eigenvalue spacing and the extreme eigenvalues. Communications in Mathematical

Physics, 314(3):587–640, Sep 2012. ISSN 1432-0916. doi: 10.1007/s00220-012-1527-7.

URL https://doi.org/10.1007/s00220-012-1527-7.
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